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[39,28,6]-code C. Let D be the dual code C’. By Corollary 2.1, 
D is a [39,11,15]-code, which contains the all-one vector 1 (since 
C is even-weight). The dual code of D is just C and so has 
minimum weight 6. Let A, be the number of codewords of 
weight i in D. Then A, = A3,-,, for each i (since 1 E D )  and 
A , ,  = A l l  = 0 (by Lemma 2.4, the residual of D with respect to 
a codeword of weight 21 is an [18,10,5]-code, which does not 
exist by Table I). 

The MacWilliams’ identities (2.1) with t = 0, 2, 4, and 6 now 
give 

A,,  + A,, + A,,  + A,, = 1023, 
21Aj5 +5A,,  - 7A,, - 19A,, = - 741, 

-309Al~-181A,, -29Al7+171AlY= -82251, 
1519A 15 + 1407A + 595 A,, - 969A 1, = - 3 262 623 + 1024 B, , 

which lead to 

a) A,,  =(5388-9A,,)/14, 
b) A ,, = ( - 726 +SA ,y)/2, 
c) A,,=(7008-20A,y)/7, 
d) A,, = 30720 - 8B,. 

From a), d), b) and c), we get respectively 
AI ,=6(mod7) ,  A,,=O(mod8),  Al,2146,and A,,1350, 

which imply that A,,  is one of 160, 216, 272, or 328. There are 
just the following four possible weight distributions for D. 

W,: 1 282 37 544 160 160 544 37 282 1 
W,: 1 246 177 384 216 216 384 177 246 1 
W,: 1 210 317 224 272 272 224 317 210 1 
W4: 1 174 457 64 328 328 64 457 174 1 

For each of the four cases, the B,’s were calculated (with the 
aid of a computer program) from the MacWilliams’ identities 
(2.1) in order to check whether they were all integer-valued. 
Indeed they were, but in each case exactly one B, was negative. 
It is easily confirmed by hand calculation that 

for W,, B,,= - 5 ,  
for W, , B,, = - 3, 
for W,, B, ,=- l ,  
for W,, B,,= -6. 

So we have a contradiction in each case. 0 

Corollary 3.15: d(39 + i ,  28 + i )  I 5 and d(38 + i, 28 + i )  I 4, 
for 0 I i I 4. 
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On the Minimum Distance of Combinatorial Codes 
L. TOLHUIZEN AND J. H. VAN LINT 

Abstract-A conjecture of Da Rocha concerning the minimum dis- 
tance of a class of combinatorial codes is proven. 

I. INTRODUCTION 

The generator matrix of the first-order Reed-Muller code 
R(1, r n )  of length n = 2”‘ consists of all possible column-vectors 
from ( [ F 2 ) ’ r 1 .  The combinatorial code C(rn,s) has as generator 
matrix the matrix A(rn,s) of length (:), that has all possible 
column-vectors of weight s as columns. 

These codes were introduced by V. C. Da Rocha [2]. It is an 
easy exercise to show that the weight of the sum of any J rows of 
A(m,  s) only depends on J, rn and s. If we denote this weight by 
F(m, J ,  s), then we have for 1 I J 5 rn 

where P,(x;m) is a Krawtchouk polynomial (cf. [l], p. 130, [2], 
Th. 2). Note that F(m, 1,s) = ( I : : ; ) .  

In [2], Da Rocha conjectures that the minimum weight of 
C(m,s) is ( f y I : )  for s <m/2. We shall prove this conjecture 
and, in fact, we shall prove the following theorem. 

Theorem 1: For rn 2 1, 2 s  < m and 11 J I m - 1 we have 

11. RELATIONS FOR F(m, j ,  s) 

By adding all the rows of A(rn, s), or by replacing all 0’s by 1’s 
and vice versa, one obtains the following two trivial relations 
([2], Theorems 3, 4) 

if j is even, 
F(rn,j,m - s) = - F ( r n ,  j , s ) ,  if j is odd. (2.2) 
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From these we obtain Let j be even. By (2.5) and (2.3) we have 

F(2s + 1, j , s )  = ( syl)  - ~ ( 2 s ,  j -  1 , s  - I > +  ~ ( 2 s ,  j -  1 , s )  
F (2s , j ,  s) = ( 2,” = ( :_1’), if j is odd. (2.3) 

Note that by a permutation of columns, we can give A h  + 1, 
= ( sTl) + ( :I;) - ~ ( 2 s ,  j -  1 , s  - 11, 

s + 1) the form and now the induction hypothesis yields 

F(2s +1, j , s )  I A ( r n + l , s + l )  = 

2s-1  
From this we immediately find two more relations: 

F (  rn + 1, j ,  s + 1) = F (  rn ,  j ,  s) + F( rn ,  j ,  s + I), (2.4) F(2s  + l , j , s )  2 ( sz’l) + (:--;) - (:--1’) = ( s251). 
Cases a), b), c) show that the theorem is also true for rn = k + 1 

0 F(rn + 1 ,  j , s  + 1) = (:)- F ( m ,  j - l , s ) +  F ( m ,  j - 1 , s  + I ) .  and the proof is complete. 

111. PROOF OF THEOREM 1 

We prove the theorem by induction on m. For small values of 
rn the theorem is easily checked by hand. Assume the theorem 
is true for rn I k .  Let 2 s  < k + 1, 1 I j I k .  We distinguish three 
cases. 

Case a)  j = k .  We have by (2.1) 

F ( k  + 1, k ,  s) 

F ( k  + 1,1,  s) = if s is even, 

( k  :l)- F ( k  + I , l , s ) =  ( k  :’)-( s F l )  = (t), i f s  is odd. =i 
Case b) 1 I j I k - 1 and 2s < k .  Now we use (2.4) 

F ( k  +1, j , s )  = F ( k ,  j , s  - 1)+ F ( k ,  j , s ) ,  

so by the induction hypothesis 

F ( k  + 1 ,  j , s )  I ( SI:)+(kT’ j =(:I 
and 

Case c )  1 I j I k - 1 and 2s = k .  We must now distinguish 
between odd and even values of j. Let j be odd. By (2.4) and 
(2.3) we have 

= ( :3+F(2s , ; , s -1 ) ,  

and then the induction hypothesis yields 

Note that the theorem has some combinatorial interest. It is 
nice to know that codewords cannot have weight less than the 
rows of the generator, but one should also realize that these 
codes are not good. Also as anticodes they do not seem to be 
very promising. 

For the sake of completeness we mention the following facts 
concerning C ( m ,  s), (cf. [21) 

C (  rn , s )  has dimension rnl if s is odd, 
( r n - 1 ,  i f s i seven .  

By adding the all-one vector of the code C(rn,s )  if s is even, a 
code with dimension rn is obtained with minimum weight d(m,  s) 
where 

For 2 s >  rn, the assertion about the minimum distance is a 
consequence of the following obvious extension of Theorem 1. 

Theorem 1‘: 

a) For r n 2 1 , 2 s > r n  and l i j i r n - 1  we have 

b) For s 2 1 and 1 I j I 2s - 1 we have 

F(2s,  j , s )  = (:I;), s odd, 

and 

Prooj 

a) Combination of Theorem 1 and (2.2). 
b) Combination of Theorem 1, (2.31, (2.4) and a). 0 
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