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‘It is no longer stable situations or permanency that interest us,
but rather evolutions, crises and instabilities.’

∼ Ilya Prigogine (1917–2003),

(1977 Nobel Prize winner in Chemistry)

in “Order Out of Chaos”, 1984.
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Chapter 1

Introduction

Over the years, there has been considerable interest in the migration of solutes
in groundwater. Many of the current pressing problems of environmental con-

cern involve transport issues including groundwater contamination, seawater intru-
sion in coastal aquifers, radioactive waste disposal, geothermal energy development,
groundwater-surface water interaction, and subsurface storage of materials, fluids,
and energy.

Groundwater contamination is affected by natural factors and human activities.
For instance, ‘natural’ pollution occurs in coastal aquifers due to saltwater intrusion,
and at the subsurface of salt lakes. Examples of pollution by human interference are
disposal of industrial waste in natural waters, irrigation return flows containing salt,
fertilizers and pesticides, and silting of man-made reservoirs. The chemical composi-
tion of groundwater, in particular near drinking water reservoirs, is continuously and
intensively monitored and in the past decades many advanced and dedicated tech-
niques have been developed to avoid or reduce contamination of soil-groundwater
systems.

One of the mechanisms for solute transport is diffusion. Diffusion is a process
that evolves very slowly in time. Hence, in view of the fact that environmental pollu-
tion questions usually have to be answered in short time, diffusion on that timescale
has a relatively unimportant contribution to the transport of contaminants. In reality,
however, the migration of solutes is dramatically enhanced with respect to time and
space byconvectivemotion of the fluid in which the solutes are dissolved. Convection
may, for example, be induced by the action of gravity on the fluid.

1.1 Gravity-driven flow in porous media

In certain hydrogeological situations, fluid density variations occur because of chan-
ges in the solute or colloidal concentration, temperature, and pressure of the ground-
water. These density gradients basically define two types of flow problems. The first
type is characterized by the situation in which the density increases in the direction
of the gravity. This situation occurs, for example, in salt water intrusion problems.

1



2 Chapter 1. Introduction

These flow problems are characterized by the fact that there exists an abrupt transition
or interface separating the fresh and salt groundwater. The second type, and the type
that is studied in this thesis, defines flow problems in which the density decreases in
the direction of gravity. This is a potentially unstable configuration since the fluid
with higher density will have the tendency to ‘fall’ into the direction of gravity, lead-
ing to so-called fingers. This phenomenon is calledgravity-driven convectionand
can lead to additional transport of heat and solutes. In particular, the convective pro-
cess enhances hydrodynamic mixing of the dense solute with the less dense ambient
groundwater. This is significant for three main reasons (Simmons et al., 2001): (i)
the total quantity of solutetransport involved in the hydrodynamic mixing process is
typically much larger than that of diffusive transport, (ii ) the time scalesassociated
with the mixing process are significantly reduced, and (iii ) thedimensions of the mix-
ing zoneare typically larger and, therefore, enable solutes to spread over much larger
domains.

In general, flow and transport in porous media can be split into two parts:

• Flows infully saturatedporous media.

• Flows inunsaturatedor partly unsaturatedporous media.

In the following subsections we discuss for both the saturated and the unsaturated
case the physical mechanisms that cause hydrodynamic mixing. This will be done by
means of several hydrological and ecological flow problems.

Flow in fully saturated porous media

An increasing threat to groundwater systems is contamination by salt. As mentioned
above, this natural pollution occurs at the subsurface of salt lakes. Salt lakes, or
playas, are formed by evaporation of groundwater containing dissolved salts at a
groundwater discharge surface. There a saline buildup until saturation occurs, fol-
lowed by precipitation of salt at the land surface, see Figure 1.1(B). Salt lakes occur
in arid and semi-arid environments throughout the world, and they cover approxi-
mately one-third of total world land area (Figure 1.1(A)) (Gilman and Bear, 1996;
Simmons and Narayan, 1997; Wooding et al., 1997a,b). They represent extensive
discharge zones that occur naturally or are induced by changes of land rise. These
salt lakes may be dry at the surface, or may contain standing water (ponding), per-
haps varying seasonally between the two states. Besides the natural salt precipitation,
there may also be a considerable amount of other pollution at the salt lake surface due
to direct human interference. Salt lakes in Australia and the USA, for example, are
used as disposal sites for saline groundwater and drainage waters from agricultural
regions.

In salt lakes, salt diffusion/dispersion rates may balance transport of salt by evap-
oration (Wooding et al., 1997a,b). Consequently, a zone of high salinity is formed
as a relatively thin layer adjacent to the surface, a boundary layer. The fluid density
gradient is likely to be very steep and is potentially unstable in a gravitational sense.
This is a situation in which convective fingering may occur. Convective fingering
affects mixing processes especially by extension of interfaces. Therefore, the use of
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salt lakes as evaporation basins and disposal sites raises significant questions con-
cerning the impacts on the groundwater dynamics of salt lakes. In particular when
the fingers, possibly containing other pollutants, extend to deeper layers and mix with
the relatively fresh water basin under the salt lake.

(A) (C)

(B) (D)

Figure 1.1. (A) Blue areas indicate the distribution of salt lakes around the world (after Williams
(2002)). (B) Photograph image of the surface of a salt lake or playa. The surface is covered by pre-
cipitated salt crystals with in between little water canals. Observe that these canals divide the salt lake
surface in remarkable hexagonal-like structures. (C) A mire with water-saturated green hollows and
brownish hummocks. (Photograph courtesy L. Zier). (D) Colored areas indicate the global distribution
of different types of wetland ecosystems (after Matthews and Fung (1987)).

In a more general context, the presence of density gradients in a fluid saturated
porous medium converts gravitational potential energy into motion through the action
of buoyant forces. Density differences can for example be induced by forcing con-
centration differences in mixtures as in the salt lake case. Density differences may
also be induced by maintaining the surface at a temperature different from that of the
medium and the saturating fluid. For example, an upflow of warm or hot ground-
water has been postulated for some shallow geothermal areas (Wooding, 1960). As
the surface is relatively cold, a thermal boundary layer of cool water is formed be-
low the surface. A similar situation arises within situ coal gasification (Homsy and
Sherwood, 1975), where a hot reaction surface forms a boundary layer at the lower
horizontal boundary of a cooler permeable layer.
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A similar situation occurs in wetland ecosystems. A wetland ecosystem typically
consists of two layers. The upper part of a mire consists of a sponge-like layer of pre-
dominantly moss species, the acrotelm (Ingram, 1978), with a porosity above 95%,
see Figure 1.1(C). Below the acrotelm a denser layer, the catotelm, is present where
the hydraulic conductivity is much lower than in the acrotelm (Ingram et al., 1974).
During the night the surface cools leading to relatively cold water on top of warm
water, and if the temperature drop is sufficiently large, the cold water sinks and the
warm water rises leading to considerable mixing.

Flow in unsaturated porous media

The theory of flow of water in unsaturated porous media, i.e. when air is also present
in the pores, has been developed by soil physicists and hydrologists because of its
importance in soil science and in investigations of irrigation, drainage of agricultural
lands, infiltration, etc. We will consider the special case of infiltration of water into
a soil column. When water is applied in excess at the top of a soil column, the
water will enter at a rate depending on the water content in the column and on the
physical properties of the soil, like for example the permeability. In the first stages
the moisture profile gradually changes, but later it maintains a fixed profile which
moves downwards at constant speed. This downward movement of the water profile
may be potentially unstable with respect to gravity. Indeed, laboratory observations
show instabilities leading to preferential flow paths or ‘fingers’.

Fingering is one form of preferential flow resulting from instability of infiltration
through the unsaturated zone. It significantly increases the vertical water and solute
velocity which in turn may lead to the rapid movement of harmful chemicals and
microbial organisms.

Combinations of the above described mechanisms are also possible. For example,
the coexistence of both a thermal and a solutal boundary layer occurs in for exam-
ple hydrothermal systems and magmatic intrusion problems, see Schoofs (1999) and
Brandt and Fernando (1996) for further details and references. These types of flows
are called double-diffusive or thermohaline convection problems. In this thesis we do
not consider these combined processes.

1.2 Model equations

Fluid flow in the void spaces of a porous medium is described by the Navier–Stokes
equations, subject to appropriate boundary and initial conditions. Solving these equa-
tions in the fluid domain is not practical because of the enormous complexity of the
flow geometry. Even if one could determine a solution for an idealized domain, still
the question remains how to relate measured field quantities to micro-scale model-
ing results. To overcome these difficulties, a continuum theory for flow in porous
media has been established. In this continuum or macro-scale approach, averaged
micro-scale details reappear in the form of macro-scale coefficients.

The macro-scale equations, in terms of volume averaged and measurable quan-
tities, for salt and heat transport in porous media are based on three fundamental
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principles: mass conservation of both fluid and salt, conservation of thermal energy,
and momentum conservation of the fluid (Bear, 1972).

1.2.1 Conservation of mass and thermal energy

Assuming the (effective) porosityφ [−] to be constant, the fluid mass balance equa-
tion for a porous medium that is not fully saturated reads

φ
∂(ρ2)

∂t
+ ∇ · (ρq) = 0 , (1.2.1)

whereρ [kg·m−3] denotes the fluid density,2 [m3
·m−3] saturation,q [m3

·(m2s)−1]
the volumetric flux vector, andt [s] is time. The saturation2 is defined as the
fraction of the void volume of the porous medium occupied by fluid. Equation (1.2.1)
is known as the continuity equation.

The salt mass balance is given by

φ
∂(ρω)

∂t
+ ∇ · (ρωq + Jω) = 0 , (1.2.2)

whereJω denotes the dispersive mass flux vector andω [kg·kg−1] the salt mass frac-
tion. The salt mass fractionω is defined as the salt mass concentrationc [kg·m−3]
divided by the fluid densityρ [kg·m−3]. In analogy to diffusive mass transport, the
dispersive mass fluxJω is assumed to have the form of Fick’s law,

Jω = −ρDω∇ω , (1.2.3)

which indicates a linear proportionality between dispersive mass flux and the salt
mass fraction gradient. In (1.2.3),Dω [m2

·s−1] denotes an appropriately-defined
diffusivity or dispersivity which is assumed to be a scalar. We note that expression
(1.2.3) can only be justified for relatively low salt concentrations.

Assuming that the fluid and porous matrix are in thermal equilibrium, the conser-
vation of thermal energy can be expressed as

φ
∂T

∂t
+ ∇(Tq + JT ) = 0 , (1.2.4)

whereJT denotes the heat flux andT [K] the temperature. Again, the heat fluxJT is
assumed to obey Fick’s law,

JT = −
κT

ceff
∇T =: −DT∇T , (1.2.5)

whereκT [m·kg/(s3
·K)] denotes the thermal conductivity,ceff [kg/(m·s2

·K)] heat
capacity, andDT thermal diffusivity.

Several physical phenomena can affect the fluid volume, and thereby its density.
These are: thermal expansion, pressure compressibility and volume changes due to
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high salt content. This implies that the fluid density is a function of absolute temper-
atureT , fluid pressurep, and salt mass fractionω. The empirical relation between
these variables is given by the equation of state (Bear, 1972, Section 2.3)

ρ = ρ(T, p, ω) = ρ̄e−αT (T−T̄)−αp(p− p̄)+γω ,

whereρ̄ denotes a reference density, and whereαT andαp respectively denote the
thermal expansion and the compressibility coefficient. Under isothermal and isobaric
conditions, and disregarding fluid volume changes due to small pressure variations,
the equation of state reduces to

ρ = ρ̄eγω , (1.2.6)

whereρ̄ denotes the density of fresh water. Under isohaline and isobaric conditions,
the equation of state is given byρ= ρ̄e−αT (T−T̄). For small temperature differences,
we obtain the approximate relation

ρ ∼= ρ̄ − αT ρ̄(T − T̄) . (1.2.7)

1.2.2 Conservation of momentum

The fluid momentum balance equation in a nondeformable medium and in the ab-
sence of inertial effects, is usually taken as

q = −
κ

µ
(∇ p − ρgez) , (1.2.8)

where p [N·m−2] denotes fluid pressure,κ [m2] the intrinsic permeability tensor,
µ [kg·(sm)−1] the dynamic viscosity,g [m·s−2] the acceleration of gravity, andez
the unit vector in thez-direction, pointing downwards. Equation (1.2.8) expresses a
balance between the driving forces due to gravity and fluid pressure gradients, i.e.
−(∇ p − ρg), and the drag force exerted by the solid phase upon the fluid phase,
expressed by(µ/κ)q. The momentum balance equation (1.2.8) is generally referred
to as Darcy’s law.

Combining the continuity equation (1.2.1), (1.2.2) and (1.2.3), and assuming that
the porous medium is fully saturated (2 ≡ 1), gives

φρ
∂ω

∂t
+ ρq · ∇ω − ∇ · (ρDω∇ω) = 0 ,

and using the equation of state (1.2.6) leads to

φ
∂ρ

∂t
+ q · ∇ρ −Dω1ρ = 0 , (1.2.9)

where1 denotes the Laplacian. Substitution of (1.2.5) into (1.2.4) and using the
equation of state (1.2.7) gives for the fully saturated case

φ
∂T

∂t
+ ∇ · (q T)−DT1T = 0 . (1.2.10)
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The quantitiesDω, DT , κ, κT , ceff andµ are assumed to be independent of the salt
mass fractionω, temperatureT and the spatial coordinates.

Although suffering from the lack of a rigorous mathematical justification, we
shall now consider the approximate salt-transport equations obtained by replacing
(1.2.1) with the incompressibility condition

∇ · q = 0 . (1.2.11)

This approximation is usually referred to as the Oberbeck–Boussinesq approximation
(Bear, 1972; Nield and Bejan, 1992; Wooding et al., 1997a). Hence the governing
equations are given by (1.2.11), (1.2.8) and (1.2.9) for solute transport, or (1.2.11),
(1.2.8) and (1.2.10) for the transport of thermal energy. Observe that both problems
have in essence the same mathematical structure.

Flow throughunsaturatedporous media is governed by the continuity equation
(1.2.1) and Darcy’s law (1.2.8). Assuming the water to be incompressible, the balance
of mass can be written as the volumetric balance equation

∂θ

∂t
= ∇ ·

(
k∇9 − kez

)
, (1.2.12)

whereθ :=φ2 denotes the (volumetric) water content,k=κρg/µ [m·s−1] hydraulic
conductivity, and9 = p/(ρg) [Ns2

·kg−1] the pressure head. In contrast to the fully
saturated case, the quantitiesk and9 depend onθ making the problem nonlinear.
Usually one defines the soil water diffusivityDθ =Dθ (θ)=kd9/dθ so that (1.2.12)
reduces to

∂θ

∂t
− ∇ ·

(
Dθ (θ)∇θ − k(θ)ez

)
= 0 . (1.2.13)

Equation (1.2.13) is known as Richards equation (Richards, 1931). Alternative for-
mulations of this equation also exist, see Chapter 6 of this thesis.

1.2.3 Flow problems considered in this thesis

In this thesis we consider three different flow problems. For each case we consider a
uniform isotropic porous medium occupying the three-dimensional subspace

� = {(x, y, z) : (x, y) ∈ �⊥ ⊆ R
2,0< z< H} , (1.2.14)

where 0< H 6 ∞ denotes the dimensional depth of the layer and wherez points
vertically downwards. Further,�⊥ may be either bounded orR2. In the latter case it
is sometimes convenient to divide the flow domain in periodicity cells:

C =
{
(x, y, z) : |x| < π/ax, |y| < π/ay, 0< z< H

}
, (1.2.15)

whereax anday are the, as yet unspecified, horizontal wavenumbers. We call

a :=
√

a2
x + a2

y (1.2.16)
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the horizontal wavenumber of the periodicity cellC . The periodicity assumption im-
plies that we can restrict our flow domain to the (horizontally bounded) periodicity
cell C .

The following flow problems are considered:

Downward migration of salt near the surface of a salt lake.The medium is sat-
urated with a fluid of variable densityρ: i.e. water with dissolved salt. Along the
upper boundary{z= 0} we prescribe density and fluid flow corresponding to a ‘dry
lake bed’, with a sufficient rate of evaporationE [m·s−1] to remove all free surface
water and an instantaneous buildup of salt. Ifρr denotes the fluid density in refer-
ence circumstances, i.e. far away from the outflow boundary, andρm the maximum
density at the outflow boundary, we haveρr 6 ρ 6 ρm throughout the flow domain
�. Hereρm may represent the fluid density in an overlying pond or the density of the
salt-saturated solution near the subsurface. The initial density may have any spatial
distribution betweenρr andρm. The initial density is represented by the function
f ∗ : � 7−→ [ρr , ρm]. Equations (1.2.9), (1.2.8) and (1.2.11) are considered in� for
t>0, where�⊥ ≡R

2 andH ≡∞.

