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Abstract 

We apply formal methods to specify and verify an atomic broadcast protocol. The 
protocol is implemented by replicating a server process on all processors in a network. We 
show that the verification of the protocol can be done compositionally by using specifica
tions in which timing is expressed by local clock values. The requirements of the protocol 
are formally described. Underlying communication mechanism, clock synchronization as
sumption, and failure assumptions are axiomatized. The server process is also represented 
by a formal specification. We verify that parallel execution of the server processes leads 
to the desired properties, by proving that the conjunction of all server specifications and 
axioms about the system implies the requirements of the protocol. 

1 Introduction 

Computing systems are composed of hardware and software components which can fail. Com
ponent failures can lead to unanticipated behaviour and service unavailability. To achieve high 
availability of a service despite failures, a key idea is to implement the service by a group of 
server processes running on distinct processors [Cri90]. Replication of service state information 
among group members enables the group to provide the service even when some of its members 
fail, since the remaining members have enough information about the service state to continue 
to provide it. To maintain the consistency of these replicated global states, any state update 
must be broadcast to all correct servers such that all these servers observe the same sequence 
of state updates. Thus a communication service is needed so that client processes can use it to 
deliver updates to their peers. This communication service is called atomic or reliable broad
cast. We will refer to it as atomic broadcast. There are two sets of atomic broadcast protocols: 
synchronous protocols, such as [BDS.5,CASD8.5], and [Cri90], and asynchronous protocols, such 
as [BJS7] and [CM84]. 

Synchronous atomic broadcast protocols assume that the underlying communication de
lays between correct processors are bounded. Given this assumption, local clocks of correct 
processors can be synchronized [CAS86,CAS93]. Then the properties of synchronous atomic 
broadcast protocols are described in terms of local clocks as follows [CASD85,CASDS9]: 

• Termination: every update whose broadcast is initiated by a correct processor at time 
T on its clock is delivered by all correct processors at time T + ~ on their own clocks, 
where ~ is a positive parameter and is caIled broadcast termination time. 
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• Atomicity: if a correct processor delivers an update at time U on its clock, then that 
update was initiated by some processor and is delivered by each correct processor at time 
U on its own clock . 

• Order: all correct processors deliver their updates in the same order. 

Synchronous atomic broadcast protocols provide an upper bound for broadcast termination 
time. Thus they can be used in real-time applications where deadlines must always be met, 
even in the presence of failures. On the other hand, asynchronous broadcast protocols do 
not assume bounded message transmission delays between correct processors. Thus they can
not guarantee a bound for the broadcast termination time. Therefore asynchronous atomic 
broadcast protocols cannot be used in critical real-time applications. 

In order to provide service despite the presence of faults, real- time systems often adopt 
fault-tolerance techniques. To achieve fault-tolerance. some kind of redundancy is introduced 
which will affect the timing behavior of a system. Hence it is a challenging problem to guarantee 
the correctness of real-time and fault-tolerant systems. We are interested in applications of 
formal verification methods to these systems. Since atomic broadcast service is one of the 
fundamental issues in fault-tolerance. we select an atomic broadcast protocol presented in 
[CASD85,CASD89j which tolerantes omission failures as our verification example. Henceforth, 
we use the term atomic broadcast protocol to refer to this protocol. An informal description of 
the protocol, an implementation, and an informal proof which shows that the implementation 
indeed satisfies the requirement of the protocol are presented in these papers. We follow the 
ideas of [CASD89j as closely as possible and compare our results with it in section 8. 

The configuration of the service is illustrated in the following figure (fig.I). 
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Fig.I. Atomic Broadcast Service Configuration. 

The atomic broadcast service is implemented by replicating a server process on all distributed 
processors in a network. Thus any client process on any processor can use this service. We allow 
more than one client process located on one processor. Assume that there are n processors in 
the network. Pairs of processors are connected by links which are point-to-point, bi-directional, 
communication channels. The duration of message transmission between correct processors 
takes finite time. Each processor has access to a local clock. It is assumed that local clocks 
of correct processors are approximately synchronized. It is also assumed that only omission 
failures occur on processors and links. \Vhen a processor suffers an omission failure, it cannot 
send messages to other processors. \Vhen a. link suffers an omission failure, the messages 
traveling along this link may be lost. To send an update to its peers, a client process initiates 
the atomic broadcast server process located ou the same processor to atomically broadcast 
that update. After such a request, ea.ch server process will deliver that update to the client 
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processes located on the same processor. To achieve the order property of the service, there is 
a priority ordering among all processors. If two updates are initiated at different clock times, 
they will be delivered according to the ordering of their initiation times. If they are initiated 
at the same clock time on different processors, they will be delivered according to the priority 
of their initiation processors. 

In general, to formally verify a system, we need a proof theory which consists of axioms and 
rules about the system components. To be able to abstract from implementation details, it is 
often convenient to have a compositional verification method. Compositionality enables us to 
verify a system by using only specifications of its components without knowing any internal 
information of those components. Such compositional proof systems have been developed for 
non-real-time systems, e.g. [Zwi89], and real-time systems, such as [Ho091] and [ZH92]. In 
particular, if the system is composed of parallel components, the proof method should contain 
a parallel composition rule. Let S(p) denote the atomic broadcast server process running on 
processor P, 'P denote a specification written in a formal language based on first-order logic, and 
S(p) sat 'P denote that server process S(p) satisfies specification 'P. Under the condition of 
maximal parallelism (i.e., each process runs at its own processor), the parallel composition rule 
states that if server process S(Pi) satisfies specification 'Pi and 'Pi only refers to the interface of 
Pi, for i = 1,2, ... , n, then the parallel program S(pdll·· ·IIS(Pn) satisfies 1'17=1 'Pi. This rule 
is formalized as follows. 

Parallel Composition Rule 

S(Pi) sat 'Pi, 'Pi only refers to the interface of Pi, for i = 1, ... , n 
S(P1)11·· ·IIS(Pn) sat Ai=l 'Pi 

We also need a consequence rule to weaken a specification and a conjunction rule to take the 
conjunction of specifications. Let S be any process. 

Consequence Rule 

Conjunction Rule 

S sat 'P, 'P -; 1/J 
S sat"IjJ 

S sat 'P1, S sat 'P2 
S sat 'P1 f\ 'P2 

Recall that local clocks of correct processors are approximately synchronized. We show that 
the verification of the protocol can be done compositionally by using specifications in which 
timing is expressed by local clock values as follows. 

• In section 2, we specify the requirements of the protocol in a formal language based on 
first-order logic. We call this the top-level specification and denote it by AB S. Thus our 
aim is to prove S(pdll·· ·IIS(Pn) sat ABS. 

• In section 3, we axiomatize the required assumptions about the system, including under
lying communication mechanism, clock synchronization assumption, and failure assump
tions. We denote the conjunction of all these axioms by AX. 

• In section 4, we define the properties of the atomic broadcast server process running 
on processor p. We caU this the server process specification and denote it by Spec(p). 
Spec(p) should only refer to the interface of p. We assume S(p) sat Spec(p). 

• By the parallel composition rule, we obtain S(P1)11· . ·IIS(Pn) sat 1'17=1 Spec(Pi). By 
the conjunction rule, we obtain S(P1)11·· ·IIS(Pn) sat 1'17=1 Spec(pi) f\ AX. We prove 
Ai=l Spec(pi) f\ AX -; ABS in sections 5, 6, and 7. Hence the consequence rule leads 
to S(pdll·· ·IIS(Pn) sat ABS. 
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• We compare our results with [CASD89] and conclude in section 8. 

2 Top-Level Specification 

We formalize the top-level requirements of the atomic broadcast protocol in this section. 
Let P be a set of processor names and L a set of link names. We assume that all processors 

and links have unique names. We use p, q, T, S, ... to denote elements of P and I, I" ... to 
denote elements of L. Let G be the network of processors and links, i.e., G = P U L. 

To denote real times, we use a dense time domain called RT I ME. The standard arithmetic 
operators +, -, x, and the relations =, <, and::; are defined on RTIME. We use lower case 
letters, e.g. t, U, v, ... , to denote variables ranging over RT I ME. 

