

Formal specification and compositional verification of an
atomic broadcast protocol
Citation for published version (APA):
Zhou, P., & Hooman, J. J. M. (1994). Formal specification and compositional verification of an atomic broadcast
protocol. (Computing science notes; Vol. 9405). Technische Universiteit Eindhoven.

Document status and date:
Published: 01/01/1994

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 16. Nov. 2023

https://research.tue.nl/en/publications/288bc40c-043e-43d1-84c1-c916de5e7163

Eindhoven University of Technology

Department of Mathematics and Computing Science

Fonnal Specification and Compositional Verification

of an Atomic Broadcast Protocol

by

P. Zhou and 1. Hooman

Computing Science Note 94/05
Eindhoven, January 1994

94/05

COMPUTING SCIENCE NOTES

This is a series of notes of the Computing
Science Section of the Department of
Mathematics and Computing Science
Eindhoven University of Technology.
Since many of these notes are preliminary
versions or may be published elsewhere, they
have a limited distribution only and are not
for review.
Copies of these notes are available from the
author.

Copies can be ordered from:
Mrs. M. Philips
Eindhoven University of Technology
Department of Mathematics and Computing Science
P.O. Box 513
5600 MB EINDHOVEN
The Netherlands
ISSN 0926-4515

All rights reserved
editors: prof.dr.M.Rem

prof.dr.K.M.van Hee.

Formal Specification and Compositional Verification of
an Atomic Broadcast Protocol

P. Zhou J. Hooman
Dept. of Mathematics and Computing Science

Eindhoven University of Technology
P.O.Box 513

5600 MB Eindhoven, The Netherlands

January 26, 1994

Abstract

We apply formal methods to specify and verify an atomic broadcast protocol. The
protocol is implemented by replicating a server process on all processors in a network. We
show that the verification of the protocol can be done compositionally by using specifica
tions in which timing is expressed by local clock values. The requirements of the protocol
are formally described. Underlying communication mechanism, clock synchronization as
sumption, and failure assumptions are axiomatized. The server process is also represented
by a formal specification. We verify that parallel execution of the server processes leads
to the desired properties, by proving that the conjunction of all server specifications and
axioms about the system implies the requirements of the protocol.

1 Introduction

Computing systems are composed of hardware and software components which can fail. Com
ponent failures can lead to unanticipated behaviour and service unavailability. To achieve high
availability of a service despite failures, a key idea is to implement the service by a group of
server processes running on distinct processors [Cri90]. Replication of service state information
among group members enables the group to provide the service even when some of its members
fail, since the remaining members have enough information about the service state to continue
to provide it. To maintain the consistency of these replicated global states, any state update
must be broadcast to all correct servers such that all these servers observe the same sequence
of state updates. Thus a communication service is needed so that client processes can use it to
deliver updates to their peers. This communication service is called atomic or reliable broad
cast. We will refer to it as atomic broadcast. There are two sets of atomic broadcast protocols:
synchronous protocols, such as [BDS.5,CASD8.5], and [Cri90], and asynchronous protocols, such
as [BJS7] and [CM84].

Synchronous atomic broadcast protocols assume that the underlying communication de
lays between correct processors are bounded. Given this assumption, local clocks of correct
processors can be synchronized [CAS86,CAS93]. Then the properties of synchronous atomic
broadcast protocols are described in terms of local clocks as follows [CASD85,CASDS9]:

• Termination: every update whose broadcast is initiated by a correct processor at time
T on its clock is delivered by all correct processors at time T + ~ on their own clocks,
where ~ is a positive parameter and is caIled broadcast termination time.

1

• Atomicity: if a correct processor delivers an update at time U on its clock, then that
update was initiated by some processor and is delivered by each correct processor at time
U on its own clock .

• Order: all correct processors deliver their updates in the same order.

Synchronous atomic broadcast protocols provide an upper bound for broadcast termination
time. Thus they can be used in real-time applications where deadlines must always be met,
even in the presence of failures. On the other hand, asynchronous broadcast protocols do
not assume bounded message transmission delays between correct processors. Thus they can
not guarantee a bound for the broadcast termination time. Therefore asynchronous atomic
broadcast protocols cannot be used in critical real-time applications.

In order to provide service despite the presence of faults, real- time systems often adopt
fault-tolerance techniques. To achieve fault-tolerance. some kind of redundancy is introduced
which will affect the timing behavior of a system. Hence it is a challenging problem to guarantee
the correctness of real-time and fault-tolerant systems. We are interested in applications of
formal verification methods to these systems. Since atomic broadcast service is one of the
fundamental issues in fault-tolerance. we select an atomic broadcast protocol presented in
[CASD85,CASD89j which tolerantes omission failures as our verification example. Henceforth,
we use the term atomic broadcast protocol to refer to this protocol. An informal description of
the protocol, an implementation, and an informal proof which shows that the implementation
indeed satisfies the requirement of the protocol are presented in these papers. We follow the
ideas of [CASD89j as closely as possible and compare our results with it in section 8.

The configuration of the service is illustrated in the following figure (fig.I).

client.
process

\
\
\
\

init.iate \

processor

\ deliver /

\ I
I \ .

\
\

I
I

/
I' .. I 11JJ1.1at.e

link

\
\
\

init,ia.t.e

- - - --'----+-- --
scnd I

receive

\ deliver I

\ I
\ I

\ /

1 1l1 it.iate

processor

Fig.I. Atomic Broadcast Service Configuration.

The atomic broadcast service is implemented by replicating a server process on all distributed
processors in a network. Thus any client process on any processor can use this service. We allow
more than one client process located on one processor. Assume that there are n processors in
the network. Pairs of processors are connected by links which are point-to-point, bi-directional,
communication channels. The duration of message transmission between correct processors
takes finite time. Each processor has access to a local clock. It is assumed that local clocks
of correct processors are approximately synchronized. It is also assumed that only omission
failures occur on processors and links. \Vhen a processor suffers an omission failure, it cannot
send messages to other processors. \Vhen a. link suffers an omission failure, the messages
traveling along this link may be lost. To send an update to its peers, a client process initiates
the atomic broadcast server process located ou the same processor to atomically broadcast
that update. After such a request, ea.ch server process will deliver that update to the client

2

processes located on the same processor. To achieve the order property of the service, there is
a priority ordering among all processors. If two updates are initiated at different clock times,
they will be delivered according to the ordering of their initiation times. If they are initiated
at the same clock time on different processors, they will be delivered according to the priority
of their initiation processors.

In general, to formally verify a system, we need a proof theory which consists of axioms and
rules about the system components. To be able to abstract from implementation details, it is
often convenient to have a compositional verification method. Compositionality enables us to
verify a system by using only specifications of its components without knowing any internal
information of those components. Such compositional proof systems have been developed for
non-real-time systems, e.g. [Zwi89], and real-time systems, such as [Ho091] and [ZH92]. In
particular, if the system is composed of parallel components, the proof method should contain
a parallel composition rule. Let S(p) denote the atomic broadcast server process running on
processor P, 'P denote a specification written in a formal language based on first-order logic, and
S(p) sat 'P denote that server process S(p) satisfies specification 'P. Under the condition of
maximal parallelism (i.e., each process runs at its own processor), the parallel composition rule
states that if server process S(Pi) satisfies specification 'Pi and 'Pi only refers to the interface of
Pi, for i = 1,2, ... , n, then the parallel program S(pdll·· ·IIS(Pn) satisfies 1'17=1 'Pi. This rule
is formalized as follows.

Parallel Composition Rule

S(Pi) sat 'Pi, 'Pi only refers to the interface of Pi, for i = 1, ... , n
S(P1)11·· ·IIS(Pn) sat Ai=l 'Pi

We also need a consequence rule to weaken a specification and a conjunction rule to take the
conjunction of specifications. Let S be any process.

Consequence Rule

Conjunction Rule

S sat 'P, 'P -; 1/J
S sat"IjJ

S sat 'P1, S sat 'P2
S sat 'P1 f\ 'P2

Recall that local clocks of correct processors are approximately synchronized. We show that
the verification of the protocol can be done compositionally by using specifications in which
timing is expressed by local clock values as follows.

• In section 2, we specify the requirements of the protocol in a formal language based on
first-order logic. We call this the top-level specification and denote it by AB S. Thus our
aim is to prove S(pdll·· ·IIS(Pn) sat ABS.

• In section 3, we axiomatize the required assumptions about the system, including under
lying communication mechanism, clock synchronization assumption, and failure assump
tions. We denote the conjunction of all these axioms by AX.

• In section 4, we define the properties of the atomic broadcast server process running
on processor p. We caU this the server process specification and denote it by Spec(p).
Spec(p) should only refer to the interface of p. We assume S(p) sat Spec(p).

• By the parallel composition rule, we obtain S(P1)11· . ·IIS(Pn) sat 1'17=1 Spec(Pi). By
the conjunction rule, we obtain S(P1)11·· ·IIS(Pn) sat 1'17=1 Spec(pi) f\ AX. We prove
Ai=l Spec(pi) f\ AX -; ABS in sections 5, 6, and 7. Hence the consequence rule leads
to S(pdll·· ·IIS(Pn) sat ABS.

3

• We compare our results with [CASD89] and conclude in section 8.

2 Top-Level Specification

We formalize the top-level requirements of the atomic broadcast protocol in this section.
Let P be a set of processor names and L a set of link names. We assume that all processors

and links have unique names. We use p, q, T, S, ... to denote elements of P and I, I" ... to
denote elements of L. Let G be the network of processors and links, i.e., G = P U L.

To denote real times, we use a dense time domain called RT I ME. The standard arithmetic
operators +, -, x, and the relations =, <, and::; are defined on RTIME. We use lower case
letters, e.g. t, U, v, ... , to denote variables ranging over RT I ME.

Each processor has access to a local clock. We denote by Cp a function which represents
the value of the local clock of processor p, i.e., Cp(t) is the value of the local clock of p at real
time t. Let all clock values range over a domain called CV AL. We assume T ::0: 0, for any
T E CVAL. Similarly, the operators +, -, x, and relations =, <, ::; are defined on CVAL.
We use capital letters, e.g. T, U, V, ... , to denote variables ranging over CV AL. We also use
[U, V], [U, V), (U, V], and (U, V) to express, respectively, closed, half-open, and open intervals
of clock values.

