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Abstract
Consider a two-echelon inventory system consisting of a central depot (CD) and a number

of retailers. Only the retailers face customer demand. The CD is allowed to hold stock. In all
stockpoints, the echelon inventory position is periodically raised to certain order-up-to-levels. At
the central depot, incoming stock is allocated by using the consistent appropriate share rationing
(CAS) policy. This means that this policy attempts to keep the ratio of the projected net inventory
at any retailer over the system projected net inventory constant at any time. The size of this ratio
depends on the customer service level every retailer requires, and the behaviour of the demand
process.

When the orders arrive at the retailers, an instantaneous rebalancing of the total net stock of
the retailers takes place, so as to maintain all end stockpoint inventory at a balanced position.
This rebalancing is realized by the transshipment of stock, assuming that the time to transship
stock from one retailer to another is negligible compared to the replenishment lead time (lead time
between CD and a retailer).

Object of this analysis is the determination of all the control parameters (integral order-up
to-level, parameters of allocation policy at the CD and of the rebalancing policy at the retailer),
so that the desired (different) service levels are attained at the retailers at minimal expected total
costs. Exact expressions are developed to determine these parameters. However we will use
some heuristics to actually compute these parameters, because of the intractability of the exact
expressions. All analytical results are validated by Monte-Carlo simulation.

The model developed will be compared with the same model without periodic, instantaneous
rebalancing at the retailer. This yields insight into the conditions under which transshipment could
be useful.

1 IntrOduction

So far a lot of research has been done to determine good (optimal) stocknorms for the control of
multi-echelon production and distribution networks. With 'optimal' we mean that the total costs
(holding costs, distribution costs, etc.) are minimized under the condition that all the end-stockpoints
(retailers) attain their pre-determined target service levels. In a lot of literature the stocknorms are
determined by first defining a cost structure and next finding cost-optimal policies. See for example
Hoadley & Heyman [1977], Karmarkar & Patel [1977], Federgruen & Zipkin [1984] and Federgruen
[1993]. The major disadvantage of lhis approach is that in order to guarantee the pre-determined
target service levels, the penalty costs for shortages of stock have to be known. Unfortunately, these
costs are often unknown in practice and, therefore, the use of this approach is limited.
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Another approach, which is introduced by De Kok [1990] and Lagodimos [1992], is a more
'service related' approach to determine the stocknorms. In De Kok [1990] a planning procedure has
been determined for a divergent two-echelon inventory model that operates according to a periodic
review policy. No intermediate stocks are held at the central depot (CD), thus the CD serves merely
as a coordinator. In Verrijdt & De Kok [1993] some deficiencies are corrected in applying the logic
proposed by De Kok [1990]. Later the model is extended in Seidel & De Kok [1990] and De Kok,
Lagodimos & Seidel [1994] by allowing the CD to hold stock.

Another way to guarantee high service levels, but keeping low stocknorms is to allow lateral
transshipments between the end-stockpoints. However we have to realise that by allowing these
transshipments extra costs are involved:

• The information structure of the system probably has to be adapted, because the inventory
position of all end-stockpoints have to be known at every review moment.

• Transshipping material from one end-stockpoint to another requires extra distribution costs.

On the other hand when some end-stockpoints have excess inventory while others face shortages,
lateral transshipment has gained in popularity as the appropriate recourse action for the avoidance
of shortages. So the use of lateral transshipments depends on the trade-off between the extra costs
involved with transshipments and the ability to keep low stocknorms and thereby low holding costs.
Besides possible low stocknorms lateral transshipments also considerably reduce the imbalance in the
inventory system. Imbalance can be seen as the deviation of the inventory position of retailers from
the average inventory position of these retailers. Most models concerning divergent multi-echelons
systems assume the impact of imbalance on the service levels to be negligible. Some literature analyse
when this assumption is reasonable [Donselaar, 1990; Verrijdt & De Kok, 1993].

In Tagaras [1989] a two-echelon distribution system with two retailers employing an order-up-to
level policy is considered. So called pooling (transshipping) between the retailers is allowed. The
depot has infinite capacity and the replenishment lead time equals O. Also the transshipment between
retailers is assumed to be instantaneous. This model is characterised by complete pooling in that if
there is an economic incentive to transship one item, then the maximum amount will be sent. In our
opinion the use of this model in practise is very limited, because of the very restrictive assumptions.

In this paper we consider a divergent two-echelon inventory system consisting of one CD (which
is allowed to hold stock) serving N retailers. The CD uses a base-stock replenishment policy, Le.
every review period the CD orders enough from an outside supplier to bring the systemwide inventory
position to a certain level. Upon receipt of this order, the CD allocates it to the retailers by using a
Consistent Appropriate Share (CAS) rationing policy. This policy attempts to keep the ratio of the
projected net inventory at any retailer over the systemwide projected net inventory at any time equal
to a pre-specified fraction. This model has already been analysed by De Kok, Lagodimos & Seidel
[1994]. In this paper we extend this model by allowing instantaneous transshipment of stock between
retailers every review period. This model is only realistic when the lead times between retailers are
negligible compared to the lead time from CD to the retailers. One of the main goals of this paper
is to get insight for which instances the described transshipment model performs better compared to
the model without these transshipments. This is done by comparing the results of the model without
transshipments (De Kok, Lagodimos & Seidel [1994]) with the model of this paper.

A similar study has been done by Jonsson & Silver [1987]. They also compare a two-echelon
system without transshipments with a model with transshipments (a redistribution system). In their
model the CD is not allowed to hold any stock and the considered review period is large compared to the
lead times in the model. Furthermore every retailer has at most one outstanding order. However their
model takes into account that transshipment of stock takes time. They showed that a redistribution
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system becomes more advantageous in situations with high demand variability, a long planning
horizon, many retailers, a high service level and short lead times.

The paper is organized as follows. In Section 2 we describe the considered system. In Section 3
we present the rationing policy at the retailers and the rebalancing policy at the retailers. In Section 4
and Section 5 we determine the control parameters of the rebalancing policy respectively the rationing
policy at the CD. In Section 6 we present some numerical results and compare some ofthe results with
the model of Seidel & De Kok [1990] and De Kok, Lagodimos & Seidel [1994]. Finally in Section 7
we give a few concluding remarks.

