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Den Dolech 2, 5612 AZ, Eindhoven, The Netherlands
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Abstract. We analyze derivation of Markov reward chains from inter-
mediate performance models that arise from formalisms for composi-
tional performance analysis like stochastic process algebras, (general-
ized) stochastic Petri nets, etc. The intermediate models are typically
extensions of continuous-time Markov reward chains with instantaneous
labeled transitions. We give stochastic meaning to the intermediate mod-
els using stochastically discontinuous Markov reward chains, for which
there are two prominent methods for aggregation: lumping and reduction
to a pure Markov reward chain. As stochastically discontinuous Markov
reward chains are not intuitive in nature, we consider Markov reward
chains extended with transitions that are parameterized by a real vari-
able. These transitions are called fast transitions, when they are governed
by explicit probabilities, and silent transitions, when the probabilities are
left unspecified. In the asymptotic case when the parameter tends to in-
finity, the models have a behavior of a stochastic discontinuous Markov
reward chains. For all Markovian models, we develop two aggregation
methods, one based on reduction and another one based on lumping and
we give a comparative analysis between them.

1 Introduction

1.1 Motivation

Homogeneous continuous-time Markov chains (we will refer to them as Markov
chains for short) have established themselves as very powerful, yet fairly simple
models for performance evaluation. A Markov chain (see e.g. [1–3]) is a finite-
state continuous-time stochastic process of which the (stochastic) behavior in
every state is completely independent of the prior states visited (i.e. the process
satisfies the Markov property) and of the time already spent in the state (i.e. the
process is homogeneous in time). It is known that, if some continuity require-
ment is met, a Markov chain can be represented as a directed graph in which
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nodes represent states and labels on the outgoing arrows determine the stochas-
tic behavior in the state. Some states are marked as starting and have initial
probabilities associated with them. For example, the behavior of the Markov
chain depicted in Figure 1 is as follows. The process starts from state 1 with
probability π and from state 2 with probability 1 − π (we do not depict the
initial probability if it is zero). In state 1 it waits the amount of time determined
by the minimum of two exponentially distributed delays, one parameterized with
rate λ, the other with rate µ (note that this means that the process spends in
state 1 exponentially distributed time with rate λ+µ). After delaying the process
jumps to state 2 or state 3 depending on which of the two delays was shorter.
In these two states the process just stays forever, i.e. it is absorbed there.
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Fig. 1. a) A simple Markov chain and b) a Markov reward chain
.

To obtain some very useful performance measures, such as throughput and
utilization of a system, Markov chains are often equipped with rewards (some-
times also called costs) [3]. There are many types of rewards but we consider
only those that are associated to states. A (state) reward represents the gain of
a Markov chain while residing in some state. A Markov chain with rewards is
called a Markov reward chain (see Figure 1b).

A vast mathematical theory has been developed to support Markov chains
(as well as Markov reward chains). Efficient methods are available to deal with
Markov chains with millions of states making them very applicable in practice.
One of the main issues when using Markov chains is to find a Markov chain that
correctly represents the system being analyzed.

Over the past few years several performance modeling techniques have been
developed to enable the compositional generation of Markov chains (and more re-
cently also Markov reward chains), i.e. to provide ways to generate big Markov
chains from smaller ones. Some of the best known techniques are stochastic
process algebras [4, 5], (generalized) stochastic Petri nets [6–8], probabilistic I/O
automata [9], stochastic automata networks [10], etc. Most of the formalisms first
generate some intermediate models that are later used to derive pure Markov
chains for performance measuring. Typically, these models are extensions of
Markov chains with features to enable interaction between components. These
features sometimes have undelayable behavior, i.e. they are instantaneous. In the
literature instantaneous transitions are referred to as internal or silent steps (in
process algebra) or as immediate transitions (in Petri nets). In a typical deriva-



tion of a Markov chain all action information is discarded and instantaneous
transitions are eliminated. We illustrate this approach in the fields of stochastic
process algebra and Petri nets.

Stochastic process algebras are process algebras that include features for the
modeling of exponentially distributed delays (e.g. [4, 5]). Stochastic information
is generally introduced in one of two ways: by adding a delay parameter to
actions, like e.g. in PEPA [5], or by adding delays as separate constructs, like
e.g. in Interactive Markov Chains [4]. In the later case silent transitions play a
prominent role.

In the case of Interactive Markov Chains the underlying Markov chain is
obtained as follows. Under the assumption that system does not interact with
the environment any longer, all action information can be discarded and the ac-
tion labeled transitions are transformed into internal τ -transitions. These tran-
sitions are considered instantaneous and choices between them are made non-
deterministically. To obtain a pure Markov chain τ -transitions are eliminated
(if possible) by using a relation on transition systems called weak bisimula-
tion, which is a combination of the standard weak bisimulation for transition
systems [11] and of the aggregation method for Markov chains called ordinary
lumping [12–14]. This weak bisimulation always gives priority to τ -transitions
over exponential delays based on the intuitive fact that these transitions are
instantaneous. If there are closed loops of τ -transitions, then the model is con-
sidered ill-defined (here ‘closed’ means that there is no exit from the loop with a
τ -transition). We give an example of a reduction modulo this weak bisimulation.

Example 1. Consider the Interactive Markov chain depicted in Figure 2a. If we
assume that the system is closed, i.e. that it does not interact with the environ-
ment, then the actions a and b can be renamed into the instantaneous transition
τ and an equivalent model is obtained. The intermediate model, consisting en-
tirely of internal transitions and rates, is depicted in Figure 2b. Now, assume
that the process in Figure 2b starts from state 1. There it exhibits a classical
non-determinism, i.e. the probability of taking the τ -transitions is undetermined.
However, if we observe the behaviors in states 2 and 3, we notice that they are
the same. No matter which transition is taken from state 1, after performing a
τ -transition and delaying exponentially with rate λ, the process enters state 4.
As τ -transitions are timeless, the process in b) is equivalent to the Markov chain
in c) according to weak bisimulation equivalence.

Generalized stochastic Petri nets are introduced in [6] to enable performance
modeling using Petri nets. A Petri net [15] is a bipartite graph with two sets
of nodes: places and transitions. Input arcs connect places with transitions and
output arcs connect transitions with places. Each place can contain several to-
kens. A so-called marking represents the configuration of the tokens in the places.
A transition is enabled if there are tokens in all places that have an input arc
to the transition. Each transition in a generalized stochastic Petri net has a so-
called firing time, which can be zero (for immediate transitions) or exponentially
distributed (for timed transitions). If a marking enables some immediate transi-
tion, then the marking is called vanishing. The process described by a generalized
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Fig. 2. An a) Interactive Markov chain, b) the intermediate model with τ -transitions
and c) the induced Markov chain.

stochastic Petri net is captured by a so-called extended reachability graph that
represents the particular intermediate model and that can be further reduced to
a Markov chain [15, 6, 7]. Of interest are the vanishing markings which exist in
the extended reachability graph, but are eliminated to give the resulting Markov
chain. It is common to assume that immediate transitions cannot form closed
loops, i.e. these loops are considered illegal. Also, usually it is required to know
the firing probabilities of multiple enabled immediate transitions [7]. A typical
elimination of vanishing markings is given in Example 2.

Example 2. Figure 3 depicts a generalized stochastic Petri net with its corre-
sponding reachability graph and the underlying Markov chain. The graph con-
tains the markings of the only token placed initially in p1. The vanishing place
is p2 (thus, the vanishing marking is 0100) because of the enabled immediate
transitions t2 and t3 with probabilities p and 1− p. In the derived Markov chain
the probabilities of the vanishing place split the normal rate λ into two rates pλ
and (1− p)λ that reach the final places p3 and p4, respectively.

Fig. 3. a) A generalized stochastic Petri net, b) the corresponding extended reachability
graph and c) the derived Markov chain.



Note that the intermediate performance models from Figure 2b and Fig-
ure 3b are not defined as stochastic processes. This makes it impossible to claim
that the original model and the underlying Markov chain have the same perfor-
mance. The reduction technique of stochastic Petri nets has been (stochastically)
formalized in [16] by treating the reachability graphs as discontinuous Markov
chains [17] and eliminating the vanishing places by the aggregation approach
of [18, 19]. However, this method is only possible when immediate transitions
are probabilistic, and the same method can not be directly applied in the case
when they are non-deterministic (such as those in Figure 2b).

In this part we give a mathematical underpinning of the elimination of both,
probabilistic and non-deterministic, types of instantaneous transitions in the
above extensions to Markov (reward) chains. We define two methods of aggre-
gation that abstract away from these transitions while preserving performance
measures. The first method is based on lumping, i.e. joining states with equiv-
alent behavior into classes. With this method we can formalize the intuition
behind the variant of weak bisimulation used in [4], but also point out to some
subtle differences. Our method, unknown before in the setting with probabilistic
instantaneous transitions, leads to some new aggregation procedures here. The
second method is an extension of [18] (and therefore also of [16]). It is based on
the elimination of stochastic discontinuity that arises from having instantaneous
probabilistic transitions. The method is very common, often applied in pertur-
bation theory, and this motivated us to extend it and adapt it to the setting with
nondeterminism. By discussing both methods in a common framework, we are
able to compare them. We show that, although quite incomparable in the setting
with probabilistic instantaneous transitions, in the non-deterministic setting the
two approaches coincide.

In this text we do not provide any algorithms nor real world examples. Al-
gorithms will be considered in future work. Since our main contribution is the
theory of elimination of instantaneous states coming from standard Markovian
models, examples where our results can be applied are found elsewhere. How-
ever, still in the absence of tooling, we cannot apply them in big case studies.
This is not a serious drawback. One of our results is that, the lumping method in
the non-deterministic setting only differs from the weak bisimulation reduction
method from [4], in cases that we think will not appear in real world examples
(e.g., closed τ -loops which indicate that there is divergence in the system). This
implies that the tooling for Interactive Markov chains is suitable for our setting
as well.

1.2 Our setting

Our approach to the problem is as follows.

Extensions of the Markov reward chain model To model probabilistic instanta-
neous transitions the standard Markov reward chain model is extended to have
some transitions (linearly) parameterized with a real variable τ (implicitly as-
sumed to be large). This extension of Markov reward chains is referred to as



Markov reward chains with fast transitions. The intuition comes from the se-
mantics of Markov chains. If there are (fast) transitions aτ and bτ leading from
some state, then the probability of taking aτ (resp. bτ) from this state is a

a+b

(resp. b
a+b ). Therefore, the numbers a and b, called speeds, completely determine

the probabilities of state changes. We mathematically formalize the idea that
fast transitions take zero time by considering the limit process as τ goes to in-
finity (the term “speed” now has a point). The intuition again comes from the
semantics of Markov chains. The expected time the process spends in some state
with e.g. only aτ and λ leading from it is 1

aτ+λ which goes to 0 when τ goes to
infinity. The limit process may do infinitely many transitions in a finite amount
of time, i.e. may be stochastically discontinuous [17, 19]. This model is often
considered pathological in literature but, as shown in [19, 16], it is very useful
for explanation of results. We also use it to justify the operations on Markov
reward chains with fast transitions. A Markov reward chain with stochastic dis-
continuity is called a discontinuous Markov reward chain. Next, we introduce
Markov reward chains with silent transitions as classes of Markov reward chains
with fast transitions that all have the same structure, but different speeds as-
signed to the fast transitions. Thus, a silent transition is a fast transition with
unspecified probability with which it can be chosen. This is our way of modeling
non-deterministic behavior in Markov chains.

For each extension, we introduce two aggregation methods.

Aggregation by Lumping The first aggregation method is based on lumping, i.e.
on joining all states that exhibit the same behavior into classes. We decided to
consider the lumping method not only because it is the most common method for
aggregation of standard Markov chains but also because it allows us to formal-
ize the intuitive ideas behind weak bisimulation for Interactive Markov chains.
Extending the notion of ordinary lumping for Markov reward chains, we define
a notion of lumping for discontinuous Markov reward chains. Based on that, we
define a notion of lumping for Markov reward chains with fast transitions, called
τ -lumping. We justify the latter notion by showing that the following diagram
commutes:

Markov Reward Chain
with Fast Transitions τ→∞

//

τ -lumping

²²

Discontinuous
Markov Reward Chain

ordinary
lumping

²²
τ -lumped

Markov Reward Chain
with Fast Transitions

τ→∞
//

lumped
Discontinuous

Markov Reward Chain

Next, we define a notion of lumping, called τ∼-lumping, for Markov reward
chains with silent transitions, and show that it is a proper lifting of τ -lumping
to equivalence classes of Markov reward chains with fast transitions. In other



words, we show that τ∼-lumping induces a τ -lumping for each element of the
class and moreover, that the induced τ -lumped process does not depend on
the representative from the class. That is, we show that the following diagram
commutes:

Markov Reward Chain
with Fast Transitions

induced
τ -lumping

²²

∼ Markov Reward Chain
with Fast Transitions

induced
τ -lumping

²²
τ -lumped

Markov Reward Chain
with Fast Transitions

∼ τ -lumped
Markov Reward Chain
with Fast Transitions

Aggregation by Reduction It is straightforward to obtain (for example, by com-
parison of the matrix manipulation in [7, 20]) that the methods for elimination
of vanishing markings in generalized stochastic Petri nets given in [7, 8, 15, 6, 20]
are equivalent to the reduction method in perturbation theory (cf. [19, 21]) for
elimination of stochastic discontinuity, restricted to some specific cases, where all
ergodic classes (i.e. closed loops of instantaneous transitions) have only one ele-
ment. We recall the results from this setting that allow us reduce a discontinuous
Markov chain to a Markov chain. Then we extend this technique to discontinuous
Markov reward chains, Markov reward chains with fast transitions and Markov
reward chains with silent transitions. The corresponding method for Markov
reward chains with fast transitions is referred to as τ -reduction. The following
diagram shows the structure of the method:

Markov Reward Chain
with Fast Transitions τ→∞

//

τ -reduction

))SSSSSSSSSSSSSSSSSSSSSSSSSSSS

Discontinuous
Markov Reward Chain

reduction to
a Markov Reward Chain

²²
Markov Reward Chain.

Subsequently, we extend the notion of τ -reduction to Markov reward chains with
silent transitions by lifting it to equivalence classes of Markov reward chains with
fast transitions. The new aggregation method is called τ∼-reduction. The main
requirement for a process to be τ∼-reducible is that it τ -reduces to a speed



independent Markov chain. This is illustrated by the following:

Markov Reward Chain
with Fast Transitions

τ -reduction
$$IIIIIIIIIIIIII
∼ Markov Reward Chain

with Fast Transitions

τ -reduction
zzuuuuuuuuuuuuuu

Markov
Reward Chain.

Motivated by the fact that τ∼-reduction in general does not aggregate much,
we introduce a new concept, called total τ∼-reduction, that is a combination
of τ -reduction and standard ordinary lumping on the τ -reduced representative
Markov reward chain with fast transitions. The idea is to eliminate the effect
of the speeds of fast transitions by lumping, and thus to aggregate more. The
following diagram clarifies the structure of the method:

Markov Reward Chain
with Fast Transitions

τ -reduction
²²

total
τ∼-reduction

44

∼ Markov Reward Chain
with Fast Transitions

τ -reduction
²²

total
τ∼-reduction

jj

Markov
Reward Chain

ordinary
lumping %%KKKKKKKKKKKKK

∼ Markov
Reward Chain

ordinary
lumpingyysssssssssssss

Markov
Reward Chain.

Comparison of the methods Each of the reduction methods is compared with its
corresponding lumping method. We show that the reduction and the lumping
methods for discontinuous Markov chains and Markov reward chains with fast
transitions are incomparable but that the reduction method is superior, i.e. it
aggregates more, if combined with standard lumping. We also show that, in case
there are no silent transitions in the lumped process, τ∼-reduction is a special
case of τ∼-lumping, and that τ∼-lumping coincides with total τ∼-reduction. Fi-
nally, we point out the differences between τ∼-lumping and the weak bisimulation
for Interactive Markov chains.

1.3 Outline

The mentioned extensions to Markov chains, i.e. Markov reward chains, dis-
continuous Markov reward chains, Markov reward chains with fast transitions



and Markov reward chains with silent transitions, are introduced in Section 2,
and necessary theorems are provided to establish the connections between them.
In Section 3 we define the ordinary lumping for discontinuous Markov chains,
and the notions of τ - and τ∼-lumping. In Section 4 we recall the reduction
method for discontinuous Markov chains, extend it to discontinuous Markov re-
ward chains, and define τ -, τ∼- and total τ∼-reductions. The lumping and the
reduction method are compared in Section 5. For overlapping results we refer to
our previous work [22].

2 Markov Reward Chains with Discontinuities, and with
Fast and Silent Transitions

This section introduces several extensions of standard Markov chains. We first re-
call the definition of a discontinuous Markov chain from [17, 19], i.e. of a Markov
chain that can also exhibit non-continuous behavior, and extend it with rewards.
Next, the standard Markov chain model is extended by adding special transi-
tions called fast transitions. As explained in the introduction, this is to model
probabilistic transitions. We show that Markov reward chains with fast transi-
tions are asymptotically equivalent to discontinuous Markov chain. Finally, to
model nondeterminism we introduce Markov reward chains with silent transi-
tions as Markov reward chains with fast transitions in which the speeds of fast
transitions are unknown.

We give some preliminaries.

2.1 Preliminaries

All vectors are column vectors if not indicated otherwise. 1n denotes the vector
of n 1’s. 0n×m denotes the n × m zero matrix. In denotes the n × n identity
matrix. We omit the n and m when they are clear from the context. We write
A > 0 (resp. A ≥ 0) when all elements of a matrix A are greater than (resp.
greater than or equal to) zero. A matrix A ∈ IRn×m is called stochastic if A ≥ 0
and A · 1 = 1. By diag (A1, . . . , An) we denote the block matrix with blocks
A1, . . . , An on the diagonal and 0’s elsewhere.

We will also use the notion of partitioning.

Definition 3 (Partitioning). Let S be a set. A set P = {S1, . . . , SN} of sub-
sets of S is called a partitioning of S if S = S1∪ . . .∪SN , Si 6= ∅ and Si∩Sj = ∅
for all i, j, with i 6= j. The partitionings P =

{S}
and P =

{{i} | i ∈ S}
are

called trivial.

Given a set S = {1, . . . , n} and its partitioning P = {S1, . . . , SN}, it is
sometimes convenient to permute the elements of S so that, for all i, j ∈ S
and all I, J ∈ {1, . . . , N}, if i ∈ SI , j ∈ SJ and I ≤ J , then i ≤ j. Any such
numbering of S is called the numbering that makes the partitioning P explicit.



2.2 Discontinuous Markov Reward Chains

The standard theory of Markov chains [1–3] assumes continuity, i.e. that the
probability of the process occupying the same state at time t and time 0 when
t → 0 is 1. However, as pointed in [19], when working with instantaneous tran-
sitions we need to drop this requirement and work in the more general theory
of discontinuous Markov chains introduced in [17]. In this section we give a
definition in terms of matrices of the discontinuous Markov chains, following
the approach of [19] but with the extension of an initial probability vector and
rewards.

A discontinuous Markov chain is a time-homogeneous finite-state stochastic
process that satisfies the Markov property. It is known (see [17, 2, 19]) that a dis-
continuous Markov chain with an ordered state space is completely determined
by a transition matrix function (called its transition matrix function) and a sto-
chastic row vector that gives the starting probabilities of the process for each
state (called the initial probability vector).

Definition 4 (Transition matrix function). A function P : IR>0 7→ IRn×n,
is called a transition matrix function iff, for all t > 0,

1. P (t) ≥ 0,
2. P (t) · 1 = 1 and
3. P (t + s) = P (t) · P (s) for all s > 0.

If limt→0 P (t) is equal to the identity matrix, then P is called continuous, other-
wise it is discontinuous (it is shown in [1] that this limit always exists). For any
t > 0, we call the image P (t) a transition matrix. As is standard practice, when
we say transition matrix P (t) = . . . we actually mean transition matrix function
P defined by P (t) = . . ..