Remark 1.1. When there is no throughflow present and when H< ∞, the above
described problem is known as the Rogers–Horton–Lapwood or Darcy convection
problem (Horton and Rogers, 1945; Lapwood, 1948). It is the porous media equiva-
lent of the well-known Rayleigh–Bénard problem for free fluids. Both problems have
been extensively studied over the years, see, among others, Nield and Bejan (1992);
Joseph (1976).

We recast the problem in dimensionless form by setting

S =
ρ − ρr

ρm − ρr
and U =

q
uc
, uc =

(ρm − ρr )gκ

µ
, (1.2.17)

and by introducing the thickness of the equilibrium boundary layerδ = D/E and
φD/E2, respectively, as scales for length and time. This yields

(P1)



∂S

∂t
+ Ra∇ ·

(
U S

)
= 1S in �, t > 0 .

∇ · U = 0 in�, t > 0 ,

U + ∇ P − Sez = 0 in �, t > 0 ,

U · ez = −Ra−1 , S = 1 atz = 0, t > 0 ,

S = f in �, t = 0 ,

where f = ( f ∗
− ρr )/(ρm − ρr ). Here P = (p − ρr gδz)/(ρm − ρr )gδ represents

departures of the dimensionless pressure from hydrostatic reference conditions and
Ra the system Rayleigh number

Ra =
(ρm − ρr )gκ

µE
=

uc

E
. (1.2.19)
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Solute transport in wetland ecosystems.Again the porous medium is considered
fully saturated with a fluid of variable density. This time the water is exposed to
surface temperature fluctuations. Along the upper boundary{z = 0} we prescribe
the temperature according to a time-periodic surface temperature with periodτo and
temperature difference∆T , and along{z = H} we prescribe no-flux and no-flow
boundary conditions. We do not take into account any form of evaporation by assum-
ing a zero vertical water flux at the surface. Equations (1.2.10), (1.2.8) and (1.2.11)
are considered in�, where�⊥ ≡R

2, and read indimensionlessform (for the defini-
tion of the scales we refer to Chapter 5)

(P2)



∂T

∂t
+ Ra∇ ·

(
U T

)
= 1T in �, t > 0 .

∇ · U = 0 in�, t > 0 ,

U + ∇ P − Tez = 0 in �, t > 0 ,

U · ez = 0 , T = Φ(t) at z = 0, t > 0 ,

U · ez = ∇T · ez = 0 atz = h, t > 0 .

The system Rayleigh number for this case is defined by

Ra =
ρ̄gκ

µ
αT∆T

√
τo

DT
. (1.2.21)

Steady infiltration in unsatured soils. We consider equation (1.2.13) in the flow
domain�, where�⊥ is now a bounded subset ofR2, for t>0. We restrict ourselves
to constant boundary data: along{z = 0} we setθ = θT and along{z = H} we
imposeθ = θB. In this definitionθr 6 θT, θB 6 θo, whereθo is the volumetric
water content at saturation andθr the irreducible volumetric water content. Along
the vertical boundaries we have∇θ · n = 0. Again, the initial condition forθ is
given by some spatial distribution functionf ∗ : � 7−→ [θr , θo]. The equation in
dimensionlessform is given by (see Chapter 6 for the definition of the scales):

(P3)



∂S

∂t
+ Ra∇ ·

(
k(S)ez

)
= ∇ ·

(
D(S)∇S

)
in �, t > 0 .

S = ST at z = 0, t > 0 ,

S = SB at z = 1, t > 0 ,

∇S · n = 0 at∂�⊥ × (0,1), t > 0 ,

S = f in �, t = 0 ,

where the system Rayleigh number is defined by

Ra =
H

(θo − θr )/c0
(c0 is the reference volumetric water capacity). (1.2.23)
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Concerning these three flow problems, we observe the following:

(i) All problems involve a system parameter Ra∈ R+. This parameter is usually
referred to as thebifurcation parameterand will be denoted byR.

(ii ) Depending on the initial conditionf , they all have a solution that corresponds
to a ‘trivial’ one-dimensionaldiffusion / convection type process, see Sec-
tions 2.1, 5.1.2 and 6.2. This solution is referred to as theground-state so-
lution.

(iii ) Depending on the value ofR, other ‘nontrivial’ solutionsmayexist. Some of
these solutions are candidates for steady three-dimensional convective flow.

As mentioned in Section 1.1, convective flows are important in solute transport pro-
cesses. Hence we are interested in the transition from the ground-state solution to
a convective regime. The ground state is said to lose its stability if it bifurcates to
a neighboring (convective) steady-state. It should be emphasized that this concept
only makes sense when multiple steady solutions exist. However, uniqueness of a
ground-state solution is not always easy to prove, see Section 6.2.1 of this thesis, and
is often not even true. Then one is usually left with direct numerical simulations of
the underlying mathematical model to show the non-uniqueness of the ground state.

The transition critically depends on the bifurcation parameterR. The determina-
tion of this critical value is one of the most important topics in hydrodynamic stability
analysis.

1.3 Hydrodynamic stability analysis: concepts and method-
ology

In this section we introduce the concepthydrodynamic stabilityand we discuss in
detail the role of the bifurcation parameter. To fix ideas, we first recall some concepts
and techniques from dynamical systems theory. For this purpose we follow Dauchot
and Manneville (1997).

The model equations described in Section 1.2.3 are all within the class described
by the following general system:

MR
∂F
∂t

= LRF +NR(F) , (1.3.1)

whereF=F(x, z, t) is the vector containing the unknowns in which the spatial vari-
ables are defined on acylindrical domain. This means that(x, z) ∈ R

m
×�‖, where

�‖ ⊂ R
n is an open domain (andm > 1,n > 0), so thatF : Rm

×�‖×R+ 7−→ R
N .

TheN × N constant coefficient ‘mass’ matrixMR is assumed to be non-negative, in
the sense that all its eigenvalues are real and nonnegative. Note that this implies that
MR is not necessarily invertible. In the right-hand side of (1.3.1),LR andNR are
differential operators essential to the dynamics of the system. The linear operatorLR
is assumed to be elliptic andNR is a nonlinear operator of order less thanLR. Both
operators may depend directly on the variablez ∈ �‖.
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The operatorsMR,LR andNR will typically contain the bulk equations, but it
may also be convenient in some cases to include some of the boundary conditions in
their definitions. Eventually, the remaining boundary conditions will be grouped into
a setH to which the vectorF is said to belong. Thus, a problem definition includes
the statementsF ∈H as well asF satisfies (1.3.1). To conclude, we assume that the
bifurcation parameterR is one-dimensional (thus we consider here a co-dimension 1
bifurcation). For the first flow problem from Section 1.2.3 we haveN = 5, m = 2,
n=1, F=(S, P,U)T andR=Ra .

The next essential ingredient for hydrodynamic stability analysis is the assump-
tion that (1.3.1) has a ‘trivial’ solution that depends on the coordinatesz only, i.e.
F(x, z, t)= F0(z); the ground-state solution. Thus, the ground stateF0 is supposed
to be only a function of the variablez ∈ �‖. We recall that the stability of a given
ground stateF0, controlled by parameterR, is understood as its ability to recover
from perturbations. Thus we study the stability ofF0 by setting

F(x, z, t) = F0(z)+ f(x, z, t) , (1.3.2)

wheref : Rm
×�‖ ×R+ 7−→ R

N denotes a perturbation. Substitution of expansion
(1.3.2) into (1.3.1) and redefining the operatorsLR andNR yields the perturbation
equation

MR
∂f
∂t

= LR f +NR(f) . (1.3.3)

Equation (1.3.3) will play a crucial role in the stability analysis. Generally speak-
ing, stability properties depend onR. With respect to this bifurcation parameter, three
critical values can be identified:

• The linear instability thresholdRL . This threshold can be obtained from linear
stability analysis, i.e. by solving the generalized eigenvalue problemLRf = σMRf.
Clearly the eigenvalues depend onR. Assuming the real parts to be ordered we have
· · · < Re(σn) < · · · < Re(σ2) < Re(σ1) =: σmax. Here Re denotes the real part of
the eigenvalues. The thresholdRL is determined by the solution ofσmax(R)=0. The
solution of this equation is characterized by the fact that forR> RL there exists at
least one (infinitesimal) perturbation against which the ground state is unstable, i.e.
for R>RL we haveσmax(R)>0.

• The energy (or monotonic) stability thresholdRE. To assign a definite mean-
ing to the concept ‘stability’, we introduce the functionalE which has the properties
of a norm: it is zero when the observed state is indistinguishable from the ground
state and strictly positive otherwise. The quantityE is usually based on theL2-norm
of the difference between the observed state and the ground state, i.e.

E = E (t) :=
∫

C
f T(Af) =: 〈 f, f 〉 , with f = F − F0 , (1.3.4)

whereA ∈R
N×N denotes a positive semidefinite matrix, e.g.MR or the identityI.

Remark 1.2. Working withE is the essence of theenergy method(Joseph, 1976;
Straughan, 2004; Galdi and Padula, 1990). One must realize that the name ‘energy
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Figure 1.2. The behavior of per-
turbations to the ground state as a
function of E (0) and of the value
of the bifurcation parameterR.
The initial amplitudeE (0)may be
taken arbitrary for Rayleigh num-
bers between 0 andRG. For
Rayleigh number betweenRG and
RL , the behaviour ofE (t) depends
critically on the initial perturba-
tion, and for R > RL we only
consider infinitesimally small ini-
tial perturbations.

method’ is misleading here in the sense that it is not related to the energy as a physical
quantity, see definition(1.3.4).

Now if we can decompose the linear operatorLR into L + RB and if the non-
linear part satisfies the dissipativity condition〈NR(f), f〉 6 0, then it follows from
(1.3.3)

1

2

d

dt
〈 f, f 〉 = 〈LRf, f 〉 + 〈NR(f), f 〉 6 〈 L f, f 〉 + R〈 B f, f 〉 . (1.3.5)

If R is chosen such that the right-hand side of (1.3.5) is negative for all perturbations
from an appropriately chosen classH of admissible perturbations, then stability is
guaranteed. This leads to the maximum problem

1

RE
= sup

f ∈ H

− 〈 B f, f 〉

〈 L f, f 〉
.

The thresholdRE is thus defined by the condition that forR<RE the functionalE (t)
decays for all positive time. ForR> RE, however, there may exist perturbations for
which the normE does not monotonically decay with time, see Figure 1.2. However,
such flows can still beglobally stablein the sense that the normE may eventually
decay to zero despite the fact that it exhibits (finite time) transient growth. Thus, to
refine the concept of stability a third critical Rayleigh number is introduced:

• The global stability thresholdRG. The largest value ofR for which global
stability can be guaranteed is called the global stability threshold and is denoted by
RG. It is determined from the property that, forR< RG, perturbations of arbitrary
shapes and ‘amplitudes’ all decay asymptotically as time tends to infinity: the flow
returns to the ground state which is therefore unconditionally stable. Clearly we must
haveRE 6 RG 6 RL but, whereasRL andRE can be derived from definite strategies,
RG is not easy to determine since it requires testing for all possible perturbations,
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Figure 1.3. Bifurcation diagrams for the three generic cases: (A) transcritical; (B) supercritical; (C)
subcritical. Dashed curves depict unstable branches, the solid curves stable branches.

and not only for infinitesimal ones whose initial dynamics are governed by a linear
operator.

WhenR> RG, the ground-state solution is unstable to some perturbation, though
it may be (conditionally) stable to small perturbations (see Figure 1.2). More than
one solution of ‘permanent’ form may be possible whenR> RG. In particular, we
want to know the number of such solutions, their dependence on parameters, and
their stability properties. This is in general an extremely hard problem for analysis.
However, some parts of it can be managed throughbifurcation analysis. Bifurcation
analysis may be roughly divided into two different approaches.

In the first approach, although not specifically developed for determining the
global stability threshold,weakly nonlinear stability analysis(Mielke, 2002) may
be very useful to obtain information about the location ofRG. In weakly nonlin-
ear stability analysis one usually traces nontrivial solutions in the vicinity ofRL by
applying a power-series expansion in terms ofR− RL . This technique, however, is
rather complicated and it is problem specific. Generically, at the point where the
ground-state solution loses its stability to an infinitesimally small perturbation, three
situations may occur:

(i) The transcritical bifurcation (Figure 1.3(A)) for which at lowest order, prior to
the thresholdRL , there coexist a stable branch and an unstable branch. The
stable branch correspond to the ground-state solution and the unstable branch
corresponds to a nontrivial solution. Beyond the thresholdRL , both branches
’interchange’ stability, i.e. the stable branch becomes unstable and the unstable
branch becomes stable. This case occurs for problems when no special sym-
metry is present, for example due to geometrical asymmetries. The system,
however, can find another stable solution, but only at finite distance from the
initial state and this new solution usually ‘appears’ through a fold or saddle-
node bifurcation at some valueRF of the bifurcation parameterR. In principle,
this bifurcated solution can be obtained by considering the perturbation expan-
sion at higher orders.
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(ii ) The supercritical case for which the new solutions appear beyond the critical
point RL and the system bifurcates continuously toward a stable state (Fig-
ure 1.3(B)).

(iii ) The subcritical case for which the new solutions already exist before the critical
value is reached, see Figure 1.3(C).

The quantityA in Figure 1.3, which can, for example, be the amplitude of the most
unstable eigenmode of the linear stability problem, can be obtained by an expan-
sion at lowest non-trivial order. For the transcritical and subcritical case the global
thresholdRG is then determined by the location of the fold bifurcation, i.e. byRF .
However, it should be emphasized that weakly nonlinear stability analysis is based
on expansions inR − RL and therefore its validity is limited to Rayleigh numbers
close to the thresholdRL . This may imply that the location of the fold bifurcation
lies outside the validity range and can therefore not be determined by this method.

A second and more general method to approximateRG is to derive amplitude
equations, also called Landau equations, by using projection methods. This strategy
does not involve expansions in terms ofR − RL and hence it does not suffer from
the problems encountered in weakly nonlinear stability analysis. A commonly used
approach is to use a numerical Galerkin method for projection (Schuttelaars, 1998;
Calvete et al., 1999, 2002). It allows a systematic calculation of finite-dimensional
amplitude equations from the basic equations of the unknown fields in series of the
eigenfunctionsof the linear problem, i.e. the eigenfunctions ofLR, followed by a
projection of the equations on suitably defined testfunctions.

Both techniques for bifurcation analysis are calledlocally super/sub/transcritical
to emphasize the fact that the search for a stable or unstable bifurcated solution is
performed in the neighborhood of the ground state only. When there are no non-
trivial solutions in the immediate vicinity of the ground state for values of the control
parameter close enough to the linear thresholdRL , the search has to be performed
in the full phase space. The system can be saidglobally subcritical as soon as an
attractor coexists with the stable state; otherwise it isgloballysupercritical.