Each processor has access to a local clock. We denote by Cp a function which represents 
the value of the local clock of processor p, i.e., Cp(t) is the value of the local clock of p at real 
time t. Let all clock values range over a domain called CV AL. We assume T ::0: 0, for any 
T E CVAL. Similarly, the operators +, -, x, and relations =, <, ::; are defined on CVAL. 
We use capital letters, e.g. T, U, V, ... , to denote variables ranging over CV AL. We also use 
[U, V], [U, V), (U, V], and (U, V) to express, respectively, closed, half-open, and open intervals 
of clock values. 

The atomic broadcast service is implemented by a group of server processes replicated on 
all processors in the network. When a client process initiates a server process running on 
processor p by sending a request of broadcasting update a, we call p the initiator of a and say 
that p initiates a. Similarly, when the server process delivers an update a to client processes, 
we say that p delivers a to client processes. 

To formally describe the properties of the protocol, we define the following primitives: 

• correct(p) at t: processor p is correct at real time t. 

• correct(l) at t: link I is correct at real time t. 

• initiate(p, a) at t: processor p finishes with receiving a request of broadcasting update 
a from a client process located on p at real time t, i.e., p initiates a at real time t. 

• deliver(p, a) at t: processor p starts to send update a to client processes at real time t. 

Henceforth, for any primitive 'P at t, we define the following abbreviations: 

• correct(p) == lit : correct(p) at t 

• correct(l) == lit : correct(l) at t 

• 'P atp T == ::It : 'P at t 1\ Cp(t) = T 

• 'P byp T == ::ITo: 'P atp To 1\ To ::; T 

• 'P beforep T == ::ITo : 'P atp To 1\ To < T 

• 'P inp I == ::ITEI: 'P atp T, where 1<;; CVAL. 

In [CASD89], assumptions about the system are simplified. For instance, it is assumed that 
message processing time on a correct processor is zero. In this paper, we will take all possible 
times spent by a correct processor into account. Then the termination and atomicity properties 
can only be described by using an upper bound and an interval, respectively, instead of precise 
time points as in [CASD89]. 
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2.1 Termination 

The property of termination is stated as follows: every npdate whose broadcast is initiated 
by a correct processor s at clock value T will be delivered at all correct processors by clock 
value T + D, on their own clocks, where D, is a positive constant and is also the broadcast 
termination time. 

As usual, we take the convention that any free variable occurring in a formula is universally, 
outermostly, quantified. Thus the termination property is formally expressed as follows: 

TERM == initiate( s, CT) ats T 1\ correct( s) 1\ correct( q) -+ deliver( q, CT) bYq T + D, 

2.2 Atomicity 

The atomicity property is described as follows: if a correct processor p delivers an update at 
clock value U, then that update was initiated by some processor s at some local time T and 
is delivered by all correct processors at some local clock value between U - Dz and U + Dz, 
where Dz is a positive constant and indicates the difference of delivery times of an update by 
two correct processors. 

This property is formalized as follows: 

ATO M == deliver(p, CT) atp U 1\ correct(p) 1\ correct( q) -+ 

3s,T: initiate(s,CT) ats T I\deliver(q,CT) inq [U - Dz,U + DzJ 

Notice that the atomicity property does not follow from the termination property, because it 
does not assume a correct initiator. 

2.3 Order 

The property of order is expressed in [CASD89J as follows: all correct processors deliver their 
updates in the same order. We formalize it in the following way. Let U be any clock value. 
If (CT" ... , CTk) is a sequence of updates delivered by processor p before local time U, then 
there should exist a clock value V such that (CT" ... , Gk) has also been delivered by any other 
processor q before local time V. Notice that U and V can be different. Furthermore, there is 
no reason to exclude the possibility that more than one update is delivered at the same time 
by a processor. Therefore the behavior of a processor is represented by a set of sequences, and 
simultaneous updates are modelled by including aU possible interleavings. 

We define the following abbreviation: 

• ~deliver(p) inp f == ~3CT : deliver(p, CT) inp f. 

Let IN denote the set of all natural numbers (including 0). Let IN+ = IN \ {O}. We define 
List(p, U) to be the set of all possible sequences of updates delivered by p before local time U 
as follows. 

Definition 2.1 For any processor p and any clock value U E CV AL, define 
List(p, U) = {(CT" CTZ, . .. , CTk) I there exist k E IN+, U" Uz, ... , Uk E CV AL such that 

U, :s; Uz :s; ... :s; Uk < U, 
deliver(p, CTi) atp Ui, for all i = 1,2, ... , k, 
~deliver(p) inp (Uj, Uj+,), for all j = 1,2, ... , k - 1, and 
~deliver(p) inp [0, U, ).} 

The order property is formalized as follows: 

ORDER == correct(p) 1\ correct(q) -+ VU3V : List(p, U) <;; List(q, V) 

By this property, we obtain that, for any COlTect processors p and g, VU3V List(p, U) <;; 



List(q, V) and, simultaneously, IfU'3V': List(q, U') ~ List(p, V'). Hence l' and q deliver their 
updates in the same order. 

The top-level specification of the protocol is the conjunction of these three properties. 
Recall that ABS denotes the top-level speciftcation of the atomic broadcast protocol. Thus, 

ABS == TERM /\ ATOM /\ ORDER. 

3 System Assumptions 

In this section, we axiomatize the assumptions about the system. The conjunction of all the 
axioms is denoted by AX. 

3.1 Processors and Links 

We first axiomatize the topology of the network. Define the following primitives. 

• link(l,p, q): I is a physical communication channel between l' and q. 

• Link(p) = {I I 3q : link(l,p, q)}: the set of links each of which connects l' with another 
processor. 

For any 1', q, and I, if IE Link(p), IE Link(q), and l' 't q, then l' and q are connected by l. 
This is expressed by the following axiom. 

Axiom 3.1 (Link) IE Link(p) /\ I E Link(q) /\1' 't q -+ link(l,p,q) 

We also assume that a link connects at most two processors. 

Axiom 3_2 (Point-to-Point) link(l,p,q)/\ link(l,p,r) -+ q == r 

Let FP = {p I ~correct(p)} and FL = {I I ~correct(l)}. Define F = FP U FL. Thus F 
denotes the set of processors and links which are not always correct. We assume that during 
any protocol execution there can be at most In processors that suffer omission failures, where 
In E IN. 

One important assumption about the network is that during any execution of the protocol 
all correct processors remain connected via correct links. Recall that G is the set of all proces
sors and links, i.e., G = P U L. Then G \ F = {p I correct(p)} U {II correct(l)} and it denotes 
the set of correct processors and links. G \ F can be considered as a graph in which processors 
are vertices and links are edges. We use d(p, q) to denote the distance between p and q and 
we call G \ F connected if and only if there exists a path between any two processors in G \ F. 
Now we can give the axiom for connectivity. 

Axiom 3.3 (Connectivity) G \ F is connected. 

Given axiom 3.3, we assume that the diameter of G \ F is d. 

3_2 Bounded Communication 

Now we give the axioms for the underlying communication mechanism. We define two primi
tives: 

• send(p, In, I) at t: processor l' starts to send message m along link I at real time t. 

• receive(p, m, l) at t: processor l' finishes with receiving message In along link I at real 
time t. 
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The abbreviations defined in section 2 are also used for these two primitives. 
Two processors connected by a link are called neighbors. When send(p, m, I) at t or 

reeeive(p, m, I) at t holds, 1 must be a link connecting p and one of its neighbors. 

Axiom 3.4 (Neighbor) send(p,m,l) atq T V reeeive(p,m,l) atq T --> I E Link(p) 

Two processors can send messages to each other if they are connected by a link. Communication 
along links is synchronous in the sense that the duration of the transmission of a message is 
bounded by two parameters 'Y and 6 with 'Y,6 E CVAL, 'Y > 0, and 'Y:<:: 6. Let p and q be two 
correct processors connected by a correct link I. Let r be any correct processor to be used as 
reference. If p sends message m along link I at clock value U according to the clock of r, then 
q will receive m along 1 at some clock value in the interval [U + 'Y, U + 6J according to the clock 
of r. 

Axiom 3.5 (Bounded Communication) 
send(p, m, I) atr U 1\ correct(p) 1\ correct( q) 1\ link(l, 1', q) 1\ correct(l) 1\ correct( r) --> 

receiver g, m, I) inr [U + 'Y, U + 6J 

3.3 Clock Synchronization 

We assume that clocks of correct processors are synchronized within a parameter L 

Axiom 3.6 (Clock Synchronization) 

eorrect(p) at t 1\ eorreet(g) at t --> ICp(t) - Cq(t)1 < E 

It is trival to derive the following lemma. 