Example 5. a. The matrix

P (t) =




e−(λ+µ)t λ
λ+µ (1−e−(λ+µ)t) µ

λ+µ (1−e−(λ+µ)t)
0 1 0
0 0 1


 ,

with λ, µ ≥ 0 and λ + µ 6= 0, is a transition matrix. It is continuous because
clearly limt→0 P (t) = I.

b. Let 0 < p < 1 and λ ≥ 0. Then

P (t) =




(1−p) · e−pλt p · e−pλt 1−e−pλt

(1−p) · e−pλt p · e−pλt 1−e−pλt

0 0 1




is a transition matrix. It is discontinuous because

lim
t→0

P (t) =




1−p p 0
1−p p 0
0 0 1


 6= I.



The following theorem of [19, 23] gives a convenient characterization of a
transition matrix that does not depend on t.

Theorem 6. Let (Π, Q) ∈ IRn×n × IRn×n be such that:

1. Π ≥ 0, Π · 1 = 1, Π2 = Π,
2. ΠQ = QΠ = Q,
3. Q · 1 = 0 and
4. Q + cΠ ≥ 0 for some c ≥ 0.

Then P (t) = ΠeQt = Π
∑∞

n=0
Qntn

n! is a transition matrix. Moreover, the con-
verse also holds: For any transition matrix P (t) there exists a unique pair (Π, Q)
that satisfies Conditions 1–4 and such that P (t) = ΠeQt.

Note that, P (t) = ΠeQt is continuous iff Π = I. In this case Q is a generator
matrix, i.e. a square matrix of which the non-diagonal elements are non-negative
and each diagonal element is the additive inverse of the sum of the non-diagonal
elements of the same row.

Example 7. For the transition matrices P (t) of Example 5a and 5b we obtain

a. Π = I and Q =



−(λ+µ) λ µ

0 0 0
0 0 0


. Note that Q is a generator matrix.

b. Π =




1−p p 0
1−p p 0
0 0 1


 and Q =



−p(1−p)λ −p2λ pλ
−p(1−p)λ −p2λ pλ

0 0 0


 . Note that Π deviates

from the identity matrix only in the first two rows. This is exactly where Q
deviates from the form of a generator matrix.

Since the nature of the state space S of a Markov chain is, in general, not
important and only its ordering is (for the matrix representation), we will always
implicitly assume that S = {1, . . . , n}. Theorem 6 allows us then to identify a
discontinuous Markov chain determined by a transition matrix P (t) = ΠeQt ∈
IRn×n and an initial probability vector σ ∈ IR1×n with the triple (σ,Π,Q).

In the case when Π = I the discontinuous Markov chain (σ,Π,Q) has no sto-
chastic discontinuity and is a standard Markov chain. Since Q is then a generator
matrix, the process has the standard visual representation (like in Figure 1).

It is a known result (see e.g. [19]) that in a discontinuous Markov chain
(σ,Π, Q), Π gets the following form after a suitable renumbering of the states:

Π =




Π1 0 . . . 0 0
0 Π2 . . . 0 0
...

...
. . .

...
...

0 0 . . . ΠM 0
Π1 Π2 . . . ΠM 0






where for all 1 ≤ K ≤ M , ΠK = 1 · µK and ΠK = δK · µK for a row vector
µK > 0 such that µK · 1 = 1 and a vector δK ≥ 0 such that

∑M
i=1 δK = 1. This

numbering determines a partitioning E = {E1, . . . , EM , T} of S = {1, . . . , n}
into ergodic classes, E1, . . . , EM , determined by Π1, . . . , ΠM , and into a class
of transient states, T , determined by Π1, . . . , ΠM . The partitioning E is called
the ergodic partitioning. For every ergodic class EK , the vector µK is the vector
of ergodic probabilities. If an ergodic class EK contains exactly one state, then
called a regular state, we have µK =

(
1
)
. The vector δK holds the trapping

probabilities from transient states to the ergodic class EK . Note that, although
µK and δK are not indexed by {1, . . . , n}, without introducing confusion, we will
always use the implicit indexing. In other words, for any i ∈ EK , we will freely
write µK [i] to refer to the element of µK that corresponds to state i. Similarly,
we write δK [i] for any i ∈ T .

Let us now explain the behavior of a discontinuous Markov chain as given
in [17, 19]. The discontinuous Markov chain (σ,Π, Q) starts in some state with a
probability that is determined by the initial probability vector σ. In an ergodic
class with multiple states the process spends a non-zero amount of time switch-
ing rapidly (infinitely many times) among its elements. The probability that it
is found in some state of this class is determined by the vector of ergodic prob-
abilities of this class. The time the process spends in the class is exponentially
distributed and determined by the matrix Q. If the ergodic class contains only
one state, i.e. if the process is in the regular state, then the row of Q correspond-
ing to that state has the form of a row in a generator matrix, and Q[i, j] for i 6= j
is interpreted as the rate from i to j. In a transient state the process spends no
time (with probability one) and goes immediately to some ergodic class (and
stays trapped there for some amount of time). Note that δK [i] > 0 iff i ∈ T can
be trapped in the ergodic class EK . A standard Markov chain is a discontinuous
Markov chain that has no transient states and only has regular (ergodic) states.

Sometimes we will also work with the matrix Π that is not permuted to be
in the above form, i.e. we will work in a numbering that does not make the
ergodic partitioning explicit. Let us so explain the form of Π on the level of
single elements. Note first that Π[i, j] = 0 for all i ∈ S and all j ∈ T . Next, note
that if i ∈ EK , j ∈ EL and K 6= L, then Π[i, j] = 0. If K = L, then we have
Π[i, j] > 0 and Π[i, j] = Π[k, j] for all j ∈ EK = EL. Note that for i, j ∈ EK

we have Π[i, j] = µK [j]. For transient states we have that if i ∈ T and j ∈ EK ,
then Π[i, j] = δKi · Π[k, j], k ∈ EK , where δKi is some number that satisfies
0 ≤ δKi ≤ 1. Note that actually δKi = δK [i].

We give examples of some discontinuous Markov chains and their ergodic
partitionings.

Example 8. We assume that σ is always some arbitrary stochastic row vector.

a. The triple (σ,Π, Q), where Π and Q are those from Example 7a, is a standard
Markov chain because Π = I. The ergodic partitioning is E = {E1, E2, E3}
where E1 = {1}, E2 = {2} and E3 = {3}. For σ =

(
π 1−π 0

)
, this Markov

chain is visualized in Figure 1a from the introduction.



b. Let (σ,Π, Q) be a discontinuous Markov chain with Π and Q as in Exam-
ple 7. This discontinuous Markov chain has two ergodic classes E1 = {1, 2}
and E2 = {3} and no transient states. The corresponding ergodic probability
vectors are µ1 =

(
1−p p

)
and µ2 =

(
1
)
. In the first two states the process

exhibits a discontinuous behavior. It constantly switches among those states
and it is found in the first one with probability 1−p and in the second one
with probability p. The amount of time the process spends switching is ex-
ponentially distributed with rate pλ (we will see later how this follows from
Q).

c. Let, for 0 < p < 1 and λ, µ, ν > 0, Π and Q be defined as:

Π =




0 p 1−p 0
0 1 0 0
0 0 1 0
0 0 0 1


 and Q =




0 −pλ −(1−p)µ pλ + (1−p)µ
0 −λ 0 λ
0 0 −µ µ
ν 0 0 −ν


 .

Its ergodic partitioning is E = {E1, E2, E3, T} where E1 = {2}, E2 = {3},
E3 = {4} and T = {1} (note that the numbering does not make the ergodic
partitioning explicit since the transient state precedes the ergodic ones). We
have µi =

(
1
)

for all i = 1, 2, 3, and δ1 =
(
p
)
, δ2 =

(
1−p

)
and δ3 =

(
0
)
. If

the process is in state 1, then with probability p it is trapped in state 2, the
only state in the ergodic class E1, and with probability 1−p it is trapped in
state 3, the only state in the ergodic class E2.

2.3 Adding rewards

We now add rewards to our model. A (state) reward is a number associated to
a state that represents the gain of a process while in that state. We define a
discontinuous Markov reward chain as a discontinuous Markov chain with an
additional vector that holds a reward for each state.

Definition 9 (Markov Reward Process). A discontinuous Markov reward
chain is a quadruple (σ,Π, Q, ρ) where (σ,Π, Q) is a discontinuous Markov chain
and ρ ∈ IRn×1 is the reward vector.

The total reward of the process up to time t > 0, denoted R(t), is calculated
as R(t) = σP (t)ρ. The total reward remains unchanged if the reward vector ρ is
replaced by Πρ. To show this, note that P (t) = P (t)Π (cf. [19]), so σP (t)Πρ =
σP (t)ρ = R(t). Intuitively, the reward in a transient state can be replaced by
the sum of the rewards of the ergodic states that it can be trapped in, and the
reward of an ergodic state is the sum of the rewards of all states inside its ergodic
class weighted according to their ergodic probabilities. We give an illustration
in the following example.

Example 10. a. Let (σ,Π,Q, ρ) be a discontinuous Markov reward chain where
(σ,Π, Q) is as in Example 8a and ρ =

(
r1 r2 r3

)
. From Examples 5 and 7a



we first obtain the transition matrix

P (t) =




e−(λ+µ)t λ
λ+µ (1−e−(λ+µ)t) µ

λ+µ (1−e−(λ+µ)t)
0 1 0
0 0 1


 .

Then, we calculate the total reward:

R(t) = σP (t)ρ =
(
1 0 0

)
P (t)




r1

r2

r3


 =

= r1e
−(λ+µ)t +

λr2+µr3

λ+µ
(1−e−(λ+µ)t).

b. Let (σ,Π,Q) be the discontinuous Markov chain from Example 8b and let
ρ =

(
r1 r2 r3

)
. The transition matrix is obtained from Examples 5 and 7b.

The total reward of the discontinuous Markov reward chain (σ,Π, Q, ρ) is:

R(t) = σP (t)ρ = ((1−p)r1 + pr2 − r3) e−pλt + r3.

The same total reward is obtained when ρ is replaced by the reward vector

ρ′ = Πρ =
(

(1−p)r1+pr2
(1−p)r1+pr2

r3

)
. Note that the first two elements of ρ′ are equal.

This is because these two states belong to the same ergodic class.
c. Let (σ,Π, Q) be the discontinuous Markov chain from Example 8c and let

ρ =
(
r1 r2 r3 r4

)
. The total reward of the discontinuous Markov reward chain

(σ,Π, Q, ρ) does not depend on r1. This is because state 1 is a transient
state; the process spends no time there nor does it ever come back to it, so
no reward is gained. This is confirmed when ρ is replaced by ρ′ = Πρ =(

pr2+(1−p)r3
r2
r3
r4

)
.

2.4 Markov Reward Chain with Fast Transitions

We extend the standard Markov chain model by letting Markov chains contain
two types of transitions, slow and fast. The behavior of a Markov reward chain
with fast transitions is determined by a pair of generator matrices: the first
matrix represents the normal (slow) transitions, whereas the second represents
the (speed of) fast transitions. The role of speeds is to determine the probabilistic
behavior in a state.

Definition 11 (Markov reward chain with fast transitions). The Markov
reward chain with fast transitions determined by a stochastic row vector σ ∈
IR1×n, generator matrices Qs, Qf ∈ IRn×n and a vector ρ ∈ IRn×1, denoted
(σ,Qs, Qf , ρ), is a function that assigns to each τ > 0 the Markov reward chain
(σ, I, Qs + τQf , ρ).



We depict a Markov reward chain with fast transitions (σ,Qs, Qf , ρ) as the
corresponding Markov reward chain (σ, I, Qs + τQf , ρ) (see Figure 4).

The following theorem shows that when τ → ∞, i.e. when fast transitions
become instantaneous, a Markov reward chain with fast transitions behaves as
a discontinuous Markov reward chain.

Theorem 12 (Limit process). Let Pτ (t) = e(Qs+τQf )t. Then, for all t > 0,

lim
τ→∞

Pτ (t) = ΠeQt

where Π = limt→∞ eQf t and Q = ΠQsΠ. In addition, Π and Q satisfy Condi-
tions 1–4 of Theorem 6.

Proof. See [24] for the first proof, or [25] for a proof written in more modern
terms. See [19] for the proof that convergence is also uniform.

Remark 13. We note that in perturbation theory the parametrization is usually
done on the slow transitions with a small variable ε [19]. Afterwards the process
is considered in timescale t/ε, as ε → 0, where the normal transitions of the per-
turbed process behave as instantaneous transitions with known probabilities and
the Markov chain exhibits stochastic discontinuity. In any case, both approaches
are equivalent and give equal limit processes.

If Q is a generator matrix, then Π = limt→∞ eQt is called the ergodic projec-
tion of Q. It is proven in [1] that the limit always exists; moreover it is known
(see [26] for example) that Π is actually the unique matrix that satisfies the
following:

Π ≥ 0, Π · 1 = 1, Π2 = Π, ΠQ = QΠ = 0 and rank(Π) + rank(Q) = n.

Theorem 12 shows that the behavior of a Markov reward chain with fast tran-
sitions in the limit depends only on the ergodic projection of the matrix that
models fast transitions and not on the matrix itself.

We say that the discontinuous Markov chain (σ,Π, Q, Πρ) is the limit of
(σ,Qs, Qf , ρ) as τ → ∞, and indicate that by writing (σ,Qs, Qf , ρ) →∞
(σ,Π, Q, Πρ). The initial probability vector and the reward vector are not af-
fected when τ → ∞ but it is convenient to replace the reward vector ρ by
Πρ because of the facilitated representation of the lumping conditions in the
following sections.

The ergodic partitioning of (σ,Π, Q, Πρ) is also said to be the ergodic par-
titioning of (σ,Qs, Qf , ρ). However, it is known that the ergodic partitioning
corresponds to the partitioning induced by closed communicating classes of fast
transitions. We write i → j if Qf [i, j] > 0, i.e. if there is a direct fast transition
from i to j. Let ³ denote the reflexive-transitive closure of →. If i ³ j we say
that j is τ -reachable from i. If i ³ j and j ³ i we say that i and j τ -communicate
and write i³́j. In a slightly different context, it has been shown (see e.g. [1]) that
every ergodic class is actually a closed class of τ -communicating states, closed
meaning that for all i inside the class there does not exist j outside the class
such that i → j. Moreover, for some ergodic state j, i ³ j iff Π[i, j] > 0.
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Fig. 4. Markov reward chains with fast transitions from Example 14

Example 14. a. Consider the Markov reward chain with fast transitions
(σ,Qs, Qf , ρ) depicted in Figure 4a. It is defined with

σ =
(
1 0 0

)
, Qs =



−λ 0 λ
0 −µ µ
0 0 0


 , Qf =



−a a 0
0 0 0
0 0 0


 and ρ =




r1

r2

r3


 .

The transition from state 1 to state 2 is fast and has speed a. The other two
transitions are normal (slow).
The limit of (σ,Qs, Qf , ρ) is obtained as follows:

Π = lim
t→∞

eQf t =




0 1 0
0 1 0
0 0 1


 ,

Q = ΠQsΠ =




0 −µ µ
0 −µ µ
0 0 0


 and Πρ =




r2

r2

r3


 .

The ergodic partitioning is E1 = {2}, E2 = {3} and T = {1}. This is
because, as we see it in Figure 4a, state 2 and state 3 each form a trivial
τ -communicating class.

b. Consider the Markov reward chain with fast transitions depicted in Fig-
ure 4b. The limit of this Markov reward chain with fast transitions is the
discontinuous Markov chain (σ,Π, Q, ρ′) from Example 10b (with p = a

a+b ).
From Figure 4b we can easily see that the process has two closed τ -communi-
cating classes, i.e. two ergodic classes E1 = {1, 2} and E2 = {3}, and no
transient states. This is confirmed by Example 10b.

c. The limit of the Markov reward chain with fast transitions in Figure 4c is the
discontinuous Markov chain (σ,Π,Q, ρ′) of Example 10c (when p = a

a+b and
λ = µ). From Figure 4c we obtain that the ergodic partitioning is determined
by E1 = {1}, E2 = {2}, E3 = {3} and T = {4}. This is confirmed by
Example 10c.



2.5 Markov Reward Chains with Silent Transitions

In this section we define discontinuous Markov reward chains that can exhibit
nondeterministic behavior and call them Markov reward chains with silent tran-
sitions. A Markov reward chain with silent transitions is a Markov reward chain
with fast transitions in which the speeds of the fast transitions are considered un-
specified. In other words, we define a Markov reward chain with silent transitions
by abstracting from the speeds in a Markov reward chain with fast transitions.
For this, we need to introduce a special equivalence relation on matrices.

Definition 15 (Matrix grammar). Two matrices A,B ∈ IRn×n are said to
have the same grammar, denoted by A ∼ B, if for all 1 ≤ i, j ≤ n, A[i, j] = 0
iff B[i, j] = 0.

Example 16. For a, b, c 6= 0, the matrices
(

a a
b 0

)
and

(
a b
c 0

)
have the same gram-

mar while the matrices
(

a a
b 0

)
and

(
a 0
c 0

)
do not.

The abstraction from speeds is achieved by identifying generator matrices
with the same grammar. A Markov reward chain with silent transitions is defined
as a Markov reward chain with fast transitions but instead of one matrix that
models fast transitions we take the whole equivalence class induced by ∼. Note
that we do not take elements of the matrix to be sets, but rather take the set
of matrices instead. The consequence is that a Markov reward chain with silent
transitions is not allowed to choose different speeds each time it enters some state.
Our approach to resolving nondeterminism therefore corresponds to the one
of probabilistic, history independent, schedulers [27]. Having the quantification
inside a matrix would lead to a much more complicated theory because it would
force us to move from Markov chains to a model similar to Markov set chains [28].

Definition 17 (Markov reward chain with silent transitions). A Markov
reward chain with silent transitions is a quadruple (σ,Qs, [Qf ]∼, ρ) where
(σ,Qs, Qf , ρ) is a Markov reward chain with fast transitions.

A Markov reward chain with silent transitions (σ,Qs, [Qf ]∼, ρ) is visualized
as the Markov reward chain with fast transitions (σ,Qs, Qf , ρ) but omitting the
speeds of fast transitions. Figure 5 shows the Markov reward chains with silent
transitions that correspond to the Markov reward chains with fast transitions
from Figure 4.

Note that the notions of τ -reachability, τ -communication and ergodic parti-
tioning are speed independent, so they naturally carry over to Markov reward
chains with silent transitions.

3 Aggregation by Lumping

Lumping [12, 14, 13] is an aggregation method based on joining together states
that exhibit equivalent behavior. In this section we introduce a notion of lumping
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Fig. 5. Markov reward chains with silent transitions corresponding to the Markov
reward chains with fast transitions from Figure 4

for each of the Markovian models from section 2. We first generalize the ordinary
lumping method from standard Markov chains to discontinuous Markov reward
chains. Then we introduce a lumping method for Markov reward chains with fast
transitions, called τ -lumping, that assures that the limit process of the lumped
Markov reward chain with fast transitions is the lumped version of the limit
process of the original Markov reward chain with fast transitions. Finally, we
lift τ -lumping to Markov reward chains with silent transitions and call it τ∼-
lumping. We show that τ∼-lumping induces a τ -lumping for all possible speeds
of fast transitions and, moreover, that the slow transitions in the τ -lumped
process do not depend on those speeds.

3.1 Ordinary Lumping

Partitioning is a central notion in the definition of lumping, so recall Defini-
tion 3. To define lumping in matrix terms it is standard to associate, with every
partitioning P = {C1, . . . , CN} of S = {1, . . . , n}, the following two matrices. A
matrix V ∈ IRn×N defined as

V [i, j] =
{

0, i 6∈ Cj

1, i ∈ Cj

is called the collector matrix for P. Its j-th column has 1’s for elements corre-
sponding to states in Cj and has zeroes otherwise. Note that V · 1 = 1. For the
trivial partitionings P = {S} and P = {{i} | i ∈ S}, we have V = 1 and V = I
respectively.