Implicit in expression (1.3.4) is the definition of a canonical scalar product that
may serve us to determine the adjoint operatorL†

R of LR. In this way we can split
LR in a symmetric and asymmetric part:LR≡Ls

R +La
R. WhenLR is symmetric, and

hencenormal, with respect to this scalar product, the linear instability thresholdRL
and the energy stability thresholdRE coincide (RE ≡ RL) and, sinceRE 6 RG and
RG 6 RL , one hasRG = RL so that the (primary) bifurcation is globally supercritical
(Henningson and Reddy, 1994). WhenLR is not normal for this scalar product, but
the nonlinear termNR(f) satisfies〈NR(f), f 〉 6 0, Galdi and Padula (1990) showed
that nonlinear stability analysis is reduced to the study of the spectrum of thesym-
metricpart of the linear operator, i.e.Ls

R.
To improve the thresholdRE, a modified method is needed (Galdi and Straughan,

1985). One method is to formulate a “generalized energy” by coupling different
norms with suitable coupling parameters, see Straughan (2004). The idea is to opti-
mize these coupling parameters to obtain a sharper stability boundRE, and in some
cases it even removes the stability gap, i.e. one obtainsRE ≡ RL . Such energies are
introduced on purely heuristic grounds but they give in general valuable information
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about the stability of the system.
In some cases the concept of symmetrizable operators can be used. By this we

mean thatLR may be asymmetric with respect to some scalar product, but becomes
symmetric if we replace the scalar product by a different one. A sufficient condition
under which an operatorLR is symmetrizable, is that there exists an invertible oper-
atorS such thatS−1LRS is symmetric. This procedure is called asimilarity trans-
formationand the resulting operatorS−1LRS is calledsimilar (toLR). An important
property of such a similar operator is that its spectrum is a subset of the spectrum
of LR, and, moreover, that it is symmetric (Lax, 1954; Istratescu, 1981). The new
energy norm is then given by

Ẽ (t) =

∫
C

(
S−1f

)T(
AS−1f

)
=: 〈 f, f 〉S . (1.3.6)

Once we have identified such an operatorS, we can apply the above described theory
as developed by Galdi and Straughan for the energy measured in the norm induced
by 〈·, ·〉S : due to the symmetry of the similar operator, the linear stability boundRL

coincides with the new nonlinear stability bound̃RE provided that the nonlinear term
satisfies〈NR(f), f 〉S 6 0. In general, the nonlinear termNR(f) is no longer dissipa-
tive for the new scalar product〈·, ·〉S for everyperturbation fieldf ∈ H. It may be
well possible that the dissipativity condition still holds for a subclass of admissible
perturbations̃H ⊂ H. On the other hand, for some cases it is possible to prove that
the quantityẼ always decreases foranyperturbationf ∈H provided it is initially suf-
ficiently small (conditional stability), which is another way to express that the basic
state is linearly stable (Joseph, 1976; Straughan, 2004). All these ‘generalized en-
ergy methods’ have in common, besides the difficulties in the physical interpretation
of these measures, that the resulting energy stability thresholdRE critically depends
on the class of admissible perturbations one considers. So in general we are still left
with the inequalitiesRE 6 RG 6 RL .

Up to now we have not paid much attention to the behaviour ofE (t) in the region
[RE, RG]. In some cases the eigenfunctions of the linearized operatorLR are not
orthogonal with respect to theL2 scalar product. For instance see Chapter 2 when
evaporation causes a first-order spatial derivative in the operator. Such operators are
callednonnormal(Kato, 1976). Sometimes a different scalar product may give nor-
mality (orthogonal eigenfunctions). Clearly every nonnormal operator is asymmetric.
Due to this non-orthogonality of the eigenfunctions, nonnormal operators exhibit par-
ticular transient behaviour which cannot be captured by linear stability analysis. It
is well known that a linearly stable but nonnormal system may temporarily move far
away from equilibrium before approaching it ast → ∞ (Schmidt and Henningson,
2001). This implies that there can be considerable transient algebraic growth of the
energy normE (t), even when the system is linearly stable. This transient growth
may be quite large: in Poiseuille flow at Reynolds number 5000, Butler and Farrell
(1992) found disturbances that could grow in “energy” by a factor of 4897, despite
the fact that Poiseuille flow is linearly stable at this Reynolds number. The concept
is that a group of eigenfunctions are nearly linearly dependent so that, in order to
represent an arbitrary disturbance, it is then possible that the coefficients can be quite
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large (Reddy and Henningson, 1993). All that can be said from this general, so far
unspecific, standpoint is summarized in Figure 1.2.

The Ansatz that perturbations grow or decay exponentially in time is not valid
when the ground state depends on time, i.e.F0 = F0(z, t). Therefore the method of
linearised stability is not applicable in these cases. In abstract terms, linearization
gives thenon-autonomousproblem

MR
df
dt

= LR(t)f +NR(t, f) . (1.3.7)

However if the growth rate of the ground state is small compared to the growth of
the perturbations, timet can be used as a parameter in the system. For this case it
is said that the frozen profile hypothesis holds. However, in most cases this hypoth-
esis does not hold uniformly in time, e.g. for small times it is violated whereas for
asymptotically large times it is a very good approximation.

An alternative approach to analyse the stability of the solution of (1.3.7), is to
use Galerkin projections, resulting in a non-autonomous system of linear ODEs. For
the special case thatF0(·, t) = F0(·, t + τo), thus whenF0 is periodic with period
τo, one can analyse stability of this system by means of classical Floquet theory (Ce-
sari, 1963). For the non-periodic case, one would have to introduce an appropriate
(in)stability criterion that has to be tested foranypossible initial condition. However,
Caltagirone (1980) showed that there is no universal method for determining such a
criterion because the initial condition crucially determines the large time behaviour.

Basically, the only viable method for analysing the stability of time-dependent
ground states is the energy method. For periodic ground states, Homsy (1974) pro-
posed a method to explicitly incorporate this time-periodicity in the energy method.
His approach is based on the fact that some specific flow problems (e.g. Chhuon and
Caltagirone (1979), Caltagirone (1976) among many others) have periodic ground
states which for the first half of the period represent a potentially unstable situation,
and for the second half of the period they correspond to an unconditionally stable
situation. Homsy (1974) showed that the stable half period maystabilizethe unstable
half period in such a way that the system as a whole is more stable then one would
find by examining the unstable half period only. Hence this concept may result in
an improved energy stability bound. Homsy’s idea is from a conceptual point of
view straightforward but to obtain the desired stability threshold is technically very
complicated since one has to solve two optimization problems.

1.4 Overview and main results of this thesis

This thesis is devoted to the study of the stability properties of flow problems(P1),
(P2), and(P3) with respect to their ground state solutions by using the techniques
from Section 1.3. In particular, we investigate ground states that correspond to equi-
librium solutions (problems(P1) and(P3)), and we consider ground states that de-
pend on time as well. With respect to these time-dependent problems we consider
both non-periodic (problem(P1)) and periodic ground states (problem(P2)).

The thesis is split in two parts. In Part I (Chapters 2, 3, and 4) we focus on the
stability of (P1), and in Part II (Chapters 5 and 6) we treat problems(P2) and(P3)
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separately.

Downward migration of salt near the surface of a salt lake: Chapters 2 (Pieters
et al., 2004), 3 (van Duijn et al., 2002; Pieters and van Duijn, 2004), and 4 (Pie-
ters and Schuttelaars, 2004).We formulate a stability problem involving a porous
medium of infinite thickness (H = ∞) which is saturated with saline water flowing
vertically upwards through a horizontal surface. The upflowing water is assumed to
evaporate completely at the surface. Salt saturation is established quickly and is sus-
tained there, with excess salt precipitated on the surface. Below the surface, a saline
boundary layer grows by diffusion in the counter direction to the upflow. If this layer
remains stable under gravity, an equilibrium state is reached where the salinity (or
density) profile is exponential, decreasing downwards towards the ambient upflow
value.

We start in Chapter 2 by introducing a ground-state solutionS0(z, t) for prob-
lem (P1) that describes the above mentioned growing boundary layer and derive the
nonlinear perturbation equation (NP). For the analysis of thelinearizedperturbation
equation (LP), we need some special properties of the ground state solution. We
apply a Fourier transform to the linearized perturbation equation to obtain a one-
dimensional initial-boundary value problem in which the Fourier wavenumbera ap-
pears as a parameter. For initial conditions belonging to a particular class, we prove
existence and uniqueness of solutions of (LP) by using a fixed-point argument.

In Chapter 3 we determine the stability thresholds. We start in Section 3.1 with
the analysis of the spectrum of (LP). Since (LP) is not self-adjoint with respect to
L2(�), we cannot directly make use of variational techniques to obtain information
about its spectrum. Things are even more complicated since we consider the lin-
earized problem on a semi-infinite domain. We show that the spectrum consists of a
finite number of discrete eigenvalues corresponding to a discrete point spectrum, and
that there are solutions that correspond to an uncountable point spectrum. Numerical
computations, however, show that this part of the spectrum is important in the linear
stability analysis. In addition, using a variational principle for the largest eigenvalue
we prove exchange of stability: for each wavenumbera>0 we haveR(a)≶ RL(a) if
and only ifσmax=σmax(R,a) :=maxi {σi }≶0, whereRL(a) is determined by solving
for R the equationσmax(R,a)=0. In this way we obtain the linear stability threshold

R?L := min
a>0

RL(a) = RL(a
?) ∼= 14.35 witha? ∼= 0.759 . (1.4.1)

In Section 3.2 we use the energy method to obtain energy stability thresholds.
In applying the energy method we follow two approaches in which the functional is
based on the standardL2-norm. In the first approach one incorporates an integral con-
straint in the space of admissible perturbations, which is based on continuity and the
integrated Darcy equation. The Euler–Lagrange equations with boundary conditions
can be combined into a second order eigenvalue problem with time as a parame-
ter. We demonstrate in Section 3.2.1 that at equilibrium, when the boundary layer
has reached its large time profile, this eigenvalue problem can be solved in terms of
Bessel functions yielding

R?E1
∼= 5.7832 (1.4.2)
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as a value of the Rayleigh number below which the system is definitely stable. This
stability bound corresponds to the square of the first root of the Bessel functionJo.

In a second approach, outlined in Subsection 3.2.2, we use the same functional,
but we replace the integral constraint with an exact differential relation which is now
based on continuity and the ‘pointwise’ Darcy equation. This yields a sixth order
eigenvalue problem which we solve numerically by a modified Chebyshev–Galerkin
method. With the given boundary conditions we find at equilibrium approximately

R?E2
:= min

a>0
RE2(a) = RE2(a

?) ∼= 8.59 , with a? ∼= 0.339 , (1.4.3)

as the largest Rayleigh number below which the system is definitely stable.
Given the physical parameters of the system a value for the Rayleigh number

Ra results. This value may fall within one of three ranges: definitely stable for
Ra 6 R?E2

, definitely unstable for Ra> R?L , and possibly unstable to disturbances of
finite amplitude (leading to subcritical instabilities) whenR?E2

<Ra6 R?L .
Section 3.2.2 also explains the stability analysis for the growing boundary layer.

Here timet appears as a parameter. In the early stages of development, the layer
is sufficiently thin to be stabilised by the given boundary conditions. However, the
monotonic increase in layer thickness with time will be accompanied by decreasing
stability of the system as the influence of the boundary diminishes. The stability
curves are obtained with the energy method based on the differential constraint and
where the equilibrium boundary layerS̄0(z) is replaced by the growing boundary
layerS0(z, t). For a given and fixed timet > 0, let RE(t) denote the minimum of the
corresponding stability curve. Further, letRL(t) denote the minimum of the stability
curve at timet obtained by the method of linearised stability with the frozen profile
approximation. We now have the following refinement with respect to the equilibrium
case. If Ra6 RE(∞) = R?E2

, the layer will attain a stable equilibrium profile. If,
however, Ra> R?E2

we can determine a timet?E, corresponding to Ra= RE2(t
?
E),

and conclude the stability of the growing boundary layer fort< t?E. In particular, we
show analytically that for all Ra there exists such at?E, which implies that the system
is always initially stable (with respect to the energy method). On the other hand, if
Ra > R?L we can nominate an elapsed timet?L corresponding to Ra= RL(t?L) and
conclude the instability of the layer fort> t?L .

For the equilibrium boundary layer, the improved energy stability thresholdR?E2

does not coincide with the linear instability thresholdR?L . This implies that the tran-
sition to convection may be subcritically. To obtain more information about the be-
haviour of the system forR?E2

< Ra < R?L , we modify in Subsection 3.2.3 theL2-
norm. The new functional is now given by aweightednorm, where the weight is
induced by the similarity tranformations as discussed in Section 3.1. The introduc-
tion of a weight in the energy norm usually imposes some additional constraints in
the space of admissible perturbations. We show for the equilibrium case necessary
and sufficient conditions for stability with respect to theweightedenergy functional
and for perturbations in the restricted space of perturbations. An important conclu-
sion is that subcritical convective solutions can never be in this restricted space of
perturbations, and this is numerically shown in Chapter 4. Further, we also apply the
weighted energy method to the growing boundary layer and show that the subcritical
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regions are smaller compared to the ‘standard’ energy method.
The weight in the scalar product changes the ‘geometric’ structure of the eigen-

functions of problem (LP). In Section 3.3 we show that the use of a weight in the
scalar product orthogonalize the eigenfunctions and this implies monotonic decay of
the weighted norm. However, without this weight the eigenfunctions are not perpen-
dicular and theL2-norm may exhibit transient growth in time, even when all eigen-
values of problem (LP) are in the left stable halfplane. We show that this is indeed
the case by analysing thesymmetricpart of problem (LP). The eigenfunctions of this
problem specify initial conditions for (LP) that initiate transient growth.

In Section 3.4 we present conclusions and discuss experimental Hele–Shaw re-
sults (Wooding et al. (1997a,b)) in terms of our theoretical findings. Theory and
experiment show excellent agreement.

The shape, i.e. number of ‘salt-fingers’, of growing instabilities depends substan-
tially upon the perturbations present during the initial stable period. This is investi-
gated numerically in Chapter 4, where we use Finite Element simulations to validate
the theoretical stability thresholds from Chapter 3. For a given set of initial perturba-
tions, we do a time-integration of the discretized full model. We evaluate for every
time step a functionalU (t) that is based on the velocity perturbation. This global
measure is then used to determine different solutions. If the initial perturbations are
sufficient close to the patterns we are expected to see, we observe nontrivial convec-
tive solutions in the theoretically predicted range. As to be expected, the functional
U (t) does not completely reveal the nonlinear dynamics of the problem. In partic-
ular, it only detects thestableconvective solutions but it does not give information
about the unstable ones. Hence, a detailed bifurcation analysis (in which one also
incorporates the unstable solutions), is virtually impossible with this approach. In
addition, the numerical simulations are from a computational point of view quite
expensive.

Therefore we derive in Section 4.2 a lower-dimensional Landau type amplitude
equation that functions as an approximation of the fully nonlinear model. In Sec-
tion 4.3 we use this reduced model for bifurcation analysis. It is first validated in
Subsection 4.3.1 by means of the Finite Element simulations. A careful comparison
shows excellent agreement. We perform a detailed bifurcation analysis for two dif-
ferent patterns with respect to the horizontal plane: perturbations that correspond
to stripes/rolls, and perturbations that correspond to hexagonal patterns. For the
stripe/roll patterns we show that the primary bifurcation is a subcritical pitchfork.
For hexagonal patterns, however, this transition is transcritical. Further, for both the
roll/stripe and hexagonal patterns, bifurcation analysis reveals the existence of Hopf
bifurcations. To conclude, we find from the bifurcation diagrams an upperbound for
the global stability threshold:

RG < 13.22 . (1.4.4)

Solute transport in wetland ecosystems: Chapter 5 (Rappoldt et al., 2003).Tran-
sport of nutrients, CO2, methane and oxygen plays an important ecological role at
the surface of wetland ecosystems. A possibly important transport mechanism in a
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water-saturated peat moss layer (usuallySphagnum cuspidatum) is nocturnal buoy-
ancy flow: the downward flow of relatively cold surface water and the upward flow of
warm water induced by nocturnal cooling. In Section 5.2 we show that buoyancy flow
occurs in an impulsively cooled porous layer of semi-infinite extent if the system’s
Rayleigh number (Ra) exceeds 7. For a block-wave surface temperature, this critical
Rayleigh number is given by 18 and for a harmonic wave it is given by 25. Further,
it is shown numerically that the critical Rayleigh number increases with decreasing
layer thickness. For a temperature difference of 10 K between day and night a typical
Ra-value for a peat moss layer is 80, which leads to quickly developing buoyancy
cells (see Appendix 5.A). Numerical simulation in Section 5.3 demonstrated that the
fluid flow leads to a considerable mixing of the water. Temperature measurements in
a cylindrical peat sample of 50 cm height and 35 cm diameter were in agreement with
the theoretical results, see Section 5.4. The nocturnal flow and the associated mixing
of the water represent a mechanism for solute transport in water-saturated parts of
peat land and in other types of terrestrializing vegetation. This mechanism may be
particularly important in continental wetlands where Ra-values in summer are often
much larger than the threshold for fluid flow.

Steady infiltration in unsaturated soils: Chapter 6 (van Duijn et al., 2004).The
stability of steady, vertically upward and downward flow of water in a homogeneous
layer of soil is analyzed in Chapter 6. In Section 6.1 three equivalent dimensionless
forms of the Richards equation are introduced, namely the pressure head, saturation,
and matric flux potential forms. To illustrate general results and derive special results,
use is made of several representative classes of soils. For all classes of soils with a
Lipschitz continuous relationship between the hydraulic conductivity and the matric
flux potential, steady flows are shown to be unique (Subsection 6.2.1). In addition,
linear stability of these steady flows is proved in Section 6.3 and, in a setting as pro-
posed by Y. Yortsos, in Appendix 6.A. To this end, use is made of the energy method,
in which one considers (weighted)L2-norms of the perturbations of the steady flows.
This gives a general restriction of the dependence of the hydraulic conductivity upon
the matric flux potential, yielding linear stability and exponential decay with time of
a specific weightedL2-norm. In Sections 6.4 and 6.6 it is shown that for other norms
the ultimate decay towards the steady-solution is preceded by transient growth. An
extension of the Richards equation to take into account dynamic memory effects is
also considered (Section 6.5). It is shown that the stability condition for the stan-
dard Richards equation implies linear stability of the steady solution of the extended
model.

