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In this paper we review how models for discrete random systems may

be used to support practical decision making. It will be demonstrated

how Grganizational requirements determine to a large extent the type of

model to be applied as well as the way in which the model should be

applied. This demonstration is given via several practical examples

of Markov chain models, cohort models, and Markov decision models.

The examples are drawn from various areas ranging from the purely

technical to social applications.

It is demonstrated that the models that are needed for supporting the

decision making process may vary from purely descriptive models to

optimization models. Similarly, the obvious way of application of a

model may vary from straightforward numerical analysis to interactive

modelling procedures based upon managerial evaluation.

It will also be demonstrated how the numerical methods to be used depend

on the structure of the model as well as on applicational aspects. The

numerical aspect is strongly related to the aforementioned aspects,

since the model choiche heavily determines the computational possibilities.
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1. Introduction

The main goal of the present paper is to demonstrate the practical

relevance of discrete mathemetical models for dynamic systems with

random aspects. It will be shown that the environment highly affects

the model choice as well as the role of the model in the decision

making process.

Random dy~amic systems can be recognized in a large number of practical

fields. Examples will be given from areas like insurance, inventory

and production control finance, marketing as well as demographic and

manpower processes. We will approach the problems from the point of

view of managers who are interested in the analysis of dynamic phenomena

because of the information that such an analysis might provide for sup

porting a decision making process. Intentionally, the phrasing is kept

vague, since one of the messages of this paper is that mathematical

models should not be designed with the purpose to replace the decision

making. Only in rather rare cases whole systems can be formalized

in such a way that the decision making can be left over to the mathe

matical model. Usually, only part of the relevant aspects of a problem

can be formalized and the analysis of the corresponding mathematical

models might be one of the information sources that can help in

reaching a decision. The role played by mathematical models in such

situations is one of the subjects of the present paper.

Because of the purposes of the paper, we will focus on the class of

practical problems rather than the class of mathematical techniques.

Nevertheless, some technicalities are needed to stress our point. It

will appear that natural models for the investigated phenomena are

dynamic programming models like Markov chains, cohort models and Markov

decision models. "Natural" here means that these types of models

allow a relatively truthful and credible description of 'reality,

are relatively open to mathematical and numerical analysis, can be

fitted naturally into the data collecting, and decision making

process.

In the next section the discussion will be initiated by the presentation

of a highly simplified example, namely some aspects of the managing

of a car insurance company. This example gives some insight in the

different types of roles mathematical models can play in decision

making processes. It is particularly indicated how tlle basic mathema

tical models for client behaviour in this car insurance example might
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constitute the kernel of a decision support system for the company.

In section 3 a more general discussion is devoted to the relation

between mathematical models for discrete random phenomena and the

organizational environment. Since, usually, one cannot convey the role

of the decision maker to the analyzer, it becomes clear that models

(and computer programs) should be developed in such a way that the

model and its analysis can be fitted naturally into the decision

making process. This requires, for instance, that sensitivity analyses,

parameter variations, and model modifications can be executed in a

simple and natural way in order to allow, as one might say, a discussion

between the decision makers (management) and the model. In section 3

the nature of this discussion will be explained. Of course, this whole

presentation primarily focuses on the class of discrete random systems.

This third section also contains a review of the principles of Markov

chain models, cohort models, and Markov decision models.

In this third section we propose a partition of the problems in design

problems and dynamic control problems. In design problems one has to

choose a design for a dynamic system. Once the design has been selected,

a descriptive model can be used for the analysis of the process. In

dynamic control problems, however, the system can be controlled during

its evolution using its past and current behaviour. In fact, the

partitioning is not strict, since the steering of a ship is a dynamic

control problem and, therefore, the design of a Ship's steering

equipment would be the design of a dynamic control system.

Section 4 is devoted to the description of some examples of design

problems.

Also for another reason the partitioning is not strict, since there

are many situations in which redesign is possible during the process.

For instance, the determination of a promotion policy in a manpower

system would be a typical design problem if it would be done once

and for ever, however, that is usually not the case; redesign is quite

customary. In this way one obtains a third type of system which we

call controlled autonomous systems. Examples of such systems are given

in section 5. Several of these examples contain, as the manpower example

mentioned, cohort aspects. Like in the pure design problems, part of

the relevant information for decision making might be provided

analyzing some alternatives via autonomous or descriptive models. So,

again, control and optimization need not explicitly be incorporated
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in the models. On the contrary, quite often it would not be very sensible

to force the decision making into a control or optimization model.

Even the dynamic control models, as described and exemplified in section

6 in the form of Markov decision models, will usually not be applied as

strictly action-prescribing models.

In section 7 numerical aspects of solving discrete random systems are

treated. As the structure of the model bears a heavy influence on the

numerical possibilities, the numerical aspects in their turn have quite

some influence on the modelling. Topics like aggregation and decomposition

are discussed briefly in their relation to numerical analysis and decision

making.

Section 8, finally, is used to reach some conclusions and give some final

remarks.

2. An example of a discrete random process

In this section we will introduce an oversimplified version of a vehicle

insurance company in order to introduce the type of models as well as the

role of these models in the decision process.

In the .insurance business the company sets the condition and the (prospective)

clients react upon these conditions. So the basic process in the vehicle

insurance industry is the behaviour of (prospective) clients in a given

environment. Possible actions for these clients are:

signing for an insurance with specific conditions

dropping their insurance

claiming a damage

The decision to claim or not to claim will depend on the size of the

damage, but also on the current no-claim discount of the client, the time

in the year, and the conditions of the insurance with respect to own risk

and no-claim discounts.

For the operations of the insurance company it will be necessary to answer

a number of questions concerning these basic processes, for example:

What is for certain conditions the average premium to be paid by

a client?

What is the optimal claiming policy for an individual car owner?

How much worse is it for a client to claim as soon as the damage is

more than the no-claim discount?

How does the claim limit depend on the time within the (insurance)year?

How sensitive are such results for changes in the accident rate?
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How does the accident rate depend on age, area, etc.?

For which (prospective) clients would a specific option be attractive?

In order to analyse such questions, one can try to model the process in

which one (prospective) client is involved. Claiming models, for instance,

are described in detail by De Leve e.a. [ 9] and by Hastings [14]. Also

for analyzing joining decisions one should consider claiming models and

compare the results for claiming models under different conditions.

Let us make such a claiming model. Since it is only used for demonstration

purposes, it can be kept very simple. Suppose that the company has the

following no-claim discount system. A new client pays the full premium but

obtains a 20% discount on the next year1s premium if he or she does not

claim in the first year. After two consecutive years with no claims even

a discount of 30% is granted. However, after a claim the full premium is

due for the next year.