A matrix U ∈ IRN×n such that U ≥ 0 and UV = IN×N is a distributor
matrix for P. It can be readily seen that to satisfy these conditions U must
actually be a matrix of which the elements of the i-th row that correspond to
elements in Ci sum up to one while the other elements of the row are 0. For the
trivial partitioning P =

{
S

}
a distributor is a vector with elements that sum

up to 1; for the trivial partitioning P =
{{i} | i ∈ S

}
there exists only one

distributor, viz. I.



Example 18. Let S = {1, 2, 3} and P =
{{1, 2}, {3}}. Then V =

(
1 0
1 0
0 1

)
is the

collector for P and U =
(

1
3

2
3 0

0 0 1

)
is an example for a distributor.

Aggregation by ordinary lumping partitions the state space into classes such
that the process in the states that are lumped together behaves in the same way
when transiting to other partitioning classes of states. It is also required that
states in the same lumping class have the same reward. We formalize this in
matrix terms.

Definition 19 (Ordinary lumping). A partitioning P of {1, . . . , n} is called
an ordinary lumping of a discontinuous Markov reward chain (σ,Π,Q, ρ) iff the
following conditions hold:

V UΠV = ΠV, V UQV = QV and V Uρ = ρ,

where V and U are respectively the collector and some distributor matrix for P.

The lumping conditions only assure that the rows of ΠV (resp. QV and
ρ) that correspond to the states of the same partitioning class are equal. The
representation of these conditions in terms of a distributor matrix is just more
convenient in applications. We show that, indeed, these conditions do not depend
on the particular choice of the non-zero elements of U . Suppose that V UΠV =
ΠV and that U ′ ≥ 0 is such that U ′V = I. Then V U ′ΠV = V U ′V UΠV =
V UΠV = ΠV . Similarly, V U ′QV = QV and V U ′ρ = ρ.

The trivial partitioning P =
{{1}, . . . , {n}} is always an ordinary lumping.

The other trivial partitioning P =
{
S

}
, however, is an ordinary lumping only if

the reward structure is trivial, i.e. if the reward vector ρ is comprised of equal
elements.

The following theorem characterizes the lumped process, i.e. the process ob-
tained after the aggregation by lumping.

Theorem 20 (Lumped process). Let (σ,Π, Q, ρ) be a discontinuous Markov
reward chain and let P = {C1, . . . , CN} be an ordinary lumping of (σ,Π, Q, ρ).
Define

σ̂ = σV, Π̂ = UΠV, Q̂ = UQV and ρ̂ = Uρ.

Then (σ̂, Π̂, Q̂, ρ̂) is a discontinuous Markov reward chain.

Proof. See [22].

When the lumping conditions hold the definition of (σ̂, Π̂, Q̂, ρ̂) also does not
depend on a particular distributor U . To show this, let U ′ be another distributor
matrix for P. Then U ′ΠV = U ′V UΠV = UΠV . Similarly, U ′QV = UQV and
U ′ρ = Uρ.

The trivial partitioning P =
{{1}, . . . , {n}} leaves the original process intact.

The other trivial partitioning, i.e. P =
{
S

}
gives the absorbing, one state,

process as the result.



If P is an ordinary lumping of (σ,Π, Q, ρ) and σ̂, Π̂, Q̂ and ρ̂ are defined as
in Theorem 20, then we say that (σ,Π, Q, ρ) lumps to (σ̂, Π̂, Q̂, ρ̂) with respect
to P and we write (σ,Π, Q, ρ)→P (σ̂, Π̂, Q̂, ρ̂).

Note that if (σ,Π, Q, ρ) is a Markov reward chain, then V UΠV = ΠV always
holds. Moreover, in this case, Π̂ = UΠV = UIV = I and so, by Theorem 6, Q̂ is
a generator matrix. Therefore, when restricted to the continuous case, our notion
of ordinary lumping coincides with the standard definition proposed in [13].

Before we give some examples of ordinary lumping we show that the definition
of the lumped process is correct according to the standard probabilistic intuition.
We need to show that the finite distribution of the lumped process, is the same
as the sum of the finite distributions of the original process over the states in the
lumping classes. That is, we need to prove that the probability that the process
is in a finite sequence of classes in a given sequence of time instances, is the same
as the sum of the probabilities that the process is in the individual sequences of
states from these classes in that time sequence. We only give two theorems from
which this easily follows (e.g. by induction on the length of the time sequence).
We prove a lemma first.

Lemma 21. Let (σ,Π, Q, ρ) be a discontinuous Markov reward chain and let P
be an ordinary lumping. Then,

1. ΠQn = Qn for all n ≥ 1,
2. V UQnV = QnV for all n ≥ 0, and
3. (UQV )n = UQnV for all n ≥ 0.

Proof. See [22].

The first theorem reflects the conditions of Definition 19 to the corresponding
transition matrix.

Theorem 22. Let (σ,Π, Q, ρ) be a discontinuous Markov reward chain and let
P (t) = ΠeQt (t > 0), be its transition matrix. Let P be an ordinary lumping of
(σ,Π, Q, ρ). Then

V UP (t)V = P (t)V.

Proof. See [22].

The second theorem shows that the transition matrix of the lumped process
can also be obtained directly from the transition matrix of the original process.

Theorem 23. Let (σ,Π, Q, ρ) →P (σ̂, Π̂, Q̂, ρ̂). Let P (t) = ΠeQt and P̂ (t) =
Π̂eQ̂t (t > 0) be the transition matrices of (σ,Π, Q, ρ) and (σ̂, Π̂, Q̂, ρ̂) respec-
tively. Then

P̂ (t) = UP (t)V.

Proof. See [22].

Now we can also prove that the lumped process has the same total reward
as the original process. Since the total reward is usually the most important
performance measure, this is a very important property of lumping.



Corollary 24. Let (σ,Π,Q, ρ)→P (σ̂, Π̂, Q̂, ρ̂) and let R(t) and R̂(t) be the total
reward of (σ,Π,Q, ρ) and (σ̂, Π̂, Q̂, ρ̂) respectively. Then R̂(t) = R(t).

Proof. Using Theorems 23 and 22, we have

R̂(t) = σ̂P̂ (t)ρ̂ = σV UP (t)V Uρ = σP (t)V Uρ = σP (t)ρ = R(t).

We now give some examples.

Example 25. a. Let (σ,Π,Q, ρ) be the discontinuous Markov reward chain from
Example 10a but with r2 = r3

def= r. We show that the partitioning P ={{1}, {2, 3}} is an ordinary lumping. Recall that

σ =
(
π 1−π 0

)
, Π = I, Q =



−(λ+µ) λ µ

0 0 0
0 0 0


 , and ρ =




r1

r
r


 .

From P we obtain

V =




1 0
0 1
0 1


 and U =

(
1 0 0
0 α 1− α

)
,

for some 0 ≤ α ≤ 1. Now, we have

V UQV =
(−(λ+µ) λ+µ

0 0

)
= QV

and

V Uρ =




r1

αr + (1−α)r
αr + (1−α)r


 =




r1

r
r


 = ρ.

The lumped process (σ̂, Π̂, Q̂, ρ̂) is defined by

σ̂ =
(
1 0

)
, Π̂ = I, Q̂ =

(−(λ+µ) λ+µ
0 0

)
and ρ̂ =

(
r1

r

)
.

The total reward of the process (σ,Π,Q, ρ) from Example 10a reduces to
R(t) = r1e

−(λ+µ)t + r(1− e−(λ+µ)t) when r2 = r3 = r. As proven in Corol-
lary 24, the same total reward can be calculated by

σ̂P̂ (t)ρ̂ = σ̂eQ̂tρ̂ =
(
1 0

)(
e−(λ+µ)t 1−e−(λ+µ)t

0 1

)(
r1

r

)
=

= r1e
−(λ+µ)t + r(1− e−(λ+µ)t).

This example illustrated an ordinary lumping of a standard Markov chain.



b. Let (σ,Π, Q, ρ) be the discontinuous Markov reward chain from Example 10b
and let r1 = r2

def= r. Recall that

Π =




1−p p 0
1−p p 0
0 0 1


 , Q =



−p(1−p)λ −p2λ pλ
−p(1−p)λ −p2λ pλ

0 0 0


 and ρ =




r1

r
r


 .

We also let σ =
(
π 1−π 0

)
. We show that P =

{{1, 2}, {3}} is an ordinary
lumping. This easily follows after looking at the corresponding rows of ρ and
of the following matrices:

ΠV =




1 0
1 0
0 1


 , Q =



−pλ pλ
−pλ pλ

0 0 0


 .

The lumped process (σ̂, Π̂, Q̂, ρ̂) is defined by:

σ̂ =
(
1 0

)
, Π̂ =

(
1 0
0 1

)
, Q̂ =

(−pλ pλ
0 0

)
and ρ̂ =

(
r
r3

)
.

Note that, in this case, the lumped process is a Markov reward chain.
By setting r1 = r2 = r in the total reward from Example 10b we have
R(t) = ((1−p)r1 + pr2 − r3) e−pλt + r3 = (r − r3)e−pλt + r3. We calculate

R̂(t) = σ̂P̂ (t)ρ̂ = σ̂eQ̂tρ̂ =
(
1 0

)(
e−pλt 1−e−pλt

0 1

)(
r
r3

)
=

= (r − r3)e−pλt + r3 = R(t).

In this example a whole ergodic class constitutes a lumping class. It is not
hard to show that an ergodic class is always a correct lumping class when the
states inside all have the same reward. By lumping the whole ergodic class
we obtain a regular state in the lumped process. This allows to see the time
that the original process spends switching among the states in this ergodic
class (the time is always exponential and in this case with rate pλ).
Note that we always obtain a reward vector with equal elements for states
belonging to the same ergodic class after multiplying the original reward
vector by Π (cf. Example 10b). Recall that nothing is lost by this operation
if only the total reward is to be calculated.

c. Let (σ,Π,Q, ρ) be the discontinuous Markov reward chain from Example 10c.
If λ 6= µ, then this discontinuous Markov chain does not have a non-trivial
lumping. States 2 and 3 cannot belong to the same class because they have
different rates leading to state 4. The state 1 cannot be joined together with
state 2 because 2 cannot reach state 3 whereas state 1 can. Similarly, state
1 cannot be joined together with state 3.
However, if λ = µ and r2 = r3

def= r, then the partitioning
P =

{{1}, {2, 3}, {4}} is an ordinary lumping and (σ,Π, Q, ρ) lumps (with



respect to P) to (σ̂, Π̂, Q̂, ρ̂) defined by:

σ̂ =
(
1 0 0

)
, Π̂ =




0 1 0
0 1 0
0 0 1


 , Q̂ =




0 −λ λ
0 −λ λ
ν 0 −ν


 and ρ̂ =




r1

r
r4


 .

This is an example when the lumped process is not a Markov reward chain.
With the same requirements as before, also the partitioning
P =

{{1, 2, 3}, {4}} is an ordinary lumping. With respect to this parti-
tioning (σ,Π,Q, ρ) lumps to (σ̂, Π̂, Q̂, ρ̂) defined as:

σ̂ =
(
1 0

)
, Π̂ =

(
1 0
0 1

)
, Q̂ =

(−λ λ
ν −ν

)
, and ρ̂ =

(
r
r4

)

which is a standard Markov reward chain.
This example shows how transient states are lumped together with ergodic
states. It is not hard to show that if a transient state can be trapped only
in one ergodic class, then it can always be lumped with states from that
ergodic class. Note that, when the reward vector is multiplied by Π, the
original reward on the transient state becomes irrelevant because it becomes
the same as the new reward for the ergodic states. Also, if a transient state
can be trapped in more than one ergodic class, and if the lumping class
that contains this transient state also contains some states from one of these
ergodic classes, then this lumping class must contain states from all of these
ergodic classes.

3.2 τ -lumping

In this section we introduce a notion of lumping for Markov reward chains with
fast transitions. This notion is based on the ordinary lumping for discontinuous
Markov reward chains: a partitioning is a lumping of a Markov reward chain
with fast transitions if it is an ordinary lumping of its limit.

Definition 26 (τ-lumping). A partitioning P of a Markov reward chain with
fast transitions (σ,Qs, Qf , ρ) is called a τ -lumping if it is an ordinary lump-
ing of the discontinuous Markov chain (σ,Π,Q, ρ), where (σ,Qs, Qf , ρ) →∞
(σ,Π, Q, ρ).

We give a definition of the lumped process by multiplying σ, Qs, Qf and
ρ with the collector matrix and a distributor matrix, similarly as we did for
discontinuous Markov chains. This technique ensures that the lumped versions
of Qs and Qf are also generator matrices and that, consequently, we obtain a
Markov reward chain with fast transitions as a result. However, since the lumping
condition does not hold for Qs and Qf (i.e. we do not have that V UQsV = QsV
and V UQfV = QfV , but only that V UΠV = ΠV and V UQV = QV ), we
cannot guarantee that the definition of the lumped process does not depend on



the choice for a distributor. We define a class of special distributors, called τ -
distributors, that give a lumped process of which the limit is the lumped version
of the limit of the original Markov reward chain with fast transitions.

Before we present the definition of τ -distributors, we state a lemma that
provides a connection between the lumping and the ergodic classes. We will
use this result to achieve a renumbering that simplifies the presentation of the
distributors. Intuitively, if two lumping classes contain states from a same ergodic
class, then whenever one of the lumping classes contains states from another
ergodic class, the other must also contain states from that ergodic class.

Lemma 27. Let (σ,Qs, Qf , ρ) be a Markov reward chain with fast transitions.
Let E = {E1, . . . , EM , T} be its ergodic partitioning and let P = {C1, . . . , CN} be
a τ -lumping. Then, for all 1 ≤ I, J ≤ M and all 1 ≤ K, L ≤ N , if EI ∩CK 6= ∅,
EJ ∩ CK 6= ∅ and EI ∩ CL 6= ∅, then EJ ∩ CL 6= ∅.

Proof. See [22].

With Lemma 27 we can introduce a convenient arrangement of the ergodic
and lumping classes.

Corollary 28. Let E = {E1, . . . , EM , T} and P = {C1, . . . , CN} be the ergodic
partitioning and a τ -lumping respectively of some Markov reward chain with fast
transitions. Let 1 ≤ L ≤ N be the number of lumping classes that contain ergodic
states and let the lumping classes be rearranged as C1, . . . , CL, CL+1, . . . , CN

such that C1, . . . , CL contain states from ergodic classes (and possibly some tran-
sient states too), while C(L+1)1, . . . , CN1 consist exclusively of transient states.
Then, C1, . . . , CL and E1, . . . , EM can be further arranged and divided into S
blocks Ei1, . . . , Eiei and Ci1, . . . , Cici where, for all 1 ≤ j ≤ ei, 1 ≤ k ≤ ci,
Eij ∩Cik 6= ∅, and that Eij has no common elements with other lumping classes,
for some S and ci, ei, 1 ≤ i ≤ S and L =

∑S
i=1 ci.

We give an example of such arrangement.

Example 29. Presuppose a Markov reward chain with fast transitions. Let E =
{E1, E2, E3, T} where E1 = {2, 5}, E2 = {6, 8}, E3 = {4, 7} and T = {1, 3} be
its ergodic partitioning. Let P = {C1, C2, C3, C4} where C1 = {1}, C2 = {2, 4},
C3 = {5, 7} and C4 = {3, 6, 8} be a τ -lumping. Note that the ergodic classes
E1 and E3 share states from the lumping classes C2 and C3 and that E2 shares
states only with C4. So, L = 3 and S = 2. We now renumber ergodic and lumping
classes as E1 7→ E11, E3 7→ E12, C2 7→ C11, C3 7→ C12, E2 7→ E21, C4 7→ C21

and C1 7→ C3.

Now, we can give the definition of a τ -distributor and of the τ -lumped chain.

Definition 30 (The τ-lumped process). Let (σ,Qs, Qf , ρ) be a Markov re-
ward chain with fast transitions. Let P = {C11, . . . , CScS , CL+1, . . . , CN} and



E = {E11, . . . , ESeS
, T} be its τ -lumping and its ergodic partitioning respectively,

conforming to Corollary 28. Let Π = limt→∞ eQf t. Define W ∈ IRN×n as

W [K, i] =





0, i 6∈ CK

αj`ej
Π[i,i]P

k∈Ck
Π[k,k]

, i ∈ CK , 1 ≤ K ≤ L, CK = Cj`, i ∈ Ej`

0 i ∈ CK , 1 ≤ K ≤ L, CK = Cj`, i ∈ T
βKi, i ∈ CK , L + 1 ≤ K ≤ N

,

where αj` > 0 for 1 ≤ j ≤ S and 1 ≤ ` ≤ ej are arbitrary, subject only to∑ej

p=1 αjp = 1, and where βKi > 0 are also arbitrary and subject to
∑

i∈CK
βKi =

1. Any matrix W of this form is called a τ -distributor.
Define σ̂ ∈ IR1×N ,Q̂s ∈ IRN×N , Q̂f ∈ IRN×N and ρ̂ ∈ IRN×1 as

σ̂ = σV, Q̂s = WQsV, Q̂f = WQfV and ρ̂ = Wρ,

for some τ -distributor W . We say that (σ,Qs, Qf , ρ) τ -lumps to (σ̂, Q̂s, Q̂f , ρ̂)

with respect to P and write this as (σ,Qs, Qf , ρ) PÃτ (σ̂, Q̂s, Q̂f , ρ̂).

Note that W ≥ 0. If we take αj` = 1
ej

for all 1 ≤ ` ≤ ej , then it is directly
seen that W is indeed a distributor matrix for P. The proof of the same but in
the general case will be given later.

Let us explain the form of a τ -distributor. Since it is a distributor, we can
think of it as of a matrix that assigns weights to the rows of QsV and QfV , and
then sums them. When i is an ergodic state from the class Ejm then all lumping
classes Cjl, for 1 ≤ ` ≤ cj , have at least one state from that class. Moreover,
they also contain at least one state from all classes Ej`, where 1 ≤ ` ≤ ej . Note
that the lumping condition still holds when Π is restricted to these states, and
that the all states from one ergodic class have the same ergodic probabilities.
The weights αj` > 0, for 1 ≤ ` ≤ cj that sum up to one can be arbitrarily
distributed amongst ergodic classes shared by the same lumping classes. The
weights are multiplied by the number ej because the normalization constant∑

k∈Ck
Π[k, k] is a sum calculated for all states of the ej shared ergodic classes.

As the transient states have no ergodic probabilities (Π[i, i] = 0 when i ∈ T )
they are assigned weight 0 when lumped together with ergodic states. We also
have complete freedom when lumping transient states only and we choose to
assign them arbitrary weights (like in a standard fdistributor).

We note that it is also possible to specify the distributor without the renum-
bering. However, it is very hard to perform the matrix manipulation without
the renumbering induced by Lemma 27. The alternative definition is stated as
follows:

Definition 31 (Alternative specification of τ-distributor). Let
(σ,Qs, Qf , ρ) be a Markov reward chain with fast transitions. Let
P = {C1, . . . , CN} be its τ -lumping and E = {E1, . . . , EM , T} its ergodic parti-
tioning. Let Π be the ergodic projection of Qf . Put e(K) = {EL ∈ E | CK∩EL 6=



∅}. Then, a τ -distributor W ∈ IRN×n is defined as

W [K, i] =





0, i 6∈ CK

αKLeK
Π[i,i]P

k∈CK
Π[k,k]

, i ∈ CK ∩ EL

0, i ∈ CK ∩ T, e(K) 6= ∅
βKi, i ∈ CK , e(K) = ∅

,

where αKL > 0 if EL ∈ e(K), are arbitrary, subject only to
∑

L:EL∈e(K) αKL =
1 and αKL = αK′L, and where βKi > 0 are also arbitrary and subject to∑

i∈CK
βKi = 1, and where ek = |e(K)| for 1 ≤ K,K ′ ≤ N , 1 ≤ L ≤ M

and i ∈ CK .

