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Chapter 1

General introduction and scope of
the thesis

ABSTRACT

In this chapter we give a brief overview of the phenomenon of polymer crys-
tallization. A comparison of the different theoretical methods used to describe
this phenomenon is given. We also point out the scope of the thesis.

1.1 General overview of the crystallization of poly-

mers

Large molecules that are constructed from many small, repeating units are usually referred
to as polymers. The ability of some of these materials to crystallize has a large industrial
significance [1]. Crystalline polymers are important in the development and manufacture
of many products in our every-day life. However, the physics of polymer crystallization is
quite complex, and is not fully understood even after many years of intense study. The
aim of this thesis is to contribute to this field, by combining the statistical theory of
polymers and descriptions of the crystallization of simple (atomic) liquids. Before going
into the details of our theoretical approach we first briefly describe what is known about
the process of polymer crystallization. We also explain in more detail the aim of this thesis,
and give its scope.

It is well known that in some temperature ranges polymers solidify into a glassy or rubbery
state, but that under the right conditions they can also arrange into regular lattice struc-
tures or, in other words, crystallize [1]. The first serious studies of polymeric crystals were
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Figure 1.1: Fringed micelle model. One of the first attempts to explain crystalline poly-
mers.

done using the X-ray diffraction technique [1]. Polymeric crystal melting and recrystalliza-
tion can also be observed by differential scanning calorimetry, because these processes are
accompanied by the absorption or the release of latent heat [1]. Studies show that most
polymeric crystals formed are never fully crystalline. Some parts of the polymeric solid do
not order into a regular crystal lattice, but form amorphous regions. In a typical polymeric
crystal the degree of crystallinity lies in the range of 30− 70% [1].

There have been many attempts to explain this [1]. For instance, the so-called fringed-
micelle model was proposed by Hermann, Gerngross and Abitz in 1930 to explain the
polymer crystallization phenomenon [2] and it was expanded significantly by Flory [3, 4, 5].
The model is based on the assumption that during crystallization some regions of the
polymeric melt align and form bundles. The lateral growth of these regions is caused
by the attaching of stretched parts of neighboring chains to these bundles. The presence
of entanglements, however, prevents the sample from complete crystallization. The term
‘fringes’ is used to denote the amorphous parts of the sample, which connect different
crystalline regions (see Figure 1.1). However, experimental observations showed this theory
to be erroneous [6]. Indeed, the fringed-micelle model cannot predict the supramolecular
crystalline structures observed in experiments (see below). Its modification can still be
used to explain several phenomena occurring during crystallization, but in general this
theory fails to explain experimental results.

In 1938, Storcks [6] observed that the total length of the polymeric chains can be much
greater than the thickness of the polymeric film, which he studied by the electron diffraction
method. He concluded that the polymeric chains have to be folded in order to form the
crystal structure. In the early 1950’s Schlesinger and Leeper [7], and later Jaccodine
[8], found experimental evidence in support of this conclusion using light microscopy and
refractive-index measurements. They discovered that polymeric chains crystallized from
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Figure 1.2: Lamellar model. Crystallizing polymers form layered structures called lamel-
lae.

dilute solution are able to fold and form so-called ‘lamellar’ crystals (see Figure 1.2). The
experiments conducted by Keller [9], Till [10], and Fischer [11] confirmed that the formation
of lamella is the dominant structural mode in most polymeric crystals. With atomic
force microscopy one is able to directly observe the lamellae formation [12]. On a larger
scale, the amorphous and crystalline material can aggregate to form the supramolecular
structures known as spherulites [1, 13] (Figure 1.3). Spherulites are the most common
supramolecular structural elements of polymeric crystals when the crystallization happens
from the melt or from solution under quiescent conditions, that is, in the absence of flow
or any other mechanical deformation. The symmetric structures observed in spherulites
cannot be explained using the fringed-micelle model, and the lamellar model seems to be a
more plausible explanation. Another interesting structure was found when the polymeric
melt was put under influence of an orientating hydrodynamic flow field [13]. In this case
the formation of different supramolecular structures, so-called shish-kebab-like structures,
is observable (Figure 1.4).

The kinetics of crystallization is very complex and plays a crucial role in the structure of
crystalline polymeric solids. Usually, it is possible to distinguish the following three regimes
in the crystallization process: homogeneous (or heterogenous) nucleation, secondary nucle-
ation and growth, and secondary crystallization [13]. Nucleation is the process of random
birth of small crystalline regions within the liquid polymeric sample. Later the crystal
structure develops around the initial nuclei. This process is associated with the radial
growth of the spherulites, but it is not the final stage of crystallization. The slow crystal-
lization behind the crystal front caused by crystal thickening, the formation of secondary
crystal lamellae and crystal perfection is known as a secondary crystallization. This pro-
cess usually starts when the growth of the spherulites is limited by contact with other
spherulites.

There is a controversial and interesting alternative to views that the nucleation and growth
process prevails in solidifying polymer melt, which was found by some experimentalists and
deserves to be mentioned [14]. They found a peak in the intensity of the small-angle X-
ray scattering at an early time, well before any signal in wide-angle X-ray scattering that
is usually associated with the formation of lamellae. This result might be an indication
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a) b)

Figure 1.3: (a) Polarized photomicrograph of polyolefin showing a spherullite (from Gedde
[1]); (b) Schematic depiction of spherulite. Spherulites consist of many lamellae separated
by amorphous regions.

of spinodal decomposition and a hidden liquid-liquid demixing instability caused by the
coupling between density and chain conformation. However, it should be mentioned that
there is little experimental evidence of this phenomenon, and the evidence that exists has
not been unequivocally confirmed [15]. The possibility of the spinodal mode (probably
caused by a hidden mesomorphic phase) is hotly debated in literature and not clearly
understood [16].

There are basically two dominating ideas to explain why polymers can crystallize. The
first idea relies on the interplay between entropy and enthalpy as two main driving forces in
the polymer crystallization. In the crystalline state the configuration entropy of the chains
is small, because they are arranged into an ordered crystal lattice and into a locked-in
position. On the other hand, this regular arrangement into the crystal lattice maximizes
the attractive forces between the chains. The balance between entropy loss and enthalpy
gain changes with the temperature, and defines the crystallization conditions. The second
idea is due to Flory [17], who stated that packing entropy and chain stiffness determine
the configuration of the polymeric system, and that enthalpic contributions only change
the location of the transition as is now generally accepted to be the case for low-molecular
weight materials. Here, we presume that enthalpy has an influence on the ordering tran-
sition of polymers, but its role is minor, and entropy dominates. Experimental results,
showing the almost athermal behavior of the melting densities (see Figure 1.5), as well as
computer simulations [18], support this assumption.
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a) b)

Figure 1.4: (a) Schematic drawing of the shish-kebab structure; (b) Schematic picture of
orientationally induced crystallization. At the initial stage some chains are stretched from
the coils under influence of an external orienting field. Then the growth of shish-kebab-like
structure is observed.
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Figure 1.5: Polyethylene phase diagram. The lines are from theory of McCoy and co-
workers and the symbols are experimental points. The temperature dependence of the
crystallization density is inessential. (After McCoy et. al. [19].)

Clearly, the phenomenon under consideration is highly complex, and physical models need
to be involved in order to better understand the physical processes behind it. In the next
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Figure 1.6: The atomic structure of polyethylene showing the two angles: the torsional
angle ϕ and the angle θ between two consecutive bonds.

section we discuss the importance of simplified polymeric models in theoretical studies of
polymers in general, and in studies of the polymer crystallization processes in particular.

1.2 The role of polymer models in studies of polymers

A typical polymer molecule consists of many repeating units with many degrees of free-
dom. See, e.g., Figure 1.6, which shows the atomic structure of polyethylene. If we wish
to describe the physical properties of a system consisting of such geometrically complex
molecules, the involvement of some approximative physical models that can properly pat-
tern after chemically realistic structures is necessary, because at present it is impossible
to describe all the details of such molecules. Also, and perhaps more important, if there
are indeed universal features to polymer crystallization, then one would expect that one
can do without some of the chemicals details. The relation between the detailed molecular
structure and the crystallization processes is still being debated.

Bunn [20], and later Wunderlich [21] noticed that the stiffness and interchain attraction,
which we presume here to play a minor role, are the driving forces for the solidification of
a polymeric system. Thus, chain stiffness should play a key role in the polymeric models
that are invoked to understand the crystallization phenomenon. Another important aspect
of polymeric models is ‘coarse-graining’ that leaves out (seemingly) unimportant chemical
details. In the coarse-grained model some parts of the polymer are represented by a
single (usually spherical) object. This approximation has proven its usefulness in studies
of polymeric melts and polymeric solutions in which the relevant length scales are larger
than the effective length of the polymeric bond. In polymeric crystals the thickness of the
lamellae is usually larger than the effective length of the polymeric bond. This would imply
that coarse-grained models can be applied to the investigation of polymeric crystals as
well. On the other hand, the crystallographic structure of polymeric crystal is microscopic.
The variety of the lattice types for different polymers observed may be determined by
the microscopic details of polymers. Thus, the coarse-grained polymeric models might
run into difficulties in the description of this variety. However, as we show in Chapter 5,
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Figure 1.7: Three polymeric models under consideration: freely-hinged Kuhn model with
stiff bonds, Gaussian model, and model, which interpolates between the previous two.

using the simplest coarse-grained polymeric models with varying bond stiffness (see below),
and assuming the predominance of entropic contributions to the free energy, it is possible
to predict different lattice types in polymeric solids. Indeed, lattice frustration effects,
described in Chapter 3, can be one of the explanations of the different lattice types in
polymer crystals.

The simplest known idealized model is the freely-hinged (jointed) chain, which was intro-
duced for polymers by Kuhn in 1936 (Figure 1.7). This model consists of N stiff uncor-
related bonds of the length l. This means that each bond can be oriented in all possible
directions independently from all other bonds. The probability to find the next bead at
the fixed position r′ if the previous one is at the position r can be expressed as

gfh(r− r′) =
1

4πl2
δ(|r− r′| − l), (1.1)

where |r− r′| is the distance between two beads.

If the polymeric segments in the model are connected by harmonic springs of a root-mean-
square extension l (Figure 1.7), this chain is often called Gaussian, because the probability
that the bond, which starts at the position r and ends at the position r′, is a Gaussian
function

g
G
(r− r′) = (2πl2/3)−3/2 exp[−3(r− r′)2/2l2]. (1.2)
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We use in the studies presented in this thesis a new model that interpolates between the
Gaussian and the freely-hinged chain (Figure 1.7). Here, the bond distribution probability
of this chain is expressed as

gi(r− r′) =

√
6

8π3/2ξ|r− r′|l
(

exp

[
−3(|r− r′| − l)2

2ξ2

]
− exp

[
−3(|r− r′|+ l)2

2ξ2

])
. (1.3)

In this case any single polymeric bond consists of a stiff part with length l and a spring
of mean length ξ. In this model the effective length of the bond (Kuhn length) does not
equal l and can be calculated from the relation lK =

√
l2 + ξ2. In the limit, where ξ << l,

this model behaves like a freely-hinged chain (Eq. (1.1)), whilst for ξ >> l it becomes
equivalent to the Gaussian-chain model (Eq. (1.2)). We use all three models in our study.
The Gaussian and Kuhn models were used to study crystallization by different authors
[19, 22].

There is also a freely-hinged model with a fixed bond angle, also known as the freely
rotating chain. Another important model is that in which the chain has fixed bond angles
and an independent potential for the internal torsional bond rotation. Finally, one of the
most detailed models is based on the rotational isomeric state (so-called RIS model). In
this model, the polymeric chain has an interdependent discrete rotational potential, which
was extensively studied by Flory [23]. In the rotational isomeric state model each polymeric
bond has one, two or more discrete rotational states.

In our work we study only the simplest chains lacking angular correlations. However,
we propose some ideas about possible future studies of polymeric models which show the
coupling between the angular and positional degrees of freedom in Chapter 7. In the
following section we give a short overview of the most important theoretical methods, that
have been used in the past for studies of the crystallization of polymers.

1.3 Overview of theoretical methods in the descrip-

tion of the polymer crystallization

1.3.1 Mesoscopic equilibrium theories

As we argue in Section 1.4, equilibrium theories remain essential even in studies of the
kinetically controlled phenomenon of polymer crystallization. Lattice models are appro-
priate tools for the equilibrium description of systems in which excluded volume plays a
role. Flory [17] was the first who proposed a description of polymeric systems with rota-
tional isomerism and volume interactions to study the melting transition. His model can
easily be applied to every lattice type. He performed simple mean-field statistical mechan-
ics calculations for the lattice model. In this model all sites are occupied by monomeric
units of the polymeric chains, and the elements of two chains cannot occupy the same
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lattice site. Flory found that stiffness and compact packing tendency are the two driv-
ing forces for the phase transition and that they are independent. He suggested that the
packing entropy is the main cause for the phase transition, and that enthalpic effects only
determine the location of this transition. In the crystal phase all chains are assumed to be
stretched; in this sense the theory of Flory is close to the Onsager theory for liquid crys-
tals [24]. Huggins, Gibbs and Di Marzio [25, 26] somewhat improved the original theory
of Flory, although the theory remained highly simplified. However, these lattice theories
cannot predict the density jump across the phase transition if the fraction of lattice sites
occupied by the polymers is set equal to unity. Another problem is that the chains are
stretched by hand in order to form a crystal structure. The controversial result of these
descriptions is also that below the melting temperature these simple lattice models are in
their ground states for all temperatures [27, 28, 29]. An entropy catastrophe, which means
that the conformation entropy of the chains can be negative at temperatures below the
temperature of melting, is a problematic feature of the lattice models. Because the simple
lattice model may be insufficient to describe the polymeric melting transitions, extensions
of the model have been made and a crystallographically realistic lattice model or a gridlock
model was developed [30]. The gridlock concept means that the system is locked into a
small set of ground states with no disorder over the whole temperature range, unless the
polymer chain density is allowed to decrease [30]. These models somewhat improved the
results of classical lattice theories for the phase transitions in polymeric systems [30], but
they experience the similar disadvantages as the original theory of Flory.

Another equilibrium approach for the studies of polymer crystallization is the off-lattice
density functional theory by McCoy et al. [19]. The theoretically predicted phase diagram
(see Figure 1.5) agrees fairly well with the experimental results, albeit this theory has a
set of disadvantages to be discussed in Chapter 3. In the following chapter we give a more
detailed insight into density-functional methods and their application to polymers.

1.3.2 Growth theories

Equlibrium theories obviously cannot predict such kinetic phenomena as nucleation and
growth processes for which kinetic theories have been set up. These kinetic theories can
be separated into two classes, being theories of enthalpic nucleation and those of entropic
nucleation. Lauritzen and Hoffman [31, 32] proposed a theory which explains the enthalpic
aspects of crystallization. They described the surface nucleation by means of the growth
of new stems on the face of the lamellae. The factors that determine this growth are the
energetic barrier associated with nucleation and the thermodynamic driving force. This
theory compares favorably with experimental data in two features, being the temperature
dependency of the initial crystal thickness and the linear growth rate [1]. However, signifi-
cant disagreement with the experimental data as regards the dependence of the persistence
length (a measure of polymer stiffness) on temperature, caused the criticism of this theory
[1]. Another assumption, which uses similar ideas as the previous one, is found in the
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rate-theory model developed by Sadler and Gilmer [33, 34]. The difference with the previ-
ous method is in the cause for the free energy barrier, which in this theory is assumed to
have an entropic origin, and in the applicability to the formation of rough surfaces. This
theory predicts a temperature dependency of the linear growth rate that it is consistent
with observations made by electron microscopy [1].

These methods can describe some of the main features of the kinetics of polymer crystal-
lization. However, they contradict some experimental results. These methods have the
assumption that the crystal is growing with a constant thickness of new stems, contrary to
the experimental observations [35]. Another disadvantage of these methods is that the con-
nectivity is described implicitly and, in general, they neglect internal details of polymers,
such as stiffness, and the role of fluctuations.

1.3.3 Computer simulations

Another important way to study polymer crystallization is by computer simulation. The
number of publications on molecular dynamics or Monte Carlo simulations of polymer
crystallization is very large. Therefore, we mention only some results, which are important
in the context of our studies.

Polson and Frenkel [36] performed molecular simulations of a system of Lennard-Jones
chains. They found a solid-fluid transition within this system, and conclude that increasing
the chain stiffness results in a stabilization of the crystal. Kinetic Monte Carlo simulation
methods were used by Doye and Frenkel to study the growth of polymer crystals [37].
The thickness of the growing polymeric crystal was found to be sensitive to a change in
temperature, which conforms the experimental results, but was not found in the earlier
theoretical descriptions of Lauritzen and Hoffman or that of Sadler [37]. A very important
result of computer studies of the phase transition is the appearance of folded chains which
form lamellae [18, 38, 39, 40], or even the supramolecular structures like shish-kebabs in the
case of flow induced crystallization [41]. Especially interesting, in the context of our work,
is the result that repulsive interactions alone (without attractive interactions) provide a
sufficient driving force to form chain-folded structures [18].

Computer simulations are a very powerful technique to study polymer systems. Unfor-
tunately, at this moment these methods are limited by computer capabilities and cannot
produce results for large polymeric samples and large molecular weights.

1.3.4 Landau-de Gennes theory

An alternative approach is due to Olmsted and co-workers [16]. Using the Landau-de
Gennes theory of phase transitions, they proposed a simple phenomenological theory to
explain the spinodal kinetics sometimes found in small-angle X-ray scattering experiments
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after a quench to the crystalline state. They proposed a coupling between the density
and the conformational state of the chains, leading to a metastable liquid-liquid spinodal
within the equilibrium liquid-to-crystalline solid coexistence region. Although interesting,
the theory provides no microscopic picture of crystallization. Indeed, information about
the polymeric nature of the material is only put in via the phenomenological equation of
state [16]. One should mention that an alternative possibility to the liquid-liquid binodal
was found. Matsuyama et. al. [42] on the basis of the Flory-Huggins theory, found a new
type of phase separation in semiflexible polymers. They found a hidden nematic binodal
as a results of the partial stiffening of the chains during the phase transition.

1.4 Outline of the thesis

The structure of crystalline polymeric solids is believed to be determined essentially by
kinetic processes [13]. But any kinetic theory, which is assigned to describe the crystalliza-
tion processes, requires a free-energy landscape as an input, because it provides the driving
force towards the crystalline state. Therefore, an equilibrium analysis of the phenomenon
remains essential. Our aim is to study the driving forces of polymer crystallization as
well as the role of connectivity in this process. Also we are interested in the mechani-
cal properties of polymeric solids, and we try to understand the variety of lattice types
in different polymeric crystals. Due to the complexity of the crystallization phenomenon
we use a set of approximations in our theory: the systems under consideration are ather-
mal, our theory describes ordering only at length scales small compared to the size of the
chains, and, finally, in the crystal phase the bonds are not ordered (see Chapters 3-6 for
details). Although far removed from experimental reality, we show that within the equilib-
rium framework it is possible to obtain a set of very useful conclusions regarding polymer
crystallization. It appears that only entropy and packing effects are sufficient to stabilize
the crystal phase. Another important conclusion is that connectivity has a minor role in
the polymer crystallization at least in the limit where the chains are not fully stretched.
We suspect that the bond correlations, which we neglect in our description, can stabilize
the crystal phase even further and we leave this question open for future investigations.

The polymeric units in our models interact via a hard-core potential (see the following
chapters for details). Since the density functional theory can predict the freezing of a
system of hard spheres with high degree of accuracy, we believe that this theory is a very
promising method to study the crystallization phenomenon in our models. We outline the
major principles of this method in the next chapter after we give the outline of the thesis.

This thesis is organized as follows. In Chapter 2 we describe the main principles of classical
density functional theory and give a short overview of the existing variations of this theory.
In Chapter 3 we describe our formalism and study the crystallization of model polymers.
We find that connectivity is responsible for the so-called lattice frustration effects. In the
next chapter we study the mechanical properties of a model polymeric solid. We compare
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our results with experimental data and find that our theory, which takes into account
only entropic contributions, can show an order of magnitude agreement. In Chapter 5 we
show that a variety in lattice types for known polymeric crystals can be described using
our method. We find that chain stiffness and connectivity can determine the preferred
lattice type for the polymeric crystal. The effect of an external orientational flow on
the crystallization of polymeric chains is described in Chapter 6. It turns out that in
elongational flow model polymers can crystallize more easily than in the absence of this
flow. In Chapter 7 we propose a method to improve the description of the polymeric melt,
which exhibits angular correlations. And, finally, in Chapter 8 we summarize our studies
and make proposals for the future investigation of the fascinating and complex problem of
polymer crystallization.



Chapter 2

Overview of classical density
functional theories for the liquid and
the solid state

ABSTRACT

In this chapter we outline the main principles of classical density-functional
theoretical methods in simple liquids and present the main approaches in the
context of the freezing transition. The application of density functional theories
to polymers is discussed.

2.1 General principles of classical density functional

theories

Systems of simple, atomic liquids can show significant spatial variations of the number
density or the one-body distribution functions, e.g., near the walls of a container, or near
the interface to a co-existent gaseous or crystalline phase. It is not possible to treat these
systems using conventional thermodynamical techniques for these rely on bulk properties of
the phases. A new approach, which relies on the free energy functional of a single-particle
density, has been developed.

Historically, this approach was applied first to quantum systems by Hohenberg and Kohn
[43], and Kohn and Sham [44]. They stated that the ground-state free energy of a non-
uniform electron fluid is an exclusive functional of the electron density, which corresponds
to a single-particle density in the classical case. The principles of density functional theory
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found applications not only in quantum, but also in classical systems [45]. The fundamental
theorems which are the basis of the density functional theory (DFT) were first formulated
by Hohenberg, Kohn [43] and Mermin [46]. These theorems state the following:

Theorem 1. For a given external field the intrinsic free-energy functional is a unique
functional of the density.

Theorem 2. The grand potential functional reaches its minimum when the density profiles
coincide with the equilibrium densities.

An outline of the proofs of these theorem, on the basis of a paper of Evans [47], is as
follows.

Let us consider the grand canonical ensemble, and define f(rN ,pN) as the normalized
probability that the system contains N particles with coordinates rN and momenta pN ,
which at equilibrium becomes equal to f0. At temperature T , we have

f0 =
1

N !h3NΞ
exp(− 1

kBT
(HN − µN)), (2.1)

where HN is the Hamiltonian, Ξ the grand partition function, µ the chemical potential,
kB Boltzmann’s constant, and h Planck’s constant. The probability f is normalized in the
same way as f0, i.e.,

∞∑
N=0

∫ ∫
drNdpNf(rN ,pN) = 1. (2.2)

Let us define the functional Ω of f to be

Ω[f ] =
∞∑

N=0

∫ ∫
drNdpN(HN − µN + kBT ln N !h3N + kBT ln f)f. (2.3)

For the equilibrium probability density we can establish a link between the functional Ω[f ]
and the grand potential Ω by insertion Eq. (2.1) into Eq. (2.3)

Ω[f0] = −kBT ln Ξ = Ω, (2.4)

and hence

Ω[f ] = Ω[f0] + kBT

∞∑
N=0

∫ ∫
drNdpN(f ln f − f ln f0). (2.5)

There is a theorem [48] that states that if for two arbitrary integrable, positive
configuration-space functions F (rN) and G(rN) the equality

∫
drNF (rN) =

∫
drNG(rN) (2.6)

holds, then the Gibbs inequality is satisfied, i.e.,
∫

drNF ln F ≥
∫

drNF ln G. (2.7)
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Using this theorem it is easy to see that if f 6= f0 then

Ω[f ] ≥ Ω[f0]. (2.8)

We define the Hamiltonian of the system as follows

HN(rN ,pN) = KN(pN) + VN(rN) +

∫ N∑
i=1

δ(r− ri)ϕ(r)dr (2.9)

with KN the kinetic energy of the system, VN the potential energy, ϕ(r) the external field.