2 Model description

Consider an inventory distribution system consisting of a central depot (CD) and N retailers. Each
retailer faces external demand, which is independent of the demand at other retailers. When a retailer
cannot satisfy customer demand, the shortage of on-hand stock (physical stock) will be backordered.
It is obvious that the retailers consider this inability to meet the demand undesirable, because of high
penalty costs due to backordering. Therefore the retailer uses the following order policy as to keep
the amount backordered within bounds: At the end of every review period retailer n (n = 1, ... , N)
places an order at the CD to bring the inventory position (stock on hand plus stock on order minus
backorders) up to S". This order arrives after a positive, deterministic lead time of I review periods.
Note that every retailer has the same replenishment lead time. After the arrival of a replenishment
order a complete rebalancing of the net stock (physical stock minus backorders) of all retailers takes
place by instantaneous transshipment. The rebalancing policy we use in this paper corresponds to the
CAS rationing policy of De Kok, Lagodimos & Seidel [1994]. In Section 3.2 the properties of this
policy are elaborated. Immediately after rebalancing every retailer places an order at the CD to raise
their inventory position to their order-up-to-level.

Besides the retailers also the CD uses a periodic review ordering policy to replenish the stock
at the CD, in order to meet the demands of the retailers. In this paper the duration of the review
period at the CD and at the retailers are equal, and the review moments are synchronised. At the end
of every review period the CD places an order at an outside supplier to bring the echelon inventory
(inventory position of CD and all retailers) to order-up-to-Ievel So. This order arrives after a positive,
deterministic lead time of L review periods. After receiving the order we can distinct two possibilities:

• The stock on-hand at the CD is large enough to raise the inventory positions of the N retailers
to their order-up-to-Ievels and the remainder is retained at the CD.

• The stock on hand at the CD is insufficient to meet the demand of all the retailers. When such
a shortage occurs, we assume that the demand which cannot be met is lost. An allocation rule
will be used to ration the on hand stock over the retailers. Again a CAS rationing policy will
be used, which will be thoroughly analysed in Section 3.1. This material rationing at the CD
takes place after the rebalancing at the retailers.

As we mentioned before the CD places an order at an outside supplier at the end of a review
period. We assume that this supplier has an infinite capacity. Hence the echelon order-up-to-level can
always be raised to So and the CD never has to backorder.

The order-up-to-levels So and S" have to be chosen in such a way that the disservice (the amount
backordered per review period) of every retailer is acceptable. This is done by guaranteeing that
retailer n gets a customer service level 13:. The service criterion considered in this paper is the fraction
of demand satisfied directly from the stock on-hand. This definition of the service level is widely used
in practise [Silver & Peterson, 1985; Lagodimos, 1992; De Kok, 1990].
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Figure 1 shows the inventory distribution system we analyse in this paper, The stockpoints are
depicted by a triangle and the duration of the lead time from supplier to CD and the replenishment
lead times are depicted above the arrows. We assume that the demand retailer n faces during one
review period has mean JLn and squared coefficient of variation c~.
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Figure I: Schematic representation of the inventory distribution system.

3 Analysis

Without loss ofgenerality we assume that the duration ofone review period corresponds to the duration
of one period. In this section we use the following notation:

The integral order-up-to-Ievel,
The order-up-to-Ievel of retailer n,
Stock on-hand at CD at time t just after arrival order,
The inventory position of retailer n at time t just before rationing,
The inventory position of retailer n at time t just after rationing,
The net stock of retailer n at time t just before rebalancing,
The net stock of retailer n at time t just after rebalancing,
Aggregate system demand in [t, t + k),
Demand at retailer n in [t. t + k).
Mean demand at retailer n during one period,
The systemwide projected net inventory at the CD at time t + l + 1,
The systemwide projected net inventory at the retailers at time t + 1,
Allocation-fraction of retailer n of rationing at CD,
Allocation-fraction of retailer n of rebalancing at retailers,
The total expected stock transshipped between all the retailers every period,
The expected stock transshipped by retailer n every period,

So - L::=1 Sn.

L::=1 JLn.
So - !Y> - do,

3.1 Rationing policy at the CD

At the end of an arbitrary review period the CD raises the echelon inventory position to So. For
notational purposes we will refer to this point in time as t = O. Because the common lead time equals
L periods. this order arrives at the end of period L. So the stock on-hand at the CD after arrival of
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this order, XL, equals
N

XL = So - DO,L - L /2 . (1)
n=1

If after the arrival of this order all the retailers want to raise their inventory position to their order-up-
to-level, there has to hold:

N

XL ~ L(Sn - /D . (2)
n=1

After rearranging (2) we get the following condition:

!:>. ~ DO•L ' (3)

By choosing a !:>. ~ 0 we can manipulate with the role of the CD. When!:>. = 0 the CD serves merely
as a coordinator. This means that when the stock arrives at the CD it immediately is allocated to
the retailers. While when!:>. = 00 the considered inventory system in fact reduces to N I-echelon
systems working parallelly.

In order to explain the rationing policy properly we introduce U/d , which will be referred to as the
systemwide projected net inventory at the end of period t + l + 1 just before a replenishment order
arrives at the retailers (see De Kok, Lagodimos & Seidel [1994D. U,d represents the best estimate
for the sum of the projected net inventory of all retailers at the end of period t + l + 1 as known at
the end of period t. If Condition (3) holds all the retailers can raise their inventory positions to their
order-up-to-levels at time t = L. Hence the systemwide projected net inventory at t = L equals the
planned cumulative safety stock of the retailers. In formula,

N

ut = L(Sn - (l + 1)/Ln) . (4)
n=1

But because the CD has a finite capacity, Condition (3) does not always hold. When this is the case
the CD in unable to fulfil the demand of all the retailers, and therefore the systemwide projected net
inventory does not coincide with the planned cumulative safety stock. Because the shortage in the
CD equals DO•L - !:>. the following equation holds,

N

ut = L(Sn - (l + l)/Ln) - (DO,L - !:>.) . (5)
n=1

Combining (4) and (5) in one general formula yields,

ut = So - !:>. - (DO,L - !:>.)+ - (l + l)do . (6)

The rationing policy which is used in this paper is a restricted version of the Appropriate Share
(AS) rationing introduced by De Kok, Lagodimos & Seidel [1994]. This AS rationing can be viewed
as an adaption of the allocation policy introduced by De Kok [1990] for two-echelon depot-less
networks. The purpose of AS rationing is to ensure that a pre-specified independent target service
level can be attained at a retailer.