It seems sensible for a client to base the claim behaviour upon the time

within the insurance year the damage is sustained. We incorporate this

aspect into the model by dividing the insurance year in two equal parts

(which is not principally different from a division into 12 or 52 parts) .

Each half year one may now observe the situation of the client with respect

to the insurance and record this situation by 2 indices:

the first index indicates the part of the year,

i.e. 0 means that the premium for the next year is due now, whereas

1 means that the client has still half a year to go before the

new insurance year starts,

the second index indicates the premium level (100%, 80%, or 70%) for

the next insurance year with the proviso for the mid-year obser

vation that this premium might be affected by claims in the

coming half year.

So, one obtains 6 situation descriptions - called states - which are depicted

in figure 1, in which a possible path of a client time is reproduced
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fig. 1: The development of the state over time for the premium situation

of a particular car owner

The random element in this process is caused by the occurring or ncn

occurring of damage for the car owner. But the process, is also influenced

by the reaction of the client, namely whether he claims or not.

In this simplified example we use periods of half a year, so let us assume

for simplicity that the car holder decides per period whether a certain

damage will be claimed or not. In this way no difference is made for the

different parts within half a year, but that shortcoming could be repaired

by taking shorter periods. Let us also assume that the car owner bases his

decision on the state and uses a claim limit for each state, which seems

quite sensible. Suppose these possible claim .limits belong to a finite set L.

Then the accident rates and damage statistics determine for each given

state i and for each limit ~ the probability of a transition to any state

j: P(i,j; ~. Similarly, one can determine the one-stage expected costs

c(l;t) for a period which starts in state i with claim limit~ .
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or in vector-matrix notation

v (i) == min v (i ill.)

A

v(i) = min {c (iit) + 6 L: P (i,j it) v(j)} iSI
tSL jsI

(2. 1)

(2.2)

(2.3)

Let

V(iiA) = C(iiA(i» + S:ih P(i,jiA(i»)v(ji A) iSI

where S (0<6<1) is the discount factor.

Similar, but slightly more complicated, relations hold for time-dependent

policies, finite time horizon, and for time-averages of nondiscounted costs.

For a given claim policy A, assigning a claim limit A(i) to each state

i, one may compute the total expected discounted costs for an infinite

time horizon after start in state i as solution of the set of linear

equations in the variables V(iiA) with i from the set of states I, say:

with nt and n
t

_
1

as row-vectors.

the total costs function for the optimal policy, one even has the following

elegant relations

These relations can be used to compute the minimal costs and the optimal

claim limits for a given set of parameters P(i,jit), c(iit) (cf.sections 6 and 7).

In this way we have modelled the claim behaviour as a controlled system.

Actually, the interest to the insurance company of this model is provided

by the fact that it will give a lower bound to its profits, since, most

likely, the clients will not behave optimally.

For supporting decision making within the company, it is also relevant

to study the behaviour of groups of clients, since the combined efforts

of all clients determine the financial well-being of the company. Let us

consider a more or less homogeneous group of clients all having the same

insurances. Let us suppose that these clients have chosen a claiming

policy which results in an average likelihood P(i,j) for a client in

state i to make a transition to state j. Using that property, one

easily obtains for the expected number nt (j) of clients in state j

at time instant t
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t nt (i) [Pr(i) - c(i)]

nt (j) = r t (j) + f nt _
1

(i) P (i 1 j)

or
(2.4)

The P(i,j) may not add up to 1 when summed over the j for fixed i. Namely,

there may be a positive probability of dropping the insurance. Also there

may be recruits. If the expected number of recruits in state j is rt(j) for

period t, then we obtain

For the financial consequences of this group of clients in period t we

obtain the following forecast

where Pr(i) denotes the prenium of a client in state i and c(i) the expected

costs for the company caused by this client. (If recruitment and loosing

of clients also gives costs, then they can be incorporated in a simular

way) •

Also long-term behaviour can be analyzed in this way. But, whatever one

analyzes, the most important thing is to compare different policies of the

company. Different policies can mean different recruitments, but also

different premiums and even different discount systems. In all cases new

transition probabilities have to be estimated and then the results can be

computed. Also different policies can be used after each other, for instance

first some periods a policy to attract new clients and later on a change

to a policy for keeping the clients. Therefore, we call this type of

system a controlled autonomous system. With completely fixed recruitment

and transition probabilities, it would be called an autonomous system.

From the above description it will be clear what kind of function the mathematic

models can play in the decision processes within the insurance company.

particularly, the controlled autonomous systems are very useful for the

design of good marketing policies as well as for judging financial conse

quences of different alternatives.



3. Discrete random systems and the organizational environment of decision

making.

In the preceding section we introduced three types of models that can be

used to support decision making with regard to vehicle insurance. However,

the success or failure of an application of such a type of model will

heavily depend on the way in which the model and the method of analysis link

up with the managerial and organizational circumstances. In recent years,

several authorities have re-amphasized the necessity of embedding formal

techniques in the integral decision making process. It has been stressed

repeatedly that application of formal methods without carefully established

relation to the organizational environment are bound to become failures.

The necessary approach has been described explicitly in the literature on

decision support systems 1] , [ 19]. This approach, however, requires the

combination of expertise in various disciplines and experience with several

types of organizational processes. The contribution of mathematical models

might indeed be essential, however, use of such models can only be effective

if other - usually qualitative-aspects receive the attention which they deserve.

Actually, the examples of the previous section demonstrate that the organi

zational environment heavily influences the type of model that is required

as well as the way in which the model may be applied. For instance, decisions

with respect to the introduction of a new type of car insurance are probably

made at the highest level within the company. The impact of such decisions

lasts for several years. The design and choice of a new type of insurance

belong to the category of strategic planning problems and it will be clear

that many qualitative aspects play an important role in the final decision.

Problems like "how to adapt premiums to increasing repair costs?" are of

a different type and might be categorized as control problems.

From the example the differences between strategic planning and control

problems will be clear. In general, one usually distinguishes planning

and control as being concentrated on different aspects of managing an

organization. Such a distinction can never be categorical, however, it
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may be helpful to make a conceptual separation between different types of

decision making activities. For our purposes, the distinction of Anthony

[ 2 ] is interesting:

strategic planning,

management control,

operational control.

In ~~is division the control activities are separated in two classes, such

that premium adaption belongs to the class of management control problems,

whereas claim and client acceptation belong to the operational control

problems.