Lemma 3.1 (Clock Synchronization) con·eet(p) 1\ correet(g) --> ICp(t) - Cq(t)1 < E 

We also assume that local clocks are monotonic. 

Axiom 3.7 (Monotonic Clock) 

According to [Cri93J, an implicit assumption was made and used in [CASD89J, namely that 
any clock on a correct processor has a speed that varies from the speed of any other clock on 
a correct processor by a very small quantity p, p 2: O. This p drift was neglected in [CASD89J 
and it resulted in the following approximation: while a message travels between two processors 
the clocks of the two processors will keep their distance constant. We take this p factor into 
account and formalize this assumption as follows: 

Axiom 3.8 (Relative Speed) conect(p) 1\ correct(q) 1\ tl :<:: t2 --> 

(1 - p)(Cp(t2) - Cp(tl)) :<:: Cq(t2) - Cq(tJ) :<:: (1 + P)(Cp(t2) - Cp(tl)) 

3.4 Failure Assumptions 

The atomic broadcast protocol verified in this paper tolerates omISSIOn failures. When a 
processor suffers an omission failure, it cannot send out messages. More precisely, if a processor 
p is not correct at real time t, then p is not able to send any message m along any link 1 at 
time t. This is also called the fuil silence property of processors. 

Axiom 3.9 (Fail Silence) .correct(p) atq T --> .send(p, m, I) atq T 
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When a link suffers an omission failure, the messages entrusted on that link may be lost. But 
if a message has been received by a processor along a (possibly faulty) link, then that message 
should have been correctly transmitted by that link, i.e., that message is not corrupted, there 
are no timing errors on the message sending and receiving, etc.. Therefore, if a processor q 
receives a message m along link I at clock value V, then there exists another processor p which 
has sent that message earlier along I at some time between [V - 8, V - "y] according to the 
clock of r. 

Axiom 3.10 (Only Omission Failure) 
receiver q, m, I) atr V /I C01"Tect( r) --+ 3p t q : send(p, m, I) inr [V - 8, V - "y] 

4 Server Process Specification 

In this section, we characterize 5(p), i.e., the atomic broadcast server process running on p. 
Notice that, in the top-level specification, only delivery of updates is important and thus 

primitive deliver(p, a) at t is used. In the server process specification, information about 
the initiation time T and the initiator s of an update a is needed to implement the top-level 
specification. Therefore we define another primitive convey(p, < T, s, a > ) at t as follows: 

• convey(p, < T, s, a » at t: processor p starts to send message < T, s, a > to client 
processes at real time t. 

Then the relation between deliver(p, a) at t and convey(p, < T, s, a» at t is clear: 

• deliver(p, a) at t +-+ 3s, T : convey(p, < T, s, a» at t 

Assume that any correct processor can send a message to all its neighbors within T, E CV AL 
time units and any correct processor can convey all the updates initiated at the same clock 
time to client processes within Te E CV AL time units. Let Tr E CV AL, Tr 2: T" be the time 
to ensure that all correct processors ha.ve received a message containing an update after it is 
initiated. These parameters will be used to determine the values of D1 and D2 occurring in 
the top-level specification. 

The server specification is described as follows. 

• Initiation requirement. 
When l' initiates an update a at clock time T, it will send message < T,p, a > to all 
its neighbors immediately. When l' has waited long enough to be sure that all correct 
processors have received that message, p will convey < T, 1', a > to client processes. This 
is formalized by the following formula: 

5tart(p) == initiate(p, a) atp T -; VI E Link(p) : send(p, < T, p, a >, I) inp [T, T + T,] /I 

convey(p, < T, 1', a» inp [T + T" T + Tr + Te] 

• Relay requirement. 
When p receives a message < T, s, a >, it will relay this message on all links except the 
one along which it received this message. As in the initiator's case, when its clock reaches 
T + T" l' will convey < T, s, a > to client processes. 

Relay(p) == receive(p,< T,s,a >,1) atp U-; 
'111 E Link(p) \ {I} : send(p, < T, s, a >, h) inp [U, U + T,] /I 

convey(p, < T, s, a» inp [T + Tn T + Tr + Te] 

• Convey requirement. 
If processor p conveys a message < T, s, a> at clock time U, then there can be only two 
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possibilities: either p initiated a itself at local clock time T with U E [T + T" T + TT + Te], 
or p received the message < T, s, a > at some clock value V and p '" s II U E [T + T" T + 
TT + Te] holds. 

When p initiates a at local time T or it receives < T, s, a > at some local time V, we 
say that p learns of message < T, 8, a > and define: 

Learn(p, < T, 8, a» '" (initiate(p, a) atp Til p '" 8) V 
(31, V: receive(p,< T,s,a >,1) atp V lip", s) 

Then the requirement is formalized by the formula Origin(p): 

Origin(p) '" convey(p, < T, s, a» atp U --., 
Learn(p, < T, s, a» II U E [T + T" T + TT + Te] 

• Ordering requirement. 
If two messages are conveyed by processor p, then they will be conveyed in the order of 
initiation times of updates contained in these two messages. If initiation times are the 
same, then they will be conveyed according to the priority of initiators. Therefore it is 
assumed that there is a total order -< on the set of processor names P. This total order 
specifies a priority ordering among processors. We define a lexicographical ordering c: 
on pairs < T,s >. 

Definition 4.1 For any two pairs (TI,SI) and (T2,S2), (TI,SI) c: (T2,S2) iff 
(TI < T2) V (TI = T2 II 81 -< 82). 

Then the fourth requirement is formalized by the following formula 5equen(p): 

5equen(p) '" convey(p, < TJ, Sl, al » atp VI II convey(p, < T2, 82, a2 » atp V2 
--., (VI < V2 ,.... (TI , 81) c: (T2, 82)) 

The requirements mentioned above are only for correct processors. Since omission failures are 
allowed, we still need to define what is the acceptable behaviour for faulty processors. Thus 
we have the following requirement for any arbitrary processor p . 

• Failure requirement. 
When p sends a message < T, 8, a > to a neighbor at local time U, there can be only 
two possibilities: either l' initiated a itself at local time T and U E [T, T + Ts] holds, or 
l' received < T, s, (J > at some local time ]I and U E []f, ]I + T,] holds. 

5 ource(p) '" send(p, < T, s, a >, I) atp U --., 
(initiate(p, a) atp T II U E [T, T + T,] II p '" s) V 
311 , ]I : (receive(p, < T, s, a >, h) atp ]I II U E []f, ]I + Ts] II P ¢ s) 

When send(p, < T, s, a >, I) atp U holds, by the fail silence axiom 3.9, correct(p) atp U 
holds. But correct(p) atp U does not imply correct(1')' It is quite possible that pis 
faulty at some other time. That is why this requirement should be for any processor p 
and not only for correct one. 

Now we assume that server process 5(p) satisfies specification 51'ec(1') with 

5pec(1') '" [correct(p) --., 5tart(p) II Relay(p) II Origin(p) II 5equen(1')] II 50urce(p). 

Axiom 4.1 (Server Process Specification) 5(1') sat 5pec(p) 

Thus the behavior of any processor l' is specified by this axiom and the fail silence axiom 3.9. 
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5 Verification of Termination 

As explained in the Introduction, our aim is to prove 1\':=1 Spee(Pi) A AX -> ABS, where AX 
is the conjunction of all the axioms and ABS is the top-level specification of the protocol. 
Thus we assume 1\':=1 Spee(Pi) A AX and prove ASS. 

In this section, we prove the termination property of the protocol. To make the proof 
easier, we first give some additional lemmas. 

Since we have assumed 1\':=1 Spec(pi) A AX, we can rewrite a part of the Spee(p) to a more 
general form in which the clock values are mea.sured on an arbitrary correct processor r. 

Lemma 5.1 (Modified Server Specification) 
eorrect( r) -> [eorrect(p) -> Forward(p, r)] A N Source(p, r), 

where Forward(p, r) is generalized from Relay(p) and formalized as 

Forward(p, r);: reeeive(p, < T, s, (J >, I) atr U -+ 

Ifll E Link(p) \ {I}: send(p, < T,s,(J >,11 ) inr [U, U + (1 + p)T,] 

and N Souree(p, r) is a general form of Souree(p): 

N Source(p, r);: send(p, < T, s, (J >, I) atr U -+ 

(initiate(p,(J) atp TAU E (T - f,T + T, + f) A 1';: s) V 

311, V: (reeeive(p, < T, s, (J >, IJ) atr V AU E [V, V + (1 + p)T,] A P '" s) 

Proof: We prove this lemma by two steps . 