If we change the external field from ϕ(r) to ϕ′(r), the Hamiltonian changes as well into
a new one, H ′

N . Consequently, the equilibrium probability density f0 changes into a new
probability f ′0. We define Ω′ as a grand potential in the new external field. Due to the
condition f ′0 6= f0 it is possible to define a new inequality from Eqs. (2.3) and (2.4)

Ω′ =
∞∑

N=0

∫ ∫
drNdpN(H ′

N − µN + kBT ln N !h3N + kBT ln f ′0)f
′
0

<

∫ ∫
drNdpN(H ′

N − µN + kBT ln N !h3N + kBT ln f0)f0. (2.10)

Therefore,

Ω′ < Ω +

∫
ρ0(r)(ϕ

′(r)− ϕ(r))dr (2.11)

with ρ0(r) the local particle density

ρ0(r) =
∞∑

N=0

∫ ∫
drNdpNf0(r

N ,pN)
N∑

i=1

δ(r− ri). (2.12)

If we interchange the primed and unprimed quantities and suppose that the local equilib-
rium density ρ0(r) remains the same in both external fields, we get

Ω < Ω′ +
∫

ρ0(r)(ϕ
′(r)− ϕ(r))dr. (2.13)

We conclude that
(Ω′ + Ω) < (Ω + Ω′), (2.14)

which is a contradiction. This means that density ρ0(r) is determined by the external
potential in an unique way and the equilibrium probability density f0 is a unique functional
of the local density ρ0(r). This is the proof of the Theorem 1. Now we prove the second
theorem.

Let us define the free energy functional

F [ρ] =
∞∑

N=0

∫ ∫
drNdpN(KN + VN + kBT ln N !h3N + kBT ln f)f. (2.15)
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At equilibrium this reduces to [47]

F [ρ0] = −kBT ln Ξ + µ

∫
ρ0(r)dr−

∫
ρ0(r)ϕ(r)dr.

The grand potential functional can be defined in terms of the free energy functional

Ω[ρ] = F [ρ]− µ

∫
ρ(r)dr−

∫
ρ(r)ϕ(r)dr. (2.16)

At equilibrium we get
Ω[ρ0] = −kBT ln Ξ = Ω. (2.17)

From Eq. (2.8) it follows that Ω[ρ0] < Ω[ρ]. Thus, Ω is the minimum value of the grand
potential functional, or, in other words, the existence of extremum of Ω[ρ] at equilibrium
can be expressed as [47]

δΩ[ρ]

δρ(r)
|ρ=ρ0

= 0. (2.18)

In this, not very rigorous way, we proved the theorems mentioned at the beginning of this
section. More rigorous derivations can be found elsewhere [47, 48, 49]. See also [50, 51].

Using the thermodynamical relation between the grand potential, Ω, and the Helmholtz
free energy, F, at equilibrium, we find that

F = Fint[ρ0] +

∫
ρ0(r)ϕ(r)dr. (2.19)

The first term in the right-hand-side of Eq. (2.19) is the so-called ‘intrinsic’ free energy
[47] and the second term depends on the external potential. Differentiating the Eq. (2.16)
with respect to the density at equilibrium we get

µ = µint[ρ0, r] + ϕ(r), (2.20)

where the intrinsic chemical potential µint[ρ0, r] = δF [ρ]
δρ(r)

|ρ=ρ0
.

The free energy functional can be divided into an ideal part and a part which arises from
the interactions between the particles, the so-called excess free energy

F [ρ] = Fid[ρ] + Fexc[ρ]. (2.21)

We identify the following important quantity

C(p)(r1, ..., rp) = − 1

kBT
δ(p)Fexc/

p∏
i=1

δρ(ri), (2.22)

which is the p-particle direct correlation function of the system. The formalism described
above provides an elegant variational technique for the calculation of the equilibrium den-
sity of inhomogeneous classical fluids. However, there is no general recipe to compute the
excess free energy, which is a vital ingredient of any DFT. All present DFT types contain
uncontrolled approximations in that respect. Despite this problem, the DFT is proba-
bly the best modern method for the description of inhomogeneous systems. We present
different incarnations of DFT in the following sections.
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2.2 Studies of the freezing of simple liquids by means

of density functional theories

2.2.1 Thermodynamic perturbation expansion (Ramakrishnan
and Yussouff theory)

The theory of the freezing transition for classical fluids in the framework of DFT was
developed by Ramakrishnan and Yussouff (RY) [52]. The original RY type of DFT at
present has many modifications [53, 54]. Within this method the free energy functional
of a solid is perturbationally expanded around a free-energy functional of a homogeneous
liquid. The grand potential of the crystal relative to that of the melt equals

∆Ω = ∆F −
∫

dr [µSρS − µLρL], (2.23)

where ∆F is the difference in the Helmholtz free energies of the crystal and liquid phases,
µS the chemical potential of the crystal and µL the chemical potential of the reference liquid
state. We use symbols ρS for the mean density of the crystal phase and ρL for that of the
homogeneous liquid. According to Eq. (2.21) ∆F can be written as ∆F = ∆Fid + ∆Fexc.
Haymet and Oxtoby [54] modified the original RY DFT and showed that

1

kBT

∆Ω

ρLV
=

1

ρLV

∫
drρ(r) ln ρ(r)/ρL (2.24)

− 1

ρLV

∞∑
p=2

1

p!

∫
...

∫
C

(p)
L (r1, ..., rp)

p∏
i=1

dri(ρ(ri)− ρL)

− 1

kBT

1

ρLV
(µS − µL)

∫
drρ(r)− 1

ρLV

∫
dr(ρ(r)− ρL),

where the excess free energy of the solid phase is thermodynamically expanded around the
excess free energy of the uniform liquid, V is the volume of the system, T denotes the abso-
lute temperature and kB Bolzmann’s constant. The functional derivatives in the expansion
are substituted by the direct correlation functions of the uniform liquid C

(p)
L (r1, ..., rp) fol-

lowing Eq. (2.22).

The coexistent densities of the solid and liquid at the freezing transition can be obtained
by minimization of Eq. (2.24) with respect to the local density profiles ρ(r). A sensible
approximation that can be made, is substitution of the exact density distribution by a sum
of Gaussians,

ρ(r) = (πε2)−3/2
∑

{R}
exp

[−(R− r)2/ε2
]
, (2.25)

where {R} denotes the set of real-space lattice vectors of the crystal, and ε is a measure
of the width of the Gaussian density distribution around each lattice point (see, however,
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[55]). The densities of both crystal and liquid phases and the width of the Gaussian are
determined by a free-energy minimization. Eq. (2.24) takes on a simple form if the density
profiles in crystal are assumed to be only weakly overlapping [53, 56, 57]. This assumption
turns out to be accurate for a wide range of solid densities and Gaussian widths [53].

The functional in Eq. (2.24) requires the direct correlation function of a uniform liquid
as an input. Usually the four-body and higher-order correlation functions in the second
term of Eq. (2.24) are left out, and the three-body one approximated by its value at zero
wave vector. (Haymet [54] has shown for hard spheres that only the zero wave vector part
of the three-body term is important in Eq. (2.24), because the non-zero q contributions
have an oscillatory character and cancel each other out.) The two-body direct correlation
function can be obtained from a suitable closure of the Ornstein-Zernike equation that
links the direct correlation function to the total correlation function. The hard-sphere
two-body direct correlation function is an exact analytic solution of this equation with
the Percus-Yevick closure and is used as input to Eq. (2.24) [49]. The tree-body direct
correlation function can be obtained from the two-body direct correlation function, at least
near zero wave vector. This theory is computationally convenient and produces quite good
agreement for the freezing densities for hard-sphere systems in comparison with the results
of computer simulations. We adopt this type of DFT as a basis for our polymeric theory
and present it in the next chapter.

2.2.2 Weighted-density approximation

The second type of DFT is the so-called weighted-density approximation (WDA) [58, 59]
in which the solid is treated as an inhomogeneous liquid. This approach tries to avoid the
perturbative description of a solid. The excess free energy of a solid phase is written as
follows

Fexc[ρS] =

∫
drρ(r)fL

exc(ρ(r)), (2.26)

where fL
exc(ρ(r)) is the excess free energy per particle of a uniform liquid, which can be

obtained, e.g., from the equation of state of that fluid. The weighted solid density, ρ(r), is
expressed as

ρ(r) =

∫
dr′ρ(r′)w(r′ − r, ρ(r)) (2.27)

with w(r′ − r, ρ(r)) the normalized weighting function
∫

drw(r, ρ) = 1. It is technically
complicated to compute the weighting function from the previous equation and some as-
sumptions need to be made. The exact expression for the direct correlation function of the
solid is

C
(2)
S (r′, r, ρS) = − 1

kBT
(

δ2Fexc[ρS]

δρS(r)δρS(r′)
). (2.28)
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The choice of the weighting function should satisfy the condition that for the direct corre-
lation function of the uniform liquid

C
(2)
L (r′ − r, ρL) = − 1

kBT
(

δ2Fexc[ρS]

δρS(r)δρS(r′)
) |ρS(r)=ρL

. (2.29)

The following virial type of expansion was involved in order to compute the weighting
function [58]

w(r, ρL) = w0(r) + w1(r)ρL + w2(r)ρ
2
L + . . . (2.30)

C
(2)
L (r, ρL) = c0(r) + c1(r)ρL + c2(r)ρ

2
L + . . .

and is usually truncated after the second order in the density. The approximation thus
made is still rather crude and has similar weak points as the previous type of DFT, i.e.,
the perturbative expansion of the thermodynamic quantities. Moreover, there is a lack of
information about the convergence of the above series.

A different method, circumventing Eq. (2.30), was proposed by Curtin and Ashcroft [59].
The next equation directly follows from Eq. (2.29)

−kBTĈ
(2)
L (q, ρL) = 2

∂fL
exc(ρL)

∂ρL

ŵ(q, ρL) + ρL
∂

∂ρL

(
∂fL

exc(ρL)

∂ρL

[ŵ(q, ρL)]2), (2.31)

where the hats denote the Fourier transform and q is the length of the wave vector. This
equation is used to calculate the weighting function. Then the weighted solid density and
excess free energy follow; the latter can subsequently be minimized with respect to solid
density.

A technical improvement of the WDA was made by Denton and Ashcroft [60], who invented
the modified WDA (MWDA). They replace equation (2.26) for the excess free energy by

1

ρSV
Fexc[ρS] = fL

exc(ρ̃) (2.32)

with ρ̃ the uniform weighted solid density, which is

ρ̃ =

∫
dr

∫
dr′ρ(r)ρ(r′)w̃(r− r′, ρ̃)∫

dr′′ρ(r′′)
. (2.33)

The new equation for the weighting function in the Fourier space is much simpler than Eq.
(2.31) and adopts the form

−kBTĈ
(2)
L (q, ρL) = 2

∂fL
exc(ρL)

∂ρL

̂̃w(q, ρL) + ρ
∂2fL

exc(ρL)

∂2ρL

δq,0. (2.34)

The results of the MWDA for the hard-sphere system have very good agreement with
computer simulations. This method requires as input the direct correlation function, which
can again be obtained by means of the Ornstein-Zernike equation for classical fluids, in
addition it requires the excess free energy per particle. The latter can be calculated from
the equation of state.
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2.2.3 Effective-liquid approximation

The third type of DFT involves an effective-liquid approximation (ELA), suggested by
Baus and Colot [61] who also wanted to avoid the perturbative expansion of the excess free
energy. The expression for the excess free energy in this method is written as

Fexc[ρS] = Fexc[ρL] + (2.35)

−kBT

∫
dr

∫
dr′

1∫

0

dλ

λ∫

0

dλ′C(2)(r, r′ρL + λ′∆ρ)∆ρ(r)∆ρ(r′),

where ρL is density of a uniform liquid reference state, ∆ρ(r) = ρS(r) − ρL is the density
difference between reference density and the solid density ρS. The last one is achieved
gradually as ρL + λ∆ρ, 0 ≤ λ ≤ 1.

The direct correlation function of the solid phase is now approximated by the direct cor-
relation function C

(2)
L (r− r′, ρ(ρL)) of the effective liquid of density ρ

1

kBT
Fexc[ρS] =

1

kBT
Fexc[ρR] (2.36)

−1

2

∫
dr

∫
dr′C(2)

L (r− r′, ρ(ρL))∆ρ(r)∆ρ(r′).

Baus and Colot [61] made the following choice of ρ(ρL). They postulated that the position
of the main peak of the static structure factor of the effective liquid of density ρ corre-
sponds to the smaller reciprocal lattice vector of the solid of average density ρL. If we
expand the density of the effective liquid around the density of uniform fluid, we obtain
the Ramakrishnan and Yussouff free energy functional.

A modification of this theory has been suggested by Baus [62]. He introduced a new excess
free energy, which is just Eq. (2.35) with ρL = 0, giving

1

kBT
Fexc[ρS] = −

∫
dr

∫
dr′

1∫

0

dλ

λ∫

0

dλ′C(2)
L (r− r′, λ′ρ̃)ρS(r)ρS(r′). (2.37)

The effective-liquid density ρ̃ is then determined self-consistently in terms of ρS(r) and

C
(2)
L from the expression for the excess free energy per particle of the solid, which is the

same as the one for an effective liquid

1

ρSV
Fexc[ρS] = fL

exc(ρ̃) ≡ −kBT ρ̃

∫
dr

1∫

0

dλ

λ∫

0

dλ′C(2)
L (r, λ′ρ̃). (2.38)

This method is often referred as modified effective-liquid approximation (MELA). The
results of MELA are superior to the ones of ELA. It is possible to establish a link with
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between MWDA and MELA if the weighting function is written as

w̃(r, ρ̃) =

1∫
0

dλ
λ∫
0

dλ′C(2)
L (r,λ′ρ)

∫
dr′

1∫
0

dλ
λ∫
0

dλ′C(2)
L (r′, λ′ρ)

. (2.39)

In this case the excess free energy can be written as in Eqs. (2.26) and (2.27).

2.2.4 Fundamental measure theory

The fourth type of DFT is the fundamental measure theory (FMT) developed by Rosen-
feld [63]. Later this method was modified to study the hard-sphere crystal by Tarazona
[64]. The method does not rely on the extrapolation from the homogeneous fluid toward
inhomogeneous crystal, as implemented in the previous methods. The FMT is based on
functional interpolation between the zero-dimension (0D) limit for the excess free energy
and properties of 3D bulk. The excess free energy is expressed as [64]

1

kBT
Fexc[ρ] =

∑ν=1

D

∫
drϕν [ρ]

ν∏
i=1

∫
dRiw(Ri)ρ(r + Ri)K

D
ν , (2.40)

where D denotes the spacial dimension, R is the radius of the hard sphere, ϕν [ρ] the
ν’s derivative of the 0D excess free energy, w(Ri) a normalized delta-function shell with
the radius of the monomer and, finally, KD

ν a geometrical factor. The expression for the
geometrical factors can be obtained from the exact 0D results for it.

This method has a number of advantages. The free energy can be minimized without
any additional constraints on the unit-cell geometry. Results of minimization of the free
energy in this method reproduce the Percus-Yevick equation of state and direct correlation
function for the hard-sphere fluid. A comparison with the results of computer simulations
for the hard-sphere crystal is very good, better than any of the previously described meth-
ods. This method is able to reproduce details of the unit cell density distribution in the
crystal such as anisotropy and normalization. The values of the Lindemann ratio, which
is a measure of the mean square deviation of the monomer from the lattice-site position,
are in better agreement with computer simulations than the ones obtained by means of
previous methods.

2.3 Results and comparison of different DFT types

The simplest possible model of a fluid is a system of hard spheres. This model is suitable
for systems for which the hard-core potential dominates the physics in hand. In this section
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ρLσ3 ρSσ3 L

Monte Carlo simulations [65] 0.943 1.041 0.126

RY [53] 0.985 1.126 0.059

WDA [59, 60] 0.915 1.045 0.093

MWDA [60] 0.909 1.035 0.097

ELA [61] 0.993 1.083 0.074

MELA [62] 0.924 1.027 0.098

FMA [66] 0.938 1.031 0.101

Table 2.1: The dimensionless liquid ρLσ3 and crystal ρSσ3 densities, and the Lindemann
ratio L of the fcc hard-sphere crystal at phase coexistence calculated using different DFT
types.

we briefly discuss the results of different types of DFT for the freezing of the hard-sphere
face-centered cubic (fcc) crystal and also give results for the elastic moduli of this crystal.

Table I shows the results for the freezing density and the Lindemann ratio for the hard-
sphere system. As can be seen the results of FMA show the best agreement with computer
simulations, however the largest deviation from the results of Monte Carlo simulations for
all methods is about 10% in density.

The following Table presents the results for the elastic moduli of the hard-sphere crystal
at phase coexistence. We present the recipe how to calculate the elastic moduli using the
DFT method in the Chapter 5. Here we just compare results which were obtained by
different methods. The results of the MWDA show the best agreement with simulations
of Frenkel and Ladd [67]. The worst agreement with simulations and an even unphysical
negative Poisson ratio were obtained by means of the RY DFT of Jarić and Mohanty [68].
We show that inclusion of the three-body direct correlation function and a larger number
of reciprocal vectors in the calculation (RY2 row in Table 2) increases the accuracy of
the elastic moduli significantly. Although the agreement with simulations for the elastic
moduli is far from perfect, the value of the Poisson ratio ν is positive (RY2 row in Table 2)
and is in good agreement with the results of Frenkel and Ladd [67]. We conclude that the
RY DFT is maybe not the best one but is a quite suitable method to study hard-sphere
systems. The calculational simplicity of this method is an important feature in the context
of our studies and we derive in the same perturbative fashion polymeric corrections to the
free energy in order to apply DFT to polymeric systems. We present our theory in details
in the following chapter, but first we give a short overview of what has been done within
the DFT framework for polymers.
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C11σ
3/kBT C12σ

3/kBT C44σ
3/kBT ν

Molecular dynamics simulations [67] 68 18 46 0.35

RY1 [68] −40 158 141 −0.22

RY2 [69] 139 43 66 0.31

WDA [70] 69 32 60 0.32

MWDA [71] 71 18 47 0.32

ELA [72] 125 41 49 0.31

Table 2.2: The dimensionless elastic moduli C11σ
3/kBT , C12σ

3/kBT , C44σ
3/kBT and the

Poisson ratio ν for the fcc hard-sphere crystal at a density 1.04σ−3 calculated from different
DFT types. (The results are estimated from figures of the corresponding references.)

2.4 Applications to polymers

Despite the drawback of uncontrolled approximations, the DFT method seem to be a very
powerful tool to study inhomogeneous atomic systems. One would assume that this carries
over to polymeric systems. The biggest challenge comes from the complicated internal
structure of the polymers themselves. Connectivity is not an easy aspect to describe
within the framework of DFT. Quite a few attempts to study polymeric systems using the
DFT technique can be found in the literature. We mention just a few.

Yethiraj and Woodward [73] developed the DFT for polymers, based on the WDA theory.
They used a simple weighting function, which was assumed to be a constant for distances
smaller than the hard-core diameter. Later Yethiraj [74] improved this theory and used
more complicated weighting functions. He studied freely-hinged chains and freely rotating
chains (see Chapter 1). This theory requires a direct correlation function as an input, which
was calculated from the polymer interaction site model (PRISM, a generalization of the
Ornstein-Zernike equation for polymers, see the following chapter for details). The excess
free energy per particle was obtained from an empirical equation of state. The connectivity
enters their calculation in the direct correlation function and excess free energy, which is
not self-consistent in the sense that it is obtained from a semi-empirical equation of state.
They studied short chains and found good agreement with computer simulation for the
density profiles of freely-hinged chains at a hard wall and somehow worse agreement for
the freely rotating model at high densities. We are not aware about studies of the freezing
of polymeric systems using this theory. The theory seems very promising, but the lack of
an accurate self-consistent equation of state for polymers is a serious complication. Such
equations of state can be obtained from, e.g., PRISM via the virial or compressibility route,
but their accuracy (or lack of it) is a point of concern. Contrary to the hard-sphere case,
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for which we have the highly accurate Carnahan-Starling equation of state, no equation of
state of similar accuracy is available for melts of long polymers.

There are other studies of the polymeric systems using density-functional methods [19].
McCoy et al. [19] applied the polyatomic density-functional theory developed by Chan-
dler, McCoy, and Singer [75, 76] to realistic polymeric models. They also used the direct
correlation function of the polymeric melt as an input from the PRISM. The crystal phase
was described in a local-density type of approximation [77, 78]. Their results for the crys-
tallization densities of polyethylene and polytetrafluoroethylene agree with experimental
data very well. However, the difference between the solid and liquid densities at freezing
was overestimated in their calculations. Unfortunately, this theory requires a large number
of fitting parameters as input, and only the direct correlation function of the melt contains
all the information about the connectivity of the polymeric chain. McMullen and Freed
[79] developed a formal DFT which is similar to the one of Chandler, McCoy, and Singer
discussed here, with exception that intramolecular correlations are relegated to the excess
free energy. We are not aware of any application of this theory to studies of polymeric
models.

Another DFT for site-site pair correlation functions of polymeric melts was developed
by Kierlik and Rosinberg [80]. This theory is based on Wertheim’s perturbation theory
of polymerization in the limit of full association, when all monomers are polymerized.
The results of this theory for the pair correlation function of diatomic and linear tetra-
atomic molecules are not in the agreement with the results of computer simulations. This
discrepancy can be attributed to the neglect of the intramolecular excluded volume effects.

As can be seen each polymeric DFT possesses some disadvantages and/or inaccuracies.
We decide to use the RY DFT as a basis for our polymeric DFT because of the following
reasons. First, this theory does not require extensive calculations and can predict the
freezing transition of hard spheres with a high accuracy. It is possible to extend this
method to polymers. Second, we develop the corrections to the free energy, reflecting the
effects of connectivity, in the same perturbative fashion as the main principles of this theory
making the theory self-consistent. We present our formalism in the following chapter.



Chapter 3

Density functional theory of the
crystallization of hard polymeric
chains

ABSTRACT

We study how connectivity influences the crystallization of fully flexible model
polymers by applying a recently advanced amalgamation of the Green-function
description of polymers, and the density functional theory of simple liquids.
Our calculations show that the model polymers only crystallize if the effective
Kuhn length of the chains is sufficiently large compared with the range of the
hard-core interaction between the segments. Also shown is the importance of
bond-length fluctuations for the stability of the crystal phase.

3.1 Introduction

The crystallization of polymers is still poorly understood, despite intense research spanning
many decades. A likely reason for this may be the importance of kinetic effects, which seem
to predominate the crystallization of polymers [13]. It is not surprising, then, that a great
effort has been put in studying this particular aspect of the problem, and less so the
thermodynamic driving force leading the polymeric melt to the crystalline state. This
is unfortunate, however, since a meaningful kinetic theory is difficult to set up without
a reliable statistical-thermodynamic description of the problem at hand. Indeed, as has
become clear from recent discussions [16], the presence of metastable states may play an
important role in selecting kinetic pathways. The aim of this chapter is first and foremost
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to create an understanding of how chain connectivity affects the stability of the crystal
phase. As we shall see below, unconnected monomers appear to be easier to crystallize
than freely hinged model polymers. This implies that angular correlations could play a
more prominent role in promoting polymer crystallization then is often thought. The effects
of angular correlations will be studied in a forthcoming publications.

Before going into the details of our calculations, let us briefly summarize the state of
the art. There are essentially three modes of attack in dealing with the thermodynamics
of the freezing transition in polymeric systems. These are the lattice-based models, the
Landau-de Gennes types of approach and density functional theories. Of these, the most
well known are the lattice-based theories pioneered by Flory [17]. He developed a simple
mean-field theory to deal with the effect of inter-chain interactions, in combination with
a (simplified) isomeric state model for the description of the loss of configurational free
energy upon the freezing of the polymers. Flory found that, upon cooling, the stiffness
of the chains increases, which, due to a concomitant increase in volume exclusion, in
turn induces the transition to the crystalline state. Within the Flory theory the phase
transition is entropically driven, and attractive interactions only perturb the location of
the transition [19]. Another important conclusion to be drawn from the Flory theory is (at
least in solution) that stiffer chains crystallize more readily than flexible ones, in accord
with recent computer simulations [36] but also with experimental fact [1].

The advantage of the Flory theory is its simplicity. The theory remains conceptually
important in that it has drawn attention to the relevance both packing effects and chain
configurations. At the same time the Flory theory has a serious drawback, namely that
when the fraction of lattice sites occupied by the polymers is set equal to unity, it cannot
predict a density jump at the crystallization transition. Another problem is that it is not
self-consistent in the sense that order is introduced on the lattice by hand.