These three categories often coincide with the three levels within an

organization that can be characterized as strategic, coordinative and

operating. Another closely related division of decisions is obtained

by a classification based on the time period of supposed impact:

strategic (or long term) decisions,

tactical (or medium term) decisions,

operational (or short term) decisions.

I£ on the other hand, one classifies the decision problems according

to their level of fussiness, one might obtain:

unstructured decision problems,

semi-structured decision problems,

structured decision problems.

Premium adaptation here definitely belongs to the class of well-structured

decision problems, designing a new car insurance probably belongs to the

class of semi-structure decision problems and entering the field of car

insurance will belong to the unstructured decision problems.

Moreover, a classification can be made with respect to the decision making

process, Keen and Scott Morton [ 19 ] distinguish 5 different approaches:

- The rational way of decision making.

In this classical approach one strives after the "optimal" action

out of a set of feasible actions.

- The satisficing process oriented way of decision making c£ Simon [ 30].

The acceptability of the ultimate result for all parties involved

gives in this approach the red thread for the decision making process.

- The organizational procedure approach cf Cyert and March [ 7 ].

The specific operating procedures are supposed to determine the

evolving of the decision making process in this approach.

- The political way of decision making.

According to this approach the final decisions are made after a
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bargaining process between the parties involved.

- The individual differences approach.

In this approach the problem solving and information processing

behaviour of individual decision maker is the determining factor

for the decision making process.

In practice usually some mixture of these types of approach for the

decision making process will occur. Nevertheless, it will be clear that

the type of models that have to be constructed to provide information for

supporting decision making processes will vary with the type of the decision

making process itself. However, like in the car insurance company, one

may observe some tendencies which are related to the other categoriZation

mentioned. Such a tendency may be caused by the fact that higher organiza

tional levels impose side conditions for the lower levels. Moreover, the

decision making approach itself is related to the hierarchical level:

the political way of decision making is encountered more often at the

strategic level, whereas the rational approach for well-structured decison

problems is more common at the operational level.

It will be obvious that the classifications given are oversimplified and

not at all generally applicable. Nevertheless, this discussion may be

of help in studying the different types of decision support that are

needed in different situations. The classifications and their relations

are given to encourage a sensible choice, taking explicitly into account

the organizational environment.

For a reallife situation like the one indicated in the insurance example,

three models have been described for supporting decision making in specific

situations. The relevance of these models and the way they have to be applied

depends on the organiz'ational environment. Even in that simplified example,

it was already clear that decision support at the strategic level requires

a partly different approach than decision support at the operational level.

For instance the decisions with respect to the design of a new insurance

might be based on highly aggregate information, moreover, such decisions

are not made every day. On the other hand, adaptation to increasing repair

costs or accident rates is probably actual at very regular times, for in

stance, each half year. Advices to clients have to be given on a daily

basis. These differences also imply differences in the requirements on

the models as well as on allowed response times for delivering information.

At the strategic level the data collecting, model building, model analysis

and reporting can last a relatively long time period compared with the
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operational level. At the lower levels the me~~ods should be more standardized

and readily available. The same feature also makes numerical aspects

important: only efficient computational procudures can provide short

computation times. Therefore numerical aspects will be treated in section 7.

4. Some design problems

In this section some examples of designing autonomous systems will be

described. In practice, no system is really autonomous, since there is

always a possibility for redesign if there is some need to do ~~at.

However, for the exposition it is better to demonstrate first the pure

design problems. In section 5 redesign will be taken into account when

we consider controlled autonomous systems.

4.1.The vehicle insurances company.

A typical design problem of a strategic character is the design of a

completely new type of car insurance. Considering variations of

existing insurance conditions is a decesion problem of a tactical

nature. Let us consider a simplified version of the example of section

2 and contemplate on some variations. The simplification is made by taking

periods of one year. The described insurance problem has a structure

characterized by the graph of figure 2 in which each square denotes a

premium level.

fig.2: Discount structure of the car insurance problem. squares denote

premium levels in percentages, drawn arcs indicate transitions

in a year without a claim and dotted arcs indicate transitions

in years wi~~ a claim.
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An alternative could consist of the incorporation of an extra discount

level at 60% as indicated in fig.3.

In order to compare the two different premium policies of fig.2 and

fig.3 one has to evaluate the consequence for the Markov chains related

to the discount structures.

fig.3: Alternative discount structure for the car insurance problem.

The data for the existing discount structure are derived from operational

information of the firm. The alternative scheme, however, presents

difficulties with respect to claim rates. Particularly for clients on the

new level the claim rate is uncertain, but also on the old levels the

claim rate might be influenced by the new structure. Attractiveness

for new customers of the new scheme is even more difficult to estimate.

Nevertheless, for estimations of the entrance numbers of customers and

for the claim rates, the new scheme can be analyzed and compared to the

existing one. In some steps a new scheme can be developed using a iterative

procedure with the folloWing steps per iteration: new structure,

estimation of data, analysis, evaluation and comparison.

4.2. The dyeing of leather bags

An essential part of the production process of leather bags is the dyeing

of pieces of leather. Before a piece of leather proceeds to the dye-bath

it is inspected. As a result it may be decided that before the dyeing a

preparatory treatment is necessary. This preparatory treatment increases

the likelihood that dyeing results in an even colour and texture of the

piece. After dyeing but also after the preparatory treatment a further

inspection decides on the further treatment of the piece. The inspection
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after the dyeing may result in rejection of the piece, acceptation,

reducing, but also in a retry with a ·preparatory treatment. The inspection

after the preparatory treatment may result in rejection, or acceptation

for the dyeing. The possible steps in this process are depicted in fig.4,

in which also percentages of pieces which make that specific transition

from the same outgoing position are indicated.

fig.4: Structure of the dyeing process. The stages E(enhance)

P(preparation), o (dyeing) include an inspection. The dotted lines

indicate some sort of rejection after inspection. Ult~ately A(accepted)

or R(definitely rejected) are reached.
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The first approach would be a cost analysis of the existing procedure

and all three alternatives. Let us suppose that each of the production phases

E , P, 0 require costs C(E), C(P), C(0) respectively and an accepted piece

brings a reward 2 above the entering value, whereas an entering piece has

costed already an amount. Then the expected profit on an entering piece

of leather can be computed from the following set of equations, where

v(E), v(P), v(O) are the expected profits during the rest of the dyeing

The design problem to be discussed now has to do with this part of the

production process. Two types of alterations are considered, one is

organizationally by nature, the other technically. The first possibility

consists of shipping the entrance inspection and giving all incoming

pieces an initial preparatory treatment. The technical innovation would

mean the installation of a new type of dye bath, which improves the dyeing

results in such a way that definitive rejection would decrease from 10

to 5 percent and sending from dye-bath to preparatory treatment from 15 to

10 percent.

