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Output Analysis of Multiclass Fluid Models with Static Priorities

June 2, 2005

Abstract

We consider a stochastic fluid flow model with a single server and K infinite capacity
buffers. The input to the k-th buffer is a Markovian on-off process that transmits fluid
at a constant rate pk while it is on and at rate 0 while it is off. The fluid is emptied
from the buffers by a single server at a constant rate µ according to a static priority
service discipline in which class 1 fluid has the highest and class K fluid has the lowest
priority. The output process of class k is defined to be on if fluid of class k is leaving
the buffer at a positive rate and off otherwise. In this paper we derive an exact method
for computing the mean on-time and the mean off-time of the output process of class
k. We illustrate the techniques by numerical results.

1 Introduction

We study a fluid-flow model with a single server and incoming fluid flows generated by K
independent on-off Markovian input sources. The k-th source has Exp(αk) on-times and
Exp(βk) off-times, k = 1, . . . , K. It generates fluid at rate pk while it is on and at rate 0
while it is off. Thus, the input process of class k is completely described by three parameters
(αk, βk, pk). The fluid generated by the K on-off sources is stored in K separate infinite
capacity buffers from where it is removed according to a static priority service discipline
under which the highest priority fluid always takes precedence over any of the lower priority
fluids. We assume that class 1 fluid has the highest priority and class K has the lowest
priority. Then class k enjoys complete priority over fluid of class j > k, at all times. The
leftover service capacity after serving the fluids of classes 1, 2, . . . , k is available to serve fluids
of class k + 1 and above.

The output process under the static priority service discipline is rather complex. Several
input bursts of a given class may combine in one output burst. Similarly, a single input burst
may get split into several output bursts due to interruptions by higher priority fluid coming
to the buffer. The output processes of different classes of fluid are neither independent, nor
on-off. The rate during an output burst is not constant. The idea is to approximate the class
k output process by a three-parameter Markov on-off process with parameters (αo

k, β
o
k, p

o
k)

which involves finding the mean on- and off-times. The output process of class k is defined
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to be on if fluid of class k is leaving the buffer at a positive rate and off otherwise. We
approximate the non-constant output rate of class k by the mean peak rate po

k . A related
work is [10] of Kulkarni and Glazebrook, which provides the output analysis for a single-buffer
multi-class queue with First-Come-First-Serve (FCFS) discipline. Mean on- and off-times
of a given class are found using appropriately constructed reward processes. However, in
our experience this approach does not readily extend to the case of static priority service
discipline.

The motivation behind this analysis arises from the study of telecommunication networks
as multi-class fluid networks (MFN) described by a set of nodes and a set of different classes
of fluid. Each node has an infinite capacity buffer for storing each class of fluid that enters
this node. The input of each node may consist of fluid generated by an external environment
process and/or fluid coming from other nodes within the network. Once in a given node the
different classes of fluid are served according to a predefined service discipline, in our case
static priority. The external fluid inputs to each node in the network are assumed to be
generated by independent Markovian on-off sources. We approximate the output processes
from a given node as three-parameter independent on-off processes by using the approach
developed here. The analysis of the network can then proceed recursively by using these
approximated output on-off processes as inputs to other nodes in the same spirit as in
Whitt, [15]. Thus, each node acts as a non-linear mapping of the input parameters to the
output parameters. In [3] Hirasawa adopts a similar approach where he studies a multi-
class fluid network (MFN) with First-Come-First-Serve (FCFS) discipline and develops a
MFN algorithm based on the parametric-decomposition method of Kuehn [9]. Hirasawa
characterizes the network traffic in terms of four parameters - mean rate, effective peak rate,
mean burst length, and mean squared burst length. In this paper we develop the output
approximations for the single-node model. However, the network extension will be a topic
for future research.