Perhaps the most promising way to accurately describe both the thermodynamics of poly-
mer crystallization and the structure of the crystal phase is given by the powerful tool
known as density functional theory (DFT), pioneered by Ramakrishnan and Yussouff [52]
for monatomic liquids. McCoy et al. [19] applied the polyatomic density-functional theory
developed by Chandler, McCoy, and Singer [75, 76] to chemically realistic polymeric sys-
tems. For the description of the melt phase they used a polymeric reference state model
or PRISM [22, 81, 82], whilst the crystal phase was described in a local-density type of
approximation [77, 78]. The agreement of the theory with experimental data on the densi-
ties at which the polymers polyethylene and polytetrafluoroethylene crystallize was quite
remarkable. Somewhat less good was the predicted phase gap, which was overestimated
by a factor of about 3, as well the temperature dependence of the density. Also, the rather
large discrepancy between the theoretical and experimental lattice parameters should cause
some concern. We speculate that it could well be the lack of coupling between positional
and orientational degrees of freedom in their theory that is at the root of the problem [83].

Our aim is not directly to improve on the work of McCoy and co-workers [19], although
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our approach does go beyond PRISM as it treats the melt and crystal phase on an equal
footing. Rather, our aim is first to try to attack the problem in a limit that is consistent
with the model assumptions of that work, and study the bare effects of connectivity. This
has not been done before at the level of a density functional theory. Although the model
polymers we employ are unrealistic at small length scales, and we do take a step back from
experiment, our approach intends to act as a stepping stone to come to a more realistic
description of actual polymeric systems. Ultimately, we intend to extend our theory to
include bond correlations, which within a PRISM-type theory is much more cumbersome
[83].

The remainder of this chapter is organized as follows. In Section 2 we first briefly describe
the model polymers considered. The formalism which we use for our calculations is ex-
plained in Section 3. Section 4 discusses the description of the polymeric melt and Section
5 that of the crystal phase. The calculation method is explained in the Section 6. The
results of our numerical calculations are represented in Section 7, and conclusions are pre-
sented in Section 8. Some of the details of our derivation are explained in the Appendices
A and B.

3.2 Model

Since our aim is to study the role of connectivity in polymer crystallization, we focus
on simple, coarse-grained polymer models, in particular the Gaussian-chain model, the
freely-hinged-chain model and an intermediate model that interpolates (in a way) between
these two. The model chains are thought to consist of N identical segments, which in the
Gaussian model are connected by Hookean springs with a root-mean-square extension a,
in the freely-hinged model by rigid links of fixed length l, and in the intermediate model
by links of root-mean-square length b. The step length of the intermediate model b itself
depends on a mean bond length l and root-mean-square deviation ξ via b =

√
l2 + ξ2. For

ξ << l this intermediate model turns into freely-hinged chain model, and for ξ >> l into
the standard Gaussian chain model with ξ playing the role of a. All models behave like
random-flight chains in the long-chain limit, so for convenience we put lK ≡ a ≡ l ≡ b,
with lK the Kuhn length of the chains. Note that this provides a reasonable description
of the chains in the melt, for intra-chain correlations are screened and the chains behave
ideally. As we shall see later, in the Section 7, varying the stiffness of the bond of the
intermediate model allows us to study the effects of lattice frustration.

The pair interactions between the segments are modeled by a simple hard-core repulsive
potential of range σ, independent of the segment ranking numbers, and independent of the
chain configurations. The range of the potential need not be the actual diameter of the
hard-sphere segments, because connectivity (in a way) renormalizes the pair interaction
[84]. To be able to study the influence of this renormalization, we introduce a segment
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a) b)

Figure 3.1: Schematic diagram of the influence of the segment fusion parameter Γ ≡ lK/σ
on the model polymer. When Γ > 1 there is no overlap of neighboring segments within
the chain (a), for Γ < 1 the segments ’fuse’ (b).

fusion parameter defined as
Γ ≡ lK/σ. (3.1)

As it is unclear how connectivity renormalizes the local interaction, we keep Γ as a free
parameter. Figure 3.1 makes clear why Γ may indeed be called fusion parameter; if Γ > 1
the hard cores of the neighboring segments along a chain do not overlap, whereas if Γ < 1
they do.

The polymeric model system is fully described by the fusion parameter Γ, the number of
segments per chain N , and the effective packing fraction of the segments φ = πρσ3/6,
where ρ denotes the number density of the segments. In the melt, the segments are (in the
mean) homogeneously distributed, and the bonds connecting the segments randomly ori-
ented. Because the interaction potential is isotropic and of the pair type, and because the
links freely-hinged, orientational bond-order type correlations cannot build up. As a con-
sequence, although in the crystal phase the segments do crystallize, i.e., order positionally,
there cannot be any associated long-range bond ordering within our model description.
In other words, the chains in the crystal phase behave like random flights on a lattice.
Although inaccurate, it is consistent within our treatment, and allows us to focus on the
effects of connectivity alone.

In the following we first explain the general formalism with which we attack the problem in
hand, and next describe how we apply this theory to describe the melt and crystal phases.
Our treatment of the melt turns out to be equivalent to the so-called polymer reference
interaction site model or PRISM theory, whilst that of the crystal is a DFT-type theory
with corrections for bond connectivity. Those readers not interested in the technical details
we refer directly to the results of our calculations presented in Section 7.
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3.3 Formalism

In the mean-field approximation, the partition function Z of a collection of M polymeric
chains of N segments in a volume V is given by the product of the single-chain partition
functions ZN :

Z =
1

M !
ZM

N (3.2)

The single-chain partition function can be written as the spatial integral over the positions
of the ends of a single chain,

ZN =

∫
dr

∫
dr′ Z(r′, r; N) (3.3)

with Z(r′, r; N) the (conditional) partition function of a chain of N segments of which the
ends are fixed at the positions r and r′. The latter quantity is often referred as the Green
function of the polymer [85], and satisfies the following recursive equation

Z(r′, r; N + 1) = exp[−Uscf (r)]ĝ Z(r′, r; N). (3.4)

Here, Uscf (r) denotes the self-consistent, molecular field a chain experiences from the
presence of the other chains, and ĝ the so-called step operator [86].

If f(r) is an arbitrary integrable function, the step operator is defined as

ĝf(r) ≡
∫

dr′′g(r, r′′)f(r′′) (3.5)

with the kernel g(r, r′′) the a priori probability that a bond that starts at r′′, ends at r.
For the standard Gaussian chain in three spatial dimensions [86],

g(r, r′) = g
G
(r− r′) = (2πl2K/3)−3/2 exp[−3(r− r′)2/2l2K ], (3.6)

whilst for a the freely-hinged chain [86]

g(r, r′) = gfh(r− r′) =
1

4πl2K
δ(|r− r′| − lK). (3.7)

For the intermediate model we take the convolution gi(r) ≡ g
G
◦ gfh(r) ≡

∫
dr′′gfh(r −

r′′)g
G
(r′′) of the kernel of a freely-hinged model with a bond length l and that of a Gaussian

model with root-mean-square bond length ξ, giving

g(r, r′) = gi(r− r′) = (3.8)√
6

8π3/2ξ|r− r′|l
(

exp

[
−3(|r− r′| − l)2

2ξ2

]
− exp

[
−3(|r− r′|+ l)2

2ξ2

])
.
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Note that for all models g(r, r′) is normalized, i.e., ĝ1 ≡ 1, and that the ‘initial’ condition
associated with the operator equation (3.4) is Z(r′, r; 1) ≡ δ(r′ − r).

In units of thermal energy, the free energy of our system of chains is given by

F = − lnZ, (3.9)

which at this point is still an implicit function of the as yet unknown molecular field Uscf .
The molecular field may be fixed by following a procedure pioneered by Lifshitz [87]. First,
we subtract from Eq. (3.9) the internal energy of the system, to give the contribution of
the configurational free energy, Fconf , to the free energy

Fconf = F −
∫

drUscf (r) ρ (r) . (3.10)

Here, ρ (r) denotes the number density of segments, itself a functional of the conditional
partition function

ρ (r) ≡ MZ−1
N

∫
dr′

∫
dr′′

N∑
s=1

Z(r′, r; 1, s)Z(r, r′′; s,N). (3.11)

The next step is to surmise that the actual free energy F must be the sum of Eq. (3.10) and
an excess free energy Fexc describing the interactions between the segments and a possible
coupling to an external field,

F =Fconf + Fexc. (3.12)

For any choice of Fexc, we can establish the conditions for phase coexistence by subsequently
equating the chemical potentials µ = δF/δρ (r) and the pressures P = −F + µ

∫
drρ (r) of

both phases. This, however, is not straightforward, for we would have to solve Eqs. (3.3)
through (3.12) self-consistently. A much more efficient way to achieve the same, is to make
the connection with liquid-state (integral equation) theory. As will become clear below,
we then do not need to specify Fexc of the melt state. The free energy of the crystal state
relative to that of the melt can be calculated perturbationally from that of the melt using
the theory described above.

3.4 Description of the melt

To make the connection with liquid-state theory, we seek to derive an Ornstein-Zernike-type
equation between the total correlation function of two segments on different chains h(r, r′),
and the associated two-particle direct correlation function C(2)(r, r′) ≡ δ2Fexc/δρ (r) δρ (r′).
This is possible by calculating the response of the density field to an externally applied
potential, and linking the response function to the static structure factor with the help
of the well-known Yvon equation [83]. We find that the so-called polymeric reference



DFT of the crystallization 31

interaction site model or PRISM equation is consistent with the formalism described in
the previous Section 3. See [83] or the Appendix A for details. This equation reads in
Fourier space:

ĥ(q) = ω̂(q)Ĉ(2)(q) + ρLω̂(q)Ĉ(2)(q)ĥ(q), (3.13)

where the hats indicate Fourier-transformed quantities, q the wave vector and ρL the
average melt density. The intramolecular correlations between segments on a single chain
are described by the form factor ω̂, which depends on the model used. For the models
under consideration [88]

ω̂(q) =
1− ĝ2 − 2

N
ĝ + 2

N
ĝN+1

(1− ĝ)2 , (3.14)

where q ≡ |q| and ĝ(q) ≡ exp[−q2l2K/6] for the Gaussian model, ĝ(q) ≡ q−1l−1
K sin qlK for

the freely-hinged chain, and ĝ(q) ≡ q−1l−1 sin ql exp[−q2ξ2/6] for the intermediate model.
The last follows from the standard properties of the Fourier transform of the convolution
of two functions.

Eq. (3.13) has to be implemented by a suitable closure. We use the well-known Percus-
Yevick or PY closure, which was quite successfully applied by various authors to describe
the structure of polymeric melts [19, 22]. The PY closure is defined by

h(|r| < σ) =− 1
C(2)(|r| > σ) = 0

}
, (3.15)

and describes hard-core interactions between the segments. With this closure, the PRISM
integral equation (3.13) can be solved self-consistently. We applied the algorithm put for-
ward by Honnell et al. [89], by assuming the direct correlation function to be a cubic
polynomial, and solving numerically the system of nonlinear algebraic equations for the
expansion coefficients. For this system of nonlinear equations we used the standard modi-
fication of the Powell hybrid method from the NAG r© library (Mark 18, C05NBF). With
the coefficients so obtained we calculated the direct correlation function.

3.5 Description of the crystal

To describe the crystal phase, we use an extension of the standard density-functional theory
(DFT), set up within the local density approximation (LDA) developed by Ramakrishnan
and Yussouff [52], and by Haymet and Oxtoby [54], for monatomic liquids, in the context
of the freezing of hard spheres [53, 61]. The DFT can be derived from the theory of Section
3. We refer to references [52, 53, 61, 90] for details regarding the estimate of the excess
free energy. The modification of the usual ideal free energy functional, needed to deal with
the connectivity of the polymers, is outlined in Appendix B. Within our treatment, only
those chain-connectivity corrections are included that are of leading order in the density
modulation.
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The expansion of the free energy gives us for the grand potential of the crystal relative to
that of the melt,

∆Ω = ∆F −
∫

dr [µSρS − µLρL], (3.16)

where ∆F is the difference in the Helmholtz free energies of the crystal and melt phases,
µS the chemical potential of the crystal and µL the chemical potential of the reference state
(the melt); ρS is the mean density of the crystal phase and ρL as before that of the melt.
∆F can be written as ∆F = ∆Fconf + ∆Fexc. As it turns out, at length scales relevant to
the crystallization of the beads, ∆Fconf can be written as the sum of an ideal entropy of
unconnected beads, and corrections coming from the connectivity of the beads.

Using standard DFT for ∆Fexc, which is identical to that of hard-sphere systems, and using
the results of the Appendix B we find:

∆ω ≡ 1

kBT

∆Ω

ρLV
=

1

ρLV

∫
dr{ρ(r) ln ρ(r)/ρL −∆} (3.17)

− 1

ρLV

∞∑
p=2

1

p!

∫
...

∫
C(p)(r1, ..., rp)

p∏
i=1

dri(ρ(ri)− ρL)

− 1

kBT

1

ρLV
(µS − µL)

∫
drρ(r)− 1

ρLV

∫
dr(ρ(r)− ρL)

with C(p)(r1, ..., rp) = − 1
kBT

δ(p)Fexc/
p∏

i=1

δρ(ri) the p-particle direct correlation function of

the melt. One recognizes in the first term on the right the usual ideal entropy. The next
term ∆ enters due to the existence of the (phantom) bonds. We find to quadratic order in
density modulations

∆ =
1

ρL

∫ ∫
drdr′g(r, r′)[ρ(r)− ρL][ρ(r′)− ρL] (3.18)

with g as before the kernel of the step operator. The other terms are connected with the
excess free energy and mass conservation. We truncate the summation after the second
term, because higher-order terms are presumably negligibly small, for they are known to
be small for hard spheres [54].

3.6 Calculation method

For reasons of computational convenience we do not use the exact density distribution,
obtained by minimizing the free energy, but rather approximate it by a sum of Gaussians,

ρ(r) = (πε2)−3/2
∑

{R}
exp

[−(R− r)2/ε2
]
, (3.19)
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where we assume the crystal to be face-centered cubic. (We found that of all cubic lattices
only the fcc lattice supports a stable solid phase for our model polymers, in common with
systems of hard spheres [61].) In Eq. (3.19), {R} denotes all the real-space crystal-lattice
vectors, and ε is a measure of the width of the Gaussian density distribution around each
lattice point. The latter we fix by a free-energy minimization. As usual, the density
modulations are assumed to be non-overlapping [53, 56, 57, 91]. It turns out to be useful
to express the density modulations in their Fourier components ζ(q) [53],

ρ(r) = ρL


1 + η +

∑

{q}
ζ(q) exp(iq · r)


 (3.20)

with {q} the set of reciprocal lattice vectors of the fcc crystal, and η = (ρS − ρL)/ρL the
relative density jump across the crystallization transition. In the Gaussian approximation
to the density profile we have

ζ(q) = (1 + η) exp[−q2ε2/4]. (3.21)

Eq. (3.17) now simplifies to

∆ω = 1− (1 + η)[3/2 + ln ρL + 3/2 ln πε2] (3.22)

− η2 −
∑

{q}
ĝ(q)ζ2(q)− 1

kBT
(1 + η)(µS − µL)

− 1

2
η2Ĉ

(2)
L (0)− 1

2

∑

{q}
ζ(q)2Ĉ

(2)
L (|q|)− 1

6
η3Ĉ

(3)
L (0, 0).

The summation in Eq. (3.22) is over all reciprocal lattice vectors q.

In Eq. (3.22) we neglected four-body and higher-order correlation functions, and approxi-
mated the three-body one by its value at zero wave vector. It exactly obeys [53]

Ĉ
(3)
L (q, 0) =

∂Ĉ
(2)
L (q)

∂ρ
|ρ=ρL

. (3.23)

Only the zero-q part of Ĉ
(3)
L is included in Eq. (3.22), because Haymet [54] has shown

that, at least for hard spheres, the non-zero q contributions of Ĉ
(3)
L tend to cancel each

other out.

For a fixed value of the fusion parameter Γ, the free energy Eq. (3.22) is a function of
three quantities: the width ε of the density profile, and the mean densities ρS and ρL.
Conditions for phase coexistence are found by setting µL = µS in Eq. (3.22), minimizing
∆ω with respect to ε and η, and finding the value of ρL for which ∆ω = 0. This way
we ensure a balancing of the pressures of both phases, PL = PS, because in equilibrium
∆Ω = −V (PL − PS). We found the minimum of the function ∆ω using a standard quasi-
Newton algorithm from the NAG r© library (Mark 18, E04JYF). We used 5832 reciprocal
lattice vectors and varied ρL with a step length of 10−5 units. We verified that this is quite
sufficient to get a stable result for the minimum of ∆ω.
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Figure 3.2: Packing fractions of the co-existing melt and crystal phases of the Gaussian
model chains as a function of the fusion parameter Γ = lK/σ. The chain length is N = 100.
Also shown are the results for hard spheres (the HS limit N = 1, indicated by the dotted
line).

3.7 Results and discussion

We now present the results of our calculations. Figure 3.2 shows the calculated phase
diagram of the hard Gaussian chains for the case N = 100. Indicated is the (dimensionless)
packing fraction φ = πρσ3/6 at the melt-crystal phase coexistence as a function of the
fusion parameter Γ. For comparison we have also indicated the results for hard spheres
(N = 1). The figure clearly shows that in the limit Γ → ∞ the chains crystallize at the
same density as hard spheres do. From Eq. (3.22) we understand that the reason for this is
that all polymeric corrections become negligibly small in this regime, because these contain
a function which decays fast with increasing values of Γ. Indeed, neighboring beads along
a chain are then so far removed from each other on the crystal lattice that they no longer
feel the influence of the connectivity. Packing effects dominate in this regime.

Lowering Γ we observe that the solidification density goes up. In other words, it becomes
more difficult for the chains to crystallize. In fact, for Γ ≤ 3.25 a crystal phase is no
longer found for densities below close packing. The difficulty of crystallizing Gaussian
chains in the low-Γ range was in fact already observed by McCoy and co-workers, and
was attributed to the enormous amount of entropy stored in the melt [19]. Contrary to a
previous conclusion by van der Schoot [83], the results of Figure 3.2 seem to bear out this
conclusion.
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Figure 3.3: Packing fraction of the co-existing melt and crystal phases of Gaussian model
chains as a function of the chain lengths N . The fusion parameter was fixed at a value of
Γ = 3.5.

Shown in Figure 3.3 is the dependence on the length of the polymers of the densities at
phase coexistence, again for the Gaussian model at fixed Γ = 3.5. Apparently, φL and φS

quickly saturate with increasing degree of polymerization. Apparently, shorter chains are
easier to crystallize, in accord with experimental observation [1]. A possible cause of this
is that in our model calculations the configurational fluctuations and therefore also the
entropy of the chains in the melt increase with increasing N .

Figure 3.4 shows the dependence of the Lindemann ratio L on the fusion parameter Γ.
This ratio is defined as the root-mean-square deviation of the position of a particle from
its lattice site divided by the nearest-neighbor distance. It is usually thought that if the
Lindemann ratio of a crystal phase drops below about 0.1, this crystal melts [49]. The
value of Lindemann ratio saturates for the large Γ at L ≈ 0.063, what roughly corresponds
to the hard-sphere result [53]. For small Γ the densities at co-existence are higher, so one
would expect L to go down as there is less room for the beads to fluctuate around their
lattice sites.

Results for the Gaussian and freely-hinged models are compared in Figure 3.5. Both
models show a saturation of the crystallization density for large Γ, albeit that the results
for the freely-hinged model do exhibit a seemingly irregular oscillatory behavior that we
attribute to the effects of lattice frustration (explained in more details below)1. We found

1We have of course verified that numerical errors are not the cause of the oscillatory behaviour found
for the freely-hinged model, by varying the precision of integration, the number of the reciprocal lattice
vectors and the step of ρL.
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Figure 3.4: Lindemann ratio of the model polymer as a function of the segment fusion
parameter Γ ≡ lK/σ on the model polymer. The chain length is N = 100.

the crossover to hard-sphere-like behavior for the freely-hinged model to occur at much
larger Γ than for the Gaussian model. Note that both models predict the crystal phase to
become absolutely unstable below a critical value of Γ, 3.25 for the Gaussian model and
2.45 for the freely-hinged model. The oscillatory behavior of the freely-hinged model is
zoomed in the Figure 3.6, showing that the oscillations are not as erratic as they appear
in Figure 3.5. We have indications that this behavior is caused by the interference of the
properties of the crystal lattice and those of the polymeric chains. Indeed, if we rely on
the Verlet rule [92] to estimate the solidification density, which uses only information on
the structure of the melt, we retrieve the long-wavelength oscillations visible in the results
of Figure 3.6. (See also Figure 3.9.)

That lattice frustration effects become important for stiff bonds is shown in Figure 3.7. The
figure shows our results for the intermediate model for different values of the degree of bond
stiffness ξ. The transition in behavior between the floppy Gaussian and the completely
stiff freely-hinged models is clearly seen. For small ξ the bonds are stiff leading to a more
oscillatory dependence of the packing density at freezing on the fusion parameter Γ, whilst
for large-enough ξ it is smoother and Gaussian-like. The transition occurs roughly when
ξ ∼ ε, i.e., when root-mean-square deviation ξ is comparable to the width of the density
field around a lattice site.

That lattice frustration may cause the freezing density of freely-hinged hard-bead chains
with degree of bond stiffness ξ < ε to vary abruptly with varying Γ may be understood as
follows. The optimal lattice distance is obviously set by the density and by the hard-core
diameter σ. When the length of a bond does not fit the distance between two lattice points
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Figure 3.5: Packing fraction φ at freezing as a function of the fusion parameter Γ. Com-
pared are results obtained for the Gaussian model, and those for the freely-hinged model.
Also indicated are results for hard spheres (N = 1).
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Figure 3.6: Packing fraction φ at freezing, as a function of the fusion parameter Γ for
the freely-hinged model with a higher resolution than in the Figure 3.5. Also indicated are
results for hard spheres (N = 1).

and the bonds are very stiff, the system must crystallize at a higher or lower density, such
that the bond length does indeed become conjugate to the lattice constant (Figure 3.8). On
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Figure 3.7: Packing fraction φ at freezing as a function of the fusion parameter Γ. Com-
pared are results obtained for the intermediate model for the different value of degree of
the stiffness ξ. Also indicated are results for hard spheres (N = 1).

the other hand, ξ is large enough to allow for the bonds to stretch, a match accommodating
the lattice may be found without abruptly changing the lattice parameter too much.

Finally, in the last Figure 3.9 we demonstrate the usefulness of the phenomenological
Verlet rule [92], applied to polymer crystallization. According to this rule, the freezing
of simple liquids occurs for those conditions where the primary maximum of the static
structure factor of the fluid reaches the value of 2.85. Figure 3.9 shows that this remains
approximately true for our model polymers, although the rule’s accuracy does deteriorate
with decreasing values of Γ. We have no explanation for this. As already indicated, the
Verlet rule cannot reproduce the strongly oscillatory dependence of the freezing density on
the fusion parameter exhibited by the freely-hinged model, because it draws information
from the fluid structure, not the crystal structure.

3.8 Conclusion

In our density functional theory we found model chains consisting of hard beads to be able
to crystallize, but only if the effective Kuhn length exceeded the hard-core radius of the
beads by a sufficient amount. We attribute this to the circumstance that only then the
loss of configurational entropy upon freezing is sufficiently low to be compensated by the
increased packing entropy. The latter is the driving force for the formation of the crystal
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Figure 3.8: Illustration of the lattice frustration effect. When the length of the polymeric
bond lK is less than the distance between two neighboring lattice points in a close-packed
crystal, what is always the case when Γ = lK/σ ≤ d/σ ≈ 1, the system will find it very hard
to crystallize because it would have to stretch the bonds. When Γ ≥ 1, a different type of
lattice frustration takes over. If the bonds cannot (in the mean) find two sites conjugate to
their length, i.e., two sites separated by a multiple bond length, the system has to either
stretch or compress the bonds, or to adjust its density to change the lattice constant to the
point where it does become possible to fit in the bonds. In the freely-hinged model, the
bond length cannot be adjusted, only the density. The associated lattice-adjustment effect
leads to the seemingly erratic dependence of the crystal density on the fusion parameter
discussed in the main text.

phase. When the monomeric units of the model polymers are small on the scale of the
bonds, the behavior of the chains is hard-sphere-like. Connectivity then plays a minor role
in the crystallization of the polymeric chains. We observed that short chains crystallize
more easily than long ones, because the loss of configurational entropy upon freezing is
larger for long chains. This is not obvious, because in our model calculations the chains
remain random walkers (albeit on a lattice), and the orientational freezing is only weak
due to the lack of bond correlations.