All changes have costs effects and the question is what to do.
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process for a piece which actually arrived at stage E, P, D respectively:

veE) = -c(E) + .2v(P) +.8 v(D)

v(P) = -c(P)-.lc .9 v(D)

v(D) = -c(D)-.lc + .7r + .15v(P) + .05v(D)

In a simular way models can be made and analyzed with respect to costs

for the two alternatives. Such quantitative information may be of use

for deciding which alternative will be chosen. However, not only

pure cost motives may be decisive. It may be possible that one of the

alternatives has organizational advantages as leading to a more stable

process.

These models also offer the possibility of precalculating the required

price for accepted pieces such that the loss incurred by the rejects are

covered. Also other aspects as production time per piece and through?ut

can be analyzed. Sensitivity analysis may show how changes in parameters

influence the outcomes. This whole range of quantitative information will

give support for the decision process that has to result in the selection

of one of the three alternatives. In fact, the analysis can easily lead

to sensible suggestions for other alternatives both technically and

organizationally.

For problems in a highly technological environment one may more often

use the intrinsic formal structure of the problem to incorporate the

design aspect in the mar~ematical formulation. Let us consider, as an

example, a simple problem from the area of computer performance.

4.3. Data storage on a disk

Suppose that a lot of background data have to be stored on a disk unit.

Let us consider the case that the background data belong to 4 large sets

each relevant for one type of application. There is a tendency to give

subsequent read/write orders for the data sets. When jumping from one data

set to the other the read/write head has to be moved radially over the

disk and this motion requires time. By minimizing the jumping distance,

the goal of working most efficiently would be reached. A disk consists of

several disks on one axis with simultaneously moving heads. For our purpose

it suffices be consider the disk unit as consisting of one disk each data

set occupying a set of circular tracks as indicated in fig.5.
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fig.5: Schematic division of a disc in 4 regions each consisting of a number

circular tracks. The read/write head moves along the line to find

the correct track and the reading or writing can take place since the

disk turns around with a constant speed.

The amount of information on a track does not depend on its placing, so each

data set consists of a given number of tracks independent of its placing.

Now the problem is which placing of the 4 data sets is most efficient.

The efficiency of a placing is completely determined by the required

moving time between data sets. Naturally, one should place sets near each

other if there is heavy traffic between them. Suppose table 1 gives the

traffic intensities between the data sets.

~ 1 2 3 4from

1 a 50 30 20

2 30 0 30 40

3 30 55 0 15

4 40 20 40 0

Table 1: Jumping intensities between data sets. The first line says that

from data set 1 the jumps leads in 50% of the cases to data set

2 and in 30% of the cases to data set 3, etc.
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To each permutation a. of 1,2,3,4 belongs a moving function f ..o (i, j)

indicating the average time needed to move the head from a track in data set i

to the requested track in data set j. For simplicity, one might determine

this moving function by computing the time to move the head from the

center track of data set i to the center back of data set j. Usually, the

moving times are not proportional to the distance. Let p(i,j) indicate

the jump probabilities as can be derived from table 1 and let q(i) be the

relative visiting frequency to region i, then we obtain the following

minimization problem

4 4
min l: q(i) r, p(i,j) f.i{i,j}_

a. i=l j=l

So here. the design problem may be modelled as a formal optimization

problem.

For 4 data sets explicit enumeration can be used. However, for large numbers

of data sets the computation of the minimal solution has to be approximated

by means of a heuristic. We will not treat that topic here further.

We have treated 3 design problems of quite a different nature, but with

one feature in common, namely, that they can be ~reated as pure design

problems because of the relative long time between the current design and

a futural next design. Note the meaning of'~ong" is indeed very relative,

since in the last example it may be the order of one week. However, that

is very long in that type of process in which thousands of jumps per hour

are realistic. Many other examples can be given for example for the design

of networks of queues [ 29]. In the next section we will consider problems

for which the possibility of redesign is an essential aspect of the analysis.

5. Some examples of controlled autonomous systems

In the preceeding section the choice of an insurance scheme has been con

sidered. Moreover, it has already been noted that it might be sensible

to incorporate the possibility of later redesign, for instance if in first

instance the scheme should be attractive for prospective clients while later

on it should have the feature of keeping clients. In order to analyse these

aspects it does not suffice to consider single (prospective) clients however,

one needs to consider group behaviour. This is quite often the case. In this

section we will illustrate these aspects with two very simple examples from

other areas, since these examples require less background knowledge and also

less technicalities than the vehicle insurance or the leather dyeing

example would require.
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5.1. Operations Research Analyst

In a hypothetical country the training for Operations Research JI.nalyst (ORA)

consists of two phases each requiring one year. Exams for both phases

are only held once a year and a student who fails his exam has to

repeat the whole year. Of course, students can leave the program before

obtaining the ORA-certificate. A schematic overview of the whole process

is given in fig.6, where the squares indicate phases in the curriculum in

JA are the students who work for the Junior Analyst-certificate and in ORA

are the students who work for the ORA-certificate. The circles indicate

possibilities of leaving the program:

N means 'without any certificate

JAC means with Junior Analyst-certificate

ORAC means with ORA-certificate

JAC can be reached directly from JA and also from ORA after failing and

leaving.

.5

fig.6: The phases for the Operations Research Analyst program.

If the fractions of students for JA and ORA that jump to different

possibilities would be known and if also the instream of new students,

together with the current occupation of JA and ORA is known, then it

will be possible to compute forecasts for the occupations of both phases

and for the output in the years to come. Formular (2.1) would provide

the tool for such a computation.

Interesting information can be derived by computing the forecasts for

occupations and output for example if enrollment increases gradually over

5 years with a total of 50% (enrollment only in JA). Even more interesting

would even be the question: how can enrollment increase if capacity in ORA can

be increased by only 10% per year up to a total of 50%?

Or: what is the influence if the JA-exam is made more restrictive over a

couple of years?



-19-

For the next years we obtain analogously

ment might help.

n
1

(JA) : 90

n 1 (ORA): 200

260--90 =220 - .4;:200

.4

240 - .4;:220
105 275r 2

: - :

.4

260 - .4;:240
296r 3 - 114

.4

r 4 = 317, r : 338, r 6 = 309, r
7 = 315, r

8
315

5

Equaling n
2

(ORA) to 220 gives

n
1

(JA) : 30 + r
1

n
1

(ORA) : 200

n
2

(JA) = . 3;:(90 + r
1
)+r

2
n

2
(ORA) = .4;:200 + .4;: (90+r

1
)

In this way a simple enrollment policy for the coming years may be developed.