• First, we prove eorreet( ,.) A eorrect(p) -+ Forward(p, r). Assume that eorrect( r) A 

correet(p) A receive(p, < T, s, (J >, l) atr U holds. Let tl be the real time such that 
Cr(tJ) = U. Suppose Cp(tJ) = UI. Then we have receive(p, < T,s,(J >,1) atp UI . By 
Relay(p), we obtain Ifll E Link(p) \ {I} : send(p, < T, s, (J >, II) inp [Ub UI + T,]. 
Let t2 be the real time such that Cp (t2) = UI + T,. Thus we have 
VII E Link(p) \ {I}: send(p, < T,s,(J >,11 ) in [tl,t2]. 
Since T, 2: 0, we obtain Gp(tJ) :S Gp(t2). By the monotonic clock axiom 3.7, we have 
tl :S t2. Then by the relative speed axiom 3.8, we obtain 
(1- P)(Gp(t2) - Cp(td :S Gr(t2) - Cr(td :S (1 + p)(Gp(t2) - Gp(td)· 
Hence Cr (t2) :S U + (1 + p)T,. Thus we obtain 
Ifll E Link(p) \ {I}: send(p, < T,s,(J >,11 ) inr [U, U + (1 + p)T,] 
and then Forwa,.,l(p, r) holds . 

• Second, we prove eorrect(r) -> N Souree(p, r). Assume correet(r) and 
send(p, < T,s,(J >,1) atr U hold. Let tl be the real time such that Cr(tl) = U. Suppose 

Cp(tl) = UI . Then we have send(p, < T,s,(J >,1) atp UI. By Source(p), we obtain 
(initiute(p, a) atp T A UI E [T, T + T,] A p ;: s) V (1) 
3h,VI : (receive(p, < T,s,(J >,Id atp VI A UI E [VI, VI + T,] A p '" s) (2) 

Assume (1) holds. From send(p, < T, s, a >, I) at t l , by the fail silence axiom 3.9, we have 
correct(p) at tl. From correct( r) and the clock synchronization axiom 3.6, we obtain 

ICr(td-Cp(tI)1 < f. SinceCp(tl) = UI E [T,T+T,],wehaveCr(tJ) E (T-f,T+T,+f). 
From (1), we obtain 

initiate(p,a) atp TAU E (T - f,T + T, + f) A p;: s (3) 
Suppose that (2) holds. Let t2 be the real time such that Cp(t2) = VI. Then there exists 
a V such that Cr(t2) = V. Since Gp(t2) :S Cp(td, by the monotonic clock axiom 3.7, we 
have t2 :S tl . By the relative speed axiom 3.8, we have 
(1- p)(Cp(td - Cp(t2) :S Cr(tl! - Cr(t2):S (1 + p)(Gp(td - Cp(t2)). 
From UI E [VI, VI + T,], we have 0 :S Cp(t,) - Gp(t2 ) :S T, and then 
Cr(t2) :S Gr(tl ) :S Gr(t2) + (1 + p)T" i.e., U E [11, V + (1 + p)T,]. 
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From (2), we obtain 
311, V: (receive(p, < T,s,a >,Itl at,. V II U E [V, V + (1 + p)Ts) Ill' 't s) (4) 

Combining (3) and (4), we have proved N Source(p, "). 0 

The second lemma expresses that if a correct processor l' receives a message < T, s, a > at 
time V measured on the clock of a correct processor r, then its correct neighbor q which is not 
s will receive < T, s, a > by V + (1 + p )Ts + D measured on the clock of r. 

Lemma 5.2 (Propagation) 
receive(p, < T, s, a >, Itl atr V II correct(p) II correct( q) II link( Iz , 1', q) II correct(lz) II q ¢ s 

II correct(r) --+ 31: receive(q, < T,s,a >,1) bYr V + (1 + p)Ts + D 

Proof: Assume that the premise of the lemma holds. Since receive(p, < T, s, a >, II) atr V 
holds, there are two possibilities. 

• If It 't Iz, then q is not the processor which just sent the message < T, s, a > to p. By 
Forward(p,r), l' will send the message < T,s,a > to q along link 12 within (1 + p)Ts 
time units as measured on the clock of r. Thus we have 
send(p, < T, s, a>, 12) inr [V,JI + (1 + p)Ts). 
Then there exists an VI such that 
send(p,< T,s,a >,Iz ) atr VI II VI E [V, V + (1 + p)Ts}. 
By the bounded communication axiom 3 .. 5, we obtain 
receive(q,< T,p,a >,12 ) inr [VI + " VI + DJ. 
Together with VI :<::: V + (1 + p )T" we obtain 
31: receive(q, < T,s,a >,1) by,. V + (1 + p)Ts + D. 

• If II = 12 , then l' receives < T, 1', a> from link 12 and thus we have 
receive(p, < T, s, a>, 12) atr V. 
By the only omission failure axiom 3.10, there exists a PI such that 

PI 't P II send(PI, < T, s, a>, 12) inr [V - D, V - 'YJ 
holds. By the neighbor axiom 3.4, we have Iz E Link(p) II 12 E Link(pI)' Since l' 't PI, by 
the link axiom 3.1, we obtain link(lz,p,pI)' But it is assumed that link(l2,p, q). Thus 
by the point-to-point axiom 3.2, we obtain PI = q. Thus there exists a U such that 
send(q, < T,s,a >,12 ) at,. U II U E [V - D, V -,J 
holds. Since q ¢ s, by N Source(q, r), we obtain 
3/, V' : (receive(q, < T, s, a >, I) atr V'II U E [V', V' + (1 + p)TsJ). 
From V' :<::: U and U :<::: V -I' we obtain V' :<::: V -, and thus V' :<::: V + (1 + p)Ts + D. 
Thus we have 31 : receive(q, < T, s, a >, I) bYr V + (1 + p )Ts + D. 0 

The next lemma shows that if correct processor s initiates an update (J at local time T, then 
any another correct processor q will receive < T, s, a > by T + d( s, g)( (1 + p )Ts + D) measured 
on the clock of s, where drs, g) denotes the distance between sand q. 

Lemma 5.3 (Bounded Receiving) 
initiate( s, a) ats T II correct( s) II correct( q) II q ¢ s --+ 

31 : receiver q, < T, s, a >, I) by. T + d( s, q)«1 + p )Ts + D) 

Proof: Assume that the premise of the lemma holds. We prove this lemma by induction on 
the distance between sand q. Since s 't g, we start with d( s, q) = 1. 

• drs, q) = 1. Since both sand g are correct processors, by the definition of drs, q), they are 
connected by some correct link. Let 1 be that link. Then we obtain link(l, s, q)lIcorrect(I). 
Since correct( s) holds, we have Start( s). From Start( s) and initiate( s, a) at. T, s will 
send the message < T, s, a> to processor q along link l. Thus we have 
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send(s, < T, s, (J >, I) ins [T, T + Ts]. 
By definition, there exists a U such that 
send(s, < T, s, (J >, I) ats U /I U E [T, T + T,]. 
By the bounded communication axiom 3.5, we obtain 
receive(q,< T,s,(J >,1) ins [U +"U + 6]. 
From U ~ T + T" we obtain 
receive(q,< T,s,(J >,1) bys T +T, + 6. 
Since p 2: 0, we have 
31: receive(q, < T,s,(J >,1) bys T + d(s,q)((1 + p)T, + 6). 

• d(s, q) = k+ 1 with k 2: 1. By definition, there must exist a link 12 and a processor ql such 
that link(l2, qt, q) /I correct(l2) /I correct( ql) /I d( S, ql) = k /I d( ql, q) = 1 holds. By the 
induction hypothesis, we have 311 : receive( Ql, < T, s, (J >, It) bys T + k( (1 + p )Ts + 6). 
By definition, there exists a VI such that 
311 : (receive( qt, < T, s, (J >,11 ) ats VI /I VI :S T + k( (1 + p )T, + Ii) ). 
By the propagation lemma .5.2, we have 
31: receive(q,< T,s,(J >,1) bys VI + (1 +p)T, + Ii, i.e., 
31: receive(q, < T,s,(J >,1) bys T + (k + 1)((1 + p)T, + 6). 
Hence we have proved 
31: receive(q,< T,s,(J >,1) bys T+ d(s,q)((l+ p)T, + Ii). 0 

The next lemma shows that if a correct processor s initiates (J at local time T, then every 
correct processor q will convey < T, s, (J > in the interval [T + Tr, T + T, + Te] according to its 
own clock. 