The atomic broadcast service is implemented by a group of server processes replicated on
all processors in the network. When a client process initiates a server process running on
processor p by sending a request of broadcasting update a, we call p the initiator of a and say
that p initiates a. Similarly, when the server process delivers an update a to client processes,
we say that p delivers a to client processes.

To formally describe the properties of the protocol, we define the following primitives:

• correct(p) at t: processor p is correct at real time t.

• correct(l) at t: link I is correct at real time t.

• initiate(p, a) at t: processor p finishes with receiving a request of broadcasting update
a from a client process located on p at real time t, i.e., p initiates a at real time t.

• deliver(p, a) at t: processor p starts to send update a to client processes at real time t.

Henceforth, for any primitive 'P at t, we define the following abbreviations:

• correct(p) == lit : correct(p) at t

• correct(l) == lit : correct(l) at t

• 'P atp T == ::It : 'P at t 1\ Cp(t) = T

• 'P byp T == ::ITo: 'P atp To 1\ To ::; T

• 'P beforep T == ::ITo : 'P atp To 1\ To < T

• 'P inp I == ::ITEI: 'P atp T, where 1<;; CVAL.

In [CASD89], assumptions about the system are simplified. For instance, it is assumed that
message processing time on a correct processor is zero. In this paper, we will take all possible
times spent by a correct processor into account. Then the termination and atomicity properties
can only be described by using an upper bound and an interval, respectively, instead of precise
time points as in [CASD89].

4

2.1 Termination

The property of termination is stated as follows: every npdate whose broadcast is initiated
by a correct processor s at clock value T will be delivered at all correct processors by clock
value T + D, on their own clocks, where D, is a positive constant and is also the broadcast
termination time.

As usual, we take the convention that any free variable occurring in a formula is universally,
outermostly, quantified. Thus the termination property is formally expressed as follows:

TERM == initiate(s, CT) ats T 1\ correct(s) 1\ correct(q) -+ deliver(q, CT) bYq T + D,

2.2 Atomicity

The atomicity property is described as follows: if a correct processor p delivers an update at
clock value U, then that update was initiated by some processor s at some local time T and
is delivered by all correct processors at some local clock value between U - Dz and U + Dz,
where Dz is a positive constant and indicates the difference of delivery times of an update by
two correct processors.

This property is formalized as follows:

ATO M == deliver(p, CT) atp U 1\ correct(p) 1\ correct(q) -+

3s,T: initiate(s,CT) ats T I\deliver(q,CT) inq [U - Dz,U + DzJ

Notice that the atomicity property does not follow from the termination property, because it
does not assume a correct initiator.

2.3 Order

The property of order is expressed in [CASD89J as follows: all correct processors deliver their
updates in the same order. We formalize it in the following way. Let U be any clock value.
If (CT" ... , CTk) is a sequence of updates delivered by processor p before local time U, then
there should exist a clock value V such that (CT" ... , Gk) has also been delivered by any other
processor q before local time V. Notice that U and V can be different. Furthermore, there is
no reason to exclude the possibility that more than one update is delivered at the same time
by a processor. Therefore the behavior of a processor is represented by a set of sequences, and
simultaneous updates are modelled by including aU possible interleavings.

We define the following abbreviation:

• ~deliver(p) inp f == ~3CT : deliver(p, CT) inp f.

Let IN denote the set of all natural numbers (including 0). Let IN+ = IN \ {O}. We define
List(p, U) to be the set of all possible sequences of updates delivered by p before local time U
as follows.

Definition 2.1 For any processor p and any clock value U E CV AL, define
List(p, U) = {(CT" CTZ, . .. , CTk) I there exist k E IN+, U" Uz, ... , Uk E CV AL such that

U, :s; Uz :s; ... :s; Uk < U,
deliver(p, CTi) atp Ui, for all i = 1,2, ... , k,
~deliver(p) inp (Uj, Uj+,), for all j = 1,2, ... , k - 1, and
~deliver(p) inp [0, U,).}

The order property is formalized as follows:

ORDER == correct(p) 1\ correct(q) -+ VU3V : List(p, U) <;; List(q, V)

By this property, we obtain that, for any COlTect processors p and g, VU3V List(p, U) <;;

List(q, V) and, simultaneously, IfU'3V': List(q, U') ~ List(p, V'). Hence l' and q deliver their
updates in the same order.

The top-level specification of the protocol is the conjunction of these three properties.
Recall that ABS denotes the top-level speciftcation of the atomic broadcast protocol. Thus,

ABS == TERM /\ ATOM /\ ORDER.

3 System Assumptions

In this section, we axiomatize the assumptions about the system. The conjunction of all the
axioms is denoted by AX.

3.1 Processors and Links

We first axiomatize the topology of the network. Define the following primitives.

• link(l,p, q): I is a physical communication channel between l' and q.

• Link(p) = {I I 3q : link(l,p, q)}: the set of links each of which connects l' with another
processor.

For any 1', q, and I, if IE Link(p), IE Link(q), and l' 't q, then l' and q are connected by l.
This is expressed by the following axiom.

Axiom 3.1 (Link) IE Link(p) /\ I E Link(q) /\1' 't q -+ link(l,p,q)

We also assume that a link connects at most two processors.

Axiom 3_2 (Point-to-Point) link(l,p,q)/\ link(l,p,r) -+ q == r

Let FP = {p I ~correct(p)} and FL = {I I ~correct(l)}. Define F = FP U FL. Thus F
denotes the set of processors and links which are not always correct. We assume that during
any protocol execution there can be at most In processors that suffer omission failures, where
In E IN.

One important assumption about the network is that during any execution of the protocol
all correct processors remain connected via correct links. Recall that G is the set of all proces
sors and links, i.e., G = P U L. Then G \ F = {p I correct(p)} U {II correct(l)} and it denotes
the set of correct processors and links. G \ F can be considered as a graph in which processors
are vertices and links are edges. We use d(p, q) to denote the distance between p and q and
we call G \ F connected if and only if there exists a path between any two processors in G \ F.
Now we can give the axiom for connectivity.

Axiom 3.3 (Connectivity) G \ F is connected.

Given axiom 3.3, we assume that the diameter of G \ F is d.

3_2 Bounded Communication

Now we give the axioms for the underlying communication mechanism. We define two primi
tives:

• send(p, In, I) at t: processor l' starts to send message m along link I at real time t.

• receive(p, m, l) at t: processor l' finishes with receiving message In along link I at real
time t.

6

The abbreviations defined in section 2 are also used for these two primitives.
Two processors connected by a link are called neighbors. When send(p, m, I) at t or

reeeive(p, m, I) at t holds, 1 must be a link connecting p and one of its neighbors.

Axiom 3.4 (Neighbor) send(p,m,l) atq T V reeeive(p,m,l) atq T --> I E Link(p)

Two processors can send messages to each other if they are connected by a link. Communication
along links is synchronous in the sense that the duration of the transmission of a message is
bounded by two parameters 'Y and 6 with 'Y,6 E CVAL, 'Y > 0, and 'Y:<:: 6. Let p and q be two
correct processors connected by a correct link I. Let r be any correct processor to be used as
reference. If p sends message m along link I at clock value U according to the clock of r, then
q will receive m along 1 at some clock value in the interval [U + 'Y, U + 6J according to the clock
of r.

Axiom 3.5 (Bounded Communication)
send(p, m, I) atr U 1\ correct(p) 1\ correct(q) 1\ link(l, 1', q) 1\ correct(l) 1\ correct(r) -->

receiver g, m, I) inr [U + 'Y, U + 6J

3.3 Clock Synchronization

We assume that clocks of correct processors are synchronized within a parameter L

Axiom 3.6 (Clock Synchronization)

eorrect(p) at t 1\ eorreet(g) at t --> ICp(t) - Cq(t)1 < E

It is trival to derive the following lemma.

Lemma 3.1 (Clock Synchronization) con·eet(p) 1\ correet(g) --> ICp(t) - Cq(t)1 < E

We also assume that local clocks are monotonic.

Axiom 3.7 (Monotonic Clock)

According to [Cri93J, an implicit assumption was made and used in [CASD89J, namely that
any clock on a correct processor has a speed that varies from the speed of any other clock on
a correct processor by a very small quantity p, p 2: O. This p drift was neglected in [CASD89J
and it resulted in the following approximation: while a message travels between two processors
the clocks of the two processors will keep their distance constant. We take this p factor into
account and formalize this assumption as follows:

Axiom 3.8 (Relative Speed) conect(p) 1\ correct(q) 1\ tl :<:: t2 -->

(1 - p)(Cp(t2) - Cp(tl)) :<:: Cq(t2) - Cq(tJ) :<:: (1 + P)(Cp(t2) - Cp(tl))

3.4 Failure Assumptions

The atomic broadcast protocol verified in this paper tolerates omISSIOn failures. When a
processor suffers an omission failure, it cannot send out messages. More precisely, if a processor
p is not correct at real time t, then p is not able to send any message m along any link 1 at
time t. This is also called the fuil silence property of processors.

Axiom 3.9 (Fail Silence) .correct(p) atq T --> .send(p, m, I) atq T

7

When a link suffers an omission failure, the messages entrusted on that link may be lost. But
if a message has been received by a processor along a (possibly faulty) link, then that message
should have been correctly transmitted by that link, i.e., that message is not corrupted, there
are no timing errors on the message sending and receiving, etc.. Therefore, if a processor q
receives a message m along link I at clock value V, then there exists another processor p which
has sent that message earlier along I at some time between [V - 8, V - "y] according to the
clock of r.

Axiom 3.10 (Only Omission Failure)
receiver q, m, I) atr V /I C01"Tect(r) --+ 3p t q : send(p, m, I) inr [V - 8, V - "y]

4 Server Process Specification

In this section, we characterize 5(p), i.e., the atomic broadcast server process running on p.
Notice that, in the top-level specification, only delivery of updates is important and thus

primitive deliver(p, a) at t is used. In the server process specification, information about
the initiation time T and the initiator s of an update a is needed to implement the top-level
specification. Therefore we define another primitive convey(p, < T, s, a >) at t as follows:

• convey(p, < T, s, a » at t: processor p starts to send message < T, s, a > to client
processes at real time t.

Then the relation between deliver(p, a) at t and convey(p, < T, s, a» at t is clear:

• deliver(p, a) at t +-+ 3s, T : convey(p, < T, s, a» at t

Assume that any correct processor can send a message to all its neighbors within T, E CV AL
time units and any correct processor can convey all the updates initiated at the same clock
time to client processes within Te E CV AL time units. Let Tr E CV AL, Tr 2: T" be the time
to ensure that all correct processors ha.ve received a message containing an update after it is
initiated. These parameters will be used to determine the values of D1 and D2 occurring in
the top-level specification.