However, this policy is based on forecasts, which don't necessarily come

true. Therefore, a yearly updating of the policy based on new information

is requested.

Recruitment in JA does not increase n
1

(ORA), so for the next period no

increase in ORA can be envisaged. However, one period further, a recruit-

n (JA) : 300
o

n (ORA): 200
o

Let us consider the enrollment problem with the capacity restriction.

This problem can easily be formalized. However, that is not our intention

here. Let us give an informal treatment for the situation with currently

300 students in JA and 200 students in ORA, that means the capacity of

ORA may be increased by 20 students a year to 300 students. Moreover,

let us suppose that the numbers in figure 6 indicate the transition

probabilities of individuals.

Using formula (2.1) we obtain for the occupations in the next period

(without recruitment) :
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In this example the only decision variable is the recruitment, although

also the transition probabilities can be used as such. Consider, for

instance, an alternative set-up for the first phase with higher proba

bilities of transition to the next phase due to better motivation of the

students. Of course such an alternative would be more expensive. Different

models of introduction of such an alternative could be analyzed wi~~

respect to output and costs.

5.2. Manpower planning

Similar situations as in the proceeding example can be found in regional

planning and in manpower planning. We will confine ourselves to the

last type of example.

Manpower planning using Markov models has already obtained a lot of

attention in the literature, cf. Bartholomew [ 3], Forbes [ll],Vajda [33 ],

Van Nunen/Wessels [27], Verhoeven [35]. Here we will consider an over

simplified example of a computer programming department of a large corporation.

This department employs programmers and system analysts. The envisaged

requested capacity of both groups is given in table 2.

,
year programmers , analysts

1983 200 100

1984 200 100

1985 210 105

1986 220 110

1987 240 120

1988 250 125

Table 2: Envisaged strength for the years to come.

Turnover in both groups is rather high, yearly about 20 and 25% respectively.

In the preceding years it appeared that about 20% of the programmers was

promoted to system analyst. By making a Markov model based on these data

for the behaviour of an individual, one might obtain the means for solving the

manpowercapacity problem. See fig.7 for the Markov-model.
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.75

Fig.7: Markov model with statesp(programmer), A(analyst) , and

T (turnover) •

In fact the decision variables are rather complicated in this problem,

since not only recruitment can be used to control the system, also the

promotion policy, educational efforts and stimuli for leaving the

organization are available for attaining the goal of the required

capacity.

If 1983 is the current year (t=O) and the strength in 1983 is as

required in table 2, then the model of fig.7 gives with formula (2.1)

without recruitment

n(P) = 200
o

n (A) = 100
o

n
1

(p) = 120

n
1

(A) = 115

Considering the numbers of table 2 as minimum requirement, one could

satisfy the demands for 1984 (t=l) by recruiting 80 programmers. In

table 3 we give the forecasts for the case of no recruitment and for

the simple recruitment rule of yearly filling up the requirement by considering

them as minima.

With this recruitment policy the group of programmers obtains the right

strength. However, in this way the group of system analysts becomes

too big. This cannot be remedied by another recruitment policy. The only

remedies are to be found in the promotion policy and/or in the turnover.

no recruitment with recruitment

year P A recruitment in P P A

1983 200 100 - 200 100

1984 120 115 80 200 115

1985 72 110 90 210 126

1986 43 97 94 220 137

1987 26 81 108 240 147

1988 16 66 106 250 158

Table 3: Expected occupations without and with recruitment
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80,

n2(A)=105=.75~100 + a2~200,so a 2
n2 (Pl=210= (.8-a2l~200 +r2 ,so r 2 =

year recruitment recruitment P A
in P in A

1983 - - 200 100

1984 70 - 200 105

1985 80 - 210 109

1986 83 - 220 113

1987 97 3 240 120

1988 94 - 250 126

n
1
(A)=100=.75~100+a1~200 , so a 1 = .125

n
1
(P)=200=(.8-a1)~200 + r

1
,so r

1
= 65

Apparently, small additional adaptation can make the scheme of table 4

work perfectly, if necessary. One could also work the other way around

and make the promotion rate free (wi~~in some bounds), requiring perfect

fit of the group sizes. In table 5, the results are given for the situation

with only recruitment in the P group.

Table 5 is obtained by the follwoing computations.

Table 4: Expected occupations with recruitment and adapted promotion

rate.

If also in the past the group of system analysts had a size of

half the size of the programmers group, then, apparently, the problems

arise from a slower growth in the preceding years. A high promotion

rate is only possible if growth is fast. Adaptation of the promotion

rate to 15% would result in the occupations of table 4, at least, if

the turnover is not influenced by this change.
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AD

I
I
I
t

c§b

Po

year recruitment in P promotion rate P A

1983 - - 200 100

1984 65 .125 200 100

1985 80 . 15 210 105

1986 83 .149 220 210

1987 101 . 17 240 120

1988 93 .146 250 125

Table 5: Occupations obtained by adapting the promotion rate.

Fig.8: Markov model for individual behavioor with grade age incorporated;

for simplicity the turnover possibility is deleted.

The type of analysis given in tables 3-5 will give the responsible

managers a lot of information about the behaviour of their system, including

the costs. For practical purposes the first aspect to add to the model

would be experience, since definitely promotion and possibly turnover will

depend on experience. A simple way to incorporate this aspect into the

model would be the extension of the st~te_ concept by the time spent already

in the group. In that way the model as described in fig.8 would be obtained.

This type of model is well-suited to base decision support systems for

manpower planning on. For further details on such decision support systems,

see Forbes [11], Verhoeven [35] .
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6. Some examples of controlled systems

In section 2 a Markov decision model has been outlined, which might be

used for the determination of the optimal claim limit for a vehicle in

surance. Processes that possess a similar control structure occur in

various areas ranging from inventory control (cf. Tijms [32],

via cash balancing (cf.Hendrikx et.al.[16], Bartmann[ 4]), fishery (cf.

Mendelssohn [23]) to marketing (cf.Van Nunen/Wessels [25]) and ship hand

ling in a sea terminal (cf.Lenssen et.al. [20]).

In the sequel of this section we will describe some types of controlled

systems. Particular attention will be given to some modelling aspects and

to some implementation aspects as well. Computational aspects are also

very important since the models have a tendency to become very large.

Computational aspects, however, will be considered in the next section.

6.1. Inventory and production control

Inventory production control problems exist in a large variety. A complete

overview of this variety cannot be expected within the framework of this

paper. Let us therefore consider some incidental examples.