The policy we use in this paper is introduced in De Kok, Lagodimos & Seidel [1994] as Consistent
Appropriate Share (CAS) rationing. This policy drastically reduces the number of decision variables
involved, because it rations the depot inventory such that

d iZ - (l + l)/Ln
~=N m

L(n - (l + l)/Li)
;=1

Oearly, we need that 2::=1 P: = 1. The rational of this policy is that it attempts to keep the ratio of
the projected net inventory at any retailer over the systemwide projected net inventory constant at any
time.

5



Next we will derive an expression for the inventory position of retailer n after rationing, iL. As
we mentioned before, if Condition (3) holds all the retailers can raise their inventory position to their
order-up-to-levels. Otherwise the on-hand stock of the CD will be divided over the retailers. Hence,

N { So - DO,L !:!. < DO,L
"in - N (8)
~ L - L Sn !:!. ~ DO,L

n=l
Again after some straightforward algebra, using (6), (7) and (8), we obtain for iL:

i~ = (I + l)iLn + p:Uf . (9)

This expression can be interpreted as follows: The inventory position of retailer n equals the expected
demand at retailer n during the replenishment lead time plus a review period, plus a fraction of the
systemwide projected net inventory.

If the depot inventory stock is rationed using the CAS rationing policy described above, this stock
is not allocated consistently over the retailers. To illustrate this inconsistency consider a retailer with
a large allocation-fraction. When Uf is positive this retailer profits because he gets a large part of the
systemwide projected net inventory. However when Uf is negative this retailer is 'punished' because
he gets a large part of the negative Uf. To deal with this problem we introduce an allocation-fractionq: for negative Uf. From the above argument is clear that the following has to hold to provide a
consistent rationing policy:

Condition 3.1. For every n E {I, ... , N} holds that if we define q: as a function of p~, this function
has to be monotonously decreasing in p~. 0

Clearly also for q: holds L::=l q: = 1. From Condition 3.1 immediately follows that it has to be
adapted to ensure that an increasing p~ implies an increasing customer service level.

iZ = (l + l)iLn + p:(Uf)+ - q:(-Uf)+ , (10)

where x+ = max(O, x).
Implicitly we assume the imbalance assumption of De Kok [1990]. This means that for all t and
n E {I, ... , N} holds ~n ~ It. When at a certain time t this assumption is violated the allocation of
stock to the different retailers must be adapted. Then the procedure described in De Kok [1990] can
be followed.

3.2 Rebalancing policy

In Section 3.1 we analysed how goods coming from the supplier are allocated over the retailers. After
this allocation at t = L, the goods are shipped to the retailers. These orders arrive after I periods.
During these periods retailer n faces a customer demand of D'L,L+I and the total net stock is rebalanced
I-I times. Hence the net stock of retailer n after the arrival of the order at t = L + I yields

L+I-l
lZ+1 = iZ - D2,L+1 + L (lIn - lIn) . (11)

I=L+l
Notice that when I ~ 2 the net stock 1£+1 depends on the complete history of the system. However
~hen the lead time from the CD to the retailers equals one review period (1=1), lL+/ only depends on

IZ and D'L,L+I'
Every time after the arrival of the orders at the retailers a complete rebalancing of the the total net

stock takes place by instantaneous transshipments. This is done by using a CAS rationing policy (see
also Section 3.1). We know from the derivation of (6) that the inventory position of all the retailers
together, after rationing at the CD, equals So - !:!. - (DO,L - !:!.)+. After I periods the orders arrive
at the retailers. During this period the total demand at the retailers equals DL,L+/. So, the net stock
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of all the retailers, after arrival of the orders, equals So - ~ - (DO,L - ~)+ - DL,L+I. Let us denote
the systemwide projected net inventory at time t + 1 by U;, which represents the best estimate for the
sum of the projected net inventory of all retailers at the end of period t + 1 as known at the end of
period t. Thus Uf+1 satisfies

Uf+1 = So - ~ - (DO,L - ~)+ - DL,L+I - do . (12)

Now units are transshipped instantaneously in such a way that after rebalancing the net stock of retailer
n yields,

J2+1 = IJ..n + p:(Uf+I)+ - q:(-Uf+I)+ . (13)
This expression is similar to that of (9). The net inventory after rebalancing equals the expected
demand retailer n has to face before a new order arrives, plus a fraction of Uf+I' Again we distinguish
between a positive and a negative Uf+I' If Uf+, is positive, retailer n gets fraction p~, otherwise he
gets fraction q~. Using an analogous argument like in the previous section we know Condition 3.2
has to hold.

Condition 3.2. For every n E {I, ... , N} holds that if we define q~ as a function of p~, this function
has to be monotonously decreasing in p~. 0

By choosing p~ and q~ we are able to differentiate between the different retailers. The reason of
favouring retailer n by choosing p~ relatively large, is based on the characteristics of retailer n (e.g. a
large customer service level is demanded, or the customer demand is very unpredictable). How these
differences between the retailers are expressed in the different sizes ofthe allocation-fractions is one of
the main issues of this paper. In the next section is explained how to compute the allocation-fractions
and in Section 6 we look at some examples.