Lemma 5.4 (Convey) 
initiate( s, (J) ats T /I correct( s) /I correct( q) --+ 

convey(q, < T, s, (J » inq [T + Tr, T + T, + T,] 

Proof: Assume that the premise of the leluma holds. We prove this Ielnma in two cases. 

• d( s, q) = o. By definition, we have s '" q. By C01"Tect( s), we have Start( s). From 
initiate( s, a) ats T, we obtain 
convey(s, < T, s, (J » ins [T + Tr, T + T, + Te]. Thus we have 
convey(q, < T, s, (J » inq [T + T" T + T, + T,]. 

• des, q) > O. By definition, we have s 'fo q. By the bounded receiving lemma 5.3, we 
obtain 31: receive(q,< T,s,(J >,1) bys T+d(s,q)((1+p)T, + 6). 
By the clock synchronization lemma 3.1, we have 
31 : receive( q, < T, s, (J >, I) beforeq T + d( s, q)((l + p )T, + 6) + E. 

Thus there exists a V such that 31: receive(q, < T,s,(J >,1) atq V. 
By Relay(q), we obtain convey( q, < T, s, (J » inq [T + T" T + Tr + T,]. 0 

Next we prove that the termination property follows from the axioms and lemmas given before. 

Theorem 5.1 (Termination) If Dl 2: Tr + Te, then 
initiate(s,(J) ats T /I correct(s) /I correct(q) -+ deliver(q,(J) bYq T + Dt, 

i.e., the termination property TERM holds. 

Proof: Assume that the premise of this theorem holds. By the convey lemma 5.4, we obtain 
convey( q, < T, s, (J » inq [T + Tr, T + Tr + Te]. As observed in section 4, we have 
deliver(q, (J) inq [T + T" T + T, + T,]. 
Since Dl 2: Tr + T" we have deliver(q, (J) bYq T + D1 . 0 
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6 Verification of Atomicity 

In this section, we prove the atomicity property of the atomic broadcast protocol. We first 
show some lemmas which will help prove the atomicity property. 

The next lemma states that if correct processor p receives message < T, s, a > at local time 
V, then that update a was initiated by processor 8 at local time T. 

Lemma 6.1 (Initiation) 
receive(p, < T, s, a >, I) atp V II correct(p) --> initiate( s, a) ats T 

Proof: Assume that the premise of the lemma holds. By the only omission failure axiom 3.10, 
there exist SI and UI such that 

Sl 'tpllsend(sl,<T,s,a>,I)atp UIIIUI E[V-8,V-,1. (1) 
By N Source(sI,p), there exist II and VI such that 

(initiate(81,a) atsl Til 81 == s) V (2) 
(receive(sl, < T, s, a >, II) atp VI II SI 't s II UI E [VI, VI + (1 + p)T,]). (3) 

If (2) holds, we have proved initiate(s, a) ats T. 
If (2) does not hold, then Sl is not the initiator of a and (3) holds. 
From (1), we have UI :S V -I, Le., V 2: UI + ,. From (3), we have UI 2: VI. Thus we obtain 

V 2: VI + " Le., V - VI 2: ,. 
From receive(sl, < T, s, a >, II) atp VI, we follow the above steps and then obtain another 
processor S2 't SI· Let k E IN, k 2: 2, such that k > Vii (notice that, > 0). Then there are 
two possibilities: 

• either there exists a i < k such that Si is the initiator of a and Si == s. Hence we have 
obtained initiate( s, a) ats T; 

• or there does not exist a i < k such that Si is the initiator of a. Thus SI, ... , Sk-I are 
not the initiator of a. Then, for any i = 2,3, ... , k - 1, there exist Ii and Vi such that 

Si 't 8i_1 II receive( Si, < T, s, a >, Ii) atp Vi II Si 't s II Vi-I - Vi 2: , 
holds. From Vi-I - Vi 2: , and \1 - VI 2: " we obtain V-Vi 2: h, for any i = 1,2, ... , k-l. 
From recei vet Sk_1 , < T, s, a >, I k- tl atp Vk-l, by the only omission failure axiom 3.10, 
there exists a processor Sk 't Sk_1 such that 
send(sk, < T, s, a>, Ik-I) inp [Vk-I - 8, Vk_1 - ,1 holds. 
By NSource(sk,p), there exist Ik and Vk such that 

(initiate(sk,a) atsk Til Sk == s) V (5) 
(receive(sk,< T,s,a >,Ik) atsk Vk II Sk 't s) (6) 

holds. If (6) holds, similar to before, we can derive Vk-I - Vk 2: ,. From V - Vi 2: ii, 
we obtain V - Vk 2: k,. Since k > Vii, we have V - Vk > V and thus Vk < o. Recall 
that aJllocal clock values are nonnegative. Hence (6) does not hold. Therefore (5) must 
hold, Le., sk is the initiator of a and Sk == s. 0 

We define an abbreviation Fi1·strec(p, < T, s, a >, I) atr V, which expresses that p receives 
< T, s, a > at time V measured on the clock of a correct processor rand p is one of the first 
correct processors which have received < T, s, a> according to the clock of r, as follows: 

Firstrec(p, < T, s, a >, I) atr V == receive(p, < T, 8, a >, I) atr V II correct( r) II correct(p) II 
Vp', I', V' : (correct(p') II p' 't p II receive(p', < T, s, a >, I') atr V' --> V' 2: V) 

The next lemma shows that if p receives < T, s, a > at time V measured on the clock of a 
correct processor r, p is one of the first correct processors which have received < T, s, a >, and 
s is faulty, then any processor q which is not p and has sent < T, s, a > earlier than V is a 
faulty processor. 
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Lemma 6.2 (Faulty Sender) 
Firstrec(p, < T, s, a >, I,) atr V /I send( q, < T, s, a >,12) atr U /I P "I' q /I 

~correct( s) /I U < V ~ ~correct( q) 

Proof: Assume that the premise of the lemma holds. From send(q, < T,s,a >,12) atr U, by 
N Source(q, r), we obtain 

(initiate(q,a) atq T /I q == s) V (1) 
31', V': (receive(q, < T,s,a >,1') at. V' /I q "I' s /I U E [V', V' + (1 + p)Ts1 ). (2) 

Then there exist two possibilities: 

• if (1) holds, then q == s and thus, by assumption, ~correct(q) holds; 

• if (2) holds, we have V' :<: U. Since U < V, we obtain V' < V. 
If correct( q) holds, by Firstrec(p, < T, s, a >, I) at,. V, we would have V' 2: V and thus 
it leads to a contradiction. Thus ~correct( q) holds. 0 

The following lemma shows that if p receives < T, s, a > at time V measured on the clock of 
a correct processor r, I' is one of the first correct processors which have received < T, s, a>, 
and s is faulty, then V < T + m«1 + p)T, + 0) + E, where m is the maximum number offaulty 
processors in the network. 

Lemma 6.3 (First Correct Receiving) 
Firstrec(I', < T, s, a>, 1) at,. V /I ~correct( s) ---> V < T + m«1 + p )T, + 0) + E 

Proof: Assume that the premise of the lemma holds. From Firstrec(I', < T, s, a >, I) atr V, 
we obtain receive(p, < T, s, a >, I) at,. V. By the only omission failure axiom 3.10, there exist 
s, and U, such that 8, "I' p /I send(s" < T, s, a>, 1) atr U, /I U, E [V - D, V -')'1 holds. Thus 
we have 

V:<: U, + 0 and U, :<: V - ')'. (1) 
Then we obtain V 2: U, + ')'. Since,), > 0, we have 

V> U,. (2) 
Since Firstrec(p, < T, s, a >, I) at,. V holds, by the faulty sender lemma 6.2, s, is a faulty 
processor, i.e., ~correct(s,) holds. By N Source(sI, r), there exist 1, and V, such that 

(initiate(s, , a) atsl T /I s, == s /I U, E (T - E,T + T, + E» V (3) 
(receive( s" < T, s, a >, 1,) atr V, /I s, "I' s /I U, E [V" V, + (1 + p )Ts1 ) (4) 

holds. Then there are two possibilities. 

