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Fro. 2

Problems:
(1) Is there an algorithm to decide whether, for given C and a given function

F: S --> S [J Iv}, there exists a control automaton P which has F as its as-
sociated mapping?

(2) Is there a general procedure for finding such a P, if it exists?
(3) Characterize the class of all control automata P which have the same

associated mapping F: S -- S U }.
(4) In the class of (3), find those P with the least number of states.
(Remark. There is no unique machine with a minimum number of states, in

general.)
This model has, among others, the following interpretation: C is a computer

with S as set of states, I as set of instructions, and J as set of lump-conditions
(conditional transfers). P is a program in flowchart notation, where V is the set
of decision vertices (branching points), v0 the initial vertex.

SOLUTIONS
Problem 64-16 was also solved by J. M. QuoIAM (Sint-Etienne (Loire), France).
Errata:

In the solution of Problem 63-14 (April, 1965, p. 290), (13) should red

(13) R.m- 2 (p’*- 1)(pn-- 1).
/ p’- 1

D. PHILLIPS (Argonne National Lbortory) notes that the solution of the
extension of 64-1 (July, 1965) by Trench is incomplete in that he does not estab-
lish that the constant of integration, which rises in integrating (8), is equal to
zero. Trench, subsequently, sent in proof that the constant of integration is
zero. For completeness here, we restate the original problem nd include dif-
ferent solution which implies that the desired constant of integration is zero.

Problem 64-1, An Asynptotic Expansion, by H. O. ]OLLAK AND L. SHEPP (Bell
Telephone Laboratories).

Show that

x 1
e -!logn logx-- -+- O(x-z)

This problem has arisen studyg the entropy of he Poisson distribution

H(x) Vn(X) log p,(x),
n=l
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where

p(x) _xe
n!

Solution by J. H. VAN LINT (Technological University, Eindhoven, Nel,!e,

lands).
We use the known formula for Euler’s constant

1 Sn
r=l

r-1 log n -Jr ’t 2(n -t- 1) zc 0

Note that

(2) e nih’-0 -- (n+2)

It now follows from (1) and (2) that

e_ z log n

O(z-).

’-t-logx-- Ei(--x) --.(1 e-z)--(e- 1-- x) + O(x-’)

1
log x + O(x-).

To obtain more terms of the asymptotic expansion, we just use more terms in the
expansion (1).

Problem 65-1, A Least Squares Estimate of Satellite Attitude, by Gnncn WAIBa
(IBM--Federal Systems Division).

Given two sets of n points {v, v, ..., v}, and {v*, v*, ..., v*}, where
n ->_ 2, find the rotation matrix M (i.e., the orthogonal matrix with determinant
-1) which brings the first set into the best least squares coincidence with the
second. That is, find M which minimizes

This problem has arisen in the estimation of the attitude of a satellite by using
direction cosines {v*} of objects as observed in a satellite fixed frame of reference
and direction cosines Ivy} of the same objects in a known frame of reference. M
is then a least squares estimate of the rotation matrix which carries the known
frame of reference into the satellite fixed frame of reference.

Solution by J. L. FhRRELL and J. C. STUELPNAGEL (Westinghouse Defense
and Space Center).


