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Chapter 1

Introduction

In mathematics you don't understand
things. You just get used to them.
J. von Neumann [99]

1.1 Problem setting

Today many commercially available mathematical softwamdst exist that solve a
large variety of mathematical problems. Often these to@daing used in a “black
box” approach. The user inserts a mathematical problem htains a solution for
it, without too much knowledge of what is happening behingl shene. Of course,
software manufacturers claim that there is no need to haedelbinformation on the
working of their products. Regardless of the mathematicablem that is inserted,
the software will produce the correct solution. The quesisovhether this is always
true.

Typically, in software tools a mathematical problem is dediron an object that
has a certain size and shape. The user assumes that thessafcsmsging the problem
does not depend on this size and shape. For instance, ifecteoiution is obtained
for a square object, we expect a correct solution for the saathematical problem
for a rectangular object. If a correct solution is obtained d circular object, we
expect a correct solution for a circular object that is twdsdarge.

The mathematical software tools employ several numerichads that solve
mathematical problems. One such method is the boundaryeaetemethod (BEM),
which is the topic of this thesis. The success of this pdeiamethod to solve certain
mathematical problems may depend on the size and shape objiets on which
the problems are defined. If the BEM is able to solve a problara certain object,
it is not necessarily able to solve the problem on an objeat ithslightly larger or

1



2 Chapter 1 Introduction

Figure 1.1: In most numerical methods both the interior and the bounddrg domain
need to be discretised (left). In the boundary element ndedindy the boundary needs to be
discretised (right).

smaller. This has its effect on the software that is builtrupioe BEM. The user
of such software must be aware that solutions provided bgdiftevare may not be
correct. Hence in these cases detailed information on thkimgpof the software,

i.e. on the numerical method, is essential in judging thesobness of solutions. This
thesis addresses the working of the BEM and investigatesrumdich conditions it

produces correct solutions.

1.2 Boundary Element Method

The BEM is a numerical method that approximates solution®afndary value
problems (BVPs). The method is a relatively young methodsasiith can be placed
in the sixties. Compared to the finite element method (FEM) development of the
BEM has been substantially slower. One reason for this slo@eelopment in the
BEM is the limited availability of fundamental solutionstbe BVPs. Another reason
is likely to be the involvement of singular integral equasahat need to be solved.
Today these equations are well-understood, and the nunftagptication fields in
which the BEM is used is large, although not as large as fdiittite element method.
The most important aspect in which the BEM distinguisheslfitsom other

numerical methods is the fact that only the boundary of a domaeds to be
discretised. In many other numerical methods, such as ti, Riite differences or
the finite volume method, in addition to the boundary, theriot of the domain also
needs to be discretised (Figure 1.1). As a consequence bbthelary discretisation,
the BEM is a suitable method for problems on external domaindomains that have
a free or moving boundary. Also problems in which singuiesitor discontinuities
occur can be handled efficiently by the BEM. Another advamiaigthe BEM is that
variables and their derivatives, for instance temperaame its flux, are computed
with the same degree of accuracy.
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Integral equations constitute the foundation of the BEM] have been known
for more than a century. In particular, it is known for a longé that the solutions
of BVPs can also be expressed as solutions of an integratiequas early as 1903
Fredholm already used discretised integral equations doenpial problems [43].
His work can be considered the basis for the indirect fortraaof the BEM; the
functions that appear in thieadirect formulation do not have a physical meaning,
though physical quantities can be derived from these fansti The basis of the
direct formulation can be placed at Somigliana [86] in 1886, whosented an
integral equation relating displacements and stressesrg& Inumber of books and
papers have appeared on the subject of integral equatiggaential and elasticity
theory by mathematicians, such as Kellogg [58], Muskheiisfi74], Mikhlin [73]
and Kupradze [63]. Their results are, however, limited tope problems as the
integral equations have to be solved with analytical pracesl and without the aid
of computers.

The breakthrough in the development of the BEM came in thetaan sixties.
Jaswon [55] and Symm [90] discretised the integral equatfon two-dimensional
potential problems by approximating the boundary of a donhgi a set of straight
lines. At each line element the functions are approximatgddnstants. Their
method has a semi-direct formulation, as the functions nedxt differentiated or
integrated to obtain physical quantities. A direct forntiska has been introduced by
Rizzo [80], who also used discretised integral equationglte displacements and
tractions in two-dimensional elasticity theory. The exsien to three dimensions has
been given by Cruse [31], using triangular elements to destihhe domain boundary.

In the late sixties and early seventies the number of agmita for which
boundary elements are used grew. This constituted a firndedion for the further
development of the BEM and proved that the BEM is a powerfud ancurate
technique. At this stage attention was also paid to the amdrconvergence analysis
of the BEM. An important contribution came from Hsiao and \dkand [54], who
performed such error and convergence analysis forGhéerkin formulation of
boundary integral equations. As opposed to the Galerkimditation, thepoint
collocationformulation yields easier approximations of integral é@res. The error
analysis for this type of boundary elements was performedimpld, Saranen and
Wendland [3, 4, 83] during the eighties.

The first book covering the numerical solution of boundarnggnal equations
has been published by Jaswon and Symm [56] in 1977. Not mbehBaebbia [9]
used the terminology “Boundary Elements” for the first tinseopposed to “Finite
Elements”. As of now, the BEM proves to be an effective akiwe to solve
many engineering problems from a variety of applicationdBel for instance
acoustics, fracture mechanics, potential theory, elastibeory, viscous flows,
thermodynamics, etc.
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1.3 Condition number

One way to measure the ability of a numerical method to atelyrasolve
mathematical problems is by monitoring the so-caltehdition number In this
thesis we compute or estimate the condition numbers thataaipp the BEM to see
whether this method is able to solve mathematical problerogrately.

To explain the meaning of the condition number we first neetltress the terms
well-conditionedandill-conditioned In general a problem is called well-conditioned
if a small change in the input data does not result in a largegh in the problem’s
solution. A problem is called ill-conditioned if a small aige in the input data
causes a large change in the solution. Depending on how dimeslélarge” and
“small”, this classification enables us to divide problemt iwell-conditioned and
ill-conditioned problems. However it does not provide amprmation on the degree
of ill-conditioning. The condition number does precisdigtt

Within the setting of this thesis, the condition number sfjom one to infinity.
If the condition number is equal to one, then a problem is weejl-conditioned.
If a problem is singular, the condition number is infiniterde. For problems that
approach a singular problem, the condition number appesattiinity. Hence such
problems are very ill-conditioned.

In this thesis we study the condition number of linear systesh algebraic
equations, which are problems of the form

Ax =b. (1.1)

Such systems are the result of discretising the integrahteans that appear in the
BEM. The success of solving the linear system depends toga lextent on the
condition number of the system matrik. If the condition number of this matrix
is very large, then the linear system is difficult to solveumately. Moreover, if the
condition number is large, the solutionis sensitive to perturbations in the input
datab.

It is unclear when the concept of condition number, and edlab that the term
ill-conditioned, was introduced. In 1948 Turing [92] memted that

. the expression ‘ill-conditioned’ is sometimes usedetyeas a
term of abuse applicable to matrices or equations, but itreeeften to
carry a meaning somewhat similar to that defined below.

Evidently the term ill-conditioned was already in use at tiae. In his paper Turing
introduced the norniV (A ) and the maximum coefficient/ (A) of a matrix A by

N(A) := (Z a?j)lm,

M(A) := max|a], 1.2)
Z7J
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in which we recognizeV(A) as the Frobenius norm and (A) as the maximum
norm where the matriXA is seen as a vector of numbers. With these two quantities
Turing defined theN-condition numberas 2 N(A)N(A~!) and theM-condition
numberasnM (A)M(A™!), wheren is the size of the matrix. He claimed that
these condition numbers are a measure of the degree ohillittaning in a matrix.
Ironically, the quantity that is now known as the spectralmof a matrix was also
defined by Turing under the nameaximum expansiorHe did not use this quantity

to define a related condition number however. Therefore tingber that is nowadays
referred to as the condition number does not exactly matelcdmdition numbers
defined by Turing.

1.4 Condition numbers of the BEM-matrices

Today the BEM is widely used in many application fields. Régidy the issue of
conditioning is often neglected. Usually when solving a BWEh the BEM, it is
assumed that the condition number of the resulting systetmxma modest. The
question is whether this is true.

First we need to remark that a BVP that is ill-posed will auabically lead to
BEM-matrices that have large condition numbers. These Baf@stherefore not
the most interesting problems to investigate. A more istérg question is whether
well-posed BVPs can lead to BEM-matrices that have largeliton numbers. It is
this last class of BVPs that we focus on in this thesis.

Until now little little attention has been given to the catoih number of BEM-
matrices. It has been proven that the condition number ofyiséem matrix is at
least orderN, whereN is the number of boundary elements on a two-dimensional
domain [97]. This holds for the BEM-matrices that corregptmpotential problems
with Dirichlet boundary conditions. Similar results arerided by others [21],
who have shown that some small modifications to the algels@ticof equations
can improve the conditioning of the linear system. In a detastudy for two
specific domains, namely the circle and the ellipse, the BEMpplied to the
Laplace equation with Dirichlet boundary conditions [19)].2 For both domains
analytical expressions for the condition number of the BEsltrix are derived.
These expressions show the dependance of the conditionemuwnbthe radius of
the circle or the aspect ratio of the ellipse. The Laplaceaggn on a circle with
Dirichlet boundary conditions has been the topic of sevetiaér papers [22, 24];
special attention is given to the so-callledal condition numberlt is claimed that
this local condition number is a more accurate indicatottersensitivity of a linear
system than the ordinary condition number, which gives ®sspnistic estimates of
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the sensitivity.

To investigate the condition number of the BEM-matrices itseful to study the
underlying boundary integral equations (BIEs), which faha basis of the BEM. If
the BIE is singular, we may expect that its discrete coumatirghe linear system,
is at least ill-conditioned. In that case the condition nemis large and the linear
system is difficult to solve accurately.

For the BIE arising from the Laplace equation some intamgstesults can be
found in literature. It was observed that the BIE for the 2[plaae equation with
Dirichlet boundary conditions is singular on a domain otaiersize [53, 56, 75, 85].
If the BIE is singular, the homogeneous BIE has a non-trigalution. As a
consequence we can add a multiple of this homogeneous @olidithe solution
of the inhomogeneous BIE, which is henceforth not unique.is Titroduces an
extraordinary phenomenon; the size of a domain affectsrlugianess of the solution
of the BIE.

Singular BIEs also occur for BVPs for vector valued funcsipiior instance
for the plane elastostatic problem. By explicitly evalogtithe BEM-matrices and
computing their condition numbers it is shown that two sieéshe domain exist
for which the BIE is not uniquely solvable [51, 62]. This nuical observation
is formalized to a general theory, stating that for any 2D dontwo sizes exist
for which the BIE for the plane elastostatic problem is siagy27, 95]. There
exists a number of ways to obtain nonsingular BIEs [50], fatance by using the
hypersingular formulation of the BIE for the plane elasyi@quations [16]. For this
formulation no sizes exist for which the BIE is singular.

In essence the equations for plane elasticity are equaktStibkes equations for
viscous flows in 2D. Hence the developed theory for plandieigsalso applies to
the Stokes equations in 2D. This implies that the BIE for ttok&s equations suffers
from the same singularities [41].

The BVPs that we mentioned above, i.e. the Laplace equdtienelastostatic
equations and the Stokes equations, are well-posed prebighen Dirichlet
boundary conditions are prescribed. Still, when solvet tiie BEM, ill-conditioned
matrices appear at certain domains. This thesis providésefuinvestigation on this
phenomenon.

1.5 Objectives

The objectives of this thesis are twofold. First we want tdaob a better
understanding of the conditioning of linear systems thatuocén the BEM. The
second objective is to study the effectiveness of the BEMfparticular application;
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the simulation of the blowing phase in the industrial prdec process of glass
bottles and jars.

1.5.1 Solvability

Almost all research that has been performed on conditionbeusnand boundary
integral equations concerns BVPs with Dirichlet boundaoynditions. For BVPs
with mixed boundary conditions hardly any results are pres®8VPs with mixed

boundary conditions is therefore one of the topics of thesih We investigate the
condition numbers of the matrices that appear when the BEDMésl to solve such
BVPs.

For the BEM-matrix arising from the Laplace equation withxed boundary
conditions on a circle it is possible to estimate its condithumber. We show that
this matrix is well-conditioned, except for the unit ciread circles that are close to
the unit circle. In these cases the condition number is {tefir) large.

For the BEM-matrix for the Laplace equation with mixed boarydconditions
on an arbitrary 2D domain it can be shown that there is oneifgpscaling of that
domain for which the condition number is infinitely large. elacaling for which
this happens is called thezitical scalingand the corresponding domain tbetical
domain

The BEM-matrix for the Stokes equations with mixed boundemyditions on
an arbitrary domain can also have an infinitely large coaditiumber for certain
domains. As the corresponding BIE consists of two equatidimsre exist two
scalings of the domain at which the condition number becanfestely large.

There are several ways to avoid the infinitely large condifiambers at critical
domains. The simplest remedy is to rescale the domain tdhvansize such that the
condition number is bounded. Another option is to add areedquation to the linear
system that guarantees low condition numbers. This extratem is a compatibility
condition that stems from the BVP. A drawback of this opti®thiat we have to solve
a system with a rectangular matrix, which requires diffesmiution techniques. A
third option is to slightly modify the fundamental solutiohthe BVP. By including
a scaling parameter in this fundamental solution it can toevatthat the condition
numbers of the BEM-matrices remain bounded at the critioatains.

1.5.2 Blowing of glass

The singular BIEs that we mentioned above typically occua BD setting. This is
a direct consequence of the logarithmic nature of the furethah solution for BVPs
that contain the Laplace operator. Hence prudence is clalieshen one applies the
BEM to BVPs on a 2D domain. In a 3D setting the fundamentaltsmiufor BVPs

with the Laplace operator does not have a logarithmic terinerdfore singular BIEs
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similar to those in 2D do no occur in 3D. This allows us to satgply the BEM to
BVPs in 3D that contain the Laplace operator.

As a special application we consider the blowing problemistaous fluids. In
this problem a viscous fluid is positioned in a mould and bldaa desired shape.
This blowing process takes place, amongst others, in thestridl manufacturing of
glass bottles and jars. The flow of the fluid is governed by tloes equations and
can be solved with the BEM. This problem typically involvesree boundary. We
will investigate whether the BEM is an appropriate numenicathod to solve such a
problem.

We are aware of several formulations of the BEM. In this thege choose
for the direct symmetric collocation formulation. The dirdormulation involves
functions that have a physical meaning, whereas the indii@mulation uses
auxiliary functions that have no physical meaning. The swtnim formulation,
involving the single and double layer operators, is moreramy used than the non-
symmetric formulation, which incorporates the hyperslagwperator. We prefer
the collocation method above the Galerkin method. Againctiication method
is more commonly used and it does not require a second ini@grstep like the
Galerkin method does.

1.6 Outline of the thesis

The thesis starts with an introduction on the BEMCinapter 2. We demonstrate how
a BVP can be translated into a BIE, and after discretisatidgheddomain boundary,
into a system of linear equations. We illustrate this for tase of the Laplace
equation, but the techniques used to derive the linear rsyate similar for other
BVPs. We also present a number of fundamental results ondbedary integral
operators that appear in the BIE.

In the Chapters 3and4 we study the BEM-matrices for the Laplace equation
on two-dimensional domains.Chapter 3 concentrates on the Laplace equation
on a circular domain with mixed boundary conditions. Theenriglues of the
corresponding BEM-matrix are approximated, which resultan estimate for the
condition number of the BEM-matrixChapter 4 generalizes the results to Laplace
equations on arbitrary 2D domains. For this general clasprablems it is not
possible to estimate the condition number of the BEM-matcsurately, though it is
proven that for certain domains the condition number is iteiy large. This holds
for both Laplace equations with Dirichlet conditions andked conditions. This
phenomenon is confirmed by a number of numerical examplesrdes; ellipses,
squares and triangles. The large condition numbers candigeavby making small
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modifications to the standard boundary element formulatide present a number
of remedies that guarantee low condition numbers.

The extension to BVPs for vector-valued functions is désctiin Chapter 5.
Here we focus on the Stokes equations on a 2D domain. Agasrshiown that for
certain domains the condition number of the correspondiBf/iBnatrix becomes
infinitely large. This happens both for the Stokes equatiitis Dirichlet conditions
and mixed conditions. We present a number of numerical elemtipat illustrate this
phenomenon. To avoid condition numbers that are infiniegd at certain domains
we list several remedies that are more or less similar togimedies for the Laplacian
case.

The domains for which the condition numbers become infiniegige only occur
in 2D. Therefore we can safely apply the BEM on a 3D problenth&Chapters 6
and7 we simulate the blowing phase of glass containersChiapter 6 we present
the mathematical model that describes this blowing probl&he starting point are
the Navier-Stokes equations that describe the flow of a fluBD. These equations
can be reduced to the Stokes equations as the fluid is a cgegpous flow. It is
shown how to transform the Stokes equations to a set of BlEtr discretisation
of the domain we obtain a system of linear equations. In tldg we can compute
the velocity of the glass at any point in time. We use a timegrdtion method to
track the position of the glass surface as time evolv@lsapter 7 gives numerical
results for the blowing problem. We simulate the blowing @fexal containers for a
number of different moulds. We also show another applicaiiiat can be simulated
with the help of the mathematical model for the blowing peosb] the evolution of
viscous drops. Such drops, regardless of their initial, slzéorm to a spherical drop.
We illustrate this process for drops that have the initi@pghof an ellipsoide and a
beam. We conclude this chapter by investigating the roldv@fvarious forces that
appear in the blowing problem, such as gravity, surfacddarend frictional forces.



Chapter 2

Boundary Element Method

This chapter introduces the basics of the boundary elemetihad (BEM). The

method aims at approximating solutions of boundary valwblpms (BVPS). In

particular we use the Laplace equation on a 2D domain as anmedo present
the BEM formulation. For other BVPs the BEM formulation cam dibtained in a
similar manner. First we transform the BVP into a boundatggral equation using
Green’s second identity. Then we discretise the boundatigeoflomain and obtain
a linear system of algebraic equations. Finally we pay ttterio the calculation of

the matrices that appear in these algebraic equations. EMetBat we present here
is the collocation method in a direct formulation, which mg#hat the variables in
the method represent physical quantities.

2.1 Integral Equations

We consider a simply connected dom&iin R? with boundaryl’ = 95). Denote by
n the outward normal ofi. The functionu(z) = u(x,y) for x € Q is the solution
of the Laplace equation, i.e.

o o
ox? = 0y
As we will study mixed boundary conditions in this thesis, didde the boundary’
into two partsI' = I', UT',. AtT", we pose Dirichlet boundary conditions and'gt

we pose Neumann conditions. We introduce the notatiea du/0n as the normal
derivative ofu, onI'. Then the BVP for with mixed boundary conditions reads

{v% = 0, ze,

V2 = =0, z €. (2.1)

u o = i@, zely, 2.2)
q = Qa :I)EPq,

10
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n

<

Figure 2.1: The domairf2 with boundany, which is divided into a Dirichlet parf’, and a
Neumann part’,,.

wheret andg are known functions representing the boundary data.
Letxp andx( be two points in2. The Euclidean distance betweep andx
is

r(@p,zq) = |wp — zqlls = \/(wp — 20)* + (yp — y0)?. (2.3)

A fundamental solution for the Laplace opera¥ot is given by
1 1

G(Q?P,iBQ) = % og m, LTp,IQ S Q, (24)
which means that
VéG(:BP,:BQ) = —d(xp —xqQ), Tp,xg € L (2.5)

The subscript) of the Laplace operator denotes differentiatiorctpandd(x) is the
Dirac-delta function. Note thaf*(zp,zq) := 1/2rlog(a/r(zp,xq)), @ € RT,
is also a fundamental solution for the Laplace operator. fdmmetery can be
chosen as a characteristic length scale of the dofaaihus making the argument of
the logarithm dimensionless.

Green’s second identity for two functiomsandv states that

[ (wwq)V?u(ao) - viwe)VPuleq) a2~
Q

[ (@a) (o) ~ o(ea) 5 (@) (2.6)
I
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Figure 2.2: The pointz p lies in the interior of the domain.

For v we substitute the solution of the BVP (2.2), and foiwe substitute the
fundamental solutionG(xp,xg), where xp is regarded as a parameter. As
V2u(zg) = 01in €, Green’s second identity yields

/u(mQ)VéG(a:p, xQ)dQlg =
Q

/(u(xQ);l—i(wp,mQ) - G(a:p,a:Q)q(a:Q)>dFQ. 2.7)
I

The integrals that appear in this identity must be evaluatacefully, as the
fundamental solutiorG has a logarithmic singularity atg = xp. Hence the
location ofxp greatly influences the outcome of the integrals.

First we consider the case thap is in the interior of the domaif. In that case
we position a small circleB. with radiuse and boundary. around the pointcp,
such that the entire circle is in the interior@f as is shown in Figure 2.2. In this way
G does not have a singularity in the domé&in- B. and we havWQQG = 0 in this
new domain. Green’s second identity applied to the dorfain B. becomes

/ (u(mQ)a—GQ(mp,xQ) - G(:np,xQ)q(xQ))er =0, zp e, (2.8)

on
R

Note that no domain integrals appear in this identity. Thmai@ing boundary
integral consists of two contributions; an integral oveand an integral over the
circular boundany'.. The outward normal o, is in the direction of the point p.

Therefore the local coordinatethat described’., runs in clockwise direction over
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the boundaryp) < 6 < 27. To calculate the integral ovél. we note that
ong PyQ xgel.  or P xgel. 2

Hence the integral ovdr. amounts to

/ (u(wm%(wp,m) ~ Glar.zq)u(xq) ) dlg
I'c

woel.  2me’

2
1

1 1
=5 (U(wQ)g —log - Q(wQ))Ed‘g
0

2
1
= o0 (u(mQ) +eloge q(a:Q))de. (2.10)
0
Ascloge — 0for e | 0, the last integral approachesxp) whene tends to zero.
Substituting this in (2.8) we obtain

u(zp) + /(u(:nQ)gG (p,2q) — Glap, 2q)a(zq) )l =0,  (2.11)

angq
r
for xp € Q. This identity relates the values ofin internal pointse p to values ofu
andgq at the boundary.
Next we consider a point p at the boundary'. Again we position a small circle
B. with radiuse and boundany'. around the pointcp. A part of the circleB. lies
within the domair?; this part is denoted byp.. Likewise, the part of the boundary
I'. that lies within(2 is denoted by, as is shown in Figure 2.3.
We apply Green'’s second identity on the new dom@in- B.. In this domain
V2u(zq) = 0 andVEG(zq, zp) = 0, since the singular pointg = xp is outside
the domain. The boundary of the domdin— B! is given byT" + I'. — C., where
C. is the part of the boundarl that lies within B.. Hence Green’s second identity
results in

| (se0)y(wo.wr) - Glag.arilee)JiTo 0. @212)
I+ —C. ©

which can be split into an integral ovEr— C.. and an integral over’.. Whene tends
to zero, the integral ovdr — C. becomes an integral over the whole boundayy.e

i [ (u(wm%mwp)—G(wQ,wpm(wQ))er

e—0

I'—-C.

_ / (u(xQ)%(mQ,mp)—G(mQ,mp)q(xQ))er. (2.13)
I
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N

o

Figure 2.3: The pointzp lies on the boundary of the domain.

If the boundary is smooth andis small, the circle segmeit. will be the half of
the circleT'.. Therefore, wher tends to zero, the integral ov€t equals half the
integral overl’, i.e.

. oG
limn (“W%
e

(mQ, xp) — G($Q> mP)Q(wQ)) dl'g

1 oG

-2 / (u(mQ)%(xQ,xp) - Glzg,p)(zq))dlq. (2.14)
I.

As shown in the case in whicbp is in the interior of2, the latter integral approaches

u(xp) ase — 0. Substituting this result and (2.13) into (2.12) yields

oG

%u(xp) + /(u(:nQ)%(mP,wQ) - G(mp,xQ)q(xQ))er —0, (2.15)
I

for xp € I'. This identity relates the boundary valuesuodndq. No interior points
appear in the equation and thus we have obtained a boundagrahequation. By
solving this integral equation we find the valuesuaindq at the boundary. Knowing
these values, equation (2.11) can be used to directly eealis internal points. This
is one of the benefits of the BEM, i.e. internal values areinbthwithout having to
solve additional integral equations.

We can summarize the results in (2.11) and (2.15) with thegiad equation

clxp)u(xp) + /(u(mQ);l—C;(wp,mQ) — G(zp, acQ)q(acQ))dI‘Q =0,

I
(2.16)
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where the functior(x p) is given by

o 1, xp e,
c(xp) == { %, xpel. (2.17)
Forzp € 2 andxg < I' we introduce two kernel functions,
1 1

KS = G e —1 - @@

(mP7mQ) (mP?wQ) 27'(' Og T(:BP,:BQ)’

oG 1 (xp —xg,nQ)

Kd — Sl L 2.18

(xp,xq) o (xp,xQ) 2r 2 (zp,aq) ( )

where (x1, x5) is the standard inner product. These definitions turn thegnal
equation into

clxp)u(xp) + /(Kd(mp,mQ)u(mQ) - Ks(acp,mQ)q(mQ)>dI‘Q =0.
r

(2.19)
At this point we introduce theingle and double layer potentiajiven by
(K°q)(zp) = /Ks(wp,an)q(a:Q)dFQ, (2.20a)
I
(lCdu)(acP) = /Kd(acp,mQ)u(mQ)dI‘Q, (2.20b)
r

respectively. The operators® and K¢ are called thesingle and double layer
operator With the potentials, we write the integral equation (2.i®}hort-hand
notation,

(T + K% u=K?q, (2.21)

whereZ is the identity operator. In the sequel we assume that thetions « and

g are as smooth as is required for the mathematical procdssethéy are involved

in. The boundary integral operatot® and ¢ are well-known and their continuity
properties have been investigated in detail [29]. Someclrasults are presented in
the next section.

2.2 Operator theory

The boundary integral operatok$’ and K¢ have been the topic of extensive study.
In this section we list some basic results for these opesator
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Theorem 2.1 Let(2 be a bounded domain iR? with smooth boundary/. The single
layer operatorC® maps functions from the Sobolev spa€¢&I") isomorphically to
Hr+1(r)_

Proof. See [14, p. 258, 287]. [ |

Theorem 2.2 Let Q) be a bounded domain ii®? with smooth boundany’. The
boundary integral operatoiC given by

oG 1 1
= [ == L, +=f=(K'+=T 2.22
Kf = [ G f@ry+ 57 = (14 5T)1, (2.22)

is a so-called Fredholm operator with index zero that mafsI") to H" (T").
Proof. See [14, p. 263, 289]. |

If the Fredholm operatok has index zero it follows that the kernel kfand the
kernel of its adjoint’C* have the same dimension. In Chapter 5 we make use of this
concept to apply the well-known Fredholm alternative.

Theorem 2.3 The single layer operatokC® is a compact and self-adjoint operator.

Sketch of proof. It can be proven that fok in Ls([a,b] x [a,b]) and satisfying
k(s,t) = k(t,s) almost everywhere, the integral operatodefined by

b
(Kf)(t) ::/ k(t,s)f(s)ds (2.23)
is compact and self-adjoint oo ([a,b]) [46]. After parameterisation of the
boundary, the operatd€® defined in this chapter can be written in this form, and
thusKC* is compact and self-adjoint. Note that also the single layparator for the
Stokes equations, which will be introduced in Chapter 5, lmamvritten in a similar
way as (2.23). Hence the single layer operator for the Stegaations is a compact
and self-adjoint operator. [ |

Theorem 2.4 The eigenvalues of the single layer operakrhave an accumulation
point0.

