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Introduction

One of the branches of mathematics is applied mathematics. In this field, the mathematics is
studied that originates from applications. Here, we restrict ourselves to physical applications.
One usually translates the physical problem into ordinary or partial differential equations and
their initial and boundary conditions. This process is called mathematical modelling. In
many cases, the governing equations can not be solved exactly. Therefore, one looks for an
approximate solution. There are two approaches for obtaining approximate solutions : an
analytical and a numerical one. As a first step in the modelling process, the governing equa-
tions are made dimensionless. This process often yields one or more small dimensionless
parameters. After comparing the order of magnitudes of terms in the governing equations,
we can neglect the terms that are apparently too small to be of relevance. If the remaining
model still contains a small parameter (ε), we can utilise perturbation methods. Based on
this parameter, we assume that the solution of the governing equations can be expanded into
an asymptotic expansion. After substitution of the expansion into the governing equations,
each coefficient of ε must vanish and a sequence of differential equations results that has to
be solved successively. In some cases, the geometry (the domain of interest) of the problem
leads to the small parameter. For example, if there are two different length scales and their
ratio is small, then we have this ratio as a small parameter.

In this thesis, we apply the above procedure to the modelling of glass flow and heat
flow problems. The former modelling leads to Stokes flow, while the latter is related to a
heat conduction model problem, and a microwave heating problem. We will consider two
different approaches to solve the Stokes flow problem, namely perturbation and operator
methods. To solve the heat conduction problem, we use perturbation methods Finally, using a
fundamental-mode approximation of an eigenfunction expansion, we consider the microwave
heating problem. First, we will discuss the glass flow problem.

Glass is a widely used packing material, for example in the form of jars and bottles in
the food industry. The production of glass forms like jars goes more or less as follows. First,
grains and additives, like soda, are heated in a tank. Here, gas burners or electric heaters
provide the heat necessary to warm the material up to about 1200◦C. At one end the liquid
glass comes out and is led to a pressing or blowing machine. To obtain a glass form a two-
stage process is often used. First, a blob of hot glass called a gob falls into a configuration
consisting of a mould and plunger. As soon as the gob has fallen into this mould, the plunger
starts moving to press the glass. This process is called pressing (see Figure 0.1). At the end,
the glass drop is reshaped into the preform of a bottle or a jar called a parison. After a short
period of time, for cooling purposes (the mould is kept at 500◦C), the parison is blown to its
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2 Introduction

final shape in another mould. This process is called blowing (see Figure 0.2). In this thesis
we only consider the glass flow during the pressing phase.
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Figure 0.1: Pressing phase
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Figure 0.2: Blowing phase

The glass flow at temperatures above 600◦C can be described by the Navier-Stokes equa-
tions for incompressible Newtonian fluids. Moreover, in view of the geometry of plunger
and mould, we choose axisymmetric cylindrical coordinates. Therefore we have a two-
dimensional problem in the (r, z) plane. Next, we make the Navier-Stokes equations di-
mensionless using appropriate scalings. Note that we concentrate our analysis on the glass
flow in the narrow annular duct between plunger and mould, in other words, the annular duct
is slender. Therefore, we have two relevant length scales, namely the wall thickness of the
parison (D) and the length of the plunger (L), with D � L . So, we can introduce a small
parameter ε = D/L . There are two ways of scaling :
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1. We scale both z and r with D. Using the characteristic data of the glass flow such
as velocity, viscosity, length scale, etc, we obtain that the glass flow is highly viscous
(the Reynolds number is small). Therefore, we can ignore the inertia terms of the
Navier-Stokes equations and we arrive at the Stokes equations. To proceed, we make
a rescaling Z = εz and assume that the velocity and the pressure can be expanded into
asymptotic expansions based on ε.

2. We scale z with L and r with D. Next, we expand the velocity and the pressure into
asymptotic expansion to obtain a set of equations called Reynolds lubrication-flow
equations. This approach is still valid if the Reynolds number (Re) is O(1), because
Re occurs only in the combination εRe.

Since we assume that there are no more length scales in the z direction, we can use both
scalings. To solve the system of equations completely, we need to consider the boundary
conditions.

During the formation process of glass, a lubricant like graphite powder is extensively used
in order to improve the sliding conditions of the glass inside the mould. Lack of lubrication
will affect the final quality of the glass product. The presence of this lubricant suggests us
to consider slip-type boundary conditions. This means that the tangential component of the
glass velocity v at the wall differs from the wall velocity vw, the difference being called the
slip velocity. In this research, we consider Navier’s slip condition, which assumes that the
slip velocity is proportional to the tangential (shear) stress. The slip factor (s) measures the
amount of slip. There is no slip if s = 0, while there is no friction if s = ∞. The other
boundary conditions describe that the walls of plunger and mould are solid. This implies
that, the normal component of the velocity is zero. To determine the velocity completely,
we have to know the pressure gradient. This pressure gradient can be found, if we know
the value of the flux for every level z. As shown in Figure 0.1, as the plunger goes down, it
causes the glass to move upward through a varying cross section such that the volume flux for
every level z is not constant. Using Gauss’ theorem, we can determine the value of this flux.
Finally, we can determine the velocity and the pressure gradient of the glass flow analytically.
Further, using the results obtained, we can derive a formula for the total force on the plunger.

Next, we discuss two examples. In the first one, we use simple parabolic profiles for the
plunger and the mould, while the velocity of the plunger is given. We find a good agreement
between the velocity obtained analytically and numerical results from the Finite Element
Method. Using the given velocity of the plunger, we calculate the total force on the plunger.
In the second example, we use a geometry of a real plunger and mould, while the plunger
force is prescribed. Using this force, we can determine semi-analytically both the velocity of
the plunger and the position of the top of the plunger as a function of time.

Now, we consider the second approach to solve Stokes boundary value problem. We use
the method described in Padmavathi et al [40] and Sheng and Zhong [46] to translate the
Stokes equations into an operator equation on the boundary ∂� of the domain � with a tan-
gent vector field α on the boundary ∂� as unknown. To obtain the operator equation, we have
to solve Dirichlet and Neumann problems. This operator equation leads to the solution of the
Stokes boundary value problem that can be parameterized by αH , the harmonic extension of
α to the interior of the domain �.
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As an application of the above method, we give some examples of solving Stokes boun-
dary value problems for some simple domains such as the interior and the exterior of the unit
disk and of the unit ball, a half space, an infinite strip, etc.

Besides of the Stokes flow, in this thesis we also consider heat flow problems. First, we
discuss heat conduction in correspondence with the type of the geometry of the problem,
and second, nonlinear heat conduction related to microwave heating. Following van Dyke
[13,14], we investigate two types of geometry, a slowly and a slightly varying geometry. In
the former geometry, the variation of the length scale in one direction is slower than in the
other direction. Mathematically, we write the boundary as y = R(εx). We solve this problem
by rescaling X = εx . In the latter geometry, the boundary varies a little but not slowly. We
write the boundary (typically) as y = εR(x). For each geometry we present examples of
heat conduction problem to describe the difference of both geometries.

Next, we consider the microwave heating problem. Recently microwave radiation for
heating is more and more applied, with applications like cooking, melting, sintering, and
drying. This heating technique has advantages over the use of a conventional heating, such
as speed of heating, the potential to heat the material without heating its surroundings, etc.
However, the widespread industrial application of microwave heating faces the formation of
hot-spots, that is small regions of very high temperature relative to the surroundings. Such
a phenomenon can either be desirable, such as in metal melting, or undesirable, such as in
ceramic sintering.

In general, the modelling of the microwave heating involves a coupling of electromag-
netic and thermal phenomena. These phenomena can be expressed mathematically as a sys-
tem of a damped wave equation derived from Maxwell’s equations governing the propaga-
tion of the microwave radiation and a forced heat equation governing the heat flow. In this
research, we assume a temperature independent of the electrical conductivity of the material
and microwave speed. Therefore, we may solve the damped wave equation separately, which
leads to a single forced heat equation governing the heat flow. Next, we focus on solving the
heat problem to investigate the effect of the inhomogeneity of conductivity on the formation
of a hot-spot. The governing equation is

∂θ

∂ t
= ∇·(k(θ)∇θ)+ δ|E |2 f (θ),

with θ the temperature, k(θ) thermal conductivity of the material, δ a positive parameter
related to the intensity of electric field, |E | is the amplitude of the electric field, and f (θ) the
rate of the microwave energy absorption by the material. Here, we take it to be of Arrhenius
type. We consider a one-dimensional unit slab consisting of three layers of material with
different thermal conductivity. We assume the thermal conductivity of the form k(θ) =
µ eγ θ , where θ is the temperature, while the parameter µ has different values in each of
the three layers. This µ measures the magnitude of the thermal conductivity of the material
and the inner layer has the smallest value of the parameter µ. To simplify the problem, we
consider only the steady-state solution and use the Dirichlet boundary conditions on each
layer. The other boundary conditions require that both the temperature and the heat flux are
continuous across the layers.
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To solve the problem, we use an eigenfunction expansion based on the Galerkin method
and we consider only the fundamental-mode approximation. In [1], Andonowati has shown
numerically that this fundamental mode is dominant for some geometries such as a unit
sphere, a finite cylinder, a rectangular block and for Dirichlet boundary conditions. There-
fore, we focus on this fundamental mode. For three layers, we obtain a system of equations
that is solved numerically.

First, as an example, we consider a unit slab geometry. In this geometry, we show that
the bifurcation diagram of possible steady-states of the temperature θ and δ is S-shaped.
This means that there is an interval with three solutions, two of which are stable. So, there
are critical values δcr and δcr, for which a slight change in δ yields a catastrophic increase
or decrease in the temperature. Next, we consider a unit slab consisting of three layers of
material with different thermal conductivity (µ). We assume the inner layer has the smallest
value of µ. We find the temperature in this layer is higher than that in other layers. It means
that a smaller µ yields a higher temperature. The larger the difference of µ in the inner and
outer layers, the larger the discrepancy of the temperature between the inner layer and the
rest of the region will be. Further, we consider only the inner layer. For fixed value of δ, we
get a temperature jump near some values of µ. This jump shows that there is a critical value
of µ and indicates the formation of a hot-spot.

Let us briefly outline the structure of this thesis. Chapters I and II present the pertur-
bation method. Chapter I contains some notions from the perturbation method such as the
symbol O and o, asymptotic expansion, regular and singular perturbations of boundary layer
type. We discuss two types of geometry, the slowly and slightly varying geometry. Finally,
we close this chapter by investigating the Stokes equations in a semi-infinite slowy varying
geometry. This investigation gives a motivation to derive a general theory for solving the
Stokes boundary value problems.

In chapter II, we discuss the modelling of the glass flow including an investigation of the
boundary conditions. We solve the glass flow problem using asymptotic expansions based on
the slowly varying geometry of the plunger and the mould. This (slightly adapted) chapter
appeared in the Journal of Engineering Mathematics 39:241-259, 2001.

Chapters III - IV present the operator method. In chapter III, we derive the operator
equation from the Stokes boundary value problems. Some examples of solving the prob-
lems are presented for domains such as the interior of a disk and of a ball. This (slightly
adapted) chapter is accepted to be included into the Proceedings of 4th European Conference
on Elliptic and Parabolic Problems, Rolduc, June 18-22, 2001.

Next, further application of the operator method for solving Stokes boundary value prob-
lems with as domains such as the exterior of the unit disk and of the unit ball, a half-space,
an infinite strip, etc, are discussed in Chapter IV.

Finally, in chapter V, we consider a simplified model of the microwave heating of a
one-dimensional unit slab. Using an eigenfunction expansion for the problem based on the
Galerkin method with a fundamental-mode approximation, we investigate the effect of ther-
mal conductivity on the formation of hot-spots. This chapter appeared in the Journal of
Engineering Mathematics 38:101-118, 2000.
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Chapter I

Perturbation methods

1 Introduction

The mathematical solution of a “real world” problem starts with the modelling phase, where
the problem is described in a mathematical representation of its primitive elements and their
relations. As the solution is not served by unnecessary complexity, we are interested in
an adequate mathematical description with the lowest number of essentially independent
parameters and variables.

A very important aspect in the modelling is therefore the introduction of a hierarchy
of importance: to distinguish the important, a little bit important, and unimportant effects.
Based on this hierarchy it is decided which aspects can be included and which can be ne-
glected in the model.

For exactly this reason some effects in any modelling will be small: sometimes small but
not small enough to be ignored, and sometimes small but in a non-uniform way such that
they are important locally.

For an efficient solution, and to obtain qualitative insight, it makes sense to utilize this
“smallness”. Methods that systematically exploit such inherent smallness are called “pertur-
bation methods”.

Perturbation methods have a long history. Before the time of numerical methods and
computers, perturbation methods were the only way to increase the applicability of avail-
able exact solutions to difficult, and otherwise intractable problems. Nowadays, perturbation
methods have their use as a natural step in the process of systematic modelling, since they
provide insight in the nature of singularities occurring in the problem and in typical parameter
dependencies, and sometimes they increase the speed of practical calculations.

We will consider here a class of perturbation problems connected to Stokes flow (flow of
high Newtonian viscosity) confined by slightly deformed simple geometries. The problem is
inspired by glass flow, which is an important problem of such flows, although of course there
are other types of confined Stokes flow, e.g. lubrication flow in bearings.

To illustrate the methods we will sometimes consider the simpler problem of stationary
heat flow, which amounts to solving the more easily accessible Laplace equation. Both prob-
lems are, however, of elliptic type, and therefore the heat problem may serve as a suitable
model problem.

7
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2 Preliminary definitions

In this section, we discuss some definitions that will be used frequently in the subsequent sec-
tions. First, since we are only interested in comparing the behaviour of functions f (ε) with a
gauge function φ(ε) as a parameter ε → 0, we introduce order symbols to define an asymp-
totic approximation. For example, f (ε) = ε3 tends to zero faster than φ(ε) = ε as ε → 0.
The following definitions describe a notation for this behaviour.

Definition 2.1. ( Large O)

1. For a given ε−interval I = {ε | 0 < ε ≤ ε1}, we say that

f (ε) = O(φ(ε)) as ε → 0, (2.1)

if there exists a positive number k independent of ε and a neighbourhood N of ε = 0
such that

| f (ε)| ≤ k |φ(ε)| for all ε in N ∩ I. (2.2)

Note that if the limit

lim
ε→0

f (ε)

φ(ε)
(2.3)

exists and is finite then f (ε) = O(φ(ε)) as ε → 0.

2. Similarly, for a given domain D ⊂ R
n and ε−interval I , we say that

f (x; ε) = O(φ(x; ε)) as ε → 0, (2.4)

if for each x ∈ D, there exist a positive number k(x) and a neighbourhood N (x) of
ε = 0 such that

| f (x; ε)| ≤ k(x) |φ(x; ε)| for all ε in N (x) ∩ I. (2.5)

Definition 2.2. (Uniformity)
f (x; ε) = O(φ(x; ε)) is uniformly valid in D if in (2.5) both k and N are independent

of x.

Definition 2.3. ( Small o)

1. We say that
f (ε) = o (φ(ε)) as ε → 0, (2.6)

if for any given δ > 0, there exists an ε−interval I (δ) = {ε | 0 < ε ≤ ε1(δ)} such that

| f (ε)| ≤ δ |φ(ε)| for all ε in I. (2.7)

Note that if

lim
ε→0

f (ε)

φ(ε)
= 0 (2.8)

then f (ε) = o(φ(ε)) as ε→ 0.
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2. Similarly, for a given domain D ⊂ R
n , we say that

f (x; ε) = o(φ(x; ε)) as ε → 0 (2.9)

if for each x ∈ D and any given δ > 0, there exist an ε−interval
I (x, δ) = {ε | 0 < ε ≤ ε1(x, δ)} such that

| f (x; ε)| ≤ δ |φ(x; ε)| for all ε in I. (2.10)

Definition 2.4. (Uniformity)
f (x; ε) = o(φ(x; ε)) is uniformly valid in D if in (2.10) ε1 depends only on δ but not on

x.

Note that f = o(φ) implies f = O(φ) but the converse is not true. We write f = Os(φ)

if f = O(φ) but f �= o(φ) (see Example 2.5).

Example 2.5
We have

ε cos(ε) = O(ε) as ε → 0, (2.11)

since |ε cos(ε)| ≤ |ε| for all ε > 0. At the same time, ε cos(ε) �= o(ε), and therefore
= Os(ε).

Example 2.6

ε

εε − 1
= O

(
1

ln(ε)

)
as ε → 0, (2.12)

because lim
ε→0

ε ln(ε)

εε − 1
= 1.

Example 2.7
We have

εα = o (1) where α > 0, as ε → 0, (2.13)

since for any given δ > 0, (2.7) holds provided that ε ∈ I (δ) = {ε | 0 < ε ≤ δ1/α}.

Example 2.8
Since

e−1/ε = o(εn), as ε → 0, for any n, (2.14)

e−1/ε is called a transcendentally small term (TST) or an exponentially small term (EST)
and can be ignored asymptotically against any power of ε.

Example 2.9
Let D = {x | 0 < x < 1}. We have cos( x

ε
) = O(1) as ε → 0 uniformly valid in D since

we can choose k = 1.1 such that | cos( x
ε
)| ≤ k for all x ∈ D. However, cos( x

ε
) = O(x)

as ε → 0 is not uniformly valid in D since there is no constant k such that | cos( x
ε
)| ≤ kx

for all x ∈ D.
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Example 2.10
Let D = { x | 0 < x < 1 }. Then, x2 + e−x/ε = O(x2) as ε → 0 in D, since
k(x) = 1+ 1

x2 such that

∣∣x2 + e−x/ε
∣∣ ≤ (1+ 1

x2 )x
2, for all x ∈ D. (2.15)

There is no k(x) possible independent of x , so this is not uniformly. On the other hand,
for DA = { x | 0 < A < x < 1 }, we can choose ε1 = A/ ln A−2 and k = 2 such that
now∣∣x2+e−x/ε

∣∣ = x2
(

1+x−2 e−x/ε
)
≤ x2

(
1+ A−2 e−A/ε

)
≤ 2x2 for all x ∈ DA, (2.16)

and x2 + e−x/ε = O(x2) uniformly on DA.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4
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0.8

1

1.2

1.4

x

y

Figure 2.1: Comparison between y(x; ε) = x2 + e−x/ε and its asymptotic approximation x2

for ε = 0.1.

Figure (2.1) shows the graph of y(x; ε) = x2 + e−x/ε and its asymptotic approximation
x2 for ε = 0.1. It appears that the approximation is good for x not near 0. For x too
close to zero, x2 does not approximate y(x; ε) asymptotically, no matter how small ε

is. The region x near zero is an example of a boundary layer. We will discuss boundary
layers in more detail in the next section.

Example 2.11
Let D = { x | x > 0 }. Then

xεα = o(x2) where α > 0, as ε → 0, (2.17)

since for any given δ > 0, (2.10) holds provided that ε ∈ I (x, δ) = {ε | 0 < ε ≤
(xδ)1/α}. Since this interval depends on x , (2.17) is not uniformly valid in D. However,
if we restrict D to D1 = { x | 0 < x ≤ X1 } with X1 is a fixed constant, then (2.17) is
uniformly valid in D1 since the interval becomes I (δ) = {ε | 0 < ε ≤ (X1δ)

1/α}, which
does not depend anymore on x .
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Next, we give the definitions of asymptotic sequence and asymptotic expansion. This
expansion can be either uniform or non uniform. Those definitions play an important role in
perturbation methods that we will discuss in next section.

Definition 2.12. (Asymptotic Sequence)
A sequence {µn(ε)}∞n=1 is called an asymptotic sequence, if µn+1(ε) = o(µn(ε)), as ε → 0,
for each n = 1, 2, · · · .

Example 2.13
The following are examples of asymptotic sequences (as ε → 0)

µn(ε) = εn, µn(ε) = εn/2, µn(ε) = tann(ε), µn(ε) = ln(ε)−n,

µn(ε) = ε p ln(ε)q where p = 0, 1, 2..., q = 0...p and n = 1
2 p(p + 3)− q. (2.18)

In terms of asymptotic sequences, we can define asymptotic expansions as follows

Definition 2.14. (Asymptotic Expansion)
Let f (x; ε) be defined in some domain D and some neighbourhood of ε = 0. Let {µn(ε)}∞n=1
be a given asymptotic sequence. Then f (x; ε) has an asymptotic expansion to N terms as
ε → 0 with respect to this asymptotic sequence given by

f (x; ε) ∼
N∑

n=1

fn(x)µn(ε), (2.19)

if

f (x; ε)−
M∑

n=1

fn(x)µn(ε) = o(µM) as ε → 0, (2.20)

for each M = 1, 2, · · · , N .

Another definition of an asymptotic expansion which is equivalent to (2.20) is

f (x; ε)−
M∑

n=1

fn(x)µn(ε) = O(µM+1) as ε→ 0, (2.21)

for each M = 1, 2, · · · , N − 1.
We call fn(x) a shape-function, and by definition it is independent of ε. The expansion

(2.19) is called a Poincaré, classical, or straightforward asymptotic approximation (see [24],
p. 25). If µn(ε) = εn , we call the expansion an asymptotic power series. In ([15], p. 16) the
expansion (2.19) is called regular expansion or Poincaré expansion. Different from ([15]),
we define a regular expansion as a uniform Poincaré expansion (see Definition 3.1).
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The dependence of the form of a Poincaré expansion on the choice of independent vari-
able x cannot be overstated. This is illustrated by the following examples

Example 2.15

• sin(x + ε + ε2) = sin(x) + ε cos(x) + O(ε2), but sin(ξ + ε2) = sin(ξ)+ O(ε2)

if we introduce ξ = x + ε.

• sin(εx + ε) = εx + ε + O(ε3), but sin(X + ε) = sin(X)+ O(ε) if we introduce
X = εx . Note that in either expansion x and X are taken fixed. This means, for
example, that if X is fixed, effectively x = O(ε−1).

• e−x/ε = 0+ o(εn), while x > 0, but e−ξ = O(1) if we introduce ξ = x/ε.

Note that in asymptotic expansions, we only consider a fixed (N ) number of terms, since
for N → ∞, the series can be either convergent or divergent (see Example 2.17). Also, it
is not necessary that a convergent asymptotic expansion converges to the expanded function
(see Example 2.18).

For a given asymptotic sequence {µn(ε)}∞n=1, fn(x) can be determined uniquely by the
following formulas (we assume that µn are nonzero for ε near zero and that each of the limits
below exist)

f1(x) = lim
ε→0

f (x; ε)
µ1(ε)

, (2.22a)

f2(x) = lim
ε→0

f (x; ε)− f1(x)µ1(ε)

µ2(ε)
, (2.22b)

...

fn(x) = lim
ε→0

f (x; ε)−
n−1∑
k=1

fk(x)µk(ε)

µn(ε)
. (2.22c)

We will give some examples of asymptotic expansions for ε → 0.

Example 2.16
Given some different asymptotic sequences, a function may have different asymptotic
expansions.

tanh(ε) = ε − 1
3ε

3 + 2
15ε

5 + O(ε7) (2.23a)

= sinh(ε)− 1
2 sinh3(ε)+ 3

8 sinh5(ε)+ O
(
sinh7(ε)

)
(2.23b)

= ε cos(ε)+ 1
6 (ε cos(ε))3 + 41

120(ε cos(ε))5 + O
(
(ε cos(ε))7

)
. (2.23c)

In fact, re-expanding the expansions (2.23b, 2.23c) into Taylor series around ε = 0 will
yield the expansions (2.23a). We say that two functions f and g are asymptotically
equal, to N terms, if f − g = o(µN ) as ε → 0.

Example 2.17
If ε �= 0 then the asymptotic expansion

N∑
n=1

nεn diverges as N →∞.
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Example 2.18
Two different functions may have the same asymptotic expansion.

cos(ε) = 1− 1
2ε

2 + 1
24ε

4 + O(ε6). (2.24a)

cos(ε)+ e−1/ε = 1− 1
2ε

2 + 1
24ε

4 + O(ε6). (2.24b)

Note that the asymptotic expansion in (2.24b) converges to cos(ε) instead of cos(ε) +
e−1/ε.

3 Regular and singular perturbations

3.1 Regular perturbations

In applied mathematics, one usually formulates a mathematical model for a physical problem
by establishing the governing equations. These equations usually consist of a (system of)
differential equation(s) L( f, x; ε) = 0 and boundary conditions B( f ; ε) = 0, where ε is a
parameter or a parameter vector. For the moment we will consider just a single parameter
and this parameter is assumed to be small. As discussed in the introduction, the occurrence
of at least one small parameter is very natural in any result of modelling, because the process
of modelling is essentially a distinction between main effects that should be included, and
effects that are too small to be included. Therefore, in this hierarchy there will almost always
be effects that are relatively small but not small enough to be ignored.

For example, in a fluid flow problem, the (dimensionless) viscosity may be small, but
without viscosity an airfoil would not have drag or lift, and therefore viscosity cannot be
discarded from the modelling.

The usual situation is that the resulting equations can not be solved exactly, and we need
to seek for approximations of the solution. Generally speaking, there are two major me-
thods to obtain approximate solutions, namely numerical methods and perturbation methods.
Perturbation methods are analytical in nature, but not all analytical methods to construct a
solution are of perturbation type. Some analytical methods produce explicit solutions in the
form of integrals or infinite series, but since these will have to be evaluated numerically we
will for simplicity categorize them among the numerical methods.

This section will be about perturbation methods. They are based on the smallness of the
problem parameter ε. We assume that the solution f (x; ε) of the governing equation will be
expanded into a Poincaré expansion. This expansion can be either uniform or non uniform.

Definition 3.1. If f (x; ε) can be expanded into a Poincaré expansion (2.19) and the expan-
sion holds uniformly in x ∈ D (uniformly valid in D), we say that f (x; ε) has a regular
perturbation expansion in D. Otherwise, f (x; ε) has a singular perturbation expansion in D.
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Below, we give two examples to illustrate this notion of uniform expansion.

Example 3.2
Consider an asymptotic expansion below with D = R,

cos(x + ε) = cos(x) cos(ε)− sin(x) sin(ε)

= cos(x)
(
1− 1

2ε
2 + O(ε4)

)− sin(x)
(
ε − 1

6ε
3 + O(ε5)

)
= cos(x)− ε sin(x)− 1

2ε
2 cos(x)+ 1

6ε
3 sin(x)+ O(ε4).

Since | cos(x)| and | sin(x)| are bounded (≤ 1) for all x ∈ R, it follows that the above
asymptotic expansion is uniformly valid for all x ∈ R.

Example 3.3

cos(x + εx) = cos(x) cos(εx)− sin(x) sin(εx)

= cos(x)
(
1− 1

2ε
2x2 + O(ε4x4)

)− sin(x)
(
εx − 1

6ε
3x3 + O(ε5x5)

)
= cos(x)− εx sin(x)− 1

2ε
2x2 cos(x)+ 1

6ε
3x3 sin(x)+ O

(
ε4x4

)
.

Note that each coefficient of εn is bounded in interval 0 ≤ x ≤ X (ε) provided that
X (ε) = O(1) as ε → 0. Therefore, the asymptotic expansion is uniformly valid for
in this interval. Consider the second term. The value x sin(x) oscillates but increases
linearly with x . As a result, εx sin(x) will become O(1). Consequently the asymptotic
expansion is not uniformly in an interval 0 ≤ x ≤ X (ε), with X (ε) = O( 1

ε
).

After assuming an asymptotic sequence of order functions {µn(ε)}, and formally expand-
ing f (x; ε) into the corresponding Poincaré expansion

f (x; ε) = µ0(ε) f0(x)+ µ1(ε) f1(x)+ . . . , (3.25)

we substitute this expansion into both L( f, x; ε) = 0 and B( f ; ε) = 0, and again formally
expand the equations into a Poincaré expansion based on the same order functions

L( f, x; ε) = µ0(ε)L0( f0, x)+ µ1(ε)L1( f1, f0, x)+ . . . = 0 (3.26)

(Note that L or B may have to be rescaled, but this is unimportant as the right-hand side is
zero anyway). Since each term in such an expansion is independent of ε, each term must
vanish and we obtain a sequence of governing equations Ln = 0, yielding fn(x), which can
be solved successively.

It should be noted that the problem formulation usually presents at least one natural
choice of independent variable x, for example by the interval considered, or any given x-
dependent source term or coefficient.

The following example illustrates the above sketched iterative procedure to solve an al-
gebraic equation. Finding a suitable sequence of order functions is especially crucial.

Example 3.4
We would like to find an asymptotic expansion for the solution of

x3 + x2 − x − 1+ ε = 0, ε → 0. (3.27)
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Note that for ε = 0, the roots of (3.27) are x = 1,−1,−1 (of order 1). As the corrections
seem to be O(ε), we assume an expansion of the form

x = x0 + εx1 + ε2x2 + O(ε3). (3.28)

Substituting the expansion (3.28) into (3.27), and equating the coefficients of like powers
of ε yields

O(1) : x3
0 + x2

0 − x0 − 1 = 0 (3.29a)

O(ε) : 3x2
0 x1 + 2x0x1 − x1 + 1 = 0, · · · (3.29b)

We obtain x0 = 1,−1,−1 and x1 = −1
3x2

0+2x0−1
. For x0 = 1, then x1 = − 1

4 . Therefore,

we obtain the asymptotic expansion of the solution of (3.27) is

x = 1− 1
4ε + O(ε2). (3.30)

For x0 = −1, however, x1 is undefined. Therefore, we reconsider our assumption of a
power series expansion, and re-expand the expansion (3.28) into

x = −1+ εαx1 + O(ε2α), (3.31)

to obtain
−2ε2α−1x2

1 + x3
1ε

3α−1 + 1 = 0. (3.32)

Considering the balance between the terms in (3.32), there are several possible values
for α.

1. For α = 1
3 , we obtain x1 = 0. Considering the next order, O(ε2/3), leads to 1 = 0.

Therefore, we neglect this possibility.

2. For α = 1
2 , it follows that x1 = ± 1

2

√
2 and the asymptotic expansions for the

solution of (3.27) are

x = −1+ 1
2

√
2
√
ε + O(ε), (3.33a)

x = −1− 1
2

√
2
√
ε + O(ε). (3.33b)

3.2 Singular perturbation of boundary layer type

In this section, we will consider a phenomenon that is sometimes associated to a singular
perturbation, namely a boundary layer which is a narrow region where the solution of the
governing equations changes rapidly. It means that there is a nonuniformity in that region.
Some examples of physical processes where boundary layers may occur are viscous fluid
flow near a solid wall, the temperature of a fluid near a solid wall, etc.

To illustrate the procedure to solve this problem, we consider, for example, the differential
equation

L(�′′(x; ε),�′(x; ε),�(x; ε), x, ε) = 0, x ∈ D = [0, 1], ε → 0, (3.34)
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with boundary conditions �(0) = A and �(1) = B, where A and B are constants of O(1).
Mathematically, we can anticipate the existence of boundary layers if small parameter ε is
multiplied with the highest derivative (here, the second derivative) in the differential equa-
tion (see [9], p. 145). As the order of the equation reduces when ε → 0, not all boundary
conditions can be satisfied and another Poincaré expansion, based on another choice of inde-
pendent variable, is locally necessary.

We assume here just one boundary layer, located at x = 0, and we assume that �(x; ε)
can be expanded into an asymptotic expansion. Because of the boundary layer, �(x; ε) does
not have a regular expansion on the whole of [0, 1]. Therefore, we divide the interval [0, 1]
into 2 asymptotically overlapping subintervals. In the subinterval called outer region, we
introduce a regular expansion (called outer expansion) using the original variable. Next, for
the other subinterval called inner region, we introduce an expansion (called inner expansion)
describing the rapid changes using a magnified scale. Finally, to match those asymptotic
expansions, it is necessary that they have the same functional form on the overlap region.
Hence, we find an asymptotic approximation (but not a Poincaré expansion) to the solution
that is uniformly valid over the whole interval [0, 1].

First, we consider the outer region [D1, 1] for any fixed D1 > 0, with x = O(1). We
assume �(x; ε) can be expanded as

�(x; ε) =
N−1∑
n=1

µn(ε)�n(x)+ O(µN ), (3.35)

with µ1(ε) = 1 since the boundary conditions are of O(1). Substitute this outer expansion
(3.35) into the differential equation (3.34). Since the second derivative is multiplied by ε, we
obtain for each n, a first order differential equation. Therefore in general, �n(x; ε) can not
satisfy both boundary conditions. Since the boundary layer is located at x = 0, we consider
the boundary condition at x = 1 to obtain �n(x).