Several authors have studied specially structured fluid networks. In [7] Kella and Whitt
study a tandem fluid network with Lévy Input and in which they analyze the mean buffer
content of each node. In [5] Kella considers parallel and tandem fluid networks with depen-
dent Lévy inputs. He derives the Laplace Stieltjes Transform of the limiting distribution
of the fluid content process. Kaspi and Kella [4] study the stability of feed-forward fluid
networks with Lévy input. These results have been further extended by Kella [6] where he
studies the stability and non-product form of stochastic fluid networks with Lévy inputs.
In [8] Kella and Whitt introduce linear stochastic fluid networks as continuous analogues
of open networks of infinite-server queues. As with infinite-server queues, the tractability
makes the linear stochastic fluid networks appealing for approximations. Generally, exact
analysis of queueing networks is intractable and only approximate results are available, see
Kuehn [9], Whitt [15], Reiser and Kobayashi [12], Gelenbe and Mitrani [2], Chandy and
Sauer [1].
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2 Problem Description

Denote the state of source k at time t by Ik(t), where

Ik(t) =

{
0, if source k is off at time t,
1, if source k is on at time t.

The combined state of the K sources at time t (called the environment) is given by

I(t) = (I1(t), . . . , IK(t)), t ≥ 0.

Thus, {I(t), t ≥ 0} is an irreducible CTMC on the finite state space

S = {i = (i1, . . . , iK) : ij = 0, 1, j = 1, . . . , K}.
Define the combined input rate p(i) of all sources in state i = (i1, . . . , iK) ∈ S as

p(i) =
K∑

k=1

ikpk.

The server operates at a constant rate µ, also called its capacity. The net input rate r(i) to
the buffer when the environment is in state i = (i1, . . . , iK) ∈ S is given by

r(i) =
K∑

k=1

ikpk − µ = p(i)− µ.

Furthermore, let R = diag(r(i), i ∈ S) denote the net input rate matrix.
Let Xk(t), k = 1, . . . , K, denote the amount of fluid of class k in the buffer at time t and

X(t) =
∑K

i=1 Xi(t) be the total amount of fluid in the buffer at time t. Then {(I(t), X(t)), t ≥
0} is a Markov process. The rate of change of the fluid level in the buffer {X(t), t ≥ 0} is
given by

d

dt
X(t) =





r(i) if I(t) = i, X(t) > 0,

max(r(i), 0) if I(t) = i, X(t) = 0.

Now let
π(i) = lim

t→∞P (I(t) = i), i ∈ S

be the limiting distribution of the governing CTMC {I(t), t ≥ 0}. The system is stable if
and only if the expected net input rate is negative in steady state,

∑

i∈S

π(i)r(i) < 0.

We assume that the system is stable so that the limiting distribution of the bivariate process
{(I(t), X(t)) , t ≥ 0} exists. Let us denote it by

π(i, x) = lim
t→∞P (I(t) = i, X(t) ≤ x), i ∈ S, (2.1)
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e.g. see Kulkarni [11] for methods of computing π(i, x).
In this paper we study the output (service) process of class k defined by

Sk(t) =

{
1, if fluid of class k is leaving the buffer at time t,
0, otherwise.

(2.2)

More precisely, let BK
k , CK

k denote the mean sojourn times of the Sk process in states
1, 0, respectively, if there are K input sources in the system, i.e. the mean on-time, off-time,
of the output process of class k. Due to the static priority service discipline, the presence of
class K fluid in the system will not have any effect on the higher priority service. Hence

BK
i = Bi

i , i = 1, . . . , K.

The same reasoning applies to the mean output off-times CK
i . Hence we shall skip the

superscript when the number of sources in the discussed system is clear. In this paper we
derive Bi = Bi

i , Ci = Ci
i . The output process of class k can then be approximated by a

Markovian on-off process with exp (αo
k) on-times and exp (βo

k) off-times, where αo
k = 1/Bk and

βo
k = 1/Ck, and constant transmission rate po

k approximated by the use of the conservation
law of fluid, i.e. the mean output rate of class k should equal the mean input rate of class k,

pkβk

αk + βk

=
po

kβ
o
k

αo
k + βo

k

,

and therefore

po
k =

pkβk

αk + βk

(αo
k + βo

k)

βo
k

, k = 1, 2, . . . , K.

The problem of finding the mean out on- and off-times is trivial if
∑K

k=1 pk ≤ µ since the
output process of class k will be exactly equal to the input process of class k for every

k = 1, . . . , K. Therefore we assume that
K∑

i=1

pi > µ.

