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Summary
Assume k("2= 2) uniform populations are given on (f-li - ~, f-li + ~) with location parameter
f-li E IR1 , i = 1,"', k. The best population is defined as the population with the largest
value of the location parameter. In e-best population (with € "2= 0) is a population with
location parameter on a distance not larger than € from the largest value of f-l. It is possible
to consider subset selection for an e-best population relative to subset selection for the best
one. The relative efficiency is defined and computed in dependence of k and € for some values
of the confidence level P* of selection.
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1. Introduction

Given are k(2. 2) uniform populations on (Ili - ~' Ilj + ~) with unknown location parameter
Ili E ]Rl, i = 1,··· , k. The random variables associated with these populations are denoted by
Xl,'" ,Xk, with cumulative distribution functions F(x - Ild,i = 1,··· ,k, respectively. The
ranked variables are denoted by X[l] ~ ... ~ X[k)' The ordered parameters are denoted by
Il[l] ~ ... ~ Il[k)· The best population is the population corresponding with Il[k)' We suppose
the best population is unique, otherwise a suitable flagging is used. An c-best population
(with c 2. 0) is a population with parameter value larger than or equal to Il[k) - c. In order
to select the best population or an c-best population Gupta's subset selection approach is
used. For more details we refer to Gupta (1965), Butler and Butler (1987), and Van der Laan
(1991, 1992). The following selection rules are used. In order to select the best population,
rule RB is used with

RB: Select population i (i = 1,···, k) in subset if an only if Xi > X[k) - d, with the
selection constant d 2. o.

In order to select an c-best (almost best) population the next rule is used:

Select population i (i
O~c~d<1.

2. The relative efficiency

1,·· ., k) in subset if an only if Xi > X[k) - d + c, with

In this section we shall define the relative efficiency of the selection rule RA compared with the
selection rule RB, and derive a general expression for uniform populations. Some properties
of this relative efficiency will be presented and proved.

Definition 2.1. The relative efficiency RE of the selection rule R A relative with respect to
the selection rule RB is defined as

RE(k P* c)= £~{SILFC;d}
" £~{SILFC;d - c} ,

where Il = (Ill,'" ,Ilk), S is the size of the selected subset using selection rule RB, and
£~{SILFC; c} denotes the expected subset size under the Least Favorable Configuration
(LFC) and with selection constant c.

It is well-known that under the LFC in the case considered we have Il[l)

this property the next theorem can easily be proved.

Theorem 2.1. RE(k,P*,c) = l-(d-<:)f:k(d-<:) ,

with 0 ~ c ~ d = d(P*) < 1.
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Proof: We have for the numerator of RE and for general d:

Ie

£~{SILFC; d} = :E P(Xi ~ X[Ie) - dlfl[l) = fl[k)
i=l

Ie

=:E P(Xj ::::; Xi +d; j = 1" .. ,kj j f; iIM[l) = M[Ie))
i=l

It It

= :E! IT F(x +d - Mj +Milfl[l) = M[k)dF(x)
i=l ;=1

;;II
It It

=:E! IT F(x +d)dF(x)
i=l j=1

#1

=k f F k-1(x +d)dF(x) ,

and after some elementary computations we get

£ {SILFC' d} = { 1 - d
k + kd for 0::::; d < 1

~ , k for 1::::; d.

When we take d = d(P*) such that the probability requirement for the subset selection is
fulfilled, then £~{SILFC; d = d(P*)} is equal to the maximum value of £~{S}, which is
equal to kP* (see Gupta (1965», from which the result follows immediately. 0

Lemma 2.1. The relative efficiency RE(k,P*,E) satisfies

i) for each k-1 < P* < 1 and 0 ~ E< P*, RE( k, P* , E) is strictly increasing in k,

ii) for each 2 ~ k < 00 and k-1 < P* < 1, RE(k, P*, E) is strictly increasing in E (with
o~ E < P*),

iii) for each 2 ~ k < 00 and 0 ~ E < P*, RE(k, P*, E) is strictly decreasing in P*.

Proof: For i) it has to be proved that (c:= d - E, with 0 ~ c < 1)

(k + l)P* kP*
-----;.-:-:---'-:-:---.,...->---,--
1 - ck+1 + (k + l)c 1 - ck + kc

or that

g(c) := kck+1 - (k + l)ck +1 > 0 for integer k ~ 2

It is easy to see that g(O) = 1, g(l) = 0 and d~~) = k(k + 1)clt - 1(c - 1) < 0, and i) follows
immediately.
Part ii) follows from the fact that for m(c) ;= 1 - cit + kc the following holds: m(O) =
1, m(l) = k and d~lc) = _kck- 1 +k > 0, and that c is strictly decreasing in E.
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In order to prove iii), it is sufficient to prove that RE is decreasing function of d, because
d = d(P*) is an increasing function of P*. In order to prove that

1- dk + kd
1 - (d - c)k + k(d - c)

is a decreasing function of d, notice that g(c) := 1 - ck + kc is an increasing function of c

with rP1c~c) < 0, and the result follows immediately. 0

Lemma 2.2. lim RE(k,P*,c) = pp* ,with 0:::; e < P* < l.
k-+oo * - c

Proof: The selection constant d = d(P*) (with °< d < 1) follows from the equation

1 - dk + kd = kP* ,

so d can be written as

1 d k

d = P* - k + k .