Now, we consider the inner region [0, D2δ(ε)] for fixed D2 > 0. Here we introduce the
inner variable ξ = x

δ(ε)
, x = O(δ(ε)), where δ(ε) represents the thickness of the boundary

layer. (If the boundary layer is at x = 1, we rescale x as x = 1+ δ(ε)ξ ). In this inner region,
besides the independent variable, we also rescale the dependent variables as

�(δ(ε)ξ; ε) = λ(ε)�(ξ; ε). (3.36)

If we assume the outer expansion is of O(1) as x → 0 and since the boundary condition at
x = 0 is of O(1), we have the inner expansion is also of O(1). Therefore, we get λ = 1. By
introducing (3.36) into the differential equation (3.34), we obtain a differential equation, say,

L∗
(
� ′′(ξ; ε), � ′(ξ; ε), �(ξ; ε), ξ, δ(ε); ε) = 0. (3.37)

We solve this differential equation (3.37) together with the boundary condition at x = 0.
But, first we have to determine δ(ε). We choose δ(ε) such that the differential equation
(3.37) has the richest structure, that is, it contains the largest number of terms that satisfy
the boundary condition and matching condition with the outer expansion. Recall that in the
outer solution, the second order differential equation is reduced to the first order differential
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equation. Therefore, the differential equation (3.37) should also contains the missing term
(here, the second derivative) of the differential equation (3.34) in the leading order of the
outer expansion. This principle to find the δ(ε) is called the principle of the least degeneracy
(see [12], p. 86). The chosen δ(ε) that has this property is called a distinguished limit or
significant degeneration.

Next, we assume the inner expansion of the form

�(ξ; ε) =
N−1∑
n=1

ζn(ε)�n(ξ)+ O(ζN ), (3.38)

with ζ1 = 1, since the inner expansion is of O(1). Substituting this expansion into (3.37) and
considering the boundary condition at x = 0, we obtain �n(ξ). For each n, we have a second
order differential equation with only one boundary condition. Therefore the solutions �n(ξ)

will contain one undetermined constant. To obtain this constant and to obtain a uniform
solution for the whole interval [0, 1], the inner and the outer expansions are matched over the
overlap region. Figure (3.2) represents a boundary layer phenomenon.

�(x; ε)

�(ξ; ε)

x

�

x = O(δ(ε))

x = O(1)xη

Figure 3.2: Boundary layer

There are two common matching principles, viz.

1. Matching by an intermediate variable (see [25], p. 52, or [31], p. 24). We introduce an
intermediate variable xη = x

η(ε)
that is located in the transition region or overlap region

between the outer region O(1) and the inner region O(ε). As an Ansatz, usually we
take η(ε) = εn with 0 < n < 1. Next, we follow the procedure below
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(a) Substitute the intermediate variable xη into the outer solution and assume there is
an η1(ε) so that it is still an asymptotic approximation of outer solution for any
η(ε) that satisfies η1(ε)� η(ε)� 1.

(b) Similarly, substitute the intermediate variable xη into the inner solution and assume
there is an η2(ε) so that it is still an asymptotic approximation of inner solution
for any η(ε) that satisfies ε � η(ε)� η2(ε).

(c) Assume that there is an overlap between the outer and the inner region, that is
η1(ε) � η2(ε), where the outer and the inner solution have the same functional
form.

2. Matching by Van Dyke’s rule (see [12], p. 90). In this technique, we rewrite the outer
expansion in the inner variable and the inner expansion in the outer variable as follows

the m-term inner expansion of (the n-term outer expansion)

= the n-term outer expansion of (the m-term inner expansion), (3.39)

where m and n are any two integers which may be equal or not. Usually, m is chosen
as either n or n + 1. For the left-hand side of (3.39), we rewrite the first n-terms of the
outer expansion in inner variable, expand it for ε → 0 with the inner variable fixed,
and consider the first m-terms of the resulting expansion. Next, we do conversely for
the right-hand side of (3.39). Finally, a single uniformly valid expansion, called a
composite expansion, can be formed as follows

composite expansion = outer expansion + inner expansion

- outer expansion rewritten in inner variable, (3.40)

or

composite expansion = outer expansion + inner expansion

- inner expansion rewritten in outer variable. (3.41)

Example 3.5
We start with an algebraic example that illustrates the search for distinguished limits.
Suppose we would like to find the asymptotic expansion for the solution of a quadratic
equation

εx2 − x + 2 = 0, ε → 0. (3.42)

Note that (3.42) is a quadratic equation and therefore has two roots although ε is very
small. For ε = 0, however, (3.42) reduces into a linear equation which only has one root.
So, (3.42) behaves differently when ε → 0 and when ε = 0. This phenomenon leads to
a singular perturbation problem. A similar phenomenon occurs in solving a differential
equation when the highest derivative is multiplied by a small parameter (see Example
(3.6)).

In a similar way as in Example (3.4), we assume the expansion of the form

x = x0 + εx1 + O(ε2), (3.43)
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to obtain

O(1) : x0 = 2, (3.44a)

O(ε) : x1 = x2
0 = 4, · · · . (3.44b)

Therefore, we obtain the asymptotic expansion for the solution of (3.42) as

x = 2+ 4ε + O(ε2). (3.45)

To obtain the other root, we make a rescaling x = x̄
δ(ε)

. As an Ansatz, we choose
δ(ε) = εn. Substitute this rescaling into (3.42) yields

ε1−2nx̄2 − ε−n x̄ + 2 = 0. (3.46)

Note that, using the expansion (3.43), the quadratic equation (3.42) is reduced to a linear
equation (3.44a). Therefore, we have to choose n such that (3.46) contains the largest
number of terms and includes the missing quadratic term. Considering the balance bet-
ween terms in (3.46), we observe that there are 3 candidates for the distinguished limits,
viz. n = 0, n = 1

2 , and n = 1. Geometrically, those candidates are the intersection
points of the graphs of the powers of ε in (3.46) that is 1 − 2n,−n, and 0 (see Figure
(3.3)).

b b

b

1 2 3−1−2−3

1

2

3

−1

−2

−3

n

1− 2n−n
power

Figure 3.3: The candidates for distinguished limits

We will analyse each of the candidates to determine the distinguished limit as follows

1. For n = 0, we get x̄ = 2, which is the same solution as (3.45). Therefore, we
ignore this possibility.
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2. For n = 1
2 , the term ε−1/2x̄ dominates, which yields x̄ = 0. It means that the

non-trivial leading order term is not O(ε−1/2). Therefore, we also ignore this po-
ssibility. Geometrically, this could be seen directly from the Figure (3.3), because
below the intersection point ( 1

2 , 0), there is another line.

3. For n = 1, we get
x̄2 − x̄ = 0, (3.47)

which yields x̄ = 0 or x̄ = 1. For similar reasons as above, we ignore the possibi-
lity of x̄ = 0. Next, for x̄ = 1, we assume the expansion

x = x̄
ε
= 1

ε

(
1+ εx̄1 + O(ε2)

) = 1
ε
+ x̄1 + O(ε). (3.48)

Substituting this expansion into (3.42) yields x̄1 = −2. Therefore, the other
asymptotic expansion of the solution of (3.42) is

x = 1
ε
− 2+ O(ε). (3.49)

Note that, geometrically, it seems that the lowest intersection point yields the best can-
didates for the distinguished limit.

Example 3.6
Next, we consider a problem described by a differential equation, which exemplifies
more the types of problem we will be dealing with. We consider the boundary value
problem

εy′′ + y′ = x as ε → 0, y(0) = 0, y(1) = 1. (3.50)

Note that, for ε = 0, the order of the differential equation (3.50) reduces from 2 to 1.
Therefore, it can not satisfy both boundary conditions and we may anticipate a boundary
layer at either end. Since the coefficient of y′ is positive throughout 0 < x < 1, it follows
that the boundary layer is located at x = 0 (see [9],p. 155)1. If the boundary layer were
at x = 1, one would obtain an unbounded inner expansion as ε → 0, which would not
match with the outer expansion which appears to be of O(1). Now, we consider the
outer expansion by assuming an expansion of the form

y(x; ε) = y0(x)+ εy1(x)+ O(ε2). (3.51)

Since the boundary layer is located at x = 0, we use the boundary condition y(1) = 1.
Introducing the expansion (3.51) into the differential equation (3.50) yields

O(1) : y′0 = x, y0(1) = 1, (3.52a)

O(ε) : y′1 = −y′′0 (x), y1(1) = 0, (3.52b)

O(ε2) : y′2 = −y′′1 (x), y2(1) = 0, · · · . (3.52c)

Solving the above differential equations, we obtain the outer expansion

y(x; ε) = 1
2 x2 + 1

2 + ε(1− x)+ O(ε2). (3.53)

1if the coefficient of y ′ is negative throughout 0 < x < 1, then the boundary layer is located at x = 1.
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Next, we consider the inner expansion. We rescale x = εnξ . Since both the boundary
conditions and the outer expansion are of O(1), we rescale the dependent variable as
y(εnξ ; ε) = Y (ξ ; ε). Introducing these rescalings into the differential equation (3.50),
we arrive at

ε1−2n d2Y

dξ 2
+ ε−n dY

dξ
= εnξ. (3.54)

Using the similar analysis as in Example (3.5), we have to choose n such that (3.54)
contains the largest number of terms and the second derivative d2Y

dξ2 . Considering the
balance between terms of (3.54), we find a boundary layer thickness of order O(ε)(n =
1). Therefore, (3.54) turns into

d2Y

dξ 2
+ dY

dξ
= ε2ξ. (3.55)

It is easily verified that the other possibility of n leads to an inner expansion that will not
match with the outer expansion. Next, we assume an inner expansion of the form

Y (ξ ; ε) = Y0(ξ)+ εY1(ξ)+ ε2Y2(ξ)+ O(ε3), (3.56)

to obtain

O(1) : d2Y0

dξ 2
+ dY0

dξ
= 0, Y0(0) = 0, (3.57a)

O(ε) : d2Y1

dξ 2
+ dY1

dξ
= 0, Y1(0) = 0, (3.57b)

O(ε2) : d2Y2

dξ 2
+ dY2

dξ
= ξ, Y2(0) = 0, · · · . (3.57c)

We obtain the inner expansion

Y (ξ ; ε) = A(1 − e−ξ )+ εB
(
1− e−ξ

)+ ε2 (C(1− e−ξ )+ 1
2ξ

2 − ξ
)+ O(ε3). (3.58)

To obtain an expansion that is uniformly valid for the whole interval, we make a match-
ing between the outer expansion (3.53) and the inner expansion (3.58). We use Van
Dyke’s matching rule. First, we rewrite the outer expansion (3.53) in the inner variable
(ξ = x

ε
) to obtain

y(x; ε) = 1
2 x2 + 1

2 + ε(1− x)+ O(ε2) = 1
2 + ε + 1

2ε
2ξ 2 − ε2ξ + O(ε2). (3.59)

Next, we rewrite the inner expansion (3.58) in the outer variable x = εξ to obtain

Y (ξ ; ε) = A
(
1− e−x/ε

)+ εB
(
1− e−x/ε

)+ ε2
(
C(1− e−x/ε)+ 1

2ξ
2 − ξ

)+ O(ε3)

= A + εB + ε2C + 1
2ε

2ξ 2 − ε2ξ + O(ε3) as ε → 0. (3.60)

Comparing (3.59) and (3.60), we see that both expressions are functionally identical if
A = 1

2 , B = 1, and C = 0. Therefore, the inner expansion (3.58) becomes

Y (ξ ; ε) = 1
2(x

2 + 1− e−x/ε)+ ε
(−x + 1− e−x/ε

)+ O(ε2). (3.61)
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Before we proceed with the composite expansion, we try another matching principle,
viz. matching by intermediate variable to find the constants A and B. We introduce
the intermediate variable xη = x

η(ε)
, with η(ε) = εn and 0 < n < 1. This interval

for n emerges from the fact that the intermediate variable should lies between the outer
variable, n = 0 and the inner variable, n = 1. Since x = εξ , it follows that ξ = xη

ε1−n .
Substituting this intermediate variable into the outer solution (3.53) yields

y(x; ε) = 1
2 x2 + 1

2 + ε(1− x)+ O(ε2)

= 1
2 + 1

2ε
2nx2

η + ε − εn+1xη + O(ε2), (3.62)

which is still an asymptotic approximation of the outer solution for n < 1
2 . Here, we

can choose, for example, η1(ε) = ε3/8. Next, in a similar way, the inner solution (3.58)
becomes

Y (ξ ; ε) = A(1 − e−ξ )+ εB
(
1− e−ξ

)+ ε2
(
C(1− e−ξ )+ 1

2ξ
2 − ξ

)+ O(ε3)

= A
(

1− e−xη/(ε1−n)
)
+ εB

(
1− e−xη/(ε1−n)

)
+ ε2C

(
1− e−xη/(ε1−n)

)
+ 1

2 x2
ηε

2n − εn+1xη + O(ε3)

= A + 1
2 x2

ηε
2n + εB − εn+1xη + ε2C + O(ε3), as ε → 0, (3.63)

which is still an asymptotic approximation of the inner solution for all 0 < n < 1.
Therefore, we can choose, for example, η2(ε) = ε1/8. Since η1(ε) � η2(ε), indeed,
there is an overlap region. Hence, we can take η(ε) from the overlap region, for example,
η(ε) = ε1/4. Next, comparing (3.62) and (3.63) again we obtain A = 1

2 , B = 1 and
C = 0.

Finally, using the outer expansion (3.53) and the inner expansion (3.61), we obtain the
composite expansion is

yc(x; ε) = 1
2 x2 + 1

2 − 1
2 e−x/ε+ε

(
1− x − e−x/ε

)+ O(ε2). (3.64)

Note that, the differential equation (3.50) has an exact solution, viz.

ye(x; ε) = 1
2 x2 − εx +

(
ε + 1

2

1− e−1/ε

) (
1− e−x/ε

)
= 1

2 x2 + 1
2 − 1

2 e−x/ε + ε
(−x + 1− e−x/ε

)+ T ST, (3.65)

which is the same as the composite function (3.64).

Figure (3.4) represents a comparison between the outer expansion (3.53), the inner ex-
pansion (3.61), and the exact solution (3.65) for ε = 0.05. It can be seen that, the outer
expansion (3.53) agrees with the exact solution (3.65), except in a small interval near x = 0.
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Figure 3.4: Comparison between the outer, the inner, and the exact solution for ε = 0.05.

4 Method of slow variation

As we noted above, the choice of the independent coordinate is very important when cons-
tructing an approximate solution in the form of a Poincaré expansion. This is particularly
true when we deal with a problem in more than one dimension, and described by a partial
differential equation. If the geometry is slender such that the prevailing length scale in one
direction is much longer than in the other, then it is very likely that the solution follows this
behaviour, and varies in the “long” direction much slower than in the “short” direction. This
will be the case if there are no other lengths scales inherent in the problem, like a source, a
wave length, or abrupt variations in geometry. The effects of the outer ends may be of this
type, and have to be accounted for if the ends determine the solution. We will come back to
this type of problem in an example below.

In this section, we consider a slender geometry with variations in the long direction that
are much slower than in the other direction(s). Following Van Dyke [13,14], this will be
called a slowly varying geometry. (If the variations are small, but not slow, the geometry is
called slightly varying. See the next section.)

In a slowly varying geometry, the boundary and possibly other properties of the geometry
vary in one direction much more slowly than in the other. If we take x to be the slow direction,
the derivatives in x direction are small. Assume that the characteristic length scale in y
direction is D and the characteristic length scale in x is L , while D � L , and no other
(shorter) length scales are present. Usually, D is the width and L is the length of the region
of interest. If we scale all lengths on D, the small parameter ε = D

L appears naturally
in the problem, and geometry (or other properties) will be functionally dependent on the
combination (εx, y) (in 2 dimensions). For example, the boundary may be described by
y = F(εx).
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A method to solve the slowly varying geometry is by rescaling the slow coordinate to
X = εx , and then introduce an assumed Poincaré expansion with shape functions in X and
y. It should be noted (we will come back to this in the next section) that after introducing
the slow variable X , the x-derivatives in the equations will be multiplied by powers of ε.
In the perturbation scheme these derivatives will be dropped, and therefore any approximate
solution will fail to satisfy the boundary conditions at the ends. As we will see, this will have
to be repaired by local approximations in x ; these are essentially boundary layers in X .

Example (4.1.1) below shows that following a naive approach, without a rescaling, the
solution will be valid only for fixed x , and it will break down for large x , i.e. x = O(1

ε
).

So, in some sense we might say that the slowly varying problem in its original variables
is a singular perturbation problem and the rescaling transforms the singular problem into a
regular problem. Of course, this is not entirely true, because there is in general still a region
of non-uniformity near the ends, but at least the region of validity of the solution has become
much bigger and is now almost the whole domain.

Common examples of this method (or rather: the results of this method) are lubrication
theory of highly viscous flow in bearings [18], quasi one-dimensional gas flow in slowly
varying ducts [32], Webster’s equation for sound waves in horns [43], and the Bernoulli-
Euler theory of the bending of slender beams [17].

Often, the respective theories are derived without taking explicit notice of the implied
small parameter. Sometimes, like in lubrication theory (see [18], p. 83) the x and y coor-
dinates are scaled right from the start with length scale L and D respectively. Especially
when dealing with more than one length scales in x , or when higher order corrections are of
interest, the more systematic approach of above is probably preferable.

4.1 Examples

Here, we will consider two examples of heat conduction problems, to illustrate the above
method of slow variation. Both problems are kept relatively simple, in order to allow us to
calculate the solutions explicitly and in detail. The first example is a two-dimensional one
and concerns an infinite symmetric strip with Dirichlet boundary conditions. This example
illustrates both the failure of the naive approach, and the success of the above method of slow
variation. The second example is more complicated, as it deals with a completely arbitrary
(albeit slender) three-dimensional geometry of finite length, with Neumann boundary condi-
tions (insulated) on the surface. Furthermore, the effects of the ends are considered in great
detail by deriving the full solution (up to second order) in the boundary layers at the ends.

4.1.1 Heat conduction problem

In this example we consider a heat conduction problem in a domain �1, which is an infinite

symmetric strip that is bounded by the boundaries y = ±DR
( x

L

)
, D � L . We prescribe
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the temperature at the boundaries and assume the temperature to be bounded as |x | → ∞.

�T (x, y) = 0, (x, y) ∈ �1, (4.66a)

T
(

x,±DR
( x

L

))
= ±Ta, (4.66b)

T (x, y) is bounded for |x | → ∞, (4.66c)

where Ta is the characteristic temperature.
At first, we make the heat problem (4.66a-4.66c) dimensionless by scaling x := Dx, y :=

Dy, T := TaT , to obtain (see Figure (4.5))

�T (x, y) = 0, (x, y) ∈ �∗1, (4.67a)

T (x,±R(εx)) = ±1, ε = D
L � 1, (4.67b)

T (x, y) is bounded for |x | → ∞, (4.67c)

where �∗1 is the dimensionless version of �1, bounded by y = ±R(εx).

y = R(εx)

y = −R(εx)

T (x, y) = 1

T (x, y) = −1

x

y

Figure 4.5: Slowly varying infinite symmetric strip

As mentioned above, the first step to solve the slowly varying geometry problem is by
rescaling X = εx . Before that, however, we will discuss the naive solution that would have
been obtained without rescaling. This solution is not incorrect, but just limited as it is valid
only on a scale of x = O(1). We assume a perturbation expansion in powers of ε:

T (x, y; ε) = T0(x, y)+ ε T1(x, y)+ ε2 T2(x, y)+ O(ε3). (4.68)

Introducing this expansion into the heat conduction equation (4.67a), we have to solve
�Tn(x, y) = 0. Since the parameter ε occurs implicitly and explicitly, we expand the boun-
dary y = R(εx) as

R(εx) = R(0)+ εx R′(0)+ 1
2ε

2x2 R′′(0)+ O(ε3). (4.69)

Next, we expand the temperature Tn(x, y) about y = ±R(0) to obtain the boundary condi-
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tions for n = 0, 1, 2, respectively,

T0(x,±R(0)) = ±1, T1(x,±R(0)) = ∓x R′(0)
∂T0

∂y
(x,±R(0)),

T2(x,±R(0)) = ∓x R′(0)
∂T1

∂y
(x,±R(0))∓ 1

2 x2 R′′(0)
∂T0

∂y
(x,±R(0)))−

1
2 x2 R′(0)2 ∂

2T0

∂y2
(x,±R(0)).

The resulting solution, (bounded in x) is now

T (x, y) = y

R(0)
− εxy

R′(0)
R(0)2

+ 1
6ε

2y
(
3x2 − y2 + R(0)2)2R′(0)2 − R′′(0)R(0)

R(0)3
+ O(ε3).

(4.70)
Note that for x = O(1

ε
), the second term becomes of order 1 and the solution (4.70)

will not satisfy asymptotically the boundary conditions. Therefore, the solution (4.70) is no
longer valid for x = O(1

ε
). This, however, is the interesting length scale. To remedy the

disadvantage of the solution (4.70) and incorporate the part of the solution that scales on
x = O(1

ε
), we rescale the x-coordinate to X = εx . Then the problems (4.67a, 4.67b) adopt

the form

ε2 ∂
2T

∂X2
+ ∂2T

∂y2
= 0, T (X,±R(X)) = ±1. (4.71)

Note that as ε tends to zero, the boundaries remain y = ±R(X), but the governing equa-
tion does not remain the heat conduction equation. As ε2 appears to be the essential small
parameter, we assume2 the perturbation expansion in power of ε2

T (X, y; ε) = T0(X, y)+ ε2T1(X, y)+ ε4T2(X, y)+ O(ε6). (4.72)

After introducing (4.72) into (4.71) and equating like powers of ε, we obtain

∂2T0

∂y2
= 0, T0 = ±1, at y = ±R(X), (4.73)

∂2Tn

∂y2
= −∂2Tn−1

∂X2
, Tn = 0, at y = ±R(X), for n ≥ 1. (4.74)

Solving (4.73, 4.74), we find the solution

T (X, y) = y

R(X)
− 1

6ε
2y

(
y2 − R(X)2) d2

dX2

( 1

R(X)

)
+ O(ε4). (4.75)

Note that this solution is now still valid for X = O(1), but at the same time incorporates the
previous solution (4.70), as straightforward Taylor expansion would show.

2This is not necessarily true! See the next example.
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4.1.2 A generalized heat conduction problem, including boundary layers

In this example, we further generalize the heat conduction problem to three dimensions inside
the domain �2 ⊂ R

3 being a finite cylinder (0 ≤ x ≤ L) that is bounded by the boundary
r = DR

( x
L , θ

)
, D � L , with a cross section of arbitrary shape. We prescribe an insulated

boundary condition at the “long” boundaries and prescribe the temperature at the ends x = 0
and x = L .

�T (r, θ, x) = 0 for (r, θ, x) ∈ �3, (4.76a)
∂T

∂n
(r, θ, x) = 0 at S = r − DR

( x
L , θ

) = 0, (4.76b)

T (r, θ, 0) = TaTc

( r

D
, θ

)
+ T∞, (4.76c)

T (r, θ, L) = TaTd

( r

D
, θ

)
+ T∞, (4.76d)

where Ta and T∞ are characteristic and reference temperatures.
First, we make the heat conduction problem (4.76 a-d) dimensionless by scaling r :=

Dr, x := Dx, S := DS, T := TaT + T∞, to obtain

�T = 0 for (r, θ, x) ∈ �∗3, (4.77a)

∇⊥T ·∇⊥S = εRX (εx, θ)
∂T

∂x
at S = r − R(εx, θ) = 0, (4.77b)

T = Tc(r, θ) at x = 0, (4.77c)

T = Td(r, θ) at x = ε−1, (4.77d)

where �∗2 is the dimensionless version of �2, bounded by r = R(εx, θ), with ε = D
L � 1.

We introduced the transversal coordinate x⊥ = x − (x ·ex)ex , and the transversal gradient
∇⊥ = ∂

∂r er + 1
r

∂
∂θ

eθ , such that at S = 0 we have ∇⊥S = er − Rθ

R eθ . Note that ∇S at S = 0 is
outward normal to the surface r = R, but the transversal gradient ∇⊥S is directed in a cross-
sectional plane A = A(εx), so it is normal to the x-axis and to the cylinder circumference
given by S = 0, x is constant (see Figure 4.6).

A(εx)

nn⊥

�

x = 0
x = L

∂
∂n T = 0

x-axis

r = R(εx, θ)

Figure 4.6: Sketch of geometry of the general heat conduction problem
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Similar to the previous example, we introduce a rescaling X = εx to obtain

�⊥T + ε2 ∂
2T

∂X2
= 0, (4.78a)

∇⊥T ·∇⊥S = ε2 RX (X, θ)
∂T

∂X
, (4.78b)

T (r, θ, 0) = Tc(r, θ), (4.78c)

T (r, θ, 1) = Td(r, θ). (4.78d)

where evidently �⊥ = ∇⊥·∇⊥.
Before we proceed to solving this problem, it is instructive to consider for comparison

the following fluid mechanical phenomenon. If a viscous incompressible fluid, driven by a
pressure difference, enters a pipe of constant cross section, the velocity profile will change
gradually from the values at the entrance to the so-called fully developed velocity profile at a
sufficient distance from the entrance (see [36], p. 226). This change is necessary because the
viscosity causes the particles next to the wall to stick to the wall, so the flow velocity is zero
at the wall. On the other hand, for steady flow the flux of flow is constant, so the fluid near
the axis of the pipe must be accelerated (causing again friction), until a balance is achieved
between the constraints of the wall and the applied pressure difference. Therefore, the initial
velocity profile changes until its final form is established. Here, we can say that there is a
boundary layer at the entrance (in axial direction, not in radial direction, since the flow is in
axial direction).

Although our problem is on heat flow, rather than fluid flow, the diffusive effects are
similar, suggesting that also in our problem boundary layers will occur at the ends X = 0
and X = 1 where the temperature distribution adapts itself to a “stationary state”, i.e. where
the temperature field is balanced by the geometrical constraints of the wall and the applied
temperature difference.

In Section 3.2, we have discussed that there are two expansions, the outer expansion
and the inner expansion, that are used to solve the problem. We start here with the outer
expansion.

4.1.3 Outer expansion

Since the boundary layers are assumed at X = 0 and at X = 1, we solve the problem
(4.78) without considering the boundary conditions at X = 0 and at X = 1. In view of the
occurrence of ε2 in (4.78a) and (4.78b), it seems to make sense to assume that the tempera-
ture T (r, θ, X) can be expanded into an asymptotic expansion in powers of ε2. It will turn
out later, however, that due to the geometry, the correction terms of the inner expansion is
of O(ε), which requires via the matching conditions terms of the same order in the outer
expansion. Therefore, we have to assume an outer expansion in powers of ε.

Introducing this expansion

T (r, θ, X; ε) = T0(r, θ, X)+ εT1(r, θ, X)+ ε2T2(r, θ, X)+ O(ε3) (4.79)
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into (4.78) and equating the coefficients of like power, we obtain for n = 0, 1, 2, 3, respec-
tively,

∂2T0

∂r2
+ 1

r

∂T0

∂r
+ 1

r2

∂2T0

∂θ2
= 0, ∇⊥T0 ·∇⊥S = 0, at r = R(X, θ), (4.80)

∂2T1

∂r2
+ 1

r

∂T1

∂r
+ 1

r2

∂2T1

∂θ2
= 0, ∇⊥T1 ·∇⊥S = 0, at r = R(X, θ), (4.81)

∂2T2

∂r2
+ 1

r

∂T2

∂r
+ 1

r2

∂2T2

∂θ2
= −∂2T0

∂X2
, ∇⊥T2 ·∇⊥S = RX (X, θ)

∂T0

∂X
, at r = R(X, θ),

(4.82)

∂2T3

∂r2
+ 1

r

∂T3

∂r
+ 1

r2

∂2T3

∂θ2
= −∂2T1

∂X2
, ∇⊥T3 ·∇⊥S = RX (X, θ)

∂T1

∂X
, at r = R(X, θ).

(4.83)

Note that after the slow-variable scaling, S and R are independent of ε.
By inspection we see that a solution is T0 ≡ 0, T1 ≡ 0. Since the Neumann problems

(4.80), (4.81) have unique solutions up to a constant, we have the general solution

T0(r, θ, X) = T0(X), T1(r, θ, X) = T1(X). (4.84)

To obtain T0(X), we have to solve (4.82). Write (4.82) as

�⊥T2 + d2T0

dX2
= 0. (4.85)

Integrate (4.85) over a cross-section A of area A(X) and use Gauss’ theorem to obtain

0 =
∫∫
A

(
�⊥T2 + d2T0

dX2

)
dσ =

∫∫
A

(
∇·∇⊥T2 + d2T0

dX2

)
dσ =

∫
∂A

∇⊥T2 ·n⊥ d�+d2T0

dX2
A(X),

where d� =
√

R2 + (
∂R
∂θ

)2
dθ, A(X) = ∫ 2π

0
1
2 R2(X, θ) dθ, and dA(X)

dX = ∫ 2π
0 RRX dθ . Since

∇⊥T2 ·n⊥ = ∇⊥T2· ∇⊥S

|∇⊥S| =
dT0
dX RRX√

R2 + (
∂R
∂θ

)2
, (4.86)

it follows that
d2T0

dX2
A(X)+

∫ 2π

0

dT0

dX
RRX dθ = 0, (4.87)

or
d2T0

dX2 A(X)+ dT0

dX

dA

dX
= d

dX

(
dT0

dX
A(X)

)
= 0. (4.88)

The solution of (4.88) is

T0(X) = C0

∫ X

0

dX̃

A(X̃)
+ D0. (4.89)
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In a similar way, we obtain for T1,

T1(X) = C1

∫ X

0

dX̃

A(X̃)
+ D1. (4.90)

Higher order terms require the solution of the inhomogeneous Laplace equation in r and θ

on any cross-section. This becomes more and more complicated and at the same time less
interesting. So we will stop here in our expansion, with the outer solution up to second order
given by

T (r, θ, X; ε) = (C0 + εC1)

∫ X

0

dX̃

A(X̃)
+ D0 + εD1 + O(ε2). (4.91)

4.1.4 Boundary layer at X = 0

Here, we consider the boundary layer at X = 0. Later, in a similar way, we will discuss
the boundary layer at X = 1. We introduce the inner variable x = X

ε
and we rename

T (r, θ, X; ε) = �(r, θ, x; ε) into (4.78) to obtain

∂2�

∂r2
+ 1

r

∂�

∂r
+ 1

r2

∂2�

∂θ2
+ ∂2�

∂x2
= 0, (4.92a)

∇⊥�·∇⊥S = ∂�

∂r
− Rθ

R2

∂�

∂θ
= εRX (εx, θ)

∂�

∂x
at r = R(εx, θ), (4.92b)

�(r, θ, 0) = Tc(r, θ). (4.92c)

Note that �(r, θ, x; ε) = K x , where K is a constant, satisfies (4.92a) and satisfies “almost”
(4.92b). As it is not immediately clear what the required behaviour for large x will have to
be, we may have to include this solution in one of the expansions.

Next, the occurrence of ε in (4.92b) suggests us to assume the inner expansion as

�(r, θ, x; ε) = �0(r, θ, x)+ ε�1(r, θ, x)+ O(ε2). (4.93)

Since the parameter ε appears implicitly and explicitly, we expand the boundary conditions
at r = R(εx, θ) and �(R(εx), θ, x) about r = R(0, θ) as follows

R(εx, θ) = R + εx RX + 1
2(εx)2 RX X + O((εx)3), (4.94)

�(R(εx, θ), θ, x) = �(R, θ, x)+ (εx)RX
∂�

∂r
(R, θ, x)+ O((εx)2). (4.95)

Furthermore, we have
Rθ (εx, θ)

R2(εx, θ)
= Rθ

R2
+ εx

∂

∂θ

( RX

R2

)
, (4.96)

where R without argument denotes the values at X = 0.
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So we have

∇⊥�·∇⊥S = ∂�

∂r
(R(εx, θ), θ, x; ε)− Rθ (εx, θ)

R2(εx, θ)

∂�

∂θ
(R(εx, θ), θ, x; ε)

= ∂�0

∂r
− Rθ

R2

∂�0

∂θ
+ε

[
∂�1

∂r
− Rθ

R2

∂�1

∂θ
+ x

∂2�0

∂r2
RX − x

Rθ RX

R2

∂2�0

∂r∂θ
− x

∂

∂θ

(RX

R2

)∂�0

∂θ

]

= εRX
∂�0

∂x
, (4.97)

which means at r = R = R(0, θ) we have

∇⊥�0 ·∇⊥S0 = ∂�0

∂r
− Rθ

R2

∂�0

∂θ
= 0, (4.98)

∇⊥�1 ·∇⊥S0 = ∂�1

∂r
− Rθ

R2

∂�1

∂θ
= RX

∂�0

∂x
− x

∂2�0

∂r2
RX + x

Rθ RX

R2

∂2�0

∂r∂θ
+ x

∂

∂θ

( RX

R2

)∂�0

∂θ
,

(4.99)

where ∇⊥S0 = er − Rθ

R eθ . Using

d

dθ

(
∂�0

∂θ

)
= Rθ

∂2�0

∂r∂θ
+ ∂2�0

∂θ2
, (4.100)

and the defining equation

−∂2�0

∂r2
= 1

R

∂�0

∂r
+ 1

R2

∂2�0

∂θ2
+ ∂�0

∂x
= Rθ

R3

∂�0

∂θ
+ 1

R2

∂2�0

∂θ2
+ ∂2�0

∂x2
, (4.101)

we see that (4.99) is equivalent to

∇⊥�1 ·∇⊥S0 = Q0(x, θ)
def== RX

∂�0

∂x
+ x

R

[
RRX

∂2�0

∂x2
+ d

dθ

(RX

R

∂�0

∂θ

)]
. (4.102)

Using the above boundary conditions, we obtain the following boundary value problem
for the leading order (O(1))

��0 = 0, (4.103a)

∇⊥�0 ·∇⊥S0 = ∂�0

∂r
− Rθ

R2

∂�0

∂θ
= 0, at r = R(0, θ), (4.103b)

�0(r, θ, 0) = Tc(r, θ), (4.103c)

�0(r, θ, x) s K0x + constant + EST, as x →∞. (4.103d)

where the linear term K0x anticipates a possible solution of this form.
The solution �0 may be expressed by the eigenfunction expansion

�0(x) =
∞∑

n=0

Anψn(r, θ) e−λn x +
∞∑

n=1

Bnψn(r, θ) eλn x +K0x, (4.104)
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where ψn(r, θ) satisfies the Sturm-Liouville problem

∂2ψn

∂r2
+ 1

r

∂ψn

∂r
+ 1

r2

∂2ψn

∂θ2
+ λ2

nψn = 0, (4.105a)

∇⊥ψn ·∇⊥S0 = 0, at r = R(0, θ). (4.105b)

Further on, we will for convenience take K0 and Bn to be zero. This is strictly speaking
a result of the matching. The inner expansion would become infinite and cannot be matched
with the outer solution.