A modified spectral Chebyshev–Galerkin method (Appendix A).In several parts
in above mentioned chapters we complement the analytical results with numerical
computations. For this purpose we make use of a modified Chebyshev-Galerkin
method. The modification of the standard Chebyshev–Galerkin method is basically
a combination of ideas posed by Heinrichs (1989, 1991) and Shen (1995), see also
Pop (1995), and implies that the discretization matrices have excellent properties for
numerical computations. In the appendix we explicitly give the coefficients of these
matrices since they can be computed by hand. Spectral methods also require less
discretization points and hence the method is very fast and accurate for solving the
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initial-boundary-value and eigenvalue problems in Chapters 3. Further, the obtained
eigenfunctions are used for the model reduction in Chapter 4.
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Chapter 2

Qualitative properties of the perturbation
equation

?

This chapter is entirely devoted to the derivation and analysis of the perturbation
equations. For the derivation of the perturbation equation we need to define

a ground state solution. Settingf ≡ 0 in (P1)4 gives a solution involving a one-
dimensional saturation profile and uniform upflow. It is called the ground station
solution, describing a growing boundary layer near the outflow surface of the domain.

We perturb the ground state solution to study its stability. Under certain assump-
tions on the perturbations, the resultinglinearizedperturbation equation is shown to
depend on one spatial variable only (inz-direction) and on timet . We show existence
and uniqueness of this equation by using a fixed point argument.

Throughout this chapter the flow domain is given by the halfspace� :=R2
×R+.

2.1 The ground state solution and its properties

Starting from zero initial saturation, direct verification shows that the following triple
(U0, S0, P0) satisfies problem(P1):

(i)

U0 := −Ra−1 ez in � .

(ii ) S0= S0(z, t) is the unique bounded solution of

∂S

∂t
=
∂2S

∂z2
+
∂S

∂z
in Q :=R+ ×R+ , (2.1.1a)

S = 1 , z = 0, t > 0 , (2.1.1b)

S = 0 , z> 0, t = 0 . (2.1.1c)

? This chapter is joint work with I.S. Pop (Eindhoven University of Technology) and parts of it will
appear as a paper inZeitschrift f̈ur Angewandte Mathematik und Physik(ZAMP).

27
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(iii ) P0 is determined (up to a constant) by integrating Darcy’s law(P1)3.

This triple is called the ground state solution. It describes uniform upflow, with a
growing salt boundary layer nearz=0. Observe that the initial condition (2.1.1c) is
not compatible with boundary condition (2.1.1b). The solution of (2.1.1) is given by
(van Duijn et al., 2001)

S0 = S0(z, t) = 1
2e

−z erfc

[
z − t

2
√

t

]
+ 1

2 erfc

[
z + t

2
√

t

]
, in Q . (2.1.2a)

The equilibrium boundary layer for this case, which arises ast → ∞, is given by a
decaying exponential, i.e.

S̄0 = S̄0(z) = e−z , for z> 0. (2.1.2b)

Below we introduce the half stripQT :=R+×(0, T ], whereT>0 is arbitrary chosen.
Without using the explicit form (2.1.2a) we prove

Lemma 2.1. (i) 0< S0(z, t)< F(z/
√

t) for (z, t) ∈ Q, where F is the similarity
solution satisfying1

2ηF ′
+ F ′′

=0 for 0<η<∞, with F(0)=1 and F(∞)=0;

(ii) S0 ∈ H1(QT ).

This lemma will be used in several parts of this chapter.

Proof. The first assertion is a direct consequence of the fact that∂zS0<0 and∂t S0>0
in Q. It immediately implies∫

QT

S2
0 6

√
T
∫
R+

F2 dη .

Multiplying (2.1.1a) by 1− S0 gives

∂t
(
S0 − 1

2 S2
0

)
= ∂z

(
(1 − S0)∂zS0

)
+ (∂zS0)

2
+ ∂z

(
S0 − 1

2 S2
0

)
.

Integrating this expression overQT gives∫
QT

(∂zS0)
2

= 1
2T +

∫
R+

(
S− 1

2 S2
0

)
dz 6 1

2T +
√

T
∫
R+

(
F − 1

2 F2
)

dη .

�

Remark 2.2. In this thesis we only consider the intial condition S0(z,0) = 0 for
z> 0. However, other initial conditions are possible provided that they belong to
L2(R+) ∩ L∞(R+) and that they decay sufficiently fast as z→ ∞. For instance,
one could take S0(z,0) = 1 − H(z − ζ ) for z > 0, with ζ ∈ (0,∞) being fixed
and H denoting the Heaviside function. Again, the corresponding solution can be
determined explicitly and is given by

Sζ0(z, t) = 1
2e

−z erfc

[
ζ + z − t

2
√

t

]
− 1

2 erfc

[
ζ − z − t

2
√

t

]
+ 1 , in Q .
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2.2 The perturbation equations

For the purpose of the stability analysis we perturb the ground state and write the
solution of(P1) as

S = S0 + s , U = U0 + u and P = P0 + p , (2.2.1)

with u= (u, v, w), and whereS, U andP satisfy(P1). We require that the perturba-
tions vanish at both the inflow and outflow boundary:

s = u = 0 atz = 0,∞ , (2.2.2)

expressing that{S,U} and{S0,U0} both satisfy(P1)4 and behave similarly at large
depth.

Substituting (2.2.1) into equations(P1)1,2,3 and writing R instead of Ra , yields
the system (in� and for allt>0)

(NP)



∂s

∂t
−
∂s

∂z
+ Rw

∂S0

∂z
+ Ru · ∇s = 1s . (2.2.3a)

∇ · u = 0 , (2.2.3b)

u + ∇ p − sez = 0 , (2.2.3c)

As in Lapwood (1948) we note that equations (2.2.3b) and (2.2.3c) can be combined
to give fors andw the linear relation

1w = 1⊥s in � , (2.2.4)

where1⊥ denotes the horizontal Laplacian∂xx + ∂yy. This relation plays a crucial
role in various parts of this thesis.

For infinitesimally small perturbations one can disregard the higher order terms
in (2.2.3a) and considers the approximatelinear problem (in� and for allt>0)

(LP)


∂s

∂t
= 1s +

∂s

∂z
− Rw

∂S0

∂z
, (2.2.5a)

1w = 1⊥s . (2.2.5b)

2.3 The linearised perturbation equation: existence, unique-
ness and regularity

Based on experimental observations, we assume that perturbations are periodic in
the horizontal(x, y)-plane, i.e. {s, w}(x, y, z, t) = {s, w}(z, t)ei (axx+ay y). This is
consistent with the fact that the coefficients in (2.2.5a,b) do not depend onx and
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y. Substitution into the perturbation equations (2.2.5) yields the one-dimensional
problem

(P)



∂s

∂t
=
∂2s

∂z2
+
∂s

∂z
− a2s − R

∂S0

∂z
w in Q , (2.3.1a)

−
∂2w

∂z2
+ a2w = a2s inR+, for eacht>0 , (2.3.1b)

s = w = 0 z = 0, t > 0 , (2.3.1c)

s = f z> 0, t = 0 . (2.3.1d)

We fix t>0 and consider the subproblem

−
∂2w

∂z2
+ a2w = a2s , w(0) = 0 , in L2(R+) . (2.3.2)

For the solutionw of problem (2.3.2) we have the followinga priori estimates:

Lemma 2.3. Let s∈ L2(R+) and letw be a solution of(2.3.2). Thenw ∈ BUC([0,∞)),
w→0 as z→ ∞ and we have the estimates

‖w‖2 6 ‖s‖2 ,

‖∂zw‖2 6 1
2a ‖s‖2 ,

‖w‖∞ 6 1
2

√
2‖w‖H1 6

√
1
2(1 + 1

4a2) ‖s‖2 .

The proof is based on the application of the Cauchy–Schwarz inequality and on
a result from Burenkov (1998, Theorem 4, p. 138). To obtain an explicit form for the
solutionw(z) we introduce

Definition 2.4. For a>0 we define the Green’s function

Gw(z, ζ ) =


a
(
e−az

− ea(ζ−z)
)

e−aζ − 2
for z<ζ ,

a
(
e−aζ

− ea(z−ζ )
)

e−aζ − 2
for ζ <z .

(2.3.3)

Following ideas of Ḿetivier (2004) we find

Proposition 2.5. For a> 0 and s∈ L2(R+) equation(2.3.2)has a unique solution
w ∈ H2(R+) given by

w(z) = a2
∫
R+

Gw(z, ζ )s(ζ ) dζ . (2.3.4)
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Proof. Since−∂zzw=a2(s−w)we find via Lemma 2.3 that‖∂zzw‖2=a2 ‖s−w‖26
2a2 ‖s‖2. Thusw ∈ H2(R+). �

With the integral solution (2.3.4) we associate the linear operatorB : L2(R+) 7−→

H2(R+) by settingw= Bs. ThenB has the following properties:

Lemma 2.6. The integral operator B is bounded in L2(R+) and inBUC(R+).

Proof. Boundedness inL2(R+) is straightforward. To demonstrate boundedness in
BUC(R+) we show that‖w‖∞ 6 ‖s‖∞. For this purpose we consider the weak
formulation of (2.3.2):∫

R+

∂w

∂z

∂ϕ

∂z
+ a2

∫
R+

wϕ = a2
∫
R+

sϕ , (2.3.5)

for all ϕ ∈ H1
0 (R+). Let Ms := ‖s‖∞. Subtractinga2

∫
R+

Msϕ from both sides of

equation (2.3.5) and testing withϕ= [w − Ms]+ gives

0 6
∫

{w−Ms>0}

(
∂z(w − Ms)

)2
+ a2

∫
{w−Ms>0}

(w − Ms)
2

=

= a2
∫
R+

(s − Ms)[w − Ms]+ 6 0 .

This implies that [w− Ms]+ =0 almost everywhere inR+. Sincew ∈ BUC(R+) we
findw6 Ms. In a similar way we getw>−Ms inR+ giving ‖B‖∞ 61. �

Now we turn our attention back to problem(P), which we solve inQT for any
T > 0, and prove existence and uniqueness by a contraction argument. For this
purpose we takeT > 0 arbitrary and split problem(P) into two parts. Note that
(2.3.1b) involves spatial derivatives only, so time can be seen here as parameter. With
v ∈ L∞(0, T; L2(R+)) ∩ L∞(QT ) and for arbitrary 0< t<T , we first solve

(Pw)

 −
∂2w

∂z2
+ a2w = a2v inR+ , (2.3.6a)

w = 0 z = 0 . (2.3.6b)

wherev=v(t). Its solutionw=w(t) is then used in problem

(Pu)


∂u

∂t
−
∂2u

∂z2
−
∂u

∂z
+ a2u = −R

∂S0

∂z
w in QT , (2.3.6c)

u = 0 z = 0, 0< t<T , (2.3.6d)

u = f z> 0, t = 0 . (2.3.6e)
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In (2.3.6c) we replacew by B(v). We construct anintegral solutionu = T (v),
with u = u1 + u2, whereu1 solves

(Pu1)


∂u

∂t
−
∂2u

∂z2
−
∂u

∂z
+ a2u = 0 in QT ,

u = 0 z = 0, 0< t<T ,

u = f z> 0, t = 0 ,

and whereu2 solves

(Pu2)


∂u

∂t
−
∂2u

∂z2
−
∂u

∂z
+ a2u = −R

∂S0

∂z
B(v) =: 8v in QT ,

u = 0 z = 0, 0< t<T ,

u = 0 z> 0, t = 0 .

Lemma 2.7. For v ∈ L∞(0, T; L2(R+)) we have8v ∈ L2(QT ).

Proof. By Lemma 2.3,B(v) is essentially bounded inQT . Further, by Lemma 2.1,
we have∂zS0 ∈ L2(QT ), thus the product of these two functions is inL2(QT ). �

The solutions of problems(Pu1) and (Pu2) are given by integral solutions, i.e.
they can be written in the form (Polyanin, 2002)

u1(z, t) = e−a2t
∫
R+

Gu(z, ζ, t) f (ζ ) dζ , (2.3.7)

u2(z, t) = e−a2t
∫ t

0

∫
R+

Gu(z, ζ, t − τ)8v(ζ, τ ) dζdτ , (2.3.8)

where the Green’s functionGu(z, ζ, τ ) is given by

Gu(z, ζ, τ ) =
1

2
√
πτ

e
1
2 (ζ−z)+(a2

−
1
4 )τ
{
e−(z−ζ )2/4τ

− e−(z+ζ )2/4τ
}
.

Integral representations (2.3.7) and (2.3.8) define the operatorT :

T (v) := e−a2t

{∫
R+

Gu(z, ζ, t) f (ζ ) dζ +

∫ t

0

∫
R+

Gu(z, ζ, t − τ)8v(ζ, τ ) dζdτ

}
.

(2.3.9)

Since8v ∈ L2(QT ), the integral solutionu = T (v) defines a weak solution of
Problem (2.3.6c) with∂tu, ∂zzu ∈ L2(QT ). To show that problem(P) has a unique
solution we prove
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Lemma 2.8. For given a>0, R>0 and f ∈ L2(R+) ∩ L∞(R+), let δ=
1

3R2
and

M0 :=
√

2‖ f ‖2. Further, define the closed and convex set

K0 :=

{
v ∈ L∞(0, δ; L2(R+)) : sup

06 t 6 δ

‖v(t)‖2 6 M0

}
. (2.3.10)

ThenT is a contraction in K0.

Proof. We first prove that the operatorT mapsK0 into itself. Sinceu=T (v) solves
(Pu) with w= B(v) we test the equation byu and obtain for 06 t 6δ the estimate

‖u‖
2
2 − ‖ f ‖

2
2 + 2

∫ t

0
‖∂zu‖

2
2 + 2a2

∫ t

0
‖u‖

2
2 = −2R

∫ t

0

∫
R+

∂S0

∂z
B(v)u 6

6 2R
∫ t

0

(
‖∂z(B(v))‖2 ‖u‖2 + ‖B(v)‖2 ‖∂zu‖2

)
dt 6

6 a2
∫ t

0
‖u‖

2
2 +

R2

a2

∫ t

0
‖∂z(B(v))‖2 +

∫ t

0
‖∂zu‖

2
2 + R2

∫ t

0
‖B(v)‖2

2 6

6 a2
∫ t

0
‖u‖

2
2 +

∫ t

0
‖∂zu‖

2
2 +

3

2
R2
∫ t

0
‖v‖2

2 . (2.3.11)

Inequality (2.3.11), Definition (2.3.10) and Lemma 2.3 imply

‖u(t)‖2
2 6

3

2
R2t M2

0 + ‖ f ‖
2
2 6

3

2
R2δM2

0 + ‖ f ‖
2
2 for all t ∈ [0, δ] , (2.3.12)

and hence sup06t6δ ‖u(t)‖26 M0 implying u ∈ K0 for t ∈ [0, δ].
We continue to show thatT is a contraction inK0. For this we takev1, v2 ∈ K0.

This givesu1 :=T (v1) andu2 :=T (v2). Further, letu=u1−u2 andv=v1−v2. Then
u satisfies(Pu) with zero initial data. Following the same procedure as in (2.3.11),
(2.3.12) we obtain for allt ∈ [0, δ]

‖u(t)‖2
2 6

3

2
R2
∫ δ

0
‖v‖2

2 6
3

2
R2δ sup

06t6δ
‖v(t)‖2

2 =
1

2
sup

06t6δ
‖v(t)‖2

2 ,

implying sup06t6δ ‖T (v)(t)‖2
26 1

2 sup06t6δ ‖v(t)‖2
2 and henceT is a contraction in

K0. �

By the Banach fixed point theorem (Zeidler, 1995) there exists a uniquev? ∈ K0
such thatu := T (v?) = v?. This is an integral and by standard arguments a weak
solution of(P) for t ∈ [0, δ]. The next step is to extend the solution to the interval
δ6 t 62δ. To do so we first notice thatu ∈ H1(0, δ; H−1(R+))∩ L2(0, δ; H1(R+))
and thusu ∈ C([0, δ]; L2(R+)) (Renardy and Rogers, 1993, Lemma 10.4). Hence
we can useu(δ) as initial data in(Pu) for δ6 t 62δ. With K1 defined by

K1 :=

{
v ∈ L∞(δ,2δ; L2(R+)) : sup

δ6 t 6 2δ
‖v(t)‖2 6

√
2M0

}
,
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we repeat the above argument to extend the solution toδ 6 t 6 2δ, and similarly to
arbitrary but finite times. In this way we obtained a unique solution for(P). This is
defined in a weak sense. In fact, the solution is classical for any positivet , as we can
see from below.