Sketch of proof. As K* is compact and self-adjoint the spectral theorem can
be applied, which is formulated as follows [46]. Litbe a compact self-adjoint
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operator on a Hilbert spadé. Then there exists an orthonormal systemes, . . . of
eigenvectors ok and corresponding eigenvalugs, \o, . . . such that for alke € H,

Ko =" Ae(x, éx) (2.24)
k

where(+, -) is an appropriate inner product éh If {\;} is an infinite sequence, then
it converges to zero. We remark that the spectral theorenalsanbe applied to the
single layer operator for the Stokes equations. [ |

The last theorem indicates that the eigenvalues of the l@ynadtegral operator
KC* converge to zero, regardless of the dom&in In the next chapter we will
analytically compute the eigenvalues /6f for a circular domain and we will see
that indeed the eigenvalues accumulate. at

2.3 Algebraic Equations

To transform the integral equation into a system of algeleguations, we start with
the integral equation as given in (2.19) and chaegec T',

%u(mp) + / K@ p, 20)u(zo)dlg = / K*(ap, z0)d(g)dlo.  (2.25)
I I

We selectV pointsy,, k = 1,..., N, at the boundary'. Two consecutive points
are connected by a straight line elemEgf which is called doundary elemenfThe
center of each element is referred to aslocation noder,. Then we replace:p

in (2.25) by thel-th collocation noder;, [ = 1,..., N, and replace the integral over
I" by a sum of integrals ovéry, yielding

1 N N
Sul) + > / K@y, zq)u(zq)dlg = Y / K*(@;,20)q(xq)dlo,
kZIFk k:lrk
(2.26)

forl =1,...,N. At each elemenl';, the functionsu andq are approximated by the
constant coefficients;, := u(xy) andg := q(xy) respectively. This gives us

N N

1

§ul+ E uk/Kd(a:l,a:Q)dFQ = E qk/KS(:I)l,:I)Q)dFQ, (2.27)
k=1 T k=1 Ty

forl =1,..., N. One can also choose to approximatendq by linear, quadratic, or
even higher order functions. This does not make the BEM muatermomplicated,
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Figure 2.4: The boundary of the domain is approximated¥yinear elements.

though the amount of work needed to solve the equationsdeege In the subsequent
chapters we will use constant or linear approximations.only
We introduceN x N matricesG andH by

le = /Ks(ml,mQ)dI‘Q, l,/{:L...,N,
Ty

Hy, = /Kd(ml,mQ)dFQ, ILk=1,...,N, (2.28)
Ty

and vectoras andg by

u = [ug,...,un|’,
q = [ql,...,qN]T. (2.29)

Then equation (2.27) can be written as
1
Ju + Hu = Gq. (2.30)

With H := I+ H we have
Hu = Gq. (2.31)

This linear system consists aWV algebraic equations, whereas there arg
coefficients, namely the coefficientg andg; at the N elementd’;,. However, the
BVP (2.2) gives us Dirichlet and Neumann boundary cond#itor v and ¢ at the
boundary. Ifl";, is a boundary element at which a Neumann condition is givem t
qr is a known coefficient whiley;, is an unknown coefficient. Vice versa,Iif, is
a boundary element at which a Dirichlet condition is givdrertu; is known and
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qr unknown. In this way the boundary conditions eliminaftecoefficients and we
obtain a system oN equations for the remaininy unknown coefficients.

At this point all coefficientu, are at the left-hand side of (2.31), including the
ones that are known. All coefficiengs are at the right-hand side, including the ones
that are unknown. Obviously, we want to have all the unknowffecients on the
same side to solve the equations efficiently. For this goaheed to reorder the
equations in a suitable way. Ti¢h equation of (2.31) is given by

Hyuy + Hppus + ...+ Hiyuy = Gugi + Graga + ... + Givgn. (2.32)

Suppose thati; is given via a Dirichlet condition at the first elemdnt while ¢; is
unknown. To move the term witty in (2.32) to the right-hand side and the term with
¢1 to the left-hand side, we substradi; u; andGyp¢; from the equation, yielding

—-Gnq + ﬁ12u2 +...+ ﬁlNUN = —f]llul + Gpge + ...+ Gingn- (2.33)

In this way we move all unknown coefficients to the left-hamesand all known
coefficients to the right-hand side. Without loss of genstalve may assume that
the firstm boundary elements have Dirichlet conditions and the reimgify — m
have Neumann conditions. (We can always obtain such aisituby renumbering
the elements.) After reordering, the¢h equation is given by

~Gnqi — . — GmGm + Himg1tma1 + ...+ Hivun
=—Hpui — ... — Hppum + Gims1@m+1 + - .- + Givgn,  (2.34)

We defineN x N matricesA andG by

-G -+ —Giy Himyr -+ Hiy

A = . . ,
~Gn1 - —GNm Hyms1 -+ Hyw
—Hy o —Hyw Gy -+ Gin

G = ; ; : e (2.35)
—Hy1 -+ —Hym Gmi1 -+ Gy

and vectorsc andb by
X = [qlv"'7Qm7um+1>---7uN]T7
b := [ulv"'auqum—l—la"'7QN]T' (236)

With these definitions the equations can be written in thiediohg way,

Ax = Gb. (2.37)
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The proces described above can be formalized by introdunaigicesP; andPs,

P1 = |:1Tm:| 5 P2 = |: (Z) :| 5 (238)

Ime

wherel,, is the identity matrix of sizé. The matrixP; has sizeN x m and is a
matrix that selects the first. columns from a matrix. Likewise, the matrR; is of
size N x (N —m) and selects the lagt — m columns from a matrix. With these
matrices,A andG are constructed froril andG with

A = [-GP,|HP,,

G = [-HP,|GPy, (2.39)
By introducingf := Gb, the system in (2.37) is written as

Ax =f. (2.40)
This notation gives the linear system of equations in thedsted form. The matrix

A is a dense matrix, but in many cases the matrix is not vergldfgr such a matrix
a direct solver can be used to solve the linear system.

2.4 Matrix Elements
The matricesA and G are constructed from the matric# and G, which are
obtained by evaluating the integrals given in (2.28). Sgppthat the elemernit,

is a straight line fromeg := (0, y0)? tox1 := (z1,y1)”. A parameterisation of this
element is given by

:I)(f) = %(ZUO + :131) + %f(:l)l — 2130), (241)

where¢ is a local coordinate at the element]l < ¢ < 1. The Jacobian of the
parameterisation is

2 2
7€) = \/ (%) + (L) - Vol rm-wr = 2 @)

whereL, is the length of elemerity.
Substitution of the parameterisation and the Jacobiandnritegrals of (2.28)
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&=/

r(x; ,xk)

X, '65:_]

Figure 2.5: The local representation of an element.

yields the following expressions for the matrix elements,

1 1
G = — [ log—dl
tk 27 8 r(x;, Q) @Q
Ty
. 1
k Lo — L1 L1 — Lo
- = 1] _ _
1 (x; — g, MQ)
Hy = — [ T@Re/ p
21 r2(zy, xq) Q
I
1
L xp — TSTL _ cTIT gy
_ _k/< =TT ) (2.43)
Am |, — BoFEL — ¢ BH0|

When! # k, the integrands are nonsingular and we can evaluate thgratgeby
using standard numerical integration, see Section 2.5.

When!l = k, the collocation pointz; is in the center of the element over which
is integrated. As a consequence the integrands have aiftoga) singularity and
we cannot use standard numerical integration schemes. \ldoVire this case we can
evaluate the integrals analytically. Since the integrand’j is symmetric inr we
only need to parametrise one half of the element, i.e.

x(§) =z — &(x; — 1), (2.44)

where0 < ¢ < 1. The Jacobian of this parameterisation is

J(&) == \/(%)2 + <@>2 =Vt — 212+ (i —n)? = %Lz- (2.45)

dg



22 Chapter 2 Boundary Element Method

This leads to the following expression for the matrix elem@y,

1
1 1 1 1 1
Gy = — [log———dl'g=—-2-— [ log(=L;&)d¢ - =L
i 27r/ 08 r(x, Q) @ 27r/ og(2 lg) ¢ 91
I, 0
I 9
= —(1+log—). 2.4
5 (1 +1og Lz) (2.46)

To compute the matrix elemerf;;, the inner product{x; — xq,ng) has to be
evaluated. Here the vectaj — x coincides with the elemedt;, as bothe; andxg
are atl';. Hence this vector is perpendicular to the normgl at the element’;, and
consequentlyx; — xzg,ng) = 0, for all zg € I';. This implies that the diagonal
elementsH;; vanish,

Hy = 0. (2.47)

2.5 Numerical integration

After parameterisation of the boundary elements, the mategthat have to be
evaluated are of the form

1
/ F)ds (2.48)

If fis nonsingular on the intervagl-1, 1], we may approximate the integral with a
standardsauss-Legendre quadratuseheme,

1 m
/ O~ 3w f(6), (2.49)
- =1

whereg; are theknotsandw; theweights If f has a weak or logarithmic singularity at
the interval[—1, 1], we either have to resort to analytical expressions as ithescin
the previous section, or use special numerical integraahemes for integrals with
weak or logarithmic singularities. For an integral with aried that has a logarithmic
singularity the following approximation is often used [348],

1 m ~
/O 7€) log éde =" (6, (2.50)
=1

whereé&; andw; are the knots and weights for the quadrature rule with ltiyaic
weight function. Note that the integration interval forglapproximation runs from
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X
Figure 2.6: Two boudary parts are separated by a distarce

zero to one, so a transformation of the original integraitmerval is required to apply
this quadrature rule.

One other situation in which the numerical integration rsesplecial attention
is a geometry with a thin structure. If two boundaries or pafta boundary are
separated by a small distanéesome integrals become near singular and are difficult
to evaluate numerically. This is caused by the fact thatsfoall d, a collocation
nodex; at one boundary approaches an elenignbver which is integrated at the
other boundary, see Figure 2.6. This phenomenon is c#iieeshape breakdown
(TSB) and has been reported for the Helmholtz boundary riategjuation [32, 69].
In this thesis we show that a similar phenomenon occurs @Bl for the Stokes
equations in 2D (Section 5.6). In this case, the Gauss-ldrgequadrature is not
accurate enough. A more efficient way to evaluate the integsaby using an
adaptive numerical integration scheme.



Chapter 3

Laplace equation at
two-dimensional domain

In the current chapter and the subsequent chapter we igatessthe boundary integral
equation (BIE) for the Laplace equation on a two-dimendiclmenain. It turns out
that for certain sizes and shapes of the domain this BIE gatan. In this chapter we
concentrate on Laplace equations on circular domains. ®thetsymmetry of these
domains the boundary integral operators can be analysdg. elsparticular it is
possible to compute the eigenvalues of the integral operataalytically. Moreover,
in the case of Dirichlet or Neumann boundary conditions ftassible to use these
eigenvalues to derive a accurate estimate for the conditionber of the BEM-
matrices. Also for mixed boundary conditions an estimatelfe condition number
of the BEM-matrix can be obtained by combining the informatirom the Dirichlet
and Neumann problems.

3.1 Eigenvalues ofC* and K¢

In many BIEs thesingle and double layer operat@ppear. The analysis of these
boundary integral operators is a well-chartered area. Ndapgrs discuss the spectral
properties of the Laplace and Helmholtz integral operaasraell as the eigenvalues
of the corresponding discrete operators [1, 15]. When cocting preconditioners
for the BEM-matrices, the spectral properties of the bomnddegral operators also
need to be addressed [71, 81, 87]. We use the spectral pespefithe boundary
integral operators to investigate the condition numbeitbh@if discrete counterparts,
the BEM-matrices. First we compute the eigenvalues of tlegaiprs for a circle.

For a circular domaif) with radiusR it is possible to compute the eigenvalues

24
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of the boundary integral operatok&’ and ¢ analytically. First we introduce polar
coordinategp, #) and(p’, 0"), and write the pointg and’ in 2 as

x = p(cosh,sind)l,
' = p (cos® sin@), 0<p,p <R, 0<86,6 <2r. (3.1)

Using these new coordinates the distange, ') between two points andx’ at the
boundaryl is given by

r2(z, ') = 2R?*[1 — cos(d — 0')], x,x’ €T, (3.2)

while the normaln = n(¢’) at a pointz’ € T is given byn = [cos¢’,sin¢']T.
Substitution of these expressions in the single and doalker Ipotentials yields

(K2q)(0) = __R/[QlogR—Hog(Q—2cos(9—9/))]q(9/)d9’,
7I
0
1 2
(Klu)(0) = — / u(6')do'. (3.3)
7I
0
The eigenvalues of the double layer operatét are easily computed. We
subsequently insert far the functionsl, cos(k6), andsin(kf), k = 1,2,..., and
find
1 7 1
d - = r_ _
K= - / do >
0
1 2
d -~ / I _
K®cos(kf) = 47T/cos(k:9 )do" =0,
0
1 27
Kisin(kh) = - / sin(k6')df’ = 0. (3.4)
7I

0

From this we conclude that1/2 is an eigenvalue of¢ with eigenfunctionu =
and0 is an eigenvalue with eigenfunctions = cos(kf) andu = sin(k6), k
1,2,....

To determine the eigenvalues of the single layer opergtowe introduce the
function f(x) := log(2 — 2 cos x). The Fourier series of this function is

L,

flx) ~— Z % cos(nx). (3.5)
n=1
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eigenvaluedC® eigenfunctionsC? eigenvaluesC?  eigenfunctionsC?
—Rlog R 1 —% 1
% sin(k0) 0 sin(k0)
cos (k@) cos(k6)

Table 3.1: The eigenvalues and eigenfunctiongifand K¢ for Q a circle with radiusR.

We setr := 6 — 6§’ and substitute the series in the single layer potential taiob

2

S _ _E _ - g ! / /
(K'q)0) = -1 /[2logR Zlncosn(H 0 )]q(e )do
0 n=
R T o 2
_ - _ = /
= /[2 log R z; - (cos(n@) cos(nf")
0 n=
+ sin(n#) sin(nﬁ/))] q(0")do'. (3.6)
Also for g we insert the function$, cos(kf), andsin(k6), k = 1,2, .... Using some

well-known results for integrals of products of trigonometunctions, we find

2m
K1 = —E/Qlongﬁ/:—RlogR,
47
0
R [/ 2 R
s v _Z 2 / / -
KC? cos(kO) = 47?/( kcos(k@) cos” (k0 ))d@ 5% cos(k@),
0
R [/ 2 R
E - 2 2 / [
K sin(kt) = —— / ( - sin(k0) sin® (k0 ))de sin(k0).  B.7)

From this we conclude that Rlog R is an eigenvalue of* with eigenfunction
g =1, andR/2k is an eigenvalue with eigenfunctions= cos(kf) andq = sin(k6),
fork=1,2,....

Table 3.1 gives an overview of the eigenvalues and eigetiturgcof the operators
KC# andC? for a circle with radiusR, cf. [1, 15].
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3.2 Eigenvalues of the matrices

In this section we investigate the eigenvalues of the BEMriges G andH, which
originate from the operato#s® andC?, see Chapter 2. In particular we are interested
in the correspondence between the eigenvalues of the @htegerators and the
eigenvalues of the matrices.

First we investigate the correspondence between the eilyes/of the integral
operator/C* and the eigenvalues @&. We do this for the cas&® = 1. Using the
results from the previous section, we know that the integpatator has the following
eigenvalues,

Me(KS) € {1/2, 1/4, 1/6, 1/8, ..., 0} . (3.8)

N M(G) M(G) M(G) MG)  ANG)

8 0.5122 0.2472 0.1686 0.1482 —2.0-1072
16 0.5031 0.2480 0.1627 0.1207 —3.9-1073
32 0.5008 0.2493 0.1652 0.1230 —8.9-10~*
64 0.5002 0.2498 0.1663 0.1244 —2.1-10"*

128 0.5000 0.2500 0.1666 0.1248 —5.1-107°

Table 3.2: The four largest eigenvalues Gf and the smallest fofz = 1.

Let N be the number of boundary elementsl'at Then G has sizeN x N
and hasN eigenvalues\;(G) > ... > Ay(G). In Table 3.2 we give the four
largest eigenvalues;, A2, A3 and )\, and the smallest eigenvalugy of the matrix
G for several values ofV. We observe that the eigenvalues @f approximate
the eigenvalues oK°. The numerical test shows that the largest eigenvalue of
G converges to the corresponding eigenvalueksf with O(N~2). The other
eigenvalues in Table 3.2 converge to the correspondingheadiges ofIC® slower.
In general the convergence for the smallest eigenvaluesisltdwest.

Further on in this chapter we need the eigenvaluds td compute the condition
number ofG, in particular the largest and smallest eigenvalue. TaldesBows that
we can approximate these eigenvalues by the corresponijagvalues ofC?. We
observe that the eigenvalues are approximated rather well.

In Figure 3.1 we show the relative error made by approxingatire largest and
smallest eigenvalues & by the largest and smallest eigenvaluesCéf In this case
we choosek = 2. We see that the error for the largest eigenvalue decreagietyrto
zero. The error for the smallest eigenvalue is much larggmaximately16%. Later
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Figure 3.1: The errors for approximating the largest and smallest eigdume of G by the
largest and smallest eigenvalue/6f for R = 2.

on we will see which influence these errors have on the essnaitthe condition
number of the system matrices.

The results from Section 3.1 show that the boundary integparator? has
only two distinct eigenvalues. Let;(H) > ... > Ay (H) be the eigenvalues of
H, then we may expect that the firdf — 1 eigenvalues will be (almost) equal.
Hence it is sufficient to study; (H) and A\ (H). The eigenvalues of the integral
operatorC? are independent oR, so we may expect that the eigenvalues of the
corresponding BEM-matriHl are also independent &. Hence we choos& = 1
and compute the eigenvalueskffor several values aV. Table 3.3 shows the largest
and smallest eigenvalue &, which approach the eigenvalues/6f as N goes to
infinity. The numerical test shows that the rate by which bi@ppens id /N. Hence
the eigenvalues ok? provide accurate estimates of the eigenvalues of the BEM-
matrix H. However, for the circular domain we can even compute therw@ues of
H analytically. Indeed, for the matrix elementskdfwe find forl # k,

= ——1 .
wr | e AnR (3.9)

1
Hlk: = /Kd(wp,mQ)er = ——F—=
Tk Ly

with L the length of elemerif;,. Note that all elements have equal length, namely
L, = 2Rtan(w/N). Substituting this in the matrix elements above results in

1 us
Hlk = —% tan N, l 7é k. (310)
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N  An(H) A (H) abs. erron\ (H)
8 6.59-1072 —0.462 3.85-1072
16 3.17-1072 —0.475 2.51-1072
32 1.57-1072 —0.486 1.41-1072
64 7.82-1073 —0.493 7.40 - 1073
128 3.91-1073 —0.496 3.80-1073
256 1.95-1073 —0.498 1.90-1073

Table 3.3: The eigenvalues & for R = 1.

Recall that the diagonal elementskdfare equal to zero (see (2.47)). Thus the matrix
H has a very simple structure, namely zeros on the diagondltte same non-
zero number in all off-diagonal elements. For such a makmxdigenvalues can be
computed analytically, which results in

N-1_ = 1 1 1
MH) = - fan — A —= 4+ — —
1(H) or UN 2+2N+O<N3>’
1 o 1 1

One may verify that these expressions give the same eigmw/als presented in
Table 3.3.

3.3 Dirichlet problem

In the subsequent sections we investigate the conditiorbeuiwf the matrices that
appear in the BEM. For a generidl x N matrix A, the condition number is defined
as the ratio of the largest and smallest singular value,

Umax(A)
Umin(A) .
For symmetric matrices the singular values are equal to liselate values of the
eigenvalues. Hence whek is symmetric, the condition number is computed as
max |A(A)]
min |A(A)|
Consider the Laplace equation on the circle with Dirichletitdary conditions.
In this caseu = w is prescribed at the whole boundary. The BIE (2.21) reduzes t

Ksq = f. (3.14)

cond(A) := (3.12)

cond(A) := (3.13)
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Here f = (%I + K%)a is a known function depending on the boundary data
Similarly the algebraic equations (2.30) reduce to

Gq=f, (3.15)

wheref := (3I+H)uis a known vector. As th&/ elements and nodes are uniformly
distributed over the boundatiy, the matrixG is symmetric. In that case the condition
number ofG can be computed as the ratio of largest and smallest eigenealG.
Let N be even. Then thé/ eigenvalues ofx may be approximated by the firat
eigenvalues ok*,

kR
2k’ N’
with £ = 1,2,...,N/2 — 1 and where the eigenvaluel/2k have geometric

multiplicity two and the other eigenvalues geometric nuliitity one. The condition
number can thus be approximated by

—Rlog R, (3.16)

max((maxlSkSN/Q,l 2—}2) , R |log R|)

cond(G) =
min((minlSkSN/g_l %) ,R |10g R‘)

max (%, |log R|)

min (%, |log R|) (3.17)
In Figure 3.2 we plot the approximation of (3.17) as a functad the radiusR
for four different values ofN: 4, 8, 12, and16. Note that the behaviour of the
condition number as shown in the figure is in good agreemetit thie results in
literature [19, 20]. ForkR = 1 the condition number jumps to infinity. This implies
that the linear systei@q = f is singular for the unit circle. In Chapter 4 we elaborate
on modifications of the standard BEM formulation to avoidrssimgular systems.
For R — 0 the condition number also increases to infinity, reflectimg équations
becoming singular when the domain shrinks to a single pairfeigure 3.2 a number
of regimes can be distinguished, in which the behaviour efdbndition number is
different. To distinguish these regimes we write the esinadithe condition number
in (3.17) as

m €71/N§R<1 al’ld1<R§€1/N,
cond(G) ~ % e 12 < R<e YN ande!/N < R< 61/2,(3.18)
NllogR| 0<R<e 1?2 ande!/? < R < oo.

To study the accuracy of the approximation in (3.17), we ebd® = 2 and
N > 2. Inthat case’/2 < R < oo and the condition number @ is estimated by

cond(G) ~ N log 2. (3.19)
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Figure 3.2: The approximation of the condition numberAfas a function of the radiu®
for several values aiV.

N cond(G) estimate error cond(G) for estimate error
NlogR (%) modified fund. sol. N/2 (%)

8 5.06 5.55 9.7 3.68 4 8.0
16 9.65 11.09 14.9 6.96 8 14.9
32 19.09 22.18 16.2 13.75 16 16.4
64 38.07 44.36  16.5 27.44 32 16.6
128 76.09 88.72 16.6 04.88 64 16.6

Table 3.4: The exact condition number &, and its approximation, for standard BEM and
for BEM with a modified fundamental solution.

In the second and third column of Table 3.4, we give the trdaevaf condition
number of G and its estimate for several values &t In the fourth column we
give the relative error between true value and its estimatas error is related to
the difference between the eigenvalues of the ma#iand the eigenvalues of the
operatorC®.

In Figure 3.2 and (3.18) we observe that the condition nurob&r has a minimal
value of N/2 for e=1/2 < R < e=1/N ande!/N < R < e!/2. By rescaling the circle
such that its new radius is in one of these two intervals, trelition number can
be minimized. Another way to minimize the condition numbgihy modifying the
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fundamental solution of the Laplace operator by includirigchor v,

1 «

G(r) = — log (—) . (3.20)

2 r
This changes the eigenvalueRlog R of K¢ to —Rlog(R/«). In that case the
estimate for the condition number &f becomes
max (3, |log R/al)
min (%, |log R/a|) '

cond(G) ~ (3.21)

By choosinga = Re~!/? the nominator reduces g2 and the denominator to/N.
As a consequence we hasend(G) ~ N/2, which is the smallest value reached in
Figure 3.2. This agrees with the theory that the conditiomiper of the BEM-matrix
for a Laplace equation with Dirichlet conditions on any 2Drdon can be minimized
to O(N) [97]. In the last three columns of Table 3.4 we show the efiéttte strategy
of modifying the fundamental solution. We give the true dtdad number ofG with
modified fundamental solution, the corresponding estimét¥ /2, and the relative
error. We observe that the condition number for the new madriapproximately
25% smaller than the condition number of the original matrix.eThost important
gain however is that the condition number does not becomdtelfi large anymore.

3.4 Neumann problem

In this section we study the Laplace equation on a circle Widumann boundary
conditions. In this case = ¢ is known at the whole boundary and the BIE (2.21)
reduces to

(%I + KN = f. (3.22)

Here f := K#q is a known function depending on the boundary data. Sinyildue
algebraic equations (2.30) reduce to

Hu = f, (3.23)

wheref := Gq is a known vector. As théV elements and nodes are uniformly
distributed over the boundary, the matrixH is symmetric. Hence the singular
values of H are equal to the absolute values of the eigenvaluedHpfand
consequently

I:I . .

- . Umax(
cond(H) = o ()

Umin(
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Figure 3.3: The condition number dff as a function ofV.

Note that bpth/\l(f{) and\y (H) are positive. As the exact eigenvaluesHfare
known andH = I + H we thus find

~ 1 1 T
)\1(H) = 5 + % tan (N) y
~ 1 N-1 T
A(H) = 5 ———tan (N) . (3.25)

Consequently the condition numberHfis equal to

cond (F) — T+ tan7/N

~|m—= (N —1)tan7/N|’ (3.26)

In Figure 3.3 we show the condition numberkfas a function ofV. For N > 10,
the condition number shows a strong linear behaviou¥ irRealizing that for large
N we havetan /N ~ 7 /N, we find for the condition number

T+ /N

cond(H) ~ T (N 1)n/N =N +1, (3.27)

which confirms the linear behaviour from the figure.

The Laplace equation with Neumann boundary conditions issgence an ill-
posed problem. This is reflected by the zero eigenvalue obthmdary integral
operator%I+ K¢; the corresponding BIE (3.22) is singular. Hence we may eixae
singular system for the discrete equatidfia = f, i.e. an infinitely large condition
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number ofH. Nevertheless, the condition numberkfonly grows linearly with/V.
This is a consequence of the discretisation of the problehe smallest eigenvalue
of the discrete problem, i.e. the smallest eigenvaludlofis not exactly equal to
zero, but approaches zero as the discretisation of the laoyhécomes finer, i.e. the
number of element® increases.

3.5 Mixed boundary conditions

In this section we consider the Laplace equation on a ciréte mixed boundary
conditions. We assume that the first elements of the boundary have Dirichlet
boundary conditions and the ladt — m elements Neumann conditions. We can
always reach such a situation by renumbering the elemehtsBIE reads

(%z + K = Ko, (3.28)
while the set of algebraic equations is given by

(%I +H)u=Gq. (3.29)
As described in Section 2.3 the latter equations can beenréds

Ax =T, (3.30)
where the matriA is constructed from the matric€ andH by

A = [-GP,|HP,|. (3.31)

In this section we derive an estimate for the condition nunalbéhe BEM-matrixA.

Due to the symmetry of the boundary discretisation the wetiG and H are
circulant matrices [33]. Given the first row of such a matrix, one olgdime other
rows by a cyclic shift of the first row. An important propertyacirculant matrixX
is that it can be decomposed¥s= F*AF, whereA is a diagonal matrix containing
the eigenvalues aX. The matrixF is the so-calledrourier matrix whose elements
are defined by

x Lo e
E} = \/—Nw(l Dk=1). (3.32)

The asterisk denotes complex conjugation ang= ¢2™/V is the N-th root of unity.
The Fourier matrixF' is a unitary matrix. We apply the decomposition property of
circulant matrices t&x andH,

G = F*A(F,

H = F*AyF. (3.33)
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Here A and Ay are diagonal matrices containing the eigenvaluesioand H
respectively. Here the eigenvalues@fare replaced by the eigenvalues/of and

for the eigenvalues off we use the exact expressions in (3.25) Substituting the
decompositions fo6 andH in (3.31), we writeA as

A =F*|—AGFP, | AyFP,]. (3.34)
We defineF'; := FP; andFs := FP, to find

A =F*[-AgF1 | AgF,. (3.35)
By introducing two other diagonal matrices and D by A := AéﬂA;/2 and
D := AlG/QA}{/Q, we obtain®

A = F*D[-AF; | A"'F,]. (3.36)
We also introduce QR-decompositionsAF; andA~'F, as

AFl = QlUlv
ARy, = Q,Us. (3.37)

The columns 0fQ; andQ, form bases of the subspaces which are spanned by the
columns ofAF; andA~'F,. The matricedJ; andU, are upper triangular matrices.
With these decompositionA can be written as

A =FD [—Ql | QQ} [ Iél & ] — F*DQU. (3.38)
~——

————
Q U
Since the unitary matri¥' has condition number equal towe find
cond(A) < cond(D) cond(Q) cond(U). (3.39)

Hence to bound the condition number Af we need estimates of the condition
numbers of the matricd®, Q andU.
Estimating cond(D)

The matrixD is the product of two diagonal matrices of which we can apipnaxe
or determine the singular values, namdly: and Ag. For convenience we list the

*Defining A andD as the square root & and A z may yield complex numbers when a diagonal
element ofA¢ or Ay is negative. However, in order to estimate the condition loers, we only need
to evaluate thequaredsingular values ofA andD, thus avoiding complex numbers.
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largest and smallest singular valueldfsquared,

g1 (D)2

on(D)?