Note that the eigenvalue λ0 = 0 corresponds to the eigenfunction ψ0(r, θ), a constant.
Assuming the orthonormality of ψn(r, θ), or

∫∫
A(0)

ψn(r, θ)2 dσ = 1, leads to ψ0(r, θ) =
A(0)−1/2, where A(0) denotes the cross-section x = 0, of area A(0). The orthogonality of
the eigenfunctions and the fact that ψ0(r, θ) is a constant imply that

∫∫
A(0)

ψn(r, θ) dσ = 0, for

n �= 0.
Next, the boundary condition (4.103c) and the orthonormality of the eigenfunctions lead

to

A0 = A(0)−1/2
∫∫
A(0)

Tc(r, θ) dσ, An =
∫∫
A(0)

Tc(r, θ)ψn(r, θ) dσ. (4.106)

Since the cross-section of the cylinder is of arbitrary shape, we can not determine explic-
itly ψn(r, θ), except for n = 0. Based on the Sturm-Liouville theory, however, we know that
the eigenvalues λn are nonnegative, countably infinite, and the corresponding eigenfunctions
are complete and orthogonal. This verifies that we can indeed express the solution of heat
equation (4.103) by a series of eigenfunctions (4.104).

Note that if R(εx, θ) does not depend on θ (the cross section is a circle), the eigenfunc-
tions ψn(r, θ) are

ψn(r, θ) = Jν

(
α′νµ
R(0)

r

)
eiνθ , ν ∈ Z, (4.107)

where α′νµ are the real zeroes of the derivatives of Bessel functions, J ′ν(α′νµ) = 0 and are
ordered such that they are monotonically increasing. The corresponding eigenvalues are
λn = α′νµ/R(0).

For the next order, i.e. O(ε), we have to solve

��1 = 0, (4.108a)

∇⊥�1 ·∇⊥S0 = Q0, at r = R(0, θ), (4.108b)

�1(r, θ, 0) = 0, (4.108c)

�1(r, θ, x) s K1x + constant+ EST, as x →∞, (4.108d)

where

Q0 =
∞∑

n=1

An e−λn x
[
−RXλnψn + x RXλ

2
nψn + x

R

d

dθ

(RX

R

∂ψn

∂θ

)]
r=R

.
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To solve this problem, we introduce a Green’s function G(x; ξ) with x = (r, θ, x) and
ξ = (ρ, η, ξ) satisfying

�⊥G + ∂2G

∂x2
= −δ(x − ξ ), (4.109a)

∂G

∂n
= 0, at r = R(0, θ), (4.109b)

G(x; ξ) = 0, at x = 0. (4.109c)

G(x; ξ)→ a constant, x →∞. (4.109d)

x
∂G

∂x
(x; ξ)→ 0, x →∞. (4.109e)

We determine the Green’s function by applying the Fourier Sine Transform3 with respect
to x (x → k) to equation (4.109a), and obtain

�⊥Ĝ − k2Ĝ = −
√

2

π
sin(kξ)δ(x⊥ − ξ⊥). (4.110)

Assuming that we can expand Ĝ =
∞∑

m=0

amψm(r, θ), we obtain �⊥Ĝ = −
∞∑

m=0

amλ2
mψm(r, θ).

Substituting this into (4.110) yields

∞∑
m=0

amψm(r, θ)(λ2
m + k2) =

√
2

π
sin(kξ)δ(x⊥ − ξ⊥). (4.111)

Next, multiply (4.111) with ψn and integrate over a cross-section A(0) of area A(0) to obtain

∫∫
A(0)

∞∑
m=0

amψnψm(λ2
m + k2) dσ =

√
2

π

∫∫
A(0)

ψn(r, θ) sin(kξ)δ(x⊥ − ξ⊥) dσ. (4.112)

Orthonormality of the base functions yields

am =
√

2

π

sin(kξ)

λ2
m + k2

ψm(ρ, η). (4.113)

Therefore,

Ĝ(r, θ, k; ρ, η, ξ) =
√

2

π

∞∑
m=0

sin(kξ)

λ2
m + k2

ψm(ρ, η)ψm(r, θ). (4.114)

The inverse Fourier Sine Transform gives the solution

G(x; ξ) = 2

π

∞∑
m=0

ψm(ρ, η)ψm(r, θ)
∫ ∞

0

sin(kx) sin(kξ)

λ2
m + k2

dk, (4.115)

3where f̂ (k) =
√

2
π

∫ ∞

0
sin(kx) f (x) dx, f (x) =

√
2
π

∫ ∞

0
sin(kx) f̂ (k) dk.
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where for λ0 = 0, (see [21], p. 425)∫ ∞

0

sin(kx) sin(kξ)

k2
dk = π

2
min (x, ξ) , (4.116)

and for λm > 0,∫ ∞

0

sin(kx) sin(kξ)

λ2
m + k2

dk = π

2λm
e−λmmax(x,ξ) sinh(λmmin (x, ξ)). (4.117)

Therefore, the Green’s function becomes

G(x; ξ) =




x

A(0)
+

∞∑
m=1

ψm(ρ, η)ψm(r, θ) e−λmξ

λm
sinh(λm x), 0 ≤ x ≤ ξ,

ξ

A(0)
+

∞∑
m=1

ψm(ρ, η)ψm(r, θ) e−λm x

λm
sinh(λmξ), 0 ≤ ξ ≤ x .

(4.118)

Note that as x →∞, G tends to ξ
A(0) and ∂G

∂x tends to zero exponentially.
Using this Green’s function, (4.108a), and (4.109a) we obtain

�1δ(x − ξ ) = G��1 −�1�G. (4.119)

Note that the domain here is an infinite cylinder, therefore we consider a region � with a
finite length 0 ≤ ξ ≤ X0, where X0 is far enough from 0. Integrating (4.119) over the whole
domain � and using Green’s second identity, (4.108), and (4.109), we get

�1(ξ) =
∫∫∫
�

(G��1 −�1�G) dx

=
∫∫
x=0

(
−G

∂�1

∂x
+�1

∂G

∂x

)
dσ +

∫∫
r=R(0,η)

(G∇⊥�1 −�1∇⊥G) ·n⊥ dσ

+
∫∫

x=X0

(
G

∂�1

∂x
−�1

∂G

∂x

)
dσ,

=
∫∫

r=R(0,η)

GQ0(x, θ)

|∇⊥S| d�dξ + K1ξ, (4.120)

where |∇⊥S| = 1
R

√
R2 + R2

θ and d� =
√

R2 + R2
θ dθ . Therefore, we obtain

�1(ξ ) =
∫ 2π

0

∫ ∞

0
Q0(x, θ)G(x; ξ)∣∣r=R dx R dθ + K1ξ. (4.121)
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To remove the x-integration, we calculate∫ ∞

0
e−λn x G(x; ξ)∣∣r=R dx = 1− e−λnξ

A(0)λ2
n

−




∞∑
m=1

ψm(R, θ)ψm(ρ, η)
e−λnξ − e−λmξ

λ2
n − λ2

m
, λn �= λm,

−
∞∑

m=1

ψm(R, θ)ψm(ρ, η)1
2ξ e−λnξ , λn = λm,

(4.122)

and ∫ ∞

0
x e−λnx G(x; ξ)|r=R dx = 2− (2+ λnξ) e−λnξ

A(0)λ3
n

−




∞∑
m=1

ψm(R, θ)ψm(ρ, η)
2λn(e−λnξ − e−λmξ )+ ξ(λ2

n − λ2
m) e−λnξ

(λ2
n − λ2

m)2
, λn �= λm,

−
∞∑

m=1

ψm(R, θ)ψm(ρ, η)
ξ e−λnξ (1+ λnξ)

4λn
, λn = λm .

(4.123)

Therefore, after interchanging x with ξ , we obtain

�1(x) = K1x +
∞∑

n=1

An

∫ 2π

0

[
−RRXλnψn

∫ ∞

0
e−λnξ G(ξ ; x) dξ

+
{

RRXλ2
nψn + d

dη

(RX

R

∂ψn

∂η

)}∫ ∞

0
ξ e−λnξ G(ξ ; x) dξ

]
dη. (4.124)

4.1.5 Boundary layer at X = 1

Now, we consider the boundary layer at X = 1. We introduce the inner variable x̄ = 1−X
ε

,
and since at the boundary T (r, θ, 1) = O(1), we rescale T (r, θ, X; ε) = �(r, θ, x̄; ε) into
(4.78) to obtain

�� = 0, (4.125a)

∇⊥�·∇⊥S = −εRX (1− εx̄, θ)
∂�

∂ x̄
, at r = R(1− εx̄, θ), (4.125b)

�(r, θ, 0) = Td(r, θ), (4.125c)

�(r, θ, x̄) s Lx̄ + constant + EST, as x̄ →∞. (4.125d)
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In a similar way as before, we assume the inner expansion as

�(r, θ, x̄; ε) = �0(r, θ, x̄)+ ε�1(r, θ, x̄)+ O(ε2). (4.126)

Using the same method of eigenfunction expansion and the Green’s function, we obtain

�0(r, θ, x̄) = E0 A(1)−1/2 +
∞∑

n=1

Enφn(r, θ) e−µn x̄ +L0 x̄, (4.127)

�1(ξ) =
∫ 2π

0

∫ ∞

0
Q0(x̄, θ)G(x; ξ)|r=R dx̄ R dθ + L1ξ, (4.128)

where

Q0(x̄, θ) = −RX
∂�0

∂ x̄
− x̄

R

[
R R X

∂2�0

∂ x̄2
+ d

dθ

(RX

R

∂�0

∂θ

)]

=
∞∑

n=1

En e−µn x̄

[
RXµnφn − x̄ R Xµ

2
nφn − x̄

R

d

dθ

(R X

R

∂φn

∂θ

)]
r=R

,

where R without argument denotes the values at X = 1.
After interchanging x with ξ , we obtain

�1(x) = L1 x̄ +
∞∑

n=1

En

∫ 2π

0

[
R R Xµnφn

∫ ∞

0
e−µn x̄ G(ξ ; x) dξ

+
{

R R Xµ
2
nφn − d

dη

(RX

R

∂φn

∂η

)}∫ ∞

0
ξ e−µnξ G(ξ ; x) dξ

]
dη. (4.129)

4.1.6 Matching

In this section, we discuss the matching between the outer solution (4.91) and the inner
solutions (4.104), (4.124), (4.127), and (4.129). First, we consider the matching at X =
0. Applying Van Dyke’s rule for matching, we rewrite the outer expansion (4.91) in inner
variable x = X

ε
to obtain

T (r, θ, x; ε) = (C0 + εC1)

∫ εx

0

dX̃

A(X̃)
+ D0 + εD1 + O(ε2)

= (C0 + εC1)
εx

A(0)
+ D0 + εD1 + O(ε2)

= D0 + εD1 + εx
C0

A(0)
+ ε2x

C1

A(0)
+ O(ε2). (4.130)

Next we rewrite the inner expansion (4.104), (4.124) in the outer variable X . Since for ε → 0

the term e−λn
X
ε is EST, it can be ignored. Finally, we get

�(r, θ, X; ε) = A0 A(0)−1/2 + εx K1 + ε

A(0)

∞∑
n=1

An

λn

∫ 2π

0
RRXψn dη + O(ε2). (4.131)
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Comparing (4.130) and (4.131), we obtain

D0 = A0 A(0)−1/2,
C0

A(0)
= K1, D1 = 1

A(0)

∞∑
n=1

An

λn

∫ 2π

0
RRXψn dη, (4.132)

while C0 is still unknown and C1 is undetermined yet. To find these constants, we need
another relationship which can be obtained from matching the outer expansion with the inner
expansion at X = 1.

In a similar way, for matching at X = 1, we rewrite the outer solution (4.91) in inner
variable x̄ to obtain

T (r, θ, x̄; ε) = (C0 + εC1)

∫ 1−εx̄

0

dX̃

A(X̃)
+ D0 + εD1 + O(ε2),

# (C0 + εC1)

∫ 1

0

dX̃

A(X̃)
+ (C0 + εC1)

∫ 1−εx̄

1

dX̃

A(X̃)
+ D0 + εD1,

# C0

∫ 1

0

dX̃

A(X̃)
+ D0 + ε

[
C1

∫ 1

0

dX̃

A(X̃)
+ D1

]
− εx̄

C0

A(1)
− ε2 x̄

C1

A(1)
.

(4.133)

Next we rewrite the inner expansion (4.127), (4.129) in the outer variable X to obtain

�(r, θ, X; ε) = E0 A(1)−1/2 + L1εx̄ − ε

A(1)

∞∑
n=1

En

µn

∫ 2π

0
R R Xφn dη. (4.134)

Comparing (4.133) and (4.134), we see that

C0

∫ 1

0

dX̃

A(X̃)
= E0 A(1)−1/2 − D0 = E0 A(1)−1/2 − A0 A(0)−1/2, (4.135)

C1

∫ 1

0

dX̃

A(X̃)
= −D1 − 1

A(1)

∞∑
n=1

En

µn

∫ 2π

0
R R Xφn dη

= − 1

A(0)

∞∑
n=1

An

λn

∫ 2π

0
RRXψn dη− 1

A(1)

∞∑
n=1

En

µn

∫ 2π

0
R R Xφn dη,

(4.136)

L1 = − C0

A(1)
= A0 A(0)−1/2 − E0 A(1)−1/2

A(1)
∫ 1

0
dX̃

A(X̃)

. (4.137)

Finally, we arrive at

K1 = C0

A(0)
= E0 A(1)−1/2 − A0 A(0)−1/2

A(0)
∫ 1

0
dX̃

A(X̃)

. (4.138)
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4.1.7 Heat Flux

In this section, we calculate the heat flux across a section X . Since the boundary r =
R(εx, θ) is insulated we can show, by using Gauss’ theorem, that the heat flux across each
section is constant. Consider a portion of the finite cylinder with X1 ≤ X ≤ X2, then

0 =
∫∫
V

�� dx =
∫∫
∂V

∇�·n dS = −
∫∫

A(X1)

∂�

∂x
dσ +

∫∫
A(X2)

∂�

∂x
dσ. (4.139)

Therefore, we get the flux

F =
∫∫

A(X1)

∂�

∂x
dσ =

∫∫
A(X2)

∂�

∂x
dσ. (4.140)

First we calculate the heat flux in the boundary layer, yielding

∫∫
A(X)

∂�

∂x
dσ =

∫ 2π

0

∫ R(X,θ)

0

∂�

∂x
r drdθ =

∫ 2π

0

∫ R+εx RX

0

(∂�0

∂x
+ ε

∂�1

∂x

)
r drdθ =

∫ 2π

0

∫ R

0

∂�0

∂x
r drdθ + ε

∫ 2π

0

∫ R

0

∂�1

∂x
r drdθ + εx

∫ 2π

0

∂�0

∂x
RX R dθ. (4.141)

As ψn (n �= 0) is orthogonal to a constant, we have indeed for the leading order

∫ 2π

0

∫ R

0

∂�0

∂x
r drdθ = −

∞∑
n=1

λn An e−λn x
∫ 2π

0

∫ R

0
ψnr drdθ = 0. (4.142)

For the same reason, most of the terms in the second order disappear, and we get

∫ 2π

0

∫ R

0

∂�1

∂x
r drdθ = K1 A(0)+

∞∑
n=1

An e−λn x
∫ 2π

0

[
−RRXψn

+
{

RRXλ2
nψn + d

dθ

(RX

R

∂ψn

∂θ

)}1+ λn x

λ2
n

]
dθ. (4.143)

Using the periodicity of ψn , we obtain

∫ 2π

0

∫ R

0

∂�1

∂x
r drdθ = K1 A(0)+

∞∑
n=1

Anλnx e−λn x
∫ 2π

0
RRXψn dθ. (4.144)

If we add the other term

x
∫ 2π

0

∂�0

∂x
RX R dθ = −

∞∑
n=1

An e−λn x xλn

∫ 2π

0
RX Rψn dθ, (4.145)



5. METHOD OF SLIGHT VARIATION 39

we obtain the flux as ∫∫
A(X)

∂�

∂x
dσ = εK1 A(0). (4.146)

which is indeed independent of x . Note that the heat flux is of O(ε). This conservation of
heat flux can be used to verify the matching (4.132). Consider the heat flux across X = εx
in the outer region. Using the outer solution (4.91), we obtain for the heat flux∫∫

A(X)

∂T

∂X
dσ =

∫∫
A(X)

ε
∂T

∂x
dσ =

∫∫
A(X)

ε

A(X)
(C0 + εC1) dσ

= εC0 + O(ε2). (4.147)

which is, again, indeed independent of X . This result confirms our previous matching result
that K1 A(0) = C0.

It should be noted that the actual value of the heat flux, given from (4.138) as

F = ε
A(1)−1

∫∫
A(1) Td dσ − A(0)−1

∫∫
A(0) Tc dσ∫ 1

0 A(X)−1dX
. (4.148)

cannot be found from the outer or inner solution only, and we really need the combined
information of outer and inner solution together.

5 Method of slight variation

In this section, we discuss the so-called slightly varying geometry (see [13,14]) where the
geometry varies a little, but not slowly. In dimensionless coordinates, the boundary or any
other property of the geometry is assumed to be of order 1 and it varies with deflections of
order ε.

Mathematically, we may write the equation of the boundary as y = y0 + εG(x), G(x) =
O(1), together with, for example, the governing equation L( f (x, y; ε)) = 0. We solve this
problem simply by expanding f (x, y; ε) into a regular perturbation expansion in power of
ε. Unlike the slowly varying case, the parameter ε is still in the boundary condition and is
not transformed into the governing equations. Therefore, the perturbation parameter ε occurs
implicitly and explicitly in boundary conditions, for example,

f0(x, y0 + εG(x))+ ε f1(x, y0 + εG(x))+ ε2 f2(x, y0 + εG(x))+ · · · = 0.

Consequently, we can not directly expand the boundary condition into a Poincaré expansion.
By expanding the boundary condition into a Taylor series about y = y0,

f0(x, y0 + εG(x)) = f0(x, y0)+ εG(x)
∂ f0

∂y
(x, y0)+ 1

2(εG(x))2 ∂
2 f0

∂y2
(x, y0)+ O(ε3),

(etc. for f1, f2, · · · ), we render it into a Poincaré expansion (see [12], p. 14). Finally, we can
solve the governing equations for each coefficient of ε successively.

Below, we give an example to illustrate the above method.
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y = y0 + εG(x)

y = −y0 − εG(x)

x

y

y0
O(1)

O(1)

Figure 5.7: Slightly varying symmetric strip

5.1 Example

In this section, we discuss another heat conduction problem (similar to as Example (4.1.1) but
now the geometry is slightly varying. Although the problems in both examples are similar,
the geometries are different, and we have to chose the appropriate method to solve each
problem. In this example, we apply the above procedure.

5.1.1 Heat conduction problem

In this example, we consider a heat conduction problem �T (x, y) = 0 in an infinite strip �3

that is bounded by y = ±L ± DG
( x

L

)
, D � L , where the temperature is prescribed. We

assume the temperature is bounded as |x | → ∞,

�T (x, y) = 0, (x, y) ∈ �3, (5.149a)

T
(

x,±L ± DG
( x

L

))
= ±Ta, (5.149b)

T (x, y) is bounded for |x | → ∞, (5.149c)

where Ta is the characteristic temperature.
First, we make the problem (5.149) dimensionless, using scaling y := Ly, x := Lx, T :=

TaT to obtain

�T (x, y) = 0, (x, y) ∈ �∗3, (5.150a)

T (x,±1± εG(x)) = ±1, ε = D
L � 1, (5.150b)

T (x, y) is bounded for |x | → ∞, (5.150c)

where �∗3 is the dimensionless version of �3 that is bounded by y = ±1± εG(x).
We assume a regular perturbation expansion in powers of ε,

T (x, y; ε) = T0(x, y)+ εT1(x, y)+ ε2T2(x, y)+ O(ε3). (5.151)

Introducing the expansion into the heat conduction equation (5.150a, 5.150b), we have

�Tn(x, y) = 0, n = 0, 1, · · · , (5.152)



5. METHOD OF SLIGHT VARIATION 41

and the boundary conditions at y = ±1± εG(x) turn into

T0(x,±1± εG(x))+ εT1(x,±1± εG(x))+ ε2T2(x,±1± εG(x))+ · · · = ±1. (5.153)

Note that the perturbation parameter ε appears implicitly and explicitly. It means that the
expansion (5.153) is not a Poincaré expansion. Therefore, it is impossible directly to equate
like powers of ε. This can be solved by expanding the temperature Tn(x, y) into a Taylor
series about y = ±1 to render it into a Poincaré expansion (see [12], p. 14). We obtain

T0(x,±1)± εG(x)
∂T0

∂y
(x,±1)+ 1

2ε
2G(x)2 ∂

2T0

∂y2
(x,±1)± · · ·

+ εT1(x,±1)± ε2G(x)
∂T1

∂y
(x,±1)+ 1

2ε
3G(x)2 ∂

2T1

∂y2
(x,±1)± · · ·

+ ε2T2(x,±1)± ε3G(x)
∂T2

∂y
(x,±1)+ 1

2ε
4G(x)2 ∂

2T2

∂y2
(x, 1)± · · · = ±1.

Equating like powers of ε, we find the boundary conditions for n = 0, 1, 2,

T0(x,±1) = ±1, T1(x,±1) = ∓G(x)
∂T0

∂y
(x,±1), (5.154)

T2(x,±1) = −1
2 G(x)2∂

2T0

∂y2
(x,±1)∓ G(x)

∂T1

∂y
(x,±1), · · · . (5.155)

For a particular example, we take G(x) = sin(x) (see Figure (5.8)).

y = 1+ ε sin(x)

y = −1− ε sin(x)

�T (x, y) = 0

T (x, y) = 1

T (x, y) = −1

x

y

Figure 5.8: Sinus strip

Solving the heat conduction equation (5.152) with the boundary conditions (5.154, 5.155)
yields the solution

T (x, y) = y − ε
sinh(y)

sinh(1)
sin(x)+ 1

2ε
2 coth(1)

(
y − sinh(2y)

sinh(2)
cos(2x)

)
+ O(ε3). (5.156)

In Figure 5.9, we present a graph of solution (5.156) for ε = 0.25 which confirms that the
heat flows from the upper boundary to the lower almost linearly.

Below we discuss the derivation of the Stokes equation for highly viscous incompressible
fluids. We investigate this problem in a semi-infinite slowly varying cylinder. The flow is
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Figure 5.9: The graph of solution (5.156) for ε = 0.25.

driven by a given flux. Assuming there is a boundary layer in the entrance, we consider an
outer and an inner expansion. We apply the procedure to solve the slowly varying geometry
discussed in Section 4 to find the outer expansion. For the inner expansion, we expand the
boundary conditions to a Taylor series. This expansion leads to the slightly varying geometry.
Therefore, we apply the approach of Section 5. The resulting iteration yields a series of
Stokes equations. This motivates the development of a theory to solve those equations for
arbitrary geometry, source terms and boundary conditions.

6 The Stokes equation

In this section, we consider highly viscous fluids such as glass at high temperature. The go-
verning equation is the Navier-Stokes equations. After making these equations dimension-
less and using the Reynolds number is small, we arrive at the Stokes equations. In chapter
II, we consider the same problem with different approach in scaling. We obtain a system
of equations known as Reynold’s lubrication-flow equations. In these equations, we have
a multiplication between εRe with the inertia terms, with ε is a dimensionless parameter.
Therefore, in this approach, it is not necessary that the Reynolds number is of O(ε).

The flow of incompressible viscous fluids is described by the Navier-Stokes equations

ρ
(∂v

∂ t
+ v ·∇v

)
= ∇·σ + f̃ , (6.157a)

∇·v = h, (6.157b)
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where v denotes the velocity field, and ρ the density. The vector field f̃ is a given external
force density, the scalar field h is a given volume source distribution, and σ is the fluid stress
tensor given by

σ = −p I + τ , or σi j = −p δi j + τi j , (6.158)

where p is the pressure, I = (δi j ) is the unit tensor, defined by δi j = 1 if i = j , and = 0
otherwise, and τ is the deviatoric or viscous stress tensor. According to ([32], p. 45), for
Newtonian fluid

τi j = η

(
∂vi

∂x j
+ ∂v j

∂xi
− 2

3
δi j

∂vl

∂xl

)
+ ζ δi j

∂vl

∂xl
, (6.159)

where η is the dynamic viscosity and ζ is the second viscosity. In general η and ζ depend on
temperature, and may vary in space and time, but if we assume a uniform temperature, then
η and ζ remain constant. Noting that

∇·(∇v) = �v, ∇· (∇v)T = ∇(∇·v) = ∇h,

∇·σ reduces to −∇p + η�v + η∇h. As a result, (6.157 a,b) adopt the form

ρ
(∂v

∂ t
+ v ·∇v

)
= −∇ p + η�v + f , (6.160a)

∇·v = h. (6.160b)

where we wrote f = f̃ + (1
3η + ζ )∇h. In order to investigate the hierarchy of small and

large terms in (6.160 a,b), we have to make these equations dimensionless. We introduce a
typical length scale D and a typical velocity V , and assume that the pressure gradient and
both external force density and source fields are such that they are essentially balanced by
the viscous forces density and the velocity divergence, respectively. Hence, we scale

v := Vv, p := ηV

D
p, x := Dx, t := D

V
t, f := ηV

D2
f , h := V

D
h. (6.161)

As a result, we obtain the dimensionless form

Re
(∂v

∂ t
+ v ·∇v

)
= −∇ p +�v + f , ∇·v = h,

where Re = ρV D/η is the Reynolds number. If the term multiplied by the Reynolds number
is uniformly small, we can ignore the inertia terms, and obtain the Stokes equations

�v − ∇ p = − f , (6.162a)

∇·v = h. (6.162b)

This is the first part of our modelling hierarchy. Next, we will see how we can utilize the fact
that the geometry actually considered is in some sense close to an other (simpler) geometry.
If the considered geometry is in two dimensions and has two different length scales, for
example the length scale for x is D and the length scale for y is L , with D � L , then we
can produce another small parameter, viz. ε = D

L � 1, apart from the small parameter Re.
If, however, we assume Re � ε � 1, it is only necessary to consider ε.
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6.1 Example

In this example, we consider an incompressible fluid that is highly viscous (Re is small),
such as glass at high temperature. Therefore, we will obtain the Stokes equation (6.162). We
assume neither external force density nor volume source are given. The flow is driven by a
given flux. We consider the Stokes boundary value problem

�v − ∇ p = 0, x ∈ �∗4, (6.163a)

∇·v = 0, x ∈ �∗4, (6.163b)

v(x,±1± H(εx)) = 0, (6.163c)

v(0, y) = (g(y), 0) , (6.163d)

v(0, y) is bounded, as x →∞, (6.163e)

with �∗4 = {(x, y) | x > 0,−1− H(εx) < y < 1+ H(εx)} and ε = D
L � 1 (see Figure

6.10). We prescribe at x = 0, a volume flux Q with Q = O(1).

y = 1+ H(εx)

y = −1− H(εx)

v(0, y) = (g(y), 0)

v = 0

v = 0

�v −∇p = 0

∇·v = 0

y

x

−1

1

Figure 6.10: Semi-infinite strip with slowly varying diameter

Based on the slowly varying geometry approach, we make a rescaling X = εx , and the
Stokes equations (6.163) turn into

ε2 ∂2u

∂X2
+ ∂2u

∂y2
= ε

∂p

∂X
, (6.164a)

ε2 ∂2v

∂X2
+ ∂2v

∂y2
= ∂p

∂y
, (6.164b)

ε
∂u

∂X
+ ∂v

∂y
= 0, (6.164c)

v(x,±1± H(X)) = 0. (6.164d)
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Similar to the Example 4.1.2, we assume there is a boundary layer at x = 0. At first, we
consider the outer expansion.

6.1.1 Outer expansion

Here, we assume that u, v, and p can be expanded into the series

u(X, y; ε) = u0(X, y)+ εu1(X, y)+ · · · (6.165)

v(X, y; ε) = v0(X, y)+ εv1(X, y)+ · · · (6.166)

p(X, y; ε) = 1
ε

p−1(X, y)+ p0(X, y)+ · · · . (6.167)

Here, we assume that p = O(1
ε
), otherwise we would obtain u = v = 0, meaning there is

no motion, which is obviously not what we want. Substituting the series (6.165-6.167) into
(6.164) and equating coefficients of like powers of ε, we obtain

O(1) : ∂v0

∂y
= 0,

∂p−1

∂y
= 0,

∂2u0

∂y2
= ∂p−1

∂X
, (6.168)

O(ε) : ∂v1

∂y
= −∂u0

∂X
,

∂p0

∂y
= ∂2v0

∂y2
,

∂2u1

∂y2
= ∂p0

∂X
, (6.169)

O(ε2) : ∂v2

∂y
= −∂u1

∂X
,

∂p1

∂y
= ∂2v1

∂y2
,

∂2u2

∂y2
= ∂p1

∂X
− ∂2u0

∂X2
, (6.170)

O(εn) : ∂vn

∂y
= −∂un−1

∂X
,
∂pn−1

∂y
= ∂2vn−1

∂y2
+ ∂2vn−3

∂X2
,
∂2un

∂y2
= ∂pn−1

∂X
− ∂2un−2

∂X2
,

(6.171)

n = 3, 4, 5, · · ·
We will investigate the leading order (O(1)). Consider the first equation of (6.168). The
boundary condition v(X,±1± H(X)) = 0 gives

v0(X, y) = 0. (6.172)

Next, since ∂p−1
∂y = 0, we have

p−1(X, y) = p−1(X). (6.173)

Finally, using (6.173) and the boundary conditions, we get

u0(X, y) = 1
2

∂p−1

∂X

(
y2 − (1+ H(X))2

)
. (6.174)

To obtain
∂p−1

∂X
, we use the flux as follows

Q =
1+H(X)∫

−1−H(X)

u(X, y) dy =
1+H(X)∫

−1−H(X)

(u0(X, y)+ εu1(X, y)+ · · · ) dy. (6.175)
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Equating the coefficients of like power of ε yielding

O(1) : Q =
1+H(X)∫

−1−H(X)

u0(X, y) dy, (6.176)

O(εn) :
1+H(X)∫

−1−H(X)

un(X, y) dy = 0, n = 1, 2, 3, · · · . (6.177)

Substitution of u0(X, y) (6.174) into Q (6.176) yields

∂p−1

∂X
(X) = −3

2

Q

(1+ H(X))3
, or p−1(X) =

∫ X

−3
2

Q

(1+ H(s))3
ds. (6.178)

Using (6.178), we obtain u0(X, y) as

u0(X, y) = −3
4 Q

[
y2 − (1+ H(X))2

(1+ H(X))3

]
. (6.179)

Now, we discuss the next order term (O(ε)). Consider the first equation of (6.169)

∂v1

∂y
= −∂u0

∂X
. (6.180)

Using u0(X, y)(6.179) and the boundary conditions v1(X,±1± H(X)) = 0, we obtain

v1(X, y) = 3
4 Q

H ′(X)

1+ H(X)

[
y − y3

(1+ H(X))2

]
. (6.181)

Next, consider the second equation of (6.169). Since v0(X, y) = 0, it follows that
∂p0

∂y
= 0,

or p0(X, y) = p0(X). Finally, solving the last equation of (6.169) and using the boundary
conditions u1(X,±1± H(X)) = 0, we arrive at

u1(X, y) = 1
2

∂p0

∂X

(
y2 − (1+ H(X))2

)
. (6.182)

Substitution of (6.182) into (6.177) yields

∂p0

∂X
= 0, and u1(X, y) = 0. (6.183)

Therefore, p0(X, y) = C , a constant.
So far we obtain the results as follows

u(X, y; ε) = −3
4 Q

[
y2 − (1+ H(X))2

(1+ H(X))3

]
+ O(ε2), (6.184)

v(X, y; ε) = ε 3
4 Q

H ′(X)

1+ H(X)

[
y − y3

(1+ H(X))2

]
+ O(ε2), (6.185)

p(X, y; ε) = 1
ε

∫ X

−3
2

Q

(1+ H(s))3
ds + C + O(ε). (6.186)
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Using the above results, the boundary conditions v(X,±1 ± H(X)) = 0, and (6.177), we
can calculate further un, vn, n = 2, 3, · · · , and pn, n = 1, 2, · · · .