Let µ > 0. Thenu ∈ C(0, T; L2(R+)). However, sinceS0(z, t) ∈ C∞(R+ ×

[µ, T)), ∂zS0 bounded, andu ∈ L∞(0, T; L2(R+)) we immediately findB(u) ∈

L∞(0, T; H2(R+)). Thus in(Pu2) we have8v ∈ L∞([µ, T); H2(R+)). Using a
bootstrap argument in combination with the integral representation (2.3.9) we finally
obtainu∈C∞([µ, T)×R+).

Thus we have shown

Theorem 2.9. Problem(P) has a unique solution which is C∞ for any positive time.
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Polyanin, A. D.: 2002,Handbook of Linear Partial Differential Equations for Engi-

neers and Scientists. Boca Raton: Chapman & Hall / CRC.
Renardy, M. and R. C. Rogers: 1993,An Introduction to Partial Differential Equa-

tions. New York: Springer–Verlag.
van Duijn, C. J., R. A. Wooding, and A. van der Ploeg: 2001, ‘Stability criteria

for the boundary layer formed by throughflow at a horizontal surface of a porous
medium: Extensive version’. Technical Report RANA 01-05, Eindhoven Univer-
sity of Technology.

Zeidler, E.: 1995,Applied Functional Analysis, No. 108, 109 in Applied Mathemati-
cal Sciences. New York: Springer-Verlag.



Chapter 3

Stability thresholds for the vertical boundary
layer

?

Central issue in this chapter is to quantify the boundary layer stability or its grav-
itational instability in terms of the system parameters. First results in this direc-

tion are given by several authors. Wooding (1960) treated the case of a constant-
pressure (ponded) boundary by linearised stability theory. Jones and Persichetti
(1986) applied linear analysis to a permeable layer with all combinations of bound-
ary condition and throughflow direction. Approximate stability criteria by variational
means are obtained by Nield (1987). Gilman and Bear (1996) treated the linearised
stability of a horizontal unsaturated layer (vadoze zone) overlying a shallow water
table. Wooding et al. (1997a,b) discussed saturated groundwater movement with dry
or ponded conditions at the surface, and used both experimental and numerical meth-
ods to simulate the unstable behaviour of a boundary layer growing from an initial
salinity discontinuity at the surface, and including the margin, of a dry salt lake.

In this chapter we summarize these results and make some important extensions
with respect to the stability thresholds. Two paths are followed to analyse stability:
the method of linearised stability and the energy method. We consider the equilibrium
and the growing boundary layer separately. We start with the equilibrium case; the
growing boundary layer case is discussed in Subsection 3.2.3.

The method of linearised stability (Section 3.1) incorporates an analysis of the
spectrum of the linearised perturbation equation. We first show that the linear op-
erator defined by the linear part of the perturbation equation can be symmetrized
by means of a similarity transformation. From the obtained symmetric operator we
prove some properties of the spectrum and derive a stability threshold expressed in
the system parameters. For certain problems on a semi-infinite domain, however, like
the Blasius boundary layer (Grosch and Salwen, 1978; Salwen and Grosch, 1981),
one can show that there is a finite number of discrete eigenvalues corresponding to a
discrete point spectrum and that there are solutions that correspond to an uncountable

? Some parts of this chapter have appeared inEnvironmental Mechanics - Water, Mass and Energy
Transfer in the Biosphere(van Duijn et al., 2002) and other parts will appear as a paper inEuropean
Journal of Mechanics B/Fluids.
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point spectrum. The latter is sometimes referred to as the continuum. In this section
we consider a saline boundary layer in a semi-infinite domain for which both spectra
occur. In this respect it is clear that one can only determine a finite number of discrete
eigenvalues and corresponding eigenfunctions.

The energy method (Section 3.2) requires constraints on saturation and veloc-
ity perturbations. The usual constraint is based on theintegratedDarcy equation.
We give a complete analytical treatment of this case and show that the corresponding
stability threshold equals the square of the first root of the Bessel functionJo (Subsec-
tion 3.2.1). This explains previous numerical investigations by Homsy and Sherwood
(1975, 1976). We also present two alternative energy methods using thepointwise
Darcy equation as constraint: one using the standard energy functional based on the
L2-norm, and one using a spatial weighting function in the energy functional. This
first alternative energy method yields a substantially higher stability threshold.

The energy stability thresholds, however, do not coincide with the linear stability
threshold, i.e. there exists a – so-called – subcritical region in parameter space. The
existence of such region implies that instabilities of finite amplitude are possible at
Rayleigh numbers below the critical value derived using linear theory (Davis, 1971;
Straughan, 2004). One of the first observations regarding the occurrence of these gaps
was given by Davis (1969a,b, 1971), and, independently and in a different context, by
Homsy and Sherwood (1975, 1976) and later by Galdi and Straughan (1985). These
authors showed that one of the essential connections between linear and nonlinear
theory is the idea of symmetry of the linear operator. Under certain conditions for the
nonlinear term in the perturbation equation, Galdi and Straughan (1985) showed that
nonlinear stability analysis reduces to the study of the spectrum of the symmetric part
of the linearized perturbation equation. The presence of throughflow results in a first-
order term in the stability equation implying that the linear operator is asymmetric.
Hence its spectrum does not coincide with the spectrum of the symmetric part the
linear operator, and this results in a stability gap. Hence, when the linear part of the
perturbation equation is symmetric, both methods give similar stability thresholds.

To quantify this gap and to understand the behaviour of the physical system in this
subcritical region, a modified energy method is needed (Galdi and Padula, 1990).
This is the main topic of Subsection 3.2.3. We introduce a weighted energy norm
such that the asymmetric linear operator becomes symmetric with respect to the un-
derlying weighted inner product. We show that the spatial weighting function in the
energy norm is directly induced by the similarity transformation in Section 3.1. The
introduction of a weight in an energy norm basically restricts the space of admissible
perturbations. Using the theory of Galdi and Straughan (1985), we prove necessary
and sufficient stability conditions for perturbations from the restricted space of ad-
missible perturbations.

For system parameter values in the subcritical region, we also show that there ex-
ist initial perturbations for which the linearly stable system exhibits transient growth
of the ‘classical’L2 energy norm (Section 3.3). It is well known that linearly stable
but nonnormal (and thus asymmetric) systems may temporarily move far away (with
respect to theL2-norm) from equilibrium before approaching it ast → ∞ (Schmidt
and Henningson, 2001). The concept is that a group of eigenfunctions are nearly
linearly dependent (due to the nonnormality of the linear operator) so that, in order
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to represent an arbitrary disturbance, it is possible that the coefficients can be quite
large. This mechanism is taken a step further by Reddy and Henningson (1993) in or-
der to determine theoptimalinitial condition that produces the largest relative energy
growth for a certain time period. Their variational optimization method relies on the
fact that every initial perturbation can be decomposed by a sum of eigenfunctions, i.e.
the eigenfunctions form a complete set. Such a construction is not possible for prob-
lems on semi-infinite domains (Criminale et al., 2003). However, it is still possible
to find initial perturbations thatinitiate transient growth, but they are, of course, not
optimal. These special perturbations can be determined by analysing thenumerical
range (Kato, 1976) of the linear perturbation operator. The numerical range is the
largest eigenvalue of the symmetric part of the linear perturbation operator and this
eigenvalue is equal to half of the initial slope of the energy norm (Farrell and Ioan-
nou, 1996). Hence, the numerical range is closely related to the energy method. This
understanding has led to general analysis of nonnormal systems that has since been
used extensively to understand transient growth in deformation and shear flows. For
further references see, for example, Schmidt and Henningson (2001), and Criminale
et al. (2003). To conclude this chapter, we present in Section 3.4 experimental Hele–
Shaw results (Wooding et al., 1997a,b) in terms of our theoretical findings. Theory
and experiment show excellent agreement.

3.1 Linear stability analysis and properties of the spectrum

Our starting point for this section is the linearised perturbation equations (2.3.1). We
first consider the stationary ground state, i.e.S0 = S̄0 = e−z. The growing boundary
layer case will be discussed in Section 3.2.3. Thus we consider the problem

∂s

∂t
=
∂2s

∂z2
+
∂s

∂z
− a2s + a2Re−zB(s) =: Ls inR+ ×R+ , (3.1.1a)

−
∂2w

∂z2
+ a2w = a2s inR+ ×R+ , (3.1.1b)

s = w = 0 z = 0, t > 0 , (3.1.1c)

s = f z> 0, t = 0 . (3.1.1d)

To investigate the spectrum ofL, we fix a>0 andR>0 and seek for solutions of the
problem

Ls = D2s + Ds − a2s + Re−zB(s) = σs , s(0) = 0 , in L2(R+) , (3.1.2)

where D denotes differentiation with respect toz. To our knowledge, no explicit
solution of eigenvalue problem (3.1.2) is known. However, it can be treated by
a semi-analytical technique based on a Frobenius expansion in terms of descend-
ing exponentials (Wooding, 1960). Here we solve it numerically by means of a
modified Chebyshev–Galerkin method, see Appendix A for details. Let the nu-
merical approximations of the eigenvalues{σi = σi (a, R)} of L be ordered by
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Figure 3.1. (A) Isocurves of the largest eigenvalueσmax of operatorL. The dashed curveσmax ≡ 0
corresponds to the neutral stability curveRL (a) (see text for its definition). (B) Upperboundcσ and
lower boundσ f (σ ) for Rmin(a, σ ) for a=0.759 (cf. Theorem 3.1).

· · · < Re(σn) < · · · < Re(σ2) < Re(σ1) =: σmax. For a and R in relevant ranges,
σmax is plotted in Figure 3.1 as isocurves. Numerical computations show that all ap-
proximate discrete eigenvalues{σi } are real. In fact, as will be shown later, we expect
the eigenvalues to be real, thusσmax=σ1. Observe that the isocurves become vertical
as R ↘ 0 indicating thatσmax = σmax(a). Indeed, by settingR ≡ 0 in operatorL,
problem (3.1.2) can be solved explicitly to obtainσmax=− 1

4 − a2.
The dashed isocurve in Figure 3.1 is usually referred to as the neutral stability

curve. It is often found by solving the rewritten eigenvalue problem

Lσs := D2s + Ds − (a2
+ σ)s = −Re−zB(s) =: RBs , (3.1.3)

with s(0)= 0 ands ∈ L2(R+). In other words, the role ofR andσ as eigenvalues
can be interchanged. Suppose again that the set of approximate eigenvalues{Ri =

Ri (a, σ )} of problem (3.1.3) are ordered byRmin := R1< R2< · · ·< Rn< · · · . Then
the neutral stability curve is then defined byRL(a) := Rmin(a,0). The curveRL(a),
a>0 is depicted in Figure 3.2 as curve number 3. In the same figure point values of
the Frobenius approximationRF

L (a) have been plotted as crosses, showing excellent
agreement with curve 3.

In the sequel of this section we investigate the behaviour ofRmin(a, σ ) nearσ =0.
Figure 3.1 suggests that for fixeda> 0, at least forσ sufficiently close to zero, we
haveσ ≷ 0 if and only if R ≷ Rmin(a, σ = 0) = RL(a). This property is crucial
in linearised stability theory and its interpretation is that the conductive ground state
exchanges stability with a convective flow regime. In general, exchange of instability
is easy to prove when the linear operatorL is symmetric with respect toL2(R+)
(Galdi and Straughan, 1985). However, the operatorL (andLσ ) is asymmetric in
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Figure 3.2. Comparison of estimates involv-
ing lowest eigenvalueRmin versus wavenum-
ber a for the equilibrium boundary layer.
Curve 1: Energy method using integral
constraint. Curve 2: Energy method us-
ing differential constraint. Curve 3: Lin-
earised stability method using a Chebyshev–
Galerkin (solid curve) and Frobenius expan-
sion (crossed points).

L2(R+) due to the occurrence of the first order derivative. Therefore, to show the
stability exchange, a direct analysis ofL is not straighforward.

We follow a different approach in which we will make use of similarity transfor-
mations. Two operatorsA andB are calledsimilar (Kato, 1976) if there exists an
invertible operatorM such thatA=MBM−1. Let the operatorB act onL2(R+)
and consider the problemA f = MBM−1 f =: MBg. Sinceg is in L2(R+),
we must haveM−1 f ∈ L2(R+) as well. Hence operatorA acts on the space{

f : M−1 f ∈ L2(R+)
}

⊂ L2(R+). Without loss of generality we may assume that
operatorM−1 is such that it restricts to the spaceL2(R+). In this particular case it is
easy to show thatΣ(B)≡Σ(A). However, when operatorA acts on the larger space
L2(R+), then the spectra ofA andB are related by the inclusionΣ(B) ⊆ Σ(A)
(Lax, 1954). Here the spectrumΣ of the (closed) linear operatorA is given by the
set of complex numbersλ for whichA− λI has no inverse.

We will show that operatorL is similar to an operatorL1 which is symmetric with
respect to the inner product defined onL2(R+). In particular,Σ(L1) ⊆ Σ(L) and
L1 has discrete and real eigenvalues. Hence it suffices here to analyse the (discrete)
spectrum of the similar operatorL1.

Inspired by Reddy and Trefethen (1994, Section 5), we define forα ∈ [0,1] the
functionsu(x, y, z, t) and the family of (multiplication) operatorsMα by

s(x, y, z, t) = Mαu(x, y, z, t) := e−
1
2αzu(x, y, z, t) . (3.1.4)

This implies

Ls = e−
1
2αz
[
D2u + (1 − α)Du + ( 1

4α
2
− 1

2α − a2)u + a2Re(
1
2α−1)zB(e−

1
2αzu)

]
(3.1.5)

=: MαLαM−1
α s ,
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whereLα is given by

Lα = D2
+ (1 − α)D + ( 1

4α
2
− 1

2α − a2)+ a2Re(
1
2α−1)zB

(
e−

1
2αz

·
)
. (3.1.6)

Forα≡0, we regain the operatorL in (3.1.1a) and forα=1 we obtain the symmetric
eigenvalue problem (inL2(R+))

L1u = D2u − ( 1
4 + a2)u + a2Re−

1
2 zB

(
e−

1
2 z u

)
= σu , u(0) = 0 . (3.1.7)

With (3.1.6) in mind, we now consider the family of problems

∂u

∂t
= D2u + (1−α)Du + ( 1

4α
2
− 1

2α−a2)u +

+ a2Re(
1
2α−1)zB

(
e−

1
2αzu

)
=: Lαu , inR+, t > 0 , (3.1.8a)

−D2w + a2w = a2e−
1
2αzu inR+, t > 0 , (3.1.8b)

u = w = 0 on{z = 0}, t > 0 , (3.1.8c)

u = e
1
2αz f =: g inR+, t = 0 . (3.1.8d)

Since operatorL1 is symmetric and since the spectrum ofL1 is contained in the
spectrum ofL, we are now in the position to prove exchange of instability quite easily
by usingL1 instead ofL. For this purpose we again rewrite the eigenvalue problem
L1u=σu in the form

Lσu := D2u − (a2
+

1
4 + σ)u = RBu , (3.1.9)

with Bu :=−e−
1
2 zB(e−

1
2 zu). We prove

Theorem 3.1. Suppose that the smallest eigenvalue Rmin(a, σ ) of (3.1.9)depends
smoothly on a>0 andσ ∈R. Then there exist a constant c>0 and a smooth function
f : R 7−→ R, satisfying f(0) = 0, f (σ ) ≷ 0 if σ ≷ 0 andσ f (σ ) 6 cσ for all
σ ∈ R, such that

σ f (σ ) 6 Rmin(a, σ )− RL(a) 6 cσ . (3.1.10)

Moreover, f′′(0)<0.