Note that because there are several choices for the parameters in the defin-
ition of τ -distributors, there are, in general, several Markov reward chains with
fast transitions that the original Markov reward chain with fast transitions τ -
lumps to. We will show later that all these processes are equivalent in the limit
and moreover, that in some special cases, they are exactly equivalent.

We now give some examples; first some in which the τ -lumped process is
unique.

Example 32. In this example we show that the Markov reward chains with fast
transitions from Figure 4 τ -lump to those in Figure 6. Recall that the limits of
these Markov reward chains with fast transitions are calculated in Example 14.

a. Consider the Markov reward chain with fast transitions depicted in Fig-
ure 4a. Its ergodic partitioning is E = {E1, E2, T} with E1 = {2}, E2 = {3}
and T = {1}. We show that P = {C1, C2}, with C1 = {1, 2} and C2 = {3},
is a τ -lumping and that the process τ -lumps to the one in Figure 6a. To
show that the lumping conditions hold we first obtain

Π =




0 1 0
0 1 0
0 0 1


 and V =




1 0
1 0
0 1


 .

Then

ΠV =




1 0
1 0
0 1


 , ΠQsΠV =



−µ µ
−µ µ
0 0


 and Πρ =




r2

r2

r3


 .

It is clear that the conditions for τ -lumping hold (rows corresponding to
states in a same lumping class are equal).
We now construct a τ -distributor. Note that the lumping classes are already
numbered as required because there are no classes that contain only transient
states. In the arrangement of Corollary 28 we have that S = L = 2, c1 =
c2 = 1, e1 = e2 = 1, and that C11 = C1 = {1, 2}, C21 = C2 = {3},
E11 = E1 = {2} and E21 = E2 = {3}. From this, α11 = 1, α21 = 1, and
there are no other parameters. We now obtain

W =
(

0 1 0
0 0 1

)
.



Note that this is the only τ -distributor.
The τ -lumped process is now defined by the following; it is depicted in Fig-
ure 6a:

σ̂ = σV =
(
1 0

)
, Q̂s = WQsV =

(−µ µ
0 0

)
,

Q̂f = WQfV =
(

0 0
0 0

)
, and ρ̂ = Wρ =

(
r2

r3

)
.

This example illustrates how, in transient states, fast transitions have prior-
ity over slow transitions. The transition labeled with λ is irrelevant. Because
there is only one τ -distributor, it does not depend on the parameters, and
so we have a unique τ -lumped process.

b. Consider the Markov reward chain with fast transitions depicted in Fig-
ure 4b. It can be easily checked that P = {C1, C2}, with C1 = {1, 2} and
C2 = {3}, is a τ -lumping. The lumping classes are numbered as needed, and
we have S = L = 2, c1 = c2 = 1, e1 = e2 = 1, and C11 = {1, 2}, C21 = {3},
E11 = {1, 2} and E21 = {3}. From this, α11 = 1 and α21 = 1. Recall from
Example 14b that that

Π =




b
a+b

a
a+b 0

b
a+b

a
a+b 0

0 0 1


 .

We obtain

W =
(

b
a+b

a
a+b 0

0 0 1

)
, Q̂s =

(− a λ
a+b

a λ
a+b

0 0

)
, Q̂f = 0 and ρ̂ =

(
br1+ar2

a+b

r3

)
.

So, the process τ -lumps to the one in Figure 6b. As in the previous case, we
only have one τ -distributor, and so, only one τ -lumped process.
This example shows that when two ergodic states with different slow tran-
sition rates are lumped together, the resulting state is ergodic and it can
perform the same slow transition but with an adapted rate. The example
also shows that the Markov reward chain with fast transitions of Figure 4b
spends an exponentially distributed amount of time with rate a λ

a+b in the
class {1, 2}. This is the time that it spends switching between state 1 and
state 2.

c. Example 25b shows that for the Markov reward chain with fast transitions
depicted in Figure 4c, the partitionings P = {C1, C2, C3}, with C1 = {1},
C2 = {2, 3} and C3 = {4}, and P = {C1, C2}, with C1 = {1, 2, 3}, C2 = {4},
are τ -lumpings when r2 = r3

def= r. The ergodic partitioning of this Markov
reward chain with fast transitions is E = {E1, E2, E3, T} where E1 = {2},
E2 = {3}, E3 = {4} and T = {1}
For the first partitioning we renumber classes to have those with ergodic
states in front, and obtain C1 = {2, 3}, C2 = {4} and C3 = {1}. Now, we
have S = L = 2, c1 = c2 = 1, e1 = 2, e2 = 1, and C11 = {2, 3}, C21 = {4},
E11 = E2 = {2}, E12 = E3 = {3}, and E21 = {4}. Since e2 = 1, we have
α21 = 1. Since e1 = 2, we have α11

def= α to be an arbitrary number between



0 and 1, and we have α12 = 1−α11 = 1−α. This now gives the following τ -
distributor (in the original numbering of classes) and the τ -lumped process.

W =




1 0 0 0
0 α 1−α 0
0 0 0 1


 , Q̂s =




0 0 0
0 −λ λ
ν 0 −ν


 ,

Q̂f =



−a−b a+b 0

0 0 0
0 0 0


 and ρ̂ =




r1

r
r4


 .

The τ -lumped process is depicted in Figure 6c. This example shows that
τ -lumping need not eliminate all silent transitions. It also shows that even
there might be more possible choices for the parameters in τ -distributors in
some cases there is only one possible τ -lumped process.
For the second partitioning we similarly obtain

W =
(

0 α 1−α 0
0 0 0 1

)
, Q̂s =

(−λ λ
ν −ν

)
, Q̂f = 0, and ρ̂ =

(
r
r4

)
.

The lumped Markov reward chain with fast transitions is depicted in Fig-
ure 6d. This example shows how transient states can be lumped with ergodic
states, resulting in an ergodic state.
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Fig. 6. τ -lumped Markov reward chains with fast transitions – Example 32

In the previous example all the lumping classes always contained some ergodic
states, and moreover, there were not constructed from parts of different ergodic
classes. This is why all the τ -lumped Markov reward chains with fast transitions
did not depend on the particular choice for the parameters in the τ -distributor.
The next example shows that this is not always the case.

Example 33. a. Consider the left Markov reward chain with fast transitions
depicted in Figure 7a. It is defined by

σ =
(
1 0 0 0

)
, Qs =




0 0 0 0
−λ 0 0 λ
0 0 0 0
0 0 0 0


 ,



Qf =




0 0 0 0
0 −b b 0
0 0 0 0
0 0 0 0


 and ρ =




r1

r2

r3

r4


 .

It is not hard to show that P = {{1, 2}, {3}, {4}} is a τ -lumping of this
Markov reward chain with fast transitions. We only show that it τ -lumps to
the Markov reward chain with fast transitions depicted in Figure 7a on the
right. We obtain

Π =




0 0 1 0
0 0 1 0
0 0 1 0
0 0 0 1


 and V =




1 0 0
1 0 0
0 1 0
0 0 1


 .

States 1 and 2 are both transient and constitute a lumping class. Because of
this we have

W =




β 1−β 0 0
0 0 1 0
0 0 0 1


 for some 0 < β < 1,

and so

σ̂ = σV =
(
1 0 0

)
, Q̂s = WQsV =



−(1−β)λ 0 (1−β)λ

0 0 0
0 0 0


 ,

Q̂f = WQfV =



−(1−β)b (1−β)b 0

0 0 0
0 0 0


 , ρ̂ =




βr1 + (1−β)r2

r3

r4


 .

This Markov reward chain with fast transitions is indeed the right one in
Figure 7a. The reasons why it depends on the parameters in W is because
there is a lumping class, in this case the first one, that contains transient
states only.

b. Consider now the Markov reward chain with fast transitions depicted in
Figure 7b on the left. It is defined by

σ =
(
1 0 0 0 0

)
, Qs = 0,

Qf =




−(a+b) a b 0 0
0 −c 0 c 0
0 0 −2c 0 2c
0 d 0 −d 0
0 0 2d 0 −2d




and ρ =




r1

r2

r3

r4

r5




.

It is not hard to show that P = {{1}, {2, 3}, {4, 5}} is a τ -lumping of this
Markov reward chain with fast transitions. We only show that it τ -lumps to



the Markov reward chain with fast transitions depicted in Figure 7b on the
right. We obtain

Π =




0 a d
(a+b) (c+d)

b d
(a+b) (c+d)

a c
(a+b) (c+d)

b c
(a+b) (c+d)

0 d
c+d 0 c

c+d 0
0 0 d

c+d 0 c
c+d

0 d
c+d 0 c

c+d 0
0 0 d

c+d 0 c
c+d




.

From Π and P we have

W =




1 0 0 0
0 α 1−α 0 0 0
0 0 0 α 1−α 0
0 0 0 0 0 1


 for some 0 < α < 1.

Note that the same parameter α appears, both in the row corresponding to
class {2, 3} and in the row corresponding to {4, 5}. This is because these
two classes belong to the same group, i.e. they share states from the same
ergodic classes.
Now,

σ̂ =
(
1 0 0

)
, Q̂s = 0,

Q̂f =



−(a+b) a+b 0

0 −(2−α)c (2−α)c
0 (2−α)d −(2−α)d


 and ρ̂ =




r1

αr2 + (1− α)r3

αr4 + (1− α)r5


 .

This Markov reward chain with fast transitions is indeed the right one in
Figure 7b. The reason why it depends on the parameters in W is because the
second and the third lumping class contain states from different ergodic classes
but do not contain complete ergodic classes.

The following example shows some Markov reward chains with fast transi-
tions that are minimal in the sense that they only admit the trivial τ -lumpings.

Example 34. We show that, for λ 6= µ, the Markov reward chains with fast
transitions from Figure 8 admit only the trivial lumpings regardless of the reward
structure. For this reason the rewards are omitted from the picture.

a. Consider the Markov reward chain with fast transitions in Figure 8a. The
reason why this Markov reward chain with fast transitions does not have a
non-trivial lumping were already discussed in Example 25c.

b. The Markov reward chain with fast transitions in Figure 8b also has only
the trivial lumpings. We show that states 1 and 2 cannot be in the same
lumping class. Let P = {{1, 2}, {3}, {4}}. We easily obtain

Π =




0 0 a c+b (c+d)
(a+b) (c+d)

a d
(a+b) (c+d)

0 0 c
c+d

d
c+d

0 0 1 0
0 0 0 1


 and V =




1 0 0
1 0 0
0 1 0
0 0 1


 .
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Fig. 7. τ -lumping where the τ -lumped process depends on the parameters in the τ -
distributor – Example 33

Then

ΠV =




0 a c+b (c+d)
(a+b) (c+d)

a d
(a+b) (c+d)

0 c
c+d

d
c+d

0 1 0
0 0 1


 .

In order for the lumping condition to hold for P we must have a d
(a+b) (c+d) =

d
c+d which is impossible because a

a+b < 1.
c. Consider the Markov reward chain with fast transitions in Figure 8c. This

Markov reward chain with fast transitions only has a nontrivial lumping
when b = c. We show that states 1 and 2 can be in the same lumping class
only in this case. Let P = {{1, 2}, {3}, {4}}. We easily obtain

Π =




0 0 a
a+b

b
a+b 0

0 0 a
a+c

c
a+c 0

0 0 1 0 0
0 0 0 1 0
0 0 0 0 1




and V =




1 0 0
1 0 0
0 1 0
0 0 1


 .

As in the previous example for the lumping condition to hold we must have
that a

a+b = a
a+c . This is only possible when b = c.
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Fig. 8. Markov reward chains with fast transitions without non-trivial τ -lumpings –
Example 34

Definition 30 of τ -lumping and Definition induces the following diagram:

Markov Reward Chain
with Fast Transitions τ→∞

//

τ -lumping

²²

Discontinuous
Markov Reward Chain

ordinary
lumping

²²
τ -lumped

Markov Reward Chain
with Fast Transitions

lumped
Discontinuous

Markov Reward Chain

We now show that the diagram can be closed, i.e. that

τ -lumped
Markov Reward Chain
with Fast Transitions

τ→∞
//

lumped
Discontinuous

Markov Reward Chain

The notion of τ -lumping is based only on the limit process, and so, this property
is important since it somehow proves the definition of the τ -lumped process
correct.

To establish this correctness we first show the main feature of a τ -distributor
W , which is that ΠV WΠ = ΠV W , holds. Intuitively, the equality states that
W distributes the lumped ergodic states of a lumping class according to their
re-normalized ergodic probabilities. For a smooth proof of this property we intro-
duce a convenient numbering of states. This numbering also allows us to prove
that W is a distributor for any choice of the parameters. Assuming that ergodic
and lumping classes are arranged according to Corollary 28, we renumber the
states in such a way that those that belong to an ergodic class with a lower index
precede those that belong to an ergodic class with a higher index (assuming the
lexicographic order). Additionally, we divide transient states into those that are
lumped together with some ergodic states and those that are lumped only with
other transient states, and then renumber them so that those that belong to the



first group precede those from the second group. We give an example of this
renumbering.

Example 35. Consider the Markov reward chain with fast transitions depicted
in Figure 9a (we omit the reward structure, but assume that the reward vector
is permuted accordingly). It directly follows that the partitionings E and P from
Example 29 are the ergodic partitioning and a τ -lumping for this Markov reward
chain with fast transitions. From the same example, after the rearrangement we
have E = {E11, E12, E21, T} and P = {C11, C12, C21, C3} with E11 = {2, 5},
E12 = {4, 7}, E21 = {6, 8}, T = {1, 3} and C11 = {2, 4}, C12 = {5, 7}, C21 =
{3, 6, 8}, C3 = {1}. Note that the transient state 3 lumps together with the
ergodic states 6 and 8, and that the transient state 1 lumps alone. Now, we
renumber states as 2 7→ 1, 5 7→ 2, 4 7→ 3, 7 7→ 4, 6 7→ 5, 8 7→ 6, 3 7→ 7, and
1 7→ 8. The new Markov reward chain with fast transitions is depicted in 9b.
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Fig. 9. Markov reward chain with fast transitions before and after the renumbering of
states – Example 35

We now present the matrices Π, V and W in the new numbering. First we
have

Π =




Π1 0 . . . 0 0 0
0 Π2 . . . 0 0 0
...

...
. . .

...
...

...
0 0 . . . ΠS 0 0

Π1 Π2 . . . ΠS 0 0
Π̃1 Π̃2 . . . Π̃S 0 0




Πi = diag (Πi1, . . . ,Πiei) Πij = 1|Eij | · µij

Πi =
(
Πi1 . . . Πiei

)
Πij = δij · µij

Π̃i =
(
Π̃i1 . . . Π̃iei

)
Π̃ij = δ̃ij · µij ,

where the matrices Πi and Π̃i respectively correspond to the transient states that
are lumped together with ergodic classes and to the ones that are lumped only
with other transient states. The vector µij is the ergodic probability vector for



the ergodic class Eij . The vectors δij and δ̃ij are the corresponding restrictions
of the vector δij which is the vector of trapping probabilities for Eij .

The collector matrix V associated with P now has the following form:

V =




V1 0 . . . 0 0
0 V2 . . . 0 0
...

...
. . .

...
...

0 0 . . . VS 0
V 1 V 2 . . . V S 0
0 0 . . . 0 Ṽ




Vi =




Vi1

...
Viei




Vij = diag
(
1|Eij∩Ci1|, . . . ,1|Eij∩Cici

|)
V i = diag

(
1|T∩Ci1|, . . . ,1|T∩Cici

|)

Ṽ = diag
(
1|T∩CL+1|, . . . ,1|T∩CN |) .

Note that the matrices V i are non necessarily collector matrices. They are al-
lowed to have zero columns.

Let µ
(k)
ij denote the restriction of µij to the elements of Cik. The vector µ

(k)
ij

is never empty because Cik ∩ Eij 6= ∅. Then we write

ΠiVi =




Πi1Vi1

...
ΠieiViei


 =




1|Ei1| · µ(1)
i1 · 1 . . . 1|Ei1| · µ(ci)

i1 · 1
...

...
1|Eiei

| · µ(1)
iei
· 1 . . . 1|Eiei

| · µ(ci)
iei

· 1


 .

From the lumping condition it follows that the rows of ΠiVi that correspond to
the same lumping class are equal. This implies that

µ
(`)
ij · 1 = µ

(`)
ik · 1,

for all 1 ≤ j, k ≤ ei, 1 ≤ ` ≤ ci. Define a row vector φi ∈ IR1×ci as

φi[`] = µ
(`)
ij · 1

(for any 1 ≤ j ≤ ei). Then

µijVij = φi, for any 1 ≤ j ≤ ei, and ΠiVi = 1 · φi.

The matrix W of Definition 30 has the following form:

W =




W1 0 . . . 0 0 0
0 W2 . . . 0 0 0
...

...
. . .

...
...

...
0 0 . . . WS 0 0
0 0 . . . 0 0 W̃




Wi =
(
Wi1 . . . Wiei

)

W̃ = diag (w̃L+1, . . . , w̃N )



where

Wij = diag

(
αijeiµ

(1)
ij∑ei

k=1 µ
(1)
ik · 1

, . . . ,
αijeiµ

(ci)
ij∑ei

k=1 µ
(ci)
ik · 1

)
.

and
w̃i =

(
βi1 . . . βi|Ci|

)
, 0 < βij < 1.

Using the definition of φ, we have:

Wij = diag

(
αijeiµ

(1)
ij∑ei

k=1 µ
(1)
ik · 1

, . . . ,
αijeiµ

(ci)
ij∑ei

k=1 µ
(ci)
ik · 1

)

= αijei · diag

(
µ

(1)
ij∑ei

k=1 φi[1]
, . . . ,

µ
(ci)
ij∑ei

k=1 φi[ci]

)

=
αijei

ei
· diag

(
µ

(1)
ij

φi[1]
, . . . ,

µ
(ci)
ij

φi[ci]

)

= αij · diag

(
µ

(1)
ij

φi[1]
, . . . ,

µ
(ci)
ij

φi[ci]

)
.

Let us now prove that W ≥ 0 is a distributor, i.e. that WV = I. We have

WV =




W1V1 0 . . . 0 0
0 W2V2 . . . 0 0
...

...
. . .

...
...

0 0 . . . WSVS 0
0 0 . . . 0 W̃ Ṽ




, WiVi =
∑ei

j=1 WijVij

and
W̃ Ṽ = diag

(
w̃L+1 · 1|T∩CL+1|, . . . , w̃N · 1|T∩CN |

)
.

We first have

WijVij = αij · diag

(
µ

(1)
ij

φi[1]
, . . . ,

µ
(ci)
ij

φi[ci]

)
· diag

(
1|Eij∩Ci1|, . . . ,1|Eij∩Cici

|
)

=

= αij · diag

(
µ

(1)
ij · 1
φi[1]

, . . . ,
µ

(ci)
ij · 1
φi[ci]

)
= αij · diag

(
φi[1]
φi[1]

, . . . ,
φi[ci]
φi[ci]

)
= αijI.

Now,

WiVi =
ei∑

j=1

WijVij =
ei∑

j=1

αijI = I,

because
∑ei

j=1 αij = 1. Also, for all L + 1 ≤ K ≤ N ,

w̃K · 1|T∩CK | =
|CK |∑

k=1

βik = 1.



Lemma 36. Let Π, V and W be as in Definition 30. Then

ΠV WΠ = ΠV W.