6.1.2 Inner expansion

Now, we consider the inner expansion by introducing the inner variable x = X
ε

into (6.164
a-c) to obtain

∂2u

∂x2
+ ∂2u

∂y2
= ∂p

∂x
, (6.187a)

∂2v

∂x2
+ ∂2v

∂y2
= ∂p

∂y
, (6.187b)

∂u

∂x
+ ∂v

∂y
= 0, (6.187c)

v(x,±1± H(εx)) = 0, (6.187d)

v(0, y) = (g(y), 0), (6.187e)

v is bounded as x →∞. (6.187f)

Next, we expand the boundary conditions y = 1+ H(εx) into a Taylor series as follows

y = 1+ H(εx) = 1+ εx H ′(0)+ O(ε2). (6.188)

Note that the geometry of the boundary conditions in the inner region turns into a slightly
varying geometry. Therefore, we use the procedure explained in Section 5. We assume that
u, v, and p, can be expanded into series :

u(εx, y; ε) = ψ(x, y; ε) = ψ0(x, y)+ εψ1(x, y)+ · · · (6.189)

v(εx, y; ε) = ϕ(x, y; ε) = ϕ0(x, y)+ εϕ1(x, y)+ · · · (6.190)

p(εx, y; ε) = π(x, y; ε) = π0(x, y)+ επ1(x, y)+ · · · . (6.191)

Substituting the above series into (6.187) and using (6.188), we find that for each n =
0, 1, 2, · · · , we have to solve the Stokes equations

∂2ψn

∂x2
+ ∂2ψn

∂y2
= ∂πn

∂x
, (6.192a)

∂2ϕn

∂x2
+ ∂2ϕn

∂y2
= ∂πn

∂y
, (6.192b)

∂ψn

∂x
+ ∂ϕn

∂y
= 0, (6.192c)

with boundary conditions for n = 0, 1, respectively,

ψ0(x,±1) = 0, ψ0(0, y) = g(y), ϕ0(x,±1) = 0, ϕ0(0, y) = 0, (6.193)

ψ1(x,±1) = ∓x H ′(0)∂ψ0

∂y
(x,±1), ψ1(0, y) = 0, (6.194)
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ϕ1(x,±1) = ∓x H ′(0)
∂ϕ0

∂y
(x,±1), ϕ1(0, y) = 0, · · · . (6.195)

Note that the problem to be solved at each order is the Stokes boundary value problem.
Therefore, it is necessary to develop a general theory to solve this problem. This theory,
based on operator theory, will be discussed in Chapter III.



Chapter II

Analytical approximations to the viscous
glass flow problem in the mould–plunger
pressing process, including an
investigation of boundary conditions

Abstract. Industrial glass is produced at temperatures above 600◦C, where glass becomes a
highly viscous incompressible fluid, usually considered as Newtonian. In the production two
phases may be distinguished, namely the pressing phase and the blowing phase. This study
will be concerned with glass flow in the pressing phase, which is called this way because
a blob of fluid glass (called a gob) is pressed in a mould by a plunger, such that the glass
flows between mould and plunger, in order to obtain the preform of a bottle or a jar called a
parison. In the blowing phase (not considered here) the parison is subsequently blown into
the final shape of the product.

By applying the slender geometry of mould and plunger, and assuming cylindrical sym-
metry, a form of Reynolds’ lubrication flow equations is obtained. These equations are solved
by utilizing the incompressibility of the glass, by which the flux at any axial cross section
is determined for prescribed plunger velocity, leading to analytical results in closed form for
velocity field and pressure gradient. The glass level is implicitly defined by the integral over
the varying volume which is to remain constant. The pressure may then be determined by
integration.

Special attention is given to the required boundary conditions. It is known that, depending
on several problem parameters like temperature, pressure, and smoothness of the wall, the
glass flow slips, to some extent, along the wall. Therefore, this study includes a general
formulation of the boundary condition of partial slip in the form of a linear relation between
shear stress and slip velocity, also known as Navier’s slip condition. The coefficient of this
relation, a positive number, may vary in our solution with axial position, but depends on the
problem and is to be obtained from (for example) experiments.

article by S.W. Rienstra and T.D. Chandra, appeared in Journal of Engineering Mathematics 39: 241-259, 2001
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Two special cases, which seem to be relevant in practice, are considered as examples: (i)
no-slip on both plunger and mould; (ii) no-slip on the mould and full slip (zero friction) on
the plunger. The results are compared with fully numerical (FEM) solutions of a Stokes flow
model, and the agreement is good or excellent.

Since in any practical situation it is not the plunger velocity which is prescribed, but
(within practical limits) the force applied by the plunger, the problem of a prescribed plunger
force have also been investigated.

1 Introduction

Glass is a widely used packing material, for example in the form of jars and bottles in the
food industry. The production of glass forms like jars goes more or less along the following
lines [57, pp.612-613]. First, grains and additives, like soda, are heated in a tank. Here
gas burners or electric heaters provide the heat necessary to warm the material up to some
1200◦C. At one end the liquid glass comes out and is led to a pressing or blowing machine.
To obtain a glass form a two-stage process is often used. First (Figure 1.1), a blob of hot
glass called a gob falls into a configuration consisting of a mould and plunger. As soon as
the entire glass drop has fallen into this mould, the plunger starts moving to press the glass.
This process is called the pressing. At the end, the glass drop is reshaped into a preform of a
bottle or a jar called a parison. After a short period of time, for cooling purposes (the mould
is kept at 500◦C), the parison is blown to its final shape in another mould. This process is
called blowing (see Figure 1.2).
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Figure 1.1: Pressing phase
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This section is concerning with glass flow in the pressing phase in manufacturing glass
jars or parisons. A typical feature of the shape of a parison is the fact that wall thickness and
radius vary very slowly (except for the bottom part), see Figure 2.3. Here, this slow variation
will be utilized to obtain an explicit, analytical description of velocity and pressure gradient
of the glass flow.
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Figure 1.2: Blowing phase

2 Governing equations

The motion of glass at temperatures above 600◦C can be described by the Navier-Stokes
equations for incompressible Newtonian fluids [47, p.3], given by

ρ
(∂v

∂ t
+ v ·∇v

)
= ∇·σ , (2.1a)

∇·v = 0, (2.1b)

where v denotes the velocity field, ρ the density, and σ the fluid stress tensor :

σ = −p I + τ , or σi j = −p δi j + τi j , (2.2)

with p the pressure, I = (δi j ) the unit tensor defined by δi j = 1 if i = j , and = 0 otherwise,
and τ is the deviatoric or viscous stress tensor. In Newtonian fluids, a linear relationship is
assumed between τ and the deformation rate of the fluid element, expressed in the rate-of-
strain tensor

.
γ = ∇v + (∇v)T:

τ = η
.
γ or τi j = η

(
∂vi

∂x j
+ ∂v j

∂xi

)
, (2.3)
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where η is the dynamic viscosity. In general, η depends on temperature and may vary in
space and time, but for a uniform temperature as we have here (approximately; see Section
4), η remains constant. Together with ∇·v = 0, ∇·σ reduces to −∇p + η�v. As a result,
(2.1a-2.1b) adopt their common form

ρ
(∂v

∂ t
+ v ·∇v

)
= −∇p + η�v, (2.4a)

∇·v = 0. (2.4b)

In view of the geometry of plunger and mould, we choose cylindrical coordinates (r, θ, z),
while v, w, u will denote the r , θ , z component of the velocity v. We assume the problem
to be axisymmetric, so that both w and all θ -derivatives vanish, and the problem reduces to a
two-dimensional one in the (r, z)-plane; see Figure 2.3.

r

z

Rp

Rm

zp
glass

plunger
mould

Figure 2.3: Sketch of the configuration. Note that Rp = Rp(z − z p) is the surface of the
plunger, Rm = Rm(z) is the surface of the mould, and z p is the position of the top of the
plunger.

3 Slender-geometry approximation

We will concentrate our analysis on the flow in the narrow annular duct between plunger
and mould (z > z p, see Figure 2.3). This region is very slender, and therefore amenable to
asymptotic analysis [26, p.182], while at the same time the flow in the region between mould
bottom and plunger top is practically stagnant, and therefore less important.
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We will make (2.4a-2.4b) dimensionless by a suitable scaling. From the geometry of
plunger and mould, we have 2 relevant length scales, the wall thickness of the parison (D)
and the length of the plunger (L), with D � L . Except near the plunger top, any variation in
z scales on L and any variation in r scales on D. Therefore, we scale z with L and r with D,
while we introduce the small parameter

ε = D

L
. (3.5)

The axial velocity u scales on a typical velocity V , while from the equation of mass conser-
vation it follows that the radial velocity v has to scale on εV . As density ρ and viscosity
η are constant, they are parameters of the problem. Pressure p is to be scaled on ηV L/D2

(rather than ρV 2), because the glass flow is highly viscous, as we will see below. We have
then

z = Lz∗, r = Dr∗, u = V u∗, v = εV v∗, p = ηV L

D2
p∗, t = L

V
t∗.

Now we substitute the above scalings into the Navier-Stokes equations and henceforth ignore
the asterisks ∗, to obtain respectively the dimensionless z, r -components of the Navier-Stokes
equations and the continuity equation, viz.

εRe
(∂u

∂ t
+ u

∂u

∂z
+ v

∂u

∂r

)
= −∂p

∂z
+ ε2∂

2u

∂z2
+ 1

r

∂

∂r

(
r
∂u

∂r

)
, (3.6a)

ε3Re
(∂v
∂ t
+ u

∂v

∂z
+ v

∂v

∂r

)
= −∂p

∂r
+ ε4∂

2v

∂z2
+ ε2 ∂

∂r

(1

r

∂

∂r

(
rv

))
, (3.6b)

∂u

∂z
+ 1

r

∂

∂r

(
rv

) = 0, (3.6c)

where Re = ρV D/η is the Reynolds number.
According to [8, p.7], the velocity of the plunger, which can be used as a characteristic

velocity if the cross section of the annular channel compared to the plunger cross section
is not too small1, is typically V = 10−1 m/s. A typical channel width is D ≈ 10−2m. A
typical length of the plunger is 10−1 m. The dynamic viscosity of glass varies greatly with
temperature, but for a temperature around 800◦C it is in the order of 104 kg/(s m). The density
of glass is 2500 kg/m3 [50, p.4]. Therefore, we obtain typically ε = 10−1, Re = 2·5× 10−4,
εRe = 2·5× 10−5, and ε3Re = 2·5× 10−7, and we can ignore the inertia and radial friction
terms to obtain

∂p

∂z
= 1

r

∂

∂r

(
r
∂u

∂r

)
, (3.7a)

∂p

∂r
= 0, (3.7b)

∂u

∂z
+ 1

r

∂

∂r

(
rv

) = 0. (3.7c)

with an assumed error of O(ε2) because Re � ε. This set of equations may be recognized
as Reynold’s lubrication-flow equations in cylindrical coordinates [18, p.83].

1as follows from an axial mass flux balance; see Section 6.1.
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4 The temperature problem

Although in viscous flow the energy equation is decoupled from the equation of motion
(2.4a) if the flow is incompressible and Newtonian with constant viscosity, the validity of
this assumption is not obvious in the present problem. The viscosity is highly temperature-
dependent, as is seen from the VFT (Vogel, Fulcher, Tamman)-relation [57, p.936]

log10 η = A + B

T − T0
,

where A, B, T0 are constants depending on the glass composition (for example A = −2.4,
B = 4032, and T0 = 170 for Soda-Silica Glasses [5]), while T is in degrees Celsius. In this
case T = 800 yields a viscosity of η = 104 kg/(s m).

The high viscous forces may generate heat by friction, and the walls may supply or absorb
heat by conduction, so that the viscosity varies with the temperature along the flow.

To investigate this possibility we will analyse the energy equation and estimate the order
of magnitude of the various terms. The energy conservation law for viscous and compressible
fluids may be written as [32, p.10]

∂

∂ t

(
ρe

)+∇·(ρve
) = −p∇·v − ∇·q + τ :∇v , (4.8)

where e denotes the internal energy per unit of mass, q the heat flux due to heat conduction,
and τ the viscous stress tensor. Since we are only interested in an estimate of the order of
magnitude, we assume that e # cpT , where cp is the heat capacity at constant pressure and
T is the absolute temperature [58, p.31], and for q we shall use Fourier’s law q = −k∇T
where k is the heat conductivity.

In an incompressible flow with constant cp and k we have

ρcp

(∂T

∂ t
+ v ·∇T

)
= k�T + η(

.
γ :∇v).

We make dimensionless like before :

r = Dr∗, z = Lz∗, v = εV v∗, u = V u∗, T = Tm +�T T ∗, η = ηgη
∗, t = L

V
t∗,

where �T = Tg − Tm and ηg denotes the glass viscosity at the bulk temperature. Note that
in the rest of this section, we shall use a constant viscosity η = ηg. We find (ignoring the
asterisks ∗)

ε
[∂T

∂ t
+ v ·∇T

]
= 1

Pe

[1

r

∂

∂r

(
r
∂T

∂r

)
+ ε2∂

2T

∂z2

]
+ Ec

Re
η
[(∂u

∂r
+ ε2 ∂v

∂z

)2 + 2ε2
(∂v

∂r

2 +
v

r

2 +
∂u

∂z

2)]
, (4.9)

with Reynolds number Re = ρV D/ηg, Eckert number Ec = V 2/cp�T , and Peclet number
Pe = ρV Dcp/k. Note that Pe and Re are related through the Prandtl number as Pe = RePr,
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while PeEc/Re = Br is called the Brinkman number. When we substitute the following
values, typical of glass at 800◦C,

D : typical parison length scale = 10−2 m Tg : glass temperature = 800◦C,

V : typical plunger velocity = 10−1 m/s Tm : mould temperature = 500◦C,

ρ : glass density = 2500 kg/m3 cp : glass heat capacity = 1100 J/kg◦C
ηg : glass dynamic viscosity = 104 kg/(s m) k : glass thermal conductivity= 1.7 W/m◦C
L : typical plunger length scale = 10−1 m

we get the corresponding dimensionless numbers

ε = 10−1,
1

Pe
= 6.2× 10−4,

Ec

Re
= 1.2× 10−4.

Both 1/(εPe) and Ec/(εRe) are very small numbers, so in the bulk of the flow we can ignore
the heat conduction and thermal production terms (the second and third term in (4.9)) against
the convection (first) term. Hence, the energy equation simplifies to

∂T

∂ t
+ v ·∇T = dT

dt
= 0,

indicating that the temperature is preserved following the flow. So if we start with a uniform
temperature field, it will remain uniform everywhere, and it follows that the viscosity also
remains constant.

Note that this is not true in the thin temperature boundary layer along the wall, where
the temperature varies from the value at the wall to the bulk temperature, and the conduction
term is comparable with the convection term. From this balance

v ·∇T ∼ 1

εPe

[∂2T

∂r2
+ 1

r

∂T

∂r

]

it follows that the dimensionless boundary layer thickness is of the order of O((εPe)−1/3)

(no-slip) or O((εPe)−1/2) (with slip). For the values considered this corresponds to a boun-
dary layer thickness of, respectively, ∼ 2× 10−1 and ∼ 0.8× 10−1, i.e. 20% and 8% of the
channel width. These values are of course not very small. However, to make progress we
will for the moment consider them as small enough to be ignored.

A small counter-effect that may occur is the fact that very close to the wall, where the
glass temperature attains the wall temperature, the viscosity increases by several orders of
magnitude. For the present example the dimensionless η(Tm) = 105.8, which leads to
(Ec/εRe)η(Tm) = 760. So with little or no-slip between glass and wall (otherwise

.
γ :∇v is

small) the fluid friction very close to the wall is not negligible and will generate some heat.
This may increase locally the temperature, and slightly counteract the lower wall tempera-
ture. The resulting decrease of viscosity could be called “self-lubrication”.
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5 Boundary conditions

Depending on problem parameters like wall temperature, fluid pressure, surface tension, or
the presence of a lubricant like graphite powder [11],[16],[55],[56], the glass flow slips com-
pletely, partly or not at all along the wall. This means that the tangential component of the
glass velocity v at the wall differs from the wall velocity vw, the difference being called the
slip velocity. Since by assumption the glass flows in the (r, z)-plane and the plunger moves
in z-direction, it is sufficient to consider the tangential component in (r, z)-plane.

Two slip conditions are commonly used. One is based on Coulomb’s friction [16], which
is the assumption of a linear relation between tangential (shear) stress and normal stress
(pressure), usually with a threshold value. The other is Navier’s slip condition [18, p.87],
which assumes a linear relation between the slip velocity and the shear stress. Physically,
little is known as to which condition is essentially more correct. Therefore, we will take
Navier’s slip condition, as this one is mathematically more convenient here, since in our
theory the pressure is only available as an integral, while the velocities are explicitly known.

The shear stress applied to a surface with unit normal vector n, defined pointing outward
from the fluid, in tangential direction t, is given by −(σ ·n)· t = −(τ ·n)· t. The slip
velocity (v − vw)· t will be proportional to this stress in (r, z)-plane

(v − vw)· t = −s(τ ·n)· t , (5.10)

where slip factor s (a positive number) measures the amount of slip. (A better measure is the
dimensionless version of s; see below.) There is no slip if s = 0, while there is no friction if
s = ∞. The inverse, s−1, might be called the friction factor. In general, s may be a function
of position.

More advanced slip modelling, for example a nonlinear relation with s depending on
pressure, is formally included in this way, if we in some way iteratively adapt s and the
corresponding solution. We have not investigated this possibility here, however.

For reference, we note that in cylindrical coordinates σ is given by

σrr = −p + 2η
∂v

∂r
, σθr = σrθ = 0, σθθ = −p + 2η

v

r
,

σzz = −p + 2η
∂u

∂z
, σzr = σr z = η

(∂v
∂z
+ ∂u

∂r

)
, σθz = σzθ = 0.

5.1 Boundary conditions on the plunger

To apply the above conditions to the moving plunger surface, we recall that this is defined as:

r = Rp(z − z p(t)),

where z = z p(t) is the position of the top of the plunger at time t . Subscript “p” denotes the
value at the plunger. Unless indicated otherwise, we will write here Rp = Rp(z − z p).

The outward unit normal np (outward from the fluid at the plunger surface) and the
counter clockwise directed unit tangent t p in the (r, z)-plane are given by

np =
R′pez − er√

1+ R′p2
, t p =

−ez − R′per√
1+ R′p2

. (5.11)
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From the definition of stress (2.2, 2.3) we have

(σ ·np)· t p = η

(1− R′p2)
(∂u

∂r
+ ∂v

∂z

)
− 2R′p

(∂u

∂z
− ∂v

∂r

)
1+ R′p2

. (5.12)

To determine the slip velocity, we note that the plunger is going down with speed dz p
dt = u p.

So the (dimensional) slip velocity at the plunger surface is

(v − u pez)· t p = ((u − u p)ez + ver )· −ez − R′per√
1+ R′p2

= −(u − u p)+ vR′p√
1+ R′p2

. (5.13)

From (5.10, 5.11, 5.13), we obtain the boundary condition on the plunger

(u − u p)+ vR′p√
1+ R′p2

= spη

(1− R′p2)
(∂u

∂r
+ ∂v

∂z

)
− 2R′p

(∂u

∂z
− ∂v

∂r

)
1+ R′p2

, (5.14)

where sp is s at the plunger. The other boundary condition at the plunger is that the wall is
solid, so (v − u pez)·n = 0, or

v = (u − u p)R′p. (5.15)

After introducing the following scaled slip coefficient s∗

s = D

η
s∗ (5.16)

and using the same scaling as before, we obtain the dimensionless form of (5.14) and (5.15)
(with asterisks ignored),

(u − u p)+ ε2vR′p√
1+ ε2 R′p2

= sp

(1− ε2 R′p2)
(∂u

∂r
+ ε2 ∂v

∂z

)
− 2ε2 R′p

(∂u

∂z
− ∂v

∂r

)
1+ ε2 R′p2

, (5.17)

v = (u − u p)R′p. (5.18)

As the wall temperature or the amount of lubricant may vary along the wall, it is practically
important to let s be a function of position. The present solution is perfectly valid for any
varying slip factor, as long as axial symmetry is preserved, and s is a smooth function of
position z

s = s(z). (5.19)

For small ε we obtain (with an error O(ε2)) for the boundary condition (5.17)

u − u p = sp
∂u

∂r
at r = Rp, (5.20)

where sp, if non-constant, is to be interpreted as a property of the moving surface and there-
fore to be read as sp = sp(z − z p). The other boundary condition (5.18) will be left as it
is.
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5.2 Boundary conditions on the mould

The surface of the mould, given by
r = Rm(z),

(subscript “m” denotes the value at the mould) has unit outward normal nm (outward from
the fluid) and counter clockwise directed unit tangent tm given by

nm = −R′m ez + er√
1+ R′m2

, tm = ez + R′m er√
1+ R′m 2

. (5.21)

In a similar way as for the boundary conditions on the plunger we obtain the boundary con-
dition on the mould as

u + vR′m√
1+ R′m2

= −smη

(1− R′m2)
(∂u

∂r
+ ∂v

∂z

)
− 2R′m

(∂u

∂z
− ∂v

∂r

)
1+ R′m 2

, (5.22)

and
v = u R′m . (5.23)

In dimensionless form the relations are,

u + ε2vR′m√
1+ ε2 R′m2

= −sm

(1− ε2 R′m2)
(∂u

∂r
+ ε2∂v

∂z

)
− 2ε2 R′m

(∂u

∂z
− ∂v

∂r

)
1+ ε2 R′m2

, (5.24)

and
v = u R′m , (5.25)

In a similar way as above, boundary condition (5.24) becomes for small ε

u = −sm
∂u

∂r
at r = Rm . (5.26)

The other condition (5.25) will be left as it is.

5.3 The free surface

As the blob of glass does not initially fill the mould completely (see Figure 1.1), there is a
free surface of glass moving into the annular duct between mould and plunger. At the free
boundary, the normal stress must be equal to the external pressure p0, which is assumed to
be constant,

(σ ·n)·n = −p0,

and the tangential stress must be equal to zero,

(σ ·n)· t = 0.
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In our slender-geometry approximation the exact shape of the free surface cannot be deter-
mined. In its neighbourhood, the flow scales both in r and z direction on the thickness D
of the annular channel. In other words, the flow is not slowly varying in z anymore, and the
present approximation is not valid.

Without any loss of generality, we can take p0 zero (that is, we use (p − p0) rather than
p), because only the pressure gradient is relevant. Within the present approximation, and
with use of the dimensionalization as given in Section (3), we can derive from (2.2)-(2.3) and
with (5.21) that, in dimensionless formulation,

(σ ·n)·n = −p + O(ε2).

Therefore, we will deal with the average level b of the free surface, as follows (in scaled
variables)

p = 0 at z = b(t), (5.27)

where b is a function of the time-dependent geometry, implicitly defined in such a way that
the (incompressible) glass volume between z = 0 and z = b(t) is constant for all t .

6 Some auxiliary results

In this section, we derive some expressions (to be used later) for the axial flux and the total
force on the plunger.

6.1 The flux

z

z = 0

z = z p

S1 S1

S2

S3

S4

Figure 6.4: Sketch of the control surfaces to calculate the flux.
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Consider the flux at some level z through cross section S1 (see Figure 6.4). The value
of this flux depends on z, since the plunger goes down and causes the glass to move upward
through a varying cross section. We will use this value later to find the pressure gradient.

Since glass is an incompressible fluid, we have with Gauss’ divergence theorem

0 =
∫
�

∇·v dx =
∫
∂�

v ·n dS =
∫

S1

v ·n dS +
∫

S2

v ·n dS +
∫

S3

v·n dS (6.28)

where v = uez + εver . Since the mould is stationary and impermeable we have∫
S2

v ·n dS = 0,

while the flux through S1 is given by

∫
S1

v ·n dS = 2π
∫ Rm

Rp

ru(r, z) dr .

To calculate
∫

S3
v ·n dS, we note that it would make no difference for the amount of glass

displaced by the plunger if the plunger were filled with glass, because glass is just as incom-
pressible as the solid plunger. Therefore, instead of control surface S3 we can use just as well
surface S4, which yields more easily the result∫

S3

v ·n dS =
∫

S4

v ·n dS = πu p R2
p .

It follows that the flux is given by

2π
∫ Rm

Rp

ru(r, z) dr = −πu p R2
p . (6.29)

6.2 The total force on the plunger

In this section we discuss the total force on the plunger and use the result to find the velocity
of the plunger. We return for a moment to a dimensional formulation. Later, we will turn
back to the dimensionless form.

The force (= stress ×surface) in direction ek , applied to an infinitesimal surface element
dS with outward normal n, is by definition

−(σ ·n)·ek dS = −
∑

j

σk j n j dS.

At the plunger surface with unit normal np, given in (5.11), the stress in the z-direction is

−(σ ·np)·ez =
{(

p − 2η
∂u

∂z

)
R′p + η

(∂v
∂z
+ ∂u

∂r

)} 1√
1+ R′p2

,
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where Rp = Rp(z − z p(t)).
A (circular) surface element is given by

dS = 2π Rp

√
1+ R′p2 dz.

So the total force on the plunger between top level z = z p(t) and glass level z = b(t) is given
by

f = 2π
∫ b

z p

[(
p − 2η

∂u

∂z

)
R′p + η

(∂v
∂z
+ ∂u

∂r

)]
r=Rp

Rp dz. (6.30)

Note that this glass level, as a function of time, is yet to be determined (see next section).
We render (6.30) dimensionless by using the same scaling as before, with b = Lb∗, and

scale the force as
f = 2πηV L f ∗.

This yields (ignoring again the asterisks) :

f =
∫ b

z p

[(
p − 2ε2∂u

∂z

)
R′p + ε2 ∂v

∂z
+ ∂u

∂r

]
r=Rp

Rp dz #
∫ b

z p

[
pR′p +

∂u

∂r

]
r=Rp

Rp dz.

(6.31)

7 Results

7.1 The velocity and pressure field

Now we are ready to solve (3.7a-3.7c) with boundary conditions (5.18, 5.20) and (5.25, 5.26).
At first, we note that p is a function of z only. Then (3.7a)

dp

dz
= ∂2u

∂r2
+ 1

r

∂u

∂r
= 1

r

∂

∂r

(
r
∂u

∂r

)
has solution

u = 1

4
r2 dp

dz
+ A(z) log(r)+ B(z).

Using boundary conditions (5.20) and (5.26), we obtain:

u = 1

4

dp

dz

[
r2 + βm(αp − log r)− βp(αm − log r)

αm − αp

]
+ u p

αm − log r

αm − αp
, (7.32)

where it has been found convenient to introduce auxiliary parameters αp,m , βp,m and γp,m as
follows

σm = sm/Rm, σp = −sp/Rp, α = log R+σ, β = R2(1+2σ), γ = R4(1+4σ), (7.33)

showing at the same time the curious result that the essential slip parameter in a duct is
apparently not s itself, but the product of s and the wall curvature.



62CHAPTER II. ANALYTICAL APPROXIMATIONS TO THE VISCOUS GLASS FLOW PROBLEM IN T

Using the expression for u (7.32), the relation for the flux (6.29), and the following inte-
gral for ru

∫
ru(r, z) dr = 1

8r2 dp

dz

1
2r2 + βm(αp + 1

2 − log r)− βp(αm + 1
2 − log r)

αm − αp

+ . . .

+ 1
2r2u p

αm + 1
2 − log r

αm − αp
, (7.34)

we can determine the pressure gradient to find

dp

dz
= −4u p

βm − βp

(βm − βp)2 − (αm − αp)(γm − γp)
:= −m(z), (7.35)

leading with (5.27) to

p(z) =
∫ b

z
m(ξ) dξ . (7.36)

Note that it is possible to prove that

(βm − βp)
2 − (αm − αp)(γm − γp) ≤ 0,

for all Rp < Rm and sm > 0, sp > 0. Furthermore, βm − βp > 0. So dp
dz has the sign of u p.

Finally we solve (3.7c) with boundary conditions (5.18) or (5.25). We can rewrite (3.7c)
as

∂

∂r
(vr)+ r

∂u

∂z
= 0,

then use (5.25) and Leibnitz rule, to obtain

v(r, z) = 1

r

[
Rmv(Rm, z)+

∫ Rm

r
ρ
∂u

∂z
(ρ, z) dρ

]
= 1

r

d

dz

∫ Rm

r
ρu(ρ, z) dρ. (7.37)

Upon substituting (7.34) into (7.37) and subsequent differentiation we obtain a complicated
expression for v (see appendix). It is verified that boundary condition (5.18) indeed is satis-
fied.

7.2 The force on the plunger

By substituting the above results into (6.31), we obtain to leading order (use Rp = 0 at
z = z p)

f =
∫ b

z p

(
p

dRp

dz
+

[∂u

∂r

]
r=Rp

)
Rp dz =

∫ b

z p

(
−1

2 R2
p

dp

dz
+

[∂u

∂r

]
r=Rp

Rp

)
dz =

= u p

∫ b

z p

γm − γp

(βm − βp)2 − (αm − αp)(γm − γp)
dz. (7.38)
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Since the integrand is negative, the sign of f is opposite to the sign of u p (as it should be).
Although the approximation is strictly speaking not valid anymore at z = z p, the integral
converges, and it seems that the contribution of the plunger tip area is asymptotically of
lower order.

An interesting conserved quantity of the process is the time integral of the plunger force.
(Dimensionally equivalent to a net change of momentum, although inertia plays no rôle in the
present model). It only depends on the end points z1 and z2 and not on the way the plunger
moves in time, because f depends linearly on u p.

∫ t2

t1
f (t) dt =

∫ z2

z1

∫ b

z p

γm − γp

(βm − βp)2 − (αm − αp)(γm − γp)
dz dz p . (7.39)

The quantity is independent of u p, t1, and t2 as long as begin and points, z1 and z2, are
kept the same. It may, for example, be used to verify, or compare, numerical methods. The
property is not unique of the approximation, but a direct consequence of the fact that in the
Stokes equations time is only a parameter, so that velocities may be scaled on u p, and the
plunger force f on ηu pz p.

7.3 A prescribed force or velocity of the plunger

Using the condition that the total volume of the glass is constant, we consider the relation
between time and velocity of the plunger, assuming either the velocity of, or the force on the
plunger to be a prescribed function of t .

During the pressing phase, the plunger goes down as the glass moves up. So the plunger
velocity u p or the total force f , the position of the top of the plunger z p, and the glass level
b vary with time. Therefore we have to find a system of three equations for z p, b, and u p or
f .

First, we observe that the (scaled) volume � of the total amount of glass is for all t equal
to the constant

� = π

∫ b

0
R2

m dz − π

∫ b

z p

R2
p dz = π

∫ b

0
R2

m dz − π

∫ b−z p

0
R2

p(ρ) dρ. (7.40)

So if we could solve this equation explicitly, we would have a functional relation between b
and z p. This, however, is only possible in the simplest cases, for example when both Rp and
Rm are parabola’s. In general it has to be solved numerically at each time step. A natural
approach is therefore to rewrite this equation into a differential equation in time, that can be
solved by standard numerical integration routines.

After differentiating (7.40), using the defining relation between z p and u p, and the rela-
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tion (7.38) between f and u p, we obtain the following system of equations

dz p

dt
= u p, (7.41a)

db

dt
= −u p

R2
p(b − z p)

R2
m(b)− R2

p(b − z p)
, (7.41b)

f = u p

∫ b

z p

G(z, z p) dz, G(z, z p) = γm − γp

(βm − βp)2 − (αm − αp)(γm − γp)
. (7.41c)

which can be integrated numerically with either f (t) or u p(t) given. In the simpler case when
u p is given, (7.41c) only defines f and is decoupled from the others. Note that G(z, z p) ≤ 0.

8 Examples

In this section we present two examples. In the first one we compare the present analytic ex-
pressions for u and εv with numerical results obtained from a numerical model for glass flow,
developed by the TUE Scientific Computing Group of Professor R.M.M. Mattheij. We use
here simple parabolic profiles for the plunger and mould, and the plots are in non-dimensional
quantities.

In the second example we consider the velocity of the plunger, as it results from a given
force. In addition, we use a practically more representative geometry of plunger and mould,
as given in Figure 8.8. The plots are in dimensional quantities.

8.1 A given plunger velocity

Define the geometries and motion of plunger and mould by the following (dimensionless)
expressions

Rp(z − z p) = 0.1
√

5
√

z − z p, Rm(z) = 0.8
√

5
√

z, z p(t) = 1
5(1− t),

where ε = 1
5 and u p = −1, while we will consider z = 1. Two cases are considered: (i)

with no-slip boundary conditions (sp = sm = 0) and (ii) with mixed boundary conditions
(sp = ∞ and sm = 0). The results will be presented in dimensionless form, although for a
proper comparison the velocities will be scaled both on the same (plunger) velocity. In other
words, in the figures the axial velocity u and radial velocity εv are plotted.