6.1.1. The classical stochastic inventory problem

A single product is kept in storage. The amount in storage is observed

periodically and replenishment orders are fulfilled immediately. The

external demand per period for the product is modelled by a random variable

and subsequent demands are independent. Shortages in stock are backlogged.

Costs involved are restocking costs c(k) = k + ck, for k > 0, in which

k is a fixed ~~d c a proportional ordering cost. Inventory costs are k per

unit per period and backlogging costs are b per unit per period.Each period

a demand d occurs with probability p(d). Costs are discounted with dis

count factor S.
The decision process can be modelled by taking the amount of product

in stock (positive or negative) as state. As action one can either take

the amount ordered, or the new state after the eventual replenishment. The

latter choice has some advantages as will appear in section 7, let us there

fore take that choice. As a result one obtains analogous to (2.3) the

following relations for the costs v(i) belonging to an optimal strategy for

an infinite time horizon and starting with inventory i:



where Q,denotes the action in i and c(i;Q,) is (expected) one period costs

if action Q, is chosen in state i

6.1.2 Hard cash inventory

One of the many variants of the preceding classical stochastic inventory

problem is the hard cash inventory problem for a branch office of a bank.

The main specific feature is that the demand by customers can be positive

as well as negative and the same holds for replenishment orders. Backlogging

is not allowed, since shortages have to be filled by an emergency replenishment.

If one considers this situation and takes as time period half a day, then it

will be clear that the demand distribution will depend on the period within

In principle one might use the set of equations (6.1) to determine an optimal

action for each state. However, because of the particular structure of this

model, it is known beforehand (cf.Iglehart [17]) that there is an optimal

strategy of a particular structure. This type of strategy is determined by

two parameters s, S such that replenishment takes only place if stock is

below s and the replenishment is such, that it results in the new stock

level S. This knowledge might help finding an optimal strategy (cf. section 7) ,

but it is also of implementational relevance. Namely, such a structured

strategy is simpler to implement than a general strategy. However, it

may be the case that the variety of replenishment order sizes is acceptable

but not nice, then it can be computed what extra costs a fixed size

replenishment policy would require. This can be done by computing the optimal

fixed order size policy, but also by experimenting with an order size of S-s

or slightly greater. The fixed-strategy equivalent of (6.1)can be used to

compute the costs.

if i < 0

if i > 0
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{c(i;Q,) + S ~p(d) v (Q,-d) }

if Q, > i

if Q, = i

min
,Q,,>i

fJ =[°1
2-i

(6.3)

[

i + K0Q,_i+ c(Q,-i)

(6.2) c(i;Q,)=

-bi + KO n .+ c(Q,-i)
)1,-1.

(6.1) v(i)
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the week (cf. Hendrikx et.al. [16 ]) .Modelling as a Markov decision

model gives as natural stateconcepc (i,t) in which i denotes the

stocklevel at the beginning of a period and t denotes the period

number within the week. This gives a large state space, which even

becomes larger if one models a situation in which there is a time-lag

between action and effect (cf.Veugen et.al. [ 37]), then also old actions

have to be maintained in the state.

Regrettably, the form of the optimal policy in this situation (consider

for simplicity the case without time-lag) is not necessarily as nice

as one would hope. One would expect more or less a 3-parameter strategy

s!,S'Su which r~quires replenishment up till S if stock is below ~~ and

deposit of stock until S if stock is above s . Because of the
u

time-dependence of demand, one would have dependence of these parameters

on the period within the week. This 3-parameter strategy with time-dependence is

already inappropriate for implementation. So it is important to find

well-structured strategies which are nearly optimal, which appears to be

simple in practical situations

by designing 3-parameter strategies which are constant over parts of the

week. Such strategies can be found departing from an optimal strategy.

From example 6.1.2, it becomes clear that even single product-, single invfim

tory point problems can already lead to excessively large control models.

For problems with more products and/or more inventory points therefore,

other approaches are necessary. Such approach can be found using aggregation

and decomposition. In section 7 some remarks will be made in that direction.

6.2. Replacement and maintenance

Let us characterize the large variety of replacement and maintenance

problems by a highly simplified example. For some piece of equipment it

has to be decided each quarter of a year whether to replace it by a

new one or to keep it and give it the necessary maintenance. The required

maintenance depends on the age and on some wastage characteristic. Therefore,

the state is defined as (a,w) in which a denotes age and w denotes

wastage. The only actions are replace, leading to state (0,0), and keep

leaving the state(a,w) untouched. In a period a random transition takes

place from state (a,w) to (a+l,wl) with w 2: w' and probability 'D (w')- a,w
for the new wastage level w~ Using discounting, we obtain the optimal

policy from the relations (6.4) which are analogous to (2.3):



7. Numerical aspects

In this minimization the first alternative represents replacing and

the second alternative represents keeping. r(a,w) is the next value,

c the price of a new piece and m(a,w) the maintenance costs.

Again one can observe that the control process possesses a lot of

structure. Because of this structure one may expect for sensible

forms of the functions rand m that well-structured policies arise

(cf. monotone policies). However, practically a policy like: replace

when a=A, might be desirable. Again it is simple to find a good A

heuristically and evaluate the extra costs of such a policy.

The numerical problems arising in analyzing discrete random models

of the types treated in the preceding sections are partly of a standard

nature and partly of an ad hoc nature. Standard are the numerical problems

for finding the probability distribution for the state of some Markov

chain at time t or in the long run. Also standard are the related problems

for costs. Similarly, standard problems arise in cohort models and

in the controlled models. Ad hoc problems arise if in a design problem

some parameter has to be optimized. In this paper we will only pay

attention to numerical problems of the standard type. The main reason

that numerical problems tend to be real problems in this area is that

large or even very large. Of course,
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= min{-r(a,w)+ c + v(o,o), m(a,w) +SLp(w')v(a+l,Tt.T)}
a,wv (a,w)(6.4)

models have a tendency to become
-a modeller should always be extremely careful in letting models become

large, however, there are many reasons for a state space to become

multidimensional and state spaces of three or more dimensions are usually
n

rather large. With ten levels in each dimension, one becomes 10 states

in case of an n-dimensional state concept. Extra dimensions can easily

be necessary in order to keep track of some sort of cyclic behaviour as

in the hard cash inventory example of subsection 6.1.2. Other reasons

for extra dimensions may be some time lag in the reaction mechanism (see

also the hard cash example) or the importance of some supplementary

variable for the reaction mechanism. An example of such a supplementary

variable is wastage in the replacement example of subsection 6.2.