It can easily be seen that that the expected shortage at retailer n in the time-interval [L+l, L+l+1)
equals:

E(D2+I,L+I+I - J;+I)+ - E(-J;+I)+ . (14)
Expression (14) represents the expected shortage at retailer n just before a new order arrives at
t = L + l + 1 minus the expected shortage at retailer n directly after rebalancing at t = L + t. Using
the definition of the customer service level for retailer n, f3:, yields

* E(DL+1,L+I+I - JE+,)+ - E(-JE+,)+
f3n =l- ,n=I, ... ,N. (15)

JLn

4 Determination of the control parameters of the rebalancing policy

In this section we elaborate on how the control parameters of the rebalancing policy can be determined.
These control parameters So, {p~} and {q~} are implicitly defined by the service equations. However
to determine these parameters we need a more tractable relation between the known f3: and the
unknown control parameters. Therefore we fit a mixture of two Erlang distributions on the one-period
demand distribution of every retailer. This means that the one-period demand of retailer n follows
with probability £¥I an Ekl,AI distribution and with probability £¥z := 1 - £¥I an Ek2 ,A2 distribution. In
short we use the notation M E(£¥I' (t2, AI, Az, k l , kz). For more details of this fitting procedure we
refer to Tijms [1994]. With F(.), f(.) we denote the cdf respectively the pdf of these mixed Erlang
distributions.

To simplify the analysis of the service equations considerably we like to make a similar assumption
as used in De Kok, Lagodimos & Seidel [1994].

Assumption 4.1. X := (DO,L - ~)+ + DL,L+I rv M E(f3I, f3z, </>1, </>2, 11,/2). 0
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Notice that when D. is small with regard to EDo,L (e.g. D. = 0, which corresponds to a pure
distribution system), (DO,L - D.)+ behaves almost like DO,L. This implies that X behaves almost like
the convolution ofthe random variables DO,L and DL,L+l' which can be well approximated by a mixed
Erlang distribution. When D. is large with regard to EDo,L (e.g. D. = 00), (DO,L - D.)+ will be zero
most of the time. This means that X behaves almost as DL,L+l' which can also be well approximated
by a mixed Erlang distribution. So only for D. around EDo,L the impact of this assumption is not
predictable in advance. Monte-Carlo simulation has been performed to test how large the impact
of this assumption is for several D.. So far Monte-Carlo simulation reveals that indeed by making
Assumption 4.1 only for D. around EDo,L the attained service levels differs a bit (at most 0.004) from
the service levels which would be attained if we had not made this assumption.

Using (15) and Assumption 4.1 we are able to rewrite the service equations in terms of the system
parameters. In Appendix A.I an outline of this derivation is given. After considerable algebra we
obtain,
if q~ # 0,

(16)

if q~ = 0,

2 kp-l Ai i (.)
JLn(1- fJ:) = ~ap ~ i~ f; ~ (-p:)j1/f/(c , ApP:)T:i_j(P:, Ap)+ (17)

(1 - FD.,l (JLn» (1 - Fx(c» ,

where definitions of 1/f/ (v, 11), T:j (x I A) and Ji,j (A) are given in Appendix A.
Notice that the N above equalities contain 2N + 1 unknown variables, namely {p~}, {q~} and

order-up-to-level So. To reduce this number of unkriown variables, we choose q~ in the following
straightforward way, such that Condition (3.2) holds:

r 1 - p~ (18)
qn = N - 1 .

Because also holds L~=l p~ = 1, the number of equations equals the number of unknown variables.
Hence P: is implicitly defined as a function of fJ: and So.

Now we present a heuristic algorithm which determines the integral order-up-to-Ievel So and the
fractions P:. This heuristic is proposed by De Kok [1990]. Later some adaptions have been made by
Verrijdt & De Kok [1993], and De Kok, Lagodimos & Seidel [1994].

1. Initialization of S, e.g. S := (L + 1+ l)do.

2. Calculate (p~)* for n = 1 I ••• , N, where (p~)* is the value for which (16)-(17) holds with
order-up-to-Ievel S. This can be done by using bisection, since the customer service level fJ: is
an increasing function of (p:)*.

3. If LZ=1 (p~)* ::: 1 then stop, else
if L;l.r=l (P:)* > 1 then increase S and go back to 2,
if Ln=l (p~)* < 1 then decrease S and go back to 2.

When this heuristic algorithm has stopped we use S and {(p~)*} as an approximation for the wanted
integral order-up-to-level So and fractions {p~}, so that the service constraints are satisfied.
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(22)

(21)

5 Determination of control parameters rationing policy

Notice from (13) and (15) that the service level attained by retailer n is independent of P:. This can
be understood by considering a distribution system where the incoming stock is allocated poorly over
the retailers with respect to the desired service levels of the retailers. Then the rebalancing policy
reallocates a lot of stock every period to attain the desired service levels. Hence the disadvantage of a
bad rationing policy at the CD is the large amount of stock which has to be transshipped every period.
Therefore we shall determine {P:} and {q:} as to minimize the total expected stock transshipped every
period, which is denoted by T. This corresponds to minimizing the expected transshipment costs
every period, when the costs of shipping stock from one retailer to another are equal. The size of T
can also be interpreted as the total expected outflow of all the retailers. Hence,

N

T= LTn , (19)
n=l

where Tn equals the expected stock transshipped from retailer n to another every period. In formula,

Tn = E(J~+I - j~+/)+' (20)

In order to evaluate Tn we need a tractable expression for the net stock J;'+I' Unfortunately when
I > 1, we know from (11) that J,n depends on the complete history of the system. Hence an analytic
approach to determine {P:} becomes cumbersome. Therefore we shall distinguish between the case
where I = 1 and I > 1.

5.1 Case where I = 1

In this case every retailer has exactly one outstanding order at the CD at any time. Because during the
shipment of such an order no rebalancing takes place, the summation term of (11) equals O. Now we
can rewrite (20),

Tn = E [iJ.l.n - D'L,L+I + p:(c - (DO,L - ~)+ -ldo)+ - q:«DO,L - ~)+ + ldo - c)+

-p~(c - (DO.L - ~)+ - DL,L+/)+ + q~«DO,L - ~)+ + DL,L+I - c)+r .
Tn consists of a lot of nested max-operators. This makes it almost impossible to derive an expression
for Tn which is tractable. Therefore we suggest to assume P: = q:, p~ = q~.