In Figure 8.5 we have case (i). Note that the order of magnitude of axial velocity u is
indeed the same as that of the plunger (dimensionless unity), because of the no-slip condition
at both sides. It is seen that there is an exceptionally good agreement between the numerical
(∗) and the analytic solution (solid line).

Next we consider case (ii), with mixed boundary conditions. By taking sp →∞ in (5.20),
we obtain ∂u

∂r = 0. Besides this, we have of course (5.18). On the stationary mould there is
no-slip, so here we have simply the boundary condition u = v = 0. As there is complete slip
at the plunger wall, the velocity of the plunger plays no direct role in the problem. The axial
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Figure 8.5: Axial and radial velocity. Parabolic geometry, no-slip. (Dimensionless.)

velocity is now determined by the effect of the plunger displacement. As a result the order
of magnitude of u is considerably lower than unity. The results of this case are presented in
Figures 8.6. In the axial velocity (Figure 8.6a) the numerical solution (∗) appears to differ a
little from the analytical solution (solid line). This is, however, exactly consistent with the
(conjectured) error of the asymptotic approximation, which is O(ε2) ∼ 4%. Since sp = ∞,
(5.10) becomes at the plunger (σ ·n)· t = 0. This reduces for small ε to the approximate
value ∂u

∂r = 0 + O(ε2). This is different from the no-slip case where the condition u = 0 is
not approximate but exact.

Finally, we present a picture of the total force as a function of time for the case of no-
slip boundary condition (see Figure 8.7). Here, we consider the no-slip case with the initial
condition t = 0, z p(0) = 1, b(0) = 2. As the time evolves, the plunger goes down (z p(t)
decreases) and the upper level of glass (b(t)) increases, so the total wetted surface increases.
Therefore, the total force is increasing. Note that the value of b(t) can be found from (7.40).

This is further illustrated by the following very simple configuration. If we assume both
the plunger and the mould are straight cylinders (Rp and Rm are constants), we can determine
the relation between force f (t) and velocity u p(t) analytically (within the present approxi-
mation). Note that since Rp and Rm are constants, it follows that G(z, z p) in (7.41c) is also
constant. Therefore the force f (t) in (7.41c) becomes

f (t) = u p(t)G(b(t)− z p(t)), (8.42)

where b(t) can be determined from (7.40) as

b(t) = �/π − R2
pz p(t)

R2
m − R2

p
. (8.43)

As a result, we obtain

f (t) = G
u p(t)

R2
m − R2

p

[
�

π
− R2

m z p(t)

]
. (8.44)
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Figure 8.6: Axial and radial velocity. Parabolic geometry, mixed slip. (Dimensionless.)
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Figure 8.7: Total force as a function of time

For example, if u p(t) is constant then z p(t) = z p(0)+ u pt, and f (t) is a linear function in t .
Note that this expression includes the pressure contribution near the plunger top (see (7.38)).
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8.2 A given plunger force

In this example we consider a more realistic situation. We will take a geometry of a real
parison (Figure 8.8), and we will apply a given force from which the plunger velocity results,
using the results of Sections 7.2 and 7.3, all in dimensional units. As in Example 1, we use
2 types of boundary conditions: no-slip (sp = sm = 0) and mixed (sp = ∞ and sm = 0).
The force on the plunger will be taken constant. Figure 8.8b shows the final position of
the plunger in the pressing phase. In order to make the calculation easier, we calculated
backwards in time, starting with this final position at t = 0. Since the Stokes equations do
not include inertial effects, the sign of the time is irrelevant, and the results of a forward and
a backward calculation are exactly the same.

The problem parameters, related to these cases, are the same as given in the table of
Section 4, namely: V = 10 cm/s, D = 1 cm, η = 104 kg/(s m), ε = 0.1, and z = 1. This
suggests that the results are typically correct with an error of the order of 1%. In the case of
Figure 8.9 (without slip) the applied plunger force is f = 7500 N, while in the case of Figure
8.10 (with slip) the force is f = 5000 N.

Evidently, when we go further back in time until the very early splash of the plunger in
the fluid, and assume that the plunger force is still the same, the absence of resistence leads
to unlimited high velocities. This, however, is impossible in practice, as the power (∼ force
× velocity) of the equipment is limited, and the inertia of the plunger is nonzero.
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(a). Plunger is going down
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(b). Plunger in end position

Figure 8.8: Realistic geometry of parison (units: cm)
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Figure 8.9: Given force = 7500 N, and sp = sm = 0 (units: sec and cm/s).
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Figure 8.10: Given force = 5000 N, sp =∞, and sm = 0 (units: sec and cm/s).
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For illustration, we consider again the straight cylindrical case with Rp and Rm constants.
We assume that the force is also constant. Using the definition of z p(t) (7.41a), the relation
between b(t) and z p(t) (8.43), and G(z, z p) is just constant, the total force f turns into

f

G
= �/π

R2
m − R2

p

dz p

dt
− R2

m

R2
m − R2

p
z p(t)

dz p

dt
. (8.45)

Integrate (8.45) with respect to t yields

f

G
t + K = �/π

R2
m − R2

p
z p − 1

2

R2
m

R2
m − R2

p
z2

p, (8.46)

where K = �/π

R2
m−R2

p
z p(0)− 1

2
R2

m
R2

m−R2
p
z2

p(0). Therefore we obtain
(

note that z p(t) ≤ �/π

R2
m

)

z p(t) = �/π

R2
m
−

[(
�/π

R2
m
− z p(0)

)2

− 2
R2

m − R2
p

R2
m

f

G
t

]1/2

, (8.47)

u p(t) = f

G

R2
m − R2

p

R2
m

[(
�/π

R2
m
− z p(0)

)2

− 2
R2

m − R2
p

R2
m

f

G
t

]−1/2

. (8.48)

Since G is negative, u p is negative for positive f , and decays as the time evolves. Note that
at the initial splash of the plunger, i.e. at

t = 1

2

G

f

R2
m

R2
m − R2

p

(
�/π

R2
m
− z p(0)

)2

, (8.49)

the velocity is indeed infinite.

8.3 Numerical method

A detailed description of the numerical method used in Example 1 may be found in [30,
p.209]. In summary, it is described as follows: the glass flow is modelled by the Stokes
equations, i.e. , for vanishing Reynolds number. The (self-adaptive) discretization scheme of
the domain is based on a triangular mesh, where each triangle has twelve degrees of freedom
for the velocity components. On each triangle the pressure is constant and the velocity is
piecewise linear. The Finite Element Method (second order with respect to the size of mesh)
is used to solve the Stokes equations, with an indicated accuracy of at least three digits. The
time evolution of the glass domain � is found by solving the ordinary differential equation

dx(t)
dt

= v(x(t)), t ∈ [tn, tn+1], (8.50a)

x(tn) ∈ �tn . (8.50b)
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9 Conclusions

We described a model for highly viscous incompressible glass flow during the pressing phase
of the production. The model includes a general slip boundary condition. By using a pertur-
bation method based on the slender geometry and low Reynolds number, we obtained explicit
expressions for flow velocity and pressure gradient.

Based on these results, we calculated the total force on the plunger for given plunger
velocity, and the resulting plunger velocity for given the total force. The examples show for
the first case that the total force increases as the the time evolves and for the second case, the
plunger velocity decreases.

Representative examples showed a very good agreement of the flow velocity between
the present solution based on the reduced, slender-geometry model and numerically obtained
FEM based on the full model. solutions. We conclude that the perturbation method based on
the slender geometry is an highly appropriate approach to this problem.

Appendix : v(r, z)

In this appendix, we derive the expression for v(r, z). We already got (7.37)

v = 1

r

d

dz

∫ Rm

r
ρu(ρ, z)dρ. (9.51)

Using (7.34) and (7.35), we obtain

∫ Rm

r
ρu(ρ, z) dρ = u p

4

(
βm − βp

αm − αp

){
(R4

m − r4)(αm − αp) . . .

+ 2(βm − βp)r
2 log

( r
Rp

)− 2(βm R2
m − βpr2) log

( Rm
Rp

)+ βmβp(R2
m − R2

p)(R2
m − r2)

R2
m R2

p

}
× . . .

{
(R4

m − R4
p)(αm − αp)− 2(βm R2

m − βp R2
p) log

( Rm
Rp

)+ βmβp

(
Rm

Rp
− Rp

Rm

)2}−1

. . .

− u p

4

[βm(1− r2

R2
m
)+ 2r2 log

( Rm
r

)
αm − αp

]
. (9.52)

From (7.33), we obtain for the z-derivatives of αm,p and βm,p

α′ = R′

R

(
1− σ

)± s ′

R
, β ′ = 2RR′(1+ σ)± 2Rs ′. (9.53)

By differentiating (9.52) with respect to z and using (9.53), we will obtain the full expression
of v.
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Chapter III

On an operator equation for Stokes
boundary value problems

Abstract. Stokes Boundary Value Problems (SBVP) can be found in many areas of engi-
neering, for example, in fluid mechanics when the Reynolds number is small. This study
investigates a method to solve the SBVP by translating the problem into an operator equation
on the boundary ∂� of the domain � with a tangent vector field α on the boundary ∂� as
unknown. This operator equation leads to the solutions of SBVP that can be parameterized
by αH , the harmonic extension of α to the interior of the domain �. As an application, the
full explicit solutions of SBVP are presented for some simple domains such as the interior of
the unit disk and of the unit ball.

1 Introduction

In recent years, a number of studies have been made to find a method to solve the Stokes
equations {

µ�v − ∇ p = 0,
∇·v = 0.

(1.1a,b)

For example, Padmavathi et al [40] and Sheng and Zhong [46] mention some methods such
as the Naghdi-Hsu, the Papkovich-Neuber, and the Boussinesq-Galerkin approach.

Inspired by these ideas, we develop a general theory of solving the inhomogeneous Stokes
boundary value problems (SBVP)


µ�v − ∇ p = − f , x ∈ �,

∇·v = h, x ∈ �,

v(x) = a(x), x ∈ ∂�.

(1.2a,b,c)

Briefly, we solve the inhomogeneous Dirichlet and Neumann problems which lead to an
operator equation on the boundary ∂� of � with a tangent vector field α on the boundary ∂�

article by T. D. Chandra and J. de. Graaf, accepted to be included into the
Proceedings of 4th European Conference on Elliptic and Parabolic Problems, Rolduc, June 18-22, 2001.

73
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as unknown. We show that the solution of SBVP (1.2 a-c) can be ’parameterized’ by αH , the
harmonic extension of α to the interior of �.

Finally, we give some applications of the method in the case of some simple domains.

2 General Theory

On a fixed open domain � ⊂ R
n with piecewise smooth boundary ∂�, we consider the

system of Stokes equations {
µ�v − ∇ p = − f ,

∇·v = h.
(2.3a,b)

Here f : �→ R
n , h : �→ R are given functions.

Without loss of generality, we put µ = 1 in the sequel. For some given boundary condi-
tion v = a on ∂�, we want to solve v and p from (2.3 a,b). From [40] and [46], we know if
the pair (v, p) is a solution of (2.3 a,b), then we may decompose v and p as{

v = φ + ∇ψ,

p = h − ∇·φ,
(2.4a,b)

with (φ, ψ) any solution of the system{
�φ = − f ,

�ψ + ∇·φ = h.
(2.5a,b)

It will turn out that the boundary condition of the system (2.3 a,b) is related to the boundary
condition of (2.5 a,b) through an operator equation. For later convenience, we now split the
solution (φ, ψ) of (2.5 a,b) into several pieces.

2.1 The Dirichlet problem

Here we consider the Dirichlet problem for the function φ introduced in (2.5 a){
�φ = − f , x ∈ �,

φ = α, x ∈ ∂�,
(2.6a,b)

where α : ∂� → R
n is an arbitrary, but fixed tangent vector field on ∂�. The idea is

to split φ up into a part D f that satisfies the inhomogeneous Laplace equation (2.6 a) but
with vanishing boundary condition, and a part αH that satisfies the homogeneous Laplaces
equation, but with non vanishing boundary condition as follows{

�(D f ) = − f , x ∈ �,

D f = 0, x ∈ ∂�,
(2.7a,b)

and {
�αH = 0, x ∈ �,

αH = α, x ∈ ∂�.
(2.8a,b)

Note that D f and αH can be obtained, at least in principle, by means of Green’s function
[51, pp. 86-87].
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2.2 The Neumann problem

Here we consider the Neumann problem for the function ψ introduced in (2.5 b). Using
(2.5 b) and the same decomposition of φ as introduced in Section 2.1, we find{

�ψ = −∇·φ + h = −∇·αH − ∇·D f + h, x ∈ �,
∂ψ

∂n
= γ, x ∈ ∂�,

(2.9a,b)

where γ : ∂� → R is an arbitrary but fixed function. For this Neumann problem, we
impose the compatibility condition∫

∂�

γ dτ =
∫
�

(−∇·αH − ∇·D f + h) dσ =
∫
�

h dσ = 0. (2.10)

Here we have used D f = 0 on the boundary and∫
�

∇·αH dσ =
∫
∂�

αH ·n dτ =
∫
∂�

α·n dτ = 0, (2.11)

since α is a tangent vector field on ∂�.
It is convenient to read (2.9 a) as the sum of three Neumann problems. Because of that,

we write ψ as the sum of the solutions of these problems in the following way :

ψ = N (∇·αH)+N (∇·D f − h)+ γHN ,

with {
�N (∇·αH) = −∇·αH, x ∈ �,
∂

∂n
N (∇·αH) = 0, x ∈ ∂�,

(2.12a,b)

{
�N (∇·D f − h) = −∇·D f + h, x ∈ �,
∂

∂n
N (∇·D f − h) = 0, x ∈ ∂�,

(2.13a,b)

and {
�γHN = 0, x ∈ �,
∂

∂n
γHN = γ, x ∈ ∂�.

(2.14a,b)

We remark that (2.12), (2.13), and (2.14) have the same structure as (2.7) and (2.8) and are in
principle solvable. So, in the following, we may consider φ and ψ to be known as provided
that the boundary functions α and γ are known.

Note that, because of �αH = 0, one has

�
(−1

2 x ·αH

) = −∇·αH, (2.15)

where, x denotes position. The solution for the inhomogeneous Neumann problem (2.12 a,b)
can thus be written as

N (∇·αH) = −1
2 x ·αH + ψ(α), (2.16)

where ψ(α) is the solution of the homogeneous Neumann boundary value problem


�ψ(α) = 0, x ∈ �,

∂ψ(α)

∂n
= ∂

∂n

(1
2x·αH

)
, x ∈ ∂�.

(2.17a,b)
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2.3 A parameterized class of solutions

We may summarize the findings in above as follows. For any tangent vector field α : ∂�→
R

n and any function γ : ∂�→ R, the pair (v, p) with{
v = αH +D f +∇N (∇·αH)+ ∇N (∇·D f )− ∇N (h)+∇γHN ,

p = h −∇·αH − ∇·D f ,
(2.18a,b)

is a solution of the system (2.3 a,b).
The problem we have to solve now is :

How are α and γ related to the prescribed vector field a on ∂� ?

It will be explained that for α the solution of an operator equation on the boundary has to
be taken. This operator equation involves all the data : a, f , h.

2.4 The operator equation on the boundary ∂�.

In this section, we derive an operator equation which relates α : ∂�→ R
n to the prescribed

data (a, f , h). From (2.4 a), we obtain the requirement

v = a = φ + ∇ψ, on ∂�, (2.19)

or
α + ∇N (∇·αH) = a − ∇γHN − ∇N (∇·D f )+ ∇N (h), on ∂�. (2.20)

If we take on each x ∈ ∂� the inner product of both sides of identity (2.20) with the normal
vector n, and using (2.12 b), (2.13 b), (2.14 b), then we get

γ = a·n. (2.21)

Therefore, we obtain the operator equation for an unknown tangent vector field α on the
boundary

α + ∇N (∇·αH) = a −∇(a ·n)HN − ∇N (∇·D f )+ ∇N (h), on ∂�, (2.22)

where the right-hand side is a tangent vector field on ∂� that can, in principle, be calculated
from a, f , and h. If we can solve α from the operator equation (2.22), then the solution of
the inhomogeneous SBVP 


�v − ∇ p = − f , x ∈ �,

∇·v = h, x ∈ �,

v(x) = a(x), x ∈ ∂�,

(2.23a,b,c)

is given by (2.18 a,b), or equivalently by{
v = αH +D f + ∇ {−1

2x·αH + ψ(α)
}+ ∇N (∇·D f )− ∇N (h)+∇(a ·n)HN ,

p = h − ∇·αH − ∇·D f .
(2.24a,b)

Next, as an application, we present full explicit solutions of homogeneous SBVP for
some simple domains such as the interior of the unit disk and of the unit ball.
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3 Applications

3.1 The interior of the unit disk

Here, we consider the homogeneous SBVP with as domain the interior of the unit disk
D = {(x, y) | x2 + y2 < 1},


�v − ∇ p = 0, x ∈ D,

∇·v = 0, x ∈ D,

v(x) = a(x), x ∈ ∂D = {(x, y) | x2 + y2 = 1}.
(3.25a,b,c)

We assume that the prescribed boundary condition a(x) can be expanded into a Fourier series

a(x) =
∞∑

n=−∞

{
an

(− sin(θ)
cos(θ)

)
einθ +bn

(
cos(θ)
sin(θ)

)
einθ

}
.

The compatibility condition 0 = ∫
�

∇·v dσ = ∫
∂�

a ·n dτ implies b0 = 0.

According to the theory, we have to solve the boundary operator equation (2.22)

α + ∇N (∇·αH) = a − ∇(a ·n)HN , (3.26)

since f = 0, and h = 0. Therefore, at first, we study the action of the operator

α &−→ α + ∇N (∇·αH), (3.27)

on the ’basic’ tangent vector fields :

tn =
(− sin(θ)

cos(θ)

)
einθ , n ∈ Z. (3.28)

We would like to calculate tnH
, the harmonic extension of tn ,{

�tnH
= 0, x ∈ D,

tnH
= tn, x ∈ ∂D.

(3.29a,b)

Using the notations z = x + iy, z̄ = x − iy, and � = 4 ∂
∂z

∂
∂ z̄ we obtain

tnH
=




1

2

(
i

1

)
z(n+1) + 1

2

(
−i

1

)
z(n−1), n ∈ N,

1

2

(
i

1

)
z + 1

2

(
−i

1

)
z̄, n = 0,

1

2

(
i

1

)
z̄(|n|−1) + 1

2

(
−i

1

)
z̄(|n|+1), −n ∈ N,

(3.30)
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that leads to

∇N (∇· tnH
)|r=1 =



−1

2 tn, n ∈ Z/{0},

0, n = 0.

(3.31)

We conclude that the left-hand side of the boundary operator equation (3.26) is a mapping

α &−→ α + ∇N (∇·αH), (3.32)

that maps 


tn &−→ 1
2 tn, n ∈ Z/{0},

t0 &−→ t0, n = 0.

(3.33)

Therefore, given the boundary condition a, we can solve the boundary operator equation

(3.26) for αH . For example, given the ’basic’ boundary condition a =
(

cos(θ)
sin(θ)

)
einθ , n ∈ N ,

we obtain

a − ∇ (a·n)HN = 1

2

(
1
−i

)
zn+1 − 1

2

(
1
i

)
zn−1. (3.34)

Hence, αH = 2(a − ∇ (a ·n)HN ) =
(

1
−i

)
zn+1 −

(
1
i

)
zn−1.

3.1.1 Solution

Since f = 0 and h = 0, we obtain from (2.18 a,b) the solution of the homogeneous SBVP :

v = αH + ∇N (∇·αH)+ ∇(a·n)HN , p = −∇·αH . (3.35)

Below, we present a table of solutions for various ’basic’ boundary conditions.

boundary condition (a) velocity (v) pressure (p)

(− sin(θ)
cos(θ)

)
einθ , n ∈ N 1

2

(
i
1

)
zn+1 + 1

2

(−i
1

)
zn z̄ −2i(n + 1)zn

+n

2

(
i

−1

)
zn−1 (1− zz̄)

(− sin(θ)
cos(θ)

)
e−inθ , n ∈ N 1

2

(−i
1

)
z̄n+1 + 1

2

(
i
1

)
z̄nz 2i(n + 1)z̄n

−n

2

(
i
1

)
z̄n−1 (1− zz̄)

(− sin(θ)
cos(θ)

)
1

2

(
i
1

)
z + 1

2

(−i
1

)
z̄ 0
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boundary condition (a) velocity (v) pressure (p)

(
cos(θ)
sin(θ)

)
einθ , n ∈ N 1

2

(
1
−i

)
zn+1 + 1

2

(
1
i

)
zn−1 −2(n + 1)zn

+
(

n + 1

2

)(
1
i

)
zn−1 (1− zz̄)

(
cos(θ)
sin(θ)

)
e−inθ , n ∈ N 1

2

(
1
i

)
z̄n+1 + 1

2

(
1
−i

)
z̄n−1 −2(n + 1)z̄n

+
(

n + 1

2

)(
1
−i

)
z̄n−1 (1− zz̄)

In view of the linearity of the problem, each solution (v, p) of the homogeneous SBVP
in the interior of the unit disk is a linear superposition of these elementary solutions. Note
that for every fixed |z| < 1, the value of the basic solutions decreases exponentially if |n| →
∞. This implies that any linear superposition of basic solution with coefficients {cn}, not
increasing faster than polynomially, leads to a solution of the homogeneous SBVP on the

open disk D. If, in addition, one assumes that
∞∑

n=1

|ncn | < ∞, then both the velocity v and

the pressure field p extend continuously to the closed disk D.

3.2 The interior of the unit ball

In this section, we consider the homogeneous SBVP with as domain the interior of the unit
ball B = {(x, y, z) | x2 + y2 + z2 < 1} ,


�v − ∇ p = 0, x ∈ B,

∇·v = 0, x ∈ B,

v(x) = a(x), x ∈ ∂B = {(x, y, z) | x2 + y2 + z2 = 1},
(3.36a,b,c)

with a : ∂B → R
3 the prescribed velocity field on the boundary.

3.2.1 Some notations and preliminaries

In this section, we introduce some notations that will be used later. The closure of B is
denoted by B̄ = B ∪ ∂B. For a tangent vector field α, one has for all x ∈ ∂B : α ·x = 0. We
will use bold greek lower case symbols for tangent vector fields. Extensive use will be made
of the usual vector algebra and vector calculus in R3 applying the usual nabla notations :

∇ f = grad f, ∇·v = div v, ∇ × v = rot v. (3.37)

Also the Euler operator E = x ·∇ = x ∂
∂x + y ∂

∂y + z ∂
∂z , and its resolvents (E + s)−1 , s ≥ 0,

given by

(E + s)−1 f (x) =
∫ 1

0
λs−1 f (λx) dλ, (3.38)
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play an important role. For vector fields v the operators Ev and (E + s)−1 v are defined
componentwise. We mention some commutator properties for E and its resolvents. They
follow from straightforward computation :

∇E = ∇ + E∇, �E = 2�+ E�, ∇
(
(E + s)−1 f

)
(x) = (E + s + 1)−1 ∇ f (x).

(3.39)
Next, we discuss some lemmas.

Lemma 3.1. If a continuous vector function φ : B̄ → R
3 satisfies


�φ(x) = 0, x ∈ B,

∇·φ(x) = 0, x ∈ B,

x ·φ = 0, x ∈ ∂B,

then φ can be written as φ = x ×∇ϕ, with �ϕ = 0 and ϕ is unique if we require ϕ(0) = 0.

Proof. First we find a necessary condition on ∇ϕ by taken the curl of both sides of φ =
x ×∇ϕ,

∇ ×φ = ∇ × (x×∇ϕ) = (∇·∇ϕ)x+ (∇ϕ ·∇)x− (∇·x)∇ϕ− (x ·∇)∇ϕ = −(E + 2)∇ϕ.

(3.40)
So, a candidate for ∇ϕ is given by −(E + 2)−1(∇ × φ) which can be rewritten as
−(E + 2)−1(∇ × φ) = −∇ × (

(E + 1)−1φ
)
. We shall show that this field is rotation free :

∇ ×
(
(E + 2)−1(∇ × φ)

)
= ∇ ×

(
∇ × (E + 1)−1φ

)
= ∇

(
∇· ((E + 1)−1φ

))
−�(E + 1)−1φ

= ∇(E + 2)−1(∇·φ)− (E + 3)−1�φ = 0.

So, the vector field −(E + 2)−1(∇ × φ) has a potential ϕ, say, and we may write
−(E + 2)−1(∇ × φ) = ∇ϕ. Further, note that �ϕ = ∇·∇ϕ = −∇·∇ × (E + 1)−1φ = 0.
So, ϕ is harmonic.

Finally, we prove that the vector field u = φ+(
x × (∇ × (E + 1)−1φ

)) = φ−(x×∇ϕ)

is identically zero. Observe that

1. ∇ × u = 0. See above.

2. ∇·u = ∇·φ + (∇ × x)·(∇ × (E + 1)−1φ)− (∇ × (∇ × (E + 1)−1φ)·x) = 0.

3. u = ∇σ , with �σ = 0. Since x ·u = Eσ = 0 on the boundary ∂B and
�Eσ = 2�σ + E�σ = 0, we obtain Eσ = 0 for the whole region B. Expand σ in

spherical harmonics σ =
∞∑

n=0

σn . Then Eσ =
∞∑

n=0

nσn. We conclude that σn = 0 if

n = 1, 2, · · · . Therefore σ must be constant and hence u = 0.

Finally, note that until now ϕ is fixed up to an additive constant. By taking ϕ(0) = 0, this
arbitrariness is removed.
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Lemma 3.2. If a continuous vector function φ : B̄ → R
3 satisfies{

�φ(x) = 0, x ∈ B,

x ·φ = 0, x ∈ ∂B,

then φ can be written as φ = φ0 + φ1, with

φ0 = x ×∇ϕ, (3.41)

φ1 = ∇χ − (Eχ)x + 1
2(|x|2 − 1)∇

[
(E + 1

2)
−1E

]
χ, (3.42)

where both ϕ : B̄ → R and χ : B̄ → R are harmonic. If we require ϕ(0) = χ(0) = 0, then
both ϕ and χ are unique. Moreover, χ satisfies

[−(E + 1)2 + 1
2 + 1

4(E + 1
2)
−1

]
χ = ∇·φ =

∇·φ1.

Proof. First, construct χ from ∇·φ, i.e. χ = [−(E + 1)2 + 1
2 + 1

4(E + 1
2)
−1

]−1∇·φ, and
define φ1 according to (3.42). Put φ0 = φ − φ1. Observe that ∇·φ0 = 0. Next, we obtain
x ·φ1 = (1 − |x|2)E [

I − 1
2(E + 1

2)
−1E

]
χ . Therefore, we get x ·φ0 = 0 on the boundary.

Further, since �φ1 = 0, also �φ0 = 0. Hence, according to Lemma 3.1, we obtain φ0 =
x × ∇ϕ. Finally, note that until now ϕ and χ are fixed up to an additive constant. By taking
ϕ(0) = χ(0) = 0, this arbitrariness is removed.

Lemma 3.3. Let ϑ : B̄ → R be continuous and such that �ϑ(x) = 0, x ∈ B, ϑ(0) = 0. If
the vector function w : B̄ → R

3 satisfies{
�w(x) = 0, x ∈ B,

w(x) = xϑ(x)+ cx, x ∈ ∂B, c ∈ R,

then w can be written as w = ∇E−1ϑ + cx, where c = 1
4π

∫
∂B

w(x)·x dτ.

Proof. Straightforward computation yields �w = �(∇E−1ϑ + cx) = 0. Next, by taking
the inner product w(x)·x on the boundary, one finds

x ·w = x ·∇E−1ϑ + x ·cx = ϑ(x)+ c,

which is equal to x ·w = x ·xϑ + x ·cx = ϑ(x) + c. Finally, if we take the inner product
w(x)·x on the boundary, calculate the integral over the boundary, and use the mean value
theorem for harmonic functions, then we obtain∫

∂B

w·x dτ =
∫
∂B

x ·xϑ(x) dτ +
∫
∂B

cx ·x dτ = 4πϑ(0)+ 4πc,

or

c = 1

4π

∫
∂B

w·x dτ.
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In the preceding lemmas, we gave three different recipes for constructing harmonic vector
fields from harmonic functions. For later convenience we introduce a notation for these
recipes.

Definition 3.4. Let h j [ϕ] : B → R, j = 0, 1, 2, denote the harmonic vector fields defined
by

h0[ϕ] : x &→ x ×∇ϕ(x),

h1[χ ] : x &→ ∇χ − (Eχ)x + 1
2(|x|2 − 1)∇

[
(E + 1

2)
−1E

]
χ,

h2[ϑ] : x &→ ∇E−1ϑ.

Remember that ϕ, χ, and ϑ are supposed to be harmonic. We gather the recipes of this
section in the following theorem.

Theorem 3.5. Consider the continuous vector field a : ∂B → R
3 . Let aH : B̄ → R

3 be
the harmonic extension of a. Then there exist unique harmonic functions ϕ, χ, ϑ : B → R,

with ϕ(0) = χ(0) = ϑ(0) = 0 such that

aH = h0[ϕ] + h1[χ ] + h2[ϑ] + cx,

with c = 1
4π

∫
∂B

(a·x) dτ. Note that if ϑ = 0 and c = 0, then a is a tangent vector field.

Proof. The proof is divided into several steps.

1. Split the vector field a into a tangential and two normal parts as follows : a = at +
an + cn, with c = 1

4π

∫
∂B

(a ·n) dτ, an = (a ·n− c)n and at = a− an − cn. Note that

at is tangential and that an is parallel to n.

2. Define ϑ as the solution of the Dirichlet problem

{
�ϑ(x) = 0, x ∈ B,

ϑ(x) = a·n− c, x ∈ ∂B.

3. Note that for any x ∈ ∂B, the vector field a − ∇E−1ϑ(x)− cx is tangential.

4. The harmonic extension x &→ aH(x) − ∇E−1ϑ(x) − cx satisfies the conditions of
Lemma 3.2. This means it can be uniquely written as h0[ϕ] + h1[χ ] for suitable
harmonic ϕ and χ .

Note : Keep in mind that h0 and h1 also depend on a·n. In our case, ∇·v = 0 (3.36 b)
implies c = 0.
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3.2.2 Solution

In a similar way as in Section 3.1 for the unit disk, we have to solve the boundary operator
equation (2.22)

α + ∇N (∇·αH) = a − ∇(a ·n)HN , (3.43)

and, at first, we study the operator

α &−→ α + ∇N (∇·αH). (3.44)

Based on Theorem 3.5, we know that any tangent vector field on the boundary α can be split
into h0[ϕ] + h1[χ ]. Therefore,

1. if α = h0[ϕ] = x × ∇ϕ, then we get

α + ∇N (∇·αH) = h0[ϕ] = x ×∇ϕ, (3.45)

or on the boundary (|x| = 1),

h0[ϕ] &−→ h0[ϕ]. (3.46)

2. if α = h1[χ ]||x|=1 = ∇χ − xEχ , then we get

α +∇N (∇·αH) = h1[χ ]||x|=1 + h1

[
−χ + 1

2E(E + 1
2)
−1χ

]
||x|=1

= h1

[
1
2E(E + 1

2)
−1χ

]
||x|=1, (3.47)

or on the boundary (|x| = 1),

h1[χ ] &−→ h1

[
1
2E(E + 1

2)
−1χ

]
. (3.48)

Hence, given the boundary condition a, we can solve the boundary operator equation (3.43)
for αH . For example, if a = ϑx, with �ϑ = 0, ϑ(0) = 0, then we have

(a ·n)HN = E−1ϑ, a − ∇(a·n)HN = ϑx − ∇E−1ϑ = h1[−E−1ϑ]||x|=1. (3.49)

Therefore, according to (3.47), αH = h1
[−2(E + 1

2)E
−2ϑ

]
.

Below, we present the solution of the boundary operator equation (3.43) for various boun-
dary conditions a :

boundary condition (a) αH

x × ∇ϕ x ×∇ϕ

∇χ − xEχ h1
[
2(E + 1

2)E
−1χ

]
ϑx h1

[−2(E + 1
2)E

−2ϑ
]
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Next, we make some special choices for the right-hand side a of the boundary operator
equation. These special choices involve harmonic homogen polynomials (Qm) of degree
m on which the Euler Operator E acts as a simple multiplication : E Qm = m Qm . Using
solutions (2.18 a,b),

v = αH + ∇N (∇·αH)+ ∇γHN , p = −∇·αH, (3.50)

we obtain the following table of solutions

boundary condition (a) solutions

x ×∇Qm v = x ×∇Qm,

p = 0.

∇Qm − m Qm x v = ∇Qm − m Qm x + 1
2(m + 3)(|x|2 − 1)∇Qm,

p = (2m + 3)(m + 1)Qm .

Qm x v = Qm x − (m+3
2m

)
(|x|2 − 1)∇Qm,

p = − (2m+3)(m+1)
m Qm .

In view of the linearity of the problem, each solution (v, p) of the homogeneous SBVP
in the unit ball is a linear superposition of the elementary solutions. The remarks similar to
those given directly below the table in Section 3.1.1 apply here as well.