• If (3) holds, then s, is the initiator of a and we have U, < T + Ts + €. 

Together with (1), we obtain V < T + (1 + p )T, + D + €. 

Since ~correct( 8) holds, there is at least one faulty processor, i.e., the maximum number 
of faulty processors Tn 2: 1. Thus we obtain V < T + m( (1 + P JT, + OJ + €. 

• If (4) holds, we have U, :<: V, + (1 + p)T,. From (1), we obtain 
V :<: V, + (1+ p)T, + D. (5) 

From receive( 8" < T, s, a >, I,) atr V" by the only omission failure axiom 3.10, there 
exist S2 and U2 such that S2 has sent < T, s, a > to 8, along link I, at time U2 measured 
on the clock of r. Similar to before, we have U2 E [V, - D, V, - ')'], i.e., U2 :<: V, - ')'. 
From (4), V, :<: u, and thus Uz :<: U, -')'. From (2), U, < V and then U2 < V -')'. Hence 
V > U2 • Then by the faulty sender lemma 6.2, ~correct( S2) holds. 
By N Source(s2, r), we obtain a formula similar to (3) and (4). 
If S2 is not the initiator of a, we follow the above steps and then obtain another S3 which 
is also a faulty processor. Since there are at most Tn faulty processors, we cannot continue 
this procedure infinitely. We must obtain a Bk which is the initiator of a with k :<: m. 
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For any i = 2,3, ... , k - 1, by the only omission failure axiom 3.10 and NSource(s;,r), 
there exist I; and Vi such that 

Si 't Si_1 /I receive(si, < T, s, (J >, Ii) atr Vi /I Si 't S /I Vi-I :0; Vi + (1 + P )Ts + 6 
holds. Then we obtain 

VI :0; Vk-I + (k - 2)((1 + p)Ts + 0). (6) 
From receive(sk_l, < T,s,(J >,Ik-I) at .. Vk_l, by the only omission failure axiom 3.10, 
there exists a Uk such that 
Sk 't sk_I/lsend(sk,< T,s,(J >,Ik-I) at .. Uk /I Uk E [Vk-I - 0, Vk-I -/J 
holds. Then we obtain Vk-I :0; Uk + 6. 
Together with (6), we obtain 

VI :0; Uk + (k - 2)(1 + p)T, + (k - 1)6. (7) 
Since Sk is the initiator of (J, by N S ource( Sk, r), we have 

initiate(sk,(J) atsk T /I Sk == S /I Uk E (T - f,T + Ts + f). 
Together with (7), we obtain 

VI < T + (k - 1)((1+ p)Ts + 6) + f. (8) 
Combining (5) and (8), it results in V < T + k((1 + p)T, + 6) + f. 

Since k :0; m, we finally obtain V < T + m((1 + p)T, + 8) + f. 0 

The following lemma shows that if P receives < T, s, (J > at time V measured on the clock of a 
correct processor rand s is faulty, then any other correct processor q will receive < T, s, (J > 
by time V + d(p, q)( (1 + P )T, + 6) measured on the clock of r. 

Lemma 6.4 (Correct Receiving) 
reeeive(p, < T, s, (J >, I') at .. V /I ,correet( s) /I eorreet( q) /I P 't q -+ 

31: receive(q,< T,s,(J >,/) by .. V + d(p,q)((I+p)Ts + 8) 

Proof: Assume that the premise of the lemma holds. We prove this lemma by induction on 
the distance between p and q. Since p't q, we start with d(p, q) = 1. 

• d(p, q) = 1. By definition, p and q are connected by some correct link. Let I be that link. 
Then we have link(/,p, q) /I correet(l). From reeeive(l', < T, s, (J >, I') at .. V, by the only 
omission failure axiom 3.10, there exist a 1" and a UI such that 
PI 't p /I send(PI, < T, s, (J >, I') at,. UI /I UI E [V - 6, V-I J 

holds. Since UI :0; V-I and 1 > 0, we have V 2: UI + 1 and then V > UI. By the faulty 
sender lemma 6.2, we have 'COTTeet(l'l). Thus correct processor q is not that sender PI. 
By FOTward(p, r), p will send < T, s, (J > to q along link I within (1 + p )Ts time units. 
Thus we have send(p, < T,s,(J >,1) in .. [V, If + (1 + p)T,J. By definition, there exists an 
X such that send(l', < T, s, (J >, I) at .. X /I X E [V, V + (1 + P )T,J holds. 
By the bounded communication axiom 3 .. 5, we obtain 
reeeive(q,< T,s,(J >,/) in,. [X +'I,X +6J. 
Together with X :0; If + (1 + P )T" we have proved 
31: reeeive(q, < T,s,(J >,1) by,. V + (1 + p)T, + 6, Le., 
31: receive(q,< T,s,(J >,1) by,. V + d(l',q)((I+ p)T,+ 6) . 

• d(p, q) = k+ 1 with k 2: 1. By definition, there must exist a processor ql and a link 12 such 
that cOTreet(ql) /I cOTrect(l2) /l/ink(l2,ql,q) /I d(p,qIl = k /I d(ql,q) = 1 holds. By the 
induction hypothesis, we have 311 : Teeeive(ql, < T, s, (J >, III by .. V + k((1 + p)Ts + 8). 
By definition, there exists a VI such that 
311 : reeeive(q" < T, s, (J >, III at,. VI /I VI :0; V + k((1 + P )Ts + 8). 
Since cOTrect(q) and ,eoneet(s) hold, we obtain q 't s. 
Then by the propagation lemma .5.2, we have 
31: receive(q,< T,s,(J >,1) by,. Vi + (1 + p)T,+ 8, i.e., 
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31: receive(q, < T,s,a >,1) bYr V + (k + 1)«(1 + p)T, + 0). 
Therefore we have proved 
31 : receive(q, < T, s, a >, I) bYr V + d(p, q)«1 + p )T, + 0). o 

Next lemma shows that if correct processor p learns of < T, s, a >, then any correct processor 
q also learns of < T, s, a >. 

Lemma 6.5 (All Learn) 
Learn(p, < T, s, a > ) /I con-ect(p) /I correct( q) --> Learn( q, < T, s, a > ) 

Proof: Assume that the premise of the lemma holds. By Learn(p, < T, s, a », we have 
(initiate(p,a)atpT/lp==s) V (1) 
(3/], V, : receive(p, < T, s, a >,1,) atp V, /I P oj s) (2) 

From (2), by the initiation lemma 6.1, we obtain initiate(s,a) at. T. 
Since either (1) or (2) holds, we obtain initiate(s,a) at. T from the premise. 
We have to prove Learn( q, < T, s, a», i.e., the following formula: 

(initiate(q,a) atq T /I q == s) V (3) 
(3/" V, : receive(q, < T, s, a >, I,) atq V, /I q oj s). (4) 

There are two possibilities: 

• if s == q, then we have initiate(q,a) atq T /I q == s holds, i.e., (3) holds; 

• if s oj q, we prove that (4) holds by the following two cases. 

1. If correct( s) holds, by the bounded receiving lemma 5.3, we obtain 
3/, : receive(q, < T, s, a>, 12 ) bys T + drs, q)«1 + p)T, + 0). 
By the clock synchronization lemma 3.1, we have 
3/,: receive(q,< T,s,a >,1,) beforeq T+d(s,q)«I+p)T, + 8) + e, i.e., 
3/2 , V2 : receive(q,< T,s,a >,/2 ) atq V, /I q oj s. 
Hence (4) holds. 