Under this assumption Condition 3.1 and 3.2 do not hold. Therefore Monte-Carlo simulation is
used to get insight into the impact of this assumption on the {P:} for which T is minimized. This
has been done for distribution systems with N = 2, ~ = 0, L = 6, I = 1, J.l.dJ.l.2 E {0.25, 1.0},
c~ = 1.0,c~ E {0.6, 1.0, 1.4}and.8~ = 0.9,.8i E {0.7, 0.8,0.9, 0.99}. In 19 out of the 24 systems the
optimal {P:} is not influenced by the assumption. The size of the minimal T, denoted by TM• however
differs significantly from TA , the minimal T using the assumption. In Table 1 the relative difference
(in percents) between TM and TA is depicted.

Because the optimal {p:l is hardly influenced by the assumption we will use this assumption in
the remainder of this Section 5.1. Using the assumption and (21) yields

Tn = E(Xn + Yn - Zn - Kn)+ ,

where Xn = (p~ - p:)(DO.L - ~)+ ,

Yn = P: L D~,L+I '
ii'n

Zn = (1 - P~)D'L,L+I '
Kn = (p~ - P:)c + l(p:do - /-Ln) •

In Appendix A.2 we assume 1Xn I, Yn, Zn to be distributed as a mixed Erlang distribution. This
enables us to derive a tractable expression for Tn. So when the {P:} are given we are able to compute
the total expected stock T transshipped every period. But we are interested for which {P:} this T is

9



0.6 14.1 9.4 0.7 3.3
0.25 1.0 12.6 7.7 7.6 4.0

1.4 12.3 7.2 14.4 4.2

0.6 2.1 2.5 1.0 0.7
1.00 1.0 1.9 0.9 0.0 0.2

1.4 4.1 2.1 0.5 0.0

Table 1: Relative difference between TM and TA for distribution systems with 6. = 0, N = 2, L = 6,
l = 1 c? = 1.0 and t3t = 0.9.

minimized. This problem corresponds to the so-called resource allocation problem [Ibaraki & Katoh,
1988],

min T(pf, ... , p~)
N

s.t. LP~ = 1,
n=l

a :::: p~ :::: 1 for n = 1, ... , N.
Before we present an algorithm to solve this non-linear optimization problem with N variables, we
look at Theorem 5.1.

Theorem 5.1. For all the retailers hold that the expected stock transshipped every period is a strict
convexfunction of the allocationjraction P:. 0

This theorem has been proven in Appendix B and implies that our optimization problem is in fact
a convex resource allocation problem. Using the convexity property of the objective function we
are able to solve the problem with a 'conventional' optimization algorithm. The gradient projection
method of Rosen (see [Bazaraa & Shetty, 1979]) could for example be used.

5.2 Case where l > 1

In this case every retailer has several outstanding orders at the CD. During the time such an order is
shipped from the CD to the retailer the total net stock at the retailers is rebalanced several times. This
is expressed by the summation term in (11), which in general not equals zero. This term causes Ji.+l
to depend on the complete history of the system. Hence an anlytic approach becomes cumbersome.
Therefore we suggest to use the following heuristic.

Heuristic 1: All the allocationjractions at the CD are equal to the allocationjractions at the
retailers. 0

The performance of this heuristic is analysed by simulation of several distribution systems. For
every system we determine the {P:J which minimizes T. Because we have to estimate T for every
set {P:J by simulation, we restrict ourselves to systems consisting of two retailers. Besides the
minimal expected total stock transshipped every period, denoted by TM , we estimate this minimal
transshipment quantity when the heuristic is used, denoted by Til. Now we are able to determine the
relative difference 8 (in percents) between TM and T/f. The results are shown in the tables of Appendix
C.

10



Table 3 depicts 0 for distribution systems without any intermediate stock (~ = 0), L +1= 7 and
c? = 0.6. This table indicates that the heuristic performs well (for 1 > 1 holds 0 :::: 2%), especially
when the target service level f3* is high (e.g. 0.99). Also notice the decrease of 0 with J.LtI !-L2. The
good performance of the heuristic is for a large part the result of the behaviour of T as a function of
the {p:l, because around the optimal {p:l the curve is flat.

Table 4 examines whether ~ influences the performance of the heuristic or not. This is done by
analysing the same distribution systems like in Table 3. now however ~ equals 85% of the mean
pipeline stock of the CD. For some systems 0 is influenced by ~. but the heuristic still performs well
for all systems.

In Table 5 we investigate the impact of the retailers having different target service levels. Notice
that the performance of the heuristic deteriorates when 1decreases and the demand variability of the
retailers increases. Hence the performance of this heuristic is only acceptable when 1 is large (e.g.
1 = 6) or/and the demand variability is low.

Table 6 examines the same distribution systems as in Table 5. Now however ~ equals 85% of
the mean pipeline stock of the CD. A main difference between Table 5 and Table 6 is the very strong
reduction in 0 for those systems in Table 5 with very large 8 (e.g. 22.8 and 9.7).

Unfortunately for some systems the performance of the heuristic is really poor. For those systems
another heuristic or an analytical approach should be developed. This could be a topic for further
research.

Finally we have accomplished to determine all the control parameters of the two-echelon model.
Unfortunately we have not been able to derive an analytic, tractable expression for Tn. Therefore we
suggest to determine Tn by simulation. which is manageable because all the control parameters are
known.

6 Numerical results

In this section we shall try to give insight in when pooling between retailers could be profitable. In
order to do this we have to know:

• The extra costs involved with the transshipments. Denote these costs per review period by C~ .

• The (possible) reduction in costs by these transshipments. Denote this reduction in costs per
review period by Cr.

To simplify the computations we assume that C~ only consists of the distribution costs of shipping
stock between retailers, and that these costs are equal for one retailer to every other. Hence,

C~ = aT, a::: 0 ,
where a := costs of shipping one unit of stock from one retailer to another.
Assume that the reduction in costs by transshipment is given by

C, = h(S;t - So), h::: 0 •

where h := holding costs of one unit of stock.
Sot := integral order-up-to-Ievel for system without transshipment, which has been

analysed in De Kok. Lagodimos & Seidel [1994].