For functional analysis considerations (also for the general case) we refer to [20].



Chapter IV

Further ilustrations of the operator
method

1 Introduction

In chapter III, we presented full explicit solutions of the homogeneous Stokes Boundary
Value Problem (SBVP) with as domain the interior of the unit disk and of the unit ball. Here,
we consider the same problem with as domain the exterior of the unit disk and of the unit
ball, an upper half space, an infinite strip, and an infinite wedge. Also, we give an example
of an inhomogeneous SBVP with as domain the interior of the unit disk. For convenience,
from now on, we change the symbol γHN that is introduced in Chapter III with N (0; a·n).

2 The exterior of the unit disk

In this section, we consider a homogeneous SBVP with as domain the exterior of the unit
disk Dc = { (x, y) | x2 + y2 > 1 },

�v − ∇ p = 0, x ∈ Dc, (2.1a)

∇·v = 0, x ∈ Dc, (2.1b)

v(x) = a(x), x ∈ ∂Dc, (2.1c)

v → 0 and p → 0, as |x| → ∞. (2.1d)

We assume that the prescribed boundary condition a(x) can be expanded into a Fourier Series

a(x) =
∞∑

n=−∞

{
an

(− sin(θ)
cos(θ)

)
einθ +bn

(
cos(θ)
sin(θ)

)
einθ

}
,

with b0 = 0 to satisfy the compatibility condition
∫
�

∇·v dσ = ∫
∂�

a·n dτ = 0.

85
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2.1 The operator equation

According to the general procedure in Chapter III, we have to solve the operator equation on
the boundary

α + ∇N (∇·αH) = a − ∇N (0; a·n). (2.2)

We study this operator equation in the following lemma.

Lemma 2.1. The solution of the operator equation (2.2)

1. for a =
(− sin(θ)

cos(θ)

)
is αH = 1

2

(
i
1

)
1

z̄
+ 1

2

(−i
1

)
1

z
,

2. for a =
(− sin(θ)

cos(θ)

)
einθ , n ∈ N is αH =

(
i
1

)(
1

z̄

)n+1

+
(−i

1

)(
1

z̄

)n−1

,

3. for a =
(

cos(θ)
sin(θ)

)
einθ , n ∈ N is αH =

(−1
i

)(
1

z̄

)n+1

+
(

1
i

)(
1

z̄

)n−1

.

Proof. Similar as in the disk case in Chapter III, we study the action for the operator

α &−→ α + ∇N (∇·αH), (2.3)

on the ’basic’ tangent vector fields :

tn =
(− sin(θ)

cos(θ)

)
einθ , n ∈ N. (2.4)

Using the notations z = x + iy, z̄ = x − iy, and � = 4 ∂
∂z

∂
∂ z̄ , we obtain the harmonic

extension tnH of tn as

tnH
=




1

2

(
i

1

)(
1

z̄

)(n+1)

+ 1

2

(
−i

1

)(
1

z̄

)(n−1)

, n ∈ N,
1

2

(
i

1

)
1

z̄
+ 1

2

(
−i

1

)
1

z̄
, n = 0,

1

2

(
i

1

)(
1

z

)(|n|+1)

+ 1

2

(
−i

1

)(
1

z

)(|n|−1)

, −n ∈ N,

(2.5)

that leads to

∇N (∇· tnH
)|r=1 =

{
−1

2 tn, n ∈ Z/{0},
0, n = 0.

(2.6)

We conclude that the left-hand side of the boundary operator equation (2.2) is a mapping

α &−→ α + ∇N (∇·αH), (2.7)
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that maps {
tn &−→ 1

2 tn, n ∈ Z/{0},
t0 &−→ t0, n = 0.

(2.8)

Therefore, given the boundary condition a and using (2.8) we can determine αH . Lemma
2.1.1 and Lemma 2.1.2 are direct consequence of (2.8), since a ·n = 0. For Lemma 2.1.3, at
first we calculate

a − ∇N (0; a·n) = 1

2

(−1
i

)(
1

z̄

)n+1

+ 1

2

(
1
i

)(
1

z̄

)n−1

. (2.9)

Therefore, αH =
(−1

i

)(
1

z̄

)n+1

+
(

1
i

)(
1

z̄

)n−1

.

2.2 Solution

Based on the Lemma 2.1, we present the solution of the SBVP (2.1) for various boundary
conditions a as follows :

boundary condition (a) solutions

(− sin(θ)
cos(θ)

)
v = 1

2

(
i
1

)
1

z̄
+ 1

2

(−i
1

)
1

z
,

p = 0.

(− sin(θ)
cos(θ)

)
einθ , n ∈ N v = 1

2

(
i
1

)(
1

z̄

)n

z + 1

2

(−i
1

)(
1

z̄

)n−1

+n

2

(
i
1

)(
1

z̄

)n+1

(1− zz̄) ,

p = −2i(n − 1)

(
1

z̄

)n

.

(− sin(θ)
cos(θ)

)
e−inθ , n ∈ N v = 1

2

(−i
1

)(
1

z

)n

z̄ + 1

2

(
i
1

)(
1

z

)n−1

+n

2

(−i
1

)(
1

z

)n+1

(1− zz̄) ,

p = 2i(n − 1)

(
1

z

)n

.
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boundary condition (a) solutions

(
cos(θ)
sin(θ)

)
einθ , n ∈ N v =

(
1
−i

)(
1

z̄

)n+1

+ 1

2

(
1
i

)(
1

z̄

)n−1

−1

2

(
1
−i

)(
1

z̄

)n

z − n

2

(
1
−i

)(
1

z̄

)n+1

(1− zz̄) ,

p = 2(n − 1)

(
1

z̄

)n

.

(
cos(θ)
sin(θ)

)
e−inθ , n ∈ N v =

(
1
i

)(
1

z

)n+1

+ 1

2

(
1
−i

)(
1

z

)n−1

−1

2

(
1
i

)(
1

z

)n

z̄ − n

2

(
1
i

)(
1

z

)n+1

(1− zz̄) ,

p = 2(n − 1)

(
1

z

)n

.

In view of the linearity of the problem, each solution (v, p) of the homogeneous SBVP
on the exterior of the unit disk is a linear superposition of these elementary solutions.

3 The exterior of the unit ball

In this section, we consider a homogeneous SBVP with as domain the exterior of the unit
ball Bc = { (x, y, z) | x2 + y2 + z2 > 1 },

�v − ∇ p = 0, x ∈ Bc, (3.10a)

∇·v = 0, x ∈ Bc, (3.10b)

v(x) = a(x), x ∈ ∂Bc, (3.10c)

v → 0 and p → 0, as |x| → ∞. (3.10d)

Similar as the ball case in Chapter III, we introduce the harmonic functions h j as follows.

Definition 3.1. Let h j [ϕ] : Bc → IR, j = 0, 1, 2, denote the harmonic vector fields defined
by

h0[ϕ] : x &→ x ×∇ϕ(x),

h1[χ ] : x &→ ∇χ − (Eχ)x + 1
2(|x|2 − 1)∇

[
(E + 1

2)
−1E

]
χ,

h2[ϑ] : x &→ ∇E−1ϑ.

Remember that ϕ, χ, and ϑ are supposed to be harmonic and tends to 0 as |x| → ∞.
Also, recall that the boundary condition can be written as aH = h0[ϕ] + h1[χ ] + h2[ϑ].

Next, we study the operator equation on the boundary

α + ∇N (∇·αH) = a − ∇N (0; a·n) (3.11)

in the following lemma.



3. THE EXTERIOR OF THE UNIT BALL 89

3.1 The operator equation

Lemma 3.2. The solution of the operator equation (3.11) on the boundary (|x| = 1)

1. for a = h0[ϕ] = x ×∇ϕ is αH = x × ∇ϕ,

2. for a = ∇χ − (Eχ)x = h1[χ ]∣∣|x|=1
is αH = h1

[
2(E + 1

2)E
−1χ

]
,

3. for a = ϑx is αH = h1
[−2(E + 1

2E−2ϑ
]
.

Proof.

1. Follows from ∇·h0[ϕ] = 0.

2. On ∂Bc, we have x ·h1[χ ] = 0. We calculate N
(
0; 1

2
∂
∂n (x ·αH)

)
for α = h1[χ ]. For

x ∈ ∂Bc, we obtain

1
2

∂

∂n
(x ·αH) = 1

2 {E(x ·h1[χ ])} = 1
2E

{
(|x|2 − 1)(−Eχ + 1

2E2(E + 1
2)
−1χ)

}
= E(−χ + 1

2E(E + 1
2)
−1χ). (3.12)

Therefore, N
(
0; 1

2
∂
∂n (x ·αH)

) = −χ + 1
2E(E + 1

2)
−1χ. Hence, we obtain

N (∇·αH) = −1
2 x ·αH +N

(
0; 1

2

∂

∂n
(x ·αH)

)

= 1
2(1− |x|2)E

(
−χ + 1

2E(E + 1
2)
−1χ

)
− χ + 1

2E(E + 1
2)
−1χ, (3.13)

and on the boundary (|x| = 1)

α + ∇N (∇·αH) = h1[χ ]∣∣|x|=1
− E

(
−χ + 1

2E(E + 1
2)
−1χ

)
x

+ ∇
(
−χ + 1

2E(E + 1
2)
−1χ

)
= h1[χ ]∣∣|x|=1

+ h1

[
−χ + 1

2E(E + 1
2)
−1χ

]∣∣x|=1

= h1

[
1
2E(E + 1

2)
−1χ

]∣∣|x|=1
. (3.14)

Therefore, the solution of the operator equation (3.11) is αH = h1
[
2(E + 1

2)E
−1χ

]
.

3. For a = ϑx we obtain

N (0; a·n) = E−1ϑ, a − ∇N (0; a·n) = ϑx − ∇E−1ϑ = h1

[
−E−1ϑ

]
|x|=1

.

(3.15)
Therefore, according to previous result, αH = h1

[−2(E + 1
2E−2ϑ

]
.
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Similar as the ball case, we make some special choices for the boundary condition a that

involves the harmonic homogeneous function
(

Qm(x)
|x|2m+1

)
of degree −(m + 1) on which the

Euler operator E acts as a simple multiplation. Note that Qm(x)
|x|2m+1 is the Kelvin Transform1 of

Qm(x).
Below, we present some properties of the Euler operator acting on harmonic homoge-

neous function
(

Qm(x)
|x|2m+1

)
of degree −(m + 1).

Lemma 3.3.

1. E
(

Qm(x)
|x|2m+1

)
= −(m + 1)

(
Qm(x)
|x|2m+1

)
.

2. �
(

Qm(x)
|x|2m+1

)
= 0.

3. E∇
(

Qm(x)
|x|2m+1

)
= −(m + 2)∇

(
Qm(x)
|x|2m+1

)
.

Proof. Followed by straightforward calculation.

Using Lemma 3.2 and Lemma 3.3, we obtain the solution of the operator equation (3.11)
for various boundary conditions a as follows :

boundary condition (a) αH

x ×∇
(

Qm(x)
|x|2m+1

)
= h0

[
Qm(x)
|x|2m+1

]
|x|=1

x ×∇
(

Qm(x)
|x|2m+1

)

∇
(

Qm(x)
|x|2m+1

)
+ (m + 1)x

(
Qm(x)
|x|2m+1

)
= h1

[
Qm(x)
|x|2m+1

]∣∣|x|=1
h1

[
2(E + 1

2)E
−1

(
Qm(x)
|x|2m+1

)]

x
(

Qm(x)
|x|2m+1

)
h1

[
−2(E + 1

2)E
−2

(
Qm(x)
|x|2m+1

)]

3.2 Solution

Using the above αH and the solution

v = αH + ∇N (∇·αH)+ ∇N (0; a·n), (3.16)

p = −∇·αH . (3.17)

we obtain the solution of SBVP (3.10) as follows :

1The Kelvin Transform of f (x) is 1
|x| f

(
x
|x|2

)
, x ∈ R3/{0}.
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boundary condition (a) solutions

x × ∇
(

Qm(x)
|x|2m+1

)
v = x ×∇

(
Qm(x)
|x|2m+1

)
,

p = 0.

∇
(

Qm(x)
|x|2m+1

)
+ (m + 1)x

(
Qm(x)
|x|2m+1

)
v = ∇

(
Qm(x)
|x|2m+1

)
+ (m + 1)x

(
Qm(x)
|x|2m+1

)
+ (2−m

2

)
(|x|2 − 1)∇

(
Qm(x)
|x|2m+1

)
,

p = (2m − 1)m
(

Qm(x)
|x|2m+1

)
.

x
(

Qm(x)
|x|2m+1

)
v = x

(
Qm(x)
|x|2m+1

)
+

(
2−m

2(m+1)

)
(|x|2 − 1)∇

(
Qm(x)
|x|2m+1

)
,

p = (2m−1)m
m+1

(
Qm(x)
|x|2m+1

)
.

In view of the linearity of the problem, each solution (v, p) of the homogeneous SBVP
on the exterior of the unit ball is a linear superposition of these elementary solutions.

4 An inhomogeneous SBVP in the unit disk

In this section, we consider an inhomogeneous SBVP with as domain the unit disk
D = { (x, y) | x2 + y2 < 1 } with a singularity point s = (ξ, η) inside the disk,

�v −∇ p = − f , f =
(

0
δ(x)

)
, x ∈ D, (4.18a)

∇·v = δ(x − s), x ∈ D, (4.18b)

v(x) = a(x), x ∈ ∂D. (4.18c)

Since the problem (4.18) is inhomogeneous, it is instructive to solve the problem by split-
ting into 3 subproblems, one is an homogeneous problem and the others still inhomogeneous,
as follows

4.1 Subproblems

The first subproblem is a homogeneous SBVP

�v1 − ∇ p1 = 0, x ∈ D, (4.19a)

∇·v1 = 0, x ∈ D, (4.19b)

v1(x) = a1(x), x ∈ ∂D, (4.19c)

with
∫

D ∇·v1 dσ = ∫
∂D a1 ·n dτ = ∫

∂D v1 ·n dτ = 0. We assume the boundary condition
a1(x) can be expanded into a Fourier series

a1(x) =
∞∑

n=−∞

{
an

(− sin(θ)
cos(θ)

)
einθ +bn

(
cos(θ)
sin(θ)

)
einθ

}
, (4.20)
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with b0 = 0. Note that this subproblem is similar as the disk case in Chapter III. Therefore
we have the same solution as that in the disk case.

The second subproblem is an inhomogeneous and divergence free SBVP.

�v2 − ∇ p2 = − f , x ∈ D, (4.21a)

∇·v2 = 0, x ∈ D, (4.21b)

v2(x) = 0, x ∈ ∂D. (4.21c)

Finally, the third subproblem is

�v3 −∇ p3 = 0, x ∈ D, (4.22a)

∇·v3 = δ(x − s), x ∈ D, (4.22b)

v3(x) = a3(x), x ∈ ∂D, (4.22c)

with
∫
∂D a3 ·n dτ = ∫

∂D v3 ·n dτ = ∫
D ∇·v3 dσ = ∫

D δ(x − s) dσ = 1. Therefore, we
choose a3(x) = 1

2π x. Finally, the solutions of (4.18a-4.18c) are v = v1 + v2 + v3 and
p = p1 + p2 + p3.

Since we have already discussed and got the solutions of the first subproblem, now we
consider the second subproblem (4.21) and the third subproblem (4.22).

4.1.1 Subproblem 2

We will study the operator equation on the boundary (|x| = 1). Since a = 0 and h = 0, the
operator equation on the boundary is

α + ∇N (∇·αH) = −∇N (∇·D f ). (4.23)

The solution of (4.23) is discussed in the following theorem.

Theorem 4.1. The solution of the operator equation (4.23) is

αH = 1

8π

{(
i
1

)
z2 +

(−i
1

)
z̄2 +

(
0
2

)}
. (4.24)

Proof. Consider the right-hand side of the operator equation (4.23). First, we determine D f
by solving the Dirichlet problem

�D f = − f = −
(

0
δ(x)

)
, x ∈ D, (4.25a)

D f = 0, x ∈ ∂D. (4.25b)

Since �
( 1

2π ln |x|) = δ(x), the solution of (4.25) is D f =
(

0
− 1

2π ln |x|
)
.

Next we determine N (∇·D f ) by solving the Neumann problem

�N (∇·D f ) = −∇·D f = 1
2π

y

|x|2 , x ∈ D, (4.26a)

∂

∂n
N (∇·D f ) = 0, x ∈ ∂D. (4.26b)
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We split the Neumann problem (4.26) into 2 parts. One which solve the Poisson equation
(4.26a) without considering the boundary condition (4.26b) and the other solve the Laplace
equation with an inhomogeneous boundary condition in order to satisfy the boundary condi-
tion (4.26b). This splitting can be written as N (∇·D f ) = N0(x)+N1(x), where N0(x) is
the solution of

�N0(x) = −∇·D f = 1
2π

y

|x|2 , (4.27)

and N1(x) is the solution of

�N1(x) = 0, x ∈ D, (4.28a)
∂N1

∂n
= −∂N0

∂n
, x ∈ ∂D. (4.28b)

First consider (4.27). Note that the solution of

∂2ψ

∂r2
+ 1

r

∂ψ

∂r
= 1

2π ln(r), (4.29)

is
ψ(r) = 1

8π r2 ln(r)− 1
8π r2, (4.30)

or
ψ(|x|) = 1

8π |x|2 ln |x| − 1
8π |x|2. (4.31)

Therefore we obtain

N0(x) = ∂ψ(x)
∂y

= 1
4π y ln |x| − 1

8π y. (4.32)

Next, consider (4.28). Using (4.32), the boundary condition (4.28b) turns into

∂N1

∂n
= −∂N0

∂n
= −EN0 = − 1

8π y. (4.33)

Therefore the solution of (4.28) is N1(x) = − 1
8π y. Finally the solution of the Neumann

problem (4.26) is

N (∇·D f ) = N0(x)+N1(x) = 1
4π y ln |x| − 1

4π y. (4.34)

Taking the gradient of (4.34) yields

∇N (∇·D f ) = 1

4π
ln |x|

(
0
1

)
+ 1

4π

x

|x|2
(

y
−x

)
, (4.35)

and on the boundary (|x| = 1) we have

∇N (∇·D f ) = 1

4π
x

(
y
−x

)
= − 1

8π

(− sin(θ)
cos(θ)

)
eiθ − 1

8π

(− sin(θ)
cos(θ)

)
e−iθ . (4.36)

Recall that the solution of the operator equation (4.23) has already been discussed in the disk
case. The left-hand side of the operator equation (4.23) is a mapping

α &−→ α + ∇N (∇·αH) = 1
2α. (4.37)
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Therefore, using the notations z = x + iy and z̄ = x − iy, the solution of the operator
equation (4.23) is

αH = 1

8π

{(
i
1

)
z2 +

(−i
1

)
z̄2 +

(
0
2

)}
. (4.38)

Using the above result, we obtain the solutions of the second subproblem (4.21a-4.21c)
as

v2 = αH + ∇N (∇·αH)+D f + ∇N (∇·D f )

= 1

8π
(1− zz̄)

(
0
−1

)
+ 1

16π

(
i
1

)
z2 + 1

16π

(−i
1

)
z̄2 + 1

8π

(
0
1

)
zz̄

− 1

2π
ln |x|

(
0
1

)
+ 1

4π

x

|x|2
(

y
−x

)
+ 1

4π
ln |x|

(
0
1

)
, (4.39)

p2 = −∇·αH − ∇·D f = − i

2π
z + i

2π
z̄ + 1

2π

y

|x|2 . (4.40)

Now we consider the third subproblem.

4.1.2 Subproblem 3

We would like to solve

�v3(x)− ∇ p3(x) = 0, x ∈ D, (4.41a)

∇·v3(x) = δ(x − s), x ∈ D, (4.41b)

v3(x) = 1
2π x, x ∈ ∂D. (4.41c)

We split the problem (4.41) into 2 parts. One which solve only (4.41a)-(4.41b) without
considering the boundary condition (4.41c), and the other solve the homogeneous SBVP with
an inhomogenous boundary condition in order to satisfy the boundary condition (4.41c). This
splitting can be written as v3 = v30 + v31 and p3 = p30 + p31, where v30, p30, v31, and p31

are, respectively, the solutions of

�v30 − ∇ p30 = 0, x ∈ D, (4.42a)

∇·v30 = δ(x − s), x ∈ D, (4.42b)

and

�v31 − ∇ p31 = 0, x ∈ D, (4.43a)

∇·v31 = 0, x ∈ D, (4.43b)

v31(x) = 1
2π x − 1

2π
x−s
|x−s|2 , x ∈ ∂D, (4.43c)

with
∫
∂D v31 ·n dσ = 0.
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First, consider (4.42). Since � 1
2π ln |x − s| = δ(x − s), we obtain

v30 = ∇
( 1

2π ln |x − s|) = 1
2π

x−s
|x−s|2 , (4.44)

p30 = δ(x − s). (4.45)

Next, consider (4.43). Similar as the disk case, we expand the boundary condition (4.43c)
into Fourier series as follows

1

2π

x − s
|x − s|2 =

1

2π

1− x ·s
|x − s|2 x + 1

2π

(x ·s)x − s
|x − s|2

= 1

2π

(
cos(θ)
sin(θ)

)
+ 1

4π

(
cos(θ)
sin(θ)

){ ∞∑
n=1

(ξ − iη)n einθ +
∞∑

n=1

(ξ + iη)n e−inθ

}

+ i

4π

(− sin(θ)
cos(θ)

){ ∞∑
n=1

−(ξ − iη)n einθ +
∞∑

n=1

(ξ + iη)n e−inθ

}

= 1

2π

(
cos(θ)
sin(θ)

)
+ 1

4π

(ξ − iη) ei2θ

1− (ξ − iη) eiθ

(
1
−i

)
+ 1

4π

(ξ + iη) e−i2θ

1− (ξ + iη) e−iθ

(
1
i

)
.

Therefore, the boundary condition (4.43c) turns into

v31(x) = b(x) = 1

2π
x − 1

2π

x − s
|x − s|2

= − 1

4π

(ξ − iη) ei2θ

1− (ξ − iη) eiθ

(
1
−i

)
− 1

4π

(ξ + iη) e−i2θ

1− (ξ + iη) e−iθ

(
1
i

)
. (4.46)

According to the general procedure, we study the operator equation on the boundary (|x| =
1)

α + ∇N (∇·αH) = b− ∇N (0; b·n). (4.47)

Consider the right-hand side of (4.47). We determine N (0; b·n) by solving the Neumann
problem

�N (0; b·n) = 0, x ∈ D, (4.48)
∂

∂n
N (0; b·n) = b·n,x ∈ ∂D. (4.49)

Using the notations z = x + iy, z̄ = x − iy, w = ξ + iη, and w̄ = ξ − iη, the solution of
(4.48) is

N (0; b·n) = 1

4π
ln(1− w̄z)+ 1

4π
ln(1−wz̄). (4.50)

Taking the gradient of (4.50), we obtain the right-hand side of (4.47) as

b− ∇N (0; b·n) = − 1

4π

w̄ ei2θ

1− w̄ eiθ

(
1
−i

)
+ 1

4π

w

1− w e−iθ

(
1
−i

)

− 1

4π

w e−i2θ

1− w e−iθ

(
1
i

)
+ 1

4π

w̄

1− w̄ eiθ

(
1
i

)
. (4.51)
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Using a similar way as in the disk case, we obtain the solution of (4.47) as

αH = − 1

2π

w̄z2

1− w̄z

(
1
−i

)
+ 1

2π

w

1− wz̄

(
1
−i

)
+ 1

2π

w̄

1− w̄z

(
1
i

)
− 1

2π

wz̄2

1− wz̄

(
1
i

)
.

(4.52)
This leads to

∇N (∇·αH) = 1

4π

w̄(|z|2 − 1)

(1− w̄z)2

(
1
i

)
+ 1

4π

w̄(|z|2 − 2)

1− w̄z

(
1
i

)
+ 1

4π

wz̄2

1− wz̄

(
1
i

)

+ 1

4π

w(|z|2 − 1)

(1− wz̄)2

(
1
−i

)
+ 1

4π

w(|z|2 − 2)

1− wz̄

(
1
−i

)
+ 1

4π

w̄z2

1− w̄z

(
1
−i

)
.

(4.53)

Finally, the full solutions of (4.43a-4.43c) are

v31 = 1

4π

w̄(|z|2 − 1)

(1− w̄z)2

(
1
i

)
+ 1

4π

w̄(|z|2 − 1)

1− w̄z

(
1
i

)
− 1

4π

wz̄2

1− wz̄

(
1
i

)

+ 1

4π

w(|z|2 − 1)

(1− wz̄)2

(
1
−i

)
+ 1

4π

w(|z|2 − 1)

1− wz̄

(
1
−i

)
− 1

4π

w̄z2

1− w̄z

(
1
−i

)
, (4.54)

p31 = 1

π

w̄z(2− w̄z)

(1− w̄z)2
+ 1

π

wz̄(2− wz̄)

(1−wz̄)2
. (4.55)

Therefore the solutions of subproblem 3 (4.41) are

v3 = v30 + v31 = 1
2π

x − s
|x − s|2 + v31, (4.56)

p3 = p30 + p31 = δ(x − s)+ p31, (4.57)

with v31 and p31 as in (4.54) and (4.55).

4.2 Solution

In this section, we present the solution of the SBVP (4.18) for various boundary conditions
a as follows :
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boundary condition (a) solutions

(− sin(θ)
cos(θ)

)
einθ + 1

2π x, n ∈ N v = 1

2

(
i
1

)
zn+1 + 1

2

(−i
1

)
zn z̄

−n

2

(−i
1

)
zn−1(1− zz̄)+ v2 + v3,

p = −2i(n + 1)zn + p2 + p3.

(− sin(θ)
cos(θ)

)
e−inθ + 1

2π x, n ∈ N v = 1

2

(−i
1

)
z̄n+1 + 1

2

(
i
1

)
z̄nz

−n

2

(
i
1

)
z̄n−1(1− zz̄)+ v2 + v3,

p = 2i(n + 1)z̄n + p2 + p3.

(− sin(θ)
cos(θ)

)
+ 1

2π x v = 1

2

(
i
1

)
z + 1

2

(−i
1

)
z̄ + v2 + v3,

p = p2 + p3.

(
cos(θ)
sin(θ)

)
einθ + 1

2π x, n ∈ N v = 1

2

(
1
−i

)
zn+1 + 1

2

(
1
i

)
zn−1

+
(

n + 1

2

)(
1
i

)
zn−1(1− zz̄)+ v2 + v3,

p = −2(n + 1)zn + p2 + p3.

(
cos(θ)
sin(θ)

)
e−inθ + 1

2π x, n ∈ N v = 1

2

(
1
i

)
z̄n+1 + 1

2

(
1
−i

)
z̄n−1

+
(

n + 1

2

)(
1
−i

)
z̄n−1(1− zz̄)+ v2 + v3,

p = −2(n + 1)z̄n + p2 + p3.

1
2π x v = v2 + v3,

p = p2 + p3.

In view of the linearity of the problem, each solution (v, p) of the inhomogeneous SBVP
on the interior of the unit disk is a linear superposition of these elementary solutions.
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5 A Half-space

In this section, we consider a homogeneous SBVP with as domain the half-space
H = { (x, y, z) ∈ R3 | z > 0 },

�v − ∇ p = 0, x ∈ H, v = (u, v, w), (5.58a)

∇·v = 0, x ∈ H, (5.58b)

v(x, y, 0) = a(x, y) = (a1(x, y), a2(x, y), a3(x, y)), (5.58c)

v → 0 and p → 0, as z →∞ and |x |, |y| → ∞. (5.58d)

Note that we require

∞∫
−∞

∞∫
−∞

a3(x, y) dxdy = 0 to satisfy the compatibility condition

∫
�

∇·v dσ = ∫
∂�

a·n dτ = 0.

N. Tanaka in (see [38]) solved the SBVP (5.58) by applying the two-dimensional Fourier
transform 2 directly into (5.58) to obtain a system of ordinary differential equations. Consi-
dering the boundary conditions, his results are the same as the solutions (5.73-5.76).

5.1 The operator equation

Similar as the previous sections, we study the operator equation on the boundary z = 0

α +∇N (∇·αH) = a − ∇N (0; a·n). (5.59)

Applying the two-dimensional Fourier transform, we can determine the solution of (5.59).

Theorem 5.1. The solution of the operator equation (5.59) is

αH = 1

2π

∞∫
−∞

∞∫
−∞

α̂(ξ, η) ei(xξ+yη) e−|ξ ′|z dξdη


1

0
0




+ 1

2π

∞∫
−∞

∞∫
−∞

β̂(ξ, η) ei(xξ+yη) e−|ξ ′|z dξdη


0

1
0


 , (5.60)

with |ξ ′| = √
ξ2 + η2, and

α̂(ξ, η) = â1(η
2 + 2ξ2)+ â2ξη

|ξ ′|2 + 2i â3ξ

|ξ ′| , (5.61)

β̂(ξ, η) = â2(2η2 + ξ2)+ â1ξη

|ξ ′|2 + 2i â3η

|ξ ′| . (5.62)

2 f̂ (ξ, η) = 1
2π

∞∫
−∞

∞∫
−∞

f (x, y) e−i(xξ+yη) dxdy, f (x, y) = 1
2π

∞∫
−∞

∞∫
−∞

f̂ (ξ, η) ei(xξ+yη) dξdη.
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Note that αH(x, y, 0) = α(x, y)


1

0
0


+β(x, y)


0

1
0


 is a tangent vector fields on the boun-

dary z = 0.

Proof. At first, we consider the left-hand side of (5.59). We have to determine αH the har-
monic extension of α, by solving the following Dirichlet problem

�αH = 0, x ∈ H, (5.63a)

αH = α = α(x, y)


1

0
0


+ β(x, y)


0

1
0


 , x ∈ ∂H, (5.63b)

αH → 0 as z →∞ and |x |, |y| → ∞. (5.63c)

Using the two-dimensional Fourier transform with respect to (x, y)((x, y) → (ξ, η)), the
solution of (5.63) is

αH = 1

2π

∞∫
−∞

∞∫
−∞

α̂(ξ, η) ei(xξ+yη) e−|ξ ′|z dξdη


1

0
0




+ 1

2π

∞∫
−∞

∞∫
−∞

β̂(ξ, η) ei(xξ+yη) e−|ξ ′|z dξdη


0

1
0


 . (5.64)

Next, we determine N (∇·αH) = −1
2 x ·αH +N

(
0; 1

2
∂
∂n (x ·αH)

)
. Using (5.64), we obtain

1

2
x ·αH = i

2

1

2π

∞∫
−∞

∞∫
−∞

[
∂α̂

∂ξ
− α̂(ξ, η)

ξ z

|ξ ′|
]

ei(xξ+yη) e−|ξ ′|z dξdη

+ i

2

1

2π

∞∫
−∞

∞∫
−∞

[
∂β̂

∂η
− β̂(ξ, η)

ηz

|ξ ′|

]
ei(xξ+yη) e−|ξ ′|z dξdη. (5.65)

Now, we determine N
(
0; 1

2
∂
∂n (x ·αH)

)
by solving the Neumann problem

�N

(
0; 1

2

∂

∂n
(x ·αH)

)
= 0, x ∈ H, (5.66a)

∂

∂n
N

(
0; 1

2

∂

∂n
(x ·αH)

)
= −1

2

∂

∂z
(x ·αH), x ∈ ∂H. (5.66b)

In a similar way as the Dirichlet problem (5.63), we obtain the solution of (5.66) as

N

(
0; 1

2

∂

∂n
(x ·αH)

)
= i

2

1

2π

∞∫
−∞

∞∫
−∞

[
∂α̂

∂ξ
+ α̂(ξ, η)

ξ

|ξ ′|2
]

ei(xξ+yη) e−|ξ ′|z dξdη

+ i

2

1

2π

∞∫
−∞

∞∫
−∞

[
∂β̂

∂η
+ β̂(ξ, η)

η

|ξ ′|2
]

ei(xξ+yη) e−|ξ ′|z dξdη. (5.67)
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Therefore,

N (∇·αH) = −1
2 x ·αH +N

(
0; 1

2

∂

∂n
(x ·αH)

)

= i

2

1

2π

∞∫
−∞

∞∫
−∞

α̂(ξ, η)

[
ξ z

|ξ ′| +
ξ

|ξ ′|2
]

ei(xξ+yη) e−|ξ ′|z dξdη

+ i

2

1

2π

∞∫
−∞

∞∫
−∞

β̂(ξ, η)

[
ηz

|ξ ′| +
η

|ξ ′|2
]

ei(xξ+yη) e−|ξ ′|z dξdη. (5.68)

Finally, taking the gradient of (5.68) and adding α yields the left-hand side of the operator
equation (5.59) at z = 0



1

2

1

2π

∞∫
−∞

∞∫
−∞

[
α̂(ξ, η)

ξ2 + 2η2

|ξ ′|2 − β̂(ξ, η)
ηξ

|ξ ′|2
]

ei(xξ+yη) dξdη

1

2

1

2π

∞∫
−∞

∞∫
−∞

[
−α̂(ξ, η)

ξη

|ξ ′|2 + β̂(ξ, η)
2ξ2 + η2

|ξ ′|2
]

ei(xξ+yη) dξdη

0




. (5.69)

Now, we consider the right-hand side of the operator equation (5.59). At first, we deter-
mine N (0; a·n) by solving the Neumann problem

�N (0; a·n) = 0, x ∈ H, (5.70a)
∂

∂n
N (0; a·n) = a·n = −a3(x, y), x ∈ ∂H. (5.70b)

Applying the two-dimensional Fourier transform, the solution of (5.70) is

N (0; a·n) = 1

2π

∞∫
−∞

∞∫
−∞

â3(ξ, η)

|ξ ′| ei(xξ+yη) e−|ξ ′|z dξdη. (5.71)

Next, taking the gradient of (5.71) and using a yields the right-hand side of the operator
equation (5.59) at z = 0



1

2π

∞∫
−∞

∞∫
−∞

[
â1 + i â3

ξ

|ξ ′|
]

ei(xξ+yη) dξdη

1

2π

∞∫
−∞

∞∫
−∞

[
â2 + i â3

η

|ξ ′|
]

ei(xξ+yη) dξdη

0




. (5.72)
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Now we are ready to solve the operator equation (5.59). Solving the system of equations
(5.69) and (5.72) yields α̂(ξ, η) and β̂(ξ, η) as in (5.61) and (5.62).