2. If ,correct( s) holds, since corTect(l') holds, we obtain l' ¢ s and then (1) does not 
hold. From (2), we have receive(p, < T, s, a >, I,) atp V" Then there exists a V{ 
such that receive(p, < T, s, a >, I,) atq V{ /I V{ E (V, - e, V, + e). Hence there must 
exist a processor p, which is one of the first correct processors that have received 
< T, s, a> according to the clock of q. Thus there exist 13 and V such that 
Firstrec(p], < T, s, a >,/3 ) atq V and hence receive(p, , < T, s, a >,/3 ) atq V 
holds. By the first correct receiving lemma 6.3, we obtain V < T+m«1 +p )T,+8)+e. 
There are again two possibilities: 

- if q == Ph then we have receive(q, < T, s, a>, 13) atq V, i.e., 
31" V2 : (receive(q, < T,s,a >,12 ) atq V2 /I V2 < T + m«(1 + p)T, + 8) + e); 

- if q oj PI, by the correct receiving lemma 6.4, we have 
312 : receive(q, < T, s, a>, 12) bYq V + d(p, q)«1 + p )T, + b), i.e., 
3/2 , V2 : (receive(q, < T,s,a >,/2 ) atq V2 /I 

V2 < T + (d(p, q) + m)«1+ p )T, + 8) + e). 
For both possibilities, we have 
31" V,: receive(q, < T,s,a >,12) atq V2 /I q oj s, i.e., (4) holds. o 

Next lemma expresses that if correct processor p conveys < T, s, a> at local time U, then any 
correct processor q conveys < T, s, a> in the interval [T + Tn T + Tr + Tel on its own clock. 

Lemma 6.6 (All Convey) 
convey(p, < T, s, a » atp U /I con-ect(p) /I cOT1'ect( q) --> 

convey( q, < T, s, a » inq [T + Tn T + Tr + Tel 
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Proof: Assume that the premise of this lemma holds. From correct(p), we have Origin(p). 
By convey(p, < T, s, a » atp U, we obtain Learn(p, < T, s, a». Then by the all learn lemma 
6.5, we have Learn( q, < T, s, a», i.e., 

(initiate(q,a) atq TA q =' s) V (1) 
(31, V : receiver q, < T, s, a >, I) atq V A q ¢ s). (2) 

If (1) holds, by Start( q), we have convey( q, < T, s, a» inq [T + Tn T + Tr + Te]. 
If (2) holds, by Relay( q), we have eonvey( q, < T, s, a » inq [T + T" T + Tr + Tc]. 
Thus for both cases, we obtain convey(q, < T, s, a» inq [T + Tn T + Tr + Te]. 0 

Next we prove a theorem which shows that the atomicity property follows from the axioms 
and lemmas given before. 

Theorem 6.1 (Atomicity) If D2 :::: To. then 
deliver(p, a) atp U A eorrect(p) A correct( q) -> 

3s,T: initiate(s,a) at. T Adeliver(q,a) inq [U - D2,U +D2]' 
i.e., the atomicity property ATOM holds. 

Proof: Assume that the premise of the theorem holds. From deliver(p, a) atp U, by definition, 
there exist sand T such that convey(p, < T, s, a » atp U holds. By the server process 
specification axiom 4.1 and eorreet(p), we have Origin(p). By Origin(p), we obtain 
Learn(p, < T, s, a» A U E [T + Tn T + Tr + Te], i.e., 

«initiate(p,a) atp TAp =' s) V (1) 
(3/, V: reeeive(p,< T,s,a >,1) atp V Ap¢ s)) A (2) 
U E [T + Tr, T + Tr + Te]. (3) 

From (1), we have initiate(s, a) ats T. 
From (2), by the initiation lemma 6.1, we obtain initiate(s,a) at. T. 
Thus for both cases, we have 

3s, T : initiate(s, a) ats T. 
From convey(p, < T, s, a» atp U, by the all convey lemma 6.6, we have 
eonvey( q, < T, s, a» inq [T + T" T + Tr + Te]. 
From (3), we have T E [U - Tr - Te, U - Tr]. 
Hence we obtain convey(q, < T, s, a» inq [U - To. U + Te]. 
By definition, we obtain deliver(q,a) inq [U -1'0, U + Te]. 
Since D2 :::: Te, we have 

deliver(q, a) inq [U - D2 , U + D2]' 
From (4) and (5), this theorem holds. 

7 Verification of Order 

(4) 

(5) 
o 

The order property of the atomic broadcast protocol will be proved in this section. We first 
give two lemmas which will be used to prove the order property. 

The following lemma shows that, for any correct processors p and q, if p conveys < T, s, a > 
at local time U, q conveys < T, s, a> at local time V, and no update is delivered by p in the 
interval [0, U), then there is also no update delivered by q in the interval [0, V). 

Lemma 7.1 (First Delivery) 
convey(p, < T, s, a » atp U A convey( q, < T, s, a» atq V A correct(p) A correct( q) A 

,deliver(p) inp [O,U) -> ,deliver(q) inq [0, V). 

Proof: Assume that the premise of this lemma holds. Suppose deliver(q) inq [0, V) holds. By 
definition, there exist So, To, and Vo such that convey( q, < To, So, ao » atq Vo A Vo E [0, V) 
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holds. By assumption, we have convey( q, < T, s, a» atq V. 
From Vo < V, by Sequen(q), we obtain (To, so) c:: (T,s). 
By the all convey lemma 6.6, we have convey(p, < To, So, ao » inp [To + T" To + Tr + Tc], i.e., 
there exists a Uo E CV AL such that convey(p, < To, So, ao » atp Uo holds. 
By assumption, we have convey(p, < T, s, a» atp U. 
Since (To,so) c:: (T,s), by Sequen(p), we obtain Uo < U. 
From Uo E CV AL, we have Uo ~ ° and thus Uo E [0, U). Therefore we obtain 
convey(p, < To, So, ao » atp Uo 11 Uo E [0, U), i.e., deliver(p, ao) inp [0, U). 
But by assumption, we have ,deliver(p) inp [0, U). Thus it leads to contradiction and then 
deliver(q) inq [0, V) does not hold, i.e., ,deliver(q) inq [0, V) holds. 0 

Next lemma shows that, for any correct processors p and q, if p conveys < T" s" a, > at local 
time U, and < T2,s2,a2 > at local time U2, q conveys < T"s"a, > at local time V, and 
< T2, S2, a2 > at local time V2, and there is no update delivered by p in the interval (U

" 
U2), 

then there is also no update delivered by q in the interval (V" V2 ). 

Lemma 7.2 (No Delivery) 
convey(p, < T

" 
s" a, » atp U, 11 convey(p, < T2, S2, a2 > ) atp U2 11 correct(p) 11 

convey( q, < T" s" a, » atp V, 11 convey(q, < T2, s2, a2 » atp V2 11 correct( q) 11 
,deliver(p) inp (U" U2) --+ ,deliver(q) inq (V" V2). 

Proof: Assume that the premise of this lemma holds. Suppose deliver( q) inq (V" V2) holds. 
By definition, there exist sand T such that convey(q,< T,s,a » inq (V" V2) holds. Then 
there exists a V such that convey(q, < T, s, a» atq V 11 V E (V" V2) holds. 
By assumption, we have convey(q,< T"s"a, » atp V,. 
Since V, < V, by Sequen(q), we obtain (T"s,) c:: (T,s). 
Similarly, from assumption, we have convey(q, < T2, S2, a2 » atp V2· 
Since V < V2, by Sequen(q) again, we obtain (T,s) c:: (T2,s2). 
From convey(q, < T, s, a » atq V, by the all convey lemma 6.6, we have 
convey(p, < T, s, a » inp [T + Tro T + Tr + T,l, 
i.e., there exists a U such that convey(p, < T, s, a» atp U holds. 
By assumption, we have convey(p, < T" s" a, » atp U,. 
Since (T"S,) c:: (T,s), by Sequen(p), we obtain U, < U. 
Similarly, from assumption, we have convey(p, < T2, 82, a2 » atp U2. 
Since (T,s) c:: (T2,s2), by Sequen(p), we obtain U < U2. 
Thus we obtain convey(p, < T, s, a» atp U 11 U E (U" U2). 
By definition, we have deliver(p, a) inp (U" U2). 
But from assumption, we have ,deliver(p) inp (U" U2). 
Thus it leads to contradiction and then deliver(q,a) inq (V" V2) does not hold, 
i.e., ,deliver(q) inq (V" V2) holds. 0 

Next we prove, by the following theorem, that the order property holds. 

Theorem 7.1 (Order) 
correct(p) 11 correct(q) --+ \lU3V : List(p, U) <;; List(q, V), 

i.e., the order property holds. 