We found lattice frustration to be important for models with sufficiently stiff bonds. This
effect could play an important role in the crystallization of real polymers too, because
ξ ∼ 0.01σ for realistic polymeric chain models often used in computer simulations [93]. It
may well be that lattice frustration effects are in part responsible for the host of crystal
lattice types observed for real polymers [1].

It seems likely that introducing a more realistic polymeric model, one that, e.g., exhibits a
finite bending energy, will stabilize the crystal phase over a larger range of bond lengths.
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Figure 3.9: Packing fraction φ at freezing according to the Verlet rule as a function of
the fusion parameter Γ = lK/σ.

This we investigate in future work, using the Green-function formalism rather then PRISM.
The reason is that the former can be more straightforwardly extended to include bond
correlations than the latter [83].

3.9 Appendix: PRISM and the Green-function for-

malism

Here we show the equivalence of the Green-function formalism and PRISM theory for
isotropic polymer models. For that purpose we switch on a position dependent external
potential φ(r), acting on each segment. The excess free energy appearing in Eq. (3.12)
can then be written as

Fexc = Fint + Fpot (3.24)

with Fpot =
∫

drρ(r)φ(r) the free energy associated with the coupling of the segments to
the external potential and Fint the free energy associated with the interactions between
the beads. Therefore, the full free energy becomes ( c.f. Eq. (3.12))

F =Fconf + Fint + Fpot. (3.25)
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Minimizing Eq. (3.25) we find, using Eq. (3.10) and the equality µ = δF/δρ (r), that the
self-consistent field obeys [94]

Uscf (r) = φ(r) +
δFint

δρ(r)
− µ, (3.26)

where we note that Uscf will be treated as an external field, although obviously it is not [83].
(Note also that F in Eq. (3.10) only becomes a functional of ρ after the minimization.)
We functionally expand the third term, assuming the external field to be sufficiently weak

δFint

δρ(r)
= − C(1)(r)−

∫
dr′′C(2)(r− r′′)

∫
dr′χ(r′′−r′)φ(r′) · · · , (3.27)

with C(1)(r) ≡ C(1) the zero-field one-particle direct correlation function (which is a con-
stant for the homogeneous systems), C(2)(r, r′) the zero-field two-particle direct correlation
function, and χ(r, r′) ≡ δρ (r) /δφ(r′) the response function that we later identify with the
structure factor. In Fourier space we thus find for weak fields

Ûscf (q) = φ̂(q)− µδ(q)− C(1)δ(q)− Ĉ(2)(q)χ̂(q)φ̂(q) + · · · (3.28)

The Yvon identity, which establishes the connection between the response of density
δ̂ρ(q) = ρ(q)− ρLδ(q) in Fourier space and the structure factor S(q), is given by

δ̂ρ(q) = χ̂(q)φ̂(q) = −ρLS(q)φ̂(q), (3.29)

with ρL the density in the absence of the field. If we switch off the interactions and
neglect the forward scattering associated with the delta peaks around q = 0 [22], the self-

consistent field in this case is simply Ûscf (q) = φ̂(q). We then find for the structure
factor S(q) = ω̂(q), with ω̂(q) the form factor of the single chain. In other words, for

non-interacting chains δ̂ρ(q) = −ρLω(q)φ̂(q). From Eq. (3.29) we immediately read off

that to get the response of the interacting system, we merely need to replace φ̂(q) by

φ̂(q)(1− Ĉ(2)(q)χ̂(q)) = φ̂(q)(1 + ρLĈ(2)(q)S(q)), so that

S(q) =
ω̂(q)

1− ρLĈ(2)(q)ω̂(q)
, (3.30)

which indeed is equivalent to the PRISM equation (3.13). Note the similarity of our
arguments with that of the standard random-phase approximation [94]. A more elaborate
derivation can be found in [83].

3.10 Appendix: Entropy of the crystal phase

In this appendix we derive the change in the configurational entropy of the chains up
on freezing, based upon the theory of Section 3. Since within our model freezing entails
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only processes at short wavelengths, it is justifiable to apply the so-called ground-state
approximation [86]. In this approximation the spectrum is assumed to be discrete, and non-
degenerate, so that one can order the eigenvalues Λ0 > Λ1 > Λ2 . . .. Only is retained the

first term of the formal expansion Z(r, r′) =
∞∑

n=0

ΛN
n ψ+

n ψn ∼ ΛN
0 ψ+

0 ψ0, with ψ+
n and ψn the

eigenfunctions of the non-Hermitian operator equations ĝe−Uscf ψn = Λnψn, ĝe−Uscf ψ+
n =

Λnψ+
n . It is easy to see that ψ+

n = eUscf (r)ψn [86]. As was argued in [83], the use of the
ground-state approximation is justifiable because the direct correlation function as well
as the self-consistent field are short ranged. Note that

∫
dr ψ+

m(r)ψn(r) = δn,m, i.e., the
eigenfunctions are normalized.

Multiplying both sides of the eigenvalue equation for ψ0 with ψ+
0 , and integrating over

space, we find for the largest eigenvalue

Λ0 =

∫
drψ0ĝψ0 (3.31)

because of the normalization of ψ0 and ψ+
0 . The free energy thus becomes

F = − ln

∫
dr

∫
dr′Z(r, r′; N) ∼ MN ln Λ0, (3.32)

where MN =
∫

drρ(r).

The eigenfunction in the very short wavelength limit can be obtained by recursive iteration,
assuming the operator e−Uscf (r)ĝ to represent a contraction mapping [95]. Although easy
to prove in the Banach space of normed scaling functions f(r/σ) in 3 spatial dimensions,
at least for lK/σ > 1, the general proof for arbitrary integrable functions f(r) has so far
evaded us2. We truncate the recursive iterations after two iterations, giving

ψ0(r) ∼= e−Uscf (r)ĝe−Uscf (r)

∫
dre−Uscf (r)(ĝe−Uscf (r))2

. (3.33)

Note that this expression obeys the normalization condition of the eigenfunctions. At
the level of the ground-state approximation, the following relation now holds between the
eigenfunctions and the density

ρ(r) = NMψ+
0 ψ0 (3.34)

= MNe−Uscf (r)(ĝe−Uscf (r))2/

∫
dre−Uscf (r)(ĝe−Uscf (r))2.

Reversely,
ψ0(r) =(MN)−1/2e−Uscf (r)/2ρ1/2(r) (3.35)

2It turns out that for the Gaussian trial functions we use to describe the crystal phase, the recursive
iteration converges very rapidly.
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so that

Uscf (r) = − ln ρ(r) + ln
NM(ĝρ(r))2

∫
drρ(r)(ĝρ)2

. (3.36)

The largest eigenvalue obeys:

Λ0 =
1

NM

∫
drρ(r)ĝρ(r′). (3.37)

Using the Lifshitz procedure [87] Eq.(3.10) we obtain

Fconf = MN ln Λ0 −
∫

dr ρ (r)

(
− ln ρ (r) + ln

NM(ĝρ)2

∫
drρ(r)(ĝρ)2

)
. (3.38)

Expansion of the density around the liquid state ρ(r) = ρL + ∆ρ(r), we find

Λ0 ' (MN)−1

∫
dr(ρ2

L + ∆ρ(r)ĝ∆ρ(r)) + · · · (3.39)

or equivalently,

ln Λ0 = ln ρL +
1

ρLV

∫
dr∆ρ(r)ĝ∆ρ(r) + · · ·

Neglecting the terms of higher than second order in ∆ρ, we get for the free energy of setting
up density modulations in a homogeneous melt

∆Fconf =

∫
drρ(r) ln ρ(r)−

∫
drρL ln ρL − 1

ρL

∫
dr∆ρ(r)ĝ∆ρ(r) + O(∆ρ3). (3.40)

For a homogeneous liquid, this expression becomes equal to zero as it should. Eq. (3.40)
is only valid at small length scales relative to the size of the chains.





Chapter 4

Density functional theory for the
elastic moduli of a model polymeric
solid

ABSTRACT

We apply a recently developed density functional theory (DFT) for freely-
hinged, hard polymeric chains to calculate the elastic moduli of an idealized
polymeric solid lacking long-range bond order. We find that for such a model
packing effects dominate the elastic behavior of the polymeric solid in a similar
way as is the case in the hard-sphere crystal, which we re-examine. Our calcu-
lations show that the elastic stiffness of the model polymeric solid is essentially
determined by how far one is removed from its melting point. The main role
of the chain connectivity is to destabilize the solid relative to the equivalent
solid of hard monomers. Comparison of our results with experimental data on
semicrystalline polymers shows order-of-magnitude agreement.

4.1 Introduction

Considering the enormous technological and economic impact solid-state polymers have as
construction materials, it is not entirely surprising that a considerable effort is being put
into understanding the nature of the elastic behavior of polymeric solids. Scientifically the
issue is also of some interest, as the elastic behavior is presumably closely connected with
the complex (and often nonequilibrium) structure of the polymeric solid. Focusing our dis-
cussion on equilibrium theoretical studies of the elastic moduli of polymers, approaches of
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various levels of sophistication can be distinguished. The simplest treat the solid as consist-
ing of non-interacting, fully extended chains. More realistic treatments include interactions
between neighboring chains within a force-field approximation. The most sophisticated but
not necessarily the most accurate calculations rely on quantum-mechanical density func-
tional theory. Before presenting an alternative to these approaches, representing a for
polymers novel microscopic description of the elasticity of the solid phase, we first briefly
discuss the conventional methods.

Treloar [96] considered the intrinsic elastic properties of individual, single chains, and found
for the stiffness of a model solid of extended polyethylene chains in terms of the Young
modulus a value of 182 GPa. This is quite close to the experimental values of 100 − 150
GPa found for highly stretched polyethylene fibres (such as Dyneema r©) [97]. On the other
hand, experimental values for so-called isotropic samples of polyethylene are typically less
than 2 GPa. Clearly, other mechanisms than pure chain stretching need to be involved,
at least for unstretched, partially crystallized samples. As is well-known, the degree of
crystallinity for most solid polymeric materials is below 90% [1]. In these materials the
chains are rarely fully extended, but are packed into folded structures; presumably the
entanglements between the polymeric chains present in the melt are in some way frozen in
upon solidification, and form glass-like solid regions throughout the sample.

Tashiro et al. [98, 99, 100] calculated the elastic moduli of chemically realistic polymeric
solids beyond the single-chain approach using the force-field technique, in which a test
chain is deformed in the presence of the force field from the neighboring chains that interact
with this test chain. They assumed the crystal structure to be ideal, with the chains in the
crystal fully stretched. The crystal densities obtained from the calculations are within 5%
of the experimental values, and good agreement with experimental values of the Young’s
modulus of (stretched samples of) polyethylene, aromatic polyamides, poly-p-benzamide,
and other crystalline polymers were obtained along the chain direction in the crystal, and
somewhat less good perpendicular to that (but still of the same order of magnitude).

Finally, there are the quantum-mechanical studies of the elastic moduli of (again perfectly
ordered) polymeric solids of, e.g., crystalline polyethylene, and the novel rigid-rod polymer
PIPD, based on quantum-mechanical density functional theory [101, 102]. The predictions
of these (highly involved, “parameter-free”) calculations are quite reasonable when it comes
to the Young’s modulus along the chain direction, but fail for the bulk modulus with
predictions that are several times larger than results known from experiment [101]. This is
indicative of an incorrect description of interchain interactions. We further note that the
crystal density used, e.g., in reference [102], enter their calculations not self-consistently,
but were put in by hand.

Apart from not considering the disordered regions typical of most crystalline polymers, all
approaches mentioned so far either seriously underestimate or even completely ignore the
role of entropy, although long ago Flory pointed out the importance of entropy in stabilizing
a polymer crystal [17]. It is furthermore well established that for simple liquids entropic
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packing-effects dominate the microscopic structure of the system, and the same appears
to be true for polymers [19]. Thus, despite that the precise point of crystallization may
(in reality) be determined by enthalpic effects, the structure of the solid phase is probably
still entropy dominated. Note that hard-core models (in which entropy predominates) have
been applied reasonably successfully in studies of the crystallization of colloidal particles
and model atoms [103].

Here, we study the generic features of polymer elasticity and the role of packing effects
by relying on model polymers with hard-core interactions between the beads. We apply
classical liquid-state density functional theory (DFT) to calculate the elastic moduli of
idealized polymeric crystals described in more detail below. Polymeric fluids have been
studied using density functional methods in various contexts before. Perhaps the most
relevant to the problem in hand is the work of McCoy and co-workers [19], which is an
application of polyatomic DFT to chemically realistic polymeric systems. Our approach
differs from that of McCoy and coworkers in that information about the connectivity not
only enters through the direct correlation function of the polymers in the melt, but also
through the contribution of polymeric corrections to the free energy of the crystal.

There are essentially four types of DFT for simple liquids [62]. The first relies on a
thermodynamic perturbation expansion around a liquid state, i.e., the thermodynamic
properties of the solid are computed by means of a formal expansion around those of
the liquid. This theory was developed by Ramkrishnan and Yussouff (RY) [52], and is
straightforward to implement, i.e., is computationally convenient. The second type of
DFT applies a so-called weighted-density approximation (WDA) [59] in which the solid is
treated as an inhomogeneous liquid. The third type of DFT involves an effective-liquid
approximation (ELA) [61], which is a modification of the weighted-density approximation.
The difference between WDA and ELA is rather technical and lies in the description of
the crystal density in the excess free energy. The fourth type of DFT is the fundamental
measure theory (FMT) developed by Rosenfeld [63], and later modified by Tarazona [64],
which relies on functional interpolation between the zero-dimension limit for the excess
free energy and the one of 3D bulk.

The latter three approaches are generally taken to be superior to the former, but are
much more involved to implement for fluids of model polymers than for fluids of spherical
particles. This in fact is the reason why we developed a polymeric version of the RY DFT
in Chapter 3. Despite that WDA (or the more accurate “modified WDA”) and ELA give
much better prediction for the elastic moduli of hard spheres, we show here that a RY-type
theory is not as crude as is often thought [61, 71]. Taking into consideration the highly
approximate nature of our model polymers, we argue that for our purposes this method
is sufficiently accurate1. The advantage of the RY DFT is that it is easily extended to

1We feel that the modified WDA method applied to our problem is unlikely to produce a better
agreement. The reason is that it relies on the input of an equation of state for long polymers, obtainable,
e.g., from PRISM, that is not as accurately known as that for monomers.
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describe polymeric solids. At this point we contend with a qualitative analysis of the
problem.

The method we follow to calculate the elastic moduli from the RY-type DFT is closely con-
nected to the one advanced by Jarić and Mohanty [68], and by Jones [104], for hard spheres.
Unfortunately, the results obtained by these authors for hard spheres are qualitatively in-
correct. Not only do they obtain a negative Poisson ratio, which for most materials and
in particular for hard-sphere solid is unphysical, their values of the various elastic moduli
also differ significantly from ones obtained by means of computer simulations [67]. Jarić
and Mohanty suggested that adding in the excess free energy functional terms higher than
second order in the density inhomogeneities [53, 54] could improve these results [105]. We
show here that these terms are indeed significant, and that a significant improvement over
the original theory is possible. In addition we show that restricting the number of recipro-
cal lattice vectors used in calculations below a certain minimum can drastically affect the
final results.

Our results for hard, polymeric chains indicate that in the hypothetical case where the
bond order is completely suppressed, the role of chain connectivity is relatively small, and
that interactions between the monomeric units dominate the elastic behavior of the solid
phase. Connectivity merely changes the density at which the melt-solid phase transition
takes place [106], and affects the elastic moduli by influencing the stability of the solid
phase. For polymer models with stiff bonds that are less extensible or compressible, we
expect that lattice frustration effects, which we found in a previous study [106], influence
the elastic moduli. As we shall see, this turns out to be so.

The remainder of this chapter is organized as follows. In Section 2 we first present our
model polymeric solid, and briefly discuss the main principles of our polymeric DFT. For
more details the reader is referred to Chapter 3. The formal expressions for the elastic
moduli from the density functional theory are given in Section 3. They differ from those
previously derived for hard spheres [105] in that they contain an explicit dependence on
the bonded interaction between the monomeric subunits of the polymers. In Section 4 we
describe the calculation technique in detail, and show that the results for the simple case
of hard spheres are in good agreement with the computer simulations [67], and improve
upon the predictions of Jarić and Mohanty. The results for hard-chain crystals are given in
Section 5. We find that the direct influence of the polymeric connectivity on the values of
the elastic moduli is minor. The chain connectivity affects the values of the elastic moduli
indirectly by changing the freezing density of the polymeric solid. We compare our results
with the elastic moduli for real polymeric materials and find a surprisingly good agreement.
The conclusions are presented in Section 6.
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Figure 4.1: Step probability for two limiting cases of the polymer model under consid-
eration: a standard Gaussian chain model with ξ/l >> 1 and a freely-hinged model with
ξ/l << 1, at fixed Kuhn length lK .

4.2 Density functional theory of a model polymeric

solid

The model polymers we consider are freely-hinged chains with an adjustable bond stiffness.
Let g(r, r′) denote the probability that a bond that starts at position r′ ends at r. The
following bond probability interpolates between the standard Gaussian and Kuhn models
[106]

g(r, r′) =

√
6

8π3/2ξ|r− r′|l
(

exp

[
−3(|r− r′| − l)2

2ξ2

]
− exp

[
−3(|r− r′|+ l)2

2ξ2

])
, (4.1)

where l is a mean length of the bonds, and ξ is a root-mean-square deviation to that. The
effective Kuhn length lK of the model depends on l and ξ via the relation lK =

√
l2 + ξ2

[106]. As illustrated in Figure 4.1, our model behaves like a freely-hinged chain model for
ξ << l with fixed bond length lK = l, whilst for ξ >> l it becomes equivalent to the
Gaussian-chain model with a root-mean-square bond extension lK = ξ.

The model polymers are assumed to interact via an isotropic volume exclusion between
the beads, which are thought to “live” on a face-centered cubic (fcc) lattice. As argued
elsewhere, the only crystal consistent with a freely-hinged-polymer model consisting of
isotropic interaction sites, is one where the (phantom) bonds do not display any long-
range order. Hence, in our description of the solid the polymers remain random walkers
confined to an fcc lattice. (In the reference melt they are random walkers too, but in free,
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continuous space.) We restrict our calculations of the elastic moduli to the fcc crystal, for
it is the only stable structure among the set of all cubic lattices for the polymer model
introduced above [106].

For reasons of computational convenience, the density distribution ρ(r) of the material in
the crystalline solid phase is often described by a lattice sum of narrow Gaussians. We,
too, invoke this approximation, and write for the local segment density [68, 104]

ρ(r) =
ρS

Ncπ3/2 detM1/2

∑

{R}
exp

[−(R− r) · (A ·M ·A†)−1 · (R− r)
]
, (4.2)

where {R} indicates the set of all the real-space crystal-lattice vectors, M a matrix describ-
ing the width of the Gaussian density profiles, A the lattice-constant matrix with A† its
transpose, Nc the number of sites per unit cell, and ρS the average segment density of the
crystal. In the strained crystal the Gaussian density profiles are assumed to be isotropic,
which seems to be an accurate approximation [68]. We do not allow for the presence of
vacancies, so

ρS = Nc detA−1. (4.3)

In the case of cubic symmetry the density profiles are locally isotropic, so [68]

Mij = αδij, Aij = aδij (4.4)

with α the (dimensionless) square width of the local density profile, measured in units of
the lattice constant a. Note that for the fcc lattice Nc = 4. In our calculations of the elastic
moduli we rely on a description in terms of the reciprocal lattice vectors, which we now
define. The reciprocal lattice matrix describing these vectors is given by

B = 2π(A†)−1, (4.5)

which for the case of cubic symmetry simplifies to

Bij = bδij (4.6)

with b the reciprocal-lattice constant for the fcc lattice.

In a previous chapter we advanced a density functional theory for the polymeric crystal
[106], based on an expansion around the liquid or molten state. The grand potential ∆Ω
of the crystal relative to that of the melt was found to read

1

kBT

∆Ω

ρLV
≡ ∆ω =

1

ρLV

∫
drρ(r) ln ρ(r)/ρL (4.7)

− 1

ρ2
LV

∫
dr′g(|r− r′|)[ρ(r)− ρS][ρ(r′)− ρS]

− 1

ρLV

∞∑
p=2

1

p!

∫
...

∫
C(p)(r1, ..., rp)

p∏
i=1

dri(ρ(ri)− ρL)

− 1

kBT
(µS − µL)

1

ρLV

∫
drρ(r)− 1

ρLV

∫
dr(ρ(r)− ρL),
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where for the density distribution ρ(r) we insert the Gaussian profiles Eq. (4.2). Here,
T denotes the temperature, kB Bolzmann’s constant, V the volume of the system, µS the
chemical potential of the solid and µL that of the liquid reference phase, and ρS and ρL the
segment densities of respectively the solid and liquid state. C(p)(r1, ..., rp) is the p-particle
direct correlation function of the liquid reference state, which we calculate with the aid of
the polymeric reference interaction site model (so-called PRISM) [22], which we derived
from an amalgamation of the Lifshitz theory of polymers and the theory of simple liquids
[83, 106]. To this end we invoke the usual Percus-Yevick (PY) closure [22], mimicking a
hard-core interaction between the beads.

The range of the hard-core interactions we denote by σ allows us to define the so-called
fusion parameter Γ ≡ lK/σ, measuring the strength of the coupling between the chain
connectivity and the effective interactions between the beads. Note that chain connectivity
enters our description through the second term of Eq. (4.7), as well as via the direct
correlation functions in the third term2. The second term is accurate only at length scales
small compared to the size of the chains. This is one of the reasons why the long-range
bond order cannot be established within our model description. (See also the discussion
in Chapter 3.)

It is convenient to rewrite Eq.(4.7) in terms of a Fourier representation of the density
distribution Eq. (4.2),

ρ(r) = ρL


1 + η +

∑

{q}
ζ(q) exp(iq · r)


 (4.8)

with {q} the set of the reciprocal lattice vectors of the fcc lattice, η = (ρS − ρL)/ρL the
dimensionless density jump across the crystallization transition, and

ζ(q) = (1 + η) exp

[
−1

4
q ·A ·M ·A† · q

]
. (4.9)

Inserting Eq. (4.8) into Eq. (4.7), and truncating the sum containing the direct correlation
functions after the third term, we get an expression for the grand potential,

∆ω = 1− (1 + η)

(
5/2 + ln

Ncπ
3/2α3/2

(1 + η)
− 1

kBT
(µS − µL)

)
(4.10)

−
∑

{q}
ĝ(q)ζ2(q)− 1

2
η2ρLĈ

(2)
L (0)− 1

2
ρL

∑

{q}
ζ2(q)Ĉ

(2)
L (|q|)

− 1

6
η3ρ2

LĈ
(3)
L (0, 0),

2Note that in the density differences in the connectivity correction term, ρS should be used instead of
ρL, however the difference turns out to be negligible in comparison with our previous calculations [106].
This is because we are interested in the polymeric correction in the crystal, and the solid density should
be used as the reference density in this case.
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which we minimize with respect to the liquid density ρL, the parameter η and also the
width of the density profile α3. In our density functional we include only the zero-q part
of the three-body direct correlation function [53]

Ĉ
(3)
L (q, 0) =

∂Ĉ
(2)
L (q)

∂ρ
|ρ=ρL

, (4.11)

since only this term is believed to contribute significantly to the elastic moduli [105].
Higher order terms are usually deemed to be unimportant, although not much is known
about whether this is true or not [53, 54].

The minimization of Eq. (4.10) was done by a standard quasi-Newton algorithm from the
NAG r© library (Mark 18, E04JYF). The number of reciprocal lattice vectors {q} needed to
accurately describe the crystal phase was determined empirically (see Section 4). The con-
ditions for coexistence between liquid and solid phases are found by equating the pressures
and chemical potentials in both phases. In other words, we set ∆ω = −∆P/kBTρL = 0
and µS −µL = 0 in Eq. (4.7) to ensure phase coexistence, with ∆P the pressure difference
in both phases.

In the next section we describe how the elastic moduli can be calculated from the density
functional Eq. (4.10).