1 N
max {R\ log R [5 —

2

-1

T
tan

N

2
_— (AgQA}f) = 01 (AgAn)” = max [AcAn],

E—Fﬁtanl
"4 Arm N/’

2
. (AgQA}f) = on (AgAn)” = min[AgAx],

min {R\ log R [

1 N-1
2 2T

tal R—i-Rtal
nN n .

"ON ' 2N«

The condition number oD is the square root of the ratio of these two expressions.
Figure 3.4 shows the condition humberIdfas a function ofN. The dots give the
exact value of the condition number while the dashed lineesgnts the estimate
as constructed in this section. We observe that there isyageerd correspondence
between exact values and the estimated values.
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Estimating cond(Q)

The Kantorovich-Wielandt anglé is found by taking pairs of orthogonal vectats
andy and calculating the smallest angle between their imagesrddd48],

cos 6 := max M (3.41)

<Ly Qx| Qyll

The condition number of) is related to the Kantorovich-Wielandt angle by
cond(Q) = atar(6/2), (3.42)

It can be proven that the anglas the angle between the two subspaces spanned by
the columns ofAF; andA~'F,.

Lemma 3.1 The Kantorovich-Wielandt angleis equal to the angle between the two
subspaces spanned by the columnA B, and A ~'F,.

Proof. The anglen between the two subspaces that are spanned by the columns of
AF; andA~'F, is defined as [8]

cos( := max m M (3.43)
E1ER(AF) g,eR(AFy) [1€1 ][ [1€2]]

To evaluate the Kantorovich-Wielandt angle we realize tllewing. The matrixQ

consists of two blocks, and therefore we select two speeietiovsx andy, namely

x = [x]]0,...,0/" andy = [0,...,0 | y7]7, wherex; € R™ andy, € RN—™,

Clearly we havex | y. Moreover, we observe th@x = —Q;x; andQy = Qyy;.

We substitute this into the definition of the Kantorovicheldindt angle and find
1(Q1x1, QoY1)

cos = max max . (3.44)
x1 ER™ yleRme ||Q1X1||HQQYIH

Recall that the columns of the matric€¥ and Q, form an orthogonal basis for
the subspaces spanned by the column&Bf andA~'F,. This means that we can
introduce¢, € R(AF;)and¢, € R(A~'Fy) suchthat, = Q;x; andé, = Q,y;.
Then (3.44) becomes

cos = max max M (3.45)

£1ER(AF1) £,eR(AF2) [1€1][]|€2]]”

which is the definition of the angle between the subspacesis e Kantorovich-
Wielandt angld) is equal to the angla between the two subspaces. [ |
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Lemma 3.1 is used to prove the following theorem.
Theorem 3.2 The condition number @ is equal tol.

Proof. The anglé) can be calculated from

cosf = max max |, y)|
XER(AF1) yeR(A™1F2) HXHHYH
B (A~'x, Ay)|
=  max TP TITE——
xER(F1) yeR(F2) A7 x||[| Ayl
A*A—l
= max max I(A° x,y)| (3.46)

xeR(F1) yeR(F2) ||A71x||||Ay|
For0 < R < 1, A is a diagonal matrix with real elements, hente = A, and we
find
cosf = max max ‘7(1&—}’)‘ (3.47)
xE€R(F1) yeR(F2) [|A™ x|[||Ay]]

However, sinceR (F;) L R(F2), the inner product between the vectarg R(F;)
andy € R(F,) is equal to zero. Henass § = 0 and consequentlyond(Q) = 1.
For R > 1, the first diagonal element ok is negative, and hence the first

diagonal element aA = AéﬂA;/2 is imaginary. In that case

_ { .
(A x, Ay) = <_a_1> (ia1)x1y1 + x2y2 + ... + xNnyN = 0, (3.48)
wherea;, j = 1,..., N, are the diagonal elements Af So also in the cas& > 1
cos = 0 andcond(Q) = 1. [ |

Since the condition number @} is equal to one, it is interesting to note tl@ts
a unitary matrix.

Corollary 3.3 The matrixQ is unitary.

Proof. Recall that the matriQ consists of a unitaryv x m block Q; and a unitary
N x (N —m) block Q,. Accordingly we can split any vecter € R into two parts,
x = [x];x1]T. The matrix-vector produd®*Qx then reads

* X1 — QTQQXQ
= % . 3.49
Q" Qx —QiQux: + %0 (3.49)
The subspaces that are spanned by the columnsABf and A~'F, are
perpendicular. The matrice®; and Q, are bases of these subspaces, and
consequenthQiQ, = Q5Q; = 0. Thus we findQ*Qx = x. Likewise we can
prove thatQQ*x = x. HenceQ*Q = QQ* = T andQ is a unitary matrix. [ |
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Estimating cond(U)

To estimate the condition number Bf we need estimates of the singular values of
U, andUs,. For this observe that

0x(U1) = 0k(Q,U1) = 0k (AF1) < 0 (A)o1(F1) = ox(A),
0£(Uz) = 01(QuU2) = 0x(A™'F3) < 0 (A" o1 (F2) = o (A1),
(3.50)

fork=1,...,mandk = 1,..., N — m respectively. Here we used the facts that
Q,; andF; have orthogonal columns and have singular value®/e also made use
of estimates of the singular values of products of matrid&g. [ Furthermore, with
F, = A~'Q, U, andF, = AQ, U, we obtain

1 = ox(F1) = ox(A7'QU1) < 01 (A 1)0p(Q,Uy) = o1 (Ao (Uy),
1 = ox(F2) =0, (AQyU2) < 01(A)0k(Q,Usz) = 01(A)ok(Us),
(3.51)

fork =1,...,mandk = 1,..., N — m respectively. This yields the following
lower bounds,

1
U > —on(A), k=1
Uk( 1) = Ul(A_l) UN( )7 ) 5 T,
or(Us) > — oA"Y, k=1,....N—m. (3.52)
o1(A)

With (3.50) and (3.52) we have upper and lower bounds for ithgutar values of
U, andU,. The singular values dU are the singular values &f; plus the singular
values ofUy, i.e. 0(U) = ¢(U;)Jo(Uz). For the condition number dJ we
obtain

cond(U) = <

} . (3.53)
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Figure 3.5: Condition number oU as a function ofV, whereR = 1/2 andm = N/2. The
dashed line is the estimate whereas the large dots give Hut ealue for several values of.

SinceA is the product of the square rootsAf; andA;}, we can derive its singular
values, resulting in

27 R|log R| TR
(N = Dtan7/N’ 7+ tanw/N |’
, 27 R|log R| 2nR/N
A2 — .
ot = min{ e s

o1(A)? = max{ﬂ -

(3.54)

We plot the condition number d and its approximation in Figure 3.5. As
is seen from (3.53), the approximation provides an uppentdor the condition
number ofU. The difference between the exact value and the estimatespmnds to
the error that is made by approximating the smallest eigeevaf G by the smallest
eigenvalue ofCs.

Estimating cond(A)

The condition number oA is estimated by the product of condition numberdof
andU, where the condition number &f is obtained from the singular values Af
Let us use a first order approximation fem /N to approximate the largest and
smallest singular values of the matrid®sand A as given in (3.40) and (3.54). We
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find
o1(D)? = ﬂmax(2|logR| N +1)
4N ' '
R 1
2 . v 3
on(D)* = 2len<|logR|,1—i—N),
1
2 o _
o1(A)? =~ RNmax(z\logm,NH),
1
2 : _
on(A)? 2RNm1n<\logR|,N(N+1)>. (3.55)

For a circle with radius? = 1/2 we obtain

IN+1
cond(D) = o2’

cond(U) < N+1, (3.56)

wich gives the following estimate for the condition numbérAg

1
cond(A) < W(NJrl)?’/Q. (3.57)

Figure 3.6 shows this estimate for the condition number. ddshed line gives
the estimate as a function &f, whereas the dots give the exact value of the condition
number for several values of. For this example we choose = N/2, i.e. as many
elements with Dirchlet conditions as elements with Neumaomditions. However,
the parametern does not appear in the estimates, and will not play any role. W
observe that the estimate is of higher order than the acalakwof the condition
number. In fact the condition number &f turns out to be linear iV, while the
estimate is of ordeN?/2. Later on we will show how this discrepancy is caused.

Figure 3.7 gives the condition number Afand its estimate as a function &f
We chooseN = 12 andm = 6. Again the estimate i€ (N?3/?), while the actual
value isO(N). The estimate does capture the large condition numbét at 1
though.

Let us recapitulate the steps that we have taken to boundotidition number
of the matrix A. We decomposed\ in a product of matrices and derived that
cond(A) < cond(D)cond(U). We can evaluate or approximate the condition
numbers ofD and U very well, but the condition number &k is over-estimated.
This must be caused by the decompositiomAofAs a simple example, consider the
matricesX andY, given by

10 10
X::[OE}’ Y::[Ol/s}’ (3.58)



42 Chapter 3 Laplace equation at two-dimensional domain

cond(A)

10

éO 40 éO éO 100
N
Figure 3.6: Condition number oA as a function ofV, whereR = 1/2 andm = N/2. The

dashed line is the estimate whereas the large dots give tet eandition number for several
values ofN.

10°

T :
| —@—exact
- - -estimate

AN -

Figure 3.7: Condition number ofA as a function ofR, whereN = 12 andm = 6. The
dashed line is the estimate whereas the large dots give gahats for several values .



Section 3.6 Decoupled equations 43

where0 < ¢ < 1. Clearly both matrices have a large condition number—!, while
the product matri¥Z := XY has condition numbet. Exploiting the fact tha% is a
product ofX andY yields,

cond(Z) < cond(X)cond(Y) = = (3.59)

which highly over-estimates the condition number Zf Thus decomposing a
matrix and multiplying the condition numbers of the sevdeaitor matrices does
not nessecarily yield a good approximation of the conditiember of the original
matrix.

3.6 Decoupled equations

The decomposition of the BEM-matriA that we derived in the previous section
has been useful for finding an estimate for the condition remalb A. Besides this
estimate the decomposition can also be used to decouplgulg@ns from the BEM
formulation. This allows us to separately retrieve the mgénformation ofu atI'y
andq atT';. Recall equation (2.37), relating the boundary date the unknown
vectorx,

Ax = Gb. (3.60)
In the previous section we have shown thAais decomposed as

A = F*DQU. (3.61)
The matrixG can be decomposed in a smiliar manner. First we vGtas

G = [-HP,|GPy]
[-F*AyFP; | F*AGFPy)]
= F*[-ApF| AcF)]
= F*D[-A'F; | AF,). (3.62)

Realizing that the vectds is constructed from the boundary dataandq,, namely
b = [i1; q,], we can write the right-hand side of (3.60) as

Gb = F'D(-A'Fiiy +AF2q,) = F'Df. (3.63)
Using the new expressions far andGb, equation (3.60) becomes

F*DQUx = F*Df. (3.64)



44 Chapter 3 Laplace equation at two-dimensional domain

Multiplying by Q*D~'F yields

Ux = Q*f, (3.65)
or

O] e | T3 (3.66)
So we obtain a set of two linear systems,

Uiq; = —Qif, (3.67a)

Uou, = Qjf. (3.67b)

We are given data; onI'; andqg, onI's. Assume that we are interestedun, i.e.
the unknown coefficients af atI's. In the original BEM formulation we would then
calculate both; atI'; andg atI';. With equation (3.67b) we can directly calculate
atI's without computingg atl';.

Let us summarize which steps we have to take in order to campuit I's.
First we need the Fourier matrik, whose two componentg; and Fy appear in
the vectorf. We also need the diagonal mati which contains the eigenvalues
of the matricesG andH (A = Aé/QAI_{l/Q). These eigenvalues are approximated
by the eigenvalues of the single and double-layer potentiihen we need a QR-
decomposition of the matrix produgt ~'F5, which yields us the matriceQ, and
U,. Finally we solve the system in (3.67b). Note that the mdifixin this system
is an upper triangular matrix, so the system is solved vdigiently by backward
elimination. The most costly step in this procedure is the-dgRomposition of
A~'F,. However, note thah ~'Fy is a N x (N — m) matrix. With the original
BEM procedure we would have to find a QR-decomposition fdf & N matrix.

The method described above works similarly if we want to wWake ¢ at I'y
without computingu atT's. Then we need a QR-decomposition #F; and solve
equation (3.67a).

Example 3.1
Consider the following problem on the cirdewith radiusR,
Viu = 0, x €,
u = Rcosf, xely, (3.68)
q = cos0, x €y,

which has exact solutiom = Rcosf andg = cosf atI'. We chooseR = 2,
m = N — 1, so all elements have Dirichlet boundary conditions, ekémpthe last
element. We calculate the value ©fin this last element, following the procedure
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BEM BEM decoupled
N time(s) rel. error time(s) rel. error
100 0.44 3.93-10~4 0.10 3.96-10~%
200 1.85 9.95-107% 0.39 9.95-107°
300 4.56 4.44-107° 1.27 4.43-107°
400 9.14 2.,51-107° 2,97 249-107°
500 15.80 1.61-107° 5.64 1.60-107°

Table 3.5: Calculation time and relative error for both BEM and decoeghBEM. Problem
that is solved is almost purely Dirichlet{ = N — 1).

BEM BEM decoupled

N time (s) time (s)
100 0.43 0.12
200 1.82 0.56
300 4.63 1.86
400 9.13 4.08
500 15.80 7.79

Table 3.6: Calculation time for both BEM and decoupled BEM. Problent fkasolved has
mixed boundary conditions( = N/2).

described above. In Table 3.5 we see that the computatiaftinfindingu with the
decoupled BEM is a factds to 4 lower than findingu with the original BEM. At the
same time the accuracy is equally good.

Now let us choosen = N/2 and calculate; atT'; andq atT'; separately using
the decoupled BEM and compare this to the original BEM. Thamatation time is
given in Table 3.6. Again we see that the decoupled BEM iefabin the original
BEM. The reason for this is simple: it is more efficient to #two small systems
than one large system. O

We can improve the efficiency even more, as we do not needve Hu systems
in (3.67) by backward elimination. For this we multiply (38 byQ;,

Q,Uiq; = -Q,Q1f, (3.69)
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and replace the produ®;U; by AF,

AFiq; = —Q,Qif. (3.70)
We next multiply byF;A~! to find
q = -FiA'QQif. (3.71)

The linear system in (3.67b) can be transformed in a similanmar, and the two
systems in (3.67) are solved with

a = -FiA'QQif, (3.72a)
w = FIAQ,Qif. (3.72b)

In this wayq,; anduy are found without using backward substitution. Nevertbele
the expressions on the right-hand sides involve many megixor multiplications
and may therefore be not very efficient. Moreover we stillcheefind Q, andQ,,
i.e. perform QR-decompositions.

For a pure Dirichlet problem, i.en = N, we haveQ; = Q, which is a unitary
matrix. Therefore the matrix produ@, Q7 in (3.72a) is equal to th&’ x N matrix
Iy. Also PlT = Iy and the vectof is equal tof = —A~'Fa. Hence, for the
Dirichlet problem (3.72a) becomes

q=-F'A'(-A"'Fa) = F*A*Fa = F*A ' A4Fa. (3.73)

All matrices in this expression are known or can be approtechaccurately. Thus
we obtaing by performing a simple matrix-vector product. In a similaammer we
find u from boundary datg with

u=F"AcA,'Fa. (3.74)



Chapter 4

Logarithmic capacity

In this chapter we investigate the uniqueness of the solatidhe boundary integral
equation (BIE) for the Laplace equation on a general twoetisional domain.
Three different types of boundary conditions are distisad: Dirichlet, mixed
and Neumann boundary conditions. For a Laplace equatidn®iiichlet boundary
conditions it has been shown that a unique solution doeslwaya exist, depending
on the size of the domain. A similar result is proven for theecaf mixed boundary
conditions. The BIE for the Laplace equation with Neumanoraiary conditions
does never have a unique solution.

4.1 Introduction

It is well-known that the Laplace equation in differentiakrin with either Dirichlet
or mixed boundary conditions has a unique solution. Howewéen the Laplace
equation is transformed to a BIE this is not so straightfodranymore. It is noted
that the BIE for the Dirichlet Laplace equation does not glsvaave a unique solution
[53, 56, 75, 85]. Certain domains can be distinguished orchvtiie BIE becomes
singular and a non-trivial solution of the homogeneous tguos can be found.
A multiple of this solution can be added to the solution of timm-homogeneous
equations, which is then no longer unique. For each domaire tbxists exactly one
rescaled version of this domain for which the BIE becomegigar. This introduces
an extraordinary phenomenon for the BIES; uniqueness a$dhdions depends on
the scale of the domain.

The domains on which no unique solution can be guaranteetekated to the
so-calledlogarithmic capacity The logarithmic capacity is a real positive humber
being a function of the domain. This concept originates ftbmfield of measure
theory, but it also appears in potential theory. The conoépt capacity applied to

a7
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a single domain may be a bit confusing, as usuallyelleetrical capacity is defined
as a charge difference between two conducting objects. dgpithmic capacity
however is related to a single domain.

In potential theory it is shown that when the logarithmic aefy of a domain
is equal to one, then the homogeneous BIE for the Dirichlgld@e equation at the
boundary of that domain has a non-trivial solution [52, 68]. 9This allows us to
a-priori detect whether a BIE will become singular on a certain domalamely,
we have to compute the logarithmic capacity and verify whiethis equal to one.
Additionally, the logarithmic capacity also enables us tdify the BIE such that it
does not become singular. We can scale the domain in such thatahe logarithmic
capacity does not become equal to one. The BIE on the comdsmpboundary will
then be nonsingular.

The BIE for the Laplace equation with mixed boundary coodsidid not receive
much attention until now [39]. However, a similar phenomes for the Dirichlet
case takes place for mixed conditions. For each domain tvasts exactly one
rescaled version of this domain for which the BIE becomegugar. This result is
proven in Section 4.4.

Research has been done on the BIE for the biharmonic equé#tisrshown that
the BIE for the biharmonic equation with Dirichlet condit®on a circle does not
admit a unique solution when the radius of the circle is etpalor e~! [23]. A few
years later it was shown that a more general result is truearfp 2D domain there
exists two critical scalings for which the BIE does not haven&jue solution [44].
For the BIE for the biharmonic equation, the number of aitiscaling can even
increase to three or four for domains that consist of two or gparate squares [30].
Apart from rescaling the domain there are two options to @uae nonsingular BIEs
and a unique solution. The first option is to add two supplaargrconditions [23],
while the second option involves modified fundamental sohst for the biharmonic
equation [28].

Another class of BIEs for which uniqueness properties has lievestigated is
the class of BIEs for the Helmholtz equation. It is derivedttthere is a countable
set of critical wave numbers for which the condition numbgbeoth the integral
operator as the related discrete operator becomes infitgtgle [2, 59, 60, 61]. By
introducing a coupling parameter between the various bamynihtegral operators
it is shown that the condition numbers can be minimized. Thguar BIE for
the Helmholtz equation is different from the singular BlEs the Laplace and
biharmonic equation. The singularity appears at certaimewaumbers, and not
at certain critical scalings. Moreover singular BIEs alppear for the Helmholtz
equation in 3D. This is not the case for the BIEs for the Lapland biharmonic
equation.

In this chapter we investigate both the BIE for the Laplaagagign with Dirichlet
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conditions and mixed conditions, and we also include the RiEthe Laplace
equation with Neumann conditions. Thus we study three réiffeproblems. First
we describe the setting of these three problems.

Let 2 be a simply connected domain in 2D whose boundary a closed curve.
In the interior of() the Laplace equation holds for the unknown functioa: u(x),

VZu=0, Q. (4.1)

Recall that thdundamental solutio of the Laplace operatdv? is given by

1 1
= —1 .
o) = 5 8 ]

(4.2)

We denote byg the derivative ofu with respect to the outward normal at I'.
Introduce thesingle and double layer potentialy

(o) (x) = / G, y)q(y)dTy, = €T,
(Ku)(x) = F%{G(m,y)}u(y)dfy,wef, (4.3)

respectively. The BIE for the Laplace equation deduced iap®dr 2 reads (cf. [6])

1
Sut K= K3q, © €T. (4.4)

At each point on the boundary we prescribe either q. We distinguish three types
of boundary conditions.
Dirichlet problem

u = a4, xel. (4.5)
Mixed problem

U m
= q~7 S FQ: (46)
Neumann problem

q = ¢, xel. 4.7)

wherel’y UTy =T andl’'y N Ty = 0.
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4.2 Logarithmic capacity

To study the uniqueness properties of the Dirichlet and tixedrproblem in the next
section we need to introduce the notiordagjarithmic capacity We define the energy
integral I by

1
I(q) := / / log -———q(x)q(y)dlzdl, (4.8)
rJr |z —yl|
and the logarithmic capacity; (") is related to this integral by
—log C)(T") := inf I(q). (4.9)
q

Here the infimum is taken over all functiopswvith the restriction that

/q(m)dl} =1. (4.10)
I

Let us give a physical interpretation of the logarithmic aefy. For simplicity
let the domairf2 be contained in the disc with raditig2. In that case it can be shown
that the integral (¢) is positive. The functiory can be seen as a charge distribution
over a conducting domaifl. Faraday demonstrated that this charge will only reside
at the exterior boundary of the domain, in our cas€.atWe normalizeg in such a
way that the total amount of chargelats equal to one, cf. condition (4.10). The
function K%¢ is identified as the potential due to the charge distribuiioNote that
the integrall can also be written as

I(g) = 2r / (K g)(@)q()dTs. (4.11)

Hencel can be seen as the energy of the charge distributiohe charge will
distribute itself ovell” in such a way that the enerdyis minimized. So the quantity
—log C(T") is the minimal amount of energy. Hence the logarithmic capac;(I")
is a measure for the capability of the boundBrio support a unit amount of charge.
For most boundaries the logarithmic capacity is not knowplieily. Only for a
few elementary domains the logarithmic capacity can beutatied analytically [66];
we have listed some in Table 4.1.
There are also some useful properties [5, 52] that help usttgmhine or estimate
the logarithmic capacity.

1. If T'is the outer boundary of a closed bounded dorigithenC;(T") = C;(Q).
This agrees with the idea of Faraday’s cage, mentioned above

2. Denote bydr the Euclidean diameter d®, thenC;(I") < dr. Hence the
radius of the smallest circle in whidhis contained is an upper bound for the
logarithmic capacity of".
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boundaryl’ logarithmic capacityC;(I")
circle with radiusR R
square with sidd. i(é/)j L~ 0.59017 - L
ellipse with semi-axes andb  (a + b)/2
interval of lengtha 1a

isosceles right triangle side 332/;1};% [~ 0.476 [

Table 4.1: The logarithmic capacity of some domains. Note ih@aj represents the gamma-
function.

3. fT' = x + al'y, thenCy(T") = aC;(T'1). Hence the logarithmic capacity
behaves linearly with respect to scaling and is invarianth wespect to
translation.

4. If Q1 C Qo, thenC’l(Ql) < CZ(QQ)

5. For a convex domaif?,

/
Q) > <M>l g (4.12)

s

If the properties from the list above do not supply accurateugh estimates, the
logarithmic capacity can also be approximated numerioaith the help of linear
programming [82].

4.3 Dirichlet problem

For the BIE that arises from the Laplace equation with Digtboundary conditions
we have the following result.

Theorem 4.1 There exists a nonzerg such that
1
(K%ge)(x) = “o- log C)(T"), x €T (4.13)

Sketch of proof.  In the following we briefly present the major steps in thegbaf
the theorem [52, 70, 98]. We observe that for the values oéttexgy integral (4.8)
we have—oco < I(q) < oo. If the infimum of the energy integral is infinitely large,
then by definition the logarithmic capacity is equal to zero.
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Suppose that’;(I") > 0 and thus—co < I(q) < oo. Itis proven [52, p. 282] that for
each boundary there exists a unique minimizeg of 1(q), i.e.

I(qe) = inf I(q) = ~log Cy(T) with /F Go(@)dTy = 1. (4.14)

For the minimizerg,. the following result is proven [52, p. 287]. L&tbe a closed
bounded domain with positive logarithmic capacity and anemted complement.
Then27K%q. < —log C;(I") in the whole plane an@rX*q. = —log Cy(I") at T,
except possibly for a subset which has zero logarithmic dgpa [ |

Theorem 4.1 leads to the following result.
Corollary 4.2 If Cy(T") = 1 there exists a nonze such thatC*q. = 0.

Thus in the specific case tha§(I") = 1 the single layer operatoc® admits an
eigenfunctiong. with zero eigenvalue. Henck?® is not positive definite and the
Dirichlet problem does not have a unique solution.

If we rescale the domain such that the Euclidean diameten&lar than one,
then the second property in Section 4.2 shows us that theitlogéc capacity will
also be smaller than one. In this way we can guarantee thteeges of a unique
solution of the BIE.

Recall that the non-trivial solution, of the homogeneous BIE*q = 0 has a
contour integral equal tb. At the same time we realize that a solutipof %¢ = 0
has to satisfy

/quf = /g)AuszO, (4.15)

where we make use of Gauss’ theorem. By adding this requirefoeg to the BIE,
we exclude the possibility that is a solution of the homogeneous BIE. This provides
a second strategy to ensure unique solutions of the BIE.

A third option to guarantee a unique solution is to adjusthegral operatofCs.
Note that the functiordr,,,

1
Go(x,y) == — logi, a € RT, (4.16)
2r 7 [l -y

is also a fundamental solution for the Laplace operator. ddreesponding single
layer potential reads

2 I

1 1
Ksq = —/log & (y)dly = Kiq + Oga/qu‘. (4.17)
r |z -yl 2 r
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For the minimizerg,. we get

log o
27
o

KiQe = ICSQe+

1
= o log G (4.18)
This is only equal to zero ift = C;(I"). We may choosex any positive real number
unequal toC;(I") and obtainCs g. # 0. In that casey. is no longer an eigenfunction
of the single layer potential operator with zero eigenvaldence the BIE (4.4) with
Dirichlet conditions is uniquely solvable ° is replaced by, [26, 70]. The
advantage of this procedure is that we do not need a resaaflittte domain, nor
do we have to add an extra equation. Furthermore, we do nat teeknow the
logarithmic capacity explicitly; a rough estimate of the@aeity sufficies to choose
such thatr # Cj(I").

There are also ways to ensure a unique solution of the BIEHerLiaplace
equation tha can be used without having to know the logar@hcapacity. For
instance, adding an extra collocation node at the intenigxterior of the domain
can change the BIE in such a way that it is not singular anydofij7]. This does
depend on the location of the extra collocation node thoégtother option is to use
the hypersingular formulation of the BIE [18]. The hypeggifar BIE is the normal
derivative of the standard BIE and does not involve the sitt@yer operator. As a
consequence the BIE does not become singular at certainimma

1 1
/qedl“ =——logCy(I') + — log
T 2 2

4.4 Mixed problem

To investigate the Laplace equation with mixed boundarydimns we have to
rewrite the BIE in (4.4). Foi = 1,2 we introduce the functions; := u|r, and
¢gi := ¢|r, and the boundary integral operators

(Kiq)(x) := / G(x,y)q(y)dl’y, = €T, (4.19a)

(Kdu)(x) := / 5, G y)uly)dly, @ €T, (4.19b)
Y

Note that the boundary conditions (4.6) provid¢ = @ and ¢, = §. By
distinguishingz € I'y andx € I'y, we write (4.4) as a system of two BIEs,

1
Kus — Kiqn = K5 — i Kéu, x Ty, (4.20a)

1
U2 + Kéuy — Kiqn = Ksq—Kéa, x Ty (4.20b)
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In this system all prescribed boundary data are at the Hght side of the equations.

Theorem 4.3 If C;(T") = 1, the homogeneous equations of (4.20a) and (4.20b) have
a non-trivial solution pair(q, uz).

Proof. ~ We have to find a non-trivial pair of functiorig;, u2) such that the left-
hand sides of (4.20a) and (4.20b) are equal to zero whén) = 1. To this end we
chooseuy = 0 andq; = ge|r, + hi1, with the functionh; satisfying

Kihi = K3ge, x € T (4.21)
With these choices both the left-hand sides of (4.20a) ar2D3} are equal to
Kiar = —(Kige + Kih) = —(Kige +K3e) = ~K*qe
1
= g, sl =0. (4.22)

We still have to prove that it is possible to find a functionthat satisfies (4.21). First
we note that the right-hand side of (4.21) iglin)*, since

(Kigeg)r = / [ Gy @,

= / /G x y QE dere( )d
I's

= (K%, qe)r, = —%log Ci(I)(1, ge)r, = 0. (4.23)

Here(-, -)r stands for the inner product over the boundBryAs the right-hand side
of (4.21) is in{q.)*, we can generalize the question: is it possible to find a fanct
h1 such thatCihy = ¢ for all ¢ € {g.)*? If so, thenp = K5q. completes the proof.