Proof. Using the block structure of Π, V and W , after a simple block-matrix
calculation, it follows that ΠV WΠ = ΠV W iff, for all 1 ≤ i ≤ S,

XiViWiΠi = XiViWi for Xi ∈ {Πi,Πi, Π̃i}.
Going one level deeper in the matrix structure, we obtain that XiViWiΠi =
XiViWi iff

µijVijWikΠik = µijVijWik

for all 1 ≤ j, k ≤ ei. Furthermore, from the definition of φi it follows that

µijVij =
(
µ

(1)
ij . . . µ

(ci)
ij

)
· diag

(
1|Eij∩Ci1|, . . . ,1|Eij∩Cici

|
)

=

=
(
µ

(1)
ij · 1|Eij∩Ci1| . . . µ

(ci)
ij · 1|Eij∩Cici

|
)

=
(
φi[1] . . . φi[ci]

)
= φ.

Therefore, the equality µijVijWikΠik = µijVijWik holds iff

φiWikΠik = φiWik

holds. We first calculate

φiWik = (φi[1] . . . φi[ci]) · αik · diag

(
µ

(1)
ik

φi[1]
, . . . ,

µ
(ci)
ik

φi[ci]

)
= αik · µik,

and then
φiWikΠik = αik · µik · 1 · µik = αik · 1 · µik = φiWik.

It is not hard to show that the converse of this theorem also holds in some
special case. Any distributor W that has only non-zero elements associated to
transient states that are lumped only with other transient states, and that sat-
isfies ΠV WΠ = ΠV W , must be of the form from Definition 30, i.e. must be a
τ -distributor.

The property ΠV WΠ = ΠV W is crucial in the proof that Q̂s and ρ̂ are
correctly defined. We now introduce some notions and prove a lemma that plays
an important role in the proof that Q̂f is also correctly defined.

A matrix G ∈ IRn×n such that G · 1 ≤ 0 and G + cI ≥ 0 for some c > 0 is
called a semi-generator matrix. In other words, a semi-generator is a matrix in
which a negative element can only be on the diagonal, and the absolute value of
this element is bigger than or equal to the sum of the other elements in the row.
A semi-generator is called indecomposable if it cannot be represented (after any
renumbering) as

(
Q 0
X Y

)
where Q is a generator matrix.

Lemma 37. Let G ∈ IRn×n be an indecomposable semi-generator. Then

a. G is invertible, i.e. of full rank; and



b. UGV ∈ IRN×N is an indecomposable semi-generator for any collector ma-
trix V ∈ IRn×N , and any distributor U ∈ IRN×n associated to V such that
V [i,K] = 1 implies U [K, i] > 0, for all 1 ≤ i ≤ n and 1 ≤ K ≤ N .

Proof. a. Suppose that G is not invertible. We construct a numbering in which
G=

(
Q 0
X Y

)
and Q is a generator matrix. Let r1, . . . rn ∈ IR1×n be the row

vectors that correspond to the rows of G. Let the rows with elements that
sum up to 0 precede those of which this sum is less than 0, i.e. let the
numbering of states be such that, for some 1 ≤ k ≤ n, we have ri ·1 = 0, for
1 ≤ i ≤ k, and ri · 1 ≤ 0, for k + 1 ≤ i ≤ n. Since G is not invertible, there
exists an 1 ≤ ` ≤ n such that α`rl = α1r1 + · · · + α`−1r`−1 + α`+1r`+1 +
· · ·+αnrn for some α1, . . . , αn with α` = 1. Now, we can apply Theorem 2.1
of [29] and obtain that r` · 1 = 0, i.e. that ` ≤ k, and that αi = 0 for all
k + 1 ≤ i ≤ n. From the same theorem we also obtain that G[i, j] = 0 for all
1 ≤ i ≤ k and k + 1 ≤ j ≤ n. This directly means that G =

(
Q 0
X Y

)
where

Q =

(
r1

...
rk

)
satisfies Q · 1 = 0 and so is a generator matrix.

b. The proof is by contradiction. Suppose that in some numbering of classes
UGV =

(
Q 0
X Y

)
and Q is a generator matrix. We renumber the states so that

those that belong to classes that correspond to Q precede the other states.
In this numbering, we have

UGV =
(

U1 0
0 U2

)(
G11 G12

G21 G22

)(
V1 0
0 V2

)
=

(
Q 0
X Y

)
,

which in turn implies U1G11V1 = Q and that U1G12V2 = 0.
We first prove that G12 = 0. Multiplying the equation U1G12V2 = 0 from
the right by 1 we obtain U1G12 · 1 = 0. Define x ∈ IRn by x = G12 · 1.
Since G12 ≥ 0, also x ≥ 0. Suppose x[k] > 0 for some 1 ≤ k ≤ n. Then
from U1x = 0 it follows that U [K, k] = 0 for all 1 ≤ K ≤ N . This is not
possible because of the requirement that U [K, k] > 0 for the index K such
that V [k, K] = 1. We conclude that x = 0 which implies G12 = 0.
We now prove that G11 is a generator matrix. Note that it is a semi-generator
and so we only need to show that G11 · 1 = 0. Multiplying the equation
U1G11V1 = Q from the right by 1 we obtain U1G11 · 1 = Q · 1 = 0 because
Q is a generator. Define x ∈ IRn by x = G11 · 1. Note that x ≤ 0. Suppose
x[k] < 0 for some 1 ≤ k ≤ n. Since U1x = 0 it follows that U [K, k] = 0
for all 1 ≤ K ≤ N . As in the previous case, this is not possible because
U [K, k] > 0 when V [k, K] = 1. We conclude that x = 0 and, therefore, that
G11 is a generator.

The second notion we introduce is the notion of irreducible generators. A
matrix is called irreducible if there does not exist a renumbering after which it
is represented as

(
A′ A′′
0 B

)
for some (non-empty) square matrices A′ and B.

Lemma 38. Let Q ∈ IRn×n be an irreducible generator matrix. Then UQV ∈
IRN×N is also an irreducible generator matrix for any collector matrix V ∈



IRn×N , and any distributor U ∈ IRN×n associated to V such that V [i,K] = 1
implies U [K, i] > 0, for all 1 ≤ i ≤ n and 1 ≤ K ≤ N .

Proof. The proof is by contradiction. Suppose that Q̂ = UQV is not irreducible.
Then Q̂ =

(
Q̂′1 Q̂′′1
0 Q̂2

)
in some numbering of classes. After an adequate renumber-

ing of states we have

UQV =
(

U1 0
0 U2

)(
Q′

1 Q′′1
Q′

2 Q′′2

)(
V1 0
0 V2

)
=

(
Q̂′1 Q̂′′1
0 Q̂2

)

which implies that U2Q
′
2V1 = 0. Since Q′2 ≥ 0, after the same reasoning as in the

proof of Lemma 37, we obtain that Q′
2 = 0. From this it follows that Q is not

irreducible which is a contradiction. We conclude that Q̂ must be irreducible.

We are now ready for the correctness proof.

Theorem 39. Suppose (σ,Qs, Qf , ρ) PÃτ (σ̂, Q̂s, Q̂f , ρ̂), (σ,Qs, Qf , ρ) →∞
(σ,Π, Q, ρ′) and (σ,Π, Q, ρ′)→P (σ, Π̂, Q̂, ρ̂′). Then

(σ,Qs, Qf , ρ) →∞ (σ, Π̂, Q̂, ρ̂′).

Proof. According to Theorem 12, we need to show that Π̂ is the ergodic projec-
tion of Q̂f , that Π̂Q̂sΠ̂ = Q̂ and that Π̂ρ̂ = ρ̂′.

For the second part, using the property ΠV W = ΠV WΠ proven in Lemma 36,
we have the following derivations:

Π̂Q̂sΠ̂ = UΠV WQsV UΠV = UΠV WΠQsΠV =

= UΠΠQsΠV = UΠQsΠV = UQV = Q̂,

and, since ρ′ = Πρ, we have Πρ′ = ρ′, and then

Π̂ρ̂ = UΠV Wρ = UΠV WΠρ = UΠV Wρ′ = UΠρ′ = Uρ′ = ρ̂′.

It remains to show that Π̂ is the ergodic projection of Q̂f . Recall that it is
enough to show that Π̂ ≥ 0, Π̂ ·1 = 1, Π̂2 = Π̂, Π̂Q̂f = Q̂f Π̂ = 0 and rank(Π̂)+
rank(Q̂f ) = N . In Theorem 20 we showed that Π̂ satisfies the conditions of
Theorem 6, so we have Π̂ ≥ 0, Π̂ · 1 = 1 and Π̂2 = Π̂. We also derive

Π̂Q̂f = UΠV WQfV = UΠV WΠQfV = 0

using that ΠQf = 0. Similarly,

Q̂f Π̂ = WQfV UΠV = WQfΠV = 0

because QfΠ = 0. We prove that rank(Π̂) + rank(Q̂f ) = N .



First, we compute Π̂:

Π̂ = WΠV =




W1Π1V1 0 . . . 0 0
0 W2Π2V2 . . . 0 0
...

...
. . .

...
...

0 0 . . . WSΠSVS 0
W̃ Π̃1V1 W̃ Π̃2V2 . . . W̃ Π̃SVS 0




where WiΠiVi = Wi · 1 · ρi = 1 · ρi.
Since Π̂ is idempotent, i.e. Π̂2 = Π̂, its rank is equal to its trace and so:

rank(Π̂) = trace(Π̂) =
S∑

i=1

trace(WiΠiVi) =
S∑

i=1

trace(1 · ρi) = S · 1 = S.

We now show that rank(Q̂f ) = N − S.
It is known (cf. [18]) that, in a numbering that makes the ergodic partitioning

explicit (and our numbering is just a more refined one), Qf has the following
form:

Qf =




Q1 0 . . . 0 0 0
0 Q2 . . . 0 0 0
...

...
. . .

...
...

...
0 0 . . . QS 0 0
Q1 Q2 . . . QS Q Q

′

Q̃1 Q̃2 . . . Q̃S Q̃ Q̃′




Qi = diag (Qi1, . . . , Qiei) ,

where Qij are irreducible generators and
(

Q Q
′eQ eQ′ ) is an indecomposable semi-

generator. Note that it follows that Q̃′ must also be an indecomposable semi-
generator.

We compute Q̂f :

Q̂f = WQfV =




W1Q1V1 0 . . . 0 0
0 W2Q2V2 . . . 0 0
...

...
. . .

...
...

0 0 . . . WSQSVS 0

W̃

( eQ1V1
+eQV 1

)
W̃

( eQ2V2
+eQV 2

)
. . . W̃

( eQSVS
+eQV S

)
W̃ Q̃′Ṽ




and

WiQiVi =
ei∑

j=1

WijQijVij .

Since Qij is an irreducible generator, and since Wij and Vij satisfy the con-
ditions of Lemma 38, we can apply this lemma and obtain that WijQijVij is also



an irreducible generator. It follows easily that the sum of two irreducible genera-
tors is again an irreducible generator. We conclude that WiQiVi is an irreducible
generator.

Since Q̃′ is an indecomposable semi-generator, and since W̃ and Ṽ satisfy
the conditions of Lemma 37, we apply this lemma and obtain that W̃ Q̃′Ṽ is an
indecomposable semi-generator matrix.

It is known that the rank of an irreducible generator of dimension n is n −
1. We have also proven in Lemma 37a that an indecomposable semi-generator
matrix has full rank. Then rank(Q̂f ) =

∑S
i=1(ci − 1) + N − (L + 1) + 1 =

L− S + N − L = N − S.

Recall that depending on the parameters in the τ -distributor there are, in
general, many processes to which a τ -lumpable Markov reward chain with fast
transitions τ -lumps to. The previous theorem showed that all these processes are
equivalent up-to the limit. The next theorem shows that they are exactly the
same if all fast transitions were eliminated by τ -lumping, i.e. when the matrix
that models fast transitions aggregates to zero matrix.

Theorem 40. Suppose (σ,Qs, Qf , ρ) PÃτ (σ̂, Q̂s, Q̂f , ρ̂) and suppose W is the τ -
distributor used. Suppose Q̂f = 0. Let W ′ be a τ -distributor with a different
choice for parameters. Then W ′QsV = Q̂s, W ′QfV = 0 and W ′ρ = ρ̂.

Proof. Let (σ,Qs, Qf , ρ) →∞ (σ,Π,Q, Πρ). Since Q̂f = WQfV = 0, by The-
orem 39 we have WΠV = I. Multiplying by V from the left and using that
V WΠV = ΠV , we obtain ΠV = V . From Lemma 36, we have that ΠV WΠ =
ΠV W and ΠV W ′Π = ΠV W ′. Since ΠV = V , we have V WΠ = V W and
V W ′Π = V W ′. Multiplying by W from the left, we get WΠ = W and W ′Π =
W ′.

First, W ′QfV = W ′ΠQfV = 0 because ΠQf = 0 (as Π is the ergodic
projection of Qf ). Next, using that UQV is the same for any distributor U , we
have Q̂s = WQsV = WΠQsΠV = WQV = W ′QV = W ′ΠQsΠV = W ′QsV .
Similarly, Wρ = WΠρ = W ′Πρ = W ′ρ.

3.3 τ∼-lumping

In this section we introduce a notion of lumping for Markov reward chains with
silent transitions, called τ∼-lumping, by lifting τ -lumping to equivalence classes
induced by the relation ∼ (recall Definition 15). Intuitively, we want a partition-
ing P of a Markov reward chain with silent transitions (σ,Qs, [Qf ]∼, ρ) to be a
τ∼-lumping iff it is a τ -lumping for any Markov reward chain with fast transi-
tions (σ,Qs, Q

′
f , ρ) with Q′

f ∼ Qf . Moreover, to have a proper lifting, we also want
Q̂s = WQsV and ρ̂ = Wρ not to depend on the choice for the representative
from [Qf ]∼. This is crucial for the definition of the τ∼-lumped process.

Before we give a definition that satisfies the above requirements, we give an
example that shows that not every τ -lumping can be taken for τ∼-lumping.



Example 41. a. Consider the Markov reward chain with silent transitions de-
picted in Figure 10a. Example 32b shows that the partitioning
P =

{{1, 2}, {3}} is a τ -lumping for all possible speeds given to the silent
transitions. However, the slow transition in the τ -lumped process always
depends on those speeds.

b. Consider the Markov reward chain with silent transitions depicted in Figure
10b. The Example 34c shows, that although for some speeds the partitioning{{1, 2}, {3}, {4}} is a τ -lumping, it need not be so for some other speeds.
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Fig. 10. Not every τ -lumping can be τ∼-lumping – Example 41

For the definition of τ∼-lumping we need to introduce some notation. We
define erg(i) = {j ∈ E | i ³ j} to be the set of all ergodic states reachable
from state i and, for X ⊆ {1, . . . , n}, we define erg(X) =

⋃
i∈X erg(i). Note that

j ∈ erg(i) iff Π[i, j] > 0. Let EL be some ergodic class. Then, for i ∈ EL, we have
erg(i) = EL. Recall that δL[i] > 0 iff i ∈ T can be trapped in EL. Therefore,
δL[i] = 1 iff erg(i) = EL.

Now, carefully restricting to the cases when τ -lumping is “speed indepen-
dent”, i.e. forbidding the situations from Example 41, we define τ∼-lumping as
follows.

Definition 42 (τ∼-lumping). Let (σ,Qs, [Qf ]∼, ρ) be a Markov reward chain
with silent transitions. Let {E1, . . . , EM , T} be its ergodic partitioning and let
E =

⋃
1≤k≤M Ek be the set of ergodic states. A partitioning P is a τ∼-lumping

of (σ,Qs, [Qf ]∼, ρ) iff:

1. for all C ∈ P at least one of the following holds:
(a) erg(C) ⊆ D, for some D ∈ P,
(b) erg(C) = EL, for some 1 ≤ L ≤ M , or
(c) C ⊆ T and i → i′, for exactly one i ∈ C and some i′ 6∈ C;

2. for all C ∈ P, all i, j ∈ C∩E and all D ∈ P, such that C 6= D,
∑

`∈D

Qs[i, `] =
∑

`∈D

Qs[j, `] holds;

3. for all i, j ∈ C ∩ E, ρ[i] = ρ[j] holds.



Let us explain what these conditions mean. Condition 1 ensures that the
lumping condition holds for the ergodic projection Π of any matrix from [Qf ]∼.
Condition 1a says that the ergodic states reachable by silent transitions from
the states in C are all in the same lumping class. Condition 1b says that the
ergodic states reachable by silent transitions from the states in C constitute an
ergodic class. Condition 1c says that C is a set of transient states with precisely
one (silent) exit. Note that Conditions 1a and 1b overlap when Ei ⊆ D. If, in
addition, C contains only transient states and has only one exit, all the three
conditions overlap. Condition 1 forbids lumping classes to contain parts of dif-
ferent ergodic classes in order to eliminate the effect of the ergodic probabilities.
It also forbids the case where transient states os some lumping class lead to
multiple ergodic classes that are not all subsets of some lumping class (except in
the case where there are only transient states in the lumping class and the class
has only one exit). This is to eliminate the effect of the trapping probabilities.
Note that in the exceptional case the trapping probabilities of all the elements
from the lumping class are all equal. Note that Condition 1 was violated in Ex-
ample 41b. This is because states 3 and 4 were not in a lumping class nor in an
ergodic class, and because the lumping class {1, 2} has two exits.

Condition 2 says that every ergodic state in C must have the same accumu-
lative rate to every other τ∼-lumping class. This condition is needed to avoid
the situation in Example 41a where a slow transition in the τ -lumped process
depends on speeds. Condition 3 says that every ergodic state that belongs to
the same lumping class must have the same reward. The idea is the same as in
Condition 2 but applied for the reward vector. The condition ensures that the
rewards in the lumped process do not depend on speeds. Note that no condition
is imposed on Qs and ρ that concerns transient states.

We now show that the notion of τ∼-lumping from Definition 42 exactly meets
our requirements set in the beginning.

Theorem 43. Let (σ,Qs, [Qf ]∼, ρ) be a Markov reward chain with silent transi-
tions and let P be a partitioning. Then P is a τ∼-lumping iff it is a τ -lumping for
every Markov reward chain with fast transitions (σ,Qs, Qf , ρ) with Qf ∈ [Qf ]∼
and, moreover, for any Q′f ∼ Qf , W ′QsV = WQsV and W ′ρ = Wρ, where W
and W ′ are τ -distributors for Qf and Q′f respectively, and have the same values
for the free parameters.

Proof. (⇒) We first show that P is a τ -lumping for all representative matrices
Qf . Recall that V UΠV = ΠV is equivalent to the condition that the rows of ΠV
that correspond to the states that belong to the same partitioning class are equal.
This is the same as saying that, for all C, D ∈ P,

∑
d∈D Π[i, d] =

∑
d∈D Π[j, d]

for all i, j ∈ C.
Suppose first that Condition 1a holds, i.e. that erg(C) ⊆ C ′ for some C ′ ∈ P.

Then, for all i ∈ C, erg(i) ⊆ C ′. From this, by a simple contradiction, it follows
that Π[i, d] = 0 for all d ∈ D where D 6= C ′. Then, for such D, we have∑

d∈D Π[i, d] = 0 =
∑

d∈D Π[j, d]. Since Π is a stochastic matrix, its rows sum
up to one, and so we also have

∑
c∈C′ Π[i, c] = 1 =

∑
c∈C′ Π[j, c].



Suppose that Condition 1b holds, i.e. that erg(C) = EL for some 1 ≤ L ≤ M .
Then, for all i ∈ C, erg(i) ⊆ EL. Again by a simple contradiction, we obtain
Π[i, d] = 0 for all d ∈ D such that D∩EL = ∅. From the form of Π it follows that,
for such D,

∑
d∈D Π[i, d] = 0 =

∑
d∈D Π[j, d] for all i, j ∈ C. Let now i ∈ C and

let some class D ∈ P satisfy D∩EL 6= ∅. Then we distinguish two cases. Suppose
first that i ∈ E. Since erg(i) ⊆ EL, we have i ∈ EL. Then

∑
d∈D Π[i, d] =∑

d∈D∩EL
Π[i, d] =

∑
d∈D Π[d, d]. Suppose now that i ∈ T . Then from erg(i) ⊆

EL we obtain that δL[i] = 1. Now,
∑

d∈D Π[i, d] =
∑

d∈D∩EL
δL[i]Π[i, d] =∑

d∈D Π[d, d]. Finally, we have
∑

d∈D Π[i, d] =
∑

d∈D Π[d, d] =
∑

d∈D Π[i, d]
for all i, j ∈ C.