The server specification is described as follows.

• Initiation requirement.
When l' initiates an update a at clock time T, it will send message < T,p, a > to all
its neighbors immediately. When l' has waited long enough to be sure that all correct
processors have received that message, p will convey < T, 1', a > to client processes. This
is formalized by the following formula:

5tart(p) == initiate(p, a) atp T -; VI E Link(p) : send(p, < T, p, a >, I) inp [T, T + T,] /I

convey(p, < T, 1', a» inp [T + T" T + Tr + Te]

• Relay requirement.
When p receives a message < T, s, a >, it will relay this message on all links except the
one along which it received this message. As in the initiator's case, when its clock reaches
T + T" l' will convey < T, s, a > to client processes.

Relay(p) == receive(p,< T,s,a >,1) atp U-;
'111 E Link(p) \ {I} : send(p, < T, s, a >, h) inp [U, U + T,] /I

convey(p, < T, s, a» inp [T + Tn T + Tr + Te]

• Convey requirement.
If processor p conveys a message < T, s, a> at clock time U, then there can be only two

8

possibilities: either p initiated a itself at local clock time T with U E [T + T" T + TT + Te],
or p received the message < T, s, a > at some clock value V and p '" s II U E [T + T" T +
TT + Te] holds.

When p initiates a at local time T or it receives < T, s, a > at some local time V, we
say that p learns of message < T, 8, a > and define:

Learn(p, < T, 8, a» '" (initiate(p, a) atp Til p '" 8) V
(31, V: receive(p,< T,s,a >,1) atp V lip", s)

Then the requirement is formalized by the formula Origin(p):

Origin(p) '" convey(p, < T, s, a» atp U --.,
Learn(p, < T, s, a» II U E [T + T" T + TT + Te]

• Ordering requirement.
If two messages are conveyed by processor p, then they will be conveyed in the order of
initiation times of updates contained in these two messages. If initiation times are the
same, then they will be conveyed according to the priority of initiators. Therefore it is
assumed that there is a total order -< on the set of processor names P. This total order
specifies a priority ordering among processors. We define a lexicographical ordering c:
on pairs < T,s >.

Definition 4.1 For any two pairs (TI,SI) and (T2,S2), (TI,SI) c: (T2,S2) iff
(TI < T2) V (TI = T2 II 81 -< 82).

Then the fourth requirement is formalized by the following formula 5equen(p):

5equen(p) '" convey(p, < TJ, Sl, al » atp VI II convey(p, < T2, 82, a2 » atp V2
--., (VI < V2 ,.... (TI , 81) c: (T2, 82))

The requirements mentioned above are only for correct processors. Since omission failures are
allowed, we still need to define what is the acceptable behaviour for faulty processors. Thus
we have the following requirement for any arbitrary processor p .

• Failure requirement.
When p sends a message < T, 8, a > to a neighbor at local time U, there can be only
two possibilities: either l' initiated a itself at local time T and U E [T, T + Ts] holds, or
l' received < T, s, (J > at some local time]I and U E []f,]I + T,] holds.

5 ource(p) '" send(p, < T, s, a >, I) atp U --.,
(initiate(p, a) atp T II U E [T, T + T,] II p '" s) V
311 ,]I : (receive(p, < T, s, a >, h) atp]I II U E []f,]I + Ts] II P ¢ s)

When send(p, < T, s, a >, I) atp U holds, by the fail silence axiom 3.9, correct(p) atp U
holds. But correct(p) atp U does not imply correct(1')' It is quite possible that pis
faulty at some other time. That is why this requirement should be for any processor p
and not only for correct one.

Now we assume that server process 5(p) satisfies specification 51'ec(1') with

5pec(1') '" [correct(p) --., 5tart(p) II Relay(p) II Origin(p) II 5equen(1')] II 50urce(p).

Axiom 4.1 (Server Process Specification) 5(1') sat 5pec(p)

Thus the behavior of any processor l' is specified by this axiom and the fail silence axiom 3.9.

9

5 Verification of Termination

As explained in the Introduction, our aim is to prove 1\':=1 Spee(Pi) A AX -> ABS, where AX
is the conjunction of all the axioms and ABS is the top-level specification of the protocol.
Thus we assume 1\':=1 Spee(Pi) A AX and prove ASS.

In this section, we prove the termination property of the protocol. To make the proof
easier, we first give some additional lemmas.

Since we have assumed 1\':=1 Spec(pi) A AX, we can rewrite a part of the Spee(p) to a more
general form in which the clock values are mea.sured on an arbitrary correct processor r.

Lemma 5.1 (Modified Server Specification)
eorrect(r) -> [eorrect(p) -> Forward(p, r)] A N Source(p, r),

where Forward(p, r) is generalized from Relay(p) and formalized as

Forward(p, r);: reeeive(p, < T, s, (J >, I) atr U -+

Ifll E Link(p) \ {I}: send(p, < T,s,(J >,11) inr [U, U + (1 + p)T,]

and N Souree(p, r) is a general form of Souree(p):

N Source(p, r);: send(p, < T, s, (J >, I) atr U -+

(initiate(p,(J) atp TAU E (T - f,T + T, + f) A 1';: s) V

311, V: (reeeive(p, < T, s, (J >, IJ) atr V AU E [V, V + (1 + p)T,] A P '" s)

Proof: We prove this lemma by two steps .

• First, we prove eorreet(,.) A eorrect(p) -+ Forward(p, r). Assume that eorrect(r) A

correet(p) A receive(p, < T, s, (J >, l) atr U holds. Let tl be the real time such that
Cr(tJ) = U. Suppose Cp(tJ) = UI. Then we have receive(p, < T,s,(J >,1) atp UI . By
Relay(p), we obtain Ifll E Link(p) \ {I} : send(p, < T, s, (J >, II) inp [Ub UI + T,].
Let t2 be the real time such that Cp (t2) = UI + T,. Thus we have
VII E Link(p) \ {I}: send(p, < T,s,(J >,11) in [tl,t2].
Since T, 2: 0, we obtain Gp(tJ) :S Gp(t2). By the monotonic clock axiom 3.7, we have
tl :S t2. Then by the relative speed axiom 3.8, we obtain
(1- P)(Gp(t2) - Cp(td :S Gr(t2) - Cr(td :S (1 + p)(Gp(t2) - Gp(td)·
Hence Cr (t2) :S U + (1 + p)T,. Thus we obtain
Ifll E Link(p) \ {I}: send(p, < T,s,(J >,11) inr [U, U + (1 + p)T,]
and then Forwa,.,l(p, r) holds .

• Second, we prove eorrect(r) -> N Souree(p, r). Assume correet(r) and
send(p, < T,s,(J >,1) atr U hold. Let tl be the real time such that Cr(tl) = U. Suppose

Cp(tl) = UI . Then we have send(p, < T,s,(J >,1) atp UI. By Source(p), we obtain
(initiute(p, a) atp T A UI E [T, T + T,] A p ;: s) V (1)
3h,VI : (receive(p, < T,s,(J >,Id atp VI A UI E [VI, VI + T,] A p '" s) (2)

Assume (1) holds. From send(p, < T, s, a >, I) at t l , by the fail silence axiom 3.9, we have
correct(p) at tl. From correct(r) and the clock synchronization axiom 3.6, we obtain

ICr(td-Cp(tI)1 < f. SinceCp(tl) = UI E [T,T+T,],wehaveCr(tJ) E (T-f,T+T,+f).
From (1), we obtain

initiate(p,a) atp TAU E (T - f,T + T, + f) A p;: s (3)
Suppose that (2) holds. Let t2 be the real time such that Cp(t2) = VI. Then there exists
a V such that Cr(t2) = V. Since Gp(t2) :S Cp(td, by the monotonic clock axiom 3.7, we
have t2 :S tl . By the relative speed axiom 3.8, we have
(1- p)(Cp(td - Cp(t2) :S Cr(tl! - Cr(t2):S (1 + p)(Gp(td - Cp(t2)).
From UI E [VI, VI + T,], we have 0 :S Cp(t,) - Gp(t2) :S T, and then
Cr(t2) :S Gr(tl) :S Gr(t2) + (1 + p)T" i.e., U E [11, V + (1 + p)T,].

10

From (2), we obtain
311, V: (receive(p, < T,s,a >,Itl at,. V II U E [V, V + (1 + p)Ts) Ill' 't s) (4)

Combining (3) and (4), we have proved N Source(p, "). 0

The second lemma expresses that if a correct processor l' receives a message < T, s, a > at
time V measured on the clock of a correct processor r, then its correct neighbor q which is not
s will receive < T, s, a > by V + (1 + p)Ts + D measured on the clock of r.

Lemma 5.2 (Propagation)
receive(p, < T, s, a >, Itl atr V II correct(p) II correct(q) II link(Iz , 1', q) II correct(lz) II q ¢ s

II correct(r) --+ 31: receive(q, < T,s,a >,1) bYr V + (1 + p)Ts + D

Proof: Assume that the premise of the lemma holds. Since receive(p, < T, s, a >, II) atr V
holds, there are two possibilities.

• If It 't Iz, then q is not the processor which just sent the message < T, s, a > to p. By
Forward(p,r), l' will send the message < T,s,a > to q along link 12 within (1 + p)Ts
time units as measured on the clock of r. Thus we have
send(p, < T, s, a>, 12) inr [V,JI + (1 + p)Ts).
Then there exists an VI such that
send(p,< T,s,a >,Iz) atr VI II VI E [V, V + (1 + p)Ts}.
By the bounded communication axiom 3 .. 5, we obtain
receive(q,< T,p,a >,12) inr [VI + " VI + DJ.
Together with VI :<::: V + (1 + p)T" we obtain
31: receive(q, < T,s,a >,1) by,. V + (1 + p)Ts + D.