5.2 Solution

Substituting α̂(ξ, η) (5.61) and β̂(ξ, η) (5.62) into αH , N (∇·αH), and N (0; a·n) and using

v = αH + ∇N (∇·αH)+ ∇N (0; a·n), p = −∇·αH,

we obtain the solutions of (5.58) as

u = 1

2π

∞∫
−∞

∞∫
−∞

[
â1 − (â1ξ + â2η)

zξ

|ξ ′| − i zâ3ξ

]
ei(xξ+yη) e−|ξ ′|z dξdη, (5.73)

v = 1

2π

∞∫
−∞

∞∫
−∞

[
â2 − (â1ξ + â2η)

zη

|ξ ′| − i zâ3η

]
ei(xξ+yη) e−|ξ ′|z dξdη, (5.74)

w = 1

2π

∞∫
−∞

∞∫
−∞

[
â3 −

(
i â1ξ + i â2η− â3|ξ ′|

)
z
]

ei(xξ+yη) e−|ξ ′|z dξdη, (5.75)

p = 1

π

∞∫
−∞

∞∫
−∞

[−i â1ξ − i â2η + â3|ξ ′|
]

ei(xξ+yη) e−|ξ ′|z dξdη. (5.76)

6 An infinite strip

In this section, we consider a homogeneous SBVP with as domain the infinite strip
I = {(x, y)| −∞ < x <∞,−1 < y < 1},

�v − ∇ p = 0, x ∈ I, v = (u, v), (6.77a)

∇·v = 0, x ∈ I, (6.77b)

v(x,−1) = a(x) =
(

a1(x)
a2(x)

)
, (6.77c)

v(x, 1) = b(x) =
(

b1(x)
b2(x)

)
, (6.77d)

v → 0 and p → 0 as |x| → ∞. (6.77e)

Note that we require
∞∫
−∞

(b2(x) − a2(x)) dx = 0 to satisfy the compatibility condition∫
�

∇·v dσ = ∫
∂�

a·n dτ = 0.
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6.1 The operator equation

As in the previous sections, we study the operator equations on the boundaries y = 1 and
y = −1. Since there are two boundaries, we write the operator equation as

α + ∇N (∇·αH) = c− ∇N (0; c·n), (6.78)

with

c(x) =
{

a(x), y = −1,

b(x), y = 1.
(6.79)

We investigate the solution of (6.78) in the following theorem.

Theorem 6.1. The solution of the operator equations (6.78) is

αH(x) = 1√
2π

∞∫
−∞

(
sinh((1− y)ξ)

sinh(2ξ)
α̂(ξ)+ sinh((1+ y)ξ)

sinh(2ξ)
β̂(ξ)

)
eiξ x dξ

(
1
0

)
, (6.80)

with

α̂(ξ) =
(

2 sinh2(2ξ)

sinh2(2ξ)− 4ξ2

)
â1(ξ)+ i

(
sinh(4ξ)+ 4ξ

sinh2(2ξ)− 4ξ2

)
â2(ξ)+

(
4ξ sinh(2ξ)

sinh2(2ξ)− 4ξ2

)
b̂1(ξ)

− 2i

(
2ξ cosh(2ξ)+ sinh(2ξ)

sinh2(2ξ)− 4ξ2

)
b̂2(ξ), (6.81)

and

β̂(ξ) =
(

2 sinh2(2ξ)

sinh2(2ξ)− 4ξ2

)
b̂1(ξ)− i

(
sinh(4ξ)+ 4ξ

sinh2(2ξ)− 4ξ2

)
b̂2(ξ)+

(
4ξ sinh(2ξ)

sinh2(2ξ)− 4ξ2

)
â1(ξ)

+ 2i

(
2ξ cosh(2ξ)+ sinh(2ξ)

sinh2(2ξ)− 4ξ2

)
â2(ξ). (6.82)

Note that αH(x, 1) = β(x)

(
1
0

)
and αH(x,−1) = α(x)

(
1
0

)
are tangent vector fields at

y = 1 and y = −1, respectively.

Proof. At first, we consider the left-hand side of (6.78). We have to determine αH the har-
monic extension of α, by solving the Dirichlet problem

�αH(x, y) = 0, x ∈ I, (6.83a)

αH(x, 1) = β(x)

(
1
0

)
, (6.83b)

αH(x,−1) = α(x)

(
1
0

)
, (6.83c)

αH → 0, as |x | → ∞. (6.83d)
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Using the Fourier transform with respect to x(x → ξ), the solution of (6.83) is

αH(x) = 1√
2π

∞∫
−∞

(
sinh((1− y)ξ)

sinh(2ξ)
α̂(ξ)+ sinh((1+ y)ξ)

sinh(2ξ)
β̂(ξ)

)
eiξ x dξ

(
1
0

)
. (6.84)

Next, we determine N (∇·αH) = −1
2 x ·αH +N (0; 1

2
∂
∂n (x ·αH)). Using (6.84), we obtain

1
2 x ·αH = i

2

1√
2π

∞∫
−∞

d

dξ

(
α̂(ξ)

sinh(2ξ)

)
sinh(ξ(1− y)) eiξ x dξ

+ i

2

(1− y)√
2π

∞∫
−∞

α̂(ξ)
cosh(ξ(1− y))

sinh(2ξ)
eiξ x dξ

+ i

2

1√
2π

∞∫
−∞

d

dξ

(
β̂(ξ)

sinh(2ξ)

)
sinh(ξ(1+ y)) eiξ x dξ

+ i

2

(1+ y)√
2π

∞∫
−∞

β̂(ξ)
cosh(ξ(1+ y))

sinh(2ξ)
eiξ x dξ. (6.85)

Now, we determine N (0; 1
2

∂
∂n (x ·αH)) by solving the Neumann problem

�N

(
0; 1

2

∂

∂n
(x ·αH)

)
(x, y) = 0, x ∈ I, (6.86a)

∂

∂n
N

(
0; 1

2

∂

∂n
(x ·αH)

)
(x, 1) = 1

2

∂

∂y
(x ·αH) , (6.86b)

∂

∂n
N

(
0; 1

2

∂

∂n
(x ·αH

)
(x,−1) = −1

2

∂

∂y
(x ·αH) . (6.86c)

In a similar way as the Dirichlet problem (6.83), the solution of (6.86) is

N

(
0; 1

2

∂

∂n
(x ·αH)

)
=

i

2

1√
2π

∞∫
−∞

{
d

dξ

(
β̂(ξ)

ξ cosh(2ξ)

sinh(2ξ)

)
− d

dξ

(
α̂(ξ)

ξ

sinh(2ξ)

)}
cosh((1+ y)ξ)

ξ sinh(2ξ)
eiξ x dξ

+ i

2

1√
2π

∞∫
−∞

{
d

dξ

(
α̂(ξ)

ξ cosh(2ξ)

sinh(2ξ)

)
− d

dξ

(
β̂(ξ)

ξ

sinh(2ξ)

)}
cosh((1− y)ξ)

ξ sinh(2ξ)
eiξ x dξ.

(6.87)
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Adding (−1
2 x ·αH) (6.85) and N

(
0; 1

2
∂
∂n (x ·αH)

)
(6.87), we have N (∇·αH). Finally, calcu-

lating ∇N (∇·αH) and using αH (6.84), we obtain the left-hand side of the operator equation
(6.78) at y = 1 and y = −1, respectively,


1

2

1√
2π

∞∫
−∞

β̂(ξ) eiξ x dξ − 1√
2π

∞∫
−∞

ξ

sinh(2ξ)
α̂(ξ) eiξ x dξ

0


 , (6.88)

and 


1

2

1√
2π

∞∫
−∞

α̂(ξ) eiξ x dξ − 1√
2π

∞∫
−∞

ξ

sinh(2ξ)
α̂(ξ) eiξ x dξ

0


 . (6.89)

Now, we consider the right-hand side of the operator equation (6.78). At first, we deter-
mine N (0; c·n) by solving the Neumann problem

�N (0; c·n)(x, y) = 0, x ∈ I, (6.90a)
∂

∂n
N (0; c·n)(x, 1) = b2(x), (6.90b)

∂

∂n
N (0; c·n)(x,−1) = −a2(x). (6.90c)

Using the Fourier transform, the solution of (6.90) is

N (0; c·n) = 1√
2π

∞∫
−∞

{
cosh((1+ y)ξ)

ξ sinh(2ξ)
b̂2(ξ)− cosh((1− y)ξ)

ξ sinh(2ξ)
â2(ξ)

}
eiξ x dξ. (6.91)

Next, taking the gradient of (6.91) yields the right-hand side of (6.78) at y = 1 and y = −1,
respectively,


1

2

1√
2π

∞∫
−∞

{
b̂1(ξ)− i cosh(2ξ)

sinh(2ξ)
b̂2(ξ)+ i

sinh(2ξ)
â2(ξ)

}
eiξ x dξ

0


 , (6.92)

and 


1

2

1√
2π

∞∫
−∞

{
â1(ξ)+ i cosh(2ξ)

sinh(2ξ)
â2(ξ)− i

sinh(2ξ)
b̂2(ξ)

}
eiξ x dξ

0


 . (6.93)

Now we are ready to solve the operator equation (6.78). Solving the system of equations
(6.78) using (6.88), (6.89), (6.92), and (6.93), yields α̂(ξ) and β̂(ξ) as in (6.81) and (6.82).
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6.2 Solution

Using the above results and

v = αH +∇N (∇·αH)+ ∇N (0; c·n), p = −∇·αH, (6.94)

the solutions of (6.77) are

u(x, y) = 1

2

1√
2π

∞∫
−∞

{
sinh((1− y)ξ)− (1+ y)ξ cosh((1− y)ξ)

sinh(2ξ)

}
α̂(ξ) eiξ x dξ

+ 1

2

1√
2π

∞∫
−∞

{
sinh((1+ y)ξ)− (1− y)ξ cosh((1+ y)ξ)

sinh(2ξ)

}
β̂(ξ) eiξ x dξ

+ i√
2π

∞∫
−∞

{
cosh((1+ y)ξ)

sinh(2ξ)
b̂2(ξ)− cosh((1− y)ξ)

sinh(2ξ)
â2(ξ)

}
eiξ x dξ, (6.95)

v(x, y) = −1

2

i√
2π

∞∫
−∞

{
2ξ sinh((1− y)ξ)− (1− y)ξ sinh((1− y)ξ)

sinh(2ξ)

}
α̂(ξ) eiξ x dξ

+ 1

2

i√
2π

∞∫
−∞

{
2ξ sinh((1+ y)ξ)− (1+ y)ξ sinh((1+ y)ξ)

sinh(2ξ)

}
β̂(ξ) eiξ x dξ

+ 1√
2π

∞∫
−∞

{
sinh((1+ y)ξ)

sinh(2ξ)
b̂2(ξ)+ sinh((1− y)ξ)

sinh(2ξ)
â2(ξ)

}
eiξ x dξ, (6.96)

p(x, y) = − i√
2π

∞∫
−∞

{
sinh((1− y)ξ)

sinh(2ξ)
α̂(ξ)+ sinh((1+ y)ξ)

sinh(2ξ)
β̂(ξ)

}
ξ eiξ x dξ. (6.97)
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7 An infinite wedge

In this section, we consider a homogeneous SBVP with as domain the infinite wedge
W = { (r, θ) | 0 < r <∞, 0 < θ < ω },

∂

∂r

(
1

r

∂

∂r
(rvr )

)
+ 1

r2

∂2vr

∂θ2
− 2

r2

∂vθ

∂θ
− ∂p

∂r
= 0, x ∈ W, (7.98a)

∂

∂r

(
1

r

∂

∂r
(rvθ)

)
+ 1

r2

∂2vθ

∂θ2
+ 2

r2

∂vr

∂θ
− 1

r

∂p

∂θ
= 0, x ∈ W, (7.98b)

1

r

∂

∂r
(rvr)+ 1

r

∂vθ

∂θ
= 0, x ∈ W, (7.98c)

v(r, 0) = a(r) =
(

a1(r)
a2(r)

)
, (7.98d)

v(r, ω) = b(r) =
(

b1(r)
b2(r)

)
, (7.98e)

v → 0,p → 0, as r →∞. (7.98f)

According to the general procedure, we will investigate the operator equations on the
boundaries θ = 0 and θ = ω

α − ∇N (∇·αH) = c− ∇N (0; c·n), (7.99)

with

c(r) =
{

a(r), θ = 0,

b(r), θ = ω.
(7.100)

Consider the left-hand side of (7.99). To find the harmonic extension αH and N (∇·αH) we
have to solve the Dirichlet and the Neumann problem respectively. First, we discuss the
former problem.

7.1 The Dirichlet problem

Let αH(r, θ) =
(
αr (r, θ)
αθ (r, θ)

)
. We would like to solve the Dirichlet problem

∂

∂r

(
1

r

∂

∂r
(rαr )

)
+ 1

r2

∂2αr

∂θ2
− 2

r2

∂αθ

∂θ
= 0, x ∈ W, (7.101a)

∂

∂r

(
1

r

∂

∂r
(rαθ)

)
+ 1

r2

∂2αθ

∂θ2
+ 2

r2

∂αr

∂θ
= 0, x ∈ W, (7.101b)

αH(r, 0) = α(r)

(
1
0

)
, (7.101c)

αH(r, ω) = β(r)

(
1
0

)
, (7.101d)

αH(r, θ)→ 0 as |R| → ∞. (7.101e)
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Note that αr and αθ in (7.101a, 7.101b) are not decouple. Therefore to simplify the problem,
we change the polar coordinates into alternative polar coordinates by using a transformation
r = eR,

−∞ < R < +∞ (see [37], p. 13). From now on, we will consider (R, θ ) coordinates. Using
this coordinates, the Dirichlet problem (7.101) turn into

∂2αr

∂R2
+ ∂2αr

∂θ2
− 2

∂αθ

∂θ
− αr = 0, in W ′, (7.102a)

∂2αθ

∂R2
+ ∂2αθ

∂θ2
− 2

∂αr

∂θ
− αθ = 0, in W ′, (7.102b)

αH(R, 0) = α(R)

(
1
0

)
, (7.102c)

αH(R, ω) = β(R)

(
1
0

)
, (7.102d)

αH(R, θ)→ 0 as |R| → ∞. (7.102e)

Although αr and αθ still are not decouple, the problem is easier than (7.101) and it is possible
to solve using the Fourier transform with respect to R (R → ξ ). We obtain a system of
ordinary differential equations

d2α̂r

dθ2
− 2

dα̂θ

dθ
− (ξ2 + 1)α̂r = 0, (7.103a)

d2α̂θ

dθ2
+ 2

dα̂r

dθ
− (ξ2 + 1)α̂θ = 0. (7.103b)

We change the system (7.103) by multiplying (7.103b) with i and adding to (7.103a). Next,
multiplying (7.103b) with (-i) and adding to (7.103a), we arrive at

d2

dθ2

(
α̂r + i α̂θ

)+ 2i
d

dθ

(
α̂r + i α̂θ

)− (ξ2 + 1)(α̂r + i α̂θ ) = 0, (7.104a)

d2

dθ2

(
α̂r − i α̂θ

)− 2i
d

dθ

(
α̂r − i α̂θ

)− (ξ2 + 1)(α̂r − i α̂θ ) = 0. (7.104b)

Solving the system (7.104) and applying the boundary conditions (7.102c) and (7.102d)
yielding

αH(R, θ) =




1√
2π

∞∫
−∞

{
cos(θ) sinh((ω − θ)ξ)

sinh(ωξ)
α̂(ξ)+ cos(ω − θ) sinh(θξ)

sinh(ωξ)
β̂(ξ)

}
eiξ R dξ

1√
2π

∞∫
−∞

{
−sin(θ) sinh((ω − θ)ξ)

sinh(ωξ)
α̂(ξ)+ sin(ω − θ) sinh(θξ)

sinh(ωξ)
β̂(ξ)

}
eiξ R dξ




.

(7.105)
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Note that αH(R, 0) = α(R)

(
1
0

)
and αH(R, ω) = β(R)

(
1
0

)
are tangent vector fields at

θ = 0 and θ = ω respectively.
Later we will determine α̂(ξ) and β̂(ξ) by solving the operator equation (7.99) in (R, θ).

Now we determine N (∇·αH) by solving the following Neumann problem.

7.2 The Neumann problem

Since N (∇·αH) = −1
2 x ·αH +N

(
0; 1

2
∂
∂n (x ·αH)

)
, we consider the Neumann problem(

∂2

∂R2
+ ∂2

∂θ2

)
N

(
0; 1

2

∂

∂n
(x ·αH)

)
= 0, x ∈ W ′, (7.106a)

∂

∂n
N

(
0; 1

2

∂

∂n
(x ·αH)

)
(R, 0) = 1

2
eR ∂

∂θ
αr (r, 0), (7.106b)

∂

∂n
N

(
0; 1

2

∂

∂n
(x ·αH)

)
(R, ω) = 1

2
eR ∂

∂θ
αr (r, ω). (7.106c)

Using the Fourier transform with respect to R (R → ξ ), the solution of (7.106) is

N

(
0; 1

2

∂

∂n
(x ·αH)

)
(R, θ) =

1

2

1√
2π

∞∫
−∞

{
cosh(ω(ξ + i)) cosh((ω − θ)ξ)− cos(ω) cosh(θξ)

ξ sinh(ωξ) sinh(ω(ξ + i))

}
(ξ + i)α̂(ξ + i) eiξ R dξ

+ 1

2

1√
2π

∞∫
−∞

{
cosh(ω(ξ + i)) cosh(θξ)− cos(ω) cosh((ω − θ)ξ)

ξ sinh(ωξ) sinh(ω(ξ + i))

}
(ξ + i)β̂(ξ + i) eiξ R dξ.

(7.107)

Using the above results, we can solve the operator equation (7.99) to obtain α̂(ξ) and
β̂(ξ).

7.3 The operator equation

Theorem 7.1. The solution of the operator equations (7.99) is αH(R, θ)(7.105), with

α̂(ξ) = 2 sinh(ωξ)[sinh(ωξ)b̂1(ξ)+ ξ sin(ω)â1(ξ)]
sinh2(ωξ)− ξ2 sin2(ω)

+ 2i sinh(ωξ)[sinh(ωξ) cosh(ω(ξ − i))+ ξ sin(ω)]
sinh(ω(ξ − i))(sinh2(ωξ)− ξ2 sin2(ω))

b̂2(ξ)

− 2i sinh(ωξ)[sinh(ωξ) + ξ sin(ω) cosh(ω(ξ − i))]
sinh(ω(ξ − i))(sinh2(ωξ)− ξ2 sin2(ω))

â2(ξ), (7.108)
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and

β̂(ξ) = 2 sinh(ωξ)[sinh(ωξ)â1(ξ)+ ξ sin(ω)b̂1(ξ)]
sinh2(ωξ)− ξ2 sin2(ω)

− 2i sinh(ωξ)[sinh(ωξ) cosh(ω(ξ − i))+ ξ sin(ω)]
sinh(ω(ξ − i))(sinh2(ωξ)− ξ2 sin2(ω))

â2(ξ)

+ 2i sinh(ωξ)[sinh(ωξ)+ ξ sin(ω) cosh(ω(ξ − i))]
sinh(ω(ξ − i))(sinh2(ωξ)− ξ2 sin2(ω))

b̂2(ξ). (7.109)

Proof. First consider the left-hand side of operator equation (7.99). We have found αH .
Using this αH (7.105) and N

(
0; 1

2
∂
∂n (x ·αH)

)
(7.107), we obtain the left-hand side of the

operator equation (7.99) at θ = 0 and θ = ω, respectively


1

2

1√
2π

∞∫
−∞

{
α̂(ξ)− ξ sin(ω)

sinh(ωξ)
β̂(ξ)

}
eiξ R dξ

0


 (7.110)

and 


1

2

1√
2π

∞∫
−∞

{
− ξ sin(ω)

sinh(ωξ)
α̂(ξ)+ β̂(ξ)

}
eiξ R dξ

0


 . (7.111)

Now, we determine the right-hand side of the operator equation (7.99). First, we deter-
mine N (0; c·n) by solving the Neumann problem(

∂2

∂R2
+ ∂2

∂θ2

)
N (0; c·n) = 0, (7.112a)

∂

∂n
N (0; c·n)(R, 0) = e−R ∂

∂θ
N (0; c·n)(R, 0) = b2(R), (7.112b)

∂

∂n
N (0; c·n)(R, ω) = e−R ∂

∂θ
N (0; c·n)(R, ω) = a2(R). (7.112c)

Using the Fourier transform, the solution of (7.112) is

N (0; c·n) = 1√
2π

∞∫
−∞

{
cosh(θξ)

ξ sinh(ωξ)
â2(ξ + i)− cosh((ω − θ)ξ))

ξ sinh(ωξ)
b̂2(ξ + i)

}
eiξ R dξ,

(7.113)
Next, taking the gradient of (7.113) yields the right-hand side of (7.99) at θ = 0 and θ = ω

are respectively


1√
2π

∞∫
−∞

{
b̂1(ξ)− i

sinh(ω(ξ − i))
â2(ξ)+ i cosh(ω(ξ − i))

sinh(ω(ξ − i))
b̂2(ξ)

}
eiξ R dξ

0


 (7.114)
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and


1√
2π

∞∫
−∞

{
â1(ξ)+ i

sinh(ω(ξ − i))
b̂2(ξ)− i cosh(ω(ξ − i))

sinh(ω(ξ − i))
â2(ξ)

}
eiξ R dξ

0


 . (7.115)

Now we are ready to solve the operator equation (7.99). Solving the system of equations
(7.110), (7.111), (7.114), and (7.115), yielding α̂(ξ) and β̂(ξ) as in (7.108) and (7.109).

7.4 Solution

Using the above results and

v = αH +∇N (∇·αH)+ ∇N (0; c·n), p = −∇·αH, (7.116)

the solutions of SBVP are

vr = 1

2

1√
2π

∞∫
−∞

{
cos(θ) sinh((ω − θ)ξ)

sinh(ωξ)
− ξ sin(θ) cosh((ω − θ)ξ)

sinh(ωξ)

}
α̂(ξ) eiξ R dξ

+ 1

2

1√
2π

∞∫
−∞

{
cos(ω − θ) sinh(θξ)

sinh(ωξ)
− ξ sin(ω − θ) cosh(θξ)

sinh(ωξ)

}
β̂(ξ) eiξ R dξ

+ i√
2π

∞∫
−∞

{
cosh(θ(ξ − i))

sinh(ω(ξ − i))
â2(ξ)− cosh((ω − θ)(ξ − i))

sinh(ω(ξ − i))
b̂2(ξ)

}
eiξ R dξ, (7.117)

vθ = −1

2

1√
2π

∞∫
−∞

{
(1+ iξ) sin(θ) sinh((ω − θ)ξ)

sinh(ωξ)

}
α̂(ξ) eiξ R dξ

+ 1

2

1√
2π

∞∫
−∞

{
(1+ iξ) sin(ω − θ) sinh(θξ)

sinh(ωξ)

}
β̂(ξ) eiξ R dξ

+ i√
2π

∞∫
−∞

{
sinh(θ(ξ − i))

sinh(ω(ξ − i))
â2(ξ)− sinh((ω − θ)(ξ − i))

sinh(ω(ξ − i))
b̂2(ξ)

}
eiξ R dξ, (7.118)

p = i√
2π

e−R

∞∫
−∞

{−ξ cos(θ) sinh((ω − θ)ξ)+ iξ sin(θ) cosh((ω − θ)ξ)

sinh(ωξ)

}
α̂(ξ) eiξ R dξ

+ i√
2π

e−R

∞∫
−∞

{−ξ cos(ω − θ) sinh(θξ)+ iξ sin(ω − θ) cosh(θξ)

sinh(ωξ)

}
β̂(ξ) eiξ R dξ.

(7.119)



Chapter V

The effect of spatial inhomogeneity in
thermal conductivity on the formation of
hot-spots

Abstract. The steady-state microwave heating of a unit slab consisting of three layers of
materials with different thermal conductivities is examined. The governing equations are a
damped wave equation derived from Maxwell’s equations and a heat-force equation for the
temperature. As the primary concern is to investigate the dependence of the steady-state
on the thermal-conductivity parameter, a simplifying assumption is made, namely that the
electrical conductivity is temperature independent. Under this assumption, the damped wave
equation governing the electric field may be solved separately. An eigenfunction expansion
for the problem based on the Galerkin method is described and a fundamental-mode approxi-
mation is presented. If this approximation is applied to a unit slab composed of three layers
with different thermal conductivities, the hot-spots formation can be addressed and a global
steady-state solution is found for the whole domain. Numerical results for some different
cases of the three-layer combinations are interpreted to gain some insight in parameter de-
pendence and the position of the low-thermal-conductivity inner layer related to hot-spots
formation.

1 Introduction

In recent years there has been a growing interest in the use of microwave radiation for indus-
trial processing such as drying, melting, smelting, and sintering. This heating technique is
proved to have some advantages over the use of a conventional oven. In the sintering of ce-
ramics, for example, the use of a conventional oven for prolonged periods of time is required
to achieve high equilibrium temperatures in a processes that are controlled by thermal con-
ductivity [27]. Generating heat internally by means of microwave energy can significantly
reduce the time as required in conventional sintering [4], [6], [7], [54]. The widespread indus-
trial applications of microwave heating have also created a number of problems. Forthmost

article by Andonowati and T.D. Chandra, appeared in Journal of Engineering Mathematics, 38 : 101 - 118, 2000.
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of these problems there is the formation of hot-spots, which is a small region of very high
temperature relative to the surroundings. Such a phenomenon can either be desirable, such
as in metal melting, or undesirable, such as in ceramic sintering.

In general, the microwave heating of a material are coupling of electromagnetic and
thermal phenomena. These phenomena can be expressed mathematically as a couple of a
damped wave equation derived from Maxwell’s equations governing the propagation of the
microwave radiation and a forced heat equation governing the resultant of heat flow. The
forcing term in the last equation is proportional to the square amplitude of the microwave
field. General analysis of this kind of microwave heating of a material is not easy. Until
recently, the mathematical analysis of the problem was divided into two main streams [34].
First, under assumption that the properties of the heated material are slowly varying with the
temperature, the effects of the electromagnetic field are of interest. In this case, perturba-
tion solutions are found for both the electric field and the temperature. Such studies have
been carried out by a number of authors such as Kriegsmann et al. [27], Kriegsmann [28],
Marchant and Picombe [34], Picombe and Smyth [42], and Smyth [48]. When the thermal
aspects are isolated, a simplifying assumption can be made, namely that the microwave ra-
diation has a constant amplitude, [10], [22], [44], leading to a single heat-force equation for
the temperature θt = ν�θ + f (θ) . Here, f (θ) is the temperature-dependent rate of energy
absorption by the material.

Using the second approach, Colleman [10] investigated the hot-spots formation for di-
fferent functions of temperature-dependent reaction rate f (θ). In the case of an Arrhenius
dependency of the form f (θ) = δ e−γ /θ , he found numerically that, for sufficiently small
ν, θ becomes large in finite time, signifying the formation of hot-spots. For a dependency
of the form f (θ) = δ e−γ /θ , Hill and Smyth [22] found the steady-state solutions in planar
and cylindrical geometries with constant ν and constant temperature on the boundary of the
body. For a quadratic dependence in temperature of the reaction rate f (θ) and a connective
heat-lost boundary condition, for a cylindrical body, Roussy et al. [44] found numerically
an approximate criterion for hot-spots to form. It is noted that based on an analysis of the
experiment data collected for various materials, Hill and Jennings [23] found that linear,
quadratic and exponential temperature dependencies of the reaction rate f (θ) are valid for
many materials.

Recently Palesko and Kriegsmann [41] studied the microwave heating of a one-dimensio-
nal ceramic laminate composed of three layers of two different types of material (identical
outer layers and an inside layer). These two materials have widely disparate effective elec-
trical conductivities. The governing equations considered are a couple of the damped wave
equation governing the propagation of the microwave radiation and the forced-heat equa-
tion governing the resultant of heat flow. An asymptotic theory was set up based on the
assumption that the ratio the two conductivities is small. This approach yields simplified
equations which were then analyzed numerically. Marchant and Liu in [35] used a Galerkin
method to find the steady-state microwave heating of a one dimensional finite slab with elec-
trical conductivity and thermal absorptivity governed by the Arrhenius function which, in
this paper, was approximated by a rational cubic function. The boundary conditions took
account of both connective and radiative heat losses. For small thermal absorptivity, approx-
imate analytical solutions were found for the steady-state temperature as well as the electric
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field amplitude. Multi-valued steady-state temperatures were found at the S-shaped curve
of temperature-versus-power relationship. The thermal runaway was described as when the
temperature jumps from the lower to the upper branch of the curve.

The present paper is concerned with a finite slab consisting three layers. Contrary to the
three layers in the work of Palesko and Kriegsmann [41] where the electrical conductivity is
of the interest, here we assume that the layers have different thermal conductivities (thermal
diffusivities). An Arrhenius-type of temperature dependency of the reaction rate of the form

f (θ) = e
αθ
α+θ for some α > 0 is used. Using the approach in [49] that is, assuming a tem-

perature independent of the electrical conductivity of the material and microwave speed, we
may solve the damped wave equation separately which leads to a single forced heat equation
governing the resulting heat flow. The forcing term in the last equation is proportional to the
spatially dependent squared amplitude of the microwave field. The technique exploited is a
one-term Galerkian approximation. It is investigated in [1] and [53] that such an approxima-
tion makes sense to obtain the salient features of the solution. In this paper, we address the
hot-spots formation by finding a global steady-state solution for the whole domain of diffe-
rent thermal conductivities. Although the paper is concerned with hot-spots formation, the
approach may be applied to a three-layer configuration of a finite slab. The novelty of this
approach lies in its simplicity.

In the next section, we present the governing equations for the microwave heating of a
material which consists of a damped wave equation that is derived from Maxwell’s equations
and a heat-force equation for the temperature. As our primary concern is to investigate the in-
fluence of the spatial dependence of the thermal conductivity of the material, the simplifying
assumption is made that the electrical conductivity is temperature-independent. Under this
assumption, the equation governing the electrical field may be solved separately. In Section 3
some preliminary results and an eigenfunction expansion based on a Galerkin approximation
are presented. For some geometries (unit sphere, finite cylinder, and rectangular block) with
Dirichlet boundary conditions, it is numerically shown in [1], [3] that the fundamental mode
is dominant. The critical parameters obtained by using this single mode approximate the
critical parameters of the solution. For this reason, we focus on this fundamental mode. The
formulation of the problem for a unit slab consisting three layers of different thermal conduc-
tivities is presented in Section 4. An analysis based on the one-term Galerkin approximation
is presented in the same section. In Section 5, we present some numerical results for some
different cases of the three-layer combinations. In the last section concluding remarks are
given.

2 Governing equations

The equations governing the microwave heating of a material are the damped wave equation
derived from Maxwell’s equations governing the propagation of the microwave radiation and
the forced heat equation governing flow of heat [49],

Ett + σ(θ)Et = c2�E, (2.1)

θt = ∇.(k(θ)∇θ)+ δ|E |2 f (θ). (2.2)
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Here, E and θ are the electric field associated with the microwave heating radiation and the
temperature, respectively. The temperature-dependent parameter σ is the electrical conduc-
tivity of the material and c is the microwave speed. The parameter δ is a positive parameter
related to the intensity of electric field. While, |E | is the amplitude of the electric field, k(θ)
is thermal conductivity of the material with the properties k(θ) > 0, k′(θ) > 0. Here, we
assume k(θ) = µ(x) eγ θ . While f (θ) is the rate of the microwave energy absorption by the
material with properties f (θ) > 0, f ′(θ) > 0. Here, we take f (θ) to be Arrhenius-type of

the form f (θ) = e
αθ
α+θ for some α > 0. The damped wave equation (2.1) may derived from

the Maxwell’s equations under the assumption that σ is small and that the microwave speed
c is temperature-independent.