The static priority rule leads to a recursive solution in the case of K > 2 classes of
fluid. From the original K-class system we construct a new 2-class aggregated system as
follows. Class 1 fluid input process in the aggregated system is identical to the superposition
of the input processes of the first K − 1 on-off sources in the original system. Class 2
fluid input process in the aggregated system is identical to the input process of the K-th
on-off source in the original system. Thus, the class 1 input in the aggregated system is
modulated by a CTMC {Ia

1 (t) = (I1(t), . . . , IK−1(t)), t ≥ 0} that can be in 2K−1 different
states {i = (i1, . . . , iK−1), ij = 0, 1, j = 1, . . . , K − 1} and the class 2 input is modulated by
the two state CTMC {Ia

2 (t) = IK(t), t ≥ 0}. We continue with the analysis of this two-source
priority model. It is convenient to introduce the input rates

p1(i) :=
K−1∑

k=1

ikpk, and p2(i) := iKpK , i ∈ S,

4



and the net input rate of class 1 fluid to the buffer

r1(i) := p1(i)− µ,

when the environment is in state i = (i1, . . . , iK) ∈ S. Then r1(i) determines the following
partitioning of the state space S,

S ′− := {i ∈ S : r1(i) < 0}, N ′
− := |S ′−|,

S ′+ := {i ∈ S : r1(i) ≥ 0}, N ′
+ := |S ′+|.

We refer to the periods of time when there is (is not) positive server capacity and class 2
fluid can (can not) be served, i.e. i ∈ S ′− (i ∈ S ′+), as on-periods (off-periods). First, we
consider the easier case of S ′+ = ∅ for which the solution can be found directly, by applying
the theory of Alternating Renewal Processes. Then we study the more complicated case of
S ′+ 6= ∅.

3 Output analysis if S ′+ is empty

It is clear that under this condition there is always some leftover capacity of the server at
which the lowest priority class of fluid K is served. In other words, the moment source K
turns on, fluid of class K starts immediately leaving the buffer with a rate that depends
on the state of the environment at that moment. Consider the SK process as defined in
equation (2.2) for k = K, describing the output process of class K. Let us assume that it
is off at time 0, i.e. SK(0) = 0. It stays off for an Exp(βK) and then it turns on as soon as
source K turns on. Then it stays on for some random amount of time (as long as there is
class K fluid passing through the buffer) which depends on the state of the environment, and
thus depends on the off time of the SK process. Therefore, the SK process is an alternating
renewal process and we obtain

lim
t→∞P (SK(t) = 0) =

1

βK

1

βK

+ BK
K

,

where BK
K is the mean on-time of the output process of class K. The left-hand side of this

equation can be computed as

lim
t→∞P (SK(t) = 0) =

∑

i: iK=0

π(i, 0),

where π(i, 0) is defined in Eq. (2.1). Hence we obtain

BK
K =

1−∑
i: iK=0 π(i, 0)

βK
∑

i: iK=0 π(i, 0)
.

Clearly we also have

CK
K =

1

βK

.
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4 Output Analysis if S ′+ is non-empty

Assume that the fluid in the buffer is generated by only two independent input sources (with
the second lower priority source being on-off and the first higher priority source being in any
of the 2K−1 possible states as described above). Let γk, k = 1, 2, be the long-run fraction of
time class k fluid is not being served, i.e. is not leaving the buffer. Consider the following
reward structure for a fluid of class k, k = 1, 2: a unit reward is earned every time the
output process Sk as defined above switches from 0 to 1. Denote by νk the long-run average
reward of class k (or equivalently, νk is the mean number of class k output off-periods per
unit time). Then from the classic theory of Markov-Regenerative processes it follows that

Bk + Ck =
1

νk

, k = 1, 2,

and

γk =
Ck

Ck + Bk

, 1− γk =
Bk

Ck + Bk

, k = 1, 2.

Hence
Ck =

γk

νk

,

and

Bk =
1− γk

νk

.

Thus, to find Bk and Ck we need to determine γk and νk. We calculate them, first, for k = 1,
and then for k = 2.

Let π1
i (x) = limt→∞ P (X1(t) ≤ x, I(t) = i) for x ≥ 0. Then we immediately have:

Theorem 4.1
γ1 =

∑

i:p1(i)=0

π1
i (0)

and
ν1 =

∑

i:p1(i)=0

π1
i (0)

∑

j:p1(j)>0

qij.