Another example of such a supplementary variable is the time already

spent in a grade in the manpower model of fig.8. In fact, manpower

models usually need at least a three-dimensional state consisting of



-2'8-

Fig.9: General form of the matrix P of transition probabilities

with respect to P. The form of P is essential for these computations. Its

general form is exhibited in fig.9.

p(t) = p(t-1) P for t=1,2 •••

p = p P

grade(or function), grade age, and age. Quite often more dimensions

are needed as indicators for such features as "sex", "time in service",

"education".

So, even if the models are kept as simple as possible, the state

and/or the action space may be quite large and it becomes essential

to develop numerical methods for handling these large models.

In this section a short overview will be given of the state of the art

in handling these numerical problems.

(7.2)

7.1. Probabilities in Markov chains

Denoting by P the matrix of transition probabilities and by p(t) the

row vector of state probabilities at time instant t, then p(t) can be

computed from p(o) via the recursion relation

For equilibrium probabilities, i.e. for k~ p(t) which usually exists, one

should be able to solve

(7.1)

The figure shows that the solution of (7.1) and of (7.2) can be split-up

in smaller problems. For (7.1) we further refer to subsection 7.3, where

a similar problem is treated. For (7.2) we start by noting that the part
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of p corresponds to the last block of rows in P is necessarily equal to

zero. For the corresponding states, the equilibrium probabilities can be

computed as expected costs if a cost is attached to transition from any

state in the last block to a state in one of the other. In each of the

other blocks the states can then be aggregated to one superstate. For

the solution of such cost problems, the reader is referred to subsection

7.2.

So the only numerical problem to be treated here is the part of (7.2)

belonging to one of the upper blocks, i.e. x = x A, with A being a matrix

of transition probabilities in which all pairs of states are interconnected.

Also in this particular case it seems necessary to use the particular struc

ture of the matrix A. particularly, if the state is multidimensional, then

A often has itself again some sort of blockstructure. This structure

can be exploited by using the accelerated overrelaxation method of

Hadjidimos [ 13 ] and block-iteration method of Brandwajn [ 5 ].

These methods are quite similar.

Standard successive approximations methods can also be used but have a

tendency to converge only slowly, although that is not necessary. In

fact, the methods of Jadjidimos and Brandwajn are accelerated versions

of standard successive approximations. Also very simple accelerations,

like Gauss-Seidel iteration, can already help a lot.

A recent development gives the possibility to compute upper- and lowerbounds

of the solution after any iteration, at least, if one of the components

of x is already known beforehand. This approach of Van der Wal [38 ] is

very promising.

Also decomposition gives some possibilities, at least if a natural decom

position arises, cf. Courtois [ 6 ].

7.2 Costs in a Markov chain

If each visit to state i brings an expected cost c(i), then the total

expected costs until time t are denoted by v (j) for starting state j.
t

The vt(j) form a columnvector v
t

' which can be computed from

(7.3) for t=l, 2 ...

when v is given.
o



If costs are discounted, (7.3) becomes

If 0 < 6 <I, and under some circumstances if B > lone may consider

lim v = v which satisfiest.-o t

where the random variable X
t

denotes the state at time t and Ei indicates

expectation with given start in state i. Ten one obtains easily for E(i)

veil = E(i) - v
2

(i)
CQ, t 2

E (i) = Ei [';'0 B c (Xt »

v = c + I3Pv

v t = c + B pv
t

_
1

, fort=l,2, .••••.

(7.6)

(7.4)

(7.7)

Many of the specific remarks made in the following subsections are

also relevant for this case.

v t and v give expected costs. For the costs in period t the whole

distribution can be obtained, since the state distribution pet) can be

computed from (7.1). For total (discounted) costs, however, it is very

difficult to give the distribution because of the dependence between

the states at difference times. Nevertheless, the variance can be given

quite easily and these variances are practically the most important.

For the oo-horizon discounted problem the variance and second moment of

the total expected discounted costs are denoted by veil and E(i) if i

is the starting state.

Then

(7.5)

The solution of these equations will not be considered further here,

since in subsection 7.4 a more general problem will be treated. It is

clear, however, that (7.5) is just a relatively general set of linear

equations so that all standard methods from numerical analysis for such

sets of equations become available.cf. Young [42]. rnf24] 't has been shown that a

for the general case the interpretation which leads to (7.5) can be

helpful in understanding available numerical techniques.
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t= 1,2, .•..

co s: 2E (i) = :lE. 0: c (X )] =
~ t=o t

.lEi [c (Xo )
! t 2= + t=l S c(Xt )] =

2 co t 2
= :lEi [c(X)] + :lEi [ t~l S c(Xt )]

0

+ 2Sc (i) EP (i , j ) v ( j )
J

= c
2

(i) + 2Sc(i) l: P(i,j) v(j) + S2 l: P(i,j) E(j)
J J

(7.8) V(i) = 62 [ r P(i,j) v2
(j) - (E P(i,j)v(j)2] + S2 E P(i,j) V(j)

J J J

for given starting occupation of the states n. nand r t are column
o t

vectors denoting respectively the expected occupation and the expected

recruitment at time t for the different states.

7. 3. Cohorts

if the square of a vector is defined as the vector with all components

squared.

Also the interpretation of (7.8) or (7.9) + (7.10) is simple and

interesting. Similar results have been found independently by Sobel [ 31 ].

Computationally, the variances of total costs give no new problems.

For cohort models there are also several types of numerical problems

but let us confine attention to (2.4)

(7.8) has the same form (7.5) as soon as v is known, viz.

(7.10)

With (7.6) E(i) and E(j) can be replaced by V(i) and V(j), which results in

(7.9)



The only real problem arises if the state set is very large and Pn 1
t-

has to be computed quite often. For conversational use it is essential

that response times are short in order to facilitate trial-and error

exercises.

Let us consider the manpower planning type of models as mentioned in

subsection 5.2. Let the state be characterized by grade, grade age, and

one or more characteristics like sex, education level, education field,

experience, location. These characteristics consist of two types: those

that can change over time and that cannot change over time. The latter

group is simpler to handel and therefore age (year of birth) is included

in that group together with sex and, depending on the situation, some of

the other supplementary characteristics. Let us take for simplicity as

state characteristics grade, grade age, age, sex, and eduction level with

age and sex invariant over time. Then the computation of pnt _ 1 can be

decomposed by computing a similar but much smaller form for any relevant

sex-age combination. In these smaller problems one may further use the

specific structure which usually shows that grade and education level

can only change in one direction. Moreover, grade age just increases

by one as long as the grade remains unchanged. The two features can straight

forwardly be used to make the computation more efficient.