It is difficult to solve (2.1) and (2.2) with temperature-dependent σ . In this work we
make the simplifying assumption that σ is constant. Although this creates an unphysical
temperature variation in σ , our primary concern is to investigate the spatial dependence of
the thermal conductivity of the material k(θ). Under this assumption, in the one-dimensional
domain, (2.1) and (2.2) become

Ett + σ Et = c2 Exx , (2.3)

∂θ

∂ t
= ∂

∂x

(
k(θ)

∂θ

∂x

)
+ δ|E |2 f (θ). (2.4)

The damped wave equation (2.3) has a travelling-wave solution in the form

E = e−k1x ei(kx−ωt) , (2.5)

where

k2 = ω2

2c2

[
1+ (1+ σ 2

ω2
)1/2

]
(2.6)

and

k2
1 =

ω2

2c2

[
−1+ (1+ σ 2

ω2
)1/2

]
. (2.7)

Using the above assumption, we can write the force-heat equation (2.2) in the form

∂θ

∂ t
= ∂

∂x

[
k(θ)

∂θ

∂x

]
+ δR(x) f (θ), (2.8)

where R(x) = |E |2 and the expression for E is of the form (2.5). Note that for k(θ) = 1 and
R(x) = 1, (2.8) features prominently in combustion theory and has been studied by many
authors such as in [2], [19](Chapters 2-4), [29], [52], and many others.

In the above model the conductivity parameter µ, which measures the magnitude of ther-
mal conductivity of material, is constant throughout the medium D. In this work, however, we
intend to investigate the effect of inhomogeneity of µ on the formation of a hot-spots, which
is a small region in the heated medium where the temperature is much higher than elsewhere.
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For the domain D we take a unit slab [0,1] and the conductivity is given by k(θ) = µ(x) eγ x ,
where µ(x) is a function of the spatial variable x , namely

k(θ) =



µ1 eγ θ if 0 ≤ x ≤ x0,

µ2 eγ θ if x0 ≤ x ≤ x0 + ε,

µ3 eγ θ if x0 + ε ≤ x ≤ 1 ,

(2.9)

where µ2 < µ1 and µ2 < µ3. Here, we address hot-spots formation by finding a global
steady-state solution for the whole region [0,1] in which this formation appears which is in
the region [x0, x0 + ε].

3 Analysis of the reduced equation

We consider a model
∂θ

∂ t
= ∇ · (k(θ)∇θ)+ δR(x) f (θ) . (3.10)

Using the transformation

v =
∫ θ

0
k(s) ds , (3.11)

we may write (3.10) as follows

∂v

∂ t
= K (v){�v + δR(x)F(v)} , (3.12)

where K (v) = k(θ(v)) and F(v) = f (θ(v)). Since v(θ) is monotonically increasing, we
observe that both K (u) and F(u) have the same features as k(θ) and f (θ), respectively.
We can remove the function K (v) by letting τ to be such that dτ/dt = K (v(x, t)) and
u(x, τ ) = v(x, t) giving

∂u

∂τ
= �u + δR(x)F(u) . (3.13)

3.1 Behaviour of solutions

We will now study the behaviour of the solution of the equation

∂u

∂ t
= �u + δR(x)F(u), (3.14)

subject the initial and Dirichlet boundary conditions

u(x, 0) = H(x) , u(x, t) = 0 on ∂D . (3.15)

From the transformation (3.11) the function F in (3.14) can be written in the form

F(u) = f (θ(u)) = exp

{
α
γ

log(1+ γ u/µ)

α + 1
γ

log(1+ γ u/µ)

}
. (3.16)
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The following results are summarized from [1] for completeness. First, we consider the
following boundary value problem

∂U

∂ t
= �U + δR(x)F(m) , (3.17)

U(x, 0) = H(x) , U(x, t) = 0 on ∂D . (3.18)

for some parameter m ≥ 0. Let ū and Ū denote the steady-state solution of (3.14), (3.15)
and (3.17), (3.18), respectively. If m = maxx ū(x), then, by the minimum principle, we can
show that maxxŪ(x, m) ≥ m.

We assume that we can expand U(x, t) =
∑

i

ai (t)ϕi (x), with ϕn and λn be the normal-

ized eigenfunctions and eigenvalues of the boundary value problem

�ϕn = −λ2
nϕn , (3.19)

ϕn = 0 on ∂D , (3.20)

where λ1 < λ2 ≤ λ3 ≤ ....
Using (3.19) and the normalized eigenfunctions, the steady-state solution of (3.17) may be

written in the form Ū(x, m) = δF(m)
∑

i

Bi

λ2
i

ϕi (x), where Bi =
∫

D R(x)ϕi (x) dx. If we

write M = maxx

∑
i

Bi

λ2
i

ϕi (x) then maxxŪ(x, m) = δM F(m). Taking µ = 1, we note that

F ′(m) = (αγ )2 F(m)

[1+ γm][αγ + log(1+ γm)]2 , (3.21)

while

F ′′(m) = α2γ 3G(α, γ, m)F(m)

[1+ γm]2[αγ + log(1+ γm)]3 , (3.22)

where

G(α, γ, m) = αγ (α − 2− αγ )− log(1+ γm)[2+ 2γα + log(1+ γm)] , (3.23)

giving F ′(m) > 0 for m ≥ 0 and, if α(1 − γ ) ≤ 2, then F ′′(m) < 0, for m > 0 and so the
graph of F(m) vs. m intersects the line m at one and only one point for any value of δ. For
µ = 1, a necessary condition such that the graph of F(m) vs. m is in the form of an S-shaped
curve is that α(1 − γ ) > 2 . This analysis will still hold later for the one-term Galerkin
approximation provided that the first mode ϕ1(x) is non-negative throughout the region D.
For some values of α and γ such that the graph F(m) vs. m has an S-shaped curve, Figure
3.1 (a) shows the graph of maxxŪ (x, m) vs. m for different values of δ.

When the graph of F(m) vs. m has an S-shaped curve, for which is necessary that
α(1− γ ) > 2 , using the minimum principle, we can show (see [1]) that
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1. If δ is such that maxxŪ (x, m)−m = 0 has a single root, say m0, then maxx ū(x) ≤ m0.

2. If δ is such that maxxŪ (x, m) − m = 0 has three roots, say m1, m2, m3, where m1 <

m2 < m3, [see Figure 3.1 (b)], then 0 ≤ maxx ū(x) ≤ m1 or m2 ≤ maxx ū(x) ≤ m3.
Here we note that m1 is O(1) while m3 is O(eα).

Let δUcr and δUcr be the largest and the smallest value of δ such that the line m is tangent to
the lower and upper portion of the graph maxxŪ(x, m) vs m, respectively [see Figure 3.1 (c)
and (d)]. Let δ be such that δUcr < δ < δUcr . Then for these values of δ, max xŪ(x, m)−m =
0 has three roots. Since Ū(x, m) is an upper solution of ū(x) then, if H(x) = 0, u(x, t) will
be O(1) for all t .

m

δ1

δ2

(a)

m

m

maxxŪ(x, m)

(b)

m

m

maxxŪ (x, m)

(c)

m

m

maxxŪ (x, m)

(d)

Figure 3.1: (a) maxxŪ (x, m) vs. m for different δ, δ1 > δ2, (b) Intersections of maxxŪ(x, m)

vs. m and the line m, (c) maxxŪ(x, m) vs. m for δ = δUcr , (d) maxxŪ (x, m) vs. m for
δ = δUcr .
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3.2 Fundamental mode approximation

Let us return to the boundary value problem (3.14), (3.15). Adopting the following approxi-
mation procedure, which can be attributed to Galerkin, let us write

sN (x, t) =
N∑

i=1

A(N)
i (t)ϕi (x) , (3.24)

where A(N)
i (t) is the solution of the integral equation

dA(N)
i

dt
= −λ2

i A(N)
i + δ

∫
D

R(x)F

(
N∑

i=1

A(N)
i ϕi (x)

)
ϕi (x) dv(x) , (3.25)

for 1 ≤ i ≤ N . The above equations constitute N integral equations with N unknowns.
From the behaviour of the solution as studied above and assuming that the first eigenfunc-

tion ϕ1(x) is non-negative, we conclude that it makes sense to adopt a fundamental-mode
approximation, s1(x, t) = A(t)ϕ1(x). This A(t) is obtained from the integral equation

dA

dt
= −λ2

1 A + δ

∫
D

R(x)F(Aϕ1(x))ϕ1(x) dv(x) , (3.26)

Let

I (A) =
∫

D
R(x)F(Aϕ1(x))ϕ1(x) dv(x) . (3.27)

The equilibrium values of A can be obtained graphically from the intersection of the straight
line λ2

1 A/δ vs. A and the curve of the graph I (A) vs. A. Similar to the result found in the
previous subsection, it is not difficult to see that for µ = 1 a necessary condition for the
graph I (A) vs. A to have an S-shaped curve is

α(1− γ ) > 2 . (3.28)

For α(1 − γ ) ≤ 2 there is only one possible steady-state solution for A. In combustion this
phenomenon is often called ’loss of criticality’ which occurs for the critical values of α and
and γ such that α(1 − γ ) ≤ 2. Lacey and Wake [29] showed that for a simpler equation
∇ · (eγ θ ∇θ) + δ eθ = 0, the solution does not exhibit a critical phenomenon when γ ≥ 1.
Tam in [52] showed that for a sphere of unit radius with α = 100, loss of criticality occur
when γ = 0.9. From the simple analysis above for α = 100, loss of criticality occurs when
γ = 0.98.

When the graph I (A) vs. A has an S-shape, there are two critical parameters of δ, say
δcr and δcr . The critical value δcr , where the steady-state of (3.26) is O(eα) for δ > δcr , is
obtained when the straight line λ2

1 A/δ vs. A is tangent to the lower portion of the S-shape
curve. On the other hand, the critical value δcr , where the steady-state of (3.26) is O(1) for
δ < δcr , is obtained when the straight line λ2

1 A/δ vs. A is tangent to the upper portion of
the S-shaped curve. For δ, δcr < δ < δcr , for some critical values δcr and δcr , depending on
the initial condition A(0) = C1, there are three possible steady-state solutions for (3.26), say
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A1, A2, and A3, where A1 < A2 < A3 and A1 is of O(1), A3 is of O(eα). We note that the
middle solution A2 is unstable, whereas, the other two are stable.

For a few different configurations of the medium, viz. a unit sphere, a finite cylinder and
a rectangular block, it is shown in [1], [3], that it is not only the first mode which is dominant,
but also the critical values δcr and δcr obtained by using a single mode, close to the critical
values δ of u.

3.3 Steady-state solution for a unit slab geometry

To illustrate the method described above, let us consider a unit slab geometry [0, 1]. For this
slab, we have the first eigenvalue λ1 = π2 corresponding to the normalized eigenfunction
ϕ1 = √1/2π sin(πx). Taking an exponential function of R(x) = |E |2, with k = 1 in (2.5),
we may obtain the steady-state solutions A from

λ2
1

δ
A =

∫
D

R(x)F(Aϕ1(x))ϕ1(x)dv(x) . (3.29)

The critical parameter δcr can be approximated as follows. Let A1 be the smallest A
satisfying I (A1) = λ2

1 A1/δ
cr then

d

dA

[
I (A)− λ2

1 A

δcr

]
A=A1

= 0 , (3.30)

or

I ′(A1) = λ2
1

δcr
. (3.31)

Thus, we can calculate δcr by first obtaining the value of A1 from

I (A1)− A1 I ′(A1) = 0 (3.32)

and then

δcr = λ2
1 A1

I (A1)
. (3.33)

For α = 10, µ = 1, γ = 0.1, Figure 3.2 shows a bifurcation diagram for the temperature
θ as obtained from the inverse of the transformation (3.11) and the fundamental-mode appro-
ximation, that is θ ≈ 1

γ
log (1+ γ Aϕ1/µ) . The parameter δ can be seen as the magnitude

of the square amplitude of the electric field R(x). The bifurcation diagram shows that there
is a critical parameter δcr such that, for δ < δcr , there is only one steady-state solution θ

for which the corresponding A is O(1) and there is a critical parameter δcr such that, for
δ > δcr , again there is only one steady-state solution θ , but A is O(eα). The critical value
δcr , in this computation δcr = 6.869, plays an important role in hot-spots formation. Here a
slight change in the magnitude of the electric field near δcr produces a substantial difference
in the temperature, that is, there is a temperature jump from O(1) to O(eα). A similar result
can be found in [35].



120CHAPTER V. THE EFFECT OF SPATIAL INHOMOGENEITY IN THERMAL CONDUCTIVITY ON

Figure 3.2: Bifurcation diagram of the temperature θ vs δ evaluated at x = 0.5.

Although it is not fully justified, this simple analysis may be applied to the case of a
unit slab composed of three layers of two different materials (identical outer layers and an
inside layer) as was done in [41] where the two materials have widely disparate effective
electrical conductivities. The magnitude of the electric field produced is a function of the
electrical conductivity of the material. Thermal runaway can be experienced if the magnitude
of electric field exceeds the critical value. Locally (the layers are considered as three isolated
layers) thermal runaway can happen in one of the layers, but not in the others, depending on
the effective electrical conductivity of the materials considered.

4 Formation of hot-spots in a three-layer finite slab

In this section, we consider a unit slab composed of three layers of three different materials.
As we are concerned in this work with hot-spots formation, the inside layer considered has a
thermal conductivity which differs considerably from that of the outer layers. Homogeneous
Dirichlet boundary conditions will be used. Although these conditions are very idealized,
they have the advantage of making the investigation more manageble, thus leading to a better
understanding of the thermal conductivity. Future work will be done to extend this approach
by including more general boundary conditions.

Let us first consider a domain D with a constant conductivity parameter µ throughout D.
From the transformation (3.11), we obtain

θ = 1

γ
log

(
1+ γ u

µ

)
, (4.34)
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where the conductivity k(θ) = µ eγ θ . Here u(x, t) ≈ A(t)ϕ1(x), where A(t) satisfies

dA

dt
= −λ2

1 A + δ I (A), (4.35)

A(0) = C1, (4.36)

I (A) =
∫

D
R(x)F(Aϕ1(x))ϕ1(x)dx, (4.37)

and ϕ1, λ1 are the first eigenfunction and eigenvalue of the boundary value problem

�ϕn = −λ2
nϕn , ϕn = 0 on ∂D . (4.38)

Thus

θ ≈ 1

γ
log

(
1+ γ Aϕ1(x)

µ

)
. (4.39)

If we consider two separate domains with conductivity k1 = µ1 eγ θ and k2 = µ2 eγ θ ,
respectively, where µ1 > µ2, it is clear that the domain with with the lower conductivity µ

reaches a higher temperature, independently of the value of γ . This simple analysis suggests
that non-homogeneity of thermal conductivity may contribute to the formation of hot-spots.

4.1 Formulation of the problem

Let us consider a unit slab [0,1] composed of three layers having thermal conductivity k(θ)
expressed in the form

k(θ) =



µ1 eγ θ if 0 ≤ x < x0

µ2 eγ θ if x0 ≤ x ≤ x0 + ε

µ3 eγ θ if x0 + ε < x ≤ 1 .

(4.40)

We formulate the problem by dividing the interval [0, 1] into three parts, that is [0, x0],
[x0, x0 + ε] and [x0 + ε, 1], for small ε. Let θ1, θ2, and θ3 be the temperature in the intervals
[0, x0], [x0, x0 + ε] and [x0 + ε, 1], respectively. For simplification we will consider the
steady-state solution only. We can obtain steady-state temperature θ1, θ2, and θ3 by solving

θi = 1

γ
log

(
1+ γ ui

µi

)
, i = 1, 2, 3 , (4.41)

where ui is the solution of

d2ui

dx2
+ δR(x)Fi (ui ) = 0 , i = 1, 2, 3 , (4.42)

Fi (ui ) = exp




α
γ

log

(
1+ γ ui

µi

)

α + 1
γ

log

(
1+ γ ui

µi

)

 , i = 1, 2, 3 . (4.43)
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Across the interfaces, the temperature θ as well as the heat flux k(θ) dθ/dx are continuous
(see [39]). Using (4.41) and the requirement that θ is continuous on the interfaces, that is
θ1(x0) = θ2(x0) and θ2(x0 + ε) = θ3(x0 + ε), we have the conditions

u1(x0) = µ1a , u2(x0) = µ2a , (4.44)

and
u2(x0 + ε) = µ2b , u3(x0 + ε) = µ3b , (4.45)

where a and b have to be determined as a part of the problem. Together with homogeneous
Dirichlet boundary conditions, this continuity of the temperature yieds boundary conditions
for each layer

u1(0) = 0 , u1(x0) = µ1a, (4.46)

u2(x0) = µ2a , u2(x0 + ε) = µ2b, (4.47)

u3(x0 + ε) = µ3b , u3(1) = 0. (4.48)

The heat flux in each layer may be written as

k(θi )
dθi

dx
= eγ θi

1+ γ ui

µi

dui

dx
. (4.49)

Noting that θ is continuous on the interfaces x = x0, x0 + ε and using the conditions for
ui (x0) and ui (x0 + ε) above, we see that the continuity of the heat flux across the interfaces
may be written in the form

du1

dx

∣∣∣
x=x−0

= du2

dx

∣∣∣
x=x+0

(4.50)

and
du2

dx

∣∣∣
x=x0+ε−

= du3

dx

∣∣∣
x=x0+ε+

. (4.51)

4.2 Steady-state solutions

To solve the problem defined by (4.42), (4.46), (4.47), and (4.48), for all the intervals [0, x0],
[x0, x0 + ε], and [x0 + ε, 1], we introduce the following transformations.

u1 = ϕ + µ1a
x

x0
, u2 = ψ + µ2

(b − a)(x − x0)

ε
+ µ2a, (4.52)

and

u3 = χ + µ3b

(
1− x − x0 − ε

1− x0 − ε

)
, (4.53)

where ϕ, ψ , and χ satisfy

d2ϕ

dx2
+ δR(x)F1(u1) = 0, ϕ(0) = ϕ(x0) = 0, (4.54)

d2ψ

dx2
+ δR(x)F2(u2) = 0, ψ(x0) = ψ(x0 + ε) = 0, (4.55)

d2χ

dx2
+ δR(x)F3(u3) = 0, χ(x0 + ε) = χ(1) = 0. (4.56)
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In the first interval, [0, x0], using the above transformation and the the fundamental-mode

approximation, we obtain ϕ ≈ Aφ1, where φ1(x) =
√

2
x0

sin
(

π
x0

x
)

is the eigenfunction

corresponding to the smallest eigenvalue λ1 = π2/x2
0 of the eigenvalue problem

d2φ

dx2
= −λ2φ, φ(0) = φ(x0) = 0 . (4.57)

The parameter A in this approximation satisfies

−A + δ

λ2
1

∫ x0

0
E(x)F1(u1)φ1 dx = 0 , (4.58)

and

u1 ≈ A

√
2

x0
sin

(
π

x0
x

)
+ µ1a

x

x0
. (4.59)

For the second interval, [x0, x0 + ε], we make a transformation ξ = x − x0 and so
ψ = ψ(ξ). Again, using the fundamental-mode approximation we obtain ψ1 ≈ Bϑ1, where

ϑ1 =
√

2
ε

sin
(
π
ε
ξ
)

is the eigenfunction corresponding to the smallest eigenvalue ν1 = π2/ε2

of the eigenvalue problem

d2ϑ

dξ2
= −ν2ϑ, ϑ(0) = ϑ(ε) = 0 . (4.60)

Here, B satisfies

−B + δ

ν2
1

∫ x0+ε

x0

R(x)F2(u2)ϑ1 dx = 0 , (4.61)

and

u2 ≈ B

√
2

ε
sin

(π
ε
(x − x0)

)
+ µ2

(b − a)(x − x0)

ε
+ µ2a . (4.62)

For the last interval, [x0 + ε, 1], we use a transformation η = x − x0 − ε, so that χ =
χ(η). Again, using the fundamental-mode approximation we obtain χ ≈ Cυ1, where υ1 =√

2
1−x0−ε

sin
(

π
1−x0−ε

η
)

is the eigenfunction corresponding to the smallest eigenvalue τ1 =
π2/(1− x0 − ε)2 of the eigenvalue problem

d2υ

dη2
= −τ 2υ, υ(0) = υ(1− x0 − ε) = 0 . (4.63)

In this approximation, C satisfies

−C + δ

τ 2
1

∫ 1

x0+ε

R(x)F3(u3)υ1 dx = 0 , (4.64)
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and

u3 ≈ C

√
2

1− x0 − ε
sin

(
π

x − x0 − ε

1− x0 − ε

)
+ µ3b

(
1− x − x0 − ε

1− x0 − ε

)
. (4.65)

From (4.58), (4.61), and (4.64), we obtain three equations and five independent variables
A, B, C, a, dan b. To solve them, we use the interface conditions (4.50) and (4.51) to obtain
two additional equations

−A

(
π

x0

)√
2

x0
+ µ1

a

x0
= B

(π
ε

)√
2

ε
+ µ2

b − a

ε
(4.66)

and

−B
(π
ε

)√
2

ε
+ µ2

b − a

ε
= C

(
π

1− x0 − ε

)√
2

1− x0 − ε
− µ3

b

1− x0 − ε
. (4.67)

Equations (4.66) dan (4.67) may be written in the matrix form A[a b]T = [c1 c2]T ,

[ µ1
x0
+ µ2

ε
−µ2

ε

−µ2
ε

µ2
ε
+ µ3

1−x0−ε

] [
a
b

]
=


 A π

x0

√
2
x0
+ B π

ε

√
2
ε

B π
ε

√
2
ε
+ C π

1−x0−ε

√
2

1−x0−ε


 . (4.68)

The solutions a and b (4.68) can be expressed in the following

a = A22c1 − A12c2

Det(A)
, (4.69)

b = A11c2 − A21c1

Det(A)
, (4.70)

where Det(A) is the determinant of the matrix A in (4.68).
Substituting (4.69) and (4.70) into (4.58), (4.61) and (4.64) we obtain three equations

with three unknowns: A, B, and C. Using these values, we may then compute a and b from
(4.69) and (4.70). Further, from (4.59), (4.62) and (4.65) we calculate u1, u2, and u3 and
finally, using

θi = 1

γ
log

(
1+ γ ui

µi

)
, i = 1, 2, 3, (4.71)

we obtain the temperature θi , i = 1, 2, 3.
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5 Numerical results

In the following we will present results for the smallest steady-state solutions A, B, and
C whenever there is more than one steady-state solution of (4.58), (4.61) and (4.64). This
solution can be seen as the steady-state temperature having the initial condition equal to 0
(the normalized ambient temperature). In all computations, we have taken α = 10, ε = 0.1,
γ = 0.1, and δ = 1. Based on a simplifying assumption described in Section 2, we take
R(x) = e−|x−0.5|.

First, we take µ1 = µ3 = 1 and µ2 = 1, 10−1, 10−2, 10−3 in Figure 5.3 (a), (b), (c),
and (d), respectively. The middle part of the slab is located at x0 = 0.45 in the the interval
[0,1]. Figure 5.3 (a) simply shows that the conductivity parameter µ is constant throughout
the region [0,1]. As expected by using a fundamental-mode approximation, the temperature
profile in Figure 5.3 (a) is zero on the boundaries x = 0 and x = 1 and reaches a maximum
value in the middle of the slab. By taking smaller µ2 in the region [x0, x0 + ε], we find
that the temperature in this region is higher than elsewhere. Figures 5.3 (b), (c), (d) show
that, the smaller the value µ2, the larger will be the discrepancy of the temperature between
[x0, x0+ε] and the rest of the region. These figures show an interesting feature. The change in
the parameter µ from 10−1 to 10−2 does not lead to a significant change in the temperature of
the inner layer. However, the change of µ from the 10−2 to 10−3 results in a drastic change in
the temperature of the inner layer, suggesting the existence of a critical value µ below which
thermal runaway is experienced pointing the formation of a hot-spots.

We further calculate the temperature of the middle interval of the inner layer [x0, x0 + ε]
with the same parameters as in Figure 5.3, but we change the values of µ from µ = 10−2 to
µ = 10−3. This produce the following results

µ 0.01 0.009 0.008 0.007 0.006 0.005 0.004 0.003 0.002 0.001
θ 0.221 0.238 0.261 0.291 0.333 0.399 0.511 0.767 56.898 65.568

It shows that there is a jump in the temperature of the inner layer that occurs for the values
of µ in the range 0.003 < µ < 0.002.

In Section 3, we made an investigation of the bifurcation diagram of θ vs. the parameter
δ where this δ measures the magnitude (power) of the square amplitude of the electric field.
The thermal runaway is investigated through an S-shaped curve of an Arrhenius-type reaction
rate of the microwave-energy absorption vs. temperature. There, we found a critical value
δcr where a slight change in δ near this critical value results in a substantial change in the
temperature. Several authors have made similar investigations, e.g. in [22], [35], [41], and
elsewhere. The numerical investigation above calls for further investigations into the effect
of the parameter µ and its critical value(s).
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(a) (b)

(c) (d)

Figure 5.3: The steady-state temperature with a constant parameter γ = 0.1, and for the
thermal conductivity parameter µ1 = µ3 = 1 in outer layers while in the inner layer (a)µ2 =
1, (b) µ2 = 10−1, (c) µ2 = 10−2, (d) µ2 = 10−3. Notice the temperature jump from the
value computed for µ2 = 10−2 to that computed for µ2 = 10−3.
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In Figure 5.4, we show the steady-state temperature in the center of each of the subinter-
vals [0, x0], [x0, x0 + ε] and [x0 + ε, 1] as a function of the position x0 where µ1 = µ3 = 1,
µ2 = 10−2. A similar computation is carried out in Figure 5.4 (b), but now for µ2 = 10−3.
Comparing these figures, for any position x0, there is a jump in temperature from the values
computed for µ2 = 10−2 in Figure 5.4 (a) to those for µ2 = 10−3 in Figure 5.4 (b). These
jumps, again, suggest the existence of the critical value(s) of µ.

(a) (b)

Figure 5.4: (a) The steady-state temperature in the middle of each of the subintervals [0, x0],
[x0, x0 + ε] and [x0 + ε, 1] as a function of the position x0, where µ1 = µ3 = 1, µ2 = 10−2

and γ = 0.1. (b) Same as in Figure (a), but now for µ1 = µ3 = 1, µ2 = 10−3. Notice
the temperature jump from the values computed for µ2 = 10−2 in Figure (a) and those for
µ2 = 10−3 in Figure (b).

6 Concluding remarks

We have considered a simplified model of the microwave heating of a one-dimensional unit
slab. We have described an eigenfunction expansion for the problem based on the Galerkin
method and have used a fundamental-mode approximation. We have made an investigation
of the bifurcation diagram of the temperature θ vs. the parameter δ where this δ measures
the magnitude (power) of the square amplitude of the electric field. The thermal runaway
has been investigated through an S-shaped curve of an Arrhenius-type reaction rate of the
microwave-energy absorption vs. temperature. Critical values δcr has been found. The
critical value δcr is of the interest, where slight changes in δ near this critical value result
in substantial changes in the temperature. Similar investigations and results can be found in
[22], [35], [41], and elsewhere.

We have further applied the approximation to a unit slab consisting of three layers of
material with different thermal conductivities. We have taken the thermal conductivity to be
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of the form k(θ) = µ eγ θ , where θ is the temperature, while the parameter µ has different
values in each of the three layers. This µ measures the magnitude of the thermal conductivity
of the material. We have addressed the hot-spots formation by finding the global steady-state
solution for the whole domain of different thermal conductivities in which the inner layer has
a smaller value of the parameter µ.

By making µ smaller in the inner layer than in the outer layers, according to prediction,
we find a temperature in this region that is higher than in the rest. The larger the difference of
µ in the inner and outer layers, the larger will be the discrepancy of the temperature between
the inner layer and the rest of the region. It is very interesting to see that given a fixed value
of δ, there is a temperature jump of the inner layer near some value of µ. This jump shows
that there is a critical value of the parameter µ below which thermal runaway is experienced,
thus signifying the formation of hot-spots.

We remark that, although the paper is concerned with hot-spots formation, the approach
may be applied to a three-layer configuration of a finite slab. Further, the use of Dirichlet
boundary conditions, which is very idealistic, allows a more manageable investigation into
the parameter dependence of the problem. Future work will include more realistic heat-flux
conditions on the boundaries and further study on the effects of the parameter µ and its
critical value(s) will be done.
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Summary

This research investigates a number of problems, related to Stokes flow and to heat flow.
The Stokes flow is inspired by glass flow in the process of making bottles or jars. The heat
flow is related to a heat conduction model problem, and a problem about hot-spots formation
in the microwave heating. We will discuss the first problem.

There are two phases during the industrial process of making glass, viz. the pressing phase
and the blowing phase. We consider some mathematical aspects of the pressing phase. The
motion of glass at temperatures above 6000C can be described by the Navier-Stokes equa-
tions. Since glass is a highly viscous fluid, those equations can be simplified to the Stokes
equations. We use two different methods to solve these equations, viz. perturbation and ope-
rator methods. The perturbation method is based on the geometry being slowly varying. As
a result, we obtain the velocity analytically. This result has a good agreement with numerical
results based on finite element modelling. Using the velocity obtained we derive the formula
for the force on the plunger.

Next, we consider the operator method. Using this method, the Stokes equations can be
transformed into an operator equation on the boundary ∂� with a tangent vector field α on
the boundary ∂� as unknown. Solving this operator equation shows, that the solutions of
the Stokes equations can be parameterized by αH , the harmonic extension of α to the interior
of the domain �. As an application, we present some full explicit solutions of the Stokes
equations for several domains such as the interior and exterior of the unit ball and of the unit
disk, an infinite strip, a half space, and a wedge.

In the second problem, we consider the heat conduction problem inside two types of
geometry, viz. slowly and slightly varying geometry. Using this problem, we show the diffe-
rence between those geometries. An example that involves the boundary layers at the ends is
presented.

Finally, we consider a simplified model of the microwave heating of a one-dimensional
unit slab. This slab consists of three layers that have different thermal conductivities. We
consider only the steady state problem with Dirichlet boundary conditions and continuity
of heat flux across the layers. Using a fundamental-mode approximation of eigenfunction
expansion, we investigate the effect of thermal conductivity on the formation of hot-spots
where the temperature increases catastrophically as a function of δ, the amplitude of the
applied electric field. First, we consider a unit slab geometry. In this geometry, we find
the critical value δcr, for which slight changes in δ yields a sudden jump to another stable
solution, now with a much higher temperature. Next, we consider a unit slab consisting of
three layers of material with different thermal conductivity (µ). We assume the inner layer
has the smallest value of µ. We find the temperature in this layer is much higher than that
in other layers. Then, we consider only the inner layer. For a given value of δ and changing
values of µ, we get a temperature jump near some values of µ. This jump shows that there is
a critical value of µ and signifies the formation of a hot-spot.
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Stellingen

behorende bij het proefschrift

Perturbation and Operator Methods
for Solving Stokes Flow and Heat Flow Problems

door

Tjang Daniel Chandra

I

The entrance boundary layer representation of the heat conduction problem in a slowly vary-
ing geometry (Chapter I, section 4.1.2 of this Thesis) is essentially the same for its generali-
sation to the same problem but with a slowly varying conductivity

∇·(α(εx, y, z)∇T
) = 0,

and for the problem of long acoustic wave propagation in a slowly varying duct

�φ + ε2κ2φ = 0,

of which the outer solution leads to Webster’s equation.

II

Stokes Boundary Value Problem (SBVP) can be transformed into an operator equation on
the boundary ∂
 of the domain 
 with a tangent vector field α on ∂
 as unknown. Then,
the solutions of SBVP can be calculated from αH , the harmonic extension of α to the interior
of the domain 
.
(Chapter III of this thesis).

III

Fundamental mode approximation is a simple but effective method to investigate the hot-spot
formation in microwave heating.
(Chapter V of this thesis).

IV

Perturbation and numerical methods are not contradictory but complementary to each other.
Numerical methods produce primarily numbers, from which functional relationships may
be derived. Perturbation methods produce primarily functional relationships, from which
numbers may be derived.

V

It is disappointing that the computer algebra package Maple (version 7) is still not able to
produce Taylor series and asymptotic expansions of Bessel functions of arbitrary order.

1



VI

The Runge-Kutta method can be used as an alternative method of finding roots of the equation
f (x) = 0 by considering the steady state solution of dx

dt = f (x).

VII

In [1], I.N. Herstein said that 25% of our Ph.D.’s go on to become researchers. While most
of the other 75% end up teaching in the university. In view of this it is desirable to introduce
two types of Ph.D, one for those who want to be a researcher, and the other for those who
want to be a lecturer.

VIII

In [2], Weil states that university teaching in mathematics should : (a) answer the require-
ments of all those who need mathematics for practical purposes; (b) train specialists in the
subject; (c) give to all students that intellectual and moral training which any University
has the duty to impart. Those statements agree with the situation nowadays that the role of
mathematics for industry is growing.

IX

Mathematical software packages such as Mathematica, Maple, and MatLab can serve as a
bridge between mathematics and engineering.
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