For large values for k we have d ~ P* , and the result follows immediately. 0

Lemma 2.3. lim RE(k, P*, c) for fixed P* is a strictly increasing function of E, and for
k-+oo

fixed e < P* a strictly decreasing function of P*.

Proof: The result follows immediately. 0

3. Numerical results

The relative efficiency RE(k,P*,c) has been computed for P* = .80, .90, .95, .99 and
k = 2(1)5, 10, 25, 100, 1000, 2000. The values considered for e are V12c = .1, .2, .5(.5)2.
In this way c has been expressed as a factor times the standard deviation of the distribution.
Numerical results can be found in the tables 1, 2, 3 and 4 for P* = .80, .90, .95, and .99,
respectively.
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Table 1. RE(k,P*,e) for P* = .80.

V12 e
k d .1 .2 .5 1 1.5 2

2 .367544 1.024 1.050 1.146 1.389
3 .511195 1.028 1.059 1.169 1.449 1.945

4 .577880 1.031 1.064 1.186 1.488 1.027 3.193
5 .618034 1.032 1.068 1.196 1.513 1.078 3.324

10 .702946 1.036 1.075 1.215 1.556 1.163 3.546

25 .760042 1.037 1.078 1.220 1.564 1.180 3.592
100 .790000 1.037 1.078 1.220 1.565 1.180 3.593

1000 .799000 1.037 1.078 1.220 1.565 1.180 3.593
2000 .799500 1.037 1.078 1.220 1.565 1.180 3.593

lim RE =
k-+oo .80 1.0374 1.0778 1.2201 1.5646 2.1799 3.5931
=P*/(P*-e)

Table 2. RE(k, P* , e) for P* = .90.

V12 e
k d .1 .2 .5 1 1.5 2
2 .552786 1.015 1.032 1.091 1.234 1.469
3 .664450 1.019 1.040 1.116 1.302 1.605 2.142
4 .715533 1.021 1.045 1.133 1.346 1.695 2.319
5 .746303 1.023 1.049 1.145 1.377 1.755 2.440
10 .812545 1.029 1.060 1.174 1.443 1.877 2.685
25 .860947 1.032 1.068 1.190 1.470 1.923 2.781

I

100 .890000 1.033 1.069 1.191 1.472 1.927 2.789
1000 .899000 1.033 1.069 1.191 1.472 1.927 2.789
2000 .899500 1.033 1.069 1.191 1.472 1.927 2.789

I lim RE =

I

k-+oo .90 1.0331 1.0685 1.1910 1.4722 1.9272 2.7894
=P*/(P*-e)
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Table 3. RE(k,P*,~) for P* = .95.

y12 ~

k d .1 .2 .5 1 1.5 2

2 .683772 1.010 1.021 1.063 1.163 1.321 1.581
3 .767176 1.013 1.028 1.085 1.225 1.450 1.824
4 .804967 1.016 1.033 1.101 1.269 1.539 1.992
5 .827691 1.017 1.037 1.113 1.302 1.603 2.110

10 .876878 1.023 1.049 1.147 1.381 1.747 2.378

25 .914253 1.029 1.061 1.173 1.427 1.823 2.521
100 .940021 1.031 1.065 1.179 1.436 1.837 2.549

1000 .949000 1.031 1.065 1.179 1.437 1.838 2.549
2000 .949500 1.031 1.065 1.179 1.437 1.838 2.549

lim RE =
lc-+oo .95 1.0313 1.0647 1.1792 1.4365 1.8376 2.5493
= P* /(p* -~)

Table 4. RE(k,P*,~) for P* = .99.

v'12 ~

k d .1 .2 .5 1 1.5 2
2 .858579 1.005 1.010 1.032 1.091 1.186 1.335
3 .898260 1.006 1.014 1.048 1.141 1.294 1.539
4 .916016 1.008 1.018 1.061 1.181 1.376 1.691
5 .926649 1.009 1.021 1.072 1.212 1.439 1.806
10 .949659 1.013 1.031 1.108 1.304 1.606 2.096
25 .967522 1.020 1.046 1.147 1.377 1.723 2.301
100 .981554 1.028 1.060 1.169 1.408 1.772 2.390

1000 .989000 1.030 1.062 1.171 1.412 1.777 2.399
2000 .989500 1.030 1.062 1.171 1.412 1.777 2.399

lim RE =
lc-+oo .99 1.0300 1.0619 1.1707 1.4116 1.7774 2.3991
=P*/(P*-c:)

4. Concluding remarks

From the tables it follows that for the smaller values of P* the relative efficiency tends rather
rapidly to the limit value. Even for P* = .95 the relative difference between the actual value
and the limit is for k 2: 25 smaller than 1.1%.
The relative efficiency increases rather rapidly from a value a little bit larger than 1 to,
for k = 10, a value of approximately 3.5, 2.7, 2.4, and 2.1 for P* = .80, .90, .95, and .99,
respectively.
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