For all functionsq € (g.)* with ¢ # 0 we havel(q) > I(q.), sinceq. is the
unique minimizer off. UsingI(q) = 27(K?q, q) we find that

1 1
(Kéq,q) > 2—I(qe) = ——1logCy(I') =0, q € {g.)", ¢ #0. (4.24)
T 2

SoK* is positive definite and invertible on the function spage . This means that
for all ¢ €< g, > there is a functiorh with K*h = ¢. Let h be the solution of
K*h = ¢, then it can be decomposed as

_ hly S Fla
h= { e (4.25)

Recall that we search for a functidn such thatCsh; = ¢, for ¢ € (g.)*. We add
the function/C5 h, to this equation,

Kshy + K3ha = ¢ + Kihs, (4.26)
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which is equivalent to
Kh = ¢ + K5hs. (4.27)

The right-hand side of this equation is{q.)*, since¢ € (¢.)* and

(K3hayge)r = / Gz, y)ha(y)dT o ()T
Iy

= //Gmyqe )ALz ho (y)dly,
I's

= (K°¢e, ho)r, = —%log Cy () (1, ha)r, = 0. (4.28)

Since/C* is invertible on the function spadg.)*, and the right-hand side of (4.27)
is in (g.)*, there exists a solutioh of (4.27). The functiorh; is then the restriction
of htoI'; [ ]

Theorem 4.3 tells us that the BIE for the mixed problem dogdave a unique
solution whenC;(I') = 1, i.e. the BIE is singular. Moreover the division Bfinto
a partl’; with Dirichlet conditions and a paift; with Neumann conditions does not
play a role in this. It does not make a difference whether e g very small or
very large; the singular BIE relates solely to the whole iz T

To guarantee a unique solution for the mixed problem we Hayesame options
as for the Dirichlet problem. The simplest remedy is to rkestlae domain, thus
avoiding a unit logarithmic capacity. A second option is &rdhnd that the function
g has a zero contour integral. Since partqof already prescribed this yields the
following condition for the unknown part af,

/ g1l = — / . (4.29)
I' I's

As a last option to obtain nonsingular BIEs, we can also =pkhe single layer
operatorkC® by K7, see Section 4.3.

4.5 Neumann problem

It is well known that the classic Neumann boundary value lgrobfor the Laplace
equation does not have a unique solution. Hence the comdsmpBIE will also not

have a unigue solution. For completeness we prove the fiolgptheorem for the
BIE (4.4) with Neumann boundary conditions in which it is simathat the Neumann
problem has a solution which is unique up to a constant [237p.
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Figure 4.1: The pointz € I' is the center of a small circl®. with radiuse.

Theorem 4.4 For any closed curv@
1 d
(§I+ K91 =o. (4.30)

Proof.  To show that operato%I + K% applied to the constant functianyields
zero, we need to prove thi’l = —1 at the boundary. Let be a point at the
boundany’, then using Gauss’ theorem we find

(K /—Gwydf /V2 (2, y)dS,, (4.31)

where the subscripy means integration or differentiation with respectito The
fundamental solution is defined such the}G(x,y) = —d(x — y). Hence, when
integrating overy, we have to take special care at the pgjnt x. Let B, be a small
circle with radiusz around the pointc and letB. be the part of that circle that lies
inside(?, i.e. B. = B. N, see Figure 4.1. The domain integral in (4.31) can be split
in

(K1) (z) = o VoG, y)dQ, + . VoG, y)dS,. (4.32)

Within the domain(2/B. the fundamental solution does not have a singular point
and thusViG(aa,y) = 0 in this domain. As a consequence the first integral at the
right-hand side of (4.32) is equal to zero. If the bound&rg smooth enough, the
circle B, is half the size of the circl®.. Likewise, ife goes to zero, the integral over
B! in (4.32) is half the size of the same integral o¥&r Hence we obtain

(K1) (z) = % ; ViG(x, y)dS,. (4.33)
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We use Gauss’ theorem to transform the domain integral &eto a boundary
integral overl’., the boundary of the circl8.,

(K1) (z) = %/F a%a(m,y)dry. (4.34)
€ )

We introduce polar coordinate§-, §) at the circle B., the pointx being the
local origin. Recall the definition of the fundamental swat(4.2) in which now
|l — y|| = r fory € B.. Itis straightforward to see that

10 1 11

0

Substituting this in the integral of (4.34) results in

1 [ 11 1
d _ e _ -
(K1) (x) = 5 /0 5 rdf 5 (4.36)
The direct consequence of this is that
with which Theorem 4.4 has been proven. |

4.6 Examples

In this section we illustrate the results from the previoastisns. We do this by
calculating the condition number of the matrices that appeahe BEM. After
discretisation of the boundary, the BIE transforms intahadir system of equations.
If the BIE is singular, we may expect that the linear systefalimost) singular. As a
consequence the condition number of the correspondingraystatrix is very large.

For the BIE related to the Laplace equation with Dirichletbdary equations we
obtain the following linear system

Gq="f, (4.38)

wheref := f(a). We compute the condition number &f for two cases: a circular
domain with radiusk and a square domain with side In both cases we choose
N = 36 boundary elements.



58 Chapter 4 Logarithmic capacity

60 : : : ‘ ‘ 60 I

1 b

‘ i

500+ $ 500 §

i N

' 400 ;

400- ! ) i
fr I} n
e ! 5 200 |
S 300 ! c [
o | (@] "
o L] (@] :I
200t j 200- n

' ;

1

100+ / 100 o "

i e »

...
o - .- .,,.f\.,,.,,,_.__._‘+-c——9—+—< 0 ; "9--ao-q-'\.9-----9--oo-o
0.5 1 15 2 25 0 0.5 1 15 2 2.5 3
R L
(a) Circle with radiusk (b) Square with sid&,

Figure 4.2: The condition number d& for the Laplace equation with Dirichlet boundary
conditions.

Example 4.1

For the circular domain the logarithmic capacity is equaht® radius of the circle,
see Table 4.1. Thus if the radidgis equal to one also the logarithmic capacity is
equal to one. In that case the BIE does not have a unique @olartid the condition
number of the matri>xG will be very large. In Figure 4.2(a) we show the condition
number ofG as a function of the radiuk. We observe that indeed the condition
number goes to infinity wheR approaches* := 1, cf. [19], [20]. Note that these
obervations ara-posterioriobservations; first the matri& is constructed and then
its condition number is computed. Itis also possibladariori estimate the condition
number for the Dirichlet problem on a circle [37, 38]. 0

Example 4.2

For the square domain the logarithmic capacity is approtéina0.59L, see
Table 4.1. Hence if the side lengthis approximately equal t6* := 1/0.59 ~ 1.69,
then the logarithmic capacity is equal to one. Analogousiéocase of the circle the
condition number of the matri%z is very large in that case. In Figure 4.2(b) the
condition number ofG is plotted as a function of.. We observe that it grows to
infinity when L approacheg.69. O

The scaling parametei®* and L* are calledcritical (or degeneratescalings
Throughout this thesis we will adopt the term critical segli The corresponding
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Figure 4.3: The smallest singular value of the matrigg@s(circles) andG; (diamonds) for
the Laplace problem with mixed boundary conditions on apsidal domain.

domain is referred to as thaitical domain A description for the boundary of a
critical domain which frequently appears in literaturd'isontour[56].

It is obvious that we cannot use the boundary element fortioulaf the
logarithmic capacity is equal to one. In Section 4.3 we saggkto search for
solutionsq of the Dirichlet BIE that also satisfy the requirement (4,1i%. have
contour integral equal to zero. Translating this requinetme the discrete problem,
we have to search for solutiomgthat also satisfy; + ... + gy = 0. Hence we have
to solve the rectangular system

1
G a :
: = ) . (4.39)
— In
H ... H aN 0
G1

Here the additional condition is multiplied by a non-zeralacH in order to obtain a
well-balanced matrixa. As we have a rectangular system, we require other solution
techniques to solve the system, compared to the origin&sys

Example 4.3

To investigate the conditioning of the new system in (4.88),compare the smallest
singular values oz andG,. We illustrate this for an ellipsoidal domain with axis
a anda/2. In Table 4.1 it is given that the logarithmic capacity of lsuamn ellipse
is equal to3a/4. Hence if we choose: equal to the critical value* = 4/3
the logarithmic capacity is equal to one. In Figure 4.3 beth,(G) (circles)
and onin(G1) (diamonds) are plotted as a function of the scaling paramete
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Figure 4.4: The condition number d& (circles) andG,, (diamonds) for a circular domain
with radiusa. Herea = 2.

We observe that fon = a*, onin(G) is going to zero, whilery,i, (G1) remains
O(107%). Hence the system wit is singular atz = a*, while the system witlG
is nonsingular. O

As explained in Section 4.3, a nonsingular BIE can also baioét by replacing
the integral operatalC® by C . This affects the matrixz in the algebraic equations;
the elements of thg-th column of G is augmented with a factdf';|log o/ (27),
where|I';| is the length of thej-th boundary element. We denote this new matrix
by G,.

Example 4.4

In Figure 4.4 we show the condition number@f(circles) andG,, (diamonds) for a
circular domain with radiug. In this case we choose = 2. The condition number
of the matrixG goes to infinity as approaches one, i.e. the unit circle. The condition
number ofG,, remains bounded. O

After discretisation of the boundary the BIE for the Laplacgiation with mixed
boundary conditions transforms in the linear system

Gq = (%I + H) u. (4.40)

We assume that on the first part of the boundaryrepresented by the first
m (0 < m < N) elements, Dirichlet boundary conditions are given. On the
remaining N — m elements we have Neumann boundary conditions. This implies
that the firstm coefficients ofu and the lastV — m coefficients ofq are given. By
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Figure 4.5: The condition number of the matriceA (circles) and G (squares)
corresponding to the Laplace equation with mixed boundawgditions and Dirichlet
boundary conditions respectively.

moving all unknown coefficients to the left-hand side andkathwn coefficients to
the right-hand side in (4.40) we arrive at the standard faneslr system

Ax = b. (4.41)

If the BIE is not uniquely solvable, then the linear systensiisgular, and the
condition number of the matriA is very large. We illustrate this with two examples:
a triangular domain and an ellipsoidal domain.

Example 4.5

The triangle is an isosceles right triangle with sides ofthri. For such a triangle
the logarithmic capacity is given by

33/412(1/4)
27/23/2

This implies that the condition number will be large when $caling parametdris
close to the critical scaling := 1/0.476 ~ 2.1. The ellipse has semi-axes of length
a anda/2, which has logarithmic capacity equal 3a/4. Hence we may expect a
large condition number when the scaling parametisrclose toa* := 4/3.

In Figure 4.5 we show the condition numbers for the matrideand G. We
chooseN = 32 andm = N/2, i.e. the number of elements with Dirichlet
conditions is equal to the number of elements with Neumamditons. The circles
represent the condition number for the mixed problem, wifieesquares represent
the condition number for the Dirichlet problem. We obseriat tthe the critical

C)(triangle) = [ ~0.476 1. (4.42)
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Figure 4.6: The critical scaling parameter* for which the condition number of goes to
infinity.

scaling parameter is (almost) the same for both matrikeand G. The small
difference that is present is caused by numerical inacmsgaltie to the discretisation.
Hence it does not matter whether we solve a Dirichlet prolde mixed problem;
for both problems there exists the same critical scalinghefdomain such that the
problems are not uniquely solvable. As was predicted fotrthegle, the point where
the condition number is very large is closd te 2.1. For the ellipse we observe that
indeed the point where the condition number is large is=at1.3. O

Example 4.6

Figure 4.6 gives more details about the critical scaling vidrich the condition
number goes to infinity. Again we consider an ellipsoidal domwith semi-axes
of lengtha anda/2, having a critical scaling™ = 4/3. This, of course, holds for
a perfect ellipse. In reality we work with an approximationaa ellipse, namely a
polygon with N sides. IfV is large, the ellipse is approximated very well, and we
expect to find a scaling parameterthat is close to that of the ellipse, i.€: = 4/3.

In Figure 4.6(a) we see the accuracyadinas a function ofV. We observe that for
large N the error between theoretical value and actual value geyssveall.

In Section 4.4 it was already mentioned that the divisiorheftioundary” into a
Dirichlet and a Neumann part does not play a role in the sargylof the BIE. Figure
4.6(b) illustrates this. Here we vary, the number of elements that have Dirichlet
boundary conditions. The total number of element&is= 32. Hencem = 32
corresponds to the Dirichlet problem, white = 1 is a problem with Neumann
conditions, except for one element. For each valuenofve compute the critical
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scalinga*. We see that there is little change in the valuaoasm varies betweern
andN. 0

As the mixed problem is ill-posed when the logarithmic catyas equal to one,
we may add an extra condition like we did for the Dirichletigemm. Sinceu satisfies
the Laplace equation on the interior of the domain we know ¢haust have a zero
contour integral. This leads to the following condition fbe solution vectog of the
linear system in (4.40),

at. ot am=—7=—(Gmns1+... +4qn), (4.43)

since part of the vectay is already prescribed by the boundary conditioi'atLike
we did for the Dirichlet case we formulate a new linear systerwhich the extra
condition is incorporated,

X bl
A ! :
D= (4.44)
X bN
H...H 0...0 N —H~y
Ay

Here the additional condition is multiplied by a non-zeralac H to obtain a well-
balanced system matrix.

Example 4.7

We compare the smallest singular valag;,(A) of the original matrixA to the
smallest singular value,,;, (A1) of the new matrixA; for the example of the ellipse
with semi-axes: anda/2. In Figure 4.7 we give the smallest singular values of the
matricesA (circles) andA (diamonds) as a function of the scaling parameter
We observe that for the scaling = a*, omin(A) drops to zero, whiler,in (A1)
remainsO (10~2). Hence the system witA is singular atz = a* while the system
with A is nonsingular. 0

Another procedure to obtain a nonsingular BIE is to replaegaritegral operator
K% by K5, see Section 4.4. This affects the maw@xas described before, and As
inherits a block from&, alsoA is affected. We denote the new matrix Ay,.

Example 4.8

In Figure 4.8 we show the condition number Af(circles) andA,, (diamonds) for
a circular domain with radiu®. In this case we choose the parameteequal to
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Figure 4.7: The condition number of the matricds (circles) andA; (diamonds) for the
Laplace problem with mixed boundary conditions on an etligal domain.
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Figure 4.8: The condition number oA (circles) andA , (diamonds) for a circular domain
with radiusR. Herea = 2.

two. As we have seen before, the condition number of the rmatrgoes to infinity
at R = R* := 1. The condition number oA, remains bounded. O

Another technique to ensure low condition numbers is byruatg the matrix
elements ofG andH with a suitable scaling parameter of the domain [72].



Chapter 5

Two-dimensional Stokes flow

It was observed in Chapter 3 and 4 that the boundary integradten (BIE) for the
Laplace equation may become singular at certain criticatdiwnensional domains.
The main cause for this lies in the logarithmic kernel thaiesrs in the boundary
integral operator. In the boundary integral operator fer$liokes equations on a two-
dimensional domain the logarithmic kernel also appearserdfbre we may expect
singular BIEs for the Stokes equations too. This is thegetoe topic of this chapter.

The Stokes equations describe the flow of a viscous fluid. \edlintroduce
the Stokes equations in differential form and the corredpanboundary integral
formulation in dimensionless notation. For more detailsrefer to Chapter 6, in
which the equations are derived in a three-dimensionaingettFor the boundary
conditions we either choose Dirichlet or mixed boundarydittons. We will show
that for both cases there are critical sizes of the fluid donf@ which the Stokes
equations in boundary integral form are singular.

This chapter is an elaboration of earlier work of the auth@l.€[35] concerning
condition numbers of BEM-matrices that appear for the 2[k&aquations.

5.1 Boundary integral equations for 2D Stokes flow

The Laplace equation and the Stokes equations have at feasting in common: the
Laplace operator appears in both equations. As we have sgaevious chapters,
the Laplace equation may lead to a singular BIE for certaiticat domains. The
guestion arises whether this is also the case for the Staljeatiens: can the
corresponding BIEs become singular on certain critical aiosf

In this chapter we study the BIEs following from the Stokesia@pns. In
particular we focus on the eigenvalues of the integral dpesa It is shown that
for certain critical domains these integral operators adwmio eigenvalues. Hence,

65
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again we find that the BIEs become singular for a number dtafiiomains.

For the Laplace equation it is possibleariori determine the critical domains.
For a number of simple domains, the logarithmic capacity loarused to exactly
compute the critical size. For more involved domains thaltitgmic capacity can be
used to estimate the critical size of the domain. Unforteiyathe critical domains
for the Stokes equations do not coincide with the criticaindms for the Laplace
equations. Hence we cannot use the logarithmic capaci@iypoori determine the
critical domains on which the BIEs for Stokes equations bezgingular. It is only
by numerical experiments that we can distinguish the afitiomains.

Let Q2 be a two-dimensional simply-connected domddn with a smooth
boundaryl’. The Stokes equations for a viscous flowfimead

Vv—-Vp = 0,
Vv = 0, (5.1)
wherew is the velocity field of the fluid ang its pressure. Lel' be divided into a

partI’; on which the velocityv is prescribed, and a pdrt, on which the pressure
is prescribed]” = I'; [JT'2. Hence the Stokes equations are subject to the boundary

conditions

v = v, xecly,

p = ﬁ, xr € FQ. (52)
EitherI'; or 'y can be empty, leading to a purely Neumann or Dirichlet proble

respectively. The Stokes equations in differential form ba transformed to a set of
two BIEs [65, 75, 76]

1

§vi(w)+/rqz‘j($>y)vj(y)dry

= / ul-j(a:,y)bj(y)dl“y, zel,1=1,2. (5.3)
r

Here a repeated index means summation over all possiblessaluthat index. The
vector functionb is the normal stress at the fluid boundary,

b:=o(p,v)n, (5.4)

with n the outward unit normal at the boundary and the stress tendefined by

87% ov;
0ij(p;v) == —pdi; + (633» + a;) (5.5)
j i

Hence the boundary integral formulation involves two Males, the velocityv and
the normal stress. In correspondence to (5.2), at each point of the boundégrei
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v or b is prescribed,

v = v, x eI,
b = —pn, xels. (5.6)
The kernelsy;; andg;; in the integral equations are defined as
1 (wi —yi)(xj — yj)(@k — ye)rue
qij (L, Y = = )
iy =g la =yl
1 1 (zi —yi) (@ —y5) }
uij(x,y) = — {d;jlog + ; (5.7)
e L e e e
fori,j = 1,2. We introduce boundary integral operators,
Gelte) = [ uyle e,
i) = [ gy, (5.9
which enables us to write (5.3) as
1
(32 +H)v = Gb. (5.9)

The operatorg; and’H are called theingle and double layer operatdor the Stokes
equations. For the Dirichlet problem the velocityt the boundary is giverd' = ()
and we would like to reconstruct the normal strgésd the boundary. To this end we
need to invert the operatgf. This can only be done when all eigenvaluegjadire
unequal to zero. In this chapter we investigate under whasfditionsG admits a
zero eigenvalue.

For the mixed problem the velocity &, is prescribed and the normal stress at
T’y is prescribed. We would like to reconstruct the unknown eigyoat I's and the
unknown normal stress dt;. After rearranging known and unknown terms (see
Section 5.4) we again need to invert a boundary integralatper This can only be
done when all eigenvalues of the operator are unequal to Yéavill show that zero
eigenvalues occur under the same conditions as for thehbatiproblem.

This chapter does not address the Stokes equations with &feuoonditions. It
is well known that the corresponding BIEs do not have a ungpletion, due to the
existence of rigid body motions. The Completed Double L&EM [75] shows one
way to get around this problem.

5.2 Eigensystem of the single layer operatay at a circle

For a circular domain it is possible to compute the eigeraslof the single layer
operatorG analytically. These eigenvalues will show that for a cinglth a particular
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radius the BIE becomes singular. For general domains ittipossible to compute
the eigenvalues df analytically. However the BIEs become also singular atadert
domains. This phenomenon for arbitrary domains is predeint¢he next section.

In the current section we compute eigenfunctions and eaees of the operat@y

for a circular boundary'. Here we make use of the fact that the first term in the
kernelu,; is related to the fundamental solution for the Laplace dpeia 2D. This
results in the following decomposition of the single laypematorG for the Stokes
equations,

(Gp)i(x) = %&j(lcsw)(m) - i /F (= ]g)_(fj“; Ui, (y)r,.  (5.10)

The operatoK’* is the single layer operator for the Laplace equation. IFarcircle
with radiusR, the single-layer potentig’® admits the following eigensystem [38],

s R
K% cos(kt) = %cos(k:t),
s R .
K?sin(kt) = ﬁsm(kzt),
K°1 = —RlogR, (5.11)

with £ € N. We introduce the following polar coordinates,
x := R[cost,sint], y:= R[coss,sins], 0<t,s<2m. (5.12)

Then||z — y||2 = 2R%(1 — cos(t — s)) and we find

1 9 (cost — cos s)?
uii(t,s) = 87r{ log [2R*(1 — cos(t — s))] + = cos(t —3) },
1 (cost —coss)(sint —sins
w(g) = Lleost e osint —sing)
8 1 — cos(t — s)
1 (sint — sins)(cost — cos s)
t = — — t
uz(t; s) 8 1 — cos(t — s) wiz(ts s),
(t,s) = i{—lo [2R%(1 — cos(t — s))] + M} (5.13)
v el =gy & § 1—cos(t—s))"

Using the integral kernels in polar coordinates given ingbit is straightforward to
compute the eigenvalues and eigenvectors of the opayatbhe results are given in
Table 5.1.

We observe that the functio(z) = n = [cost,sint]?, representing the unit
outward normal, is an eigenfunction with eigenvalue zeroistan be explained as
follows: when we apply a stress in the direction of the norataéach point of the
boundary, each stress having the same magnitude, the rtebatian will be equal



Section 5.2 Eigensystem of the single layer operater at a circle 69

eigenvalue eigenfunctions

[ cost
0 | sint ]
R [ —sint
z | cost
R [ cost sint
E | —sint |’ | cost
R (. _ [ cos(kt) cos(kt)
m (k=23.) | sin(kt) |’ | —sin(kt) |’
[ sin(kt) —sin(kt)
| cos(kt) |’ cos(kt)
[1 0
—1RlogR+ 1R o]’ [1]

Table 5.1: Eigenvalues and eigenfunctions of the single layer opei@io

to zero. This phenomenon is not restricted to the circle applies to any shape of
the boundary, as will be proven in Section 5.3. Hence, whénrgpthe BIE (5.9)
with Dirichlet boundary conditions, one has to exclude tbemal from the solution
space.

For the casé® = R* := exp(1/2), we see that there is another zero eigenvalue,
which has an eigenspace with dimension two. The eigenfumetcorrespond to a
uniform stress distribution; at each point of the boundaryequal stress is applied
in the same direction. This particular stress distributidgh cause a translation of
the body. The circular boundary witR = R* is called acritical boundaryand the
circle itself acritical domain The radius or scal&* is called thecritical scaleor
degenerate scaleEquation (5.9) with Dirichlet conditions at the criticabindary
cannot be solved as the operagbadmits a zero eigenvalue. The corresponding BIE
is singular and does not have a unique solution.

The situation in which the BIE is not uniquely solvable foriecle with critical
scale also occurs for the Dirichlet Laplace equation in 2®, [0, 22, 24, 38]. Itis
shown that the single-layer operator for the unit circle ésli@ zero eigenvalue, and
consequently it cannot be inverted. Hence, the same phetwmragppears for both
the Laplace and Stokes equations. The critical scale haovievet the same for the
Laplace and Stokes equations.
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5.3 Invertibility of single layer operator on general doman

In this section we study the solvability of the BIE (5.9) wiilirichlet conditions
on a smooth closed boundalfy We search for eigenfunctiorts of the boundary
integral operatog with zero eigenvalue, hen¢g = 0. If such eigenfunctions exist,
the boundary integral operat@ris not invertible and the integral equation (5.9) is
not uniquely solvable. First we show that at least one sugénéunction with zero
eigenvalue exists.

Theorem 5.1 For any smooth boundary' the outward unit normatn(x) is an
eigenfunction of the boundary integral operatomith eigenvalue zero.

Proof. Thei-th component ofin equals
(Gn); = /Fuij(m,y)nj(y)dl“y

- [5”' os g+ e yj)] )ty

Ar [z —yl?
1 / 9 [ 1 (l’z’—yi)(l’j—yj)}
= — [ — |d;;log + ds2
dm Jo 0x; [V = —y lz — yl? !
o . / .
= — | Zwid, = — | VaidQ =o0. (5.14)
/Qafﬂj Y Q

Here the vector is the velocity due to Stokeslef65], i.e. the velocity field induced
by a point force in thee;-direction. This velocity field satisfies the incompredgii
conditionV.u! = 0. |

In Section 5.2 we already saw that for a circular boundarynibrenal vectom
is an eigenfunction ofj with eigenvalue zero. The current theorem generalizes
this result to arbitrary smooth closed boundaries. In tlguskeof this section we
assume that the solutions of the Dirichlet problem (5.9) seght in a function
space that excludes the normal. Hence the eigenfuncbi@is; we are looking for
are perpendicular ta.

We now show that for each bounddrthere exist (at most) two critical scalings
of the boundary such that the operat@rin the Dirichlet problem (5.9) is not
invertible. This phenomenon has been observed and provgrapdl we will partly
present the analysis here. In analogy to Section 5.2 theagdal which the operator
G is not invertible is called aritical scaling and the corresponding boundary a
critical boundary The domain that is enclosed by the critical boundary isrreteto
as thecritical domain
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Theorem 5.2 For all given functionsf and constant vectorsl the system of
equations

Gb+c = f,
{frbdl“ A (5.15)

has a unique solution paitb, c), whereb is a function and: a constant vector.

Sketch of proof.  The main idea is to show that the operator that maps the pair
(b, c) to the left-hand side of (5.15) is an isomorphism [41]. [ |

We proceed by introducing the two unit vecters = [1,0]7 andey = [0,1]7.
Theorem 5.2 quarantees that two pah$, c') and (b?, ¢?) exist that are the unique
solutions to the two systems

{le—l—cl = 0, {Qb2+02 = 0,

fpbldl = e, Jp b%dl es. (5.16)

We define the matriCr asCr := [¢!|c?].
Theorem 5.3 If det(Cr) = 0, then the operatog is not invertible.

Proof. Suppose thalet(Cr) = 0, then the columng! andc? are dependent, say
c!' = ac? for somea € R, a # 0. In that case

0 = (Gb'+c') —a(gh®+c?)
— g(b1 — ab2) + ac® — ac?
G(b' — ab?). (5.17)

The functionb' — ab* cannot be equal to zero, since this requifgéb’ — ab?)dl
to be equal to zero, while we have

/(bl — ab?®)dl’ = e; — aey # 0. (5.18)
r

Sob! —ab? is an eigenfunction of with zero eigenvalue. This eigenfunction cannot
be equal to the normal, sincen also requiresfF ndl’ = 0. |

Corollary 5.4 There are (at most) two critical scalings of the domé&irfor which
the operatorg is not invertible.

Proof. We rescale the domain by a factora, i.e. I' — aI'. With the definition of
the operatog it can be shown that

1
gb — G .= —— / aloga bdl’ + aGb. (5.19)
471' T
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Then the two systems in (5.16) change into

agb! + ¢ — £ [Lalogabdl' = 0,
{ a[Vdl = e, j=1,2 (5.20)
Defineb’ := ab’ for j = 1,2, then we obtain
Gbl + ¢/ — & [logabldl = 0,
{ Jpbldl = e =12 =
Substituting the second equation into the first equationgete
gbg—l—cj - ﬁloga ej = 0,
{ Jpbldl = ej, j=1,2. (®-22)

These systems have the same form as the original systemsl6),(&xcept for the
changec’ — ¢ — L loga e; for j = 1,2. Define the new matrixC,r by

1
CaF = CF - loga IQ, (523)
47

theng? is not invertible whenlet(C,r) = 0. Hence, whenk log a is an eigenvalue
of Cr, the operatog* is not invertible. This implies that, whe@r has two distinct
eigenvalues, there are two critical scaling®r which G is not invertible. IfCr has
one eigenvalue with double multiplicity these critical lsngs coincide. [ |

The result of Corollary 5.4 shows that the BIEs for the DilétlStokes equations
become singular for certain sizes of the domain. As a corsexgy the equations
are not uniquely solvable. This solvability problem is atifact of the boundary
integral formulation; the Stokes equations in differenfitam always have a unique
solution. In Chapter 3 and 4, and in literature [53, 56, 79, 8Similar phenomenon
is observed for the Laplace equation with Dirichlet cormudi; in its differential form
the problem is well-posed, while the corresponding BIE i swvable at critical
boundaries.