• If II = 12 , then l' receives < T, 1', a> from link 12 and thus we have
receive(p, < T, s, a>, 12) atr V.
By the only omission failure axiom 3.10, there exists a PI such that

PI 't P II send(PI, < T, s, a>, 12) inr [V - D, V - 'YJ
holds. By the neighbor axiom 3.4, we have Iz E Link(p) II 12 E Link(pI)' Since l' 't PI, by
the link axiom 3.1, we obtain link(lz,p,pI)' But it is assumed that link(l2,p, q). Thus
by the point-to-point axiom 3.2, we obtain PI = q. Thus there exists a U such that
send(q, < T,s,a >,12) at,. U II U E [V - D, V -,J
holds. Since q ¢ s, by N Source(q, r), we obtain
3/, V' : (receive(q, < T, s, a >, I) atr V'II U E [V', V' + (1 + p)TsJ).
From V' :<::: U and U :<::: V -I' we obtain V' :<::: V -, and thus V' :<::: V + (1 + p)Ts + D.
Thus we have 31 : receive(q, < T, s, a >, I) bYr V + (1 + p)Ts + D. 0

The next lemma shows that if correct processor s initiates an update (J at local time T, then
any another correct processor q will receive < T, s, a > by T + d(s, g)((1 + p)Ts + D) measured
on the clock of s, where drs, g) denotes the distance between sand q.

Lemma 5.3 (Bounded Receiving)
initiate(s, a) ats T II correct(s) II correct(q) II q ¢ s --+

31 : receiver q, < T, s, a >, I) by. T + d(s, q)«1 + p)Ts + D)

Proof: Assume that the premise of the lemma holds. We prove this lemma by induction on
the distance between sand q. Since s 't g, we start with d(s, q) = 1.

• drs, q) = 1. Since both sand g are correct processors, by the definition of drs, q), they are
connected by some correct link. Let 1 be that link. Then we obtain link(l, s, q)lIcorrect(I).
Since correct(s) holds, we have Start(s). From Start(s) and initiate(s, a) at. T, s will
send the message < T, s, a> to processor q along link l. Thus we have

11

send(s, < T, s, (J >, I) ins [T, T + Ts].
By definition, there exists a U such that
send(s, < T, s, (J >, I) ats U /I U E [T, T + T,].
By the bounded communication axiom 3.5, we obtain
receive(q,< T,s,(J >,1) ins [U +"U + 6].
From U ~ T + T" we obtain
receive(q,< T,s,(J >,1) bys T +T, + 6.
Since p 2: 0, we have
31: receive(q, < T,s,(J >,1) bys T + d(s,q)((1 + p)T, + 6).

• d(s, q) = k+ 1 with k 2: 1. By definition, there must exist a link 12 and a processor ql such
that link(l2, qt, q) /I correct(l2) /I correct(ql) /I d(S, ql) = k /I d(ql, q) = 1 holds. By the
induction hypothesis, we have 311 : receive(Ql, < T, s, (J >, It) bys T + k((1 + p)Ts + 6).
By definition, there exists a VI such that
311 : (receive(qt, < T, s, (J >,11) ats VI /I VI :S T + k((1 + p)T, + Ii)).
By the propagation lemma .5.2, we have
31: receive(q,< T,s,(J >,1) bys VI + (1 +p)T, + Ii, i.e.,
31: receive(q, < T,s,(J >,1) bys T + (k + 1)((1 + p)T, + 6).
Hence we have proved
31: receive(q,< T,s,(J >,1) bys T+ d(s,q)((l+ p)T, + Ii). 0

The next lemma shows that if a correct processor s initiates (J at local time T, then every
correct processor q will convey < T, s, (J > in the interval [T + Tr, T + T, + Te] according to its
own clock.

Lemma 5.4 (Convey)
initiate(s, (J) ats T /I correct(s) /I correct(q) --+

convey(q, < T, s, (J » inq [T + Tr, T + T, + T,]

Proof: Assume that the premise of the leluma holds. We prove this Ielnma in two cases.

• d(s, q) = o. By definition, we have s '" q. By C01"Tect(s), we have Start(s). From
initiate(s, a) ats T, we obtain
convey(s, < T, s, (J » ins [T + Tr, T + T, + Te]. Thus we have
convey(q, < T, s, (J » inq [T + T" T + T, + T,].

• des, q) > O. By definition, we have s 'fo q. By the bounded receiving lemma 5.3, we
obtain 31: receive(q,< T,s,(J >,1) bys T+d(s,q)((1+p)T, + 6).
By the clock synchronization lemma 3.1, we have
31 : receive(q, < T, s, (J >, I) beforeq T + d(s, q)((l + p)T, + 6) + E.

Thus there exists a V such that 31: receive(q, < T,s,(J >,1) atq V.
By Relay(q), we obtain convey(q, < T, s, (J » inq [T + T" T + Tr + T,]. 0

Next we prove that the termination property follows from the axioms and lemmas given before.

Theorem 5.1 (Termination) If Dl 2: Tr + Te, then
initiate(s,(J) ats T /I correct(s) /I correct(q) -+ deliver(q,(J) bYq T + Dt,

i.e., the termination property TERM holds.

Proof: Assume that the premise of this theorem holds. By the convey lemma 5.4, we obtain
convey(q, < T, s, (J » inq [T + Tr, T + Tr + Te]. As observed in section 4, we have
deliver(q, (J) inq [T + T" T + T, + T,].
Since Dl 2: Tr + T" we have deliver(q, (J) bYq T + D1 . 0

12

6 Verification of Atomicity

In this section, we prove the atomicity property of the atomic broadcast protocol. We first
show some lemmas which will help prove the atomicity property.

The next lemma states that if correct processor p receives message < T, s, a > at local time
V, then that update a was initiated by processor 8 at local time T.

Lemma 6.1 (Initiation)
receive(p, < T, s, a >, I) atp V II correct(p) --> initiate(s, a) ats T

Proof: Assume that the premise of the lemma holds. By the only omission failure axiom 3.10,
there exist SI and UI such that

Sl 'tpllsend(sl,<T,s,a>,I)atp UIIIUI E[V-8,V-,1. (1)
By N Source(sI,p), there exist II and VI such that

(initiate(81,a) atsl Til 81 == s) V (2)
(receive(sl, < T, s, a >, II) atp VI II SI 't s II UI E [VI, VI + (1 + p)T,]). (3)

If (2) holds, we have proved initiate(s, a) ats T.
If (2) does not hold, then Sl is not the initiator of a and (3) holds.
From (1), we have UI :S V -I, Le., V 2: UI + ,. From (3), we have UI 2: VI. Thus we obtain

V 2: VI + " Le., V - VI 2: ,.
From receive(sl, < T, s, a >, II) atp VI, we follow the above steps and then obtain another
processor S2 't SI· Let k E IN, k 2: 2, such that k > Vii (notice that, > 0). Then there are
two possibilities:

• either there exists a i < k such that Si is the initiator of a and Si == s. Hence we have
obtained initiate(s, a) ats T;

• or there does not exist a i < k such that Si is the initiator of a. Thus SI, ... , Sk-I are
not the initiator of a. Then, for any i = 2,3, ... , k - 1, there exist Ii and Vi such that

Si 't 8i_1 II receive(Si, < T, s, a >, Ii) atp Vi II Si 't s II Vi-I - Vi 2: ,
holds. From Vi-I - Vi 2: , and \1 - VI 2: " we obtain V-Vi 2: h, for any i = 1,2, ... , k-l.
From recei vet Sk_1 , < T, s, a >, I k- tl atp Vk-l, by the only omission failure axiom 3.10,
there exists a processor Sk 't Sk_1 such that
send(sk, < T, s, a>, Ik-I) inp [Vk-I - 8, Vk_1 - ,1 holds.
By NSource(sk,p), there exist Ik and Vk such that

(initiate(sk,a) atsk Til Sk == s) V (5)
(receive(sk,< T,s,a >,Ik) atsk Vk II Sk 't s) (6)

holds. If (6) holds, similar to before, we can derive Vk-I - Vk 2: ,. From V - Vi 2: ii,
we obtain V - Vk 2: k,. Since k > Vii, we have V - Vk > V and thus Vk < o. Recall
that aJllocal clock values are nonnegative. Hence (6) does not hold. Therefore (5) must
hold, Le., sk is the initiator of a and Sk == s. 0

We define an abbreviation Fi1·strec(p, < T, s, a >, I) atr V, which expresses that p receives
< T, s, a > at time V measured on the clock of a correct processor rand p is one of the first
correct processors which have received < T, s, a> according to the clock of r, as follows:

Firstrec(p, < T, s, a >, I) atr V == receive(p, < T, 8, a >, I) atr V II correct(r) II correct(p) II
Vp', I', V' : (correct(p') II p' 't p II receive(p', < T, s, a >, I') atr V' --> V' 2: V)

The next lemma shows that if p receives < T, s, a > at time V measured on the clock of a
correct processor r, p is one of the first correct processors which have received < T, s, a >, and
s is faulty, then any processor q which is not p and has sent < T, s, a > earlier than V is a
faulty processor.

13

Lemma 6.2 (Faulty Sender)
Firstrec(p, < T, s, a >, I,) atr V /I send(q, < T, s, a >,12) atr U /I P "I' q /I

~correct(s) /I U < V ~ ~correct(q)

Proof: Assume that the premise of the lemma holds. From send(q, < T,s,a >,12) atr U, by
N Source(q, r), we obtain

(initiate(q,a) atq T /I q == s) V (1)
31', V': (receive(q, < T,s,a >,1') at. V' /I q "I' s /I U E [V', V' + (1 + p)Ts1). (2)

Then there exist two possibilities:

• if (1) holds, then q == s and thus, by assumption, ~correct(q) holds;

• if (2) holds, we have V' :<: U. Since U < V, we obtain V' < V.
If correct(q) holds, by Firstrec(p, < T, s, a >, I) at,. V, we would have V' 2: V and thus
it leads to a contradiction. Thus ~correct(q) holds. 0

The following lemma shows that if p receives < T, s, a > at time V measured on the clock of
a correct processor r, I' is one of the first correct processors which have received < T, s, a>,
and s is faulty, then V < T + m«1 + p)T, + 0) + E, where m is the maximum number offaulty
processors in the network.

Lemma 6.3 (First Correct Receiving)
Firstrec(I', < T, s, a>, 1) at,. V /I ~correct(s) ---> V < T + m«1 + p)T, + 0) + E

Proof: Assume that the premise of the lemma holds. From Firstrec(I', < T, s, a >, I) atr V,
we obtain receive(p, < T, s, a >, I) at,. V. By the only omission failure axiom 3.10, there exist
s, and U, such that 8, "I' p /I send(s" < T, s, a>, 1) atr U, /I U, E [V - D, V -')'1 holds. Thus
we have

V:<: U, + 0 and U, :<: V - ')'. (1)
Then we obtain V 2: U, + ')'. Since,), > 0, we have

V> U,. (2)
Since Firstrec(p, < T, s, a >, I) at,. V holds, by the faulty sender lemma 6.2, s, is a faulty
processor, i.e., ~correct(s,) holds. By N Source(sI, r), there exist 1, and V, such that

(initiate(s, , a) atsl T /I s, == s /I U, E (T - E,T + T, + E» V (3)
(receive(s" < T, s, a >, 1,) atr V, /I s, "I' s /I U, E [V" V, + (1 + p)Ts1) (4)

holds. Then there are two possibilities.