Assume now that Condition 1c holds. Let i ∈ C be the only state in C ⊆ T
such that i → i′ for some i′ 6∈ C. Let j ∈ C be arbitrary. Then, because C ⊆ T ,
we have j ³ i. Note that this implies that δL[i] = δL[j], for all 1 ≤ L ≤
M . Using this, we have

∑
d∈D Π[i, d] =

∑
d∈E Π[i, d] =

∑
d∈E δL(i)Π[d, d] =∑

d∈E δL(j)Π[d, d] =
∑

d∈D Π[j, d].
To show that V UΠQsΠV = ΠQsΠV and V UΠρ = Πρ we use matrix ma-

nipulation. Let the numbering be such that it makes the division between ergodic
and transient states explicit. Moreover, let the lumping classes be rearranged so
that the classes that contain ergodic states precede those that contain only tran-
sient states. This renumbering gives the following forms for Π, Qs, ρ and V :

Π =
(

ΠE 0
ΠT 0

)
, Qs =

(
QE QET

QTE QT

)
, ρ =

(
ρE

ρT

)
, V =

(
VE 0
VTE VT

)
.

Note that

ΠQs =
(

ΠEQE ΠEQET

ΠT QE ΠT QET

)
= Π

(
QE QET

0 0

)
, Πρ =

(
ΠEρE

ΠT ρE

)
= Π ( ρE

0 )

and

ΠV =
(

ΠEVE 0
ΠT VE 0

)
= Π

(
VE 0
0 0

)
.

Condition 2 of Definition 42 imposes the lumping condition only on ergodic
states. It can be rewritten in matrix form as:

VEUE ( QE QET )V = ( QE QET ) V,

where UE is a distributor matrix corresponding to (the collector matrix) VE .
Using that V UΠV = ΠV we compute:

V UQV = V UΠQsΠV = V UΠ
(

QE QET

0 0

)
ΠV =

= V UΠ
(

QE QET

0 0

)
V UΠV = V UΠ

(
VEUEQE VEUEQET

0 0

)
V UΠV =

= V UΠ
(

VE 0
0 0

) (
UEQE UEQET

0 0

)
V UΠV = V UΠV

(
UEQE UEQET

0 0

)
V UΠV =

= ΠV
(

UEQE UEQET

0 0

)
V UΠV = ΠQsΠV = QV.

Condition 3 of Definition 42 is written in matrix form as:

VEUEρE = ρE .



Similarly as we did for Q, we compute

V UΠρ = V UΠ ( ρE

0 ) = V UΠ
(

VEUEρE

0

)
= V UΠ

(
VE 0
0 0

) (
UEρE

0

)
=

= V UΠV
(

UEρE

0

)
= ΠV

(
UEρE

0

)
= Π

(
VEUEρE

0

)
= Π ( ρE

0 ) = Πρ.

We show that Q̂s does not depend on the representative Qf . We have Q̂s =
WQsV for some τ -distributor W . Suppose we take Q′

f instead of Qf and let W ′

be the τ -distributor for Q′
f that has the same parameters as W . We show that

Q̂s = W ′QsV .
In the same renumbering as before the matrices W and W ′ have the following

form:

W =
(

WE 0
0 WT

)
and W ′ =

(
W ′

E 0
0 WT

)
.

Note that W and W ′ have the same block that corresponds to the classes that
contain only transient states. This is because this block only depends on the
parameters and not on Qf . Now,

W
(

0 0
QT E QT

)
= W ′ ( 0 0

QT E QT

)
.

Since WE and W ′
E are distributors for VE , we also have

WE ( QE QET ) V = W ′
E ( QE QET ) V,

which implies
W

(
QE QET

0 0

)
V = W ′ ( QE QET

0 0

)
V.

We now compute:

Q̂s = WQsV = W
(

QE QET

QT E QT

)
V = W

(
QE QET

0 0

)
V + W

(
0 0

QT E QT

)
V =

= W ′ ( QE QET

0 0

)
V + W ′ ( 0 0

QT E QT

)
V = W ′QsV = Q̂′s.

To show that the reward vector of the lumped process does not depend on the
representative Qf note that VEUEρE = ρE . From this it follows that WEρE =
W ′

EρE which directly implies

Wρ =
(

WEρE

WT ρT

)
=

(
W ′

EρE

WT ρT

)
= W ′ρ.

(⇐) First we show that Conditions 1a, 1b and 1c must hold if the lumping
condition on Π is to hold for every Qf from [Qf ]∼. Let C ∈ P. We distinguish
two cases, when C ∩ E 6= ∅ and when C ⊆ T .

Suppose C ∩ E 6= ∅. Let the ergodic classes be arranged so that there is a
1 ≤ P ≤ M such that EK ∩ C 6= ∅ for K ≤ P , and EK ∩ C = ∅ for K ≥ P + 1.
Since Condition, 1b does not hold, we have P ≥ 2. We show that not EK ⊆ C
for all 1 ≤ K ≤ P .

Assume that C ⊆ E. Then EK ⊆ C for all 1 ≤ K ≤ P . This implies that
erg(C) ⊆ C which is not possible since Condition 1a does not hold. Suppose now



that C ∩ T 6= ∅ and let i ∈ C ∩ T . We show that erg(i) ⊆ C. Suppose not. Then
there is an k ∈ E such that i ³ k and k 6∈ (E1 ∪ · · · ∪ EP ). Let D ∈ P be such
that k ∈ D and let ` ∈ EL for some 1 ≤ L ≤ P . Then

∑
d∈D Π[i, d] > 0 and∑

d∈D Π[`, d] = 0, and so the lumping condition does not hold. We conclude that
erg(i) ⊆ C. From this it follows that erg(C) ⊆ C which is impossible because
Condition 1a does not hold. We conclude that not EK ⊆ C for all 1 ≤ K ≤ P .

Let 1 ≤ I, J ≤ P be such that EI ∩ C 6= ∅, EK ∩ C 6= ∅ and EI 6⊆ C.
Then there is a D ∈ P such that EI ∩ D 6= ∅. By Lemma 27 it follows that
EI ∩D 6= ∅. Let i ∈ C∩EI . Then

∑
d∈D Π[i, d] =

∑
d∈D Π[i, d] 6= 0, 1. Similarly,

for j ∈ C ∩ EI we have
∑

d∈D Π[j, d] =
∑

d∈D Π[j, d] 6= 0, 1. Now, we can
always choose a Qf so that the ergodic probabilities of EI and EJ are such that∑

d∈D Π[i, d] 6= ∑
d∈D Π[j, d].

Suppose now that C ⊆ T . Let i1, . . . , ip ∈ C be such that, for all 1 ≤ k ≤ p,
we have ik ³ i′k for some i′k 6∈ C. Note that it is not possible to have a C ′ ∈ P
such that erg(ik) ⊆ C ′ for all 1 ≤ k ≤ p because this would imply erg(C) ⊆ C ′

which does not hold. Let i, j ∈ {i1, . . . , ip} and D, F ∈ P, D 6= F , be such that
i ³ i′ ∈ E ∩ D and j ³ j′ ∈ E ∩ F . If there is no i′′ ∈ F ∩ E such that
i ³ i′′, then

∑
f∈F Π[i, f ] = 0 while

∑
f∈F Π[j, f ] > 0. Similarly, if there is no

j′′ ∈ D∩E such that j ³ j′′, we have
∑

d∈D Π[j, d] = 0 while
∑

d∈D Π[i, d] > 0.
Now, suppose i ³ i′′ ∈ E ∩ F and j ³ j′′ ∈ E ∩D. Then we can always choose
a Qf to obtain trapping probabilities so that

∑
d∈D Π[i, d] 6= ∑

d∈D Π[j, d].
We conclude that Condition 1 holds. Using this, we now only show that

Condition 3 holds. For Condition 2 the proof is essentially the same and is
omitted.

Let CK ∈ P, let i, j ∈ C ∩ E and let i ∈ EI and j ∈ EJ for some ergodic
classes EI and EJ . From what we proved before it follows that EI ⊆ C and
EJ ⊂ C. We distinguish two cases, when I = J and when I 6= J .

Suppose I = J . Let W be a τ -distributors associated to Qf such that the
parameters αJL in Definition 30 are equal to 1

eJ
. Then

(Wρ)[K] =
∑

k∈CK

W [K, k]ρ[k] =
∑

k∈CK∩E

Π[k, k]∑
`∈CK

Π[`, `]
ρk.

Define Π ′ to be the same as Π but with Π ′[`, i] = Π[`, i] + ε for all ` ∈ EI ,
and Π ′[`, j] = Π[`, j] − ε for all ` ∈ EJ , where 0 < ε < Π[j, j]. Clearly, Π ′ is
of the right form and it satisfies the lumping condition because EI = EJ ⊆ C.
We can always find Q′f ∼ Qf that has Π ′ as its ergodic projection. Let W ′ be
a τ -distributors associated to Q′f again such that the parameters αJL are all
the same. After some simple calculation, we obtain that (W ′ρ)[K]− (Wρ)[K] =
ε(ρ[i] − ρ[j]). Therefore, if ρ[i] 6= ρ[j], then (Wρ)[K] 6= (W ′ρ)[K]. We conclude
that ρ[i] = ρ[j].

Suppose now that I 6= J . If |EI | = |EJ | = 1, then

(Πρ)[i] =
∑

k

Π[i, k]ρ[k] =
∑

k∈EI

Π[i, k]ρ[k] = ρ[i]



and similarly (Πρ)[j] = ρ[j]. Therefore, ρ[i] = ρ[j]. Suppose |EI | > 1. We define
a matrix Π ′ to be the same as Π except that Π ′[k, i] = Π[k, i]+ε for all k ∈ EI ,
and Π ′[`, j] = Π[`, j]− ε for all ` ∈ EJ , with 0 < ε < Π[j, j]. As before it easily
follows that the lumping condition still holds for Π ′ and that Π ′ is of the right
form. Now, since (Πρ)[i] = (Πρ)[j], (Π ′ρ)[i] = (Π ′ρ)[j] and (Π ′ρ)[j] = (Πρ)[j],
we have (Π ′ρ)[i] = (Πρ)[i]. From this it easily follows that ρ[`] = ρ[i] for all
` ∈ EI . Then, if |EJ | = 1, we have ρ[i] = ρ[`]. If not, with the same reasoning
as for EI , we can obtain that ρ[`] = ρ[j], for all ` ∈ EJ . Now,

ρ[i] = ρ[i]
∑

k∈EI

Π[i, k] =
∑

k∈CK

Π[i, k]ρ[k] =

=
∑

k∈CK

Π[j, k]ρ[k] =
∑

k∈EJ

Π[j, k]ρ[k] = ρ[j]
∑

k∈EI

Π[j, k] = ρ[j].

Now, if P is a τ∼-lumping and if (σ,Qs, Qf , ρ) PÃτ (σ̂, Q̂s, Q̂f , ρ̂), then we say
that (σ,Qs, [Qf ]∼, ρ) τ∼-lumps to (σ̂, Q̂s, [Q̂f ]∼, ρ̂) (with respect to P) and denote

it by (σ,Qs, [Qf ]∼, ρ) PÃτ∼ (σ̂, Q̂s, [Q̂f ]∼, ρ̂). Note that, as for τ -lumping, there can
be several Markov reward chains with silent transitions to which (σ,Qs, [Qf ]∼, ρ)
τ∼-lumps to.

Remark 44. Strictly speaking, for the definition of τ∼-lumping to be considered
correct we must also require that WQfV ∼ W ′QfV , and that the non-zero
elements of WQfV range over all positive numbers. The proof of this is easy
(follows from W ′ ∼ W and the fact that non-zero elements in Π can take any
value less than 1), however cumbersome, and is therefore omitted.

We give some examples of τ∼-lumpings.

Example 45. Consider the Markov reward chains with silent transitions depicted
in Figure 11. For each of them we give a τ∼-lumping and for each lumping class
we show which option of Condition 1 of Definition 42 holds. The corresponding
lumped Markov reward chains with silent transitions are depicted in Figure 12.

a. For the Markov reward chain with silent transitions depicted in Figure 11a
the partitioning P =

{{1, 2}, {3}} is a τ∼-lumping. For the lumping class
{1, 2} Condition 1a in Definition 42 is satisfied. For the class {3} both Con-
ditions 1a and 1b are satisfied.

b. For the Markov reward chain with silent transitions in Figure 11b P ={{1, 2}, {3}} is a τ∼-lumping. For both lumping classes Conditions 1a and 1b
are satisfied.

c. For the Markov reward chain with silent transitions in Figure 11c P ={{1, 2}, {3}, {4}} is a τ∼-lumping. For the lumping classes {1, 2} and {4}
both Conditions 1a and 1b are satisfied. For the class {3} only Condition 1b
is satisfied. Note that the partitioning P =

{{1, 2, 3}, {4}} is not a τ∼-
lumping because it violates Condition 3.
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Fig. 11. Markov reward chains with silent transitions with non-trivial τ∼-lumpings –
Example 45

d. For the Markov reward chain with silent transitions in Figure 11d P ={{1, 2}, {3}, {4}} is a τ∼-lumping. For the classes {3} and {4} both Condi-
tions 1a and 1b are satisfied. Since {1, 2} contains only transient states, for
this class only Condition 1c is satisfied.
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Fig. 12. τ∼-lumped Markov reward chains with silent transitions – Example 45

4 Aggregation by Reduction

In this section we first consider the specific aggregation (and disaggregation)
method of [18, 19] and extend it with rewards. This method reduces a discon-
tinuous Markov chain to a Markov chain, eliminating instantaneous states while
keeping the same distributions on the set of regular states. Next, we directly



adapt this method for the setting of Markov reward chains with fast transitions.
We call this method τ -reduction as it eliminates all fast transitions and reduces a
Markov reward chain with fast transitions to a Markov reward chain. We develop
two corresponding methods in the setting of Markov reward chains with silent
transitions; the first is called τ∼-reduction and the second is total τ∼-reduction.

4.1 Reduction to a Markov reward chain

The reduction of a discontinuous Markov reward chain to a Markov reward chain
of [18, 19] requires the notion of canonical product decomposition. We recall the
definition as given in [19]:

Definition 46 (Canonical product decomposition). Let (σ,Π,Q) be a dis-
continuous Markov chain with the numbering that makes the ergodic partition-
ing explicit. The canonical product decomposition of Π is given by the matrices
L ∈ IRM×n and R ∈ IRn×M , defined as follows:

L =




µ1 0 . . . 0 0
0 µ2 . . . 0 0
...

...
. . .

...
...

0 0 . . . µM 0


 R =




1 0 . . . 0
0 1 . . . 0
...

...
. . .

...
0 0 . . . 1
δ1 δ2 . . . δM




.

Note that RL = Π and LR = I.

In case the numbering does not make the ergodic partitioning explicit, we
need to renumber the states first, then construct L and R, and then renumber
back to the original numbering. An example follows.

Example 47. a. Let

Π =




1−p p 0
1−p p 0
0 0 1


 .

The numbering is as needed and we obtain

L =
(

1−p p 0
0 0 1

)
and R =




1 0
1 0
0 1


 .

b. Let now

Π =




0 p 1−p 0
0 1 0 0
0 0 1 0
0 0 0 1






This numbering does not make the ergodic partitioning explicit. We renum-
ber states to obtain

Π ′ =




1 0 0 0
0 1 0 0
0 0 1 0
p 1−p 0 0


 .

From this,

L′ =




1 0 0 0
0 1 0 0
0 0 1 0


 and R′ =




1 0 0
0 1 0
0 0 1
p 1−p 0


 .

After the renumbering back we have

L =




0 1 0 0
0 0 1 0
0 0 0 1


 and R =




p 1−p 0
1 0 0
0 1 0
0 0 1


 .

The method of [18, 19] masks the stochastic discontinuity in a discontinuous
Markov chain (σ,Π,Q, ρ) and transforms it into a standard Markov chain that
has the same behavior in regular states. We extend this method with an initial
probability vector and with a reward vector. The reduced Markov reward chain
(σ̂, I, Q̂, ρ̂) is defined by

σ̂ = σR, Q̂ = LQR and ρ̂ = Lρ.

The states of the simplified process are exactly the ergodic classes of the original
process. The transient states are eliminated. Intuitively, they are split proba-
bilistically between the ergodic classes according to their trapping probabilities.
In case a transient state is also an initial state, the initial state probabilities are
split according to their trapping probabilities. Similarly, the joined reward is the
sum of the individual rewards from the ergodic class weighted by their ergodic
probabilities.

The transition matrix of the aggregated process has been shown in [19] to
satisfy P̂ (t) = LP (t)R = eLQRt, for t > 0. Since ΠP (t) = P (t)Π = P (t), if Π of
the original process is known and if σΠ = σ, there is a disaggregation procedure
σ = σ̂R, P (t) = RP̂ (t)L and ρ = Rρ̂.

Like lumping, the reduction procedure also preserves the total reward: R̂(t) =
σ̂P̂ (t)ρ̂ = σRLP (t)RLρ = σΠP (t)Πρ = σP (t)ρ = R(t).

In case the original process has no stochastic discontinuity, i.e. Π = I, the
aggregated process is equal to the original since then L = R = I.

We now recall the discontinuous Markov reward chains from Example 10 and
give their reduced versions.

Example 48. a. The discontinuous Markov reward chain from Example 10a is
already a Markov reward chain and so it remains intact after the reduction
(cf. Figure 13a).



b. Consider the discontinuous Markov chain from Example 10b. The matrix Π
is the one from Example 47a which gives us L and R. Now,

σ̂ = σR =
(
1 0

)
, ρ̂ = Lρ =

(
(1−p)r1 + pr2

r3

)

and Q̂ = LQR =
(−pλ pλ

0 0

)
. The reduced Markov reward chain (σ̂, I, Q̂, ρ̂)

is depicted in Figure 13b.
c. Consider the discontinuous Markov chain from Example 10c. The matrix Π

of this process is the one from Example 47b which gives us L and R. We
have

σ̂ =
(
p 1−p 0

)
, Q̂ =



−λ 0 λ
0 −µ µ
pν (1−p)ν −ν


 and ρ̂ =




r2

r3

r4


 .

The Markov reward chain (σ̂, I, Q̂, ρ̂) is depicted in Figure 13c.
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Fig. 13. Markov reward chains obtained by reduction - Example 48
.

4.2 τ -reduction

Recall that in the part on lumping we were justifying all operations only in the
limit. We do the same here for the reduction method. We adapt the aggregation
method from the previous section to reduce a Markov reward chain with fast
transitions to an asymptotically equivalent Markov chain. The τ -reduced Markov
reward chain with fast transitions is defied to be the Markov chain obtained by
reducing the limit discontinuous Markov chain. The definition is clarified by the
following diagram:

Markov reward chain
with fast transitions τ→∞

//

τ -reduction
))TTTTTTTTTTTTTTTTTTTTTTTTTT

discontinuous
Markov reward chain

reduction to
a Markov reward chain

²²
Markov reward chain.



Note that, if (σ,Π, Q, Πρ) is the limit of (σ,Qs, Qf , ρ), then we have the
following derivations:

LQR = LΠQsΠR = LQsR and LΠρ = Lρ.

Using this we have the following definition for τ -reduction.

Definition 49 (τ-reduction). Let (σ,Qs, Qf , ρ) be a Markov reward chain with
fast transitions and let (σ,Qs, Qf , ρ) →∞ (σ,Π, Q,Πρ). Assume that Π = RL
is the canonical product decomposition of Π. Then the τ -reduct of (σ,Qs, Qf , ρ)
is the Markov reward chain (σ̂, I, Q̂, ρ̂) defined by

σ̂ = σR, Q̂ = LQsR and ρ̂ = Lρ.