Under the assumption of this section, S ′+ 6= ∅, there are off-periods alternating with
on-periods for class 2 fluid. Next, we evaluate γ2 and ν2 by implementing earlier results on
the embedded stochastic processes that describe the evolution of the X2 and I processes
during on-periods (skipping the off-periods). More precisely, for a given t ≥ 0 denote by
τ(t) the time spent in on-periods over [0, t] and define the restricted processes {Xon

2 (t), t ≥
0} := {X2(τ(t)+), t ≥ 0} and {Ion(t), t ≥ 0} := {I(τ(t)+), t ≥ 0}. Clearly, Ion(t) ∈
S ′−, for all t ≥ 0. Then {Xon

2 (t), t ≥ 0} is a fluid process with jumps, as analyzed in
Tzenova et al. [13], where the jump sizes correspond to the total amount of class 2 fluid
accumulated in the buffer during the skipped off-periods, see Figure 4.1. Let
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2
(t)

Figure 4.1: Class 2 buffer content process X2(t) embedded over on-periods and off-periods.

Fi(t, x) := P (Xon
2 (t) ≤ x, Ion(t) = i), t ≥ 0, x ≥ 0, i ∈ S ′−,

Fi(x) := lim
t→∞Fi(t, x), x ≥ 0, i ∈ S ′−, F (x) := [Fi(x), i ∈ S ′−].

The analysis of the class 2 output process uses Fi(0), i ∈ S ′−, as computed in Theorem

2.4 of [13] which in return needs the LST of the jump sizes Q̃ji(s). To this end we study

ψ̃ji(x, s) := E(e−sA2(T ); I(T ) = i|I(0) = j, X1(0) = x) i ∈ S ′−, (4.3)

where
T := inf{t ≥ 0 : X1(t) = 0 and I(t) ∈ S ′−},

and A2(T ) denotes the total amount of class 2 fluid that comes in the buffer during [0, T ].
Then clearly the LST of the jump sizes can be found as

Q̃ji(s) = ψ̃ji(0, s) := E(e−sA2(T ); I(T ) = i|I(0) = j, X1(0) = 0).

For the purposes of the following results we also define the net input matrix for class 1 fluid,

R1 := diag(r1(i), i ∈ S).

Lemma 4.2 For a fixed i ∈ S ′− the LST ψ̃i(x, s) := [ψ̃1i(x, s), . . . , ψ̃Ni(x, s)]t satisfies the
following system of differential equations

R1
∂ψ̃i

∂x
(x, s) + (Q− sP2)ψ̃i(x, s) = 0 (4.4)

with boundary conditions
ψ̃ji(0, s) = δji, for j ∈ S ′−, (4.5)
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where δji is the Kronecker symbol and P2 := diag[p2(1), . . . , p2(N)].
Let λk(s), φk(s) denote the eigenvalues and eigenvectors to (λk(s)R1+Q−sP2)φk(s) = 0.

Then the solution to (4.4) with boundary conditions (4.5) is given by

ψ̃i(x, s) =
∑

k:Re(λk(s))≤0

ai
kφk(s)e

λk(s)x,

where the coefficients ak are determined as the solution to the linear system

ψ̃i(0, s) =
∑

k:Re(λk(s))≤0

ai
kφk(s) = δji, j ∈ S ′−

Proof: Let x > 0, j ∈ S and i ∈ S ′−. After conditioning on a small time interval of length
h > 0 we have

ψ̃ji(x, s) =
∑

k 6=j

qjkhE(e−s(A2(T )+p2(j)h); I(T ) = i|I(0) = k, X1(0) = x + r1(j)h)

+(1 + qjjh + o(h))E(e−s(A2(T )+p2(j)h); I(T ) = i|I(0) = j, X1(0) = x + r1(j)h) + o(h).

Using the notation of (4) and rearranging the last equation we get

esp2(j)hψ̃ji(x, s)− ψ̃ji(x + r1(j)h, s)

h
=

∑

k∈S

qjkψ̃ki(x + r1(j)h, s) + o(1).

Next, we substitute esp2(j)h = 1 + sp2(j)h + o(h) and let h → 0 to get

−r1(j)
∂ψ̃ji

∂x
(x, s) + sp2(j)ψ̃ji(x, s) =

∑

k∈S

qjkψ̃ki(x, s).