Notice that now implicitly is assumed that the holding costs at the CD and at all the retailers are
equal. For notational purposes we define r := al h, which is supposed to be a known constant. So
transshipment becomes profitable when for the cost-quotient Q := Gel Cr holds

T
Q = r swt < 1.

o - So

11



First we shall analyse the relation between Q and the system parameters of distribution systems
with retailers which all demand the same target selVice level. We restrict ourselves to this special
class of distribution systems because when retailers demand significantly different selVice levels the
imbalance assumption in the non-transshipment model causes a change in the attained service levels.
Hence a comparison between the model with and without transshipment is impossible, due to the
unknown actual So'. Furthermore we assume the CD not to hold any stock, i.e. /:!;. =O. The effect of
holding stock at the CD is discussed afterwards.

3,--------------, 6,------------------,

632

2

5
2.5

2

1.5

H (0.6, 0.7) 'i- (0.6,0.85).g. (0.6, 0.99)

-b-(1.0,0.7) +(1.0,0.85)*(1.0,0.99)

*" (1.4,0.7) + (1.4, 0.85) - (1.4, 0.99)

3
L

2

0.5 ~--+--_+_-__+-_____1

1

Figure 2: A distribution system with N = 2,
1= 1, J.Ll/J.L2 = 0.67, c~ = 0.6 and ci = 1.0.

Figure 3: A distribution system with N = 2,

L +1= 7, J.Ll/J.L2 = 0.67 and cr = 1.0.

In Figure 2 we vary lead time L from 1 to 5, while keeping I constant. This figure shows that
when the total lead time increases, pooling becomes less advantageous.

Figure 3 depicts the effect of the CD-location on Q, by varying lead time I and keeping L + I con
stant. This has beendoneforthe parameter set {(ci, ,8*) lei E {0.6, 1.0, 1A}, f3* E {0.7, 0.85, 0.99}}.
ObselVe that pooling becomes more advantageous when the CD is positioned as close as possible
near the supplier. Besides this also the demand variability (cD plays an important role when selVice
level ,8* and lead time I are not too large. The larger ci is the more advantageous pooling becomes.
Most of the above obselVations can be explained by the effect statistical economies ofscale [Eppen
& Schrage, 1981]. At the end of an arbitrary review period the echelon inventory position is raised to
the integral order-up-to-Ievel. In the model of De Kok, Lagodimos & Seidel [1994] the allocation of
this order to the individual retailers take place at the CD, after L periods. In the next I periods prior to
the arrival at the retailers, every retailer has to overcome the fluctuations of the demand all by himself.
In the transshipment model however the actual allocation to the individual retailers takes place after
the arrival of the order at the retailers. That is why during the I periods prior to that arrival sudden
fluctuations in the demand are overcome by all retailers.

Figure 4 depicts that Qdecreases with the selVice level ,8*, and that the more the mean demand
per period of the retailers differs the larger Q gets when ,8* is small.

Finally we like to analyse the effect of the number of retailers on Q. In Figure 5 we try to get
insight into this effect, which is complicated by the rapidly growing number of parameters. In Table
2 the characteristics of the demand processes of the retailers used in Figure 5 are presented. A 'X'
in the table means that this retailer is present in that distribution system. Figure 5 shows that Q

12
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Figure 4: A distribution system with N = 2,
L = 6, l = 1 and cf = c~ = 0.6.

Figure 5: A distribution system with L = 4 and

l = 1.

Retailer i J.Lj c2 N=2 N=3 N=4 N=5
I

1 5 1.0 X X
2 10 0.6 X X X
3 10 0.6 X X X X
4 15 1.0 X X X X
5 20 1.4 X

Table 2: The characteristics of the demand processes of the retailers and the participating retailers for
the several distribution systems.
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decreases with N. The extend of this decrease is determined by service level f3*. However also the
demand characteristics of the added retailer influence the extend of this decrease. Notice that when
N increases the probability of some retailers having excess inventory while others face shortages
increase. Hence transshipments become more advantageous and Q decreases.

So far all the distribution systems we considered did not hold any intermediate stock (6. = 0).
Note that the stock at the CD at time t (after rationing) equals (~- D1-L,r)+. Hence when ~ increases,
the mean amount of stock held at the CD increases. The stock held at the CD can not be used to satisfy
customer demands, therefore the integral order-up-to-level So has to increase to guarantee the service
levels. On the other hand an increase of ~ diminishes the imbalance and simulation also reveals a
decrease in TH. Thus the optimal ~ depends on the trade off between the increase of So (holding
costs) and the decrease of TM (transshipment costs). Figure 6 depicts this trade off for a distribution
system with N = 2, L = 3, I = 4, J.LI = 10, J.Lz = 15, c~ = 0.6, c~ = 1.4, f3~ = 0.95 and f3i = 0.8.

31C>r------------,-10.1

1-.· so (Analysis) .•;:.,. 'j \StrnJlalion) I

Figure 6: The trade off between So and TH for a distribution system with N = 2, L = 3, I = 4,
J.LI = 10, J.Lz = 15, c~ = 0.6, c~ = 1.4, f3~ = 0.95 and f3i = 0.8.

For the optimal ~ holds
aso aTM

a~ = -r a~ .
More extensive research has to be done to get more insight in how the optimal ~ depends on the
control parameters.

7 Conclusions

In this paper we considered a two-echelon distribution system consisting of acental depot (CD) and
a number of retailers. Every review period an instantaneous rebalancing of the total net stock takes
place, by transshipping stock from one retailer to another. The rebalancing policy used is the CAS
rationing policy of De Kok, Lagodimos & Seidel [1994], just like the rationing policy used at the CD.
In this paper the integral order-up-to-level and the allocation parameters of the rebalancing policy
are determined, so that the desired (different) service levels are attained. Furthermore we derived an
analytical approach to determine the parameters of the CAS rationing policy at the CD, such that the
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mean total transshipment costs are minimized. This only holds when every retailer has at most one
outstanding order at the CD all the time, i.e. 1= 1, because if a retailer has more than one outstanding
orders the analysis becomes cumbersome. For these cases we developed a heuristic which performs
well for retailers with equal service levels.