• If (3) holds, then s, is the initiator of a and we have U, < T + Ts + €.

Together with (1), we obtain V < T + (1 + p)T, + D + €.

Since ~correct(8) holds, there is at least one faulty processor, i.e., the maximum number
of faulty processors Tn 2: 1. Thus we obtain V < T + m((1 + P JT, + OJ + €.

• If (4) holds, we have U, :<: V, + (1 + p)T,. From (1), we obtain
V :<: V, + (1+ p)T, + D. (5)

From receive(8" < T, s, a >, I,) atr V" by the only omission failure axiom 3.10, there
exist S2 and U2 such that S2 has sent < T, s, a > to 8, along link I, at time U2 measured
on the clock of r. Similar to before, we have U2 E [V, - D, V, - ')'], i.e., U2 :<: V, - ')'.
From (4), V, :<: u, and thus Uz :<: U, -')'. From (2), U, < V and then U2 < V -')'. Hence
V > U2 • Then by the faulty sender lemma 6.2, ~correct(S2) holds.
By N Source(s2, r), we obtain a formula similar to (3) and (4).
If S2 is not the initiator of a, we follow the above steps and then obtain another S3 which
is also a faulty processor. Since there are at most Tn faulty processors, we cannot continue
this procedure infinitely. We must obtain a Bk which is the initiator of a with k :<: m.

14

For any i = 2,3, ... , k - 1, by the only omission failure axiom 3.10 and NSource(s;,r),
there exist I; and Vi such that

Si 't Si_1 /I receive(si, < T, s, (J >, Ii) atr Vi /I Si 't S /I Vi-I :0; Vi + (1 + P)Ts + 6
holds. Then we obtain

VI :0; Vk-I + (k - 2)((1 + p)Ts + 0). (6)
From receive(sk_l, < T,s,(J >,Ik-I) at .. Vk_l, by the only omission failure axiom 3.10,
there exists a Uk such that
Sk 't sk_I/lsend(sk,< T,s,(J >,Ik-I) at .. Uk /I Uk E [Vk-I - 0, Vk-I -/J
holds. Then we obtain Vk-I :0; Uk + 6.
Together with (6), we obtain

VI :0; Uk + (k - 2)(1 + p)T, + (k - 1)6. (7)
Since Sk is the initiator of (J, by N S ource(Sk, r), we have

initiate(sk,(J) atsk T /I Sk == S /I Uk E (T - f,T + Ts + f).
Together with (7), we obtain

VI < T + (k - 1)((1+ p)Ts + 6) + f. (8)
Combining (5) and (8), it results in V < T + k((1 + p)T, + 6) + f.

Since k :0; m, we finally obtain V < T + m((1 + p)T, + 8) + f. 0

The following lemma shows that if P receives < T, s, (J > at time V measured on the clock of a
correct processor rand s is faulty, then any other correct processor q will receive < T, s, (J >
by time V + d(p, q)((1 + P)T, + 6) measured on the clock of r.

Lemma 6.4 (Correct Receiving)
reeeive(p, < T, s, (J >, I') at .. V /I ,correet(s) /I eorreet(q) /I P 't q -+

31: receive(q,< T,s,(J >,/) by .. V + d(p,q)((I+p)Ts + 8)

Proof: Assume that the premise of the lemma holds. We prove this lemma by induction on
the distance between p and q. Since p't q, we start with d(p, q) = 1.

• d(p, q) = 1. By definition, p and q are connected by some correct link. Let I be that link.
Then we have link(/,p, q) /I correet(l). From reeeive(l', < T, s, (J >, I') at .. V, by the only
omission failure axiom 3.10, there exist a 1" and a UI such that
PI 't p /I send(PI, < T, s, (J >, I') at,. UI /I UI E [V - 6, V-I J

holds. Since UI :0; V-I and 1 > 0, we have V 2: UI + 1 and then V > UI. By the faulty
sender lemma 6.2, we have 'COTTeet(l'l). Thus correct processor q is not that sender PI.
By FOTward(p, r), p will send < T, s, (J > to q along link I within (1 + p)Ts time units.
Thus we have send(p, < T,s,(J >,1) in .. [V, If + (1 + p)T,J. By definition, there exists an
X such that send(l', < T, s, (J >, I) at .. X /I X E [V, V + (1 + P)T,J holds.
By the bounded communication axiom 3 .. 5, we obtain
reeeive(q,< T,s,(J >,/) in,. [X +'I,X +6J.
Together with X :0; If + (1 + P)T" we have proved
31: reeeive(q, < T,s,(J >,1) by,. V + (1 + p)T, + 6, Le.,
31: receive(q,< T,s,(J >,1) by,. V + d(l',q)((I+ p)T,+ 6) .

• d(p, q) = k+ 1 with k 2: 1. By definition, there must exist a processor ql and a link 12 such
that cOTreet(ql) /I cOTrect(l2) /l/ink(l2,ql,q) /I d(p,qIl = k /I d(ql,q) = 1 holds. By the
induction hypothesis, we have 311 : Teeeive(ql, < T, s, (J >, III by .. V + k((1 + p)Ts + 8).
By definition, there exists a VI such that
311 : reeeive(q" < T, s, (J >, III at,. VI /I VI :0; V + k((1 + P)Ts + 8).
Since cOTrect(q) and ,eoneet(s) hold, we obtain q 't s.
Then by the propagation lemma .5.2, we have
31: receive(q,< T,s,(J >,1) by,. Vi + (1 + p)T,+ 8, i.e.,

1·5

31: receive(q, < T,s,a >,1) bYr V + (k + 1)«(1 + p)T, + 0).
Therefore we have proved
31 : receive(q, < T, s, a >, I) bYr V + d(p, q)«1 + p)T, + 0). o

Next lemma shows that if correct processor p learns of < T, s, a >, then any correct processor
q also learns of < T, s, a >.

Lemma 6.5 (All Learn)
Learn(p, < T, s, a >) /I con-ect(p) /I correct(q) --> Learn(q, < T, s, a >)

Proof: Assume that the premise of the lemma holds. By Learn(p, < T, s, a », we have
(initiate(p,a)atpT/lp==s) V (1)
(3/], V, : receive(p, < T, s, a >,1,) atp V, /I P oj s) (2)

From (2), by the initiation lemma 6.1, we obtain initiate(s,a) at. T.
Since either (1) or (2) holds, we obtain initiate(s,a) at. T from the premise.
We have to prove Learn(q, < T, s, a», i.e., the following formula:

(initiate(q,a) atq T /I q == s) V (3)
(3/" V, : receive(q, < T, s, a >, I,) atq V, /I q oj s). (4)

There are two possibilities:

• if s == q, then we have initiate(q,a) atq T /I q == s holds, i.e., (3) holds;

• if s oj q, we prove that (4) holds by the following two cases.

1. If correct(s) holds, by the bounded receiving lemma 5.3, we obtain
3/, : receive(q, < T, s, a>, 12) bys T + drs, q)«1 + p)T, + 0).
By the clock synchronization lemma 3.1, we have
3/,: receive(q,< T,s,a >,1,) beforeq T+d(s,q)«I+p)T, + 8) + e, i.e.,
3/2 , V2 : receive(q,< T,s,a >,/2) atq V, /I q oj s.
Hence (4) holds.

2. If ,correct(s) holds, since corTect(l') holds, we obtain l' ¢ s and then (1) does not
hold. From (2), we have receive(p, < T, s, a >, I,) atp V" Then there exists a V{
such that receive(p, < T, s, a >, I,) atq V{ /I V{ E (V, - e, V, + e). Hence there must
exist a processor p, which is one of the first correct processors that have received
< T, s, a> according to the clock of q. Thus there exist 13 and V such that
Firstrec(p], < T, s, a >,/3) atq V and hence receive(p, , < T, s, a >,/3) atq V
holds. By the first correct receiving lemma 6.3, we obtain V < T+m«1 +p)T,+8)+e.
There are again two possibilities:

- if q == Ph then we have receive(q, < T, s, a>, 13) atq V, i.e.,
31" V2 : (receive(q, < T,s,a >,12) atq V2 /I V2 < T + m«(1 + p)T, + 8) + e);

- if q oj PI, by the correct receiving lemma 6.4, we have
312 : receive(q, < T, s, a>, 12) bYq V + d(p, q)«1 + p)T, + b), i.e.,
3/2 , V2 : (receive(q, < T,s,a >,/2) atq V2 /I

V2 < T + (d(p, q) + m)«1+ p)T, + 8) + e).
For both possibilities, we have
31" V,: receive(q, < T,s,a >,12) atq V2 /I q oj s, i.e., (4) holds. o

Next lemma expresses that if correct processor p conveys < T, s, a> at local time U, then any
correct processor q conveys < T, s, a> in the interval [T + Tn T + Tr + Tel on its own clock.

Lemma 6.6 (All Convey)
convey(p, < T, s, a » atp U /I con-ect(p) /I cOT1'ect(q) -->

convey(q, < T, s, a » inq [T + Tn T + Tr + Tel

16

Proof: Assume that the premise of this lemma holds. From correct(p), we have Origin(p).
By convey(p, < T, s, a » atp U, we obtain Learn(p, < T, s, a». Then by the all learn lemma
6.5, we have Learn(q, < T, s, a», i.e.,

(initiate(q,a) atq TA q =' s) V (1)
(31, V : receiver q, < T, s, a >, I) atq V A q ¢ s). (2)

If (1) holds, by Start(q), we have convey(q, < T, s, a» inq [T + Tn T + Tr + Te].
If (2) holds, by Relay(q), we have eonvey(q, < T, s, a » inq [T + T" T + Tr + Tc].
Thus for both cases, we obtain convey(q, < T, s, a» inq [T + Tn T + Tr + Te]. 0

Next we prove a theorem which shows that the atomicity property follows from the axioms
and lemmas given before.