For the Laplace equation the critical scaling is relatedhéoldgarithmic capacity
of the domain. By calculating or estimating the logarithnei@pacity one can
determine or estimate the critical domains, without conmguBEM matrices and
evaluating their condition numbers. It is thaspriori information that allows us to
modify the standard BEM formulation such that the BIE becamiguely solvable
(see Section 5.3).

For the Stokes equations, there does not exist an equiviaehe logarithmic
capacity. Hence we cannatpriori determine the critical domains. One way to
determine the critical domains is by computing the BEM-gats and evaluating
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their condition numbers. If the condition number jumps ténity for a certain
domain, then this domain is a critical domain. Hence, thiatsfjy requires the
solution of many BEM problems.

Another possibility to determine the critical domains isdmjving the systems in
(5.16). This yields the matri, and subsequently the mati@,. By calculating
the eigenvalues of the latter matrix the critical scalings be found. Again we have
to solve two non-standard BEM problems to compute the atigcalings.

REMARK: The BIEs for the Stokes flow in 2D are similar to the equations
for plane elasticity. Hence the BIEs for the latter equatisnffer from the same
solvability problems as the Stokes equations. A proof &f fienomenon for plane
elasticity is found in literature [95] and is similar to theopf sketched above.

5.4 Invertibility of operator on general domain with mixed
conditions

In the previous section we showed that the boundary integpetatorG for the
Dirichlet Stokes equations is not invertible for all dormsinin this section we
show that this phenomenon extends to the Stokes equaticghswiied boundary
conditions.

The starting point is again the BIE for the Stokes equations,

1

o + Hwv = Gb, atl. (5.24)
Suppose that the boundadryis split into two parts]* = I'; | JI'2. OnT'; we prescribe
the velocityv! while the normal stregs' is unknown. O, we prescribe the normal

stressb? while the velocityv? is unknown. The boundary integral operatgrsind
'H are split accordingly,

[Gb];

/uijbjdr:/ uijb}dI‘—l—/ uib3dl =: [G'b'); + [G*b%];,

T T T2

[Hv], = /qijvjdl“:/ qijvjl-df+/ qijv?df‘ =: [H'v']; + [H?v?%;.
T Ty I's

(5.25)

With these notations the BIE is written in the following way,

1
Evk +Hw! + H2? = G'p! 4+ G atly, k= 1,2. (5.26)

We arrange the terms in such a way that all unknowns are agftlednd side and all
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knowns are at the right-hand side,
1
H2v? — G'b' = G%b? — HW! — 5111, atl'y,

1
§v2 +H*? -Gt = G%b? — HW!, atls. (5.27)
Now we can define an operatgr that assigns to the paib', v?) the two functions
at the left-hand side of (5.27),

bl A H2'02 o glbl

U2 %,‘)2 4 H2'02 _ glbl
To study the invertibility of this operator we need to stutlg homogeneous version
of the equations in (5.27),

H*v? - Gglpt = 0, atl'y,

1
§v2 +H*? -Gt = 0, atl. (5.29)

Theorem 5.5 There are (at most) two scalings of such that the homogeneous
equations (5.29) have a non-trivial solution, i.4.is not invertible.

(5.28)

Proof.  From the Dirichlet problem we know that there are (at magt $calings
of I" for which G is not invertible. So there argr anda;; € R and vector functions
q; andg;; such that

Gq, =0, ata,T, k= 1,11 (5.30)

The scalingsi;, and functions;, may coincide but this does not affect the proof of the
theorem. Denote the nullspace of the operétdoy N(G). The normal vectorn is
always inN(G). If I is a critical boundary then alggp andq;; are inN(G). Assume
thatT" is such a critical boundary. Lgte N(G), thatisq = a1q;+a2q;;+asn, for
somea, as andas in R, andGq = 0. Consider the homogeneous equations (5.29).
We will show that there is a non-trivial paib', v?) that satisfies these equations. We
choosev? = 0 andb' = q' + h'. Hereq' is the restriction ofg to Ty, i = 1,2,

and h! is still unknown. Substituting these functions in the leftad sides of the
homogeneous equations yields for both equations

_glbl _ _glql o glhl _ g2q2 o glhI’ (531)

where we made use ¢fq = G'q! + G%q*> = 0. If we can find a functiorh! such
thatG'h! = G2¢?, then the left-hand sides of the homogeneous equatiors zéed
and we have found a non-trivial solution. Our task is thenrtve that a functiorh!
exists such that

G'n! =G%¢*. (5.32)
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A function b is in N(G)* if it is perpendicular tog € N(G)*. Hence, the inner
product ofg andb should be equal to zero, i.e.

/ 4s(@)bi(@)dTs = 0. (5.33)
T
First we note that the right-hand side of (5.32) is contaiinedy (G)+, since
/Qi[QQQQ]z‘dH = /Qi(m)/ uij (@, y)q; (y)dlydl,
G r Ty
- [ ¢w [y,
Iy r
- [ dwigaldr, -0 (5.34)

So we may generalize our task: prove that a solutibmof
Ghl = ¢ (5.35)

exists, for anyp € N(G)*. If so, thenp = G2q> completes the proof. It is known
that the operatog is a Fredholm operator with index zero [29]. Hence the Frédho
alternative can be applied [70, p. 37]. This states that tiradgeneous equation
Gh = 0 either has the trivial solution, or a set of non-trivial lamsy independent
solutions. We are in the second situation, as the nullspagei®non-empty and is
spanned by, q; andq;;. The Fredholm alternative further states tGét = ¢ is
solvable if and only if¢ is perpendicular to the solutions ¢f f = 0, whereG*
denotes the adjoint operator @f However, the single layer operator for the Stokes
equations is self-adjoint, sg* = G. Consequently the solvability condition says
that ¢ has to be perpendicular to the solutiongj@f = 0. This is the case since we
definedg € N(G)+. Consequently there exists arwith Gh = ¢, for ¢ € N(G)*.
We split thish into two parts,

hl, atl'y,
h= { h2, atT. (5.36)

Recall that we search fdt! such thaG'h! = ¢. We addG2h? to both sides of this
equation, obtaining

glhl + g2h2 _ ¢ + g2h2’ (537)
or shorter

Gh = ¢ + G°h?. (5.38)
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The right-hand side of this equation isWM(G)*, since¢ € N(G)* and
/Qi[QQhQ]ide = /%(33)/ uij (@, y)h; (y)dTydl
G T Ty
- [ 2w [ weya@ar.r,
T2 T
- [ mwgajar, ~o (5.3

soG2h?is also inN(G)*. Recall thaiGh = ¢ + G>h? is solvable if the right-hand
side is inN(G)*, so there exists ah satisfying (5.38). Then we may construet
by simply restrictingh toT'y, i.e. h* = h|r,. |

This result shows that also the BIE for the Stokes equatiatismixed boundary
conditions may become singular. This happens for the saitieatboundaries as for
the Stokes equations with Dirichlet boundary conditiongnét the mixed problem
inherits the singularities from the Dirichlet problem. Tdigision of the boundary
into a Dirichlet and a Neumann part does not play a role in this

Note that the Laplace equation exhibits the same behavidure boundary
integral equation for the Laplace equation with mixed ba@rgdconditions also
inherits the solvability problems from the BIE for the Dinlet case [39].

5.5 Numerical examples

To solve the BIEs (5.9), the boundaryis discretised into a set @ linear elements.

At each element the velocity and normal stresk are approximated linearly. In this
way the BIEs are transformed into a linear system of algelagiations (for details
about the discretisation we refer to any BEM handbook [6). Mg introduce vectors
v andb of length2 N containing the coefficients af andb at the nodal points. Then
the system of equations can be written in short-hand notat$o

(%1 +H)v = Gb. (5.40)

HereG andH are the discrete counterparts of the single and double &penator.
For the Dirichlet problem, the coefficients of the velocisctorv are given, say
v = v, and we need to solve

Gb — £(¥) == (%1 +H)Y (5.41)

to find the unknown coefficients of the normal stress vebtor
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If the boundary integral operator is not invertible then its discrete counterpart,
the matrixG is ill-conditioned. To visualize this we compute the coiwlitnumber
of G: if the condition number is infinitely large, then the matisxhot invertible. As
a consequence, the linear system (5.41) is singular anatharsolved for arbitrary
right-hand side vector& If the condition number is bounded but very large, thelh stil
the problem (5.41) is difficult to solve numerically.

In the following examples we construct the mat€ixfor a certain boundary’
and compute the condition number of this matrix. Then wealesthe boundary’
by a factora, i.e.T" — aI'. Again we compute the condition number of the maix
We do this for several values of the scaling parametekccording to the theory in
the previous sections there are two critical scalings factvthe integral operatay
is not invertible. For these two scalings also the maixs not invertible, or at
least very ill-conditioned. Hence we expect that the caminumber ofG jumps
to infinity at these two scalings. The scaling for which suaigé condition numbers
appear is again calledaiitical scalingand has ideally the same value as the critical
scaling defined for the BIE in the previous section. Howedee, to the discretisation
of the equations, the critical scaling for the discrete frwbmay be slightly different
from the critical scaling for the BIE. In the limiv — oo these differences vanish.
Analogously to the critical scaling, we define ttréical boundaryto be the boundary
for which the condition number gets very large.

Example 5.1

In Figure 5.1 we show the condition number as a function ofstedea. We do
this for an ellipse with aspect ratib4 (to which we refer to as ellipse 1) and for an
ellipse with aspect rati6.7 (to which we refer to as ellipse 2). We observe that for
both cases two critical scalings exist for which the condithumber goes to infinity.
Moreover, these critical scalings differ significantly tbe two ellipses. For ellipse 1
we find critical scalingd.9 and 2.9 approximately, while for ellipse 2 we fintl8
and2.1. Hence the shape of the ellipse, i.e. its aspect ratio, lgregdluences the
values of the critical scalings.

Figure 5.2 visualises all ellipses for which the conditiammber of G is very
large, i.e. all critical ellipses with different aspectioat At the horizontal axis we
put the lengtha of the horizontal semi-axis of the ellipse, at the verticgisahe
lengthb of the vertical semi-axis of the ellipse. We compute the dommdnumber of
G for several values af andb. We call the values aof andb for which the condition
number goes to infinity theritical sizesand the corresponding ellipse the critical
ellipse. At thecritical sizeswe plot a dot in thga, b)-plane of Figure 5.2. We see
that the critical sizes lie on two curved lines, which are syetric around the line
a = b. It can be concluded that for an ellipse with fixed aspecbrati= a/b # 1,
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Figure 5.1: Condition number o for an ellipsoidal domain with aspect ratios4 and0.7
as a function of scaling parameter
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Figure 5.2: The critical sizes of an ellipse for which the condition neméf G is very large.
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Figure 5.3: The critical sizes of a rectangular domain with rounded em

two critical sizes exist. For a circle, whetdle= 1, only one critical size exists. The
values corresponding to this critical size are approxitgate= b = 1.65, which
agrees with the critical scatep(1/2) ~ 1.649 that we found in Section 5.2. [

Example 5.2

In Figure 5.3 we show the critical sizes for a rectangle witinded corners. The
results look similar to those of the ellipse; again thereadweys two critical sizes,
except when the aspect ratio of the domain is equal to one. O

Example 5.3

In the case of mixed boundary conditions we may rearrangesten the linear
system (5.40) and put all known coefficients at the rightéhside and all unknown
coefficients at the left-hand side. Then we obtain a lineatesy of the form

The matrix A consists of a block from the matr& and a block from the matrix
H. We compute the condition number of the matAxfor the case of an ellipsoidal
boundary. This ellipse is approximated b§ linear elements. At the first eight
elements we impose Dirichlet boundary conditions and alateeight elements we
impose Neumann boundary conditions. Then we rescale thedaoy by a factor
and compute the condition number for the new situation.
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Figure 5.4: Condition number oA for an ellipsoidal domain with aspect ratids4 and0.7
with mixed boundary conditions, as a function of scaling
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Figure 5.5: The critical sizes of an ellipse with mixed boundary cowdisi for which the
condition number oA is very large.

Figure 5.4 shows the condition number of the matrix for aipsdl with aspect ratio
0.4 and an ellipse with aspect ratior. We see that there exist two critical scalings for
each ellipse. For these critical ellipses the condition beinof A becomes infinitely
large.

The critical sizes of the ellipse in the case of mixed condgi are close to the
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Figure 5.6: The critical sizes of rectangle with rounded corners withxeni boundary
conditions for which the condition number Afis very large.

critical sizes for the case of Dirichlet conditions. In FHiglb.5 we show all critical
sizes of the ellipse for the case of mixed conditions. Oneatzserve that this plot
resembles the plot in Figure 5.2 for Dirichlet condition$isTconfirms the idea that
the BIE for the mixed case inherits the solvability probleroni the BIE for the
Dirichlet case. Note that the graph in Figure 5.6 is not symimanymore, as was
the case for Dirichlet boundary conditions. This asymrestdre caused by the fact
that the Dirichlet elements and Neumann elements are nmibdited symmetrically
over the boundary. O

Example 5.4

In Figure 5.6 we show the critical sizes of a rectangular dométh rounded corners
with mixed boundary conditions. The results look similathose of rectangle with
Dirichlet conditions (Figure 5.3). 0

Example 5.5

We now turn our attention to a time-dependent problem. WaystLviscous drop of
fluid of ellipsoidal shape that deforms to a circle due toateftension. The evolution
of the boundary of the drop is governed by the Stokes equatod can be solved
using the BEM [78, 93]. The velocity of the boundary and the normal strésat

the boundary are related by the BIE (5.9). The normal stv@ésgproportional to the
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Figure 5.7: An ellipse with aspect rati0.5 deforming to a circle.

mean curvature of the boundary,
b= —2ykn, (5.43)

with ~ the surface tension andthe outward normal at the boundary.
At time levelt = t; we compute the velocity at all discretisation nodes. We
fix a time stepAt and update the boundary of the drop with an Euler forward, step

x — x+ Atv(x), (5.44)

obtaining a new boundary. For this new boundary we again céartpe velocity, and
perform another Euler forward step. In this way we can stiidyshape evolution of
the boundary. In Figure 5.7 we see the evolution of the @lipsa circle. The initial
shape is an ellipse with aspect ratié and the longest semi-axis has a length We
choosed0 points to discretise the boundary, the size of the time gexi= 0.375
and we computé0 time steps.

In the problem described above the normal stress is presceahd the velocity
has to be reconstructed with equation (5.9). We can alsouiata a problem in
which we try to reconstruct the normal stress given the bagngelocity. It is this
problem that we study in this example. To solve this probleennged to invert the
matrix G at each time step. We know that there are certain criticahfaries for
which the matrixG will not be invertible. In the problem of the deforming elipwe
go through a whole range of ellipses with different shaped,vae risk to encounter
one or more of those critical boundaries.

In Figure 5.8 we show the condition number of the matxat each time step
for a certain ellipse. An increase in the condition numbdrdates that the boundary
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Figure 5.8: The condition number d& at each time step without scaling.
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Figure 5.9: The condition number d& at each time step with temporary scaling when the
domain is close to a critical domain.

under consideration is close to a critical boundary. Welsagthere is one time level
in which such a critical boundary is reached. In this case lwe®se20 discretisation
points, a time step sizAt = 0.002 and30 time steps.

There is a simple way to avoid a critical boundary. When the ef the boundary
gets close to the critical boundary, we temporarily scaeedbmain. In Figure 5.9
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without scaling with scaling difference

area 10.59729837  10.5972852 1.3150e — 05
length 12.97535126  12.9751271 2.2412e — 04
a 2.759578290  2.75949155 8.6740e — 05

b 1.241866240 1.24190168 —3.5440e — 05

Table 5.2: Difference in the BEM with and without temporarily rescglinListed are the
surface area, the length of the boundary and the length o$¢inei-axes at time= 0.06.

we show the outcome of this strategy. At each time step betwee 0.038 and

t = 0.046 we scale the domain by a factdr02. Then we solve the BEM problem
for each of these time steps and the solutions are rescaladdmtor1/1.02. As a
consequence the condition number of the BEM-matrices isettiene steps does not
become very large. The scaling of the domain during some sit@gs does hardly
affect the outcome of the test. In Table 5.2 we give the saréaea, the length of the
boundary and the sizes of the semi-axes at the final time deve).06. Their values
hardly change when we perform temporary scaling.

Of course, for this strategy certain knowledge is neededutalize critical
boundaries, although we do not need to know the exact driimandary. We only
have to make sure we do not get too close to it. In the currshinte only scaled at
a restricted number of time steps. In general one could stadeery time step, thus
excluding the possibility that a critical boundary is enctaued.

The size of the initial ellipse strongly affects the coratithumber of the matrix
at each time level as the ellipse deforms. In Figure 5.10 v ghe size ¢ andb)
of an ellipse while it deforms. The size of the initial ellps shown with a large
dot, whereas the sizes it takes as it deforms to a circle aretel@ by the trajectory
starting in the dot. All ellipses deform to a circle, whicksisen from the fact that all
trajectories converge to the straight dashed line wheteb.

The dashed-dotted lines represent all critical ellipsds,Figure 5.2. When the
trajectory of an ellipse crosses one of the two dashed-ldities, it means that the
ellipse at that time level is a critical ellipse. For this tarlar ellipse the condition
number will be large. The trajectories of some ellipses nevess such a line of
critical ellipses. This means that they never get a critiiaé as they deform to a
circle. For other ellipses there is one point along theijettry where the ellipse
is a critical ellipse. It is also possible that an ellipse drees critical twice during
the deformation. An example is the ellipse with initial size= 4 andb = 0.8.
The trajectory of this ellipse crosses the line with critiellipses twice. Figure 5.11
shows the condition number for this particular case. It cagden that the condition
number gets very large at the beginning and at the end ofriteititerval. O
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Figure 5.10: Each solid line represents the size of an ellipse as it defdora circle. The
initial size, i.e. the lengths andb of the semi-axes, is denoted with a large dot. The dashed-
dotted lines represent the critical sizes. The dashed kpeasents all circles.
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Figure 5.11: The condition number for the ellipse with initial values= 4 andb = 0.8.
During the deformation to a circle this particular ellipsets a critical size twice.
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y
pl’eS‘SUI’e X=1 X=1 +d

Figure 5.12: A viscous fluid is positioned into a mould. The boundary oflthd consists of
two semi-circles having radii and1 + d.

5.6 Blowing problem in 2D

It is shown that the Helmholtz boundary integral equatiardfmmains with thin parts
causes numerical instabilities, especially as the thiské the thin part approaches
zero; this phenomenon is calléin-shape breakdow[82, 69]. In this section we
investigate whether a similar phenomenon exists for thesBdEthe Stokes equations
in 2D. In particular we want to know how the BEM-matrices dffe@ed by a part of
the domain whose thickness approaches zero.

To this end we study a special application of the Stokes @msta problem that
occurs in the blowing of glass bottles, as explained in Girapt. In this problem
an amount of viscous fluid is positioned into a mould as dediah Figure 5.12. At
the topy = 0 (I'2) the fluid is fixed, while it is free to move everywhere else.tiAd
boundaryl’; a pressure; is applied, which causes the fluid to move downwards and
sideways, into the mould. In the current section we invastighe blowing problem
for an arbitrary viscous fluid. We do not address the timeeddpnt problem: for a
certain initial shape we compute the velocity field of thedlui

The flow of viscous fluids is described by the Stokes equatidite BEM can
solve these equations and yields the velocity field at thentbary of the fluid. In
this section we investigate whether the BEM-matrices tppear when solving the
blowing problem become singular. We assume that the fluigtéionally symmetric
such that we can investigate the flow in a 2D setting. Theainundary of the fluid
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consists of two concentric semi-circles separated by anlisi/, as can be seen in
Figure 5.12. The inner circle has radiusso the outer circle has radiust d. The
idea is thatd will always be small compared to the radii of the circles,stioveating
a thin structure.

The boundary value problem that has to be solved for the blpwwroblem is
given by (for more details we refer to Chapter 6)

Vv—-Vp = 0, atQ,

Vo = 0, atQ,
on = 0, atl,
on = —pn, atl'y,
v = 0, atls. (5.45)

Hence we prescribe the normal stress at the part of the boundeere the pressure
is applied. At the other part of the free boundary we prescrbro normal stress.
The BEM transforms the boundary value problem into a lingatesn,

1
(51+H)v =Gb, (5.46)

wherev andb are vectors with the coefficients of the velocity and the rairstress
at each of theV nodes along the boundary. In this example we use linear elisme
hence the velocity and normal stress vary linearly over edement. As the two
boundary part§’s are very small, each part is modelled by one element onlyceSin
the boundary of the domain mainly consists of two parts,the.inner and the outer
semi-circle, the matrixG can be written as a block matrix,

G1 | Gy
G- . (5.47)
G3 | Gy

The block matrixG corresponds with integration over the inner semi-citclevhile

all collocation nodes are &t,. Similarly G4 is related solely to the outer circlg,.
Hence to compute these blocks we do not require any infoom#tom the opposite
boundary part. The block matric€s, and G3 correspond to integration over one
semi-circle while the collocation nodes are at the oppasitai-circle. Let us assume
that the number of boundary elemenss an even number.

If the unknowns in the vectds are ordered as

b= (b, N2 b)) Y BN BN BT (5.48)

s Yy y Y s Yy o
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d IG -Gl d IG — Glloo
0.1  326-1072  0.0025 1.72-1073
0.05 206-1072  0.001  7.57-10*
0.025 123-1072  0.0005 3.90-10*
0.0l 578-107%  0.00025 1.99-10*
0.005 3.18-107%  0.0001  9.87-107°

Table 5.3: The matrixG approaches the matri& as the thicknesg goes to zero.

and the equations in the BEM are ordered in the following way,

equation ate,

: in z-direction

equation ate /o

equation ate,

: in y-direction

equation atc /o (5.49)
equation ate y ’ '

: in z-direction

equation ate /o1

equation ate

: in y-direction

equation ate v/

it can be shown that the matré approaches the singular mattin the limitd | 0,

G, Gl]

i (5.50)

limG = G = [
Table 5.3 shows the max-norm 6f — G for decreasing values of We see that as
d | 0indeedG — G. Thus the matrixG can be seen as a perturbation of the matrix
G around the point = 0. Table 5.3 suggests that the difference betw@eand G
depends linearly od.

It is straightforward to see that any vectoof the formx = [x; —xl]T, x; € RV,
is an eigenvector ofs with eigenvalue). Hence the eigenvalughas an eigenspace
with dimension (at least)V, and is spanned by

{[1,0,...,0,-1,0,...,0",...,[0,...,0,1,0,...,0,—1]"}. (5.51)
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m |G- Gslle m |G - Gslleo

4 2.0-1073 20 5.8-107°
8 5.2-104 24 26-107°
12 21-107¢ 28 2.7-107°
16 1.1-107% 32 1.7-107°

Table 5.4: The difference between the matéx computed with the help of a Gauss-Legendre
scheme withn knots, and the matrixas, computed with the help of an adaptive Simpson
scheme.

Consider the matrixG as a function ofl, G = G(d), and introduce a function
F:R?N xR — R?N by

F(x,d) == G(d)x. (5.52)

If G(d) is computed exactly, there exisf roots of the equatio¥” = 0, namely
(x*,d*), wherex* = [x; —x;]7, x; € RY, andd* = 0. However in realityG
cannot be computed exactly since we make use of numeriegration schemes to
approximate integrals, so in fact we deal with a maGix+ E, with |E| small. If
the numerical integration is performed very accuratelg, rttatrix E approaches the
zero matrix. For the true matrig&x + E we find M < N of roots of the equation
F = 0, namely(x*, d*), wherex* ~ [x; — x1]7, x; € RY, andd* small, but not
necessarily).

The numerical integration error that is made by the Gaugghere quadrature
scheme that we use here is particularly large for the bloyiodplem that we study.
To illustrate this we first compute the BEM-mati& by using an adaptive Simpson
scheme with accuracyd 6. Adaptive schemes put more effort in approximating the
integrals near singularities. These schemes keep inogetdse number of knots near
singularities, until the required accuracy is obtained.e Bauss-Legendre scheme
treats each subinterval of the integration path equallg,does not verify whether a
certain accuracy is obtained. Therefore the adaptive Simpsheme approximates
integrals with a logarithmic singularity much more accarttan the Gauss-Legendre
scheme. We denote the matrix whose integrals are appraedhveith an adaptive
Simpson scheme b and compare it to the matricgs that are computed by
using a Gauss- Legendre scheme witlknots. In Table 5.4 we show the max-norm
of G—Gg. We see that the matric€s approachG g very slowly. Even with as much
asm = 32 knots the difference betweds andGg is still 10~°. Hence the Gauss-
Legendre scheme is much less accurate than the adaptives@inggheme. The
cause of this large error lies in the fact that the two semules of the boundary are
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Figure 5.13: The condition number of the BEM-matitx as a function of the thicknegsof
the geometry.
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separated by a small distance. In the computations of the Bttlix G, integrals
that involve the termog ||z — y|| have to be evaluated, wheseis a point at one
semi-circle andy a point at the opposite semi-circle. Hence wileapproaches zero,
the distancéd/x — y|| betweernr andy becomes very small, and a nearly logarithmic
singularity appears in the integrals. The Gauss-Legeraiirense cannot approximate
such integrals accurately enough [49, 84].

As a consequence, the mati& is not computed accurately, and the equation
F = 0 has a number of root&e*, d*) in which thed* are unequal to zero. To
illustrate this we compute the BEM-matr& for several values of and compute
its condition number. In Figure 5.13(a) we show the condittmumber ofG as a
function ofd. For this example the boundary of the fluid is discretisedhWit= 18
boundary elements and the Gauss-Legendre schemenuses knots. We observe
that for 6 values ofd the condition number jumps to infinity. These valuesdof
correspond to the roots @f = 0.

If we increase the number of boundary elementsand compute the matrix
elements ofG exactly, the number of roots df = 0 also increases, as there are
N such roots. IfG is not computed exactly, as is the case with the Gauss-Legend
scheme, we may also expect to find more rootsFof= 0. Figure 5.13(b) and
Figure 5.13(c) confirm this idea. For Figure 5.13(b) we cleads= 20 boundary
elements and for Figure 5.13(c) we chodée= 22 boundary elements. F@¥ = 20
we observes values ofd for which the condition number jumps to infinity, and for
N = 22 evenl0 of such values.

If we improve the accuracy of the numerical integration, wpeet to approach
the exact matrixG better. As a consequence the rootsfof= 0 should also
approach the roots of the exact equation better. Hence thesvafd* should go
to 0 if we improve on the numerical integration. Figure 5.14 coné this idea. The
matricesG whose condition numbers are shown in Figure 5.14(a) are atadpvith
a Gauss-Legendre scheme with= 6 knots. For the matrices in Figure 5.14(b) and
Figure 5.14(c) we usew = 7 andm = 8 knots respectively. Indeed we observe that
the values ofi for which the condition number jumps to infinity approachazasm
increases.

As we already noted before, the Gauss-Legendre schemesottben most
appropriate numerical integration schemes for this paeic blowing problem.
Adaptive schemes are better equipped for the blowing pnobla the next example
we compute the BEM-matri%z for several values of using an adaptive Simpson
scheme with accurach0—%. With this accuracy the integrals (@ are approximated
accurately enough compared to the Gauss-Legendre schdroge &ccuracy is only
10~° for m = 32. The condition number dof is plotted in Figure 5.15. We see that,
except ford | 0, there is no other value af for which the condition number dfx
goes to infinity. The large condition number br| 0 is expected, a& approaches
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Figure 5.14: The condition number of the BEM-matiix as a function of the thicknegof
the geometry. The number of boundary elemen$ is 18.
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Figure 5.15: The condition number of the BEM-matr® as a function of thickness.
The number of boundary elementsNs = 18. Numerical integration is performed with
an adaptive Simpson scheme with accura@y®.

the singular matr>G very well in these cases.

The blowing problem covered in this section shows that theerical integration
needs special attention in the case of thin domains, i.e. bovmdary parts of the
domain are separated by a small distance only. For such demiaiparticular for
the thin parts of such domains, the Gauss-Legendre quaglratiheme performs
poorly when approximating the integrals that appear in tlEMBnatrices. As a

consequence, for some valuesdthe condition number o6z becomes infinitely
large.