A comparison of the described transshipment model with the same two-echelon distributionmodel
without transshipment [De Kok, Lagodimos & Seidel, 1994] shows that often the former model yields
a considerable smaller integral order-up-to-Ievel. However, additional costs to rebalance the total net
stock every review period are incurred. Therefore a condition under which transshipment could be
useful is derived. This shows that the transshipment model becomes more advantageous in situations
with many retailers, a high service level, mean demands per period of the same size, a small total lead
time and the CD located as close as possible to the supplier. These results correspond to the results of
Jonsson & Silver [1987].

Finally, a disadvantage of the used model is that every review period a rebalancing between the
retailers takes place. Therefore a model should be developed, which only transships when this is
really necessary. This could be a topic for further research.

A Definitions

In this Appendix A we first give an outline on how equalities (16) and (17) can be derived. Secondly
we introduce some assumptions to derive a tractable expression to compute Tn.
But before we do this we introduce the following notation:
If X ro.J M E«(XI' (X2, AI. A2' kl , k2) then holds,

A; (j +kp -I)!ex. (x) = (X -------'-----
P,) p (Ap + X)j+kp (kp - I)!
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Furthennore, we define

-},,(IJ..+xc) j! ~ (A(IJ.-n + xc)Y'
rj(x, A) = e 'j+l LJ k' '

/I. k=O •

Jp.i,j(A) =

(23)

(24)

J
j

2,'t(v, 4» = ~CZ.'(4)/+~l (-1); - 4»1 ~ (i) K1-s{t;+. (v. 1)n) .
LJ p,j LJ i' LJ ssp
p=l 1=0 • s=O

A.I Outline derivation service equations

In (15) the definition of the customer service level of retailer n, [3:, is given. Substitution of (13) in
equality (15), yields

[3* = 1 - E(Y1,n - IJ.-n)+ - E(Y2,n - IJ.-n)+ = 1 N
n ' n , ... , 0

IJ.-n

with Y1,n = DZ+1,L+I+l - P:(U£+I)+ + q~( -U£+)+,

Y2•n = Y1,n - DZ+1,L+I+l'
Next we detennine the expected shortage at the end of a period, E(Y1,n -IJ.-n)+' It can be shown that
E(Y1,n - IJ.-n)+ yields

2 kp-lAi i (')

~C¥p~ i~ f;; ~ (-p:)jl/f/(C,App:)ri-j(p:,Ap)+

2 kp-l Ai i (.)

~C¥p~ i~ f;; ~ (-q~)j [Ji.j(Ap) -l/f/(C, Apq~)ri-j(q~,Ap)] + q~ # 0

2 Ip-l (~r ( 4»
L[3pL+ri q:,-; ,
p=l i=O l. qn
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(25)

o
Substitution of (24) and (25) in (23) yields the expressions (16)/(17).

A.2 Expression for Tn

In order to obtain a tractable expression for Tn we make the following assumption:

Assumption A.I. For the random variables of equation (22) holds

I X n I""' ME(ct~,ct~,A7,A~,k~,k~),
Yn ""' ME(f3~ . f3~, ¢~. ¢~, l~, l~),

Zn ""' M E(vt, V;, 17~, 17~. m~, m~).

for all n E {I, ... , N}.

After considerable algebra we get,
ifpr - pd > 0n n - ,

Tn = I[K.~oj [(E I Xn I+EYn - Kn)Fz.(-Kn) - EZ n + 0t·(-Kn, 0)] +

tf3; I: (E I Xn I +1;A.~ i) (~~)i t (i,)K~-jej~;«-Kn)+, ¢;)+
p=l .=0 'l'p j=O )

t :: I:(k; - i) (A~)i t (i,)(_l)j I: (i ~ j)K~-j-kj/'t«-Kn)+, A;),
p=l P i=O l. j=O ) k=O

'f r d 0I Pn - Pn < ,
Tn = I(K.~oj [(EYn - EZn - Kn)Fz.(-Kn) - E I Xn I +O;X.I(-Kn, 0)] +

I(K.:,::oj [t V;~ (-EYn + m; ~ i) (-i~;)i t (i,)K~-j~);.I(-Kn, 17;)] +
p=l .=0 17p j=O )

1 [~f3; ~(r _ i) (¢;)i ~ (i) ~ (i - j)Ki-j-k j2,n(_K ¢n)] +
(K.~Oj L...J A.n L...J P "L...J' L...J k n j.k n, p

p=l 'l'p i=O l. j=O ) k=O

t ~~ I:(l; -i) (~~); t (i.) 0/.(0, ¢;)I: (i ~ j)K~-j-ke1~:I«-Kn)+,4>;) .
p=l 'l'p ;=0 l. j=O ) k=0

o

(26)

(27)

B Proof of Theorem 5.1

In this section we give the proof ofTheorem 5.1. For that purpose we determine the second derivative
of Tn to P:, where

Tn = E(Xn + Yn - Zn - Kn)+ .
After conditioning of Yn and Zn in (28) we obtain

Tn = 100100

E [(P: - P~)(DO,L -L\r- - v(y, z, p~)r dFy.(y)dFz.(z) ,

where v(y, z, P:) = z - y + l(p:do - /-Ln) + (P: - p:)c.
Taking the second derivative of Tn to P: yields

a2
T [001 00

a(p~;2 = 10 0 H(y, z, p~) dFy.(y)dFz.(z) ,
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d a2E [(P: - P~)(DO,L - ~)+ - V(y, z, p~)r
where H(y, Z, Pn) = a(p~)2

By conditioning on (DO,L - ~)+ and case distinction of P: - p~ we are able to get an explicit expression
for H (y, Z, p~). After some straightforward algebra, we get

(- v(y, Z, p~»+ P: = P:
-1 d (z - Y + [(p:do - J.Ln»2 + (V(y, Z, P~») p

n
' < Pnd

H( d) (v(y,z,P.)<Oj (' d)3 f(DO,L-I'» , dy, Z, Pn = Pn - Pn Pn - Pn
(z - y + [(p:do - J.Ln»2 (V(y, Z, P~») d

1 E Pn'>Pn(v(y,z,p:»Oj (p~ _ p~)3 J(Dorl'»+ p~ _ p~

(31)
Define,
GI := fey, z) E R~ I v(y, z, p~) < a} ,
G2 := fey, z) E G I I Z - y + [(p:do - J.Ln) # a},
G 3 := fey, z) E R~ I v(y, z, p~) > 0, Z - Y + [(p:do - J.Ln) # a} .