Theorem 6.1 (Atomicity) If D2 :::: To. then
deliver(p, a) atp U A eorrect(p) A correct(q) ->

3s,T: initiate(s,a) at. T Adeliver(q,a) inq [U - D2,U +D2]'
i.e., the atomicity property ATOM holds.

Proof: Assume that the premise of the theorem holds. From deliver(p, a) atp U, by definition,
there exist sand T such that convey(p, < T, s, a » atp U holds. By the server process
specification axiom 4.1 and eorreet(p), we have Origin(p). By Origin(p), we obtain
Learn(p, < T, s, a» A U E [T + Tn T + Tr + Te], i.e.,

«initiate(p,a) atp TAp =' s) V (1)
(3/, V: reeeive(p,< T,s,a >,1) atp V Ap¢ s)) A (2)
U E [T + Tr, T + Tr + Te]. (3)

From (1), we have initiate(s, a) ats T.
From (2), by the initiation lemma 6.1, we obtain initiate(s,a) at. T.
Thus for both cases, we have

3s, T : initiate(s, a) ats T.
From convey(p, < T, s, a» atp U, by the all convey lemma 6.6, we have
eonvey(q, < T, s, a» inq [T + T" T + Tr + Te].
From (3), we have T E [U - Tr - Te, U - Tr].
Hence we obtain convey(q, < T, s, a» inq [U - To. U + Te].
By definition, we obtain deliver(q,a) inq [U -1'0, U + Te].
Since D2 :::: Te, we have

deliver(q, a) inq [U - D2 , U + D2]'
From (4) and (5), this theorem holds.

7 Verification of Order

(4)

(5)
o

The order property of the atomic broadcast protocol will be proved in this section. We first
give two lemmas which will be used to prove the order property.

The following lemma shows that, for any correct processors p and q, if p conveys < T, s, a >
at local time U, q conveys < T, s, a> at local time V, and no update is delivered by p in the
interval [0, U), then there is also no update delivered by q in the interval [0, V).

Lemma 7.1 (First Delivery)
convey(p, < T, s, a » atp U A convey(q, < T, s, a» atq V A correct(p) A correct(q) A

,deliver(p) inp [O,U) -> ,deliver(q) inq [0, V).

Proof: Assume that the premise of this lemma holds. Suppose deliver(q) inq [0, V) holds. By
definition, there exist So, To, and Vo such that convey(q, < To, So, ao » atq Vo A Vo E [0, V)

17

holds. By assumption, we have convey(q, < T, s, a» atq V.
From Vo < V, by Sequen(q), we obtain (To, so) c:: (T,s).
By the all convey lemma 6.6, we have convey(p, < To, So, ao » inp [To + T" To + Tr + Tc], i.e.,
there exists a Uo E CV AL such that convey(p, < To, So, ao » atp Uo holds.
By assumption, we have convey(p, < T, s, a» atp U.
Since (To,so) c:: (T,s), by Sequen(p), we obtain Uo < U.
From Uo E CV AL, we have Uo ~ ° and thus Uo E [0, U). Therefore we obtain
convey(p, < To, So, ao » atp Uo 11 Uo E [0, U), i.e., deliver(p, ao) inp [0, U).
But by assumption, we have ,deliver(p) inp [0, U). Thus it leads to contradiction and then
deliver(q) inq [0, V) does not hold, i.e., ,deliver(q) inq [0, V) holds. 0

Next lemma shows that, for any correct processors p and q, if p conveys < T" s" a, > at local
time U, and < T2,s2,a2 > at local time U2, q conveys < T"s"a, > at local time V, and
< T2, S2, a2 > at local time V2, and there is no update delivered by p in the interval (U

"
U2),

then there is also no update delivered by q in the interval (V" V2).

Lemma 7.2 (No Delivery)
convey(p, < T

"
s" a, » atp U, 11 convey(p, < T2, S2, a2 >) atp U2 11 correct(p) 11

convey(q, < T" s" a, » atp V, 11 convey(q, < T2, s2, a2 » atp V2 11 correct(q) 11
,deliver(p) inp (U" U2) --+ ,deliver(q) inq (V" V2).

Proof: Assume that the premise of this lemma holds. Suppose deliver(q) inq (V" V2) holds.
By definition, there exist sand T such that convey(q,< T,s,a » inq (V" V2) holds. Then
there exists a V such that convey(q, < T, s, a» atq V 11 V E (V" V2) holds.
By assumption, we have convey(q,< T"s"a, » atp V,.
Since V, < V, by Sequen(q), we obtain (T"s,) c:: (T,s).
Similarly, from assumption, we have convey(q, < T2, S2, a2 » atp V2·
Since V < V2, by Sequen(q) again, we obtain (T,s) c:: (T2,s2).
From convey(q, < T, s, a » atq V, by the all convey lemma 6.6, we have
convey(p, < T, s, a » inp [T + Tro T + Tr + T,l,
i.e., there exists a U such that convey(p, < T, s, a» atp U holds.
By assumption, we have convey(p, < T" s" a, » atp U,.
Since (T"S,) c:: (T,s), by Sequen(p), we obtain U, < U.
Similarly, from assumption, we have convey(p, < T2, 82, a2 » atp U2.
Since (T,s) c:: (T2,s2), by Sequen(p), we obtain U < U2.
Thus we obtain convey(p, < T, s, a» atp U 11 U E (U" U2).
By definition, we have deliver(p, a) inp (U" U2).
But from assumption, we have ,deliver(p) inp (U" U2).
Thus it leads to contradiction and then deliver(q,a) inq (V" V2) does not hold,
i.e., ,deliver(q) inq (V" V2) holds. 0

Next we prove, by the following theorem, that the order property holds.

Theorem 7.1 (Order)
correct(p) 11 correct(q) --+ \lU3V : List(p, U) <;; List(q, V),

i.e., the order property holds.

Proof: For any clock value U E CVAL, assume (a" a2, ... , ak) E List(p, U). We prove that
there exists a V such that (a" a2, . .. , ak) E Lisl(q, V).
By definition, there exist k E IN+, U

"
Uz, ... , Uk such that U, ::; U2 ::; ... ::; Uk < U,

deliver(p, ai) atp Ui, for i = 1,2, ... , k, ,deliver(p) inp (Uj , Uj+I), for j = 1,2, ... , k - 1,
and ,deliver(p) inp [0, U,). From deliver(p,ai) atp Ui, there exist Si and Ti such that

18

convey(p, < T;, S;, a; >) atp Ui holds. Let V = U + T,. We show, by induction on k, that there
exist VI ,V2, ... ,Vk such that VI::; V2::;'''::; Vk < V, convey(q,< T;,8;,a; » atq V;, for
i = 1,2, ... ,k, ,deliver(q) inq (Vi> Vj +I), for j = 1,2, ... ,k -1, and ,deliver(q) inq [0, VI) .

• k = 1. By assumption, we have convey(p, < 1"8,, al » atp UI and
,deliver(p) inp [0, UI). By the all convey lemma 6.6, we obtain
convey(p, < TI , 81, al » inp [TI + Tr, TI + Tr + T,] and
convey(q, < T" 81, al » inq [TI + Tr, TI + Tr + Te].
Thus we have UI E [TI + Tr, TI + Tr + Te]. Since UI < U, we obtain TI + Tr < U.
Then there exists a VI E CV AL such that
convey(q, < T" SI, al » atq VI 1\ VI E [TI + Tr, TI + Tr + Te] holds.
Thus we have VI ::; TI + Tr + Te and hence VI < U + To. Le., VI < V.
By the first deliver lemma 7.1, we also obtain ,deliver(q) inq [0, VI) .

• k > 1. By the induction hypothesis, there exist VI, V2, ... , Vk-I such that VI ::; V2 <
... :::; Vk_l, convey(q, < Til Si, (7i » atq Vi, for i = 1,2, ... , k - 1,
,deliver(q) inq (Vj, Vj+tl, for j = 1,2, ... , k - 2, and ,deliver(q) inq [0, VI).
By assumption, we have convey(p, < Tk, 8k, ak » atp Uk.
By the all convey lemma 6.6, there exists a Vk such that
convey(q, < Tk, 8k, ak » atq Vk 1\ hE [n + Tr, n + Tr + T,] holds.
Since Uk-I::; Uk, we prove Vk-I ::; Vk by the following two cases.

1. Assume Uk-I < Uk. By assumption, we have
convey(p, < Tk-I, Sk-I, ak_I » atp Uk-I and convey(p, < Tk, Sk, ak » atp Uk.
Since Uk-I < Uk, by Sequen(p), we obtain (Tk-I,sk-tl c (Tk,8k).
From the indnction hypothesis and above, we have
convey(q, < Tk-I, Sk-I, ak_I » atq Vk-I and convey(q, < Tk, Sk, ak » atq Vk.
Since (Tk-I,Sk-tl C (Tk,Sk), by Sequen(q), we obtain Vk-I < Vk.

2. Assume Uk_I = Uk.
Suppose Vk- I < Vk. Similar as above, we obtain Uk-I < Uk which does not hold.
Snppose Vk_I > Vk. Similarly, we obtain Uk-I> Uk which also does not hold.
Therefore only Vk-I = Vk holds.

Combining these two cases, we obtain Vk_I ::; Vk.
Similar to the case for k = 1, we have Uk E [Tk + Tr, n + Tr + Te] and Uk < U. Thus we
obtain Tk + Tr < U. Since Vk ::; Tk + Tr + To, we have Vk < U + T" Le., Vk < V.
By assumption, we have ,deliver(p) inp (Uk-I, Uk).
Then by the no delivery lemma 7.2, we obtain ,deliver(q) inq (Vk- I , Vk).

Hence we have proved that there exist VI, V2, ... , Vk such that VI ::; V2 ::; ... :'0 Vk < V,
convey(q,< T;,8;,a; » atq V;, for i = 1,2, ... ,k, ,deliver(q) inq (V], Vj+I),
for j = 1,2, .. . ,k - 1, and ,deliver(q) inq [0, VI).
Since convey(q, < Ti , Si, ai » atq V; implies deliver(q, a;) atq V;, we obtain
deliver(q, a;) atq V;, for i = 1,2, ... , k. Therefore (aI, a2, ... , ak) E List(q, V).
Hence for any U there exists a V, i.e., V = U + To, such that List(p, U) <;; List(q, V). 0

8 Comparison and Conclusion

We have formally proved that the termination, atomicity, and order properties of the protocol
hold, provided

19

1. D, ~ Tr + Tc, where D, is the broadcast termination time in the termination property
specification, Tr is the time to ensure that all correct processors have received a message
containing an update after it is initiated, and Tc is the time for a correct processor to
convey updates to its client processes;

2. D2 ~ Tc, where D2 is the difference of delivery time of an update by two correct processors
in the atomicity property specification;

3. Tr ~ T, ~ 0, Tc ~ 0, 8 ~ 'Y > 0, E > 0, and p ~ 0, where T, is the time for a
correct processor to send a message to its neighbors, 'Y and 8 are the lower and upper
bounds, respecitively, of messa.ge transmission delay between two correct processors, f

and p are the maximal deviation a.nd speed difference, respectively, of local clocks of
correct processors.