Chapter 6

Three-dimensional Stokes flow

In this chapter and the subsequent chapter we extend owarcbsen the Stokes
equations to three dimensions. We develop a mathematicdelnfor a particular

application: the blowing problem in 3D. We show that the BE#Na suitable
numerical method to solve such problems. These chapteraramtaboration of
earlier work of the author et al. [36, 40] concerning the ntica modelling of

the blowing phase in the production of glass containers.

6.1 Simulating the blowing of glass containers with the
BEM

In 3D the Stokes boundary integral equations cannot becorgelar at specific sizes
or shapes of the domain, contrary to the Stokes boundargraitequations in 2D.
The reason for this is the absence of a logarithmic term irfthdamental solution
for the 3D Stokes equations. It is this logarithmic term tisathe essence of the
existence of critical domains in 2D. Hence we can safely ttaosa 3D BEM model
for the class of blowing problems. In the blowing problem scous fluid is blown to
a desired shape. We want to see whether the BEM is an apgepumerical method
to solve this blowing problem. As a special application wasider the blowing of
glass containers.

The industrial production of glass containers like bottlsd jars consists
of several phases. First glass is moulten in a furnace wheregkass reaches
temperatures betweer200 and 1600 °C. The molten glass is then cut ingmbs
which are transported to a forming machine.

The gob falls into a mould, and a plunger is pushed into theldha@haping the
glass to an intermediate form called therison This phase of the production process

94
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- B

(a) Pressing phase (b) Blowing phase

Figure 6.1: The production of glass containers consists of a pressirag@tand a blowing
phase.

is called thepressing phas@-igure 6.1(a)). The parison is put into a second mould in
which it is allowed to creep in vertical directiosggging due to gravity for a short
period of time. Then the parison is blown to its final shaperbynéow of pressurized
air. This phase of the production process is calledotbeing phasdFigure 6.1(b)).

For the glass industry it is important to optimize each phafsihe production
process. One can think of optimizing the shape of the paritom speed of the
plunger, the sagging time, the pressure of the air duringpkbwing phase, etc [68].
Experiments to tune these parameters are cumbersomey, andttime consuming.
Therefore computer simulation of the various productiomsgs can offer useful
information to optimize the production.

In this thesis we study the flow of the glass during the blowihgse. We assume
that the shape of the parison and the shape of the mould age,gand also the
pressure of the inflowing air is prescribed. Given thesengstithe BEM computes
the velocity at the boundary of the glass by solving the Si@quations. Then we
perform a time integration step to obtain the shape of thesghtthe next time level.
For this new shape we again compute the velocity at the boyiaaa perform a new
time integration step. This iterative procedure enables study the shape evolution
of the glass during the blowing phase. The computations arfoyned in three
dimensions. This allows studying bottles and jars that ateatationally symmetric,
for instance due to small imperfections in the initial panis

Numerical modelling of the production process of glassléstand jars has been
the topic of several papers. Mostly finite element methodsuaed to simulate the
glass flow [12, 13], sometimes using a level set method td titae position of the
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glass boundary [45]. In many cases rotationally symmetigspns are modelled and
computations are limited to two dimensions. To the authkmswledge our work is
the first to address the blowing problem in three dimensiairsguthe BEM.

During the blowing phase the temperature of the glass clsadge to heat
exchange with the mould. The viscosity of the glass depemdghe temperature
in an essentially non-linear fashion. As the viscosity @ppén the Stokes equations,
the heat and flow problem are coupled. However we show thangltine blowing
phase we may consider a homogeneous temperature. Contga@lsmthe viscosity
becomes homogeneous and the heat and flow problem can bssettis=parately.
In the papers mentioned above the heat problem is studiedsintly. In this thesis
we therefore focus on the flow problem.

In Figure 6.2 we schematically depict the glass and the maklassume that at
the top (S2) the glass touches the mould and cannot move. At the othes waere
the glass touches the moulfs( it is allowed to slip along the mould. At the inlet
of the mould 6;) pressurized air flows in, while at the bottom of the mou#g)(
standard pressure is maintained.

Special attention has to be paid to the contact problem legtwhee glass and the
mould. Most papers assume a no-slip condition at the moufda) i.e. glass cannot
slip along the surface. In practice this is not the case. Some the mould is even
covered with a lubricating substance to improve the sliphefglass. Therefore we
choose to work with a partial-slip boundary condition imstef a no-slip boundary
condition.

The procedure described above results in a simulation kadldan be used to
study the blowing phase for glass products. We have testedithulation tool on
several bottles and jars. The results of the tests are pirtgrasid may contribute to
a better understanding of the production of bottles and jars

6.2 Mathematical model

In this section we derive the mathematical model that dessrithe flow of a
Newtonian fluid with high viscosity in three dimensions. ltkeé¢ fluid domain be
denoted by, bounded by a closed surfase The velocity and pressure of the fluid
are denoted by andp respectively. Furthermore the fluid is characterized by the
dynamic viscosityy, a surface tension and a typical length scalé. In general the
viscosityn depends on the temperature of the glass. As the temperafyrberspace
dependent, also the viscosity may be space dependent. ldoveger on we show
that for the blowing problem the glass has a uniform tempegadlistribution, and
henceforth the viscosity is uniform also.
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The motion of the fluid is governed by two equations. The cwitly equation
expresses conservation of mass,

V.o =0, (6.1)

where we assume that the densityof the fluid is constant and uniform, i.e. the
fluid is incompressible. Vector fields that satisfy (6.1) aa#led solenoidal The
Navier-Stokes equatiorexpress conservation of momentum,

v
P ot
whereg is a body force (here we consider only gravitational fajce= —ge., with

g the gravitational constant) andis the stress tensor. For the Newtonian fluid that
we consider the following constitutive law for the stressstar holds,

+ p(V.v)v = V.o + pg, (6.2)

045 = —pdij + 2n&;j. (6.3)

Hered;; is the Kronecker delta anflis the rate of deformation tensor, defined as

1 Ovi Ovj
e ' 4
& 2 <@.1‘j + 8:@) (6 )

With the constitutive law forr the Navier-Stokes equations become

v
P ot
We distinguish four types of boundary conditions at différgarts of the surface,

as can be seen in Figure 6.2. At the surfaggand.S; the normal stress is related to
the prescribed pressurgg andp; onto the surface and the surface tensjon

+ p(V.v)v = =Vp +nV?v + pg. (6.5)

on = —pon — ykn, atSy,
on = —pin —ykn, ats;. (6.6)

The first term in the boundary condition accounts for theretigpressure acting onto
the surface. Hera stands for the outward unit normal at the surface. The second
term accounts for the surface tension due to the curvatutteecfurface. In the fluid

all molecules attract one another. A molecule that is intiterior of the fluid domain

is attracted by all its neighbours, so the average forcepieegnces is equal to zero.

A molecule at the surface of the fluid has only neighbourindetudes at one side,
and experiences a force into the fluid. For highly curvedama$ this force will be
larger than for flat surfaces. The curvature of the surfacedasured by thenean
curvature with dimensionZ~—!. In Appendix A we present a way to approximate
the curvature numerically.
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S

Figure 6.2: Cross-sectional view of the set-up of the blowing problehe glass is positioned
in a mould. The surface of the glass is divided into four parts

At the surfaceS; we assume that the fluid is in contact with the mould. The fluid
is not allowed to slip and hence we set the velocity equal to,ze

v =0, atS. (6.7)

At the surfaceS; the fluid is in contact with the mould, but is allowed to sliprd) the
wall of the mould. This means that the velocity componenhariormal direction to
the wall is equal to zero, i.e. the fluid cannot penetrate tak, w

v.n =0, atSs. (6.8)

The velocity components in the tangential directions maybeozero. Navier's slip
law states that the tangential component of the velocitgleged to the normal stress
by [57, 67],

(om + Bpv).t =0, atSs. (6.9)

Heret is a vector in the tangential direction at the wall ahglis a friction parameter.
If 5,, — 0 there is no friction between fluid and wall. H, — oo the friction
between fluid and wall is very large and the fluid cannot flowngldhe wall.
Condition (6.8) together with (6.9) yields the no-slip ciiwh (6.7) wheng,,, = oco.
We introduce a dimensionless presspiievelocity v" and body forcey’ by
p/ — P —Do ’U, — nv / (610)

—=— g = —e,.

p1—Do " v (p1—po)L’
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We also define a characteristic time scélee= L/v.. Using these characteristic

variables and using. as a characteristic length, we rewrite the Navier-Stokes

equations in dimensionless form as
o'

Re<— + (V’.v/)v/> =-V'p + V% +

Re ,
o’ Frd-

= (6.11)

Here the differential operato/’ denotes differentiation with respect to the
dimensionless spatial coordinates. The dimensionlessbarstRe and Fr are the
Reynolds numbeand theFroude numberespectively, defined as

Re := vac,
n
v 6.12
Fro= —. .
- (6.12)

For the type of fluids that we consider here, the Reynolds murigaboutl0—3
or smaller. For instance, for glass the Reynolds number eacomputed with the
values of the material properties and process parametérabie 6.1, and we find
Re= 2.5 -10~*. This implies that the convective term at the left-hand siti¢6.11)
can be neglected. This reduces the Navier-Stokes equdtidhe Stokes equations
with body force term,

V20 —V'p +ag =0, (6.13)
wherea := Re/Fr. Together with the dimensionless form of (6.1)
V' =0, (6.14)

we obtain a system of four equations that describe the flonefluid. It can be
verified that the dimensionless stress tensas given by
1

U U o. (6.15)
P1—Po P1 —Po

We also introduce a dimensionless curvatdtéy ' := Lk. Substitution ofs’ and
' into the boundary conditions &t andS; yields

o'n = —Bk'n, atSy,
on = —(1+pk)n, ats, (6.16)

where the dimensionless numbgrs defined as

L Y
fim oot (6.17)
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The boundary condition &, becomes
v =0, atS,. (6.18)

It can be verified that substitution ef andv’ into the second part of the boundary
condition atS; yields

LBy,
—pon.t + (p1 — po)(o'n + %U/).t =0. (6.19)

The first term vanishes sinee.t = 0. We divide byp; — pp and and obtain the
following boundary conditions &3,

(c'n+pv)t = 0,
v'n = 0, atSs, (6.20)

where the dimensionless numb#y is defined as

g = Lom. (6.21)
n

In the sequel we drop tHeo simplify to notation.
We introduce a modified pressuséy [77, p. 164]

D:=p+az, (6.22)

wherez is the vertical coordinate. Sindép = Vp+ae, = Vp—ag, the momentum
balance simplifies to

V2 —Vp=0, inQ. (6.23)
We may define a new stress tensdoy

g =0(p,v) :=—azl +o(p,v). (6.24)
Substitution of this new stress tensor into the boundargitions atS, andS; yields

on = —(az+ fk)n, atSy,
on = —(1+az+ fk)n, ats;. (6.25)
Thus we have moved the body force term from the Stokes eausatiiothe boundary

conditions. It can be verified that substitution ®finto the second part of the
boundary condition a$; yields

azn.t + (6n+ fpv).t = 0. (6.26)
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The first term vanishes sineet = 0 and we obtain the following conditions &,

(cn+ Bpv)t = 0,
v.n = 0, atSs, (6.27)

To summarize, the equations and boundary conditions in riBoeless form are
given by

Vv—-Vp = 0,inQ,

Vv = 0,inQ,
on = —(az+ fk)n, atSy,
on = —(1+az+ Br)n, atsy,
v = 0, atSy,
(on+ Bpv)t = 0, atSs,
v.n = 0, atSs. (6.28)

In the sequal we will omit the

This thesis does not aim addressing the heat change in the glal the heat
exchange between glass, air and mould. However, the tetnperdoes enter the
Stokes equations via the viscosity of the glass. In genkeaViscosityn depends on
the temperature of the glass. Often in glass problems thisrdience is modelled
with the Vogel-Fulcher-Tamman relatiof], which is given by

1 = 1y exp (%) . (6.29)
HereT is the temperature of the glass amg B andTy r are the so-calletlakatos
coefficients

We show that for the blowing problem it is not necessary tduite the
temperature dependence of the viscosity into our model. e€otlsis consider the
energy equation (still in dimension-full notation)

pcp%—f +o.VT = kN°T+V (k.(T)VT)
+1 ((Vo+ Vol) : Vo). (6.30)

The three terms on the right-hand side of this equation semitethe conduction,
the radiation and the viscous dissipation respectivelye pérameters,, k. andk,
are the specific heat, the conductivity and the Rosselarahpser respectively. We
introduce a dimensionless temperatilifdy ' = 1), + ATT’, with AT = T, —T,,,
T, being the initial temperature of the glass, dhd being the temperature of the
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parameter value dimension
L 0.01 m

Ve 0.01 ms!

p 2500 kg m—3

n 1000 kg mis!
cp 1350 Jkg'K™!
ke 1.5 W m-tK-!
T, 1100 °C

T 600 “C

Po 1.00-10° kg m ls2
P 1.38-10° kg m ls2
vy 0.3 kg s2

Table 6.1: Material properties and process parameters for the glassviig problem.

mould. The dimensionless form of the heat equation readsirfwieediately omit
the’)

oT 1 k(T) 1
— 4+oVT = —V°T —VT
5 oV A +V< ™ Pev>

Ec
* Re (Vo + Vo') : Vo). (6.31)

Here thePéclet numberand theEckert numbenre defined as

_ pcpucl v?

Ec:= —5—. .32
k. ¢ cp AT (6.32)

Pe:

Typical values of the parameters involved (see Table 64lfyi/Pe ~ 10~ and
Ec/Re ~ 10~". Hence the terms on the right-hand side can be neglectedhand t
energy equation reduces to

or +v.VT =0. (6.33)

ot
This implies that the temperature remains constant alaegrsiines. If we assume
that the initial temperature of the glass is uniform in spaod the mould has a
uniform temperature too, it follows that the glass is isath&. As a consequence,
also the viscosity can be taken uniform. This shows that thkeS equations and the
heat equation are decoupled and can be solved separattiis thesis, however, we
are only interested in the flow problem.
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6.3 Boundary integral equations

In this section the mathematical model summarized in (6i2&ansformed into a
set of boundary integral equations [65]. We introduce aorefa¢ld v*(x,y) and a
scalar function;* (x, y) that satisfy the following Stokes equations,

Viuk(a), y) - vqu(a:a y) = 5('7: - y)eka
Veu(z,y) = 0. (6.34)

The vectore is a unit vector directed along ttie— th coordinate axisk = 1,2, 3.
The subscript: means that differentiation is performed with respect todpatial
coordinater. The pointy is an arbitrary point ifrR3. Physically the equations (6.34)
describe the velocity and pressure due to a unit point sourdhe e*-direction
located at the poing. Using the requirements

ey =0 () and diey) = o). for ] — . (635)

it can be seen that the solution of (6.34) is given by

1 1 (zj —yj) (@K — Yx)
k E—
U, y) = —5—|0jk -
J( ) 87‘('[ J |z —yl| |z -y ]
1 xp—
F(zy) = _4_14;71/1@3. %
T |z -y

This solution is called thRuindamental singular solutioof the Stokes equations. The
functions also satisfy the adjoint system,
Viu'(@,y) + Vo' (@,y) = (@ —y)e",
V,uf(x,y) = 0. (6.37)
To proceed to a boundary integral formulation we require@neen’s identity for

the Stokes equationd.et w andv be two solenoidal vector fields, apdand g two
sufficiently smooth scalar functions. Then the followingegral identity holds [65]

dp 9q
2 2
i — | ui — i+ | v |dQ2 =
/Q[<Vv 83:,)“ (Vu +8xi>v}d
/S loij(p, v)uin; — 04j(—q, w)vin] dS. (6.38)
Note that the stress tensefq, u) is equal to

Jij(q,u) = —qéij + <% + aﬁ;) .
j i

(6.39)
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For the functionsu and ¢ in the Green’s identity we substitute the fundamental
solutions u*(x,y) and ¢*(x,y) and we consider these as functions gf thus
satisfying the adjoint system (6.37). Furthermore wevl@indp be the solutions of
the Stokes equations described in the previous sectiom Whebtain the following
integral identity,

vp(x) = /Saij(—qk,uk)yvmjdsy—/Saij(p,v)ufnjdsy, x e, (6.40)

for k = 1,2, 3. We substitute the fundamental solution [ait, «*) in the expression
for o, to obtain

3 (x; —yi)z; —y;)(zp —

g |z —yll

We introduce a new variablg
b:=o(p,v)n, (6.42)

which represents the normal stress at the surface. Undeasthenption that the
surface ofQ2 is smooth, we let: approach the surface. Then it can be deduced that

Cz‘jvj(m)+/qu'j(fﬂ,y)vj(y)d5y :/Suij(may)bj(y)dsya i=1,2,3.(6.43)
Here the kernelg;; andu;; are defined as

3 (i —ya) (@5 — y;) (@, — yr)r

Gi(T,y) = T
1 1 (zi —yi)(zj — yy)
i (@ 9) 87T[ e -yl |z — yl? (6.4

The coefficient;; depends om according to [65]

(Sij x €,

Cij = %5” x € 09, (6.45)
0 elsewhere

From now on we choose € 912, which givesc;; = 34,;. We introduce the integral

operatorgg andH,

(Go)i = /uij(way)ﬁbj(y)dsya

S

(M), = / gij (. y); ()dS,, (6.46)

S
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These operators are called tsiagle and double layer operatdor the Stokes flow.
With these operators the boundary integral equation (6s48)itten as steno

(%1 +H)v = Gb. (6.47)

This boundary integral equation expresses the relationdset the velocityw at the
surface of the fluid and the normal strésat the surface.

The double layer operat@t admits several eigenfunctions with eigenvalue zero.
Hence the Neumann problem in whibhis prescribed an@ unknown at the whole
boundary is not uniquely solvable. To overcome this nomueness we follow
the procedure of deflating the operathr[94, p. 32]. The eigenfunctions &f
correspond to the six rigid body motions @f including three translations and three
rotations,

" (x) e, m=1,2,3,

etx) = z3e® —19€3,

Po(x) = —zzet + €3

Ox) = zget — el (6.48)

Heree™ is the unit vector in then-th direction. These rigid body motions are still
in dimensionfull notation. We introduce the total surfaceza.S|, the center of mass
2! and the moment of inertia by

S| ::/dS, . ::i/mds, I::/Hac—actHQdS. (6.49)
S 1S] Js S

The dimensionless rigid body motions are given by
om ¥

m

) m:172737

B

[(z3 — 28)” — (2 — 2h)?] ,

[— (x5 — 25" + (21 — 2})p?]

S
|
Sl-Sl-5l-

@° = (29 — @5)" — (21 — 2h)p?] . (6.50)
We define six projection operatof3™ by
P =@M (@™, m=1,...,6. (6.51)

We introduce the deflated form of the operakor

6
H+P=H+ Y P™ (6.52)

m=1
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We replace the operat@t by the deflated operatdt + P in the boundary integral
equation and obtain

(%I +H + P)v = Gb. (6.53)

This boundary integral equation is uniquely solvable. TperatorP can also be
written as

P)i = [ (e w)ds, (6.54)
s
where the kernep;; is given by

6
pij = Y o (@)} (y). (6.55)
m=1

Note that deflating the operat®f is only necessary for pure Neumann problems, i.e.
whenb is given at the whole boundary. For many applications intthésis we have
problems with mixed boundary conditions and we do not neelgfiate the operator.

6.4 Numerical solution

In this section we transform the boundary integral equati@b3) to a linear system
of algebraic equations. The surfa¢eis approximated byK linear triangular
elements. Each element consists of three naelesc?, =3, which are located at
the corners of the triangle. The total number of nodes is@ehoy N. We introduce
three linear shape functions,

$1(61,62) = 1-& — &

$2(81,62) = &,

#3(61,62) = &, (6.56)
where0 < &;1,& < 1 and¢; + & < 1. Consider the-th elementS;, with nodesz!,
x? andx3. The elemenf), is parameterized by

y=y(&,&) = gra' + dox® + dga’. (6.57)
At each elemenf;, the functionsv andb are linearly approximated with the same
shape functions,

v(y) = ¢rv' + gov® + P30’

bly) = ¢1b' + ¢ob® + p3b°. (6.58)
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Herev® := v(x®) is the velocity at the node® andb® := b(x?) is the normal
stress at the node®. We approximate the surface integrals o¥ein (6.53) by a
sum of integrals over the elemertig, and substitute the approximations foandb,
yielding

K

—v;(x) + Z/ ql-j(a:,y)<¢>1vj1-—l—qbgvf—i-qbgv?)dSy
=175k

K
+ Z/s vij(z,y) ((blvjl- + pov? + ¢3’U?)d5y
k=1 Sk

K
_ Z/S uij(m,y)<¢1b} +¢2b§+¢3b§?)dsy, zeS,  (6.59)
k=1 k

for i = 1,2,3. In these three equations there arg€ velocity coefficients an@ N
normal stress coeffcients. At each node either the velamityhe normal stress
is prescribed, leavingN unknown coefficients. Hence we ne8dvV equations
to calculate these remainiyyV coefficients. By substitutinge = «” in (6.59),
p=1,..., N, we obtain the nessecadyv equations.

Next we construct two coefficient vectors,

v = [’U%,U%,’U%,...,’U{V,’Uév,vév]rr,

b o= [bh,bhbh,. 6N 6 Y] (6.60)
This allows us to write (6.59) in a matrix-vector form,

(H+ ®)v = Gb. (6.61)

To compute the matriced, ® andG, we have to evaluate integrals of the form

| as@ s, [ oo wonds, [ wley)o.ds,. 662
Sk Sk Sk
The integrals can be evaluated by using a Gaussian quaslstheme, but special
care has to be taken of the third type. When the netlés in the surface element
Sy the integrand is singular. In this case we perform an aday@iauss quadrature
scheme to approximate the integral. The first integral asmines singular when
x? is in the surface elemerst,. However in this case the integral can be calculated
analytically and it can be shown that its contribution ysefro.

In the case of mixed boundary conditions, we either know tleéoocity
coefficients at a node or the normal stress coefficients. &@m¢6.61) some of
the unknowns are in the vectbrat the right-hand side and some of the knowns are
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in the vectorv at the left-hand side. By moving the known coefficients torigat
and the unknown coefficients to the left we arrive at the steshébrm linear system

Ax = f. (6.63)

Here x contains all unknown coefficients arfdis a vector with the prescribed
boundary data.

WhenS; # {0}, i.e. a slip condition at the wall of the mould, there are roae
which both the velocity and normal stress coefficients ateawn, though related
via the slip conditions (6.27). Le&t, » = 1,2, be the two tangential vectors at the
wall at such a node: € S3. Sincev.n = 0 atx and{n, t',t>} forms a local basis
of R?, we may write

v(x) = art' (z) + azt’(x), a1,az € R. (6.64)

Substitution into(b + G,,v).t" = 0yieldsa, = —(b.t")/[,.

In this way we express in terms ofb. In the boundary integral equations we can
replacev by this expression and thus eliminaie We then solve the linear system,
which is again of the fornrAx = f. The solution yield$ atz and we reconstruat
at x with the expression (6.64).

The matrixA is a dense matrix and the linear system can be solved by using a
LU-decomposition technique. Due to the dense nature of #itexnthis may become
costly, especially when the size of the matrix is large. Havehe BEM reduces
the dimension of the problem by one, as it involves variablethe surface only.
Hence compared to finite element methods or finite volume odsththe number
of unknowns is relatively low. Henceforth the matiX is also not as large as in
other numerical methods. In our numerical tests the numibeoadesN ranges from
750 to 1500. This leads to matrices of at mo$t00 x 4500 entries. It turns out
that computing these entries consumes most of the compuitiitne, approximately
90%. Solving the linear system consumes of#¥ of the time.

6.5 Time integration and post-processing

The movement of the boundary surface of the fluid domain icridesd by the
velocity fieldv(x, t) that is the outcome of the Stokes equations in Section 6.4. In
fact we calculate the velocity at a set 8f nodes at the boundary. To study the
evolution of the boundary we need to solve an ordinary difiieal equation,

%_f —— (6.65)

At time ¢ = t{"} we know the locations of the nodas™ and the velocity at these
nodeswv(x{", t{") = »{"}. We do not have any information of the nodes or
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velocity in the future. Therefore we cannot make use of inij@itime integration
schemes to solve (6.65).

An option is to use arktuler forward scheme, in which we approximate the
locations of the nodes at the next time let&+1} by

it = it 4 A (6.66)

where At = tint1} — ¢{n} However this scheme is only first order accurate.
Another option is to use a modified versiontldéun’s methodwhich is also called
the improved Euler methadlIn this method the location of the node at time level
"1} is approximated by

2t} — gind 4 % At [o + p(2 + Ato)] (6.67)

This method is known to be second order accurate [11]. Homfevéhis method we
need the velocitw at the next time levet{”*1} in the new locationz{"t1} of the
node. As we remarked before we do not have information ofréutime levels. To
get around this problem we first predict the location of théenat the next time level
using an Euler forward step (6.66). For this predicted node™!} we again solve
the Stokes equations and we obtain the velocity in this notdmat{"*+1}. Then we
use Heun’s method (6.67) to correct our prediction:6f 1.

In the procedure to numerically solve the Stokes equatisndeacribed in this
chapter, two types of errors are made. First we make a disatien error with
the BEM. As we use linear elements this errodgh?), whereh is the (maximal)
element size. Second we make an error in the time integratiich is O(At)
for Euler forward, andO(At?) for Heun's method. We have to realize that to
decrease the total error we have to decrease both the diatimt error and the
time integration error. Therefore it does not help to uséfigder time integration
schemes when the total error is dominated by the discrietisarror. In our
numerical tests the latter is the case. The discretisatiar & larger than the time
integration error and in that view it suffices to use Eulenard for time integration.

After we obtain the solution of the Stokes equations with Bi&M there are
several ways to improve the quality of the solution. First pexform velocity
smoothing on the velocity field that is the outcome of the BEMis smoothing
step takes away irregularities in the velocity field that moe physical. The amount
of velocity smoothing must be moderate, as it directly dffabe solution of the
Stokes equations. In Appendix C we give a more detailed geiser of the velocity
smoothing process.

Another type of smoothing is Laplacian smoothing, whicheei$ the
discretisation of the fluid surface. Again it takes awayguiarities, yielding a
smoother surface. Appendix C introduces the Laplacian smmaptechnique.
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When we study the blowing problem for glass, the flow is retd to the interior
of the mould. In all our numerical examples this mould is gii®y a parametric
representation. In Appendix B we develop a strategy to malke that the fluid
remains inside the mould, i.e. nodes of the discretised fluithce cannot penetrate
the wall of the mould. The basic idea is that, in first instaricese nodes are allowed
to cross the wall. At the end of each time step we verify if ange has moved
through the wall. If so, we determine a new location for suob@e, and also account
for the volume change caused by this relocation.

As the fluid surface expands in time, the triangular elem#ves constitute the
discretised surface increase in size. This may lead to aimaygular and coarse
surface discretisation. To avoid this we measure the Isngthithe edges of the
elements. If such an edge becomes larger than a certaiarioewvalue, the edge
is subdivided into two new edges. A new node is introducedhatcenter of the
subdivided edge, and the two elements sharing the edge hdivisied into four
smaller elements. In this way the number of nodes and boyrelaments increase
in time, but it ensures the surface to remain smooth andaegul



Chapter 7

Results

This chapter shows numerical results from the mathematicatiel that was
developed in the previous chapter. In Section 7.1 we presevéral numerical
examples for the glass blowing problem. Section 7.2 shovasngles for another
type of problem, the evolution of viscous drops of fluid duestmface tension. In
both sections all computations are performed in three déioes, without making
any assumptions on symmetry of the domains. We concludectidpter with a
parameter analysis in Section 7.3.

7.1 Glass blowing

The set-up of the blowing process of glass bottles and jesshiematically depicted
in Figure 7.1. A preform of hot liquid glass, often callegparison is positioned
into a mould. Pressurized air flows into the mould causinggthes to move deeper
into the mould. Eventually the whole mould is covered by a thyer of glass. We
simulate this blowing process with the BEM model that we ttgwed in the previous
chapter. We take several shapes for the mould and the pamsbsetudy the flow of
the glass in time. In all simulations we assume that the tadpeflass §,) is fixed
to the mould and cannot move.