It is easy to see that G b G 2 and G3 are non-empty sets. Using equations (30) and (31) yields

a2
Tn II da( d)2 = H(y, Z, Pn) dFy.(y)dFz.(z) ,

Pn G

where G equals G I , G2 or G3, depending on p~ and P:.
Therefore G is non-empty, hence there exist a (y, z) E G. For this (y, z) holds that H(y, z, p~) > O.
Hence the second derivative of Tn to p~ is positive. So Tn is a strict convex function of P:. Then it
is clear that the expected stock transshipped every period, T, is a convex function of the allocation
fraction p~, because the sum of strict convex functions is also strict convex. 0

C Tables on testing performance Heuristic 1

[= 1 [= 3 [=6

J.Ll / J.L2 c2 {J* 0.7 0.8 0.9 0.99 0.7 0.8 0.9 0.99 0.7 0.8 0.9 0.992

0.6 1.1 1.2 1.1 0.8 0.4 1.2 1.7 1.0 0.0 0.3 1.1 0.4
0.25 1.0 2.2 2.0 1.5 0.0 1.9 1.8 0.8 0.0 1.4 1.5 0.4 0.0

1.4 2.4 1.8 0.9 0.0 1.4 0.5 0.0 0.0 0.7 0.3 0.1 0.0
0.6 0.4 0.4 0.3 0.0 0.0 0.1 0.3 0.0 0.2 0.0 0.4 0.0

0.67 1.0 0.6 0.2 0.0 0.0 0.5 0.4 0.3 0.0 1.0 1.2 0.3 0.0
1.4 0.3 0.0 0.0 0.1 0.3 0.2 0.0 0.4 0.8 0.3 0.1 0.1
0.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

1.00 1.0 0.0 0.0 0.1 0.2 0.4 0.2 0.1 0.2 0.7 0.6 0.2 0.0
1.4 0.0 0.1 0.3 0.4 0.2 0.0 0.0 0.8 0.7 0.4 0.1 0.2

Table 3: Relative difference 8 for distribution systems with ~ = 0, N = 2, L +[ = 7 and c~ = 0.6.
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1= 1 1=3 1=6
J.L1/J.L2 C2 f3* 0.7 0.8 0.9 0.99 0.7 0.8 0.9 0.99 0.7 0.8 0.9 0.992

0.6 1.3 1.3 1.2 0.8 0.6 1.4 1.7 0.9 0.0 0.2 0.7 0.1
0.25 1.0 2.4 1.9 1.3 0.0 1.7 1.4 0.4 0.0 0.8 1.0 0.1 0.0

1.4 2.3 1.3 0.4 0.0 0.8 0.1 0.1 0.0 0.3 0.1 0.0 0.0
0.6 0.6 0.3 0.2 0.0 0.0 0.1 0.3 0.0 0.2 0.0 0.2 0.0

0.67 1.0 0.6 0.2 0.0 0.0 0.6 0.6 0.3 0.0 0.4 0.8 0.4 0.0
1.4 0.2 0.0 0.0 0.1 0.5 0.2 0.0 0.3 0.8 0.8 0.3 0.0
0.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

1.00 1.0 0.0 0.0 0.1 0.2 0.6 0.5 0.1 0.2 1.2 0.9 0.6 0.0
1.4 0.0 0.1 0.3 0.5 0.4 0.1 0.0 0.7 1.3 1.1 0.3 0.1

Table 4: Relative difference 8 for distribution systems with D.. = 0.85Ldo, N = 2, L + 1 = 7 and
ci = 0.6.

1= 1 1 = 3 1=6
J.Ll / J.L2 c2 f3; 0.7 0.8 0.9 0.99 0.7 0.8 0.9 0.99 0.7 0.8 0.9 0.992

0.6 0.8 1.1 1.0 4.2 0.5 0.9 1.7 0.7 0.0 0.1 0.7 0.1
0.25 1.0 2.2 2.7 1.6 3.7 1.8 2.3 1.7 2.3 0.5 0.7 1.1 0.4

1.4 3.4 4.1 1.1 22.8 2.8 3.7 0.3 9.7 1.1 1.5 0.1 4.0
0.6 1.2 1.2 0.0 4.2 0.5 0.3 0.0 2.8 0.0 0.0 0.2 0.9

1.00 1.0 3.0 2.6 0.0 3.8 1.2 0.8 0.0 3.8 0.0 0.0 0.0 1.6
1.4 4.7 3.7 0.2 3.8 1.8 1.0 0.0 4.6 0.1 0.0 0.1 2.2

Table 5: Relative difference 8 for distribution systems with D.. = 0, N = 2, L + 1 = 7, cf = 1.0 and
fit = 0.9.

l = 1 1=3 1=6
J.Ll / J.L2 c2 f3; 0.7 0.8 0.9 0.99 0.7 0.8 0.9 0.99 0.7 0.8 0.9 0.992

0.6 0.9 1.3 1.1 3.9 0.6 1.1 1.8 0.8 0.0 0.1 0.4 0.1
0.25 1.0 2.3 3.0 1.4 4.2 2.0 2.6 1.3 1.9 0.3 0.4 0.6 0.3

1.4 3.9 4.8 0.7 3.9 3.3 4.0 0.1 2.9 0.8 1.0 0.0 0.4
0.6 1.4 1.3 0.1 4.5 0.3 0.2 0.1 2.5 0.2 0.3 0.6 0.3

1.00 1.0 3.2 2.7 0.0 4.2 0.9 0.5 0.0 3.3 0.0 0.1 0.0 0.7
1.4 5.2 3.8 0.2 4.1 1.7 0.6 0.0 4.2 0.0 0.0 0.3 1.0

Table 6: Relative difference 8 for distribution systems with D.. = 0.85Ldo, N = 2, L +1 = 7, ci = 1.0
and f3t = 0.9.
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