We give some examples.

Example 50. a. Let (σ,Qs, Qf , ρ) be the Markov reward chain with fast transi-
tions from Example 14a. Then

L =
(

0 1 0
0 0 1

)
and R =




1 0
1 0
0 1


 .

We obtain

σ̂ =
(
1 0

)
, Q̂s =

(−µ µ
0 0

)
and ρ̂ =

(
r2

r3

)
.

The Markov reward chain (σ̂, Q̂s,0, ρ̂) is depicted in Figure 14a.
b. Consider now the Markov reward chain with fast transitions from Exam-

ple 14b. Note that the limit of this Markov reward chain with fast tran-
sitions is the discontinuous Markov reward chain from Example 48b when
p = a

a+b . According to the definition of τ -reduction, both of these processes
reduce to the same Markov reward chain. We depict the τ -reduced process
in Figure 14b.

c. As in the previous case, the limit of the Markov reward chain with fast
transitions from Example 14c is the discontinuous Markov reward chain from
Example 48c for p = a

a+b . This automatically gives us the τ -reduced process
depicted in Figure 14c.

4.3 τ∼-reduction and total τ∼-reduction

In this section we extend the technique of τ -reduction to Markov reward chains
with silent transitions. Two methods for reduction are given. The first, called
τ∼-reduction, is a direct lifting of τ -reduction to the set of Markov reward chains
with fast transitions. The second method, called total τ∼-reduction, combines τ -
reduction with ordinary lumping for standard Markov reward chains to achieve
better aggregation.
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Fig. 14. Markov reward chains obtained by τ -reduction - Example 50

As we did for τ∼-lumping, we want to define τ∼-reduction by properly lifting
the notion of τ -reduction. Intuitively, we want to say that (σ,Qs, [Qf ]∼, ρ) can
be τ∼-reduced iff σR, LQsR and Lρ do not depend on the choice of the repre-
sentative Qf ∈ [Qf ]∼, where RL is the canonical product decomposition of the
ergodic projection of Qf . As Example 50 shows, not every Markov reward chain
with silent transitions is τ -reducible.

We give a definition that characterizes τ∼-reduction.

Definition 51 (τ∼-reduction). Let (σ,Qs, [Qf ]∼, ρ) be a Markov reward chain
with silent transitions and let {E1, E2, . . . , EM , T} be its ergodic partitioning.
Then (σ,Qs, [Qf ]∼, ρ) is τ∼-reducible iff the following conditions hold:

1. for all i ∈ T , either σ[i] = 0 or erg(i) = EL for some 1 ≤ L ≤ M ;
2. (a) for all j ∈ T , either Qs[i, j] = 0 for all 1 ≤ K ≤ M and all i ∈ EK , or

erg(j) = EL for some 1 ≤ L ≤ M ; and
(b) for all 1 ≤ K,L ≤ M and all i, j ∈ EK ,

∑

`:erg(`)=EL

Qs[i, `] =
∑

`:erg(`)=EL

Qs[j, `];

3. for all 1 ≤ K ≤ M and all i, j ∈ EK , ρ[i] = ρ[j].

Condition 1 makes sure that an initial transient state can be trapped only
in one ergodic class. Allowing it to be trapped in more classes would cause the
initial vector of the reduced process to depend on the trapping probabilities (cf.
Example 50c). Condition 2a is the same but instead of an initial state we consider
a state that has a slow transition leading to it. This is to forbid the situation
where, due to the state splitting, the transition rates in the reduced process
depend on speeds (see again Example 50c). Note that the reduction aggregates
whole ergodic classes and performs weighted summing of all rates that lead out
of the states from these classes. The weighted sum is speed independent only if
all these rates are equal (otherwise we have the situation as in Example 50b).
This is ensured by Condition 2b. Finally, Condition 3 says that states from a
same ergodic class must have equal rewards. This is needed because, as for the
slow transitions, the new reward is a weighted sum of the rewards from the
ergodic class (see Example 50b).

We prove two lemmas that will help us prove that Definition 51 meets all our
requirements from the beginning.



Lemma 52. Let A ∈ IRn×m be such that A ≥ 0. Then the following two state-
ments are equivalent:

– µA is the same for any vector µ ∈ IR1×n such that µ > 0 and µ · 1 = 1;
– A = 1 · a for some a ∈ IR1×m.

Proof. (⇒) Let µ be such that µ > 0 and µ · 1 = 1. Let k, l ∈ {1, . . . , n} be
arbitrary and let ε be such that 0 < ε < µl. Define µ′ ∈ IR1×n as µ′[k] = µ[k]+ε,
µ′[l] = µ[l]− ε and µ′[i] = µ[i] for i 6= k, l. By definition, µ′ > 0 and µ′ · 1 = 1.
From µA = µ′A we obtain that, for all j ∈ {1, . . . , m}, εA[k, j] − εA[l, j] = 0.
Since ε > 0, we have A[k, j] = A[l, j] for all j ∈ {1, . . . , m}. Because, k and l
were arbitrary, we conclude that all rows in A are equal, i.e. that A = 1 · a for
some a ∈ IR1×m.

(⇐) Suppose A = 1 · a for some a ∈ IR1×m. Clearly, µA = µ1a = a does not
depend on µ.

Lemma 53. Let A ∈ IRm×n be such that A ≥ 0. Let δ ∈ IRn×1 be such that
0 ≤ δ ≤ 1.Then the following two statements are equivalent:

– Aδ = Aδ′ for all δ′ ∈ IRn×1 such that δ′ ∼ δ and (δ′ − 1) ∼ (δ − 1);
– for all 1 ≤ j ≤ n, either A[i, j] = 0 for all 1 ≤ i ≤ m, or δ[j] ∈ {0, 1}.

Proof. (⇒) Let j ∈ {1, . . . , n} be such that δ[j] 6∈ {0, 1} (if such j does not exists,
the theorem follows trivially). Define δ′ ∈ IRn×1 by δ′[k] = δ[k] for all k 6= j,
and by δ′[j] = δ[j] + ε, for some ε such that 0 < ε < 1− δ[j]. Clearly, δ′ ∼ δ and
(δ′−1) ∼ (δ−1) because δ and δ′ are different only in one element that is neither
zero nor one. Now, from Aδ = Aδ′ we obtain that A[i, j]δ[j] = A[i, j](δ[j]+ε) for
all i ∈ {1, . . . ,m}. Since ε > 0, this implies that A[i, j] = 0 for all i ∈ {1, . . . ,m}.

(⇐) Let δ′ ∈ IRn×1 be such that δ′ ∼ δ and (δ′−1) ∼ (δ−1). Note that this
means that δ and δ′ have zeroes and ones on exactly the same positions. Using
that A[i, j] = 0 whenever δ[j] 6∈ {0, 1}, we have, for any i ∈ {1, . . . , m}, that

(Aδ′)[i] =
n∑

j=1

A[i, j]δ′[j] =
∑

j:δ[j]=0,1

A[i, j]δ′[j] =

=
∑

j:δ[j]=0,1

A[i, j]δ[j] =
n∑

j=1

A[i, j]δ[j] = (Aδ)[i].

We can now prove that Definition 51 induces exactly the notion that we
want.

Theorem 54. Let (σ,Qs, [Qf ]∼, ρ) be a Markov reward chain with silent transi-
tions. It is τ∼-reducible iff, for all Q′

f ∼ Qf ,

σR = σR′, LQsR = L′QsR
′ and Lρ = L′ρ,

where RL and R′L′ are canonical product decompositions of the ergodic projec-
tions of Qf and Q′f respectively.



Proof. The theorem is proven only from right to left but note that every impli-
cation step is actually an equivalence step.

Let the numbering be such that it makes the ergodic partitioning explicit.
Then

σ =
(
σ1 . . . σM σT

)
, Qs =




Q11 . . . Q1M X1

...
. . .

...
...

QM1 . . . QMM XM

Y1 . . . YM Z


 , ρ =




ρ1

...
ρM

ρT




and

L =




µ1 . . . 0 0
...

. . .
...

...
0 . . . µM 0


 , R =




1 . . . 0
...

. . .
...

0 . . . 1
δ1 . . . δM


 .

We have σR =
(
(σ1 · 1 + σT · δ1) . . . (σM · 1 + σT · δM )

)
. Let δ′L be such that

δ′L ∼ δL and (δ′L − 1) ∼ (δL − 1). Let R′ be the same as R but with δ′L
instead of δL. We can always find a Q′f ∼ Qf such that R′L is the canonical
product decomposition of its ergodic projection. From σR = σR′ we obtain
σT · δL = σT · δ′L. Now, by Lemma 53 (with A = σT ) this can only be if, for all
1 ≤ i ≤ n, either σT [i] = 0 or δL[i] ∈ {0, 1} for all 1 ≤ L ≤ M . Since R · 1 = 1,
the latter is only possible when there exists an 1 ≤ L′ ≤ M such that δL′ [i] = 1.
Recall that δL′ [i] = 1 iff erg(i) = EL′ .

We have

LQsR =




µ1Q111 + µ1X1δ1 . . . µ1Q1M1 + µ1X1δM

...
. . .

...
µMQM11 + µMXMδM . . . µMQMM1 + µMXMδM


 .

From LQsR = LQsR
′ we obtain µKXKδL = µKXKδ′L. By Lemma 53, the

equivalent condition is that for all 1 ≤ K ≤ M and all 1 ≤ j ≤ n either
(µKXK)[j] = 0 or δL[j] ∈ {0, 1} for all 1 ≤ L ≤ M . Note that, since µK > 0,
(µKXK)[j] = 0 iff XK [i, j] = 0 for all i ∈ EK . As before, δL[j] ∈ {0, 1} for all
1 ≤ L ≤ M only if δL′ [j] = 1 for some 1 ≤ L′ ≤ M .

Let now µ′K be a stochastic vector such that µ′K ∼ µK . Let L′ be formed as L
but with µ′K instead of µK . We can always find a Q′f ∼ Qf such that RL′ is the
canonical product decomposition of its ergodic projection. From LQsR = L′QsR
we have µK(QKL1 + XKδL) = µ′K(QKL1 + XKδL). By Lemma 52, it follows
that QKL1 + XKδL = α · 1 for some constant α. In other words, it follows that
the rows of QKL1 + XKδL are all the same.

From what we proved before, (XKδL)[i] =
∑

`:erg(`)=EL
XK [i, `]. Thus

∑

`∈EL

QKL[i, `] +
∑

`∈T :erg(`)=EL

XK [i, `] =
∑

`∈EL

QKL[j, `] +
∑

`∈T :erg(`)=EL

XK [j, `]



for all i, j ∈ EK . Since erg(`) = EL when ` ∈ EL, we have
∑

`:erg(`)=EL

Qs[i, `] =
∑

`:erg(`)=EL

Qs[j, `],

for all i, j ∈ EK .

For the reward vector we have Lρ =




µ1ρ1

...
µM ρM

0


 . From Lρ = L′ρ we obtain

µK · ρK = µ′KρK . From Lemma 52 it follows that, equivalently, ρK = 1 · xK

for some row vector xK . Note that this exactly means that ρ[i] = ρ[j] for all
i, j ∈ EK .

If (σ,Qs, [Qf ]∼, ρ) if τ∼-reducible, then we say that it τ∼-reduces to the
Markov reward chain (σR, I, LQsR, ρR), where RL is the canonical product
decomposition of the ergodic projection of Qf . Theorem 54 guarantees that this
definition is correct.

We now give some examples of τ∼-reductions.

Example 55. a. Consider the Markov reward chain with silent transitions de-
picted in Figure 15a. This process can be τ -reduced because its ergodic
classes are one-element, and because its only transient state, i.e. state 1,
gets trapped only in the state 2. The τ -reduced process is depicted in Fig-
ure 16a.

b. Consider the Markov reward chain with silent transitions depicted in Fig-
ure 15b. This process can be τ -reduced because it does not have transient
states and because every state in the ergodic class {1, 2} does λ to the other
ergodic class {3}. The process τ -reduces to the Markov reward chain depicted
in Figure 16b.

c. Consider the Markov reward chains with silent transitions from Figure 5c
and Figure 5d. These Markov reward chains with silent transitions cannot
be τ -reduced because they violate the first, resp. the second, condition of
Definition 51.
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Fig. 15. Markov reward chains with silent transitions that can be τ -reduced – Exam-
ple 55
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Fig. 16. τ -reduced Markov reward chains with silent transitions from Example 55

Note that the conditions of Definition 51 are very restrictive, and so not many
Markov reward chains with silent transitions are τ∼-reducible. The reason is that
in most cases τ -reduction of a Markov reward chain with fast transitions will
produce a Markov reward chain in which transitions do depend on the speeds
of the fast transitions. The problem with the parameterized slow transitions can
however, in some cases, be “repaired” by performing an ordinary lumping on
the resulting Markov reward chain. In other words, even if LQsR depends on
Qf , it might be the case that its lumped version ULQsRV does not. We give an
example.

Example 56. Consider the Markov reward chain with silent transitions from Fig-
ure 17a. First, we take a representative Markov reward chain with fast transitions
such as the one from Figure 17b. Note that this Markov reward chain with silent
transitions is τ -reduced to the Markov reward chain in Figure 17c. Observe that
this Markov reward chain depends on the parameters a and b. However, the
states 1 and 2 can form a lumping class. The resulting Markov reward chain is
in Figure 17d. Note that the lumping removed the dependencies on the parame-
ters.
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Fig. 17. A total τ∼ reduction – Example 59

We propose a reduction method that combines the reduction and lumping
and call it total τ∼-reduction. In the definition of τ∼-reduction we need to use
the function called flat that gives a set of elements from a set of sets. Formally,
if C ∈ P and S ∈ C, then flat(C) =

⋃
S∈C S.



Definition 57 (Total τ∼-reduction). Let (σ,Qs, [Qf ]∼, ρ) be a Markov reward
chain with silent transitions and E = {E1, . . . , EM , T} be its ergodic partition-
ing. Let P be a partitioning of {E1, . . . , EM} induced by V ∈ IRM×N . Then,
(σ,Qs, [Qf ]∼) can be total τ∼-reduced according to P if:

1. for all i ∈ T , σ[i] = 0 or erg(i) ⊆ flat(C), where C ∈ P;
2. (a) for all j ∈ T , either Qs[i, j] = 0 for all i ∈ flat(C), or erg(j) ⊆ flat(D)

for some D ∈ P;
(b)

∑
k:erg(k)⊆flat(D) Qs[i, k] =

∑
k:erg(k)⊆flat(D) Qs[j, k], for every i, j ∈

flat(C), where C, D ∈ P and C 6= D; and
3. ρ[i] = ρ[j] for every i, j ∈ flat(C).

Note that the conditions for total τ∼-reduction are very similar to those for τ -
reduction. The only difference is that instead of an ergodic class EL we work with
the whole lumping class that contains it (that is why instead of erg(i) = EL we
have erg(i) ⊆ flat(D)). We note that in the trivial case when LQsR already does
not depend on the choice from [Qf ]∼, it is sufficient to use the trivial lumping
induced by V = I. Then a total τ -reduction degrades to a τ -reduction.

The following theorem gives a characterization of total τ∼-reduction, i.e. it
shows that total τ∼-reduction meets our requirements.

Theorem 58. Let (σ,Qs, [Qf ]∼, ρ) be a Markov reward chain with silent tran-
sitions, and let E = {E1, . . . , EM} be its ergodic partitioning. Let P be a parti-
tioning of E. Then (σ,Qs, [Qf ]∼, ρ) can be totally τ∼-reduced with respect to P
iff:

1. V ULQsRV = LQsRV and V ULρ = Lρ, for any Qf ∈ [Qf ]∼; and
2. σRV = σR′V , ULQsRV = UL′QsR

′V and ULρ = UL′ρ for any Qf , Q′f ∈
[Qf ]∼

where RL and R′L′ are canonical product decompositions of the ergodic projec-
tions of Qf and Q′

f respectively, V is the collector for P and U is a distributor
for V .

Proof. Let the numbering be such that first the lumping partitioning P =
{C1, . . . , CN} is made explicit and then, inside every class also the ergodic
partitioning E is made explicit. This is achieved by first renumbering the er-
godic classes as E11, . . . , E1c1 , . . . , EN1, . . . , ENcN

with Ck = {Ek1, . . . , Ekck
}

for 1 ≤ k ≤ N . Then states are renumbered to make the ergodic classes in each
lumping class explicit.

We obtain the following forms for σ, Qs, ρ, U , V , L and R:

σ =
(
σ1 . . . σN σT

)
, σK =

(
σK1 . . . σKcK

)
,

Qs =




Q11 . . . Q1N X1

...
. . .

...
...

QN1 . . . QNN XN

Y1 . . . YN Z


 , ρ =




ρ1

...
ρN

ρT


 , ρK =




ρ11

...
ρKcK


 ,



L =




µ1 . . . 0 0
...

. . .
...

...
0 . . . µN 0


 , R =




R1 . . . 0
...

. . .
...

0 . . . RN

δ1 . . . δN


 ,

µK =




µK1 . . . 0
...

. . .
...

0 . . . µKcK


 , RK =




1 . . . 0
...

. . .
...

0 . . . 1


 , δK =

(
δK1 . . . δKcK

)
,

U =




u1 . . . 0
...

. . .
...

0 . . . uN


 , V =




v1 . . . 0
...

. . .
...

0 . . . vN


 ,

uK =
(
u11 . . . uKcK

)
,

vK =

(
1
...
1

)
.

Define

L̄ = UL =




m1 . . . 0 0
...

. . .
...

...
0 . . . mN 0


 , mK =

(
uK1µK1 . . . uKcK

µKcK

)

and

R̄ = RV =




1 . . . 0
...

. . .
...

0 . . . 1
d1 . . . dN


 , dK = δKVK =

cK∑

L=1

δKL.

(⇒) First, we show that the lumping condition holds. We do this by showing
that the the rows of LQsR̄, resp. Lρ, that correspond to the elements of the same
class are equal.

It is not hard to show that Condition 2 of Definition 57 implies that, for any
1 ≤ K,L ≤ N , all elements of the vector QKL1 + XKdL are equal, i.e. that
QKL1 + XKdL = 1 · αKL for some αKL ≥ 0. We obtain

LQsR
′ =




µ1 · (Q11 · 1 + X1d1) . . . µ1 · (Q1N · 1 + X1dN )
...

. . .
...

µN · (QN1 · 1 + XNdN ) . . . µN · (QNN · 1 + XNdN )


 .

Now, since QKL1 + XKdL = αKL · 1 we have

µK · (QKL1 + XKdL) = µK · αKL · 1 =

= αKL




µK1 . . . 0
...

. . .
...

0 . . . µKcK


 ·




1
...
1


 = αKL




µK11
...

µKcK
1


 = αKL · 1.



From Condition 3 we obtain that ρK = αK · 1 for some constant αK . We
also have

Lρ =




µ1ρ1

...
µNρN

0


 .

Now, since ρK = 1 ·αK , with the same calculation as before, we obtain µKρK =
αK · 1. We conclude that the lumping condition holds.

Now suppose that R̄′ is defined in the similar way as R̄′. From σT δK =∑
i:dK [i]=1 σ[i] =

∑
i:d′K [i]=1 σ[i] it easily follows that σR̄′ = σR̄. That L′QsR̄

′ =
LQsR̄ follows from XKdL = XKd′L and µK · (QKL1 + XKdL) = αKL · 1, both
implied by Condition 2. Finally, that L′ρ = Lρ follows from µKρK = αK · 1 =
µ′KρK .