The material properties of glass and the process parametettse blowing
problem can be found in Table 6.1. With these properties itnesionless numbers
that appear in the model have the following values,

a=0.006, B =0.001. (7.1)

This implies that the effect of gravity and surface tensi®isrmall compared to the
effect of the inflow of pressurized air. Ideally the value loé dimensionless friction
coefficient 3, is determined experimentally. Unfortunately these expents are

111



112 Chapter 7 Results

S

Figure 7.1: The parison is suspended in the mould, attachef.atPressurized air flows
into the mould from above.

very complex to perform and we are not aware of any such exgerts reported in
literature. Therefore we perform a number of numericalstéstdetermine realistic
values of33,,, see Example 7.6.

Example 7.1

The first simulation concerns a parison without mould. Topkaegeference point,
we still assume that the parison is fixed at the top. As thermismould the glass
is free to move in all directions. In Figure 7.2 we show sixpsiets of the parison
as it expands and Figure 7.3 shows a cross-sectional vigw=ab. The snapshots
should be viewed from left to right, from top to bottom. Thdkoof the glass is
at the bottom of the parison, while the thinnest parts of thgspn are at the sides.
It is at these parts where the fluid flow is strong, while thetdrotof the parison
remains almost unchanged. Although the initial parisorotationally symmetric,
small a-symmetries appear during the simulation. This isresequence of the fact
that the surface mesh is not rotationally symmetric. If werdase the mesh size the
parison will become almost rotationally symmetric.

In principle this simulation can be continued for a long tim€he glass will
expand further, but numerical problems start to arise. tRhe layer of glass
becomes very thin and special care has to be taken to ensrthéhinner and outer
surface remain separated by a small distance. Anothernmdassiop this particular
simulation after some time is the increasing number of bamndlements. To ensure
smooth surfaces the number of nodes and elements has toreased significantly
for large expansions of the glass. O
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Example 7.2

The next simulation shown in Figure 7.4 and 7.5 concernsiagrathat is suspended
in a mould. The air that flows in in from above causes the glasake the shape of
the mould. When the glass touches the wall of the mould, iaiesnconnected to the
mould, though it is allowed to slip along the mould. In thigmple we takes,,, = 1.
The mould has a cylindrical shape with rounded corners. €hean to choose for
rounded corners is twofold. First, in practice the corndra bottle or jar are never
90-degree corners. Second, it turns out that it is very hardakenthe glass fill the
whole mould if the corners are straight. Even with roundedhers we still need to
refine the mesh sufficiently to fill the corners with glass.

The cross-sectional view in Figure 7.5 shows that we gefpstanners at the top
of the parison where the surface pasisand.S; touch. This is a direct consequence
of the choice to keep the glass fixedSat while it is allowed to move a$, . In reality
these sharp corners do not appear. O

Example 7.3

Figure 7.6 and 7.7 show a simulation with a slightly more adeal mould. The
lower part of the mould has a smaller width than the upperqfatie mould. Again
the corners are rounded and the glass is allowed to slip alengall of the mould.
In the previous two simulations the only driving force was fressure of the air that
is blown into the mould from above. In reality, in first instanthe glass is subjected
to gravity only. The glass will sag to the bottom of the moutdi avhen it almost
touches the bottom, air starts to blow into the mould. Theufation in Figure 7.6
and 7.7 distinguishes these two stages. The first three lsotspsorrespond to the
sagging stage while the last three snapshots correspohd tdwing stage. [

Example 7.4

The simulation that is presented in Figure 7.8 and 7.9 ir&bv parison and a mould
that are not rotationally symmetric. We opt for square shapith rounded corners.
Hence the parison and mould are symmetric in the planed) andy = 0. However
these symmetries are not exploited in the computationsinAga consider the two
stages that occur in the production process: sagging andrigo The first three
snapshots correspond to the sagging stage while the last shapshots correspond
to the blowing phase. In this case it is clearly visible thed glass moves only in
vertical directionduring the sagging stage. In the blowstage the glass also moves
in radial direction. OJ
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Figure 7.2: 3D Snapshots of the glass as it expands due to the air blowifigin above.
For this simulation no mould is present, so the glass can edpeeely in all directions. The
only restriction is that the glass is fixed at the top of theigam.
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Figure 7.3: Cross-sectional view of Figure 7.2 at= 0.
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Figure 7.4: 3D Snapshots of the glass as it expands due to the air blowifigin above.
The mould has a cylindrical shape with rounded corners. Tlhegis allowed to slip along
the wall.
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Figure 7.5: Cross-sectional view of Figure 7.4 at= 0.
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Figure 7.6: During the first three snapshots the glass is sagging to thboof the mould.
During the last three snapshots air is blowing into the mduddh above. The glass is allowed
to slip along the wall of the moud.
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Figure 7.7: Cross-sectional view of Figure 7.6 at= 0.
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Figure 7.8: A square parison with rounded corners and a square mould witinded
corners. During the first three snapshots the glass is sagtpnthe bottom of the mould.
During the last three snapshots air is blowing into the madiadan above. The glass is not
allowed to slip along the wall.
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Figure 7.9: Cross-sectional view of Figure 7.8 at= 0.
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Figure 7.10: Comparison between a rotationally symmetric parison ancédspn with a
dent. The parisons are shown at three different time levels0.0, ¢t = 1.0 andt = tcpg.

Example 7.5

In Figure 7.10 we show the cross-sections of two parisons gte blown into a
mould. The parison at the left-hand side, which we call jparig, is perfectly
rotationally symmetric, while the parison at the right-tlaside, which we call
parison 2, has a dent in the initial shape (at the right-haael af the parison). Let
tenq represent the (dimensionless) time level at which the giasguct is finished,
i.e. when the glass more or less covers the wall of the wholgdno

We compare the evolution of the two parisons at three diftetene levels:
t =0.0,t =1.0andt = t.,4. The value oft.,q differs for the two simulations.
For parison 1 we find.,; = 3.5 while parison 2 has,,; = 4.5. Parison 2 takes
approximately28.9% longer to finish.

The dent is still present in the final product. The glass latethe lower right
corner of parison 2 is thinner than the glass layer at the dacagion of parison 1.
Moreover the the glass layer at the lower left corner of pari8 is thicker than the
glass layer at the same location of parison 1. This is caugelebfact that the thin
parts of the glass are easier to move than the thick partsceHie flow at the dent
is relatively large. Since the total amount of glass needsayp constant, the flow at
other parts is relatively small. This is exactly what hagpeanthe lower left corner
of parison 1. O
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7.2 Curvature driven flow

In the absence of external forces, droplets of viscous fend to evolve to a perfect
sphere, regardless of the initial shape of the fluid. Thix@aned as follows. A
molecule in the interior of the fluid is completely surroudd®sy other molecules. It
experiences an attraction from all neighbouring moleguldgch sums to zero. On
the other hand, a molecule that is at the surface of the flipémences a net inward
attraction. When the curvature of a convex surface is latlye,inward attraction
is large and when the curvature is small also the inwardaitra is small. This
introduces a potential energy of the fluid, which may be fieansed to kinetic energy.
For a spherically shaped fluid, the curvature is equal at paafit of the surface.
Hence the inward attraction is the same at each point. The¢ilun an equilibrium
state and the potential energy will not be transformed tetigrenergy. In this section
we show that the BEM model developed in Chapter 6 is also egdgk for this type
of evolution processes. Related work on two-dimensiona lomains can be found
in literature [78, 79, 94], in which both the direct and thdirect formulation of the
BEM are used.

In this section we illustrate the evolution of viscous drbgdooking at a number
of fluid shapes that evolve to a sphere due to the surfaceotendising the notation
from Chapter 6, we havé; = S, = S5 = {0} andS = S, i.e. the fluid surface is a
free surface. The boundary condition for this surface reads

on = —(az + fr)n. (7.2)

Since we do not want to take gravitational effects into aotee takea = 0, and as
the only driving force of the flow is the surface tension, weyrsats = 1.

Note that the choic& = S, implies that we have to solve a Neumann problem.
Hence we use the deflated form of the boundary integral apektatas is described
in Section 6.3.

Example 7.6

In Figure 7.11 we see a beam-shaped volume of fluid evolviregdphere. Figure
7.13(a) shows a cross-sectional viewyat 0 of the same fluid. The dimensions of
the beam are, 2 and1. The corners of the initial beam are rounded, as a viscous flui
will never have straight corners. For this particular siatioin the initial number of
nodes at the surface i§ = 500 and the number of triangular elementgis= 996.
The initial volume of the beam 0.6465 and the volume of the final sphere to which
it evolves is20.6355. Hence we have a volume loss of less thalV. Since the fluid
approaches a sphere we can compute the radius that suchnaevadquires to find

r = 1.702. The average radius of the nodes at the final surfat&’ig with standard
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Figure 7.11: A beam with size®, 2 and1 evolves to a sphere.
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Figure 7.12: An ellipse with semi-axes of length2 and1 evolves to a sphere.
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(a) Beam (b) Ellipse

Figure 7.13: Cross-sectional views of Figure 7.11 and 7.12at 0.
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Figure 7.14: Volume change of the ellipsoid while evolving to a sphere.

deviation0.025, which implies that the final surface is indeed a sphere witioat
the appropriate radius. During the simulation we apply aesning technique that
assures that all edges of the boundary elements are snialfer.89. This leads to a
final discretisation withV = 684 nodes and< = 1364 elements. O

Example 7.7

In the next example we watch an ellipsoidal volume of fluid lesado a sphere
(Figures 7.13(b) and 7.12). The initial ellipsoid has sexes of lengtl8, 2 and1
and hasV = 500 nodes ands’ = 996 elements at its surface. The volume of the
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initial ellipse is equal t®4.56 while the volume of the final sphere is equabtb54.
Hence the volume change @s08%. During the simulation we apply a remeshing
technique that assures that all edges of the boundary etsrmsnsmaller thaf.4.
This leads to a final discretisation wiffi = 666 nodes and< = 1328 elements. In
Figure 7.14 we show the relative volume change of the eliipdaring its evolution
to a sphere. We observe that the volume first increases vatde dn it decreases
again. O

In Section 6.5 we mentioned two types of smoothing techrsgieeimprove
the quality of the BEM solution. We use Example 7.6 to study ¢fffect of these
smoothing techniques and to determine optimal settinggé®smoothing.

The first technique is Laplacian smoothing, see Appendix THis technique
smooths the discretised surface and involves two paragébhernumber of iterations
N7 and the weightv;. The second technique is the smoothing of a vector field at a
surface, see Appendix C.3. This technique smooths the itelfield that is the
solution of the Stokes equations. Involved are also tworpaters; the number of
iterations/N, and the weightu,.

Similar to Example 7.6 we let a beam-shaped volume of fluidvevim a sphere.
We vary the smoothing parameters and determine for whichegathe final fluid
approximates a sphere optimally.

The initial beam-shaped fluid has a volume26f6. When the radius of the final
sphere is equal t& := 1.702, the sphere volume is al20.6. This gives us a criterion
to determine whether the discretised surface approxineatgsere accurately. We
compute the distance of each node at the surface to the geowegiter of the fluid.
The average of these values should approximai@. We also compute the standard
deviation of these values. If the standard deviation is tbe/fluid is close to a sphere.
In this way we can study the effect of the smoothing techrédgurethe final geometry.

In the first test we choose; = ws = 0.4 and vary the number of iterations.
The results are shown in Table 7.1(a). We see that the avesdgses is close to the
exact value in each case. The standard deviation is minon&'f = N, = 3. In the
second test we choosé, = N, = 3, i.e. the optimal choice from the previous test,
and vary the weighta); andws. The results are shown in Table 7.1(b). We observe
that the best results are obtained when= wy = 0.1. In this case the radius is
closest to the exact radius and the standard deviation ismain

Until now we chose the same number of iterations and weigbtsbbth
smoothing techniques. In the next test we choese= wy = 0.1 and we take
several combinations of numbers of iteratiais and N5. The results are shown in
Table 7.2(a). Clearly the effect of the velocity smoothiagmaller than the effect of
Laplacian smoothing.

In the last test we do not perform velocity smoothing, (= 0) and we choose
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Ny Ny 7P std(r) wy  wo 7P std(r)
0 0O 1.7100 0.0550 0.1 0.1 1.7081 0.0110
1 1 1.7080 0.0162 0.4 0.4 1.7093 0.0139
3 3 1.7093 0.0139 0.7 0.7 1.7096 0.0154
6 6 1.7074 0.0213 1.0 1.0 1.7124 0.0242

Table 7.1: The mean radius and standard deviation of all nodes at thiasarof the sphere
for (a) w; = we = 0.4 and(b) Ny = Ny = 3.

Ny Ny T std(r) w1 T std(r)
3 3 1.7090 0.0124 0.1 1.7081 0.0105
1 3 1.7131 0.0145 0.2 1.7078 0.0169
3 1 1.7081 0.0114 0.3 1.7071 0.0097
3 0 1.7081 0.0105 0.4 1.7089 0.0180
6 0 1.7085 0.0166 0.6 1.7115 0.0218

Table 7.2: The mean radius and standard deviation of all nodes at thiasarof the sphere
for (a) wy = wy = 0.1 and(b) N; =3 andN, = 0.

N1 = 3. We let the weighto; vary. The results are shown in Table 7.2(b). We see
that the best results are obtained when= 0.3. In this case the average radius is
very close to the exact radius and the standard deviatiornigal.

The main conclusions from these tests on smoothing techsigte:

e \elocity smoothing has less effect than Laplacian smogthin
e The optimal number of iterations for Laplacian smoothingvis= 3;
e The optimal weight for Laplacian smoothingusg = 0.3.

In all simulations presented in this chapter we perform theahing techniques with
the settings equal to or close to the optimal settings liateme.

7.3 Parameter analysis

In this section we investigate the role of several model patars for the glass
blowing problem. To this end we simulate the flow of a cup-gga@amount of glass.
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Example 7.8

In the first example we let gravity act on the glass, which wallise the glass to sag
downward. We study the significance of the surface tensioimglthis process. The
effect of surface tension is represented by the value of ithermsionless numbef,
which involves the surface tension. As gravity is the digvfarce we setv = 1. The
values off that we use in this example lie in the rangeddf to 0.4. If 5 = 0.0, then
the glass does not have surface tension. A large positivee &5 implies a high
surface tension.

We let the glass sag downwards for a fixed amount of time arndhoresulting
shape in Figure 7.15. We do this for several values.of he left pane of the figure
gives a cross-section of the glass, while the right pane sdoran the lowest part of
this cross-section. Several lines are plotted, each reptieg a specific value of.
In the left pane, the various shapes, corresponding to theugvalues of3, more
or less coincide. In the right pane we are able to distingthishvarious shapes. We
observe that the glass flow has moved downward the furthest fo 0.0, while for
large values of? the glass has not moved very far. Hence the surface tensiars sl
down the flow of the glass.

Table 7.3 gives the height of the lowest point of the glas$aserfor several
values of3. We compare these heights with the heightdoe 0.0. We observe that,
for 5 = 1.0, the glass surface is more tha¥ higher than for = 0.0. Hence the
surface tension plays a small role in the case of gravityedriffow. Therefore we
include surface tension in all numerical simulations ttwater the sagging stagel]

I6; Zmin difference ©)
0.0 —0.8970 —

0.1 —0.8908 +0.69

0.2 —0.8858 +1.25

0.3 —0.8813 +1.75

0.4 —0.8765 +2.29

Table 7.3: Thez-coordinate of the lowest node after sagging for severaleslbof the surface
tensiong.

Example 7.9

In the next example we investigate the significance of thiasertension during the
blowing stage. Hence the glass does not sag due to gravibysicase, but it flows
due to a pressure difference between upper and lower laytbedaflass. In this case
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Figure 7.15: The effect of the surface tension on the flow of the glass cetpa the effect
of gravity. High values off represent strong surface tension. In the left pane a crestien
of the glass is shown, the right pane zooms in on the lowergfdhtis cross-section.
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Figure 7.16: The effect of the surface tension on the flow of the glass cetpa the effect
of pressure. High values gfrepresent strong surface tension. In the left pane a crestien
of the glass is shown, the right pane zooms in on the lowesbp#ris cross-section.

we seta = 6.45 - 102, which indicates that the contribution of the gravity is #ma
compared to pressure. The valuesdafange from0.0 to 2.6 - 10~3. The left pane

of Figure 7.16 shows a cross-section of the glass, whileigie pane zooms in on
the lowest part of this cross-section. We see that the vaigbapes that correspond
to various values ofs are almost similar. This shows that the surface tension is
of no importance during the blowing stage. The flow is donaddby the pressure
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Figure 7.17: The effect of the gravity on the flow of the glass compared ¢ceffect of
pressure. In the left pane a cross-section of the glass iwshtie right pane zooms in on the
lowest part of this cross-section.

difference. Therefore we do not need to include surfaceidena the numerical
simulations for the blowing stage. O

Example 7.10

In this example we investigate whether we may also negleatityr during the
blowing stage. Figure 7.17 shows the shape of the glass ibltheng stage after
some time. Two shapes are plotted: one shape corresporasdiortulation in which
gravity is included, and the other shape corresponds tdrthdation without gravity.
The left pane gives a cross-section of the glass but we sedfeedces between the
two shapes. In the right pane we zoom in on the lower part ofithgs-section. Here
we see that in the simulation where gravity is included, thsgmoved downward a
bit further than in the simulation without gravity. Stilldtdifferences are very small
and we may conclude that gravity is negligible during thenihg stage. O

Little is known about the friction parametgy,. To the author’s knowledge there
are no references in literature to experiments in which theidn parameters for
glass towards metals are determined. Therefore we perfaeni@s of simulations
in which we vary(,,. This shows how the flow of the glass depends on the friction
parameter and helps us to determine realistic valugs,of

Example 7.11

Figure 7.18 shows the new parison after a fixed number of tiessfor several
values of3,,,. Both the mould and initial parison have a rotationally syetric
shape. In this simulation gravity is the only driving forae the flow of the glass.
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Figure 7.18: Deformation of the glass after a fixed number of time stepdifterent values
of G,,.

Theoretically, for3,, = oo the friction between glass and mould is infinitely large
and the glass does not slip at all along the wall of the mowldgf, = 0 there is no
friction, and the glass can flow freely along the wall of theutdo We observe that for
Om = 5 the glass has slipped a little along the wall of the mould sHlip becomes
larger if the friction parameter is lowered further. By = 2 andg3,, = 1.5 we see
that the glass that is in contact with the wall moves fastevroheard than the glass
that does not touch the wall. Hence these values,pare not realistic. Appropriate
choices fors,, lie in the range o8 to co. Note that we use the dimensionless friction
parameter here, which depends on the length scale and tbesitys Hence for
examples that have other characteristic lengths and vigsyssuitable values for
G, may be slightly different than the values that we find for gmample. O

Example 7.12

Example 7.11 shows that a minimal value for the friction paeter is3,, = 3, based
on observations of intermediate shapes during sagginghdcarrent example we
elaborate a bit more on values @f, that are in the interval5, co). For several
values off3,,, we simulate the blowing stage and plot the final shapes inr€igLi9.
We observe that the shapes vary significantly.

In Table 7.4 we give the height of the lowest point of the gs$ace for several
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Figure 7.19: The effect of friction on the flow of the glass compared to ffezeof pressure.
High values of3,,, represent much friction.

Bm  zmin difference ¢0)

oo —0.90 =

30 —1.05 —6
15  —1.09 =g
10 —-1.12 =1%
) —1.17 —18

Table 7.4: Thez-coordinate of the lowest node after the blowing stage foess values of
the friction parametefs,,, .

values of3,,. We compare these heights with the height fgy = 0. We see that
G = 5 gives a glass surface thatli8% lower than the surface fg#,,, = co. Hence
the friction between glass and mould is very important amthoabe neglected. [



Appendix A

Curvature approximation

This appendix describes the approximation of curvaturarpaters of a discretised
surface. When a surface is given by a parametric repregamttitese curvature
parameters can be calculated analytically. However in nmamyerical applications
the surface is a discretised surface, consisting of a largeer of triangular elements
and nodes. For such discretised surfaces it is not so sti@iglard to compute
curvature parameters. However, there exists a numberaiegtes to approximate
curvature parameters, of which tiparaboloid fit methodappears to be the most
accurate one [89]. We use a similar method in whidbicbic polynomial is fitted
through data points.

Assume that a surfacg is uniquely described by = f(x,y), where(x,y) isin
a closed and bounded sBtC R?. TheGaussian curvaturef the surface at a point
(z,y) € D is defined as

fwwfyy - fz2y

K== ‘-7 A.l
(R e ) D

and themean curvatures
g A I2) faw = 2fafyfay + (L + F2) fyy ' A2)

201+ f2+ )32 (@)

Related to these two curvature parameters areghacipal curvaturesx; and xs.
They satisfy the relations

1
K =kK1ky, H= 5(/&1 + /ﬁg). (A3)

The principal curvatures can also be found as follows. &dbte a point at the
surfaceS and let a vertical plane intersect the surface in the poeifthe intersection
of the surface and the plane yields a cutfe By rotating the planes around the
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Figure A.1: The node® andv!, ..., v™ are translated and rotated in such a way thsis
in the origin and its normal vector points in the vertical edtion.

vertical axis we get a set of curvés. For each curve we calculate its the second
derivative at the pointe. The largest second derivative is the largest principal
curvaturex; and the smallest second derivative is the smallest prihcipaaturess.

The triangulated surfac& is described by a set of nodes, at the surfaces,
p = 1,...,N and a set of triangle¥y, k = 1,..., K, each triangle defined by
three nodes. We want to approximate the curvature in each »pdsing only the
information of the locations of neighbouring nodes. A nosl@ineighbour of,
if they share a triangld},.. The procedure to approximate the curvature goes as
follows. Letv” be the node at which we want to approximate the curvature. Let
vl ..., v™ be them neighbouring nodes o#". First we translate and rotate the
nodesv?, v!, ..., v™ in such a way that? is translated to the origin and the normal
vector inv” at the surface points in vertical direction, see Figure Abte that a
translation and rotation of the surface does not affect tineature parameters.
We fit a bicubic polynomiap(z, ) through the nodes?, v, ... v™ using a least
squares technique. The translation and rotation of thesngdarantees that such a
polynomial exists. The polynomial provides a local parasrisation of the surface
of the formz = p(z,y). Hence we can use (A.1) and (A.2) to calculate the curvature
parameters iz, y) = (0,0) at the parametric surfac.

We describe the procedure above in more detail. Define the leelgveeny” and
vi by e’ := v’ — vl i = 1,...,m. Letthek-th triangle be given by the nodes
v, v*1 andv*2. For the outward normal at this triangle we use the straigiwdrd
definition,

k ef1 x ek2

n
The normal vector at the point’ can be defined in several ways. In each case the
normal vector aw is a weighted sum of the normals at the surrounding triangles
For the weights several options are available.
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1. Average of normals at surrounding triangles,

1~ &
n .= - Z n”. (A.5)
k=1
2. If Ay is the area of thé-th triangle,
n .= —n”. (A.6)
Ay
k=1

3. Define the weight;, by

(e, o)
0, = —F" " A.7
€08 Bk = e (A7)

i.e. the angle between the two edges of a triangle that meg! iand
n = Z 0pnt. (A.8)
k=1

Later on we will demonstrate the effect of the different défins of n on the
curvature approximation. It turns out that the last definitgives the most accurate
approximation.

We want to rotate the nodas’, v',...,v™ such that the normal im° points
in either positive or negative vertical direction. For tgisal we define two rotation
matrices

cosay 0 —sinag 1 0 0
Ry = 0 1 0 , Ri:=1] 0 cosay —sinas |,(A.9)
sinay 0 cosaq 0 sinag cosaos

which rotate the nodes over an anglewith respect to thg-axis and over an angle
a2 With respect to thex-axis respectively. Writex = [ny,n2,n3]7 and denote the
rotation ofn overa; by n! := Ron. We writen! = [ni,nl,ni]7 and denote the
rotation ofn' overas, by n? := R n!. It can be shown that? points in positive or

negativez-direction if o; anday are chosen as follows,

S arctan(;t) if ng # 0,
b x if ng =0,

J— n i 1
N { arctan(n[) if ng # 0, (A.10)

T if nl = 0.

SIGH
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Having determined the appropriate rotation angleandas, we can rotate all nodes

vY v!, ..., v™, using the rotation matrif := R;Ry. This yields a set of new
nodes,

w’ = P’

w' = Po',i=1,...,m. (A.11)

It may occur that at this stage the normal vectomidt is pointing in the positive
z-direction. In that case we simply mirror all nodes with resipto the(z, y)-plane.
Thus the normal ai” always point in the negative-direction. Finally we translate
all nodes over the same distance such bis located in the origin. This yields the
following set of nodes,

w' = w-—w’,i=1,...,m. (A.12)

Let p(x,y) = arz? + aszy + azy? + asz® + asy® be a bicubic polynomial. The
equationz = p(x,y) describes a 2D surface. We use a linear least squares taehniq
to find the polynomialp that gives the best fit of the nodes’, w!,...,w™. In

this way we create a parametric representation of a surfeatédcally approximates
the discretised surfacg. The Gaussian and mean curvature at the ndtef the
discretised surface are obtained by evaluating (A.1) an@)(With f = p at the
point (x,y) = (0,0). They can be expressed in terms of the coefficients of the
polynomialp,

K = 4ajaz — a3,
H = ai + as. (Al3)

We illustrate the procedure to approximate the curvature discretised surface for
a sphere and an ellipsoid.

Example A.1

In Figure A.2(a) we show a unit sphere discretised wWth= 704 nodes. It can be
shown that the unit sphere has a Gaussian curvature equidhteach point at the
surface. The color at the surface represents the value db#ussian curvature as
approximated by the polynomial fit method. We observe thatapproximation is
not equal tol everywhere.

We repeat the curvature approximation for the unit sphetie @ther numbers of
nodesN. In Figure A.2(b) we show the maximum and mean error of theature
approximation as a function of number of nod€s To our surprise the mean error
does not decrease if the number of nodes increases, i.e.istretsation refines.
Moreover the maximal error is even increasing with the nunatb@odes. O
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(a) A discretised sphere withi = 704 nodes.(b) The maximal and mean error in the curvature
Color represents the Gaussian curvature. approximation of a sphere as a function of number
of nodesN.

Figure A.2: Gaussian curvature approximation for a sphere. All neiginreg nodes are
used in the approximation.
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(a) A discretised sphere withi' = 704 nodes.(b) The maximal and mean error in the curvature
Color represents the Gaussian curvature. approximation of a sphere as a function of number
of nodesN.

Figure A.3: Gaussian curvature approximation for a sphere. Only the fiearest
neighbouring nodes are used in the approximation.
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Figure A.4: A sphere with a more regular discretisation. Color repreasetme Gaussian
curvature.

max nr. of neighbours max. error(%) mean errof%)

4 4.08 1.88
) 4.08 1.70
6 29.18 5.86
7 29.18 5.54
8 29.18 5.62
all 29.18 5.62

Table A.1: The maximal and mean error in the curvature approximatioremh certain
number of neighbours is used for creating a polynomial fit.

Example A.2

The way to improve the curvature approximation is by usindy dhe nearest
neighbours of a node when constructing the bicubic polyatmin Figure A.3
we show the curvature approximation when at most five neigttbare used. We
see that the errors are much smaller and that the accuragages when we take
more nodes. We also investigate what number of neighboues ghe best curvature
approximation. In Table A.1 we give the maximal and meanrenroen a certain
number of neighbours is used. We see that for five neighbbergpproximation is
the most accurate. O
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weight max. error(%) mean erro%)

1
1 57.08 7.35
1
— 36.27 5.94
O 4.08 1.70

Table A.2: The maximal and mean error in the curvature approximatianasphere for
each of the three definitions of the normal at a node. Numbeodés isNV = 704.

Example A.3

The accuracy of the curvature approximation also dependseotiscretisation of the
surface. In Figure A.3 we see that the largest errors areabpof the sphere, where
we have a number of narrow triangular elements. In Figurewedshow a sphere
with a more regular discretisation, i.e. all elements hgweraximately the same
shape and size. Although the accuracy is more or less the aaffioe the sphere in
Figure A.3, the largest errors are not concentrated at eee ar O

Example A.4

We mentioned that there are several possibilities to ddfima@ormal vector at a node.
In Table A.2 we show the maximal and mean error in the cureafyoproximation
for each of the three definitions. It is clear that the definitin which we use the
weights#,, results in a higher accuracy. O

Also for an ellipsoid the Gaussian curvature can be caledlaxplicitly. For a
point (z, y, z) at the surface of the ellipsoid the Gaussian curvature &sngby

1 22 2 2 —2
K= pa (H Tt c—4> ’ (A19)

wherea, b andc are the lengths of the semi-axes.