Comparing our paper with [CASD89], the basic ideas of proving properties of the protocol are
similar. In the algorithm for the protocol in that paper, a processor only relays a message to
its neighbors if the message is received by the processor for the first time and it is not a "late
message". Actually these two factors do not affect the correctness of the protocol. Adding
them to the algorithm is to improve the efficiency of the implementation. Thus the informal
proof in that paper verifies the protocol without taking these factors into account. We did the
formal proof similarly and this can be seen from the Relay(p) property.

From the first correct receiving lemma 6.3 and the correct receiving lemma 6.4, we observe
that if an update (J is initiated by a processor s at local clock time T, then any correct provessor
p will receive the message < T,s,(J > before (d + m)((l + p)T, + 8) + E measured on its own
clock, where d is the maximal distance between two correct processors and m is the maximal
number of faulty processors. Thus Tr ~ (d + m)((l + p)T, + 8) + E. The corresponding time
in [CASD89] is (d + m)8 + €. If we assume T, = 0 and p = 0 as in [CASD89], then we obtain
the same bound. Notice that the condition on Tr is only needed for the implementation of the
server specification S pec(p), not directly for the correctness proof of the protocol.

In [CASD89], clock synchronization is assumed for always correct processors. To give a
precise proof of the protocol, e.g. in the proof of lemma 5.1, we needed a more refined clock
synchronization assumtion for processors which are correct at some time points. Thus we took
this assumption as an axiom and the assumption in [CASD89] as a lemma.

To prove the atomicity property, we need to show that if a correct processor p delivers (J
at some time U, then (J was initiated by some processor s at some clock time T. This is not
proved in [CASD89]. We have proved it in lemma 6.1 by using available timing information.
There we needed a lower bound for message transmission delay between two correct processors.
Thus we add a lower bound 'Y in the bounded communication axiom 3.5.

There is an implicit assumption in [CASD89] about the drift of local clocks. We have
formalized this assumption in axiom 3.8. This axiom is used in lemma 5.1 to formulate part of
the server specification in terms of the local clock of any correct processor. Together with the
other axioms about local clocks, i.e., the synchronization axiom 3.6 and the monotonic clock
axiom 3.7, this makes it possible to perform the verification in terms of local clock values,
similar to the informal reasoning in [CASD89]. In contrast with most formal methods, see e.g.
[BHRR91], there is no need to refer to global times during the protocol verification. This leads
to a convenient and natural calculus.

There is quickly growing literature on the formal verification of real-time and fault-tolerant
distributed systems. Closely related to our approach is the recent work on the proof checker
EHDM and its successor PVS. Rushby and von Henke [RH93] use EHDM to check the proofs of
Lamport and Melliar-Smith's interactive convergence clock synchronization algorithm [LMS85].
Mecllanical verification of a. generalized protocol for Byzantine fault-tolerant clock synchroniza-

20

tion [Sch87] by using EHDM is described in [Sha92]. In future applications of our approach
we will certainly investigate the use of such an interactive proof checker.

Observe that the formal method used in our paper is compositional. It enables us to reason
with only specifications and abstract from the implementation details. A natural continuation
of this work is to implement the server specification and verify that it is indeed a correct
implementation.

Acknowledgements:

Many thanks go to Flaviu Cristian for his interest and valuable comments on the draft of this
paper.

References

[BD85] O. Babaoglu and R .. Drumond. Streets of byzantium: Network architectures for
fast reliable broadcast. IEEE Transactions on Software Engineering 11 (6), 1985.

[BHRR91] J.W. de Bakker, C. Huizing, W.~P. de Roever, and G. Rozenberg(Eds.). Real-Time:
Theory in Practice. LNCS 600, Springer~ Verlag, 1991.

[BJ87] K. Birman and T. Joseph. Reliable communication in the presence offailures. ACM
Transactions on Computer Systems 5(1), pages 47-76, 1987.

[CAS86] F. Cristian, H. Aghili, and R. Strong. Approximate clock synchronization despite
omission and performance failures and processor joins. In The 16th International
Symposium on Fault-Tolerant Computing. Wien, Austrian, 1986.

[CAS93] F. Cristian, H. Aghili, and R. Strong. Clock synchronization in the presence of
omission and performance failures, and processor joins. In Global States and Time
in Distributed Systems. Z. Yang and T.A. Marsland (Eds.), IEEE Computer Society
Press, 1993.

[CASD85] F. Cristian, H. Aghili, R. Strong, and D. Dolev. Atomic broadcast: From sim
ple message diffusion to Byzantine agreement. In The 15th Annual International
Symposium on Fault-Tolerant Computing, pages 200 - 206. Ann Arbor, USA, 1985.

[CASD89] F. Cristian, H. Aghili, R. Strong, and D. Dolev. Atomic broadcast: From simple
message diffusion to Byzantine agreement. Research Report RJ 5244, IBM Almaden
Research Center, 1989.

[CM84] J.M. Chang and N. Maxemchuck. Reliable broadcast protocols. ACM Transactions
on Computer Systems 2(3), pages 251-273, 1984.

[Cri90]

[Cri93]

[Hoo91]

F. Cristiano Synchronous atomic broadcast for redundant broadcast channels. The
Journal of Real-Time Systems 2, pages 195-212,1990.

F. Cristiano Comments. Private Correspondence, 1993.

J. Hooman. Specification and Compositional Verification of Real- Time Systems.
LNCS 558, Springer-Verlag, 1991.

[LMS85] L. Lamport and P.M. Melliar-Smith. Synchronizing clocks in the presence of faults.
Journal of the ACM, 32(1):52-78, 198·5.

21

[RH93)

[Sch87)

[Sha92)

[ZH92)

[Zwi89)

J. Rushby and F. von Henke. Formal verification of algorithms for critical systems.
IEEE Transactions on Software Engineering, 19(1):13-23, 1993.

F.B. Schneider. Understanding protocols for Byzantine clock synchronization. Tech
nical report 87-859, Dept. of Computer Science, Cornell University, 1987.

N. Shankar. Mechanical verification of a generalized protocol for Byzantine fault tol
erant clock synchronization. In Formal Techniques in Real- Time and Fault- Tolerant
Systems, pages 217-236. J. Vytopil(Ed.), LNCS 571, Springer-Verlag, 1992.

P. Zhou and J. Hooman. A proof theory for asynchronously communicating real
time systems. In Proc. of the 13th IEEE Real-Time Systems, pages 177-186. IEEE
Computer Society Press, 1992.

J. Zwiers. Compositionality, Concurrency and Partial Correctness. LNCS 321,
Springer-Verlag, 1989.

22

Computing Science Notes

In this series appeared:

91/01 D. Alstein

91/02 R.P. Nederpelt
H.CM. de Swart

91/03 J.P. Katoen
L.A.M. Schoenmakers

91/04 E. v.d. Sluis
A.F. v.d. Stappen

91/05 D. de Reus

91/06 K.M. van Hee

91/07 E.Poll

91/08 H. Schepers

91/09 W.M.P.v.d.Aalst

91/10 R.C.Backhouse
P.J. de Bruin
P. Hoogendijk
G. Malcolm
E. VoelTIlans
1. v.d. Woude

91/11 R.C. Backhouse
P.J. de Bruin
G.Malcolm
E. VoelTIlans
J. van der Woude

91/12 E. van der Sluis

91/13 F. Rietman

91/14 P. Lemmens

91/15 A.T.M. Aerts
K.M. van Hee

91/16 A.J.J.M. Marcelis

Department of Mathematics and Computing Science
Eindhoven University of Technology

Dynamic Reconfiguration in Distributed Hard Real-Time
Systems. p. 14.

Implication. A survey of the different logical analyses
.. if ...• then p. 26.

Parallel Programs for the Recognition of P-invariant
Segments. p. 16.

PerfolTIlance Analysis of VLSI Programs. p. 31.

An Implementation Model for GOOD. p. 18.

SPECIFICATIEMETHODEN. een overzicht. p. 20.

CPO-models for second order lambda calculus with
recursive types and subtyping. p. 49.

TelTIlinology and Paradigms for Fault Tolerance. p. 25.

Interval Timed Petri Nets and their analysis. p.53.

POL YNOMIAL RELATORS. p. 52.

Relational Catamorphism. p. 31.

A parallel local search algorithm for the travelling
salesman problem. p. 12.

A note on Extensionality. p. 21.

The PDB HypelTIledia Package. Why and how it was
built. p. 63.

Eldorado: Architecture of a Functional Database
Management System. p. 19.

An example of proving attribute grammars correct:
the representation of arithmetical expressions by DAGs.
p. 25.

91/17 A.T.M. Aerts
P.M.E. de Bra
K.M. van Hee

91/18 Rik van Geldrop

91/19 Erik Poll

91/20 A.E. Eiben
R.V. Schuwer

91/21 J. Coenen
W.-P. de Roever
J.Zwiers

91/22 G. Wolf

91/23 K.M. van Hee
L.J. Somers
M. Voorhoeve

91/24 A.T.M. Aerts
D. de Reus

91/25 P. Zhou
1. Hooman
R. Kuiper

91/26 P. de Bra
GJ. Houben
J. Paredaens

91/27 F. de Boer
C. Palamidessi

91/28 F. de Boer

91/29 H. Ten Eikelder
R. van Geldrop

91/30 J.C.M. Baeten
F.W. Vaandrager

91/31 H. ten Eikelder

91/32 P. Struik

91/33 W. v.d. Aalst

91/34 1. Coenen

Transforming Functional Database Schemes to Relational
Representations, p. 21.

Transformational Query Solving, p. 35.

Some categorical properties for a model for second order
lambda calculus with subtyping, p. 21.

Knowledge Base Systems, a Formal Model, p. 21.

Assertional Data Reification Proofs: Survey and
Perspective, p. 18.