In vector notation this equation is equivalent to (4.4). The boundary conditions (4.5) follow
from the definition of A2(T ). Given X1(0) = 0 and I(0) ∈ S ′− it is clear that the length of
the off-period is 0 and therefore A2(T ) = 0. The solution to (4.4) with boundary conditions
(4.5) follows by well known results from the classical theory of linear differential equations. ♦

In addition, the analysis of class 2 output process involves the result of the following
lemma where we compute the probability of positive increase (a jump of the embedded
process) of the buffer content of class 2 during an off-period. Clearly, zero jumps are also
possible if there is no incoming fluid of class 2 during an off-period. More precisely, we are
interested in

gj(x) := P (A2(T ) > 0|I(0) = j, X1(0) = x), j ∈ S, x ≥ 0.

For a given j ∈ S and x > 0 it is clear that if p2(j) > 0 then gj(x) = 1. Therefore, we
assume that j is such that p2(j) = 0. The following notation will be used,

S20 := {i ∈ S : p2(i) = 0}, N20 := |S20|, and S2+ := {i ∈ S : p2(i) > 0}, N2+ := |S2+|,
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g(x) := [gj(x), j ∈ S20]
t, g′ :=

[
dgj(x)

dx
, j ∈ S20

]t

,

where the superscript t denotes transposition of a vector. For a given matrix M and subsets
of indices A,B, we denote the sub-matrix

MA,B := [Mij, i ∈ A, j ∈ B].

The following lemma gives g(x) as a solution to a system of linear ordinary differential
equations. We omit the proof since it follows along similar lines to the one of Lemma 4.2.

Lemma 4.3 The column vector g(x) satisfies

(R1)S20,S20g
′(x) + QS20,S20g(x) + QS20,S2+e = 0, (4.6)

with boundary conditions
gj(0) = 0, j ∈ S ′−. (4.7)

The solution is given by
g(x) =

∑

i:Re(λi)≤0

aie
λixφi + e,

where (λi, φi) are the eigenvalues and eigenvectors satisfying

(λi(R1)S20,S20 + QS20,S20)φi = 0,

e is a column vector of ones of size N20, and the coefficients ai are computed from the
boundary conditions as the solution to

∑

i:Re(λi)≤0

aiφji + 1 = 0, j ∈ S ′−.

Remark: For j ∈ S, i ∈ S ′−, x ≥ 0 we note that gji(x) := P (A2(T ) > 0, I(T ) = i|I(0) =
j, X1(0) = x) can be computed as

P (I(T ) = i|I(0) = j, X1(0) = x)− P (A2(T ) = 0, I(T ) = i|I(0) = j, X1(0) = x)

= αji(x)− lim
s→∞ ψ̃ji(x, s).

Here
αji(x) := P (I(T ) = i|I(0) = j, X1(0) = x)

and can be easily found by standard conditioning arguments as the solution to a system of
differential equations similar to that of Lemma 4.2. Then gj(x) =

∑
i∈S′−

gji(x).

We can now obtain the expressions for γ2 (the long-run fraction of time class 2 fluid is
not being served) and ν2 (the mean number of class 2 output off-periods per unit time) as
given in the following Theorem.
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Theorem 4.4 Let γ =
∑

i∈S′−
π1

i (0) be the long-run fraction of time the system is in an
on-period.
Then

γ2 = γ
∑

i∈S′−,p2(i)=0

Fi(0) + 1− γ,

and

ν2 = γA,

where

A :=
∑

i∈S′−, p2(i)=0

Fi(0)
∑

j∈S′−,p2(j)>0

qij +
∑

i∈S′−,p2(i)>0

Fi(∞)
∑

j∈S′+

qij +

+
∑

i∈S′−,p2(i)=0

(Fi(∞)− Fi(0))
∑

j∈S′+

qij +
∑

i∈S′−,p2(i)=0

Fi(0)
∑

j∈S′+,p2(j)=0

qijgj(0),

is the rate at which class 2 off-periods are generated per time unit given that the system is
in an on-period.

Proof: During periods of time with X1(t) > 0 or X1(t) ≥ 0 and I(t) ∈ S ′+ (referred to as
off-periods) class 2 is not served since there is no leftover service capacity available. The
long-run fraction of time spent in off-periods is given by 1 − γ. Class 2 is also not served
during on-periods, i.e. during periods of time X1(t) = 0 and I(t) ∈ S ′−, when there is no
class 2 fluid in the buffer and there is no inflow of class 2. Therefore γ2, the fraction of time
class 2 fluid is not being served, is given by

γ2 = γ
∑

i∈S′−,p2(i)=0

Fi(0) + 1− γ.