Proof: For any clock value U E CVAL, assume (a" a2, ... , ak) E List(p, U). We prove that 
there exists a V such that (a" a2, . .. , ak) E Lisl( q, V). 
By definition, there exist k E IN+, U

" 
Uz, ... , Uk such that U, ::; U2 ::; ... ::; Uk < U, 

deliver(p, ai) atp Ui, for i = 1,2, ... , k, ,deliver(p) inp (Uj , Uj+I), for j = 1,2, ... , k - 1, 
and ,deliver(p) inp [0, U,). From deliver(p,ai) atp Ui, there exist Si and Ti such that 
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convey(p, < T;, S;, a; > ) atp Ui holds. Let V = U + T,. We show, by induction on k, that there 
exist VI ,V2, ... ,Vk such that VI::; V2::;'''::; Vk < V, convey(q,< T;,8;,a; » atq V;, for 
i = 1,2, ... ,k, ,deliver(q) inq (Vi> Vj +I ), for j = 1,2, ... ,k -1, and ,deliver(q) inq [0, VI) . 

• k = 1. By assumption, we have convey(p, < 1"8,, al » atp UI and 
,deliver(p) inp [0, UI ). By the all convey lemma 6.6, we obtain 
convey(p, < TI , 81, al » inp [TI + Tr, TI + Tr + T,] and 
convey( q, < T" 81, al » inq [TI + Tr, TI + Tr + Te]. 
Thus we have UI E [TI + Tr, TI + Tr + Te]. Since UI < U, we obtain TI + Tr < U. 
Then there exists a VI E CV AL such that 
convey( q, < T" SI, al » atq VI 1\ VI E [TI + Tr, TI + Tr + Te] holds. 
Thus we have VI ::; TI + Tr + Te and hence VI < U + To. Le., VI < V. 
By the first deliver lemma 7.1, we also obtain ,deliver(q) inq [0, VI) . 

• k > 1. By the induction hypothesis, there exist VI, V2, ... , Vk-I such that VI ::; V2 < 
... :::; Vk_l, convey( q, < Til Si, (7i » atq Vi, for i = 1,2, ... , k - 1, 
,deliver(q) inq (Vj, Vj+tl, for j = 1,2, ... , k - 2, and ,deliver(q) inq [0, VI). 
By assumption, we have convey(p, < Tk, 8k, ak » atp Uk. 
By the all convey lemma 6.6, there exists a Vk such that 
convey(q, < Tk, 8k, ak » atq Vk 1\ hE [n + Tr, n + Tr + T,] holds. 
Since Uk-I::; Uk, we prove Vk-I ::; Vk by the following two cases. 

1. Assume Uk-I < Uk. By assumption, we have 
convey(p, < Tk-I, Sk-I, ak_I » atp Uk-I and convey(p, < Tk, Sk, ak » atp Uk. 
Since Uk-I < Uk, by Sequen(p), we obtain (Tk-I,sk-tl c (Tk,8k). 
From the indnction hypothesis and above, we have 
convey( q, < Tk-I, Sk-I, ak_I » atq Vk-I and convey( q, < Tk, Sk, ak » atq Vk. 
Since (Tk-I,Sk-tl C (Tk,Sk), by Sequen(q), we obtain Vk-I < Vk. 

2. Assume Uk_I = Uk. 
Suppose Vk- I < Vk. Similar as above, we obtain Uk-I < Uk which does not hold. 
Snppose Vk_I > Vk. Similarly, we obtain Uk-I> Uk which also does not hold. 
Therefore only Vk-I = Vk holds. 

Combining these two cases, we obtain Vk_I ::; Vk. 
Similar to the case for k = 1, we have Uk E [Tk + Tr, n + Tr + Te] and Uk < U. Thus we 
obtain Tk + Tr < U. Since Vk ::; Tk + Tr + To, we have Vk < U + T" Le., Vk < V. 
By assumption, we have ,deliver(p) inp (Uk-I, Uk). 
Then by the no delivery lemma 7.2, we obtain ,deliver(q) inq (Vk- I , Vk). 

Hence we have proved that there exist VI, V2, ... , Vk such that VI ::; V2 ::; ... :'0 Vk < V, 
convey(q,< T;,8;,a; » atq V;, for i = 1,2, ... ,k, ,deliver(q) inq (V], Vj+I), 
for j = 1,2, .. . ,k - 1, and ,deliver(q) inq [0, VI). 
Since convey( q, < Ti , Si, ai » atq V; implies deliver( q, a;) atq V;, we obtain 
deliver( q, a;) atq V;, for i = 1,2, ... , k. Therefore (aI, a2, ... , ak) E List( q, V). 
Hence for any U there exists a V, i.e., V = U + To, such that List(p, U) <;; List( q, V). 0 

8 Comparison and Conclusion 

We have formally proved that the termination, atomicity, and order properties of the protocol 
hold, provided 
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1. D, ~ Tr + Tc, where D, is the broadcast termination time in the termination property 
specification, Tr is the time to ensure that all correct processors have received a message 
containing an update after it is initiated, and Tc is the time for a correct processor to 
convey updates to its client processes; 

2. D2 ~ Tc, where D2 is the difference of delivery time of an update by two correct processors 
in the atomicity property specification; 

3. Tr ~ T, ~ 0, Tc ~ 0, 8 ~ 'Y > 0, E > 0, and p ~ 0, where T, is the time for a 
correct processor to send a message to its neighbors, 'Y and 8 are the lower and upper 
bounds, respecitively, of messa.ge transmission delay between two correct processors, f 

and p are the maximal deviation a.nd speed difference, respectively, of local clocks of 
correct processors. 

Comparing our paper with [CASD89], the basic ideas of proving properties of the protocol are 
similar. In the algorithm for the protocol in that paper, a processor only relays a message to 
its neighbors if the message is received by the processor for the first time and it is not a "late 
message". Actually these two factors do not affect the correctness of the protocol. Adding 
them to the algorithm is to improve the efficiency of the implementation. Thus the informal 
proof in that paper verifies the protocol without taking these factors into account. We did the 
formal proof similarly and this can be seen from the Relay(p) property. 

From the first correct receiving lemma 6.3 and the correct receiving lemma 6.4, we observe 
that if an update (J is initiated by a processor s at local clock time T, then any correct provessor 
p will receive the message < T,s,(J > before (d + m)((l + p)T, + 8) + E measured on its own 
clock, where d is the maximal distance between two correct processors and m is the maximal 
number of faulty processors. Thus Tr ~ (d + m)((l + p)T, + 8) + E. The corresponding time 
in [CASD89] is (d + m)8 + €. If we assume T, = 0 and p = 0 as in [CASD89], then we obtain 
the same bound. Notice that the condition on Tr is only needed for the implementation of the 
server specification S pec(p), not directly for the correctness proof of the protocol. 

In [CASD89], clock synchronization is assumed for always correct processors. To give a 
precise proof of the protocol, e.g. in the proof of lemma 5.1, we needed a more refined clock 
synchronization assumtion for processors which are correct at some time points. Thus we took 
this assumption as an axiom and the assumption in [CASD89] as a lemma. 

To prove the atomicity property, we need to show that if a correct processor p delivers (J 
at some time U, then (J was initiated by some processor s at some clock time T. This is not 
proved in [CASD89]. We have proved it in lemma 6.1 by using available timing information. 
There we needed a lower bound for message transmission delay between two correct processors. 
Thus we add a lower bound 'Y in the bounded communication axiom 3.5. 

There is an implicit assumption in [CASD89] about the drift of local clocks. We have 
formalized this assumption in axiom 3.8. This axiom is used in lemma 5.1 to formulate part of 
the server specification in terms of the local clock of any correct processor. Together with the 
other axioms about local clocks, i.e., the synchronization axiom 3.6 and the monotonic clock 
axiom 3.7, this makes it possible to perform the verification in terms of local clock values, 
similar to the informal reasoning in [CASD89]. In contrast with most formal methods, see e.g. 
[BHRR91], there is no need to refer to global times during the protocol verification. This leads 
to a convenient and natural calculus. 

There is quickly growing literature on the formal verification of real-time and fault-tolerant 
distributed systems. Closely related to our approach is the recent work on the proof checker 
EHDM and its successor PVS. Rushby and von Henke [RH93] use EHDM to check the proofs of 
Lamport and Melliar-Smith's interactive convergence clock synchronization algorithm [LMS85]. 
Mecllanical verification of a. generalized protocol for Byzantine fault-tolerant clock synchroniza-
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tion [Sch87] by using EHDM is described in [Sha92]. In future applications of our approach 
we will certainly investigate the use of such an interactive proof checker. 

Observe that the formal method used in our paper is compositional. It enables us to reason 
with only specifications and abstract from the implementation details. A natural continuation 
of this work is to implement the server specification and verify that it is indeed a correct 
implementation. 
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