4.3 Elastic moduli from density functional theory

To calculate the elastic moduli of our polymer crystal, we use the method proposed for
hard-sphere crystals by Jarić and Mohanty [68], and adapt it to our needs. We use the
usual Einstein convention for the summation of the tensorial components, so Hooke’s law
may be written as

dσij = Cijkldεkl (4.12)

with σij the components of the stress tensor, εij the components of the strain tensor and
Cijkl the components of isothermal elastic modulus tensor (i, j = 1, 2, 3). The stress tensor
is the first derivative of the Helmholtz free energy F of a deformed crystal with respect
to the strain εij in the limit of zero strain, σij = V −1∂F/∂εij|ε=0 . Jarić and Mohanty [68]
showed that

Cijkl =
1

V

∂2F

∂εij∂εkl

|ε=0 + P [δijδkl − 1

2
(δikδjl + δjkδil)] (4.13)

with again P the external pressure and V the volume of the system. Eq. (4.13) may be
obtained in an isothermal isobaric ensemble by formally expanding the elastic Gibbs free

3Note that our functional differs from the analogous one in [106] by factor η2 because of a substitution
of ρS by ρL in the second term in Eq. (4.7), which is negligibly small and does not affect the results of
our calculations.
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energy Gel for small strain, defined by [68]

Gel = (Fε − F ) + P (Vε − V ) =
V

2
εijCijklεkl + . . . , (4.14)

where we drop all terms of higher than second order in the strain, Cijkl is the second
derivative of the elastic Gibbs free energy in respect of the components of strain tensor,
and Fε is the Helmholtz free energy and Vε the volume, conditions under deformation as
indicated by the subscript ε.

Since our DFT is most conveniently expressed in the grand canonical ensemble, we seek
to represent the elastic Gibbs free energy Gel in term of the grand potential ∆Ω, which
is defined relative to a liquid reference phase. Note that in the thermodynamic limit
Ωε = Fε − µεn and Ω = F − µn, and that the number of segments n in both the strained
and unstrained crystals remains invariant under the deformation. Because we assume strain
ε to be small, we expand to second order in ε the volume Vε, the chemical potential µε,
and the Helmholtz free energy Fε. We identify the work done on the liquid reference phase
against the deformation under the pressure PL as Ωε,L − ΩL = −PL(Vε − V ). Adding and
substracting the term PL(Vε−V ) to Eq. (4.14), and taking into account the expansions of
Vε, µε, and Fε in ε, we finally get [68]

Gel = ∆Ωε + Vε(P − PL). (4.15)

For the unstrained system the grand potential ∆Ω = kBTρLV ∆ω is given by Eq. (4.10).
To obtain the free energy of the strained solid, we follow Jarić and Mohanty and assume
the microscopic strain ζ and the macroscopic strain ε to be equal, ζ = ε (see the arguments
and discussion in [68]). These strains are generally thought to be different, and in fact to
depend on the type of deformation [107]. At this point we ignore the issue, and discuss
the effect of the non-equality of the microscopic and macroscopic strains in Section 4. The
strained Gaussian width tensor Mε of the density profiles differs from the unstrained tensor
M by an amount ∆M = Mε−M, because of the nonaffine character of deformation below
the unit-cell (Cauchy) scale [68, 104]. For the case of cubic symmetry we have Mε,ij = αεδij

and ∆Mij=∆αδij with ∆α = αε − α.

We expand the expression for the elastic free energy around the unstrained state in terms of
the strains ε, ζ, ∆M. Obviously, the zero- and first-order terms vanish (see again Jarić and
Mohanty [68] for more details), hence only second order terms are important. We compute
the elastic moduli from these quadratic terms using the results of the minimization of Eq.
(4.7) for the unstrained case. We allow for the relaxation of the density profiles under the
strain [104], implying that we need to minimize the functional Eq. (4.7) twice. The first
minimization is with respect to the density of the reference liquid ρL, the relative density
of the crystal η, and the equilibrium density profile width α. The second minimization is
with respect to the variational parameter ∆α.
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We thus arrive at the following variational form for the elastic energy Gel

Gel =
V

2
ε : C : ε =

V

2
εijCijklεkl = (4.16)

min
∆M

V

2
[ε : Cεε : ε + 2∆M : Cαε : ε + ∆M : Cαα : ∆M],

where min
∆M

denotes a minimization with respect to the components of the tensor ∆M. We

used following definitions for the tensors

Cεε = Cεε + Cεζ + Cζε + Cζζ (4.17)

Cεα = Cαε + Cαζ (4.18)

Cαα = Cαα. (4.19)

The tensorial blocks of the elastic modulus tensor can be expressed in terms of the com-
ponents Bij of the reciprocal lattice matrix B defined in Eq. (4.5) as [68]

Cεε
ijkl = δijδklkBTρL(η + 1)2∂2∆ω

∂η2
(4.20)

Cεζ
ijkl = Cζε

ijkl =
1

2
δijkBTρL(η + 1)

[
∂2∆ω

∂η∂Bkp

Blp +
∂2∆ω

∂η∂Blp

Bkp

]

Cεα
ijkl = Cαζ

ijkl = −δijkBTρL(η + 1)
∂2∆ω

∂η∂Mkl

(4.21)

Cζζ
ijkl =

1

4
kBTρL[

∂2∆ω

∂Bip∂Bkq

BjpBlq +
∂2∆ω

∂Bip∂Bkq

BjpBlq (4.22)

+
∂2∆ω

∂Bip∂Blp

BjpBkq +
∂2∆ω

∂Bjp∂Blq

BipBkq]

Cζα
ijkl = Cαζ

ijkl =
1

2
kBTρL

[
∂2∆ω

∂Bip∂Mkl

Bjp +
∂2∆ω

∂Bjp∂Mkl

Bip

]
(4.23)

Cαα
ijkl = kBTρL

∂2∆ω

∂Mij∂Mkl

. (4.24)

The result of the minimization of Eq. (4.16) is the elastic modulus tensor

C = Cεε −Cεα : (Cαα)−1 : Cαε. (4.25)

Since the elastic moduli tensor can be symmetrized for the fcc lattice, there are only
three independent elastic moduli C11, C12, C44 (in the standard Voigt notation). In the
Voigt notation the coefficients are transformed according to the rules 11 → 1, 22 → 2,
23 = 32 → 4, etc., so C1122 → C12 and so on [108].
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In our actual calculations we rely on dimensionless quantities, such as the dimensionless
segment density ρ̃ ≡ ρσ3, the dimensionless real lattice constants ã ≡ a/σ, the dimension-

less reciprocal lattice constants b̃ ≡ b/σ, and the dimensionless root-mean-square variation

of the bond length ξ̃ = ξ/σ, where σ denotes as before the effective diameter of the beads.

The dimensionless moduli C̃ijkl are defined as

C̃ijkl =
1

kBT ρ̃L

Cijklσ
3. (4.26)

In the next section we discuss the details of our calculations.

4.4 Calculation method

Performing the differentiations of equations (4.20 - 4.24), and using Eq. (4.10), we obtain
the following expression for the elastic moduli of our model polymeric solid

C̃εε
ijkl = δijδkl

{
(η + 1)− (η + 1)2ρLĈ

(2)
L (0) (4.27)

− ρL

∑

{q}
Ĉ

(2)
L (|q|)ζ2(q)− η(η + 1)2ρ2

LĈ
(3)
L (0, 0)

− 2

(η + 1)2

∑

{q}
ĝ(q)ζ2(q)





− 1

2
ρL

∑

{q}

[
Ĉ ′′(2)

L (|q|)
|q|2 − Ĉ ′(2)

L (|q|)
|q|3

]
ζ2(q)qiqjqkql

−
∑

{q}

[
ĝ′′(q)

|q|2 − ĝ′(q)

|q|3
]

ζ2(q)qiqjqkql

C̃εα
ijkl = −(η + 1)

2α
δijδkl − 1

4
a2ρL

∑

{q}

Ĉ ′(2)
L (|q|)
|q| ζ2(q)qiqjqkql (4.28)

− a2

2(η + 1)

∑

{q}

ĝ′(q)

|q| ζ2(q)qiqjqkql

C̃αα
ijkl =

(η + 1)

4α2
(δikδjl + δilδjk)− 1

8
a4ρL

∑

{q}
Ĉ

(2)
L (|q|)ζ2(q)qiqjqkql (4.29)

− a4

4(η + 1)2

∑

{q}
ĝ(q)ζ2(q)qiqjqkql.
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Here, the primed symbols indicate the derivatives with respect to |q|. The contribution
from the chain connectivity enters these expressions directly in terms that contain the
Fourier transform of the step operator ĝ, and indirectly via the contribution of the direct
correlation function Ĉ

(2)
L . Note that in the polymer density functional theory proposed by

McCoy et al.[19], connectivity would be included only via the direct correlation function
of the melt obtained by PRISM. It turns out, however, that for our model, which lacks
any long-range bond order, the contribution from the terms containing the step operator
ĝ are relatively small, representing 2− 3% of the actual values of the elastic moduli for all
models. One would expect these to become more important if long-range bond ordering
does takes place.

To calculate the elastic moduli from Eqs. (4.27 - 4.29), we use the results of minimization
of Eq. 4.10 for α, η and ρL, and those of the second minimization for ∆α, with the new
density profile width ∆α+α. We perform the summations over the reciprocal space in Eqs.
(4.27 - 4.29) numerically. In passing, we note that the body-centered cubic (bcc) lattice
is the reciprocal lattice to the fcc lattice. It is straightforward to calculate the reciprocal
vectors of fcc lattice for the whole space using its general definition. Using the results of
Eqs. (4.27 - 4.29), and with help of Eq. (4.25), we calculate the elastic moduli C̃11, C̃12,

C̃44 for the fcc lattice.

To show that the calculation method we employ should produce quite reasonable results,
we first apply it to the hard-sphere problem. Eqs. (4.16 - 4.29) can be applied to hard

spheres or monomers by setting ĝ = ĝ′ = ĝ′′ = 0 and using for C
(2)
L the known results from

the PY closure [68]. It is useful to recall in this context that Jarić and Mohanty [68], and
Jones [104], using the same type of DFT we use, obtained negative and therefore physically
incorrect results for the so-called Poisson ratio (defined below). In reply to strong criticism
of Frenkel and Ladd [67], provoked not only by the negative Poisson ratio, but also by a
poor agreement of the theoretical moduli with results from the computer simulations, Jarić
and Mohanty [105] suggested that inclusion of the three-body direct correlation function
Eq. (4.11) should increase the accuracy of the elastic moduli. This indeed is the reason
why we have included this term in our excess free energy Eq. (4.10).

Another important aspect of the calculation of the elastic moduli is the number of reciprocal
vectors included in the sums of Eqs. (4.27 - 4.29), which in the calculation of Jarić and
Mohanty may have been not sufficiently large [53]. Beforehand it is unclear how many
of those need to be included in the calculations to obtain accurate values of the elastic
moduli. To test this, we present in Figure 4.2 the (dimensionless) elastic moduli of the
solid phase as a function of the number of reciprocal lattice vectors included in the sums
of Eqs. (4.27 - 4.29). Results are shown for hard monomers at a density of ρ̃S = 1.12, and
for model polymers (with ξ/l >> 1, N = 100, Γ = 3.7) at a density of ρ̃S = 1.14, which in
fact are the densities below which the solid melts. From the figure we conclude that the
values of the moduli only level off when the number of reciprocal vectors included in the
calculations exceeds approximately 20000 for both monomers and polymers. This value
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Figure 4.2: Dependence of the dimensionless elastic moduli C̃11, C̃12, C̃44 on the number
of reciprocal lattice vectors n used in the summation in Eqs. (4.27-4.29) for the hard-sphere
crystal at ρ̃S = 1.12 (solid symbols), and for a polymeric crystal with Γ = 3.7, ρ̃S = 1.14
and N = 100 (open symbols). The values of the moduli level off for n > 20000.

we use in the calculations discussed next. (We need to sum over only 5832 vectors to get
saturated values of α, η and ρL in our minimization of Eq. (4.10).)

As regards the relaxing of the crystal under strain, we observe that although typical values
of ∆α are two to three order of magnitude smaller than α, the impact on the values of
the elastic moduli is quite significant. Indeed, the moduli are typically smaller by a factor
4 for C̃11 and by a factor of 7 for C̃12 after the relaxation (i.e., the second minimization

as explained in the previous section), but not the shear modulus C̃44, which remains the
same within the precision of the calculation. In all our figures we show the values of elastic
moduli after the relaxation.

In Figure 4.3 we compare our results for the hard-sphere fcc crystal with values obtained
from molecular dynamics (MD) simulations [67]. Results of both methods indicate in-
creasing moduli with increasing density, connected with the concomitant decreasing of the
free volume available to the monomeric units. The agreement between MD and DFT is
quite satisfactory, albeit far from perfect. This is especially true for C̃44, which is the only
directly accessible experimentally modulus. Whilst for all moduli the agreement between
DFT and MD is fairly close to the freezing density, it deteriorates with increasing den-
sity. This, of course, is to be expected, and is connected with the expansion around the
liquid reference state. Also shown are the results corrected for the assumption that the
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macroscopic and microscopic strains are equal, which is exact only at zero initial stress.
Corrections were made following Wallace [107]. For cubic crystals the solid pressure PS

needs to be added to the moduli C11 and C44 in order to correct them, whilst C12 remains
unchanged. We estimated the pressure PS from the relation PS = PL +∆P , where we use
the Carnahan-Starling equation of state to obtain the pressure of liquid state PL and the
results of minimization of Eq. (4.7) for ∆P . The corrections do not improve our results,
but rather make the comparison slightly worse, especially for the low-density regime below
the crystallization point.

Contrary to Jarić and Mohanty [68], we do obtain a positive Poisson ratio ν ≡ (C12 +

PS)/(C11 +C12) = (C̃12 +PSσ3/kBT )/(C̃11 + C̃12). (The contribution of the pressure PS to
the Poisson ratio, estimated from the Carnahan-Starling equation of state and the results
of minimization of Eq. (4.7), turns out rather small, of order 10%, even if we use corrected
values for the elastic moduli.) A comparison of our DFT results for the Poisson ratio, and
those of Frenkel’s MD simulations is shown in Figure 4.4. Except for the highest density
tested, our values are somewhat lower than those obtained by computer simulation [67].
We note that for most true solids, ν has a value between 1/4 and 1/3, implying a decrease
in volume under tension. Our values of Poisson ratio are in this range.

In Figure 4.4 we have also given a comparison of the DFT and MD results for the bulk
modulus B ≡ (C11 + 2C12 + PS)/3 and the Young’s modulus E ≡ 9BC44/(3B + C44), or

rather their dimensionless counter parts B̃ = Bσ3/kBT ρ̃L and Ẽ = Eσ3/kBT ρ̃L. Again
we observe good agreement at low densities, and less good agreement at higher densities.

A simple estimate of the Young’s modulus may be obtained directly from the properties
of the crystal phase, using its definition as the ratio of tensile stress and strain. In our
DFT we assume the density distribution to be Gaussian with width α. Hence, the effective
potential each bead experiences around each site is harmonic, implying a force constant
equal to 2kBT/αa2. We thus find that the Young’s modulus must be proportional to 1/αa3,
or in terms of the solid density ρS, and the Lindemann ratio L =

√
α, as E ∼ kBTρS/L2.

Recall that the Lindemann ratio is defined as the root-mean-square deviation of the position
of a particle from its lattice site, divided by the nearest-neighbor distance. In Figure 4.4
we have plotted this estimate for E, using values of α and a obtained from DFT, proving
it to be remarkably accurate when compared with the simulations, except again at the
highest densities.

From the above we conclude that the method that we apply is reasonably accurate in
the vicinity of the crystal freezing point of hard monomers, and that it should equally be
suitable for the study of hard model polymers.
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Figure 4.3: Density functional theoretical (DFT) results for the elastic moduli of the
hard-sphere crystal as a function of reduced hard-sphere crystal density ρS/ρCP , where
ρ̃CP = 1.422 is the (dimensionless) density of the close-packed crystal. Also indicated are
the results of molecular dynamics (MD) simulations of Frenkel and Ladd [67]. and our
corrected DFT results for the elastic moduli (see the main text).
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Figure 4.4: The Poisson ratio ν bulk modulus B̃ and Young’s modulus Ẽ as a function of
reduced hard-sphere crystal density ρS/ρCP , where ρCP is the density of the close-packed
crystal. The results of the DFT and of the molecular dynamics simulations of [67] are
shown, as well as an estimate for the Young’s modulus, discussed in the main text.

4.5 Results and discussion

We now describe the results we obtained for the model polymers, focusing on the depen-
dence of the elastic moduli on the various system parameters. Results are presented for the
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cases where: i) the fusion parameter Γ varies at fixed density ρS and degree of polymeriza-
tion N , ii) the density varies at fixed fusion parameter, iii) the degree of the polymerization
of the chains varies at fixed density and fusion parameter, and iv) the fusion parameter
and segment density vary along the freezing line at fixed degree of the polymerization.
In addition, we show how the presence of bonds between the beads influences the elastic
response of the crystalline phase. As we shall see, the values of the elastic constants are
primarily a function of how far one is removed from the melting point of the crystal.

Figure 4.5 shows how the (dimensionless) elastic moduli depend on the fusion parameter
Γ for Gaussian-like chains of 100 monomeric units at a fixed density of the crystal of
ρ̃S = 1.14. (Results are shown for the limit ξ/l >> 1.) We find that the values of the
moduli increase monotonically with Γ, levelling off in the large-Γ regime. The reason for
such a behavior is that by increasing the fusion parameter at fixed density, we move away
from the equilibrium melting density, and in a way venture more deeply into the crystal
phase (see also Figure 3.2 of Chapter 3). For large Γ the freezing density of the polymeric
solid approaches a constant value with Γ, identical to the freezing density of hard spheres.
This is caused by the dominance of packing effects in this regime [106]. We check the
corrections to the elastic moduli for a non-zero initial stress for a number of selected values
of the fusion parameter between 3.7 and 10 under condition of phase coexistence, using the
pressure calculated from the virial and compressibility routes obtained from the PRISM
formalism [109]. We calculated the pressure in a similar way as has been done for hard
spheres to reproduce the Carnahan-Starling equation. The pressure is estimated as the
sum of 2/3 of pressure obtained via the compressibility route and 1/3 of that obtained
via the virial route. Corrected values were within 10 to 15% of the results for zero stress.
In further calculations we do not use these corrections, because of their relatively small
effect and the approximate nature of our polymeric models. (Another reason is that the
calculations are computationally demanding.)

Now we fix the fusion parameter and investigate the influence of an increase in density on
the elastic moduli. In Figure 4.6 we have plotted the elastic moduli again for the Gaussian
limit of our model, ξ/l >> 1, as a function of the ratio of the density ρS of the polymeric
solid and that of a crystal phase at the freezing point ρc

S for fixed Γ = 3.7 and N = 100.
For comparison also shown are our results for the hard-sphere crystal with N = 1. For
both monomers and polymers, the elastic moduli become larger with increasing density,
which we attribute to a reduction of the free volume. This reduction of the free volume in
turn leads to an increased excluded-volume response to a deformation of the lattice.

For the metastable crystal below the coexistence point the behavior of the monomeric and
the polymeric solids are almost identical, but more deeply in the crystal phase their elastic
moduli diverge, albeit only modestly so. This could be due to the influence of the connec-
tivity corrections, which are not linear in the density. It appears, at least in the Gaussian
limit, that the direct influence of the connectivity on the moduli is indeed only small. This
is quite a surprising conclusion, for the direct correlation functions of monomers and poly-
mers are quite different and to leading order determine the elastic moduli. Somehow the
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Figure 4.5: Elastic moduli of the Gaussian chain as a function of the fusion parameter Γ
at fixed density ρ̃S = 1.14 and degree of polymerization N = 100.

contribution from all terms containing the information about connectivity in Eqs. (4.27 -
4.29) cancel out.

In our previous work we found that shorter chains crystallize more easily than longer ones
[106]. Hence, by decreasing the chain length at fixed fusion parameter and density, we
effectively go deeper into the crystal phase. Figure 4.7 confirms this trend, showing the
(normalized) elastic moduli versus the molecular weight of the chains for the Gaussian
limit ξ/l >> 1, at fixed density ρ̃S = 1.147 and fusion parameter Γ = 3.7. The density
was chosen such as to correspond to the freezing density of chains of length N = 1000.
For clarity, and to prove our point that the elastic response of the polymer crystal depends
only on how deep we are in the crystal phase, we have also plotted, in the inset, the density
difference between the given density and the density at the melting point for the various
molecular weights.

Finally, we demonstrate in Figure 4.8 that by increasing the stiffness of the bonds, the
elastic moduli become sensitive to so-called lattice frustration effects, which also strongly
influence the melting density of the crystal [106]. Shown are the elastic moduli as a function
of the fusion parameter. We stress that, in contrast with situation of the Figure 4.5, the
density is now not fixed, but varies with Γ (see Chapter 3). Compared are results for two
cases, being the Gaussian case ξ >> l, and the case where the chains behave more like
freely-hinged chains with links that extend or compress by no more than half a segment
diameter, i.e., ξ = 0.5σ. An oscillatory dependence of the elastic moduli on Γ can be
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Figure 4.6: Elastic moduli of the Gaussian chain limit ξ/l >> 1, as a function of reduced
density ρS/ρc

S, where ρc
S is the density of the solid at coexistence with the melt, at fixed

Γ = 3.7 and N = 100. Also shown are the values of the elastic moduli for the monomeric
case with N = 1.
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Figure 4.7: Elastic moduli in the Gaussian chain limit ξ/l >> 1 divided by equivalent
moduli of the monomers as a function of the degree of polymerization N for Γ = 3.7
and ρ̃S = 1.147. The density difference between the given density and the density at the
melting point are shown in the inset for the various molecular weights.

observed for the stiffer bonds, which reflects a similar behavior of the freezing and melting
densities, see Chapter 3. These oscillations (which become less pronounced with increasing
Γ) are due to a mismatch between the lattice constant and the effective length of the bonds.
Note that the relative variation of the elastic moduli with this parameter remains relatively
small since we now remain on the melting density for all Γ (cf. Figure 4.4). This confirms
once more that the direct influence of connectivity on the values of the elastic moduli is
small.

That the contribution from the bonded interaction to the elastic moduli must indeed be
small if bond order is absent, can be demonstrated using a simple scaling estimate of
the Young’s modulus. Let us assume that the effective potential Ueff associated with
each bond is harmonic, so that the kernel of the step operator approximately obeys g ∼
exp[−Ueff/kBT ]. (This is true close the minimum of the bonded-interaction potential.) It
is then easy to show from Eq. (4.1) that the force constant equals kBT/ξ2. Using the same
argument as in our estimate for the Young’s modulus for monomers in the previous section,
we find that the ratio between the contributions to the Young’s modulus from the non-
bonded interactions (∼ 2kBT/αa2) and those from the bonded interactions (∼ kBT/ξ2a)
must be proportional to (Γ/L)2(ξ/lK)2. For the Gaussian-chain limit ξ/l >> 1 this ratio
is in order of 102Γ2, whilst for chains that behave more like freely-hinged chains, it is ∼ Γ2.
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Figure 4.8: Elastic moduli C̃11, C̃12, and C̃44 as a function of the fusion parameter Γ.
Compared are results for the Gaussian regime ξ/l >> 1 with those of the stiff-bond regime,

ξ̃ = 0.5. Note the lattice frustration effect for the model with the stiff bonds.

Hence, for soft bonds the bonded interaction contribute less than a few percent to the
Young’s moduli, and for stiffer ones under, say, ten percent. This is in agreement with our
more accurate DFT calculations.
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Although our polymer model is crude, we nevertheless attempt to apply our predictions to
actual experiment, and compare our predicted moduli with known values for polyethylene.
For this purpose we need an estimate of the effective diameter of the beads in our model.
The Kuhn length lK of polyethylene in the melt equals roughly 7 diameters d of the
excluded-volume sphere of each CH2 group, with d ≈ 3.9 Å [19]. We may therefore
conclude that the volume of a single bead within our coarse-grained model must be equal
to the volume of 7 CH2 groups, and estimate the effective diameter of the bead for our
model from the volume of a single bead as σ ≈ 7.46 Å. We fix the temperature at T = 430K
[19]. This gives for our estimate of the fusion parameter Γ ≈ 4. The solid density calculated
within such an estimate is 1.0 g/cm3, whilst the experimental value for the polyethylene
solid is 0.996 g/cm3. The dimensionless liquid density, which we need to calculate the
dimension-bearing elastic moduli, is ρ̃L ≈ 0.9− 1.0 for Γ ≈ 4, dependent on the parameter
ξ.