(⇐) Because of the lumping condition we can assume that uK > 0 for all
1 ≤ K ≤ N . Observe that the form of L̄ and R̄ is very similar to the form of
L and R. Let K ∈ {1, . . . , N}. Since uK > 0, we have mK > 0. Also, since the
elements of µK range over all positive numbers, also the mK elements of mK

ranges over all positive numbers. Clearly, 0 ≤ dK ≤ 1 and since the elements
of δK that are not in {0, 1} can take any value in (0, 1), the same holds for
the elements of dK . This allows us to proceed just as we did in the proof of
Theorem 54 but with the matrices L̄ and R̄ instead of L and R.

First, we have that for all 1 ≤ i ≤ n, either σT [i] = 0 or there is a K ∈
{1, . . . , N} such that dK [i] = 1. Now, note that dK [i] =

∑cK

L=1 δKL is equal to 1
only if erg(i) ⊆ (EK1 ∪ · · · ∪ EKcK ) = flat(CK). This gives us Condition 1.

Second, we have that a) for all 1 ≤ j ≤ n, either XK [i, j] = 0 for all i ∈ CK ,
or dL[j] = 1 for some 1 ≤ L ≤ N , and b) the rows of QKL1 + XKdL are all the
same, i.e. (QKL1 + XKdL)[i] = (QKL1 + XKdL)[j] for all i, j. Then

(QKL1)[i] + (XKdL)[i] =
∑

`∈CL

QKL[i, `] +
∑

` : ` ∈ T

erg(`) = flat(CL)

Qs[i, `] =
∑

`:erg(`)=flat(CL)

Qs[i, `].

Finally, for the reward vector, we have ρK = αK · 1 for some constant αK .
Note that this exactly means that ρ[i] = ρ[j] for all i, j ∈ flat(CK).

If a Markov reward chain with silent transitions can be totally τ∼-reduced
with respect to a partitioning P, we say that is totally τ∼-reduces to
(σRV, I, ULQsRV,ULρ), where RL is the canonical product decomposition of
the ergodic projection of Qf , V is the collector for P, and U is a distributor for
V .

We give an example.

Example 59. Consider the Markov reward chain with silent transitions from
Figure 17a. Its ergodic partitioning is E = {E1, E2, E3, T} where E1 = {2},
E2 = {3} and E3 = {4}. Define P = {C1, C2} where C1 = {2, 3} and C2 = {4}.
It is not hard to see that the conditions for total τ∼-reducibility hold. The process
totally τ∼-reduces to the Markov reward chain depicted in Figure 17d.



5 Comparative Analysis

In this section we compare the lumping method with the reduction method. We
show that they are in general incomparable but that reduction combined with
standard lumping (on the resulting Markov reward chain) gives in general better
results. The main result of the section is that the notion of τ∼-lumping coincides
with the notion of total τ -reduction (in a non-degenerate case). At the end, we
also show how τ∼-lumping (and, hence, total τ -reduction too) compares with
weak bisimulation for Interactive Markov chains from [4].

5.1 Reduction vs. Lumping

In general, the reduction of a discontinuous Markov reward chain to a Markov
reward chain and the ordinary lumping are incomparable. However, when reduc-
tion is combined with the standard ordinary lumping for Markov reward chains
it becomes a superior method. We give an example.

Example 60. Recall, from Example 48c, that the discontinuous Markov reward
chain (σ,Π,Q, ρ) defined by

σ =
(
1 0 0 0

)
, Π =




0 p 1−p 0
0 1 0 0
0 0 1 0
0 0 0 1


 ,

Q =




0 −pλ −(1−p)µ pλ + (1−p)µ
0 −λ 0 λ
0 0 −µ µ
ν 0 0 −ν


 and ρ =




r1

r2

r3

r4


 .

was reduced to the Markov reward chain (σ, I, Q, ρ) defined by

σ̂ =
(
p 1−p 0

)
, Q̂ =



−λ 0 λ
0 −µ µ
pν (1−p)ν −ν


 and ρ̂ =




r2

r3

r4


 .

Note however that, if λ 6= µ, the process (σ,Π, Q, ρ) only has the trivial lumping
(cf. Example 25) and so, in this case, reduction performs better.

Ordinary lumping sometimes aggregates more than reduction. This is because
lumping classes can contain states from different ergodic classes while reduction
only aggregates whole ergodic classes and transient states. Lumping also gives
more flexibility in the sense that one can obtain the (intermediate) lumped
processes that are not necessarily Markov reward chains. Consider again the same
discontinuous Markov reward chain (σ,Π, Q, ρ) but with λ = µ. In Example 25
we showed that this process could be lumped to the discontinuous Markov reward
chain

σ̌ =
(
1 0 0

)
, Π̌ =




0 1 0
0 1 0
0 0 1


 , Q̌ =




0 −λ λ
0 −λ λ
ν 0 −ν


 and ρ̌ =




r1

r
r4


 ,



or all the way to the Markov reward chain

σ̌ =
(
1 0

)
, Π̌ = I, Q̌ =

(−λ λ
ν −ν

)
, and ρ̌ =

(
r
r4

)

These two processes cannot be obtained by reduction.

Note that, although the last process in the previous example cannot be
directly obtained by reduction, it can be obtained from the reduced process
(σ̂, Π̂, Q̂, ρ̂) by the lumping {{1, 2}, {3}}. Based on this we find it interesting to
compare the ordinary lumping method for discontinuous Markov reward chains
with the combination of the reduction method and the standard lumping for
Markov reward chains. The following theorem shows that reducing a discontin-
uous Markov reward chain to a Markov reward chain first, and then lumping it,
produces, in general, better results then only doing the lumping from the start.

Theorem 61. Suppose (σ,Π, Q, ρ)→P (σ̂, Π̂, Q̂, ρ̂). If Π̂ = I, then there exists
a collector matrix VE such that

VEUELQRVE = LQRVE , VEUELρ = Lρ,

σ̂ = σRVE , Q̂ = UELQRVE and ρ̂ = UELρ,

where RL = Π is the canonical product decomposition of Π, and UE is a dis-
tributor associated to VE.

Proof. Let V be the collector associated to P and let U be its associated dis-
tributor. From UΠV = I, multiplying by V from the left and using that
V UΠV = ΠV , we obtain ΠV = V . Define VE = LV and UE = UR. First
we show that VE is a collector matrix.

That UE is a distributor associated to VE follows from U ≥ 0, R ≥ 0 and
UEVE = URLV = UΠV = I. Now, using that ΠQ = QΠ = Q and that
V UQV = QV , we have

VEUELQRVE = LV URLQRLV = LV UΠQΠV =
= LV UQV = LQV = LΠQΠV = LQRLV = LQRVE .

Similarly, using that V Uρ = ρ, we have

VEUELρ = LV URLρ = LV UΠρ = LV UΠV Uρ = LΠV Uρ = LΠρ = Lρ.

In addition, σRVE = σRLV = σΠV = σV = σ̂,

UELQRVE = URLQRLV = UΠQΠV = UQV = Q̂

and
UELρ = URLρ = UΠρUΠV Uρ = UV Uρ = Uρ = ρ̂.



We can also see when a reduction and a lumping coincide. Clearly, this is
only when LV = I and UR = I. The first equality implies that lumping is
performed such that each ergodic class is one partitioning class. The second
equality implies that there are no transient states that are trapped to more than
one ergodic class in the original process. This was the case for the discontinuous
Markov reward chain from Example 10b, that was lumped (Example 25b) and
reduced (Example 48b) to the same Markov reward chain.

5.2 τ -reduction vs. τ -lumping

As τ -reduction and τ -lumping are based on the reduction method and ordi-
nary lumping respectively, it comes as no surprise that the two methods are
again incomparable. Moreover, as expected, τ -reduction combined with ordinary
lumping aggregates more than just τ -lumping.

We give an example that corresponds to Example 60.

Example 62. Consider the Markov reward chain with fast transitions depicted
in Figure 18a. Example 48c shows that this Markov reward chain with fast tran-
sitions reduced to the Markov reward chain from Figure 18b. This aggregation
cannot be obtained by lumping. On the other hand, if λ = µ, the process from
Figure 18a τ -lumps to the Markov reward chain in Figure 18c by the lumping
{{1}, {2, 3}, {4}}, and to the one Figure 18d by the lumping {{1, 2, 3}, {4}}.
These aggregations cannot be obtained by reduction. However, when λ = µ, the
Markov reward chain from Figure 18b lumps by the standard lumping to the
Markov reward chain in Figure 18d. Therefore, like in the case for reduction, al-
though the aggregation methods are incomparable, τ -reduction combined with
standard lumping is more superior than just τ -lumping.

Theorem 63. Suppose (σ,Qs, Qf , ρ) →P (σ̂, Q̂s, Q̂f , ρ̂). If Q̂f = 0, then there
exists a collector matrix VE such that

VEUELQsRVE = LQsRVE , VEUELρ = Lρ,

σ̂ = σRVE , Q̂s = UELQsRVE and ρ̂ = UELρ,

where RL = Π is the canonical product decomposition of Π, the ergodic projec-
tion of Qf , and UE is a distributor associated to VE.

Proof. Since Q̂f = 0, by Theorem 39, we obtain Π̂ = I. As in the proof of
Theorem 40, this implies ΠV = V and WΠ = W . Let VE = LV and UE = WR.
That VE is a collector matrix and that UE is a distributor associated to it is
shown in the proof of Theorem 61.

Now, using that V WΠQsΠV = ΠQsΠV , we have

VEUELQsRVE = LV WRLQsRLV =
= LV WΠQsΠV = LΠQsΠV = LQsRLV = LQsRVE .



Similarly, using that V WΠρ = Πρ, we have

VEUELρ = LV WRLρ = LV WΠρ = LΠρ = Lρ.

In addition, σRVE = σRLV = σΠV = σV = σ̂,

UELQsRVE = WRLQsRLV = WΠQsΠV = WQV = Q̂s

and
UELρ = WRLρ = WΠρ = Wρ = ρ̂.
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Fig. 18. τ -reduction vs. τ -lumping –Example 62

Both techniques produce the same simplified process only in the case where
no transient states are trapped to more than one ergodic class and in that
case τ -lumping is performed such that each ergodic class is one lumping class.
The Markov reward chain with fast transitions from Figure 19a reduces (Ex-
ample 48b) and lumps (Example 32b) to the same Markov reward chain in
Figure 19b.
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5.3 τ∼-reduction vs. τ∼-lumping

In this section we compare τ∼-lumping with τ∼- and total τ∼-reduction. We show
that τ∼-reduction is just a special instance of τ∼-lumping, and that τ∼-lumping
and total τ∼-reduction coincide when lumping eliminates all silent transitions.

The following example shows that τ∼-lumping aggregates more than τ∼-
reduction.

Example 64. Consider the Markov reward chain with silent transitions depicted
in Figure 20a. This process τ∼-lumps to the Markov reward chain in Figure 20b
by the lumping {{1, 2, 3}, {4}}. However, the process in Figure 20a cannot be
τ -reduced because the state 1 violates the condition that a transient state must
lead to exactly one ergodic class.
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Fig. 20. A process in a) τ∼-lumps to the one in b) but cannot be τ∼-reduced – Exam-
ple 64

We now prove that τ∼-reduction is a special case of τ∼-lumping in case the
process does not have unreachable states.

Definition 65. A state i is a reachable state if there exists j0, . . . , jm such
that σ[j0] 6= 0, jm = i, and, for all 0 ≤ k ≤ m, either Qs[jk, jk+1] > 0 or
Qf [jk, jk+1] > 0.

Theorem 66. Suppose (σ,Qs, [Qf ]∼, ρ) τ∼-reduces to (σR, I, LQsR,Lρ). If
(σ,Qs, [Qf ]∼, ρ) does not contain unreachable states, then there exists a parti-

tioning P such that (σ,Qs, [Qf ]∼, ρ) PÃτ∼ (σV, WQsV, {0},Wρ), where V is the
collector associated to P and W is a τ -distributor associated with Qf . Moreover,
V = R and W = L.

Proof. Let E = {E1, . . . , ES , T} be the ergodic partitioning of the Markov reward
chain with silent transitions (σ,Qs, [Qf ]∼, ρ). We first show that for all t ∈ T there
is a I ∈ {1, . . . , S} such that erg(t) = EI .

Since (σ,Qs, [Qf ]∼, ρ) does not have unreachable states, we have that there
exist i0, . . . , im such that σ[i0] 6= 0, im = t, and, for all 0 ≤ k ≤ m, either



Qs[ik, ik+1] > 0 or Qf [ik, ik+1] > 0. We prove by induction on m that erg(t) = EI

for some I ∈ {1, . . . , S}.
If m = 0, then σ[i0] 6= 0 and the statement follows from the first condition in

Theorem 54. Suppose the statement holds for all k ≤ m. Now, if Qf [ik, ik+1] > 0
then, because t = im+1 ∈ T also im ∈ T . By the inductive hypothesis erg(im) =
EL for some L ∈ {1, . . . , S}. Since erg(im+1) ⊆ erg(im), we have erg(im+1) ⊆
EL and so erg(im+1) = EL. If Qs[ik, ik+1] > 0, then the statement follows by
Condition 2a of Theorem 54.

We now construct the lumping partitioning. Define now FI = EI ∪ {t | t ∈
T, erg(t) = EI}, for 1 ≤ I ≤ S and let P = {F1, . . . , FS}}. Since erg(FI) = EI

and FI = {i | erg(i) = EI}, by Theorem 54 if follows that P satisfies the
conditions of Definition 42.

To show that the τ∼-lumped and the τ∼-reduced process coincide, we recall
the proof of Theorem 54 where it was shown that R is always a collector matrix.
We also note that L is a τ -distributor because LR = I and because, for Π = RL,
it satisfies ΠRLΠ = ΠΠΠ = ΠΠ = ΠRL.

We now compare τ∼ lumping with total τ∼ reduction. The following two
theorems show that the notions coincide.

Theorem 67. Suppose (σ,Qs, [Qf ]∼, ρ)→P (σ̂, Q̂s, {0}, ρ̂). and suppose E is the
ergodic partitioning of (σ,Qs, [Qf ]∼, ρ). Then there exists a partitioning PE of E
such that (σ,Qs, [Qf ]∼, ρ) totally τ∼-reduces to (σ̂, I, Q̂s, ρ̂).

Proof. Since [Q̂f ]∼ = {0}, we have that for every C ∈ P and every i ∈ C,
erg(i) ⊆ C. This implies that if i ∈ C ∩ E, for some E ∈ E , then E ⊆ C.
Intuitively, every lumping class must contain whole ergodic classes. Define, for
each C ∈ P, e(C) = {E | E ⊆ C} and define PE = {e(C) | C ∈ P}. Clearly,
PE is a partitioning of E . Observe that flat(e(C)) =

⋃
E⊆C E = C ∩⋃M

k=1 Ek for
E = {E1, . . . , EM}. With this, the conditions of Definition 42 directly imply the
conditions of Definition 58.

To show that the results of the lumping and the reduction are the same let
V and VE be the collectors associated to P and PE respectively. We choose a Qf

and obtain Π, L, R and W . Since i ∈ C ∩E implies E ∈ E , it follows easily that
VE = LV . From Q̂f = WQfV = 0 it follows, as before, that ΠV = V and that
WΠ = W . Define UE = WR ≥ 0. Now UEVE = WRLV = WΠV = WV = I
and so UE is an distributor for VE . Finally, UEL = WRL = WΠ = W and
RVE = RLV = ΠV = V , which clearly completes the proof.

Theorem 68. Let (σ,Qs, [Qf ]∼), ρ be a Markov reward chain with silent tran-
sitions that does not have unreachable states. Let E be its ergodic partitioning
and let PE be some partitioning of E. If (σ,Qs, [Qf ]∼), ρ totally τ∼-reduces with
respect to PE to (σ̂, I, Q̂s, ρ̂), then there is a partitioning of states P such that
(σ,Qs, [Qf ]∼), ρ τ∼-lumps to (σ̂, Q̂s, {0}, ρ̂) with respect to P.

Proof. In the same way as we did in the proof of Theorem 66, we can show that,
for all t ∈ T there is a C ∈ P such that erg(t) = flat(C).



Let E is the ergodic partitioning of (σ,Qs, [Qf ]∼, ρ). Define, for each C ∈ P,
s(C) = {i | erg(i) ⊆ flat(C)}. Define also P = {s(C) | C ∈ PE}. We show that
P is a τ∼-lumping.

Let i ∈ s(C). Then erg(i) ⊆ flat(C) and so erg(s(C)) ⊆ flat(C) ⊆ s(C).
This proves Condition 1a of 42. The other two conditions follow directly from
s(C) ∩ flat(E) = flat(C).

We now show that the aggregated chains are the same.
We fix Qf and obtain Π, L and R. Let VE be the collector associated to

PE . Define V = RVE . From the definition of P it follows directly that V is the
collector for P. Let UE be a distributor for V such that VE [i, k] = 1 implies
UE [j, i] > 0. Define W = UEL. That W is a τ -distributor from Definition 30
follows from WΠ = UELRL = UEL = W .

5.4 τ∼-lumping vs. Weak bisimulation for Interactive Markov
Chains

We have already mentioned the aggregation method for the elimination of van-
ishing markings in generalized stochastic Petri nets is a special instance of τ -
reduction. In this section we compare the τ∼-lumping method with the weak
bisimulation method for the elimination of τ transitions in Interactive Markov
Chains. We assume that there are no other actions but τ actions in an Inter-
active Markov Chain (note that weak bisimulation works in the other case as
well). We also assume that there are no rewards associated to states. We do
not allow silent transitions to lead from a state to itself. However, as we treat
them as exponential rates, they are redundant anyway. We give priority to silent
transitions over exponential delays only in transient states (see Example 45a)
and not in ergodic states (see Example 41a). This leads to a different treatment
of τ -divergence. For us, an infinite avoidance of an exponential delay is not pos-
sible. The transition must eventually be taken after an exponential delay (see
Example 45b). This can be considered as some kind of fairness incorporated in
the model. Due to the strong requirement that the lumping of Markov reward
chains with silent transitions is good if it is good for all possible speeds assigned
to silent transitions, τ∼-lumping does not always allow for joining states that
lead to different ergodic classes (see Example 41b) unless these ergodic classes
are also inside some lumping class. This means that we only disallow certain
intermediate lumping steps while weak bisimulation does not. In all other cases,
the weak bisimilarity of Interactive Markov Chains and τ∼-lumping coincide.

5.5 Conclusion

We compared two different aggregation techniques, one based on reduction and
the other based on lumping, for elimination of fast transitions and silent steps in
extensions of continuous-time Markov reward chains. We treated fast transitions
and silent steps as exponentially distributed delays of which the rates tend to
infinity with determined and undetermined speeds, respectively. We showed that
the techniques, in general, rarely produce Markov reward chains of comparable



form in the case of fast transitions. The τ -reduction method always removes all
fast transitions, whereas the approach based on τ -lumping is not always able to
eliminate the fast transitions. The advantage of tau-reduction is in its ability
to split transient states. Moreover, the combination of τ -reduction and ordinary
lumping proves to be superior in the ability to reduce a given Markov reward
chain with fast transitions. The analysis suggests that the combination of τ -
reduction and ordinary lumping can be successfully used handle probabilistic
choices in Markov reward chain-based extensions. In case the τ -lumping can be
performed such that all fast transitions are eliminated, the simplified processes
obtained from both methods have the same abstracted performance character-
istics.

We have extended the method of [18, 19] in the setting of silent steps. We have
shown that both aggregation techniques produce the same simplified processes
when all silent steps can be eliminated. However, in the setting with silent steps,
the τ∼-lumping provides more flexibility in the sense that it is not mandatory
to eliminate all silent steps at once, so all intermediate processes can be ob-
tained [30]. We note that the results from this paper can be used to extend the
aggregation method that is used to eliminate vanishing markings in generalized
stochastic Petri nets, by dropping the requirement that the probabilities of the
immediate transitions must be stated explicitly. Thus, our approach can provide
an inherent method for elimination of the vanishing markings in the case when
the weights of the immediate transitions are left unspecified.
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