Example A.5

In Figure A.5(a) we show an ellipsoid where the semi-axesHaungth3, 2 and

1, discretised withN = 932 nodes. The color at the surface represents the
Gaussian curvature of the surface. We see that at thertips3 the curvature is
maximal, which agrees with the maximal value of the analgtipression for<. We
repeat the curvature approximation for the ellipsoid witimeo numbers of nodes'.

In Figure A.5(b) we give the maximal error and the mean erifothe curvature
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(a) A discretised ellipsoid wittlV' = 932 nodes.(b) The maximal and mean error in the curvature

approximation of the ellipsoid as a function of
number of nodesV.

Color represents the Gaussian curvature.

Figure A.5: Gaussian curvature approximation for an ellipsoid. Onl tfive nearest

neighbouring nodes are used in the approximation.

approximation as a function @¥. We see that for a fine discretisation of the surface
(N > 550) the mean error is lower th&is.

O



Appendix B

Contact problem

In this appendix we address the contact problem of a fluid withall. In many
mathematical models for fluid flow it is assumed that the flsidlready in contact
with a wall. At the contact area a slip or no-slip boundarydition is prescribed
that ensures that the fluid remains in contact with the wat.tke blowing problem
covered in this thesis the fluid may, in first instance, nothgin contact with the
wall. However as the fluid expands into the direction of thd,v@aa certain moment
it will touch the wall. From that moment on, the fluid will stapnnected to the
wall at that specific point. Thus a fluid particle may at firdtance be part of a free
boundary, while some time later it is fixed at a wall (althouigimay slide along the
wall in the case of a slip boundary condition).

For a flow that is computed numerically the touching of thelugadifficult to
implement. In boundary element methods, the fluid domairegcdbed by a set of
nodes and elements at the surface of the domain. Moreovérajeetory of a node
or fluid particle is only known at a discrete set of time pain¥hus it may occur
that at timet = ¢ a fluid particle is not yet at the wall, while at tinte= t"*! the
particle has moved to the other side of the wall, see Figute Bhysically this is not
possible, but it is very difficult to “tell” the fluid particléhat it cannot move through
the wall.

When an explicit time integration method is used to trackftbe of the fluid,
e.g. Euler forward, there is a simple way to avoid nodes ngtmough the wall.
One can find an intermediate tim& < t* < ¢"*! such that the node that crossed
the wall lies exactly at the wall at = ¢*. In this way we effectively decrease the
time step of the time integration method to a suitable sireprhctice one should
thus verify all nodes at = t"*! whether they moved through the wall. The node
that has moved through the wall the furthest determines ¢letime step size. The
drawback of the procedure is that the time steps can becomesnll, especially
when the number of nodes is large.

142
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Figure B.1: Attimet = t" a fluid particle is at the left-hand side of a wall, whiletat ¢"+1
the particle is at the right-hand side of the wall.

In the sequel we present an alternative method to prevet flarticles from
moving through a wall for the 3D blowing problem. Let the swé S of a fluid
domain be represented By nodes and a set of triangular elements, the nodes lying
at the corners of the triangles. Ut be a (possibley curved) surface representing the
wall, for which a parametric representation is given. Atdiim= ¢" the coordinates
of all nodes are given. With a numerical method the coordmat timet = t"*! are
computed. Assume that a node with coordinatdsas crossed the surfa&® during
the time interval(t”, t"+1). Let !¢ denote the old coordinates sfatt = ¢". The
strategy is to translate over a distancelx, back into the direction a£°'¢, such that
x + dx lies exactly atlV'.

The straight line fromz' to 2 can be parameterised by

y=y)=(1-8z"+&x, 0<< 1 (B.1)

Using the parameterisation of the surfdéeit is possible to find the valug¢* such
that

Yy =y) e W (B.2)

The pointy* can be considered as the pointlét where the fluid particle crossed
the wall during its travel frome? to . Therefore we relocate the nodeat the
pointy*. Thus the node has moved over a distadeegiven by

de .=z —y". (B.3)

By movingx to y* at the surfacél” we lose an amount of fluid, see Figure B.2(a).
This volume loss is unwanted and should be accounted fast Wi need to exactly
compute the volume loss. To this end we need the coordindtes g* and their
neighbours. Denote the nodes that share an edge of a traarglament withe by
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(a) By movingz back to the surfac®” a certain(b) The nodex is surrounded bym
amount of fluid is lost (cross-sectional view). triangular elements andh neighbouring

nodes.
Figure B.2: Procedure to relocate: at the wall.
x!, ..., x™, see Figure B.2(b). The volume log% due to the displacemekr is
given by [64]
1 moo .
AV = (da, > el x et (B.4)

j=1

Heree’ is the edge connecting andx’, wheree™+! = e'.

For the blowing problem covered in this thesis the fluid domsiin fact a layer
of fluid. For this particular shape we develop a strategy tomensate the volume
loss. In Figure B.3(a) we give a schematic overview of theasibn. The node: is
located at the lower boundary of the fluid and is moved backéeopbinty™* at V.
Let w be the node at the upper boundary that is closegt'td/Ve replacew over a
distancedw such that the volume loss is compensated. It is easy to sedidhhas
to satisfy

1 moo .
—dV = 6<dw, Zfﬂ x fITLY, (B.5)
7j=1
wheref’ is the edge betweemw and itsj-th neighbour. Note that the vector quantity
dw has to satisfy a scalar equation. This means that we haveetb@édm to choose
the direction ofdw. We chooselw = won®, wheren is the outward normal ab.

If we substitute this into the condition falw we find

wo = 6dV (B.6)

<nw7zz?1:1 fj % fj+1>'
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Figure B.3: One or multiple nodes are moved to compensate the volume loss

In the procedure described above only one neds relocated to compensate the
volume loss caused by relocatiagto the wall. The procedure can be improved by
relocating several nodaes!, ..., w™, each node compensating a part of the volume
loss. Figure B.3(b) illustrates this idea for a 2D settingneThodex has moved
through a wall, which is a curved line at a certain height. \igéijuish5 nodesw’
in the neighbourhood af that are candidates to be relocated. kebe 5 weights
that sum tol. Each of the nodes’ is relocated over a distaneaw® following the
procedure described above, with the difference that themvelloss thatw’ has to
compensate is multiplied by the weight. In this way the amount of fluidV is
distributed over a larger part of the total fluid, which is piwally more correct.

Example B.1

We demonstrate the procedure described in this appendia thin layer of fluid
that is slightly curved, see Figure B.4. In this example wl ase a single node
to compensate the volume loss. Located at the right is agktravall, represented
graphically by the light-gray surface. At time= ¢" all nodes at the fluid surface
are at the left side of the wall (Figure B.4(a)). A numericathod provides the
coordinates of the nodes at the new time levek t"*!, see Figure B.4(b). We
observe that a number of nodes has moved through the wall. divect this by
relocating these nodes at appropriate points at the wallactount for the volume
loss, we also relocate a number of nodes that are at the opgae of the fluid layer.
The new situation is shown in Figure B.4(c). We observe thatftuid perfectly
touches the wall.

Figure B.5 shows a cross-section of the situation. The dioledrepresents the
fluid layer, for which some nodes move to the right-hand side@wall. The wall is
repesented by the vertical dashed line. In the third figuedlthid perfectly touches
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Figure B.4: A fluid layer near a wall (a). At time = ¢t"*! some nodes of the discretised

fluid surface have moved through the wall (b). These nodegedoeated at the wall.
Simultaneously some other nodes at the opposite side ofuildddler are also relocated

to compensate the volume loss (c).
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Figure B.5: Cross-sectional view of Figure B.4
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Figure B.6: Several nodes are used to compensate the volume loss caustadatingz to
the wall. The gray dashed line shows the fluid before, thekidiae the fluid after correction.
The numbers near the nodes represent the weights

the wall. At the same time we see that a number of nodes at {hesdp side of the
fluid have also been relocated.

When a single node crosses the wall while all its neighbdiassat the other side,
it turns out that the procedure described above is volum&epving. In the case that
also some neighbours cross the wall, small errors are mduigislcaused by the fact
that we have to relocate nodes simultaneously, while thesiatiare information.
For instance, when a node moves over a small distance, tmeaheectors at all
neighbouring elements alter. Subsequently the normabx&dh all neighbouring
nodes also alter. However the errors that are made due t® dfiests are relatively
small. For the current example the volume loss is @ndy- 1072%. O

Example B.2

In this example we demonstrate the strategy to use multgdiesito compensate the
volume loss after relocating nodes at the wall. For a thirdayf fluid in 2D the
lowest node has moved through a horizontal line, reprasgititie wall. This node is
relocated at the wall. To account for the volume loss we atmate the five nearest
nodes. By varying the weights;, we obtain various shapes of the fluid. Figure B.6
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present several shapes, each one corresponding to a |garsetl of weights. The
first shape is the result when only the node oppagite relocated, as we did in the
previous example. Apart for this particular choice, thesotshapes only have small
differences. Itis a matter of taste to determine which shagewhich set of weights,
is preferrable. O
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Smoothing techniques

In this appendix we present a number of smoothing techniqliée smoothing is
applied to a triangulated surface directly, or to a scalaction or vector field at this
discretised surface.

C.1 Laplacian smoothing

A well-known technique to smooth a triangulated surfacehis technique called
Laplacian smoothing42, 64, 96]. LetS be a triangulated surface witN nodes
and K triangular elements. The idea is that the coordinates ohtues contain
noise due to inaccuracies in the numerical method thatrié@tes these coordinates.
The noise causes the surface to look unsmooth and irregiégnlacian smoothing
attempts to remove the noise, thus obtaining a smootheacgurf

Let z!,..., =™ be them neighbours of a node, i.e. the nodes that share a
triangular element withx. For each node: we compute the geometric averagg,
of the neighbouring nodes,

aw = — C.1
x — Z x (C.H
If the nodex is too far away frome,,, it is relocated to a weighted averageaof
andx,,,

z— (1 —w)x+ wey, (C.2)

where w is a suitably chosen weight) < w < 1. In this way x is moved
nearer tar,,. If w = 1, x is placed atr,,, if w = 0, x stays at its own place.
We can relocate every node at the surface, in which case W gigbal smoothing

149
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Figure C.1: A triangulated sphere whose coordinates contains noisenisoshed to an
almost perfect sphere.

We may also replace only if the distance tac,, exceeds a certain tolerance value.
In that case we applypcal smoothing In other words, we smooth the surface only at
nodes where it is most needed. For both global and local $imaptthe process can
be repeated several times. In each iteration the surfasesgeiother.

A side-effect of the smoothing is that the volume that thefamgr encloses
decreases. This is a typical disadvantage of standard ¢iaplamoothing. There are
several modifications to the standard technique to avoidmelloss. The simplest
modification is to restrict the movement of the nacdédo a direction perpendicular
to the normal at the surface at Unfortunately this reduces the performance of the
smoothing. Another possibility is to consider pairs of r®tieat are connected by an
edge [64]. The two nodes are relocated to new positions aamebusly. In this way
we have more freedom to move the nodes to the desired losatidnile conserving
the volume. In the examples of this section we use the latbelifimation to Laplacian
smoothing.

Example C.1

As an example we consider a triangulated unit sphere, asosrsin Figure C.1.
Normally distributed noise is added to the coordinates efribdes. By applying
several iterations of Laplacian smoothing the noise is rd@nd a smooth surface
appears. O

Example C.2

For the Laplacian smoothing technique three parametensesa@ed. The weight,

the number of iterations and the type of smoothing, which can be global or local. In
Figure C.2 we let these parameters vary and study the peafarenof the smoothing.
Again we consider the example of the noisy unit sphere. ledll nodes are at a
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(a) Number of iterations, = 1. (b) Weightw = 0.5.

Figure C.2: The error of the discretised surface after Laplacian smoah The circles
represent global smoothing while the squares represerfa Emoothing.

distancel from the origin. For the noisy sphere this is not the case amdam define
the error at a node as the difference betwedjx:|| and1.

In Figure C.2(a) we show the mean error as the weighiaries between zero
and one. We both apply global smoothing (circles) and looaathing (squares)
and perform one iteration. We observe that global smootperforms better than
local smoothing. For global smoothing the best choice ofnbght isw = 0.5.

In Figure C.2(b) we show the mean error as the number of ibesit: varies
between) and8. The weight is kept atv = 0.5. For the local smoothing we see
that the error decreases as we perform more iterations. ¥alee calculation time
grows linearly with the number of iterations. Since the sthimm process is mostly a
post-processing step, the computations should not becoontnte-consuming. For
global smoothing there is an optimumsof= 3 iterations, which leads to a relatively
short computation time. O

C.2 Smoothing scalar function

We use the technique of Laplacian smoothing to develop anigeb to smooth a
scalar function at a triangulated surface. kebe a smooth scalar function at the
surfaceS. We assume that the values @fat the nodes are computed numerically
and contain noise. We want to remove this noise suchgtiieicomes smoother. For
each nodex we compare the valug(x) to the average function valug,, (x) of the



152 Appendix C  Smoothing techniques

function at the neighbours af,
1 [
da(@) 1= — Z o(x?). (C.3)

The value ofp atx is replaced by a weighted average/dfc) and¢,, (x),
P(x) = (1 —w)p(x) + woa (). (C.4)

If we do this for every node we apply global smoothing. We mksp alecide to
changeyp(x) only if the difference betweea(x) and¢,, (x) is larger than a certain
tolerance value. In that case we apply local smoothing. Thelevprocess can
be repeated several times, in each iteration improving i@oghness of the scalar
function ¢.

Example C.3

To demonstrate the smoothing of a scalar function we congli@eunit sphere. This
time we do not add noise to the coordinates of the nodes ofitreggtilated sphere,
so the sphere is a perfect sphere. As a test function we chgase= = + y + =
and add normally distributed noise to the function valugb@iodes. In analogy to
Laplacian smoothing three parameters exist: the weigtihe number of iterations
n and the type of smoothing, which can be global or local. IruFegC.3 we let these
parameters vary and study the performance of the smootRoghis goal we define
the following error measure. We consider the vector withcexanction values of
¢ and the vector with smoothed function valuesgofThen we determine the mean
difference between these two vectors.

In Figure C.3(a) we let the weight vary between zero and one. We apply global
smoothing (circles) and local smoothing (squares). As \wascase for Laplacian
smoothing, global smoothing gives better results thanl lsceothing. The optimal
choice forw in the case of global smoothing is = 0.6. In Figure C.3(b) we let
the number of iterations vary betweer) and6. We observe that = 2 orn = 3
iterations of smoothing yield the smallest error. O

C.3 Smoothing vector field

In the same way as we smoothed a scalar function at a triglegukurface we
may also smooth a vector field at a surface. tdie a smooth vector field at the
surfaceS. We assume that for each nogléhe vectorv(x) is computed numerically
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Figure C.3: The error in a scalar function at the discretised surfaceeafimoothing. The
circles represent global smoothing while the squares regmélocal smoothing.

and contains noise. We want to remove this noise suchvthatomes smoother. For
each noder we compare the vectar(x) to the average value,,(x) of the vectors
at the neighbours aft,

V(@) := %ZU(:BZ) (C.5)
i=1

The value ofv atx is replaced by a weighted averageudfr) andv,, (),
v(z) — (1 —w)v(x) + wvg(x). (C.6)

If we do this for all nodes we apply global smoothing. For lssraoothing we look
at the difference in magnitude and direction betweé¢®) andv,,(x). If one of
these two is larger than a certain tolerance value, the igliocx is replaced by the
weighted average. The whole process is repeat#des, in each iteration improving
the smoothness of the vector fiald

Example C.4

As an example we consider the smooth vector field [22, 2, 22| at the surface of
the unit sphere. We add normally distributed noise to theesbfv at the nodes and
apply the smoothing technigue to obtain a smoother vectlt. fiehere exist three
parameters: the weight, the number of iterations and the type of smoothing,
which can be global or local. In Figure C.4 we let these patarsevary and study
the performance of the smoothing. For this goal we define lam sreasure. At each
node we take the Euclidean norm of the difference betweeexhet vector field and
the smoothed vector field. Then we take the average of akthesns.
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Figure C.4: The reduction of the error at a vector field at the discretisedface due to
Laplacian smoothing. The circles represent global smagthihile the squares represent
local smoothing.

In Figure C.4(a) we let the weight run from zero to one and apply global
smoothing (circles) and local smoothing (squares). Fragtaph we see that global
smoothing performs better than local smoothing for smalghis. If a weightw is
chosen larger thaf.6 it is better to use local smoothing. However the best results
are obtained for global smoothing with a weight= 0.3. Figure C.4(b) shows the
error as a function of the number of iterations. For globabsthing the best choice
isn = 3iterations. If local smoothing is performead,= 12 iterations give the lowest
error. Performing more iterations does not lower the error. O
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Summary

The boundary element method (BEM) is an efficient numericathod that
approximates solutions of various boundary value problddespite its success little
research has been performed on the conditioning of therlgyestems that appear in
the BEM.

For a Laplace equation with Dirichlet boundary conditionsreamarkable
phenomenon is observed; the corresponding boundary atteguation (BIE) is
singular for a certain critical size of the 2D domain. As asmmuence the discrete
counterpart of the BIE, the linear system, is singular toatdeast ill-conditioned.
This is reflected by the condition number of the system mawixich is infinitely
large, or at least very large. When the condition number @BEM-matrix is large,
the linear system is difficult to solve and the solution of $lgetem is very sensible
to perturbations in the boundary data.

For a Laplace equation with mixed boundary conditions alaimghenomenon
is observed. The corresponding BEM-matrix consists of twachs; one block
originates from the BEM-matrix belonging to the Dirichlebplem, the other block
originates from the BEM-matrix belonging to the Neumanrbteo. The composite
matrix inherits the solvability problems from the Dirichldock. In other words, for
the Laplace equation with mixed boundary conditions th&ist®also a critical size
of the 2D domain for which the BEM-matrix has an infinitelygarcondition number.
Hence the size and shape of the domain affects the solyadiiiihe BEM problem.

The critical size of the domain for which the BIE becomes glagis related to
the logarithmic capacity of the domain. The logarithmic agfy is a positive real
number that is a function of the size and shape of the domdithisl logarithmic
capacity is equal to one, the domain is a critical domain, fandhis domain the
BIE becomes singular. Thus by computing the logarithmicacé#p we cana-priori
determine whether the BIE will be singular or not. The lotjemic capacity depends
linearly on the scale of the domain, and thus a domain withritigmic capacity equal
to one can always be found by rescaling the domain. Unfortiyéhe logarithmic
capacity can only be computed analytically for a few simpdendins; for more
involved domains the logarithmic capacity can be estim#tedgh.
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There are several possibilities to avoid large conditiombers, i.e. singular BIEs
that appear at critical domains. The first option is to resta domain such that the
logarithmic capacity is unequal to one. One can also add pleugntary condition
to the BIE and the linear system. A drawback of this optiorn& the linear system
has more equations than unknowns and different techniqeegquired to solve the
system. A third option is to slightly modify the fundamensalution of the Laplace
operator. This fundamental solution directly appears éBHE and it can be shown
that a suitable modification yields BIEs that do not becomgudar.

The critical domains for which the BIEs become singular do mestrict to
Laplace equations only. Also for BIEs applied to the bihanincequation or the
elastostatic equations and the Stokes equations suatatuibmains exist. As the
last two equations are vectorial equations, also the quorefing BIE consists of
two equations. As a consequence two critical domains capnuraffor which these
BIEs become singular. To obtain nonsingular BIEs techrcgimilar to the Laplace
case can be used. Unfortunately we caremgqiriori determine the sizes for which
the BIEs becomes singular, and thus do not know to what sizehweld rescale the
domain to obtain nonsingular BIES.

The existence of critical domains is in essence caused biogfagithmic term
in the fundamental solutions for the elliptic boundary eajroblems in 2D. This
logarithmic term does not depend linearly on the size of tiraain. When a domain
is scaled, i.e. multiplied by a scale factor, the argumentheflogarithm is also
multiplied by this scale factor, but the logarithm turnsstimto an additive term. Thus
the logarithm transforms multiplication into addition. ilaffects the BIEs in such a
way that critical domains can appear. The fundamental isolitof boundary value
problems in 3D do not contain a logarithmic term. Hence agatif the domain does
not affect the fundamental solution, and consequently @s®BIE is not affected.
Hence we may safely rescale 3D domains without the risk t@wmer a critical
domain.

An example in which a domain takes many different sizes arapesh is the
blowing problem. In this problem a viscous fluid is blown to esied shape.
Typically the time is discretised into a set of discrete tisteps, and at each step
the shape of the fluid is computed by solving the Stokes espgmtiWhen attempting
to simulate this problem in 2D, we meet a large number of 2Dalos and we risk
that one of these domains is equal to or approaches a cdtcaiin. In such a case
the BEM will have difficulties with solving the Stokes equuts for that particular
domain.

When simulating the blowing problem in 3D, no critical domsi are
encountered. It turns out that the BEM is a very efficient nucaé method for this
particular 3D problem with a moving boundary. As we are meneferested in the
shape of the fluid, we only need to know the flow of its bounddrye BEM does
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exactly that; it does not compute the flow at the interior efflaid. Furthermore itis
rather easy to include other effects from the blowing pnobie the model, such as
gravity, surface tension and friction from the contact @ thuid with a wall. As only
the boundary of the fluid is discretised, the system matticasappear in the BEM
are smaller than the system matrices that appear when galvinproblem with a
finite element method, for example. Though the BEM-matraresdense, while the
finite element matrices are sparse, the computationaltéffiothe BEM is relatively
low. In short, the BEM is a very appropriate numerical metivben solving blowing
problems.



Samenvatting

De boundary element method (BEM) is een efficiénte numerigiethode om
oplossingen van randwaardeproblemen te benaderen. Omndiaak succes is er
weinig onderzoek gepleegd naar het goed of slecht gecondérd zijn van de
stelsels van lineaire vergelijkingen die voorkomen in deVBE

Voor de Laplace vergelijking met Dirichlet randvoorwaarde een opmerkelijk
verschijnsel geobserveerd; the bijbehorende randirdabgnaelijking (BIE) is
singulier voor een bepaalde kritieke grootte van het 2D aegkbiDaardoor is de
discrete versie van de BIE, het stelsel van lineaire vegkyaiien, ook singulier,
of tenminste slecht geconditioneerd. Dit wordt zichtbaahét conditiegetal van
de systeemmatrix, welke oneindig groot is, of tenminstd beg groot. Als het
conditiegetal van de BEM-matrix groot is, is het stelselgedijkingen moeilijk op
te lossen en ook is de oplossing van het stelsel gevoelig pedurbaties in de
randvoorwaarden.

Voor een Laplace vergelijking in 2D met gemengde randvoardan wordt een
vergelijkbaar verschijnsel geobserveerd. The bijbehdgedBEM-matrix bestaat uit
twee blokken; een blok uit de BEM-matrix behorende bij hetidbiet probleem,
en een blok uit de BEM-matrix behorende bij het Neumann gl De
samengestelde matrix erft de oplosbaarheidsproblemenhearDirichlet blok.
Daardoor bestaat er voor de Laplace vergelijking met geaemgndvoorwaarden
ook een kritieke grootte van het gebied waarvoor het caghtal van de BEM-
matrix oneindig groot wordt. Met andere woorden, de groeti@ het gebied
beinvioedt de oplosbaarheid van het BEM probleem.

De kritieke grootte van een gebied waarvoor de BIE singwiandt is gerelateerd
aan de logaritmische capaciteit van het gebied. De logetme capaciteit is een
positief reéel getal dat een functie is van de grootte enodie wan het gebied. Als
deze logaritmische capaciteit gelijk is aan één, dantigbbied een kritiek gebied,
en is de BIE singulier. Door de logaritmische capaciteit éeekenen kunnen we
a-priori bepalen of een BIE singulier is. De logaritmische capécitangt lineair
af van de schaal van een gebied, en een gebied met logahemispaciteit gelijk
aan één kan dus altijld gevonden worden door het gebiedrszhaen. Helaas
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kan de logaritmische capaciteit alleen analytisch wordegetekend voor een paar
eenvoudige gebieden; voor ingewikkeldere gebieden kang#itmische capaciteit
worden geschat.

Er zijn verschillende mogelijkheden om grote conditietieta i.e. singuliere
BIEs als gevolg van kritieke gebieden, te voorkomen. Dete@stie is het gebied te
herschalen zodanig dat de logaritmische capaciteit gkgelaan €één. Men kan ook
een extra vergelijking toevoegen aan de BIE en het stetsailie vergelijkingen. Een
nadeel hiervan is dat we een stelsel krijgen met meer védigejen dan onbekenden,
en we hebben andere technieken nodig om deze stelsels opstnloEen derde
optie is de fundamentaaloplossing van de Laplace operatorte passen. Deze
fundamentaaloplossing komt voor in de BIE en het kan aaongetavorden dat een
geschikte aanpassing tot BIEs leidt die niet meer singaljer

De kritieke gebieden waarvoor de BIEs singulier zijn beparkich niet tot
de Laplace vergelijking. Ook voor BIEs voor de biharmonéesalergelijking of
de elastostatische vergelijkingen en de Stokes vergalighi bestaan zulke kritieke
gebieden. Aangezien de laatste twee vergelijkingen viéteovergelijkingen zijn,
bestaat de bijbehorende BIE ook uit twee vergelijkingerenbgngevolge kunnen er
ook twee kritieke gebieden gevonden worden waarvoor de&Ze 8ihgulier zijn. Om
niet-singuliere BIESs te verkrijgen kunnen vergelijkbarethodes gebruikt worden als
voor het geval van de Laplace vergelijking. Helaas kunnemieta-priori bepalen
voor welke kritieke gebieden de BIEs singulier zijn, en dwetem we ook niet hoe
we de gebieden moeten herschalen om niet-singuliere Basiejgen.

Het verschijnsel van kritieke gebieden wordt in essentieomzaakt door
de aanwezigheid van een logaritmische term in de fundamleplassing voor
elliptische randwaardeproblemen in 2D. Deze logaritmeéselnm hangt niet-linear af
van de grootte van het gebied. Als een gebied wordt geschaalgdermenigvuldigd
met een schaalfactor, dan wordt het argument van de logadbk vermenigvuldigd
met deze schaalfactor, maar de logaritme verandert ditnnogéelling. Op deze
manier verandert de logaritme een vermenigvuldiging in egtelling. Hierdoor
worden de vergelijkingen dusdanig veranderd dat versedligm als kritieke gebieden
kunnen optreden. De fundamentaaloplossing voor randwpesblemen in 3D
bevat geen logaritmische term. Een herschaling van hetedefeeft daardoor
geen significante invioed op de fundamentaaloplossing,oénde BIE wordt niet
essentieel beinvioed. Hierdoor kunnen we een 3D gebiediha@ien zonder het risico
te lopen op een kritiek gebied te stuiten.

Een voorbeeld waarin een gebied veel verschillende getteormen aanneemt
is het blaasprobleem. In het blaasprobleem wordt een \dsceloeistof in een
gewenste vorm geblazen. De tijd wordt vaak gediscretisgesn aantal discrete
tijdstappen, en in elke stap kan de vorm van de vloeistofkesiet worden door de
Stokes vergelijkingen op te lossen. Als we dit probleem inskDuleren doorlopen
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we een groot aantal gebieden, en we lopen het risico dat wemkriiek gebied
stuiten of op een gebied dat bijna kritiek is. In zo’n gevdldaBEM moeite hebben
om de Stokes vergelijkingen op te lossen.

Als we het blaasprobleem simuleren in 3D komen we geen keitgebieden
tegen. Het blijkt dat de BEM een zeer efficiente numeriekéhode is voor dit type
probleem in 3D met een bewegende rand. Omdat we eigenlgkraljeinteresseerd
zijn in de vorm van de vloeistof, hoeven we alleen de stromvengde rand te weten.
De BEM doet dit precies; ze berekent de stroming in het inwggndiet. Verder is het
gemakkelijk om andere aspecten van het blaasprobleem wedgen aan het model,
zoals zwaartekracht, oppervlaktespanning en wrijvinggaiglg van contact tussen
vloeistof en een wand. Omdat alleen de rand van de vloeistiEgretisseerd wordt,
zZijn de systeemmatrices die voorkomen in de BEM veel kletfzgr de matrices die
voorkomen in bijvoorbeeld de eindige elementen methodek @aijn de BEM-
matrices vol, terwijl eindige elementen matrices ijl zifte rekentijd voor de BEM
is relatief kort. Kortom, de BEM is een uitermate geschikiieneriecke methode om
blaasproblemen te simuleren.
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