The Poisson ratio of the polymeric solid that we find for Γ ≈ 4 varies with density in the
range ν = 0.22−0.26, depending also on the precise value of the parameter ξ. These values
are somewhat below the ones found for polyethylene in experiment, which are about 0.3−
0.5 [110]. The closer to the value of 1/2, the lower the volume changes upon deformation.
It may well be that the lack of bond ordering in our model is connected with the larger
volume response upon external deformation than observed in real polymeric crystals.

The bulk modulus B we find for Γ ≈ 4 varies between 3.3 and 4.6 GPa and the Young’s
modulus E between 2.8 and 4.3 GPa, depending again on the parameter ξ. This has to
be compared with the Young’s modulus of about 2 GPa found in experiment for isotropic
polyethylene samples [111], and with experimental values for the bulk modulus that are of
the same order of magnitude. The agreement could be co-incidental, but it turns out that
our results compare favorably with experimental data on typical semicrystalline polymers
[99].

It is quite surprising that our highly idealized polymeric model crystal can indeed describe
the mechanical properties of real polymeric solids so well. A possible explanation is that
in most (semicrystalline) polymeric solids the interchain interactions dominate the physics
underlying their elasticity. Obviously in strongly stretched samples, which have much
higher elastic moduli, especially along the chain direction, chain connectivity plays a much
more prominent role. The aim of future works therefore is to incorporate long-range bond
order self-consistently into the model description.

4.6 Conclusions

According to our density functional calculations, the elastic moduli of highly idealized
polymeric solids are only fairly weakly dependent on the connectivity of the beads −
packing effects seem to predominate. The direct influence of the polymeric corrections on
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the moduli is small, representing less than 5% of the numerical values of these moduli.
The main influence of the connectivity is indirect via the direct correlation function of
the beads that may be seen as an effective interaction potential between pairs of beads.
It appears that connectivity influences the values of the elastic moduli by stabilizing or
destabilizing the crystal phase of our model polymeric solid.

We found that the elastic moduli increase with increasing crystal density because of the
reduction of the available free volume upon closer packing, which leads to a stronger
response to external deformation. Strong oscillations of the elastic moduli as a function of
fusion parameter are also found. These are most likely caused by lattice-frustration effects,
discovered by us in Chapter 3. The Poisson ratio we found is positive and somewhat smaller
than the one obtained experimentally, e.g., for polyethylene. Our values of the bulk and
Young’s moduli agree to within the same order of magnitude with the experimental values,
which is an indication of the importance of the interchain interactions to the elasticity of
polymeric solids.

In order to validate our polymeric DFT, we also examined the elastic moduli of hard-
sphere crystals. We found that by adding the three-body direct correlation function to the
expression for the grand potential, and by performing the summation over a large enough
number of reciprocal-lattice vectors, the DFT significantly improved upon the original of
Jarić and Mohanty [68]. Indeed, we found quite reasonable agreement with the computer
simulations of Frenkel and Ladd [67].

We thank Joachim Wittmer (Lyon, France) for discussions and for suggesting the calcula-
tions presented in this chapter.





Chapter 5

On the role of connectivity in the
relative stability of crystal types for
model polymeric solids

ABSTRACT

We study the relative stability of two different lattice types for model polymeric
solids, using a recently developed density functional theory (DFT) for freely-
hinged, polymeric chains of hard globular segments. The most stable crystal-
lattice type appears to be determined by the mean length and the stretching
stiffness of the bonds as well as by the size of the segments. We discuss the
possible implications of this for the crystallization of chemically realistic poly-
mers.

According to current paradigm, the face-centered cubic (fcc) lattice is the preferred lattice
type for the hard-sphere crystal. Theoretically, however, there still is some ambiguity as
regards the optimal crystal symmetry for this type of system. In a remarkable paper,
Alexander and McTague [112] argued on quite general grounds within a Landau type of
approach that, irrespective of the type of interactions, spherical particles favor the body-
centered cubic (bcc) lattice, not the fcc lattice. Recently, Groh and Mulder [55] showed
with the help of (a highly approximate) density functional theory (DFT), that the relative
stabilities of the bcc and fcc lattices are a function of the strength of the solid-phase order
parameter, the latter type becoming more favorable when the order parameter is high.
More sophisticated DFTs seem to point at the fcc crystal being the lowest free energy
structure, but the differences in free energy of the fcc lattice and, e.g., the hexagonally
close-packed (hcp) lattice are minute. (In some DFTs the bcc structure is found to be
mechanically stable for some densities [71]. However, it is thermodynamically metastable
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or absolutely unstable with respect to the fluid in case for all hard-sphere DFTs as far as
we are aware [62].) The crystallization of hard spheres has also been studied intensively
by means of computer simulations [67, 113, 114, 115, 116]. These studies also indicate
that it is hard to determine which lattice the most stable, although the most recent results
demonstrate that the fcc structure is indeed favored for systems of hard spheres [115, 116].
In experiment, hard-sphere-like colloids seem to crystallize in a fcc crystal, as in fact do
charged ones except at high ionic strength [117, 118]. (At low ionic strength a bcc structure
seems to be preferred for the latter.)

Hard spheres are often considered convenient models for atoms or small molecules and by
the same token chains of hard spheres are often treated as paradigmatic for actual polymer
molecules [86, 94]. It seems useful, therefore, to investigate the impact of bonded inter-
actions between hard spheres on their (preferred) crystal type. Of course, real polymeric
crystals are very complex, and do not even necessarily represent the state of thermody-
namic equilibrium. Almost each polymer has its specific crystal structure [111], which
depends on the external conditions such as the applied pressure, the type of the chemical
bonds and other characteristics related to the chemical details of these materials. Naively,
one would perhaps expect the influence of the bonds on the stability of the polymeric crys-
tal to be minor compared with that of the packing constraints imposed by the geometry of
the molecules. By applying density functional theory we show here that the stiffness of the
bonded interactions is in fact important to the formation of the polymeric solid, and can
destabilize one crystal type in favor of another. A similar situation is found in computer
simulation studies involving particles that interact via a (non-bonded) Yukawa potential,
where an increase of the range of the potential was found to suppress the fcc lattice in
favour of the bcc lattice [119].

Density functional theoretical methods have been extensively used in the study of crys-
tallization of simple liquids [62]. For instance, Igloi et al.[120] used this method to study
the relative stability of fcc and hcp lattices, first for hard-sphere systems (applying the
Fourier approximation for the local segment density in the crystal) and later for simple
liquid metals (using a direct correlation function of the liquid that was calculated ab ini-
tio, using quantum-mechanical methods) [121]. Their calculations predict correctly the
preferred lattice type for Al and Mg at given external conditions of normal pressure and
temperature. Other DFT studies were done for hard-sphere systems by Yussouff [122]
(within the Fourier approximation), and by Baus and Colot [123] and by Laird et al [124].
(who used the Gaussian approximation for the local density distribution). They found the
difference between the grand potentials for the fcc and hcp crystal structures at the same
density near the freezing point to be very small (less than 0.05 in units of thermal energy
per particle). By applying similar theoretical tools we find here that for polymeric chains
of hard globular segments, this difference between the grand potentials can be increased
by up to 0.07 in units of thermal energy per segment. Considering that the chains consists
of many segments, such a stability gap must be viewed as huge.

In previous studies we considered the thermodynamic stability as well as the mechanical
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properties of model polymeric solids by means of a polymer DFT, obtained from a self-
consistent field-type argument [106, 69]. In our present investigation we use the same model
polymer. The model polymer under consideration consists of beads interacting through
a hard-core repulsive potential, and connected by freely-hinged bonds with an adjustable
bond stiffness. The bonds are of a phantom nature, i.e., can pass through each other. In
our theory we define g(r, r′) as the normalized a-priori probability that a bond that starts
at position r′ ends at r. The following choice of bond probability interpolates between the
standard Gaussian and Kuhn models [106]

g(r, r′) =

√
6

8π3/2ξ|r− r′|l
(

exp

[
−3(|r− r′| − l)2

2ξ2

]
− exp

[
−3(|r− r′|+ l)2

2ξ2

])
, (5.1)

where l denotes the mean length of a bond, and ξ the root-mean-square deviation about
this mean length. The effective Kuhn length lK of the model depends on l and ξ, and
equals

√
l2 + ξ2. For ξ << l our model turns into a freely-hinged chain with fixed bond

length lK = l. The other limiting case is for ξ >> l, when our model behaves as the
Gaussian-chain model with a root-mean-square bond extension lK = ξ.

We denote the range of the (effective) hard-core interactions between the beads by σ. To
describe how the chain connectivity renormalizes these interactions, we introduced in our
previous work the so-called fusion parameter Γ ≡ lK/σ [106, 69]. For Γ << 1 neighboring
beads along a chain overlap, whilst for Γ >> 1 they do not. Our aim now is to study
how the parameters Γ and ξ influence the stability of either hcp or fcc structures, and in
particular which lattice is preferable for our athermal polymeric system. We note that for
our model polymers the fcc crystal is the only stable cubic lattice type, and then only if
Γ ≥ 3 (see Chapter 3 for a discussion). The hcp crystal structure does not belong to the
group of cubic lattices.

In our calculations we approximate the density distribution in the crystal phase by a sum
of narrow Gaussians [106]

ρ(r) = (πε2)−3/2
∑

{R}
exp

[−(R− r)2/ε2
]

(5.2)

with the width ε of the local density profile presumed to be much smaller than the distance
between the lattice points, whose positions are given by the vectors R. {R} is the set of
all real-space crystal-lattice vectors. The equilibrium width of the density distributions ε
we fix by a free-energy minimization. The unit cell of the fcc lattice is defined by the set
of vectors

a1 = (a/2)(j + k),

a2 = (a/2)(i + k),

a3 = (a/2)(i + j) (5.3)
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with i, j,k the basis vectors in the Cartesian system of coordinates, and a the nearest-
neighbor separation. The following vectors describe the hcp structure

a1 = ai,

a2 = −(a/2)i + (
√

3a/2)j,

a3 = ck, (5.4)

where c/2 denotes the separation of neighboring hexagonal planes.

Within the ground-state approximation, the grand-potential difference ∆Ω[ρ(r)] of the
crystal and a molten reference state reads [106]

1

kBT

∆Ω

ρLV
≡ ∆ω =

1

ρLV

∫
drρ(r) ln ρ(r)/ρL

− 1

ρ2
LV

∫
dr′g(|r− r′|)[ρ(r)− ρS][ρ(r′)− ρS]

− 1

ρLV

∞∑
p=2

1

p!

∫
...

∫
C(p)(r1, ..., rp)

p∏
i=1

dri(ρ(ri)− ρL)

− 1

kBT
(µS − µL)

1

ρLV

∫
drρ(r)− 1

ρLV

∫
dr(ρ(r)− ρL), (5.5)

where for the density distribution ρ(r) we insert the Gaussian profiles of Eq. (5.2). In
Eq. (5.5), V is the volume of the system, µS the chemical potential of the solid and µL

that of the liquid reference phase, and ρS and ρL are the segment densities of respectively
the solid and liquid state. C(p)(r1, ..., rp) is the p-particle direct correlation function of
the liquid reference state, T the temperature, and kB Boltzmann’s constant. We calculate
C(p)(r1, ..., rp) from a generalized Lifshitz theory, formally equivalent to the so-called poly-
meric reference interaction site model (PRISM) [83]. To solve the PRISM equations we
impose the usual Percus-Yevick (PY) closure, mimicking a hard-core interaction between
the beads.

In the free-energy functional the information about the connectivity of the beads within
a polymer enters via the second term in the right-hand-side of Eq. (5.5), which contains
the step probability g, but also via the direct correlation functions in the third term. The
term containing g is accurate only at length scales small compared to the size of the chains
(see Chapters 3 and 4). As a result, the monomeric units do order positionally onto either
the fcc or hcp lattice, but long-range bond order does not build up. (See again Chapters 3
and 4 for a discussion.)

For obvious reasons the calculations are more conveniently done in Fourier space, so we
use the Fourier representation of the density distribution given in Eq. (5.2):

ρ(r) = ρL


1 + η +

∑

{q}
ζ(q) exp(iq · r)


 (5.6)
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with {q} the set of the reciprocal-lattice vectors of the fcc or hcp lattice, η = (ρS − ρL)/ρL

the fractional density change across the crystallization transition, and

ζ(q) = (1 + η) exp[−q2ε2/4]. (5.7)

The expression for the dimensionless grand potential density ∆ω reduces to

∆ω = 1− (1 + η)

(
5/2 + ln ρL + 3/2 ln πε2 − 1

kBT
(µS − µL)

)

−
∑

{q}
ĝ(q)ζ2(q)− 1

2
η2ρLĈ

(2)
L (0)− 1

2
ρL

∑

{q}
ζ2(q)Ĉ

(2)
L (|q|) (5.8)

−1

6
η3ρ2

LĈ
(3)
L (0, 0), (5.9)

where, following Laird and co-workers [53], we include, apart from the usual two-body
direct correlation function, only the zero-q three-body direct correlation function. This
expression we minimize with respect to the liquid density ρL, the parameter η and the
width of the density profile ε.

The minimization was done at the freezing point, using a standard quasi-Newton algo-
rithm from the NAG r© library (Mark 18, E04JYF). The conditions of mechanical and
thermodynamical equilibrium were imposed by insisting on the equality of the pressures
and chemical potentials in the liquid and solid phases (so ∆ω = −∆P/kBTρL ≡ 0 and
µS−µL ≡ 0). We determine the minimum number of reciprocal-lattice vectors {q} needed
to accurately describe the crystal phase for the fcc and hcp lattices empirically, and find it
to be approximately 6000 for both lattice types. Only the ideal hcp lattice was considered,
so we set c/a = (8/3)1/2 in Eq. (5.4).

As our interests concern the influence of the bond stiffness on the relative stability of the
fcc and hcp lattices, we calculate the freezing densities for fcc and hcp at different values
of the parameter ξ. Figure 5.1 gives the liquid freezing density of chains of degree of
polymerization 100 for both lattices as a function of the parameter ξ at Γ = 5. The figure
clearly demonstrates the hcp structure to be more stable than the FCC structure in the
range 0 < ξ/σ ≤ 0.6, i.e., if the bonds are sufficiently stiff. Interestingly, the polymers then
freeze at a lower density than hard monomers do. Apparently, in that case connectivity
stabilizes the (hcp) crystal phase. Although the differences in the densities at the freezing
for both lattices seem modest (less than 5%), they do exceed our numerical accuracy,
which is about 0.5%. In the opposite limit of floppy bonds, with ξ/l >> 1, the hcp and fcc
structures are equally stable within the numerical accuracy of the calculations. In this limit
the freezing of the polymer occurs at roughly the same density as that of hard monomers.
For certainty, we also investigated a possible fcc-hcp transition deep in the crystal phase
by directly comparing free energies, but did not find such a transition between the two
lattice structures.
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Figure 5.1: The liquid density at the freezing point as a function of the dimensionless
parameter ξ/σ measuring the streching stiffness of the bonds for the fcc and hcp lattices,
given at a value of the fusion parameter Γ = 5 and degree of polymerization N = 100. The
fusion parameter Γ = lK/σ is a measure for the bending stiffness of the chain. The hcp
structure is preferable in the range 0 < ξ/σ ≤ 0.6. At large ξ, both fcc and hcp structures
are equally probable.

The relative stability of the hcp and fcc crystals not only depends on the stretching stiffness
of the bonds ξ, but also on the value of the fusion parameter Γ, which (in a way) measures
the bending stiffness of the chain. To illustrate this, the percentage difference of the
liquid densities at freezing between the fcc and hcp lattices is given as a function of ξ/σ
for different values of the fusion parameter Γ in Figure 5.2. The values of Γ used here
are chosen arbitrarily to represent the full range of the fusion parameter. For large Γ or
large ξ, there is no significant difference between the two close-packed structures. The
influence of the fusion parameter on the relative stability of two crystal types becomes
evident from a comparison of the results for Γ = 3.25 (when the fcc structure is more
stable at 0.1 ≤ ξ/σ ≤ 0.6) and the results for Γ = 5 (when the hcp structure is favorable
for ξ/σ ≤ 0.6).

It is important to point out that the somewhat erratic dependence of the freezing density
on the bond stiffness is not caused by numerical errors, but by so-called lattice frustra-
tion effects. These are especially prominent when the bonds are stiff, and are caused by
a geometrical mismatch between the effective bond length and the distance between two
neighboring lattice sites. We refer to Chapters 3 and 4 for a closer examination of this phe-
nomenon for the fcc model polymeric solid. Note that the hcp lattice, being less symmetric
than the fcc lattice, the effects of the lattice frustration for a given ξ or Γ are different
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Figure 5.2: The relative density difference of the melt at freezing into the fcc and hcp
structures, 100 (ρfcc − ρhcp)/ρfcc, for different values of the fusion parameter Γ and the
degree of polymerization N = 100. In the range 0 < ξ/σ ≤ 0.6 the prefered lattice type
is dependent on the fusion parameter Γ. For large Γ and/or large ξ both fcc and hcp
structures are equally stable.

and that (in effect) lattice frustration dictates which lattice is more stable than the other.
So, the geometrical factors other than those due to the shape of the interacting moieties
can play an important role in the stability of the polymer crystal. For realistic models
of polymers such as polyethylene, the parameter ξ/σ is in order of 0.01 [106], and at this
regime the hcp structure seems to be more favorable.

In summary, we have investigated the relative stability of the fcc and hcp crystal types for
idealized model polymers using polymeric density functional theory [106]. We conclude
from our studies that the most favorable lattice type of the two is determined by both the
stiffness of the polymeric bonds and by the fusion parameter. Therefore, we propose that
in addition to, say, enthalpic interactions, connectivity does play a significant role in the
crystal structure of polymers, and that this is one possible explanation for the diversity of
crystal lattices observed for polymers.





Chapter 6

Theory of the crystallization of hard
polymeric chains in an orienting field

ABSTRACT

We apply a recently proposed density functional theory (DFT) for hard poly-
meric chains to study the influence of a quadrupolar orienting field on the
freezing of model polymers. We find that a ‘disorienting’ field, mimicking
elongational flow, promotes crystallization, whilst an ‘orienting’ field, which
corresponds to longitudinal shear flow, destabilizes the crystal phase. We also
investigate the relative stability of two close-packed crystal lattice types, face-
centered cubic and hexagonal close-packed. Geometrical effects, such as the
orientation of the field with respect to the main axes of the crystal, play an
important role in stabilizing one crystal type over another.

6.1 Introduction

High-tensile polymeric materials are important in many industrial applications [125], and
the problem of producing such materials based on highly oriented samples is of great
interest in the field of polymer technology and processing. Oriented polymeric materials
can be obtained by different methods from the solid phase (by cold drawing, solid-state
extrusion or rolling), or from the melt in an extensional-flow setup in which the material is
allowed to crystallize [1]. The high-tensile properties of oriented polymers are caused by the
intrinsic anisotropy of polymers, and are connected with their chain-like structure. Along
the backbone of the oriented chains the strength is determined by covalent interactions
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that are much more energetic than those of the Van der Waals type that predominate in
unoriented samples.

It is now well-established that the conformation of a polymer molecule can change signifi-
cantly in an elongational flow field [126, 127]. In this type of flow the dominant component
of the velocity is parallel to the flow direction. Under appropriate conditions, chains can
achieve nearly full extension near the stagnation point, where the strain rate is the highest.
Theoretically, the influence of this type of flow on an isolated polymeric coil was studied
by De Gennes [128], who used in his description an earlier theory of Peterlin [129, 130],
and predicted a sharp coil-stretch transition at a critical strain rate. Although theories
describing the coil-stretch transition focus on polymer solutions, the same principles apply,
mutatis mutandis, to polymeric melts.

The coil-stretch transition is important in the context of flow-induced crystallization, for
there is experimental evidence [125] that polymeric chains stretched in elongational flow
solidify into a fiber core, also known as a ‘shish’, which subsequently acts as a nucleation
center that enhances the nucleation of crystallites of chains on it [125, 131]. The crys-
talline lamellar structures (the so-called ‘kebabs’), in which the chains are not completely
stretched, have a tendency to attach to this central core upon solidification. This has
been observed in many experiments [125], but also in recent computer simulation studies
[41, 131].

The competition between the influence of an external field that tends to increase order, and
the random-walk nature of the polymers in the melt, which promotes disorder, should be
an essential ingredient in any sensible theoretical description of flow-induced solidification.
Although an inherently non-equilibrium problem, a kinetic theory that does not account
for this through the input of a free energy landscape that explicitly deals with the chain-
like nature of polymers is bound to fail. In fact, even in the absence of flow a sensible
description of the crystallization of polymers requires a self-consistent coupling between the
configurational statistics of the chains and thermodynamics of the crystallization transition
[132].

In this context it may be useful to refer to the idea of Flory [17] that chain stiffness in com-
bination with packing effects must be at the root of the solidification of polymers. Despite
being largely ignored by the polymer crystallization community, this has been confirmed
by means of computer simulations [18]. Indeed, repulsive interactions are sufficient to in-
duce crystallization in model polymeric systems — even the familiar lamellar structure is
reproduced [18, 41].

Here, we consider the role of an external field mimicking elongational flow on the entropy-
driven solidification of model polymers. We shall not be focusing on strong flows in which
the chains strongly deform, but instead deals with how a weak flow affects the packing ef-
fects that ultimately promote crystallization. As we shall see, even at this level of approach
a strong impact on the stability of the crystal phase is observed. Depending on the flow



Theory of the crystallization in an orienting field 79

type and the crystal symmetry, the crystal phase may be either stabilized or destabilized,
or one crystal symmetry be favored over another.

We note that the coupling of flow fields to phase transitions has attracted a considerable
attention from both theorists and experimentalists, in particular in the field of the isotropic-
to-nematic phase transition of stiff polymers or other rod-like particles [133, 134, 135, 136,
137, 138]. This transition is also entropy dominated. From these studies we infer that an
external flow field (shear or elongational flow) promotes liquid-crystalline ordering, because
the external field increases the degree of order in the system. Another point of interest in
the context of our studies is that even a weak flow has noticeable effect on the demixing of
polymeric systems. On the basis of a theoretical thermodynamical analysis Bhattacharjee
et al. [139] found that in sufficiently weak two-dimensional elongational flow, i.e., far from
coil-stretch transition, there are flow-induced shifts of the θ-point and of the coexistence
curve for polymers in solution.

In this work we present a mean-field analysis of the role of a weak orienting field on the
crystallization of a model polymeric melt. We assume that the system is in a state of local
equilibrium, and that the flow is steady and of a potential type, in order to be able to apply
Kramers-potential description [140] of the flow. Our aim is not to reproduce shish-kebab
or any other type of supramolecular structure that are often found after a crystallization
in flow. Instead, we aim to shed light on the possible impact that a flow field may have
on the coupling of chain configurations, packing effects and the stability of the crystal
phase. To this end we make use of an amalgamation of the Green-function description
of a polymer chain in a self-consistent field, and classical density functional theory. The
Kramers potential we use mimics two types of flow, elongational flow and longitudinal
shear. We show that a weak elongational flow field stabilizes the polymeric crystal, whilst
longitudinal shear destabilizes the crystalline state.

The remainder of this chapter is organized as follows. In Section 2 we first briefly describe
the model polymers considered and the theoretical formalism used to study the influence
of an external orientational field on the crystallization. The application of the calculation
method to the face-centered cubic (fcc) and hexagonal close-packed (hcp) crystal geometry
is explained in Section 3. The results of our numerical calculations are given in Section 4,
and our conclusions are presented in Section 5.

6.2 Polymeric density functional theory

We apply a recently proposed [106] polymeric density functional theory (DFT). The model
polymers consist of N beads that interact through a hard-core repulsive potential, and
that are connected by freely-hinged phantom bonds with an adjustable bond stiffness. The
single-chain partition function, or Green function, [85] of a chain with its ends fixed at the
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positions r and r′, can be written as

ZN(r′, r;1, N) =

∫ (
N∏

j=1

drj

)
δ(r1 − r′)δ(rN − r)

×
(

N∏
j=2

g(rj, rj−1) exp[−βUscf (rj)− βUext(rj, rj−1)]

)
(6.1)

with Uscf (rj) the self-consistent molecular field that a monomer labelled j = 1, ..., N on
an arbitrary test chain experiences due to the presence of other polymeric chains, and
Uext(rj, rj−1) an external orienting field that couples to pairs of neighboring monomers
j and j − 1. Note that the self-consistent molecular field is a function of the only one
positional coordinate, because we study the freely-hinged model chains that interact via
pairs of single site-site interactions only. As usual, β ≡ 1/kBT , where T denotes the
absolute temperature, and kB Boltzmann’s constant.