A further feature can be that age is not really important for state

transitions only for retiring. In that case it is important to know

whether the forecasts should give age distributions. If not, the

retirements can be computed beforehand and one aggregate the ages which

gives a substantial saving in computation effort. This latter trick also

works if retirement is not at a fixed age.

The forecasts treated so far 'are the expectations of the actual number. ~he

variances are much more complicated. In fact, variances can only be

computed under more assumptions.

If all individuals behave independently, for instance, then there are

formulae for the variances (cf. Bartholomew [3 ]). However, computations

are time consuming for large state spaces and the assumption is not

always realistic.
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(7.11>- v = min {c- + SP cv}
A A A

For a control problem with 100 states and an average of 30 actions

per state the l.p.-problem has 100 constraints and 3000 variables.

for i = 1 , ••• ,N

P
A

(i,j) = P (i,j; A(i»

x(i;9,) c(i;Q..) subject to

&+ B E x(j;k) p(j,i;k)
j ,k

x (1;9,»).0

minimize E
i,Q..

E x (i;9,) =
9,

c,\ (i) = c (i; A(i» and

Starting from the idea that (7.11t is a generalization of (7.5),

there emerge two strongly related approaches, viz. linear programming

(see [ 8] and for a recent survey, Kallenberg [18]) and policy

iteration (see Howard [15 J 1.

The linear program giving the minimizing policy in (7.11) becomes

where A is an arbitrary policy ascribing an action to each state

and ~, P
A

are the cost-vector and transition-matrix belonging

to this policy:

7.4. Controlled discrete dynamic systems

Expected total discounted costs in a Markov chain can be computed

by solving the set of linear equations (7.5). For a controlled

Markov chain, this set of equations can be generalized to the

vector-matrix form of (2.3)

(7.12)

As a standard method linear programming is only useful for relatively

small problems, since a couple of hundreds of states .is characteristic

for relativ.ely small problems. A possibility for handling really large

problems with linear programming might be found in the recently

emerged simplex variants for linear programming problems for optimizing

flows in processing networks (for these simplex variants, see Glover/

Klingman [12]; for a flow-in-a-processing-network formulation of a
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Markov decision process, see Van der Wal/Wessels [39]).

The policy iteration method exploits the fact that (7.5) gives

costs for a given strategy A:

(policy improvement step)

(value determination step)

= min {c + SP wt }
A A 1..-1

(7.14L

(7.131 min {c + SP v,,}f.l 0- 11 /\
f.l

A third approach arises by either considering (7.111 as a functional

equation and applying the idea of successive approximations to it,

or considering the infinite time-horizon problem as the limit of a

sequence of finite time-horizon proDlems. In its simplest form one

oDtains in this way

where the sequence w
t

conVerges to the solution of (7.11) if t tends

to infinity.

Here there are a lot of variants, see Van Nunen/Wessels [28], however

no one is overall good (compare Hendrikx et.al [16]), so a good variant

With vA' a new policy can be found by

By repeating- these two steps an optimal solution of (7.11) is found

in a finite number of iterations. When the value determination step

is executed Dy solving the set of linear equations, then a couple

of hundreds of states is practically the maximum problem size. In

some examples, however, the structure of the solution of (7.12) or

of the optimal policy can be exploited in such a way that solution

of (7.121 is particularly efficient (for a queueing example, see

Van Nunen and ?uterman [26 J) ; for inventory control, see b2]

Also for (7.13L there are possibilities to accelerate the procedure.

Such possibilities will De dicussed in the context of the subsequent

approach.
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has to Be chosen carefully. Usually, problems with a couple of

thousands of states can be handled in this way by somebody who

has some al3ility in designing a proper variant and making an

efficient program for it. For particularly structured problems,

it is sometimes possible to handle problems with tens of thousands

of states. For instance, if one of the dimensions of the state has

been introduced to keep track of some periodicity in the process,

then it can Be handled practically as efficient as the same problem

without the periodicity (see Veugen et.al [35]).

Not only the variant can be chosen in such a way that convergence

is quick, an extra property of these methods is that, usually,

extrapolations provide bounds for the solution of (7.11). These

bounds are very helpful in speeding up convergence {by the

extrapolationL as well as in providing a stop criterion.

As already exhibited in (6.15-, the form

-may simplify essentially if P
A

has a particular form. Such a

simplication helps considerably in the computation. However, such a

structure would disappear if the action in the problem underlying

(6.1L would have been modelled as order sizes instead of transitions

to a new state. Also many variants of the successive approximations

method would destroy this simplification. Actually, in such a problem

(cf. Hendrikx et.al [16]1 the proper modelling choice and the choice

of a -variant which can exploit this simplicity is eS'sential for

obtaining a solution in a reasonable time.

Concluding one may state:

1. by standard methods only relatively small problems can be handled;

2. medium-sized problems can be handled by properly designed variants

of standard methods, however I these variants will be highly

problem-dependent;

3. really large problems can only be handled along t..l-J.ese lines in rare

cases.
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For really large problems, with at least some tens of thousands

of states, other lines of thought have to be followed. The use of

decomposition/composition and aggregation/disaggregation seem to

provide solutions. Until now, not much systematic knowledge about

those approaches has been obtained.

The systematic knowledge consists primarily of bounds for the

distance between the solution of the original problem and an

aggregated problem (cf. Whitt [41]L. Recently, Mendelssohn ~2]

has published an iterative aggregation procedure for Markov decision

processes. Mendelssohn's approach is based on the iterative

aggregation approach for linear programming as developed mostly in

the Sovjet-Union, cf. for instance Vakkutinskii et.al 84]. These

approaches have mainly a theoretical value. The sparse reports on

practical use are concerned with problems in which grid size is a

measure for the level of aggregation (Mendelssohn [21 ], Veugen

et.al [37]L. However, realistic planning problems, for instance in

the area of inventory and production control, are often so

complicated that aggregation via the choice of a grid does diminish

the problem size sufficiently. Aggregation via grid choice may be

considered as a very natural way of aggregation which usually does

not destroy the problem structure. If large grid sizes do not help

sufficiently, then the next step is to consider forms of

decomposition and/or aggregation which do destroy the problem

structure more or less.

Hopefully, this destruction is such that it can be repaired somewhat

in a subsequent composition and/or disaggregation step. It seems

not very likely that a very general approach is possible in this area.

Nevertheless, several examples show some progress. All these examples

are heaVily based on the specific problem structure. We mention here

the paper by Federgruen and Zipkin lio] on aggregation in inventory

models. Furthermore, we mention the paper by Lenssen et.al ~O J. ::,-
on planning in shiphandling, who advocate a iterative aggregation/

disaggregation approach, when the disaggregation is executed via

simulation.
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