Proof. First observe that

〈Bu,u〉 = −

〈
B(e−

1
2 zu),e−

1
2 zu
〉
= −〈w, s〉

and〈w, s〉=a−2
‖Dw‖

2
2 + ‖w‖

2
2 > 0. Hence〈Bu,u〉60. Further,Lσ =Lo − σ I

whereI denotes the identity operator. SinceLσ andB are self-adjoint, we have the
following variational characterization ofRmin(a, σ ):

0< Rmin(a, σ ) = inf
06=ū∈H1

0 (R+)

〈Lσ ū, ū〉

〈Bū, ū〉
=

〈Lσuσ ,uσ 〉

〈Buσ ,uσ 〉
. (3.1.11)
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In particular, forσ =0 we have

0< Rmin(a,0) = inf
ū∈H1

0 (R+)

〈Loū, ū〉

〈Bū, ū〉
6

〈Louσ ,uσ 〉

〈Buσ ,uσ 〉
=

=
〈Lσuσ ,uσ 〉

〈Buσ ,uσ 〉
+ σ

〈uσ ,uσ 〉

〈Buσ ,uσ 〉
= Rmin(a, σ )+ σ

‖uσ‖
2
2

〈Buσ ,uσ 〉
.

This implies

Rmin(a, σ )− RL(a) > σ
‖uσ‖

2
2

− 〈Buσ ,uσ 〉
=: σ f (σ ) . (3.1.12)

In a similar way we find the upper bound

Rmin(a, σ )− RL(a) 6 σ
‖uo‖

2
2

− 〈Buo,uo〉
=: cσ . (3.1.13)

The upper and lower bounds (3.1.12) and (3.1.13) implyRmin(a, σ ) ≷ RL(a) for
σ ≷ 0, which proves (3.1.10).

Note that inequalities (3.1.12), (3.1.13) and since〈Bu1,u1〉60 also imply

0<
‖uo‖

2
2

− 〈Buo,uo〉
=
∂Rmin(a, σ )

∂σ

∣∣∣∣
σ=0

, (3.1.14)

DifferentiatingLσuσ = Rmin(a, σ )Buσ with respect toσ and settingvσ = duσ/dσ
gives

Lσvσ − uσ = Rmin(a, σ )Bvσ +
∂Rmin(a, σ )

∂σ
Buσ ,

implying

〈Lσvσ − Rmin(a, σ )Bvσ , vσ 〉 − 〈uσ , vσ 〉 =
∂Rmin(a, σ )

∂σ
〈Buσ , vσ 〉 .

Since

〈uσ , vσ 〉 =
1

2

d

dσ
‖uσ‖

2
2 , 〈Buσ , vσ 〉 =

1

2

d

dσ
〈Buσ ,uσ 〉 ,

〈Lσvσ − Rmin(a, σ )Bvσ , vσ 〉 < 0 ,

we find

d

dσ
‖uσ‖

2
2 < −

∂Rmin(a, σ )

∂σ

d

dσ
〈Buσ ,uσ 〉 . (3.1.15)
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Differentiating the functionf (σ ) in (3.1.12), and using (3.1.14), (3.1.15) results in

− 〈Buo,uo〉
d

dσ
‖uσ‖

2
2

∣∣∣∣
σ=0

+ ‖uo‖
2
2

d

dσ
〈Buσ ,uσ 〉

∣∣∣∣
σ=0

< 0 ,

which immediately implies
d f

dσ

∣∣∣∣
σ=0

<0. Since
d2

dσ 2

(
σ f (σ )

)
=2

d f

dσ
+σ

d2 f

dσ 2
, we find

d2 f

dσ 2

(
σ f (σ )

)∣∣∣∣
σ=0

< 0 ,

which proves the concavity of (3.1.12). Note that the upper bound (3.1.13) is a
straight line through the point(0, Rmin(a,0)). This proves the second assertion of
the theorem. The upper and lower bounds forRmin(a, σ ) for a = 0.759 are depicted
in Figure 3.1(A). �

Theorem 3.1 implies the following. Let the system Rayleigh number Ra be
sufficiently close toRL(a). If Ra > RL(a), then there exists aσ > 0 such that
Ra = Rmin(a, σ ). In other words, if Ra> RL(a), there exists a infinitesimal pertur-
bation which implies that the boundary layer is unstable. If Ra< RL(a) no definite
statement about stability can be made. Only certain infinitesimal perturbations now
decay. Others, and in particular large perturbations, may still grow in time. From
Figure 3.2 we find

R?L := min
a>0

RL(a) = RL(a
?) = 14.35 with a? = 0.759 (3.1.16)

approximately. These numbers, in good agreement with the numerical results of
Homsy and Sherwood (1976), are characteristic of the linearised stability method.

3.2 Variational analysis: the energy method

For the energy method we reconsider the nonlinear problem

∂s

∂t
= 1s +

∂s

∂z
− R

∂S0

∂z
w − Ru · ∇s inR2

×R+, t > 0 , (3.2.1a)

∇ · u = 0 inR2
×R+, t > 0 , (3.2.1b)

u + ∇ p − sez = 0 inR2
×R+, t > 0 (3.2.1c)

s = w = 0 on{z = 0} ×R+, t > 0 , (3.2.1d)

whereS0= S0(z, t) denotes the ground state solution given by (2.1.2a). In the energy
method one estimates the time derivative of theL2-norm of the saturation perturba-
tion. In particular, the aim is to find the largestR-interval for which

d

dt

∫
C

s2(t) < 0 . (3.2.2)
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Here and in integrals below we disregard the infinitesimal volume elements in the
notation. The related maximumR-value clearly will depend on the wavenumbera
and, becauseS0 = S0(z, t), on timet . Once (3.2.2) is established, it follows that the
L2-norm of the velocity perturbation is bounded as well. This is a direct consequence
of (3.2.1c) and (3.2.1b). Multiplying (3.2.1c) byu, integrating the result overC and
using (3.2.1b) yields

∫
C sw −

∫
C |u|

2
= 0. Using the inequalitysw6 1

2s
2
+ 1

2w
2 we

find ∫
C

|u|
2 6 1

2

∫
C

s2
+ 1

2

∫
C
w2 6 1

2

∫
C

s2
+ 1

2

∫
C

|u|
2

and hence ∫
C

|u|
2 6

∫
C

s2 . (3.2.3)

To investigate (3.2.2), we multiply (3.2.1a) bys and integrate overC . Using
(3.2.1b) we find the identity

1

2

d

dt

∫
C

s2
= −

∫
C

|∇s|2 − R
∫

C
sw
∂S0

∂z
. (3.2.4)

Thus if R is chosen such that the right-hand side of (3.2.4) is negative for all pertur-
bations satisfying a given constraint, then stability is guaranteed.

It is our aim to investigate the consequences of two different constraints. In the
first we consider perturbations satisfying (3.2.1b) and the integrated Darcy equation:

∇ · u = 0 ,
∫

C
|u|

2
−

∫
C

sw = 0 . (3.2.5)

This approach is a modification of that used by Homsy and Sherwood (1976). While
they considered a stationary ground state only and solved the corresponding eigen-
value problem numerically, we are in the position to deal with time evolution of the
ground state as well. However, we shall not pursue the time dependence for this
constraint. Instead we give a complete analytical treatment of the case where the
ground state is given by the equilibrium case:S̄0(z) = e−z. This analysis explains
quite elegantly some of the previously obtained numerical results.

In the second constraint, we consider perturbations satisfying the differential ex-
pression

1w = 1⊥s . (3.2.6)

We shall treat the time dependent ground state and show that this differential con-
straint significantly improves the integral constraint (3.2.5), but the obtained stability
threshold does not coincide with the linear stability threshold.

The energy stability threshold can be improved up to the linear stability threshold
by further restricting the class of admissible perturbations. This can be done by using
the similarity transformation as discussed in Section 3.1. In particular, we show that
the similarity transformationsMα induce aweightedenergy norm, and this in turn
gives additional constraints for the class of admissible perturbations. As a result,
we show that the stability threshold based on this weighted energy method coincides
with the linear stability threshold.
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3.2.1 Integral constraint

Identity (3.2.4) and constraints (3.2.5) lead to the maximum problem

1

R
= sup

(s,u)∈H

−

∫
C

∂S0

∂z
sw∫

C
|∇s|2

(3.2.7)

with

H = H1 :=

{
(s,u) : x, y-periodic with respect toC , s = u = 0 atz = 0,∞,

∇ · u = 0 and
∫

C
|u|

2
=

∫
C

sw

}
.

The Euler–Lagrange equations follow from the first variation of the functional

J(s,u) =

∫
C

|∇s|2 + R
∫

C

∂S0

∂z
sw + µ

∫
C
(|u|

2
− sw)+

∫
C
π∇ · u ,

whereµ (constant in space) andπ are Lagrange multipliers. As a result we find

−21s + R
∂S0

∂z
w − µw = 0 ,

2µu − ∇π + R
∂S0

∂z
sez − µsez = 0 ,

∇ · u = 0 and
∫

C
|u|

2
=

∫
C

sw ,

whereµ (constant in space) andπ are Lagrange multipliers. Applying the scaling

u :=
λ

√
R

u , µ =
R

λ2
and p = −

1

2

λ
√

R
π ,

one finds 

√
R

2

(
1

λ
− λ

∂S0

∂z

)
w +1s = 0 , (3.2.8a)

√
R

2

(
1

λ
− λ

∂S0

∂z

)
sez − u − ∇ p = 0 , (3.2.8b)

∇ · u = 0 , (3.2.8c)∫
C

|u|
2

=

√
R

λ

∫
C

sw . (3.2.8d)
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These equations were also found by Homsy & Sherwood with a slightly different
interpretation of the parameterλ. Note that (3.2.8b) has a structure similar to Darcy’s
law.

As before, (3.2.8b) and (3.2.8c) can be combined to give

1w =

√
R

2

(
1

λ
− λ

∂S0

∂z

)
1⊥s . (3.2.9)

Further, multiplying (3.2.8b) byu, integrating the result overC , and using (3.2.8d)
yields the useful identity

λ2
=

∫
C

sw

−

∫
C

∂S0

∂z
sw

. (3.2.10)

Finally, multiplying (3.2.8a) bys, integrating the result overC , and using (3.2.10)
gives ∫

C
|∇s|2 =

√
R

λ

∫
C

sw . (3.2.11)

Next we introduce the periodicity. Settings :=as, with a given by (1.2.16), we find
from (3.2.8a) and (3.2.9) the equations (withD signifying d/dz)(

D2
− a2

)
s +

a
√

R

2

(
1

λ
− λ

∂S0

∂z

)
w = 0 , (3.2.12)

(
D2

− a2
)
w +

a
√

R

2

(
1

λ
− λ

∂S0

∂z

)
s = 0 , (3.2.13)

for 0< z< ∞. Note that in these equationst appears as a parameter through the
ground state. We seek non-trivial solutions subject to the homogeneous conditions
(2.2.2) and the constraint (3.2.10).

As a first observation we note that (3.2.12), (3.2.13) and the boundary conditions
imply s=w. Hence we are left with the second order boundary value problem (for
0<z<∞) 

(
D2

− a2
)

s +
a
√

R

2

(
1

λ
− λ

∂S0

∂z

)
s = 0 , (3.2.14a)

s(0) = s(∞) = 0 , (3.2.14b)

subject to the constraint (replacingw by s in (3.2.10))

λ2
=

∫
∞

0
s2

−

∫
∞

0

∂S0

∂z
s2
. (3.2.15)
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Identity (3.2.11) is rewritten as∫
∞

0
(Ds)2 =

(
a
√

R

λ
− a2

)∫
∞

0
s2 . (3.2.16)

This expression and equation (3.2.14a), using∂S0/∂z → 0 asz → ∞, imply that
nontrivial solutions only exist in the parameter range

1<

√
R

aλ
< 2 .

So far we have not used the explicit form ofS0. In the analysis below we confine our-
selves to the equilibrium case whereS0 is a simple decaying exponential. Introducing
the new parameters

δ =

√
R

aλ
(with 1< δ < 2) , α =

√
2R

δ
, β = β(a, δ) = 2a

√
1 −

δ

2
,

(3.2.17)

and the transformation

ξ = αe−
1
2 z , f (ξ) = s(z) , (3.2.18)

we find for f a boundary value problem involving the Bessel equation

ξ2 f ′′
+ ξ f ′

+ (ξ2
− β2) f = 0 on 0< ξ < α , (3.2.19)

with

f (0) = f (α) = 0 . (3.2.20)

Here primes denote differentiation with respect toξ . A solution of (3.2.19) satisfying
the first condition in (3.2.20) is

f (ξ) = Jβ(ξ) , (3.2.21)

with Jβ denoting the Bessel function of the first kind, orderβ. Next we fixa>0 and
consider

Jβ(a,δ)(ξ1) = 0 for 1< δ < 2 , (3.2.22)

whereξ1 = ξ1(a, δ) is the first positive zero ofJβ . Then settingα = ξ1 in the third
equation of (3.2.17), we obtain the first eigenvalueR1 for the given values ofa and
δ:

R1 = R1(a, δ) =
1

2
δ
(
ξ1(a, δ)

)2
for 1< δ < 2 . (3.2.23)
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Keepinga fixed, we now turn to the integral constraint (3.2.15). In the transformed
variables it reads

1

δ
= 2a2

∫ ξ1

0

1

ξ
J2
β (ξ)dξ∫ ξ1

0
ξ J2

β (ξ)dξ

. (3.2.24)

The question now arises whether there exists a unique numberδa ∈ (1,2) such that
δ=δa satisfies (3.2.24). This would result in the first eigenvalue

R1(a) := R1(a, δa) for a > 0 . (3.2.25)

The proof involves some technical details which are given in van Duijn et al.
(2001). The energy stability curve in the(a, R)-plane is plotted as curve 1 in Figure
3.2. If perturbations arex, y-periodic with wavenumbera and if Ra< R1(a), then
the ground state (at equilibrium) is stable in theL2-sense. The construction implies

R?E1
:= lim

a↓0
R1(a) = 5.78318· · · (first zero ofJo)

2 . (3.2.26)

Homsy and Sherwood used a numerical shooting method to solve the eigenvalue
problem. They found (3.2.26) approximately as a stability threshold.

3.2.2 Differential constraint

In a second approach we want to achieve (3.2.4) for perturbations satisfying the dif-
fential constraint (3.2.6). This leads to a maximum problem in which (3.2.7) is con-
sidered for the space of perturbations

H = H2 :=
{
(s, w) : x, y-periodic with respect toC ; s = w = 0 atz = 0,∞ ;

and1w = 1⊥s in C
}
.

This maximum problem results in an eigenvalue problem which has a much higher
complexity than the eigenvalue problem related to (3.2.5). In fact it leads to a sixth
order differential equation in terms ofw, for which no explicit solution is known.
However, one expects to have a more accurate description, yielding larger Rayleigh
numbers, in particular since (3.2.6) is based on the pointwise Darcy equation.

Theorem 3.2. The maximum problem(3.2.7)subject toH2 yields a larger energy
stability threshold than the one obtained by solving the maximum problem subject to
H1.

Proof. We compare the maximum problem (3.2.7) for the admissible perturbations
H1 andH2. In particular we show thatH2 can be identified with a proper subspace of
H1.
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Let (s, w) ∈ H2. For this givens we have the unique decomposition (Temam,
1984)

sez = v + ∇ϕ (v, ϕ arex, y-periodic), (3.2.27)

where∇ · v=0 andv · n=0 on∂C . Heren denotes the unit normal at the boundary
∂C . As in (2.2.4) we find

1v3 = 1⊥s in C ,

wherev3 is the vertical component ofv. This implies

1(v3 − w) = 0 in C ,

and the boundary conditions on∂C give v3 =w in C . Thus given(s, w) ∈ H3 we
have obtained the pair(s, v) with ∇ · v=0 andv3=w in C . Multiplying (3.2.27) by
v and integrating the result overC gives∫

C
|v|

2
=

∫
C

sw ,

in other words,(s, v) ∈ H1.
The converse is not true. Given(s,u) ∈ H1 and using (3.2.27) we obtain the vector
field v satisfying1v3=1⊥s in C . So(s, v3) ∈ H2, but in generalv=u + ∇×888 for
a smooth vector field888 which vanishes on∂C . �

Proceeding as usual we consider the functional

J(s, w) =

∫
C

|∇s|2 + R
∫

C

∂S0

∂z
sw +

∫
C
π(1w −1⊥s) ,

whereπ is again a Lagrange multiplier. The Euler–Lagrange equations read

−21s + R
∂S0

∂z
w −1⊥π = 0 , (3.2.28a)

1π + R
∂S0

∂z
s = 0 , (3.2.28b)

1w = 1⊥s . (3.2.28c)

Hereπ(x, y,0) = 0 appears as a natural boundary condition. Eliminatingπ from
equations (3.2.28a) and (3.2.28b) yields a fourth order equation ins andw, and the
further elimination ofs using (3.2.28c) and explicitly using the periodicity leads to
the sixth orderw equation

(
D2

− a2
)3
w +

a2R

2

{(
D2

− a2
) (∂S0

∂z
w

)
+
∂S0

∂z

(
D2

− a2
)
w

}
= 0 . (3.2.29)
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Figure 3.3. Stability curves for the bound-
ary layer according to the energy method with
differential constraint (solid curves) and lin-
earised stability method (dashed curves). The
curves show lowest eigenvalueRE1(a, t) and
RL (a, t) versus wavenumbera prior to equi-
librium, treating time as parameter. Numer-
ical values are calculated by a Chebyshev–
Galerkin method. Curves 2 and 3 are taken
from Figure 3.2 (equilibrium case).