In Eq. (6.1) the “kernel” g(r, r′) represents the bonded interactions between consecutive
beads on a chain through the normalized a-priori probability that a bond that starts at
position r′ ends at position r. It is a model-dependent quantity. For our model polymer
we define this probability, which interpolates between the standard Gaussian and Kuhn
models, as follows [106]

g(r− r′) =

√
6

8π3/2ξ|r− r′|l
(

exp

[
−3(|r− r′| − l)2

2ξ2

]
− exp

[
−3(|r− r′|+ l)2

2ξ2

])
, (6.2)

where l is a mean length of the bonds, and ξ is a root-mean-square deviation from this
length. The effective Kuhn length lK of the model may be expressed in terms of l and ξ,
as lK =

√
l2 + ξ2 [106]. We distinguish two regimes: one where our model behaves like

a freely-hinged chain model for ξ << l with fixed bond length lK = l, and one where it
becomes equivalent to the standard Gaussian-chain model with a root-mean-square bond
extension lK = ξ, corresponding to the limit ξ >> l. In this chapter we present results
only for the Gaussian-chain limit, although we have performed calculations in the other
(freely-hinged, Kuhn) limit as well. However, the somewhat erratic character of the data
obtained for the latter limit proved hard to interpret, and in addition required excessive
computational effort to remove numerical inaccuracies. (See also below.)

Eq. (6.1) can be rewritten in terms of a recursive equation

Z(r′, r; 1, N + 1) = exp[−βUscf (r)]

∫
dr′′g(r′, r′′)

× exp[−βUext(r
′, r′′))] Z(r′′, r; 1, N), (6.3)

subject to the boundary condition limN→1 Z(r′, r; 1, N) = exp[−βUscf (r))] δ(r
′ − r). The

solution to this recursive equation Eq. (6.3) is a bilinear sum of products of the left and



Theory of the crystallization in an orienting field 81

right eigenfunctions of the integral operation, weighed by the corresponds eigenvalue to
the power N [83, 86, 94].

The total partition function of the system of M polymeric chains is Z = 1
M !

ZM
N , where

ZN ≡ ∫
dr

∫
dr′Z(r′, r; 1, N) is the single-chain partition function. The Helmholtz free

energy F of the system can be easily obtained from the thermodynamic relation βF =
− lnZ. The molecular field Uscf (r) we treat as an external field, and we use the procedure
pioneered by Lifshitz [87] in order to determine this field. To this end, the configurational
part Fconf of the free energy is calculated by a subtraction of the self-consistent field energy∫

drUscf (r) ρ (r) from the free energy F of the system. Here ρ (r) notes the number density
of segments, given by

ρ (r) ≡ MZ−1
N

∫
dr′

∫
dr′′

N∑
s=1

Z(r′, r; 1, s)Z(r, r′′; s,N). (6.4)

Within the self-consistent-field method, the actual free energy F is a sum of the configu-
rational free energy and the excess free energy, which accounts for the interaction between
the segments

F =Fconf + Fexc. (6.5)

The density dependence of the configurational free energy can be made explicit. We apply
a ground-state approximation and use only the largest eigenvalue. For use in a DFT of the
crystal phase it turns out useful to expand the density ρ(r) around that of the liquid state
ρ(r) = ρL + ∆ρ(r), and neglect the terms of higher than second order in ∆ρ. Applying
the methodology presented in [106] and in Chapter 3, we find for difference between the
configurational free energy of the solid and that of the melt

β∆Fconf =

∫
drρ(r) ln ρ(r)−

∫
drρL ln ρL

− 1

ρL

∫
dr

∫
dr′∆ρ(r)e−βUext(r,r′)g(r, r′)∆ρ(r) + O(∆ρ3), (6.6)

where the first two terms are the free energies of the ideal solid and melt, and the third
term enters due to the connectivity of the polymers. A consequence of the ground-state
approximation is that Eq. (6.6) only describes positional ordering on short wavelengths,
although the coupling to the external field described next does not preclude long-range
configurational effects.

For the Kramers potential we write [135, 140]

βUext = −3

2
u cos2 ε, (6.7)

where u is a dimensionless field strength that we later on connect with the actual elonga-
tional flow rate, and ε the angle between the direction of a bond of a test chain and the
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direction of the field n, cos ε ≡ n · (r − r′)/|r − r′|. Hence, the potential couples not to
single monomers, but to pairs of monomers at the positions r and r′.

Positive and negative values of u correspond to different flow geometries. The case when
u is positive corresponds to inhomogeneous vortex-free longitudinal shear, and when u is
negative the quadrupole potential models an hydrodynamic flow acting on the polymers
confined within an unaxially compressed sample.

For computational convenience we do not employ the Helmholtz free energy, but the grand
potential [106]. The grand-potential difference ∆Ω[ρ(r)] between the crystal and a liquid
reference state is [69]

β
∆Ω

ρLV
≡ ∆ω =

1

ρLV

∫
drρ(r) ln ρ(r)/ρL

− 1

ρ2
LV

∫
dr′gF (|r− r′|)[ρ(r)− ρS][ρ(r′)− ρS]

− 1

ρLV

∞∑
p=2

1

p!

∫
...

∫
C(p)(r1, ..., rp)

p∏
i=1

dri(ρ(ri)− ρL)

−β(µS − µL)
1

ρLV

∫
drρ(r)− 1

ρLV

∫
dr(ρ(r)− ρL), (6.8)

where we take the configurational term to first order in the density difference between the
two phases, and the excess term to arbitrary order in this difference (although below we
truncate this term at the third order). In equation (6.8) V is the volume of the system,
µS is the chemical potential of the solid and µL that of the liquid reference phase, and ρS

and ρL are the segment densities of respectively the solid and liquid state.

As we show in previous work [69, 106] and in Chapters 3 and 4, the p-particle direct

correlation function of the liquid reference state C(p)(r1, ..., rp) = −βδ(p)Fexc/
p∏

i=1

δρ(ri) can

be calculated from a similar free energy as given in Eq. (6.8), producing an integral
equation analogous to the polymeric reference interaction site model (so-called PRISM)
[82]. The chain-connectivity effect is described directly through the second term of Eq.
(6.8), and indirectly via the direct correlation functions included into the third term.

The PRISM equation, which connects the total correlation function of two segments on dif-
ferent chains, h(r, r′), and the associated two-particle direct correlation function, C(2)(r, r′),
reads in Fourier space

ĥ(q) = ω̂(q)Ĉ(2)(q) + ρLω̂(q)Ĉ(2)(q)ĥ(q), (6.9)

where the hats indicate Fourier-transformed quantities, q the wave vector and ρL the
average melt density. The intramolecular correlations between segments on a single chain
are described by the form factor ω̂,

ω̂(q) =
1− ĝ2

F − 2
N

ĝF + 2
N

ĝN+1
F

(1− ĝF )2 , (6.10)
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where ĝF is the Fourier transform of the bond probability in the presence of the orienting
field. To calculate this quantity, we assumed this field to be weak so that gF (r, r′) ≡
exp[−βUext(r, r

′)]g(r, r′) ' g(r, r′)(1−βUext(r, r
′)) in the limit ξ >> l, i.e., for the standard

Gaussian model. We find

ĝF (q) = exp

[
−q2l2K

6

]{
1 +

1

2
u(1 + 2P2(cos γ) + 18q−2l−2

K P2(cos γ))

}

−9uq−3l−3
K

√
6πP2(cos γ)

erf(qlK)

2
√

6
, (6.11)

where q is the length of the vector in Fourier space and γ the angle between the direction of
field n and the vector q in Fourier space. The details of calculation of the kernel gF (r, r′) in
the presence of an external field can be found in the Appendix A. Equation (6.9) is valid at
non-zero external field, since the chains remain freely-hinged even when under an external
field and bond-order correlations cannot build up on account of the isotropic site-external
interactions presumed in this work.

We use the classical Percus-Yevick (PY) closure to solve Eq. (6.9) [22], mimicking a hard-
core interaction between the polymeric beads. As for the terms of higher order than second
order of the direct correlation functions, below we extract the zero-q Ĉ(3) from Ĉ(2) and
ignore fourth and higher order terms.

6.3 Solidification into the close-packed-crystal geom-

etry

Ideally, one calculates the equilibrium density profiles in the crystal phase by a functional
free-energy minimization. It is computationally more convenient, however, to use an Ansatz
for ρ(r) and optimize this Ansatz. For the density distribution ρ(r) in the crystal phase
we use the Gaussian profile

ρ(r) = (πε2)−3/2
∑

{R}
exp

[−(R− r)2/ε2
]
, (6.12)

where {R} is the set of all real-space crystal-lattice vectors, and ε is a variational parameter
that measures of the width of the Gaussian density distribution around each point of
the crystal lattice. It turns out to be useful to write Eq. (6.8) in terms of a Fourier
representation of the density distribution Eq. (6.12),

ρ(r) = ρL


1 + η +

∑

{q}
ζ(q) exp(iq · r)


 (6.13)
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with {q} the set of the reciprocal-lattice vectors of the crystal lattice under consideration,
η = (ρS − ρL)/ρL the dimensionless density jump across the crystallization transition, and

ζ(q) = (1 + η) exp[−q2ε2/4]. (6.14)

We insert Eq. (6.13) into Eq. (6.8), truncate the sum containing the direct correlation
functions after the third term, and obtain the following expression for the grand potential,

∆ω = 1− (1 + η)

(
5/2 + ln ρL + 3/2 ln πε2 − 1

kBT
(µS − µL)

)

−
∑

{q}
ĝF (q)ζ2(q)− 1

2
η2ρLĈ

(2)
L (0)− 1

2
ρL

∑

{q}
ζ2(q)Ĉ

(2)
L (|q|, γ)

−1

6
η3ρ2

LĈ
(3)
L (0, 0). (6.15)

In our density functional we include only the zero-q part of the three-body direct correlation
function [53]

Ĉ
(3)
L (q, 0) =

∂Ĉ
(2)
L (q)

∂ρ
|ρ=ρL

, (6.16)

because higher order terms are usually considered to be unimportant [53, 54]. To obtain
the optimal density profiles in the crystal phase, we minimize Eq. (6.15) with respect to
the liquid density ρL, the parameter η and also the width of the density profile ε. It should
be stressed that as a result of the ground-state approximation, long-range orientational
bond order can only develop in our model through the coupling to the external orienting
field. In the absence of such a field, the chains behave like random walkers on the crystal
lattice [106].

The crystal types we consider are of the face-centered cubic (fcc) and of the hexagonal
close-packed (hcp) type. The reciprocal to the fcc lattice is the body-centered cubic (bcc)
lattice. The set of the reciprocal vectors {q} that enters the grand potential Eq. (6.15)
can be calculated from the following expression

G =
2π

a
[(h− k + l)i + (h + k − l)j + (−h + k + l)k] (6.17)

with h, k and l integers, a the nearest-neighbor separation, and i, j,and k the basis vectors
in the Cartesian system of coordinates. We arbitrarily choose the following bcc axis as the
main axis in order to describe the orientation of the crystal in space

G0 =
2π

a
[i + j− k]. (6.18)

The geometry of the model in the case of the fcc lattice is shown in Figure 6.1. In our
calculations enters the angle γ between the direction of an external field n and the vector
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Figure 6.1: The bcc lattice reciprocal to the fcc structure. Shown are also the geometrical
parameters of the model under consideration. The vector n shows the direction of an
external field, the vectors a1, a2, a3 denote the primitive translation vectors of the bcc
lattice, and the angle between the arbitrary chosen main axis G0 ≡ a1 and direction of an
external field n can be expressed in Cartesian coordinates via the usual polar angles θ and
φ.

q through the bond probability Eq. (6.11). The angle between the main axis G0 of the
reciprocal lattice and the direction of an external field n can be expressed in Cartesian
coordinates via usual polar angles θ and φ. For the fcc lattice, these angles are connected
to the angle γ by a simple trigonometric relation

cos γ = cos θ
(3h− k − l)√

9(h2 + k2 + l2)− 6(hk + hl + kl)
+ sin θ

×
√

1− (3h− k − l)2

9(h2 + k2 + l2)− 6(hk + hl + kl)
cos φ. (6.19)

For the case of the hcp lattice, the set of the reciprocal vectors can be calculated from the
expression

G =
2π

a
[hi +

1√
3
(h + 2k)j +

a

c
lk], (6.20)

where c/2 is the separation of neighboring hexagonal planes. We choose the following axis
as a main one

G0 =
2π

a
[i+

1√
3
j] (6.21)
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and the angle γ can be found from the relation

cos γ = cos θ

1√
3
(2h + k)

√
4
3
(h2 + hk + k2) + (al/c)2

+ sin θ

× cos φ

√
1− (2h + k)2

4(h2 + hk + k2) + 1
3
(al/c)2

. (6.22)

We minimize Eq. (6.15), using the standard quasi-Newton algorithm from the NAG r©
library (Mark 18, E04JYF), at the coexistence between the liquid and solid phases, when
the pressures and chemical potentials in both phases are equal.

The number of reciprocal lattice vectors {q} needed to accurately describe the fcc and/or
hcp crystal phase we determine empirically. (In the absence of an external field, 5832
reciprocal lattice vectors are needed to get accurate results [106].) In the presence of the
field the direct correlation function has to be evaluated for each value of the angle γ, which
is different for every reciprocal lattice vector, in order to reach the desired precision. We
perform calculations of the direct correlation function for a few thousand reciprocal lattice
vectors. Fortunately, the direct correlation function is only a sensitive function of the angle
γ, and therefore of the field, in the small-q-regime. Thus, the direct correlation function in
the presence of the field needs to be evaluated only for the first few shells of the reciprocal
lattice. For the remaining shells the field-free results for the direct correlation function are
sufficiently accurate. That this is so, is shown in Figure 6.2 for the fcc lattice, where we
plot the freezing density of the liquid for the case when the angle-dependencies of the first
5 shells (29 reciprocal lattice vectors), the first 10 shells (88 reciprocal lattice vectors) and
for the first 20 shells (228 vectors) are included. The total number of reciprocal lattice
vectors we use is 9260. It seems sufficient to take into account the values of the angle γ
only for the first 88 reciprocal lattice vectors.

In the next section we discuss the results of our calculations.

6.4 Results and discussion

Before discussing the results, it seems useful to clarify the physical meaning of the param-
eter u, which in our calculation denotes the strength of an external field acting on a single
bond. To connect this parameter with a flow rate, we presume that the chains are not very
long so that they obey Rouse dynamics. The relaxation time and radius of gyration can be
determined analytically for a test chain in a weak Kramers potential flow from the Smolu-
chowski equation for the configurational distribution function [141]. Comparing the radius
of gyration of our model and that obtained by Frisch et al. [141] for the Rouse model,
we conclude that the parameter u must be equal to 2τ 2

0 s2, where s is the flow rate and τ0
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Figure 6.2: Freezing density of the polymeric liquid in the Gaussian-chain limit ξ/l >> 1 if
the solid phase has a fcc lattice, as a function of the strength of external field u. Orientation
angles θ = π and ϕ = 0 of the lattice. See Figure 6.1. Chain parameters Γ = 3.7 and
N = 100.

the characteristic relaxation time of the chain, often called the Kramers relaxation time.
This relaxation time τ0 is proportional to the square of the number of monomeric units per
chain and corresponds, apart from an uninteresting numerical multiplicative constant, to
the well-known Rouse time of the chain [141].

Apart from the field strength (flow rate) u and the degree of polymerization N , the only
control parameter that we have is a quantity that we call the fusion parameter Γ ≡ lK/σ,
where lK is the effective Kuhn length of the chains and where σ indicates the range of
the hard-core interactions. We calculated the dependence of the freezing density on the
parameter u for the standard Gaussian model, ξ/l >> 1, for different orientations of the
crystal lattice relative to the main axis of the flow field at fixed degree of polymerization
N = 100 and fusion parameter Γ = 3.7, and show the results in the Figure 6.3. (The
crystal type is fcc.) It shows that the polymeric melt crystallizes more easily under the
influence of an external ordering field than in the absence of this field at all values of the
polar angles of orientation θ and φ between the direction of the external field and the main
axis of the lattice, but only when the parameter u is negative. If it is positive, the freezing
density goes up.

A possible cause for this is the following. For positive u, the orientation of the induced
anisotropy of polymeric melt is parallel to the direction of the field. This makes it more
difficult for a polymeric bead to occupy a free lattice site in the presence than in the
absence of this field. When u is negative, the anisotropy is induced in the easy plane, with
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Figure 6.3: Freezing density of the polymeric liquid in the Gaussian-chain limit (ξ/l >> 1)
as a function of the strength of external field u, for different values of the orientation angles
θ and ϕ of the fcc lattice, at fixed Γ = 3.7 and N = 100.

a symmetric distribution of the polymeric segments relative to the lattice axes. Hence, in
the present crystal geometry it is easier to crystallize fcc lattice, when u is a negative.

Figure 6.4 presents a structural explanation of the stability of the crystal phase for different
values of u, and for different orientations of the lattice with respect to the field. The
difference ∆g(r) between the pair-correlation function of the polymeric melt in the absence
of an external field and the pair-correlation function of the melt in the presence of this field
is positive when u < 0 and γ = π/2. In other words, the orienting field induces stronger
positional correlations in the melt if u < 0, diminishing the structural difference between
the melt and the crystal phase, thereby stabilizing the latter. Conversely, when u > 0 this
difference is negative for all angles γ: the field destroys local positional order in the melt
with the opposite effect of destabilizing the crystal phase.

The next, three-dimensional plot of Figure 6.5 shows the orientation dependence of the
freezing density at fixed value of the parameter u = −0.5 and fusion parameter Γ = 3.7,
again for N = 100. The dependence on the angles θ and ϕ of the lattice orientation has
a nontrivial character. There is an obvious periodicity, albeit that this effect is small and
the difference between the maximal and minimal values for the freezing densities found is
just a few percent. Global minima in the freezing density are found for the angles θ = πk
and φ = πk/2, with k an integer. Figure 6.5 demonstrates the importance of geometrical
effects in the determination of the freezing density of the polymeric melt.

Now we compare the freezing of the fcc and hcp structures under an external field for the
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Figure 6.4: The difference ∆g(r) between the pair-correlation function of the polymeric
melt in the absence of an external field and the pair-correlation function of the melt in
the presence of this field as a function of a dimensionless distance r/σ, for different values
of the strength of an external field u and the angle γ (see the main text). The density
ρL = 0.96σ3 and the chain parameters are fixed at Γ = 3.7 and N = 100.

arbitrarily chosen angles θ = π/4 and φ = π/4, again in the Gaussian chain limit ξ/l >> 1
(see Figure 6.6). In the absence of an external field the fcc and hcp structures are equally
probable within our DFT, and within the accuracy of the numerics that we estimate to
be about 0.5%. When the external field is switched on, both lattices crystallize at a lower
density than in the absence of the field, but the hcp structure crystallizes at a lower density
(and lower free energy density) and should therefore be more stable. Thus, not only the
mean length and the stretching stiffness of the bonds can determine the lattice type, as we
concluded in earlier work [69], but also the presence of an external field. (The crystal type
may remain metastable if the field is turned off.)

In Figure 6.7 we show the dependence on the fusion parameter Γ of the fcc and hcp freezing
densities in the presence of an external field with u = −0.5, and without this field. The
orientation of the crystal was fixed at the arbitrary angles θ = π/4 and φ = π/4. The
difference in freezing densities is significant only in the small-Γ regime. In this regime
the system crystallizes more easily under the influence of an external field. In the large-Γ
regime the behavior of the polymeric system is monomer-like and the external orientational
field cannot influence the stability of the crystal phase.

Finally, in Figure 6.8 we examine how the degree of polymerization N affects the crystal-
lization density of the model polymers in an external orientational field, at fixed fusion
parameter of Γ = 3.7 and at fixed angles θ = π/4 and φ = π/4. From Figure 6.8 it can
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Figure 6.5: The freezing density of the polymeric liquid as a function of the lattice
orientation angles θ and ϕ. The Figure shows results for the fcc lattice for the parameter
values Γ = 3.7, u = −0.5, and degree of polymerization N = 100 in the Gaussian chain
limit ξ/l >> 1.

be seen that in the absence of an external field an increase in the degree of polymeriza-
tion destabilizes the crystal [106]. It turns out that the dependence of the crystallization
density on N in the presence of the external field becomes nonmonotonic. For long chains
(N ≥ 200) the freezing density saturates, while for relatively short chains (N ≤ 10) there
is no significant influence of an orienting field. We have no explanation for this.

6.5 Conclusions

We find that our model polymers crystallize more easily in an external field of the
quadrupole type than in absence of that field, but only if it corresponds to a so-called
disorienting field, i.e., longitudinal shear. Geometric effects, such as the direction of the
field with respect to the orientation of the lattice, play an important role in the stability
of the crystal phase. We find that the competition between the configurational entropy of
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Figure 6.6: Comparison of the freezing density of the polymeric liquid in the Gaussian
chain limit ξ/l >> 1 for the fcc and hcp lattices as a function of the strength of external
field for the angles θ = π/4 and ϕ = π/4, at fixed Γ = 3.7 and N = 100. The hcp lattice
crystallizes at lower density if under an external field.
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Figure 6.7: Freezing density of the polymeric liquid in the Gaussian chain limit ξ/l >> 1
as a function of the fusion parameter Γ for the fcc lattice. Compared are values in the
absence of the field and when u = −0.5 and angles θ = π/4, ϕ = π/4.
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Figure 6.8: Freezing density of the polymeric liquid in the Gaussian-chain limit ξ/l >> 1
for the fcc lattice as a function of degree of polymerization N for different values of u at
fixed Γ = 3.7 and angles θ = π/4, ϕ = π/4.

the chain and the strength of a field that couples to individual bonds leads to a non-trivial
flow dependency of the stability of the model polymeric solid. Finally, it appears that the
presence of an external field can stabilize one lattice type over another.

6.6 Appendix: The Fourier transform of the bond

probability in the presence of an external orien-

tational field

In this appendix we calculate the Fourier transform of the bond probability in the presence
of a quadrupole field. In the presence of a weak enough external field, it can be expressed
as

gF = g(r, r′)e−βUext(r,r′) ' g(r, r′)(1− βUext(r, r
′)). (6.23)

For Uext we use the Kramers potential, Eq. (6.7). We presume that the external field does
not change the length of a single polymeric bond, and only changes the orientation of this
bond. This assumption seems to be quite reasonable for weak enough external fields, i.e.,
far from the coil-stretch transition [142].

We apply the following geometry. The angle between the director of a field n and the
vector q in Fourier space we denote as γ, the angle between vector r− r′ and n we mark as
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ε, and, finally, the angle between r− r′ and q we denote as α. The following trigonometric
relationship in spherical coordinates (r, α, ψ) holds

cos ε = cos γ cos α + sin γ sin α cos ψ. (6.24)

We perform the Fourier transformation of the full function of ξ in Eq. (6.2),

ĝF =

2π∫

0

dψ

π∫

−π

sin αdα

∞∫

0

r2drg(r)(1 +
3

2
u(cos2 γ cos2 α

+ sin2 γ sin2 α cos2 ψ + sin 2γ cos α sin α cos ψ)) exp[iqr cos α] (6.25)

to obtain

ĝF (q) = exp[−q2ξ2/6]
{
sin(ql) + 3/4uq−1l−1 sin(qlK)(1 + cos 2γ)

+
9

4
uq−3l−1ξ−2 sin(qlK)(1 + 3 cos 2γ)

}
q−1l−1

− 9

16
u
√

6πq−3ξ−3 exp[−3/2l2K/ξ2]

×
{

erf
ξ2q − 3il√

6ξ
+ erf

ξ2q + 3il√
6ξ

}
(1 + 3 cos 2γ), (6.26)

where erf denotes the standard error function. Note that the sum of error functions in the
last term is always real. In the absence of an external field the expression above simplifies
to the familiar expression ĝF (q) = q−1l−1 exp[−q2ξ2/6] sin ql [106]. In the limit ξ >> l we
get

ĝF (q) = exp[−q2l2K/6]

{
1 +

1

2
u(1 + 2P2(cos γ) + 18q−2l−2

K P2(cos γ))

}

− 9

2
√

6
uq−3l−3

K

√
6πP2(cos γ)erf(qlK), (6.27)

which in the absence of the field leads to the regular expression of the standard Gaussian
model ĝF (q) = exp[−q2l2K/6]. In this last formula P2(cos γ) = 1

2
(3 cos2 γ − 1) is the second

Legendre polynomial. In the limit qlK << 1 this expression simplifies to

ĝF (q) = 1 +
1

2
u− (

1

6
+

1

12
u +

1

15
uP2(cos γ))q2l2K . (6.28)





Chapter 7

Beyond the polymeric reference
interaction site model: angular
correlations

ABSTRACT

In this chapter we present the general principles of a description of a model
polymeric melt with angular correlations between the chain segments. We find
that the classical polymer interaction site model (PRISM) is a limiting case of
our theory, where the angular dependence of the direct correlation function of
the interaction sites along the chains are averaged out, or absent altogether.