To derive the expression for ν2 we note that output of class 2 is only possible while the
system is in an on-period, i.e. there is leftover service capacity to serve class 2. Then the
output bursts of class 2 alternate with class 2 output off-periods. The long-run fraction of
time the system is in on-periods is given by γ. Given that the system is in an on-period the
output bursts of class 2 can finish in four possible ways corresponding to the four terms in
the expression for A as follows: The first term of A accounts for off-times of class 2 that end
within an on-period due to jumps from a state in which X2 = 0 and p2(i) = 0 to a state
j ∈ S ′− with p2(j) > 0. The second term of A counts the ends of class 2 off-times that result
from a jump into a state j ∈ S ′+ from a state i ∈ S ′− with p2(i) > 0. The third term of A
arises again from interruptions of the higher priority fluid while there is positive amount of
class 2 fluid in the buffer during the on-period. Finally, the fourth term of A represents the
cases when there is no class 2 in the buffer and it is not coming into the buffer (i.e. p2(i) = 0)
at the moment of interruption of class 1 fluid, i.e. when I(t) jumps to a state in S ′+ but by
the end of the off-period there is positive amount of class 2 in buffer.
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Thus, we obtain the expression for the mean number of class 2 output off-periods per unit
time, ν2 = γA. ♦

5 Numerical Results

We illustrate the developed methodology in the case of four independent input sources with
input rates

p = [p1, p2, p3, p4] = [8, 3, 10, 2],

and identical exponential on-times and off-times with respective parameters αi = 4, βi =
1, i = 1, . . . , 4. In Figures 5.2 and 5.3 we vary the service capacity µ and plot the corre-
sponding mean output busy periods Bi, i = 1, . . . , 4. The difference of the two figures is
in the values of µ for which the points are plotted so that the sizes of the jumps of Bi for
each i can be viewed more easily. Figure 5.2 also contains the numerical values of each
Bi, i = 1, . . . , 4. The system becomes unstable for

µ ≤
4∑

i=1

piβi

αi + βi

=
23

5
= 4.6.

Thus, we vary µ from 4.75 to 23.02 >
∑4

k=1 pk.
With the increase of µ, B1 decreases as expected and it becomes equal to the mean

on-time of source 1, 1/α1 = 0.25 for values of µ > p1. Thus, the observed pattern of the
first (highest priority) busy period is not surprising. The second priority shows a somewhat
different behavior. When µ becomes larger than 8, there is a significant increase of B2 after
which it starts decreasing. The explanation lies in the fact that for service capacity that
is less than p1 = 8 even though p2 = 3 is relatively small, the second class of fluid gets
interrupted by the first, every time source 1 turns on. This does not happen for values of
µ > 8 that can handle the service of the first class and also provide leftover capacity for
class 2. Class 3 being of a lower priority is getting interrupted more often. The leftover
capacity for its service depends on class 1 and class 2 service requirements. This leads to
two increases of B3, when µ becomes greater than p1 = 8 and when µ becomes greater than
p1+p2 = 11. Overall, larger values of B3 are observed since it is transmitted at a much larger
rate p3 = 10 which leads to its significant accumulation in the buffer. The observed values of
B4 show the complexity of the problem. Being of the lowest priority, class 4 fluid is affected
by the first three flows. It is accumulated in the buffer for values of µ ≤ ∑3

k=1 pk = 21 after
which as µ becomes closer to

∑4
k=1 pk = 23 it approaches the mean input on-time of source

4, 1/α4 = 0.25. Two differences in the behavior of B4 in comparison to that of B2 and B3

are observed. First, the values of B4 stay below 0.25 from one point on and there are no
such big increases observed as in the cases of B2 and B3. A possible explanation is in the
particular values of the parameters. The source mean on-times are 4 times shorter than the
mean off-times and also the input rate of source 4 is relatively low (p2 = 2).
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Figure 5.2: Output mean busy periods Bi, i = 1, . . . , 4 as µ varies from 4.75 to 23.02
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