Equation (3.2.29) need to be solved inR+ and it contains timet (throughS0= S0(z, t))
as parameter. The corresponding boundary conditions for this equation are

w(∞) = 0 , (3.2.30)

implying that all higher order derivatives vanish as well atz=∞, and

w(0) = D2w(0) = D4w(0) = 0 . (3.2.31)

The first two conditions are obvious. The third one is a consequence ofπ(0)=0; this
condition impliesD2s(0) = 0 from (3.2.28a), which is then used in (3.2.28c). The
eigenvalue problem (3.2.29), (3.2.30) and (3.2.31) was solved numerically forR by
a Chebyshev–Galerkin method, see Appendix A.

For a given wavenumbera> 0 and timet > 0, let RE2(a, t) denote the smallest
positive eigenvalue. The solid curves in Figure 3.3 show the numerical approxima-
tions of the curves{(a, R) : a> 0, R= RE2(a, t)} for increasing values oft . Note
that these curves essentially move downwards, except for largea and t . At large
times they converge to the equilibrium curveRE2(a) := RE2(a,∞), corresponding
to a simple decaying exponential. The equilibrium boundary case is also shown in
Figure 3.2 (curve 2). The results obtained with the differential constraint are superior
to the results obtained with the integral constraint:

R?E2
:= min

a>0
RE2(a) = RE2(a

?) = 8.59 witha? = 0.339 (3.2.32)

approximately and this threshold is significantly higher than the thresholdR?E1
=5.78,

conform Theorem 3.4.
To interpret the results of the time dependent case, we set

RE2(t) := min
a>0

RE2(a, t) for 0< t < ∞ (3.2.33)
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and we recall the Rayleigh number of the physical system Ra , given by (1.2.19). If
Ra< RE2(∞)= R?E2

, the boundary layer is definitely stable for allt > 0. However,
if Ra > R?E2

, we can only conclude that the boundary layer is stable for 0< t < t?E,
wheret?E is determined by Ra= RE2(t

?
E). Whent > t?E no direct conclusions can be

drawn.
The behaviour ofRE2(a, t) in Figure 3.3 suggests that the system isalwaysstable

for small times. This is confirmed by

Theorem 3.3.Let(s,u, p) be a (classical) solution of problem(3.2.1). Then, for any
R>0, there exists a t?>0 such that

d

dt

∫
C

s2(t) < 0 for t ∈ (0, t?] .

Proof. First observe that

s 6 |s| =

∣∣∣∣∫ z

0

∂s

∂z
dz

∣∣∣∣ 6
√

z

(∫
R+

(
∂s

∂z

)2

dz

) 1
2

. (3.2.34)

A similar estimate is obtained forw. Further, from (2.2.5b) and using the Cauchy–
Schwarz inequality we derive the estimate∫

C
|∇w|

2
= −

∫
C

∇(A∇s) · w 6
∫

C
A∇s · ∇w 6

(∫
C

|∇s|2
) 1

2
(∫

C
|∇w|

2

) 1
2

,

(3.2.35)

where A = diag(1,1,0). We multiply (3.2.1a) bys, integrate overC , and use
(3.2.34), (3.2.35) to obtain

1

2

d

dt

∫
C

s2
= −

∫
C

|∇s|2 − R
∫

C
sw
∂S0

∂z
6

6 −

∫
C

|∇s|2 + R

{∫
C

s2

(
−
∂S0

∂z

)} 1
2
{∫

C
w2

(
−
∂S0

∂z

)} 1
2

6

6 −

∫
C

|∇s|2 + R
∫
R+

z

(
−
∂S0

∂z

)∫
C

|∇s|2 =

=

∫
�

|∇s|2
{
−1 + R

∫
R+

S0(z, t) dz

}
. (3.2.36)

Let M(t) :=
∫
R+

S0(z, t) dz having the propertiesM(0)=0, M ′(t)>0, andM(∞)=

1. Let t? be defined by M(t?) = R−1 for R> 1 ,

t? = ∞ for R 6 1 .

Then
∫

C
s2(t) decays fort ∈ (0, t?]. �
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Re-examination of Figure 3.3 reveals that the energy stability curveRE2(a) (curve
2) does not coincide with the linearised stability curveRL(a) (curve 3), i.e. there ex-
ists a subcritical region (light-shaded region). For parameter values in this subcritical
region, the appearance and form of the instabilities critically depends on the choice
of initial perturbations. This is further investigated in the next subsection.

3.2.3 Weighted energy method

It is obvious that the energy stability thresholds depend critically on the choice of
the space of admissible perturbations. They also depend on the energy functional
itself. The main topic of this subsection is to find a norm that gives a sharper stability
threshold. Our quest for such norm starts with an observation by Galdi and Straughan
(1985). In general, evolution problems like problem (3.2.1) can be formally written
as

∂s

∂t
= Ls +N (s) inH ands(0) = f , (3.2.37)

whereL represents a linear andN a nonlinear operator, and withH defined as in
Section 1.3. Galdi and Padula (1990) showed that one of the essential connections
between linear and nonlinear stability theory is the idea ofsymmetryof the linear
operatorL. Therefore we split this operator inL= Ls

+ La, whereLs denotes the
symmetric andLa the asymmetric part ofL with respect to some (not necessarilyL2)
scalar product〈·, ·〉. Then we have the following stability result (Galdi and Straughan,
1985):

Theorem 3.4.Let the nonlinear operator satisfy〈N (s), s〉60, and letσ1 < 0 denote
the largest eigenvalue ofLs. Then the ground state is unconditionally nonlinearly
stable with respect to the norm induced by the scalar product〈·, ·〉 and

‖s(t)‖ 6 eσ1t
‖s(0)‖ . (3.2.38)

The proof is straightforward. Multiplying (3.2.37) bys and integrating the result
gives

1

2

d

dt
‖s‖2

= 〈Ls, s〉 + 〈N (s), s〉 6
〈
Ls s, s

〉
6

6 sup
s∈Dom(Ls)

〈Ls s, s〉

‖s‖2
‖s‖2

= σ1 ‖s‖2 . (3.2.39)

Applying Gronwall’s lemma to (3.2.39) results in (3.2.38). Note that ifL is sym-
metric, then the decay rate of the norm of the perturbations is given by the largest
negative eigenvalue ofL.

We first show that Theorem 3.4 is applicable for the equilibrium boundary layer
case since then the linear operator can be rendered symmetric by means of a similarity
transformation. We show that this similarity transformation modifies the norm and
we apply once more the energy method to the growing boundary layer case with
respect to the new (weighted) norm.



52 Chapter 3. Stability thresholds for the vertical boundary layer

The equilibrium boundary layer

We identify the linear operatorL in (3.1.1a) to operatorL and the nonlinear term
−Ru · ∇s in (3.2.1a) to operatorN in (3.2.37). In Section 3.1 we showed thatL can
be symmetrized intoL1 by the similarity transformation (3.1.4) withα= 1. If σmax

denotes the largest negative eigenvalue ofL1= M−1
1 L M1 we have its characterization

σmax = sup
u6=0

〈
M−1

1 L M1u,u
〉

‖u‖
2
2

= sup
u6=0

〈
M−1

1 L M1u,M−1
1 M1u

〉
‖u‖

2
2

= sup
s6=0

〈Ls, s〉1

‖s‖2
2,1

,

wheres= M1u and where〈·, ·〉1 and‖·‖2,1 denote theL2 scalar product and corre-
sponding norm with respect to the weight ez.

For the nonlinear term we obtain

〈N (s), s〉1 = −R
∫

C

(
u · ∇s

)
sez

= − 1
2 R
∫

C
wu2 . (3.2.40)

Since we are not able to determine the sign of the right-hand side of (3.2.40) for
arbitraryw andu, we do not meet the conditions of Theorem 3.4. However, there are
two possibilities to resolve this:

(i) Consider only perturbationsu, w of the form

{u, w}(x, y, z)={u, w}(z)ei (axx+ay y) , (3.2.41)

i.e. a single Fourier mode in whicha=
√
(a2

x +a2
y) denotes the wavenumber of

the periodicity cellC . Substitution of (3.2.41) in (3.2.40) immediately implies
〈N (s), s〉1≡0.

(ii ) Impose additional growth conditions for the nonlinear term〈N (s), s〉1. The
addition of a weight has, in general, the effect of weakening the decay of per-
turbations in the sense that only conditional nonlinear stability can be obtained
(Joseph, 1976). For further ideas on how to deal with terms of the type given
by (3.2.40), we refer to Galdi and Straughan (1985). They applied this tech-
nique to a bio-convection stability problem. In this section, however, we will
not discuss conditional (nonlinear) stability.

We follow the approach as outlined in (i). Then Theorem 3.4 states that we have
unconditional nonlinear stability ifσmax< 0. The nonlinear stability threshold for
this case is found by solving forR the equalityσmax(a, R) = 0. Sinceσmax is the
largest eigenvalue ofL1 (and henceL), we obtainRE3(a)= RL(a) for all a>0, i.e.
the best possible energy stability threshold possible.

Observe that the use of this weighted energy method to the problem formulated
in thes andu variables is equivalent to applying theL2 energy method directly to the
problem formulated in the variablesu=e

1
2 zs andu. Therefore we can generalize this

method to the more general weightMα = e−
1
2αz by transforming problem (3.2.1) in
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terms ofu andu by using (3.1.4). Substitution of (3.1.4) in (3.2.1a) and combining
(3.2.1b) and (3.2.1c) to (3.2.6) gives

∂u

∂t
= 1u + (1 − α)

∂u

∂z
+ ( 1

4α
2
− 1

2α)u + Re(
1
2α−1)zw−

− 1
2αRwu + Ru · ∇u , (3.2.42a)

1w = e−
1
2αz1⊥u . (3.2.42b)

To apply the energy method with respect to theL2 scalar product we multiply (3.2.42a)
by u and integrate over the periodicity cellC :

1

2

d

dt

∫
C

u2
= −

∫
C

|∇u|
2
+
(

1
4α

2
− 1

2α
) ∫

C
u2

+ R
∫

C
e(

1
2α−1)zwu − 1

2αR
∫

C
wu2 .

(3.2.43)

Here the second nonlinear term in (3.2.43) again disappears. From this point we
restrict the class of admissible perturbations to

H3 :=
{
(u, w) : {u, w} = {u, w}(z)eiaxx+iay y in C ;

u = w = 0 atz = 0,∞ ; and1w = e−
1
2αz1⊥u in C

}
⊂ H2.

This leads to maximum problem

1

R
= sup

(u,w)∈ H3

∫
C

e(
1
2α−1)zwu∫

C
|∇u|

2
− ( 1

4α
2
− 1

2α)

∫
C

u2
. (3.2.44)

The functional for (3.2.44) is given by

J(u, w) =

∫
C

|∇u|
2
− ( 1

4α
2
− 1

2α)

∫
C

u2
− R

∫
C

e(
1
2α−1)zuw+

+

∫
C
π(1w − e−

1
2αz1⊥u) ,

whereπ is a Lagrange multiplier. The Euler–Lagrange equations read
−21u − ( 1

2α
2
− α)u − Re(

1
2α−1)zw − e−

1
2αz1⊥π = 0 , (3.2.45a)

1π − Re(
1
2α−1)zu = 0 , (3.2.45b)

1w = e−
1
2αz1⊥u . (3.2.45c)
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Figure 3.4. Estimates involving the lowest
eigenvalueRE3 versus wavenumbera for the
equilibrium boundary layer, for variousα ∈

[0,1] (cf. Theorem 3.6). Fat solid curve (α≡

0) corresponds to the energy method based on
the L2-norm of thes perturbation. Dashed
curve (α ≡ 1) corresponds to linear stability
analysis. Grey region depictsSCα for α=0.4.

Eliminatingπ andw, and explicitly using the periodicity ofs gives the eigenvalue
problem

D2u + ( 1
4α

2
− 1

2α − a2)u+

+ 1
2a

2R
{
e(

1
2α−1)zB(e−

1
2αzu)+ e−

1
2αzB(e(

1
2α−1)zu)

}
= 0 . (3.2.46)

Observe that forα = 0 and further elimination of operatorB we regain eigenvalue
problem (3.2.29). For a givena>0 andα ∈ [0,1] fixed, letRE3(a;α) be the smallest
positive eigenvalue of (3.2.46). These stability curves are depicted in Figure 3.4 for
various values ofα. In particular, forα = 0 we obtainRE3(a; 0)= RE2(a) and for
α=1 we obtainRE3(a; 1)= RL(a), for all a>0.

Remark 3.5. Observe that the left-hand side of(3.2.46)is exactly the symmetric part
of Lα (see(3.1.8a)), i.e. 1

2(Lα + L†
α). In particular, forα≡1 it is equal to Lα itself.

For everya>0, the curvesRL(a) andRE3(a;α) are ordered by

Theorem 3.6. For everyα ∈ [0,1] and for every a> 0 fixed, we have RE3(a;α)6
RL(a).

Proof. Let a > 0 be fixed and let
(
s1, w1, RL(a)

)
be the first eigensolution of the

problem (inR+)

D2s1 + Ds1 − a2s1 = −RL(a)e−zw1 , (3.2.47a)

−D2w1 + a2w1 = a2s1 . (3.2.47b)

Next sets1=e−
1
2αzu1. Subsitution in (3.2.47) yields

D2u1 + (1 − α)Du + ( 1
4α

2
− 1

2α − a2)u1 = −RL(a)e
( 1

2α−1)zw1 , (3.2.48a)

−D2w1 + a2w1 = a2u1e
−

1
2αz . (3.2.48b)
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Multiplying (3.2.48a) byu1 and integrating overR+ gives forα ∈ [0,1]

1

RL(a)
=

〈
e(

1
2α−1)zw1,u1

〉
‖Du1‖

2
2 − ( 1

4α
2 − 1

2α − a2) ‖u1‖
2
2

.

From (3.2.44) and explicitly using the periodicity of the perturbations, we immedi-
ately derive

1

RE3(a;α)
>

1

RL(a)

which proves the assertion. �

The energy stability curvesRE3(a;α), a > 0, in Figure 3.4 have the following
interpretation. Let Ra be such that for fixeda>0 it satisfiesRE2(a)<Ra< RL(a).
This defines a uniqueβ ∈ (0,1) such thatRE3(a, β) = Ra , see Figure 3.4 dotted
curve. Then the described construction implies that for eachα ∈ (β,1) we have

d

dt

∫
R+

eαzs2(t) < 0 provided
∫
R+

eαzs2(0) < ∞ .

Let R?Eβ :=min
a>0

RE3(a, β). Then for any Ra6 R?Eβ we have decay of the weightedL2

norm for the weighting functions eαz, α ∈ (β,1).
In Section 3.3 we will show that for eachα ∈ (0, β) there exists an initial condi-

tion f̄ such that
∫
R+

eαzs2(t) exhibits transient growth.

The growing boundary layer

We generalize the use of a spatial weight in the energy method to the growing bound-
ary layerS0(z, t) given by (2.1.2a). We consider hereα≡ 1 since thenRE3(a; 1)≡
RL(a) for the equilibrium boundary layer. This yields the following eigenvalue prob-
lem:

D2s + (− 1
4 − a2)s = 1

2 R

{
e−

1
2 zB

(
e

1
2 z∂S0

∂z
s

)
+ e

1
2 z∂S0

∂z
B
(
e−

1
2 zs
)}
. (3.2.49)

For a given wavenumbera> 0 andt > 0, let RE3(a, t) denote the smallest positive
eigenvalue of problem (3.2.49). The solid curves in Figure 3.5 show the numerical
approximation of the curves

{
(a, R) : a > 0 , R = RE3(a, t)

}
for increasing values

of t .
Also depicted in Figures 3.3 and 3.5 (dashed curves), are the stability curves cor-

reponding to the linear stability analysis of the growing boundary layer. Since for this
case the ground state depends on time as well, such a construction is only possible un-
der the assumption that the rate of change of the ground state is small compared with
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the growth rate of infinitesimal perturbations (the frozen profile approach). Hence,
for givent>0, we consider the approximate equation

∂s

∂τ
−
∂s

∂z
+ Rw

∂S0

∂z
(z, t) = 1s inR+ , (3.2.50)

for τ > 0 and sufficiently small. In fact we have two time scales: a large time scale
for the evolving ground state and a small time scale for the perturbation. Now again
t appears as a parameter in the equation, as in the case of the energy methods.