Angular correlations between different chains, brought about by anisotropic interactions,
can play a very important role in the physics of polymers leading, e.g., to liquid-crystalline
states in polymeric fluids [1]. It seems reasonable to suggest that the coupling between
angular and positional degrees of freedom also impacts upon the chain packing at higher
densities, and that this coupling can stabilize the crystal phase [17]. Evidence from com-
puter simulations supports this expectation [36].

The problem of the coupling between angular and positional degrees of freedom has been
studied at various levels of approximation with the aid of highly coarse-grained polymer
models in the context of the quasi one-dimensional crystallization to a (liquid-crystalline)
smectic A phase [143, 144]. The link between the angular and positional degrees of freedom
in true polymeric crystals, on the other hand, has not received a great deal of attention,
presumably because for these more accurate polymer models seem to be required [19]. The
most realistic polymeric model that one would use with this application in mind is the
rotational isomeric state model (RIS) [23].
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At present, there is no formalism that self-consistently deals with angular correlations
between interacting chains, be it in isotropic melts, anisotropic melts, or crystalline phases.
The purpose of this Chapter is to provide a first step towards such a formalism, and go
beyond what is currently the state of the art in the description of polymeric melts, being
the polymer reference interaction site model (PRISM) [82].

PRISM, developed by Chandler and Andersen [82], has become one of the most widely
used theoretical tools for the description of polymeric melts. This model describes the
microscopic structure of isotropic polymeric fluids reasonably well, except perhaps on very
large length scales [88] as well as on very small ones where the microscopic details of the
monomers come to the fore [88]. It may well be that angular correlations between bonds on
different chains are at the root of the apparent discrepancy between theory and experiment
in the limit of zero wave vector. There are indeed indications from computer simulation
studies that angular correlations between chains impact upon the compressibility of the
melt [36].

It so happens that PRISM as usually implemented cannot straightforwardly deal with
angular degrees of freedom, although some time ago Pickett and Schweizer [145, 146] did
adapt the PRISM formalism in their study of liquid crystallinity in semi-flexible polymers.
To this end, they chose a specific form of scattering function in an ad hoc way. Such an
approach obviously lacks self-consistency, and in fact does not reduce to well-established
theoretical predictions for hard rods and hard semi-flexible chains in the limit where the
second virial approximation becomes valid [143].

Here we formally derive the equivalent of an ‘aPRISM’ (or anisotropic PRISM) theory
that should make possible the description of interacting polymers with angular memory
under melt conditions. It is based on the Green-function formalism for the description of
the freely-hinged polymeric models described in Chapter 3, and reduces to the standard
PRISM formalism if the direct correlations between interaction sites on different chains are
independent of any angular degrees of freedom, or if these dependencies are averaged out.

We introduce the following concise notation of coordinates in a single polymeric test chain
that do have an angular memory (see Figure 7.1.)

1 = (r1,u1);2 = (r2,u2), etc., (7.1)

where {ri} denotes the positional and {ui} angular degrees of freedom. The polymer Green
function satisfies the following recursive equation [85] 1

Z(2,1; N + 1) = exp(−βUscf (2))

∫
d3Z(3,1; N)g(3,2) (7.2)

with Uscf the self-consistent field the test chain experiences from the presence of the other
chains, which we will treat as an external field [83], g(3,2) the so-called bond-probability

1This is within a first-order Markov approach. Higher-order Markov descriptions follow trivially.
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i=1

i=N

ri
ui

3=(rN-1,uN-1)

2=(rN,uN)

1=(r1,u1)

Figure 7.1: The geometry of the model polymer under consideration. Each point within
the polymeric chain has the positional coordinate r and coordinate u associated with
angular degrees of freedom. Note that u2

i ≡ 1. See also main text.

‘kernel’, similar to those which we introduced in the previous chapters [86], and β ≡ 1/kBT ,
where T denotes the absolute temperature and kB Boltzmann’s constant. The coordinates
1 and 2 are those of the first and last bond, and 3 that of the last but one. (See Figure
7.1.)

The partition function of a single chain of N segments, ZN , reads

ZN =

∫
d1

∫
d2 Z(2,1; N), (7.3)

whilst the partition function Z of a system consisting of M chains can, within a self-
consistent field approximation, be calculated from

Z =
1

M !
ZM

N . (7.4)

The free energy F is a function of Z [106]

βF =− lnZ − β

∫
d1 Uscf (1)ρ(1) + β

∫
d1 φ(1)ρ(1) + βFint, (7.5)

with φ the external potential, ρ(1) = ρ(r,u) a mean segment density at position r and
with orientation u, and Fint the free energy due to the interactions between the beads.
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The mean segment density is connected to the polymer Green function according to

ρ (1) ≡ MZ−1
N

∫
d2

∫
d3

N∑
s=1

Z(2,1; 1, s)Z(1,3; s,N). (7.6)

Note we have removed the self-consistent field contribution from the free energy, as it
should.

The chemical potential of the monomers follows from minimization of the full free energy
[94],

µ =
δF

δρ(1)
= −Uscf (1) + φ(1) +

δFint

δρ(1)
. (7.7)

In order to make the contributions from interactions explicit, we functionally expand the
third term of Eq. (7.7), assuming the external field to be sufficiently weak, giving

β
δFint

δρ(1)
= − C(1)(1)−

∫
d3 C(2)(1,3)

∫
d2 χ(3,2)φ(2) + · · · (7.8)

with χ(3,2) ≡ δρ(3)/δφ(2) the response function that we later identify with the structure
factor [49], C(1)(1) ≡ C(1) the zero-field one-particle direct correlation function, which is
a constant for homogeneous isotropic systems, and C(2)(1,3) the zero-field two-particle
direct correlation function. For isotropic melts the following identities are valid:

C(2)(1,3) ≡ C(2)(r1 − r3,u1,u3),

C(1)(1) ≡ C(1),

χ(3,2) ≡ χ(r3 − r2,u2,u3), (7.9)

where the indices 1, 2 and 3 now refer to the generalized co-ordinates of arbitrary segments.

It is much easier to manipulate the above equations in Fourier space. The Fourier transform
of the self-consistent field, derived from Eqs. (7.7) and (7.8), reads

Ûscf (q,u1) = φ̂(q,u1)− µδ(q)− C(1)δ(q)

−
∫

du2

∫
du3 Ĉ(2)(q,u1,u2)χ̂(q,u2,u3)φ̂(q,u3), (7.10)

where the hats indicate Fourier-transformed quantities.

From Eqs. (7.2) and (7.6) we can now (in principle) calculate in Fourier space the response
of the angle-dependent density to the external field

δ̂ρ(q,u1) =

∫
du2 χ̂(q,u1,u2) φ̂(q,u2), (7.11)

where δ̂ρ(q,u1) = ρ̂(q,u1) − ρ0δ(q)/4π, and ρ0 is the uniform segment density in the
absence of the field, ρ0 ≡ 1

V

∫
dr

∫
duρ(r,u) with V the volume of the system. By applying
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the Yvon equation that also holds for polymers [83], we find for the generalized structure
factor of the polymeric melt

S(q) = −1

ρ

∫
du1

∫
du2 χ̂(q,u1,u2). (7.12)

See also [147] and [148].

The external field φ̂(q,u) has to be chosen such that it couples to number-density fluctu-
ations of the interaction sites, producing the usual structure factor that measures correla-
tions between pure density fluctuations. These remain influenced by translation-rotation
coupling through the self-consistent field Eq. (7.10).

Clearly, to calculate S(q) we need to establish χ̂ first. To establish χ̂, we in turn need
to calculate the response of ρ̂ to the external field. The latter can only be calculated by
solving the operator equation (7.3), which depends, through the self-consistent field Eq.
(7.10), on χ̂. Clearly, we are dealing with a highly non-trivial, self-consistent calculation

that can only be executed provided Ĉ(2) is known. In practice, Ĉ(2) needs to be determined
self-consistently too, through some closure. (See also below.)

A simpler route to achieve the same is as follows. We first switch off the interactions
between the segments. In that case Ĉ(n) ≡ 0, and we obtain for the self-consistent field

Û0
scf (q,u1) = φ̂(q,u1)− µδ(q). (7.13)

Here the superscript 0 indicates the absence of any interactions. From Eqs. (7.7) to (7.13)

we calculate the response of δ̂ρ
(0)

to the field and find

δ̂ρ
(0)

(q,u1) =

∫
du2 χ0(q,u1,u2)φ̂(q,u2) (7.14)

with χ̂0 the response function for the case where the interactions are switched off, allowing
us to calculate the form factor ω,

ω(q) = −1

ρ

∫
du1

∫
du2 χ̂0(q,u1,u2), (7.15)

which again follows from a generalization of the well-known Yvon equation [49]. (See again
[147].)

If we switch on the interactions, it is obvious from Eq. (7.10) that, in

line with the usual RPA-arguments, we merely have to replace φ̂ by φ̂ −∫
du2

∫
du3Ĉ

(2)(q,u1,u2)χ̂(q,u2,u3)φ̂(q,u3) in Eq. (7.14) to obtain the relevant re-
sponse function [94, 106]. We obtain the equality

δ̂ρ(q,u1) =

∫
du2 χ̂0(q,u1,u2) (7.16)

[
φ̂(q,u2)−

∫
du3

∫
du4 Ĉ(2)(q,u2,u3)χ̂(q,u3,u4)φ̂(q,u4)

]
.
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Rearranging the above expression, we get

δ̂ρ(q,u1) =

∫
du2 φ̂(q,u2) [χ̂0(q,u1,u2) (7.17)

−
∫

du3

∫
du4 χ̂0(q,u1,u4)Ĉ

(2)(q,u4,u3)χ̂(q,u3,u2)

]
,

and, finally, obtain from Eq. (7.11) the indentity

χ̂(q,u1,u2) = χ̂0(q,u1,u2) (7.18)

−
∫

du3

∫
du4 χ̂0(q,u1,u4)Ĉ

(2)(q,u4,u3)χ̂(q,u3,u2).

To explicitly solve Eq. (7.18) requires Ĉ(2) to be known. At the level of a second virial

theory, Ĉ(2) may presumably be replaced by a Mayer function [49]. The approximation
of Shimada, Doi and Okano [149] is in essence a second virial approximation, and they

found by similar arguments Eq. (7.18) with Ĉ(2) replaced by a constant −ω, showing the
coarse-grained nature of their polymeric model.

Ideally, one obtains Ĉ(2) self-consistently from Eqs. (7.11), (7.12) and (7.18), and a suitable
closure, analogous to the procedure followed in the PRISM formalism [82], albeit of course

that in our case χ̂ has to be calculated self-consistently as well. To calculate Ĉ(2) and
χ̂ self-consistently, we first have to calculate the response function χ̂0 in the absence of
interactions, e.g., by invoking the above described procedure in which is applied a suitably
chosen external field that couples to pure density fluctuations.

By way of application of the described formalism, we make connection with the classical
PRISM equation and show that it (implicitly) ignores angular direct correlations between
segments. To this end, we define the following two-particle direct correlation function

C(q) = Ĉ(2)(q) (7.19)

if the interactions between the sites are isotropic, or, if the interactions are not isotropic,

C(q) =
1

(4π)2

∫
du1

∫
du2 Ĉ(2)(q,u1,u2). (7.20)

Replacing Ĉ(2) by C, Eq (7.18) can be written as

χ̂(q,u1,u2) ' χ̂0(q,u1,u2) (7.21)

−C(q)

∫
du3 χ̂(q,u3,u2)

∫
du4 χ̂0(q,u1,u4).

For the isotropic melt, the last term invoking the integration over u4 must be a constant.
This implies that the entire integral is a constant of u1 and u2, and that the isotropic
response function can be written as

χ̂(q,u1,u2) = χ̂0(q,u1,u2) + A (7.22)
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with a constant

A = −
C(q)

(
1

(4π)

∫
du1

∫
du2χ̂0(q,u1,u2)

)2

1 + C(q)
∫

du1

∫
du2χ̂0(q,u1,u2)

(7.23)

that follows upon insertion. Thus, the structure factor becomes

S(q) = ω(q)+
ρω2(q)C(q)

1− ρC(q)ω(q)
=

ω(q)

1− ρC(q)ω(q)
, (7.24)

equivalent to the classical PRISM equation. We therefore conclude that PRISM is a
limiting case of Eq. (7.18), where the orientational correlations between bonds on different
chains are either absent from the onset because of isotropic site-site interactions, or because
they are averaged out. This implies that within PRISM an interacting chain has the same
angular correlations as a non-interacting one, which cannot be very accurate [36].

We conclude that the full Eq. (7.18) has to be used for the (RPA-like) description of the
polymeric melt with bond-order correlations [149].





Chapter 8

Summary and proposals for future
work

ABSTRACT

In this chapter we conclude the thesis, and give the outlook for future theoretical
studies of polymer crystallization.

8.1 Summary and conclusion

An analysis of the crystallization of model polymers from the perspective of density func-
tional theory was the main objective of our work. Although crystallization is an ultimate
kinetic phenomenon, a free-energy landscape is vital as input for any reasonable kinetic
theory of crystallization. Therefore, equilibrium studies of the crystallization aiming to
obtain the free energy are, at least for shallow temperature quenches, of interest.

In this thesis we addressed the following questions:

- What is the main driving force for polymer crystallization?

- What is the role of polymer connectivity?

- Is it possible to predict with reasonable accuracy the elastic properties of polymeric solids
on the basis of highly simplified models?

- What are the possible explanations for the variety of lattice types found in polymeric
crystals?
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- What is the influence of an external orienting flow on the stability of polymeric crystals?

- What can be done for a more realistic description of the angular-dependent polymeric
systems?

In reply to these questions, we first presented in Chapter 3 an amalgamation of the Green-
function description of the conformation of polymer chains and the density-functional
theory of simple liquids into a self-consistent Green-function method for the chain-
configuration statistics of polymer melts. It allowed us to study the stability of the polymer
melt against non-uniform density distributions such as arise in the ordering of the chains in
a crystal. We have shown that without internal chain stiffening by a configurational freez-
ing of the intra-chain degrees of freedom, polymeric chains crystallize only if the effective
Kuhn length in the chains is sufficiently large compared with the range of the hard-core
interactions between the segments; in that case the densities of the coexisting phases are –
apart from lattice frustration effects when the bonds are fully stiff – largely determined by
the behavior of the monomeric hard spheres. We conclude that the packing entropy is the
main driving force for the formation of polymeric crystal. The role of connectivity in the
crystallization for the models under consideration is relative small, except if the effective
Kuhn length is not large enough, then no crystal is observed. We found that short chains
stabilize the crystal phase; hence, long chains crystallize at higher densities than short
ones.

In Chapter 4 we derived from the crystal free energy an expression for the solid-polymer
elastic moduli. It turns out that our predictions are already of the right order of magni-
tude, without adding any enthalpic contributions to the interactions between the chains,
indicating once more the dominant role of entropy and of steric forces. The elastic moduli
are weakly dependent on connectivity effects, only via the stabilization of the crystal phase.
Our results for the Poisson ratio, the bulk and the Young’s moduli are of the same order
of magnitude as the experimental values, an indication of the importance of the interchain
interactions to the elasticity of polymeric solids. We also improved significantly the RY
DFT (see also Chapter 2) results for the hard sphere crystal, obtaining the physically
realistic elastic moduli.

We studied the relative stability of two different lattice types for model polymeric solids
in Chapter 5. The most stable crystal-lattice type appears to be determined by the mean
length and the stretching stiffness of the bonds as well as by the size of the segments. We
suspect that these effects are one possible explanation for the variety of crystal lattices
observed for different polymers, apart from lattice frustration effects.

We find in Chapter 6 that our model polymers crystallize more easily if under the influence
of an external field of the quadrupole type than in absence of that field, but only if an
external field mimics elongational flow. The direction of the field with respect to the
orientation of the lattice plays an important role in polymer crystallization. Another effect
we discovered is that the presence of an external field can stabilize one lattice type over
another.
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We conclude in Chapter 7 that the often-used polymeric reference site model is a limiting
case of a random phase approximation-like treatment derived for the angular-dependent
polymeric systems, when the orientational correlations are averaged out. Our work can be
used for the description of anisotropic liquid-crystalline polymeric melts.

8.2 Outlook

It is beyond doubt that for the more accurate description of polymer crystals more realistic
polymeric models are needed. The rotational isomeric state model, which we mention in
Chapter 1, seems to be a good candidate for such model. However, models with angular
bond correlations are not easy to describe not least because the structure factor cannot be
obtained in closed form as is the case in the classical PRISM theory. Therefore, in Chapter
7, we made a first step towards a more accurate description of the melts which exhibit
angular correlations. The next step is the development of an angular-dependent density
functional theory similar in spirit to those that are used to model liquid crystalline phases
of low molecular weight substances. Unfortunately, also these theories are fraught with
difficulty. Ultimately, we would like to address the role of anisotropy in the crystallization
of polymers. Also we are looking for non-perturbative, easy-to-use DFTs for polymers
that are better than the one used in the current work. The more accurate theories might
shed light on the possibility of a metastable nematic phase hidden in the region where the
crystalline state is stable.
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Samenvatting

De belangrijkste doelstelling van ons werk is het maken van een analyse van de kristallistaie
van modelpolymeren, vanuit het perspectief van de dichtheidsfunctionaaltheorie. Hoewel
kristallisatie uiteindelijk een kinetisch bepaald proces is, is het vrije-energie landschap
uitermate belangrijk als invoer voor elke redelijke kinetische theorie van de kristallisatie.
Daarom is onderzoek dat evenwicht veronderstelt, met als doel de bepaling van de vrije
energie, van belang, tenminste voor ondiepe temperatuur quenches.

In dit proefschrift hebben we de volgende vragen behandeld:

- Wat is de belangrijkste drijvende kracht achter polymeerkristallisatie?

- Wat is de rol van de connectiviteit van het polymeer?

- Is het mogelijk om, met sterk versimpelde modellen,een redelijke voorspelling te geven
van de elastische eigenschappen van polymere vaste stoffen?

- Wat zijn de mogelijke verklaringen voor de diversiteit aan roostertypes die gevonden zijn
in polymerkristallen?

- Wat is de invloed van een externe orienterende stroming op de stabiliteit van poly-
meerkristallen?

- Hoe kan een relatistischer beschrijving van de hoekafhankelijke eigenschappen van poly-
meersystemen verkregen worden?

In antwoord op deze vragen hebben we eerst in Hoofdstuk 3 een samensmelting gepresen-
teerd van een Green-functie beschrijving van polymeerketens en de dichtheidsfunctionaal-
theorie van eenvoudige vloeistoffen in een zelfconsistente Green-functie methode voor de
statistische eigenschappen van de ketenconfiguratie van polymere smelten. Deze methode
stelde ons in staat om de stabiliteit van het polymeer te bestuderen in de aanwezigheid
van niet-uniforme dichtheidsverdelingen, zoals die optreden bij het ordenen van ketens in
een kristal. We hebben laten zien dat polymeerketens, in afwezigheid van interne ketenver-
stijving door het invriezen van de intra-keten vrijheidsgraden, alleen kristalliseren als de
effectieve Kuhn lengte van de ketens groot genoeg is, vergeleken met de afstand waarover
de harde-deeltjes interacties tussen de ketensegmenten hun werking hebben. In dit geval
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worden de dichtheden van de coëxisterende fasen - afgezien van roosterfrustratie-effecten
waar de bindingen volledig stijf zijn - grotendeels bepaald door het gedrag van de monomere
harde bollen. We concluderen dat de pakkingsentropie de belangrijkste drijvende kracht is
achter de vorming van een polymeerkristal. De rol van de connectiviteit op de kristallisatie
is voor de beschouwde modellen relatief klein, behalve wanneer de effectieve Kuhn-lengte
niet groot genoeg is, in welk geval geen kristalvorming waargenomen wordt. We hebben
gevonden dat korte ketens de kristalfase stabiliseren, waardoor lange ketens bij hogere
dichtheden kristalliseren dan korte.

In Hoofdstuk 4 hebben we uit de vrije energie van het kristal een uitdrukking voor de
elastische moduli van het vaste polymeer afgeleid. Het blijkt dat onze voorspellingen, zelfs
zonder het toevoegen van enthalpische bijdragen aan de interactie tussen de ketens, al van
de juiste grootte-orde zijn, hetgeen weer wijst op de dominante rol van de entropie en
sterische krachten. De elastische moduli hangen zwak af van connectiviteitseffecten, enkel
via de stabilisatie van de kristalfase. Onze resultaten voor de Poisson ratio en de bulk-
en Young-moduli zijn van dezelfde orde van grootte als de experimentele waarden, een
aanwijzing voor het belang van de interketen-interacties voor de elasticiteit van polymere
vaste stoffen. We hebben tevens de resultaten van RY DFT (zie Hoofdstuk 2) voor harde
bollen significant verbeterd en daarbij fysisch realistische waarden voor de elastische moduli
verkregen.

We hebben in Hoofdstuk 5 de relatieve stabiliteit van twee verschillende roostertypen voor
modelpolymeren bekeken. Het stabielste kristalrooster lijkt bepaald te worden door de
gemiddelde lengte en de stijfheid bij het strekken van de bindingen, evenals door de grootte
van de segmenten. We vermoeden dat deze effecten, naast het roosterfrustratie-effect,
een mogelijke verklaring geven voor de variëteit aan kristalroosters die voor verschillende
polymeren zijn waargenomen.

In Hoofdstuk 6 vinden we dat onze modelpolymeren gemakkelijker kristalliseren onder
invloed van een veld van het quadrupool type dan in de afwezigehid van dat veld, maar
alleen als het veld elongatiestroming nabootst. De richting van het veld ten opzichte van de
oriëntatie van het rooster speelt een belangrijke rol in polymeerkristallisatie. Verder vinden
we dat een extern veld bepaalde roostertypes kan stabiliseren ten opzichte van andere.

We concluderen in Hoofdstuk 7 dat het vaak gebruikte polymeric reference site model
een limietgeval is van een random phase approximation-achtige beschrijving afgeleid voor
hoekafhankelijke polymeersystemen, wanneer de oriëntationele correlaties uitgemiddeld
worden. Ons werk can gebruikt worden om smelten van anisotrope, vloeibaar-kristallijne
polymeren te beschrijven.

Er is geen twijfel mogelijk dat realistischer modellen nodig zijn voor een preciezere beschri-
jving van polymeerkristallen. Het rotational isomeric state model, dat we beschrijven in
Hoofstuk 1, lijkt een goede kandidaat te zijn voor een dergelijk model. Modellen met
hoekcorrelaties zijn echter niet eenvoudig te beschrijven, niet in de laatste plaats omdat
de structuurfactor niet in een gesloten vorm verkregen kan worden, zoals wel het geval is
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in bijvoorbeeld de klassieke PRISM theorie. Daarom hebben we in Hoofdstuk 7 de eerste
stap gezet naar een preciezere beschrijving van smelten die hoekcorrelaties vertonen. De
volgende stap is de ontwikkeling van een hoekafhankelijke dichtheidsfunctionaaltheorie in
de geest van die, welke gebruikt worden om vloeibaarkristallijne fasen van stoffen met een
laag molecuulgewicht te modelleren. Helaas zijn ook deze theorieën erg gecompliceerd.
Uiteindelijk zouden we de rol van anisotropie of de polymeerkristallisatie willen bespreken.
Verder zijn we op zoek naar DFTs die niet gebaseerd zijn op perturbatie, die makkelijk in
het gebruik zijn en bovendien beter dan degene die we in dit werk gebruiken. Preciezere
theorieën zouden met name licht kunnen werpen op de mogelijkheid van een metastabiele
nematische fase, verborgen in het gebied waar de kristallijne toestand stabiel is.
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