Schedule Management: an Object Oriented Approach, p.
26.

Z and high level Petri nets, p. 16.

Formal semantics for BRM with examples, p. 25.

A compositional proof system for real-time systems based
on explicit clock temporal logic: soundness and complete
ness, p. 52.

The GOOD based hypertext reference model, p. 12.

Embedding as a tool for language comparison: On the
CSP hierarchy, p. 17.

A compositional proof system for dynamic proces
creation, p. 24.

Correctness of Acceptor Schemes for Regular Languages,
p. 31.

An Algebra for Process Creation, p. 29.

Some algorithms to decide the equivalence of recursive
types, p. 26.

Techniques for designing efficient parallel programs, p.
14.

The modelling and analysis of queueing systems with
QNM-ExSpect, p. 23.

Specifying fault tolerant programs in deontic logic,
p. IS.

91/35 F.S. de Boer
J.W. Klop
C. Palamidessi

92/01 J. Coenen
J. Zwiers
W.-P. de Roever

92/02 J. Coenen
J. Rooman

92/03 J.C.M. Baeten
J .A. Bergstra

92/04 J.P.H.W.v.d.Eijnde

92/05 J.P.R.W.v.d.Eijnde

92/06 J.C.M. Baeten
J .A. Bergstra

92/07 R.P. Nederpelt

92/08 R.P. Nederpelt
F. Kamareddine

92/09 R. C. B ackhouse

92/10 P.M.P. Rambags

92/11 R.C. Backhouse
J.S.C.P.v.d.Woude

92/12 F. Kamareddine

92/13 F. Kamareddine

92/14 J.C.M. Baeten

92/15 F. Kamareddine

92/16 R.R. Seljee

92/17 W.M.P. van der Aalst

92/18 R.Nederpelt
F. Kamareddine

92/19 J.C.M.Baeten
J .A.Bergstra
S.A.Smolka

92/20 F.Kamareddine

Asynchronous communication in process algebra, p. 20.

A note on compositional refinement, p. 27.

A compositional semantics for fault tolerant real-time
systems, p. 18.

Real space process algebra, p. 42.

Program derivation in acyclic graphs and related
problems, p. 90.

Conservative fixpoint functions on a graph, p. 25.

Discrete time process algebra, p.45.

The fine-structure of lambda calculus, p. II O.

On stepwise explicit substitution, p. 30.

Calculating the Warshall/Floyd path algorithm, p. 14.

Composition and decomposition in a CPN model, p. 55.

Demonic operators and monotype factors, p. 29.

Set theory and nominalisation, Part I, p.26.

Set theory and nominalisation, Part II, p.22.

The total order assumption, p. 10.

A system at the cross-roads of functional and logic
programming, p.36.

Integrity checking in deductive databases; an exposition,
p.32.

Interval timed coloured Petri nets and their analysis, p.
20.

A unified approach to Type Theory through a refined
lambda-calculus, p. 30.

Axiomatizing Probabilistic Processes:
ACP with Generative Probabilities, p. 36.

Are Types for Natural Language? P. 32.

92/21 F.Kamareddine

92/22 R. Nederpelt
F.Kamareddine

92/23 F.Kamareddine
E.Klein

92/24 M.Codish
D.Dams
Eyal Yardeni

92/25 E.Poll

92/26 T.H.W.Beelen
W.J.J.Stut
P.A.C.Verkoulen

92/27 B. Watson
G. Zwaan

93/01 R. van Geldrop

93/02 T. Verhoeff

93/03 T. Verhoeff

93/04 E.H.L. Aarts
J.H.M. Korst
P.I. Zwietering

93/05 J.C.M. Baeten
C. Vethoef

93/06 J.P. Veltkamp

93/07 P.D. Moerland

93/08 J. Verhoosel

93/09 K.M. van Hee

93/10 K.M. van Hee

93/11 K.M. van Hee

93/12 K.M. van Hee

93/13 K.M. van Hee

Non well-foundedness and type freeness can unify the
interpretation of functional application, p. 16.

A useful lambda notation, p. 17.

Nominalization, Predication and Type Containment, p. 40.

Bottum -up Abstract Interpretation of Logic Programs,
p. 33.

A Programming Logic for Fro, p. 15.

A modelling method using MOVIE and SimCon/ExSpect,
p. 15.

A taxonomy of keyword pattern matching algorithms,
p.50.

Deriving the Aho-Corasick algorithms: a case study into
the synergy of programming methods, p. 36.

A continuous version of the Prisoner's Dilemma, p. 17

Quicksort for linked lists, p. 8.

Deterministic and randomized local search, p. 78.

A congruence theorem for structured operational
semantics with predicates, p. 18.

On the unavoidability of metastable behaviour, p. 29

Exercises in Multiprogramming, p. 97

A Formal Deterministic Scheduling Model for Hard Real
Time Executions in DEDaS, p. 32.

Systems Engineering: a Formal Approach
Part I: System Concepts, p. 72.

Systems Engineering: a Formal Approach
Part II: Frameworks, p. 44.

Systems Engineering: a Formal Approach
Part III: Modeling Methods, p. 101.

Systems Engineering: a Formal Approach
Part IV: Analysis Methods, p. 63.

Systems Engineering: a Formal Approach
Part V: SpeCification Language, p. 89.

93/14 I.C.M. Baeten
I.A. Bergstra

93/15 I.C.M. Baeten
J.A. Bergstra
R.N. Bol

93/16 H. Schepers
I. Hooman

93/17 D. Alstein
P. van der Stok

93/18 C. Verhoef

93/19 G-I. Houben

93/20 F.S. de Boer

93/21 M. Codish
D. Dams
G. File
M. Bruynooghe

93/22 E. Poll

93/23 E. de Kogel

93/24 E. Poll and Paula Severi

93/25 H. Schepers and R. Gerth

93/26 W.M.P. van der Aalst

93/27 T. Kloks and D. Kratsch

93/28 F. Kamareddine and
R. Nederpelt

93/29 R. Post and P. De Bra

93/30 I. Deogun
T. Kloks
D. Kratsch
H. Miiller

93/31 W. Korver

93/32 H. ten Eikelder and
H. van Geldrop

On Sequential Composition, Action Prefixes and
Process Prefix, p. 21.

A Real-Time Process Logic, p. 31.

A Trace-Based Compositional Proof Theory for
Fault Tolerant Distributed Systems, p. 27

Hard Real-Time Reliable Multicast in the DEDOS system,
p. 19.

A congruence theorem for structured operational
semantics with predicates and negative premises, p. 22.

The Design of an Online Help Facility for ExSpect, p.21.

A Process Algebra of Concurrent Constraint Program
ming, p. 15.

Freeness Analysis for Logic Programs - And Correct
ness?, p. 24.

A Typechecker for Bijective Pure Type Systems, p. 28.

Relational Algebra and Equational Proofs, p. 23.

Pure Type Systems with Definitions, p. 38.

A Compositional Proof Theory for Fault Tolerant Real
Time Distributed Systems, p. 31.

Multi-dimensional Petri nets, p. 25.

Finding all minimal separators of a graph, p. II.

A Semantics for a fine A.-calculus with de Bruijn indices,
p.49.

GOLD, a Graph Oriented Language for Databases, p. 42.

On Vertex Ranking for Permutation and Other Graphs,
p. II.

Derivation of delay insensitive and speed independent
CMOS circuits, using directed commands and
production rule sets, p. 40.

On the Correctness of some Algorithms to generate Finite
Automata for Regular Expressions, p. 17.

93/33

93/34

93/35

93/36

93/37

93/38

93(39

93/40

L. Loyens and J. Moonen

J.C.M. Baeten and
J.A. Bergstra

W. Ferrer and
P. Severi

J.C.M. Baeten and
J.A. Bergstra

J. Brunekreef
J-P. Katoen
R. Koymans
S. Mauw

C. Verhoef

W.P.M. Nuijten
E.H.L. Aarts
D.A.A. van Erp Taalman Kip
K.M. van Hee

P.D.V. van der Stok
M.M.M.P.J. Claessen
D. Aistein

93/41 A. Bijlsma

93/42 P.M.P. Rambags

93/43 B.W. Watson

93/44 B.W. Watson

93/45 E.J. Luit
J.M.M. Martin

93/46 T. KIoks
D. Kratsch
J. Spinrad

93/47 W. v.d. Aalst
P. De Bra
GJ. Houben
Y. Komatzky

93/48 R. Gerth

ILIAS, a sequential language for parallel matrix
computations, p. 20.

Real Time Process Algebra with Infinitesimals, p.39.

Abstract Reduction and Topology, p. 28.

Non Interleaving Process Algebra, p. 17.

Design and Analysis of
Dynamic Leader Election Protocols
in Broadcast Networks, p. 73.

A general conservative extension theorem in process
algebra, p. 17.

Job Shop Scheduling by Constraint Satisfaction, p. 22.

A Hierarchical Membership Protocol for Synchronous
Distributed Systems, p. 43.

Temporal operators viewed as predicate transformers,
p. II.

Automatic Verification of Regular Protocols in PIT Nets,
p. 23.

A taxomomy of finite automata construction algorithms,
p. 87.

A taxonomy of finite automata minimization algorithms,
p.23.

A precise clock synchronization protocol,p.

Treewidth and Patwidth of Cocomparability graphs of
Bounded Dimension, p. 14.

Browsing Semantics in the "Tower" Model, p. 19.

Verifying Sequentially Consistent Memory using Interface
Refinement, p. 20.

94/01 P. America
M. van der Kammen
R.P. NederpeJt
O.S. van Roosmalen
H.C.M. de Swart

94/02 F. Kamareddine
R.P. NederpeJt

94/03 L.B. Hartman
K.M. van Hee

94/04 I.C.M. Baeten
I.A. Bergstra

The object-oriented paradigm. p. 28.

Canonical typing and n -conversion. p. 51.

Application of Marcov Decision Processe to Search
Problems. p. 21.

Graph Isomorphism Models for Non Interleaving Process
Algebra. p. 18.

	Abstract
	1. Introduction
	2. Top-Level Specification
	2.1 Termination
	2.2 Atomicity
	2.3 Order
	3. System Assumptions
	3.1 Processors and Links
	3.2 Bounded Communication
	3.3 Clock Synchronization
	3.4 Failure Assumptions
	4. Server Process Specification
	5. Verification of Termination
	6. Verification of Atomicity
	7. Verification of Order
	8. Comparison and Conclusion
	References