To study the instability of the growing boundary layer we need to consider the
eigenvalue problem for each finitet > 0. Let RL(a, t) denote the smallest positive
eigenvalue. Again we used a Chebyshev–Galerkin method to find accurate numerical
approximations. These results are shown in Figures 3.3 and 3.5 where the dashed
curves indicateRL(a, t) for increasing values oft . Note again that these curves
essentially move downwards, except for largea and t . As t → ∞ convergence
towards the equilibrium curveRL(a) is attained.

As before, we set

RL(t) := min
a>0

RL(a, t) . (3.2.51)

If Ra > RL(∞)=: R?L , an estimate for the onset time of instability is found by the
crossover timet?L determined by Ra= RL(t?L). In other words, the boundary layer
becomes unstable fort> t?L . If Ra ↘ R?L , the boundary layer becomes unstable when
it is close to its equilibrium profile.

Now we compare Figures 3.3 and 3.5 once more. According to Figure 3.3, we
have subcritical regions (shaded regions) for all times. In Figure 3.5 these subcritical
regions are considerably smaller than the ones in Figure 3.3. However, the small
time behaviour of the curves illustrate that the frozen profile approach in the linear
stability analysis is not a good approximation.
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3.3 Transient energy growth in a linearly stable regime

In the energy method one seeks for conditions in terms of the system parameters for
monotonic decay of the energy norm. This immediately gives conditions for linear
stability. We show in this section that the converse is not true for systems with a
stability gap. Recall that for parameter values in this gap the system is linearly stable.
However, we will show that there exist initial perturbations for which thelinearised
problem exhibits transient growth of the energy norm, such that the nonlinear energy
stability criterion is violated.

Let u(z, t) be a solution of problem (3.1.8) (or equivalently, lets(z, t) be a solu-
tion of problem (3.1.1)). We define forα ∈ [0,1] the functional

Fα(t) :=
∫
R+

u2(t) =

∫
R+

eαzs2(t) =: ‖s‖2
2,α . (3.3.1)

From this point it is convenient to introduce some notation.

Definition 3.7. (i) The spectral bound of operator Lα is defined by

σ(Lα) = sup
λ∈Σ(Lα)

Reλ .

Observe that, due to the similarity,σ(Lα) does not depend onα.

(ii) The numerical range of operator Lα is the set

W(Lα) =
{
〈Lαu,u〉 : ‖u‖2 = 1

}
=
{
〈Ls, s〉α : ‖s‖2,α = 1

}
, α ∈ [0,1] .

(iii) A related quantity is the numerical bound of Lα, defined by

ω(Lα) = sup
λ∈W(Lα)

Reλ . (3.3.2)

(iv) For a> 0, R> 0 andα ∈ [0,1], let SCα = {(a, R) : ω(L) > 0, σ (L) < 0}

andSC :=SC0.

An important property of the numerical range is that the spectrum of operatorLα
is contained in the closure of its numerical range, i.e.Σ(Lα) ⊂ W(Lα) (Istratescu,
1981). This implies thatω(Lα)>σ(Lα), where equality holds forα≡1.

From (3.1.8a), using Definition 3.7, we find the relation

1

2

d

dt
Fα(t) =

〈Lαu,u〉

‖u‖
2
2

Fα(t) =
〈Ls, s〉α
‖s‖2

2,α

Fα(t) 6 ω(Lα)Fα(t) . (3.3.3)

The linear problem is stable with respect to‖·‖2,α providedω(Lα) < 0 and neutral
stable whenω(Lα)≡0. The Euler–Lagrange equation for maximum problem (3.3.2)
is given

D2u + ( 1
4α

2
− 1

2α − a2)u+

+ 1
2a

2R
{
e(

1
2α−1)zB

(
e−

1
2αzu

)
+ e−

1
2αzB

(
e(

1
2α−1)zu

)}
= ωu . (3.3.4)
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Let ωmax be the largest real eigenvalue of (3.3.4). Thenω(Lα)=ωmax. Figure 3.6(A)
shows the isocurves ofωmax for α = 0. When(a, R) are such thatωmax ≡ 0, then
(3.3.4) reduces to (3.2.46), i.e. the zero-level curve corresponds toRE2(a).

A formal Taylor expansion ofFα(t) aroundt =0 reveals

Fα(t) = Fα(0)+ F ′

α(0) t +O(t2) .

Now using (3.3.3), we haveF ′

α(0)/Fα(0) = 2 〈L f, f 〉α / ‖ f ‖
2
2,α, where f is the

initial condition given by (3.1.1d). Letλ(α) denote the maximal initial slope of
Fα(t)/Fα(0), i.e.

1
2λ(α) = sup

f ∈Dom(L)

〈L f, f 〉α

‖ f ‖
2
2,α

= ω(Lα) by definition 3.7 (ii ) .

The initial condition f̄ that maximizes the initial slope is found by solving the eigen-
value problem (see Remark 3.5)

1
2

(
Lα + L†

α

)
f̄ = 1

2 λ(α) f̄ , (3.3.5)

where † denotes the adjoint operator. For fixed(a, R) ∈ SC we solved (3.1.8) with
initial condition the eigenfunctionf̄ corresponding to the maximum eigenvalue of
(3.3.5) for several values ofα. The behaviour ofFα(t)/Fα(0) is depicted in Fig-
ure 3.6(B). The maximal initial growth ofFα(t)/Fα(0) is obtained forα = 0. For
increasingα, the initial slope decreases and becomes negative. This is also to be ex-
pected since for increasingα the setSCα becomes smaller and for someβ ∈ (0,1)
the pair(a, R) lies under the stability curveRE3(a, β), i.e. the numerical bound
becomes negative, see Figure 3.4.

Remark 3.8. The similarity transformations Mα, α ∈ [0,1], changes the spatial
structure of the eigenfunctions{sj } of L. From the definition of the similarity opera-
tors Mα, we find the relation

〈Lαu,u〉 =
〈
M−1
α L Mαu,u

〉
=
〈
M−1
α L s,M−1

α s
〉
= 〈Ls, s〉α . (3.3.6)

Hence, by adjustingα in the scalar product, we can control the orthogonality of{sj }:
Let {u j } denote the set of orthonormal eigenfunctions of the symmetric operator L1.
Then we find from(3.3.6) 〈

si , sj
〉
1 =

〈
ui ,u j

〉
= δ i j , (3.3.7)

whereδ i j denotes the Kronecker symbol. This non-orthogonality of the eigenfunc-
tions {sj } may give large projection coefficients in eigenfunctions expansions, and
this results in the transient growth behaviour ofFα(t).

The transient growth ofFα(t) is not unbounded. This can be shown by two a
priori estimates. From (3.3.3) we find forα=1 the estimate

‖s(t)‖2
2,1 6 e2σ(L)t

‖ f ‖
2
2,1 . (3.3.8)
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R = 15 (in SC, see also Figure 3.4), with̄f given by the eigenfunction corresponding to the largest
eigenvalue of (3.3.5). The upper bound (3.3.9) is depicted as dashed curves. The initial slope ofFα(t)
is given by 2ω(Lα).

From (3.3.8) it follows that forα ∈ [0,1]

‖s(t)‖2
2,α 6 ‖s(t)‖2

2,1 6 Kα e2σ(L)t
‖ f ‖

2
2,α ,

whereKα =‖ f ‖
2
2,1 / ‖ f ‖

2
2,α. Observe thatKα is a finite number>1 and this coeffi-

cient is maximal forα=0. Further, we have the estimate

‖s(t)‖2
2,α 6 e2ω(Lα)t ‖ f ‖

2
2,α ,

which follows directly from Definition 3.7. Combining these two estimates results in
the upper bound

Fα(t)

Fα(0)
6 min

t>0

{
e2ω(Lα)t , Kα e2σ(Lα)t

}
=: Bα(t) , (3.3.9)

see also the dashed curves in Figure 3.6. Obviously,Bα(t)→e2σ(L1)t asα→1.
We may conclude that there exist initial conditionsf̄ , (or to put it in dynamical

systems terminology,directions), that initiate growth and therefore violate the sta-
bility criterion that states that the normFα(t) must decrease monotonically in time.
This observation fits perfectly in the picture shown in Figure 1.2.

3.4 Comparison with laboratory experiments

Figure 3.7 repeats the equilibrium stability curves of Figure 3.2 and includes ex-
perimental measurements obtained using a tilted Hele–Shaw cell to simulate two-
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Figure 3.7. Comparison of theory with ex-
perimental results (Wooding et al., 1997a,b).
Solid curves 1–3 give eigenvaluesR versus
wavenumbera for the equilibrium boundary
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dimensional flow in a porous medium, with inflow of a saline solution and evapora-
tion along part of the upper edge (Wooding et al., 1997a,b; Simmons et al., 1999).
Experimental points are represented in Figure 3.7 by the symbols+, × and∗. In the
experiments, the large scale Rayleigh number Ra based on finite “aquifer” depth was
greater than 102 times the boundary layerR-value. Although the large scale flow in
the experimental work differed from a simple vertical upflow, a uniform evaporation
rate was modelled and a saline boundary layer of uniform thickness was observed
to develop. Wavenumbers of initial instabilities, scaled to the equilibrium boundary
layer thickness, were measured for a wide range ofR-values. Previously, these obser-
vations were plotted by Wooding et al. (1997a, Figure 7) using wavenumbers scaled
to the diffusion thickness and therefore equivalent toa/R in the present case.

From the published experimental data, stable boundary layers were observed for
R-values of 5.8, 5.6 (two experiments), and smallerR. Unstable boundary layers
resulted forR-values of 5.6 (one experiment), 8.9 (two experiments), and largerR.
Except for the unexplained appearance of instability in one experiment performed at
R=5.6, there was a clear separation of stable and unstable layers into two ranges. If
the single unstable result atR = 5.6 is not included, the theoretical lower bound of
8.59 obtained using the alternative energy method is in agreement with the results of
the experimental studies.

The dashed curves in Figure 3.7 provide traces of the minima of the stability
curves defined by the energy method in Figure 3.3 and by linearised stability analysis
in the same figure. For the data obtained by experimental simulation, either curve
might be considered as an upper bound to the wavenumber of an instability which
first appears. This is on the assumption that growth rate is zero at a critical point for
stability, and a growing perturbation becomes significant when the boundary layer
thickness scale has increased significantly. Clearly, however, the instabilities plot-
ted in Figure 3.7 have been initiated by perturbations of small but finite amplitude,
and the energy method with differential constraint provides the appropriate estimate.
Three experimental points at the low-R end appear to be exceptional. These occur
in a range where accurate observation becomes more difficult, and an inadvertent
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change of background conditions could have altered the wavenumber.
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Chapter 4

Growing instabilities and pattern dynamics?

The theoretical thresholds in Chapter 3 predict how the system will respond to per-
turbations of the ground state. In this chapter we analyse the temporal behaviour

of these growing instabilities by means of numerical simulations of the full model
equations. Further, we investigate the large-time (equilibrium) nonlinear behaviour
of the system for Rayleigh numbers in the vicinity and far beyond the linear stability
thresholdR?L . In particular, we are interested in the number of different convective
solutions, their stability, their spatial structure, and how they evolve when the bifur-
cation parameterR is further increased. This kind of information, however, is not
provided by the method of linearised stability and hence we have to consider the full
set of model equations.

We discretize the full set of equations by means of the finite element method and
for specific initial conditions (i.e. perturbations) we use time-integrations to compute
steady-state convective solutions. For this purpose atruncatedflow domain has to
be chosen. We consider the model equations(P1) in � = �⊥ × (0, h) where the
horizontal domain has the particular form

�⊥ :=
{
(x, y) : 0<x<`, 0< y< 2

3

√
3`
}
. (4.0.1)

In these definitions̀ andh are the scaled length and depth of the flow domain, see
Subsection 1.2.3. The aspect ratio of�⊥ is given by 1:23

√
3. This particular choice of

the aspect ratio will become clear in the course of this chapter. The domain truncation
requires additional boundary conditions at the lateral boundaries and at{z= h}, see
Section 4.1. Using the techniques from Chapter 3, we determine for the truncated
flow domain the thresholdsR?L andR?E2

.
To analyse the response of the system to different initial perturbations, we com-

pute for every step in the time-integration a functionalU (t) similar to the one as
discussed in Section 1.3. The numerical simulations are carried out for three differ-
ent system Rayleigh numbers, each one corresponding to the possible states of the
system: stable, subcritical and unstable. WhenU (t) → constant> 0 for t large

? This chapter is joint work with H.M. Schuttelaars (University of Utrecht) and parts of it will appear
as a paper inComputational Geosciences.
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enough and for Rayleigh numbers betweenR?E2
andR?L , then we say that the system

has converged to a nontrivial steady-state and the transition is referred to as a global
subcritical bifurcation. For Rayleigh numbers beyond the linear thresholdR?L , the
transition is called globally supercritical. IfU (t)→ 0 for t sufficiently large, then
we say that the system is globally stable. This approach has a severe disadvantage: to
obtain a detailed picture of the dynamics of the system, one has in essence to check
for anyarbitrary initial conditions the behaviour ofU (t), which is impossible. Hence
this approach is unsuitable for a detailed bifurcation analysis.

A more natural way to carry out a detailed bifurcation analysis is to solve directly
the equilibrium nonlinear model equations for system Rayleigh numbers in a rele-
vant range. Johannsen (2003), for example, considers the time evolution process of
the Elder problem (Elder, 1967a,b) to form a dynamical system and investigate its
behaviour with respect to the Rayleigh number. His approach is to discretize the full
set of nonlinear equations by means of the Finite Volume method to obtain a finite-
dimensional differential algebraic system. Then the so-called pseudo-arclength con-
tinuation method with secant prediction is used to calculate some solution branches
connecting the different steady solutions. The found solution branches are then visu-
alized by means of a suitably chosenL2-functional. This method has the disadvan-
tage that it is expensive from a computational point of view and in addition it still
does not scan the whole parameter space in a very efficient way.

The time-integrations of the discretized system (by e.g. finite elements, finite vol-
umes, etc.), though, gives an extremely useful first impression of the different kinds
of steady solutions that may exist within the model. In particular, they provide spe-
cific information about the spatial structure of the different steady solutions. Each
of these steady convective solutions represent a different salt distribution in the box.
With respect to the vertical plane, these salt distributions appear as typical finger like
structures, whereas in the horizontal plane they may represent roll/stripe, hexagonal,
square, or combinations of these structures. In particular, we are interested in the
spatiotemporalbehaviour of the perturbations prior to equilibrium. For this purpose
we apply 2D finite element simulations to a specific set of initial perturbations. These
initial conditions are chosen in such a way that they are relatively close to the con-
vective steady-state solutions that are expected to appear during the computations.
More specifically, the number of fingers that will eventually appear in the steady-
state solution is dictated by the perturbation of the initial condition. This approach
dramatically increases the convergence of the time-integration compared to other ini-
tial conditions (e.g. a random distribution), without loosing the basic mechanisms
that are essential for the temporal pattern formation.

Since solving the full set of equations is very time-consuming and since we want
to scan the parameter space in more detail, we construct a lower-order model by
means of a Galerkin projection of the full model equations onto carefully chosen
eigenmodes of the linear problem. Here we use the 2D finite element simulations to
validate the results of the reduced model. The modes for projection, in this chapter
referred to as the dynamically active eigenmodes, are found by a careful analysis of
the results from linear stability theory. The constructed lower-order system of cou-
pled nonlinear ODEs is usually called the Landau or, for obvious reasons, system of
amplitude equations. These equations captures the local dynamics of the full model,
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at least near criticality. We determine the steady-state solutions by solving the steady
lower-order model by a Newton-like iteration process. The reduced model will be our
primary tool to investigate the nonlinear stability of the equilibrium boundary layer.

Several authors have recognized the usefulness of the Galerkin projection method
for bifurcation analysis. For example, Vadasz and Olek (1999, 2000) used a trun-
cated Galerkin representation to investigate the route to chaos for convection in a
porous layer heated from below, i.e. the Lapwood problem (Lapwood, 1948). In fact,
they use only three dynamically active eigenmodes for projection and after proper
rescaling they obtain the familiar Lorenz system. However, their rigorous truncation
implies that their lower-order model is very limited because of its local domain of
validity, which is just in the neighbourhood of the steady-state convective solution.
Therefore, their method may be better classified under theweakly nonlinear stability
analysis. For the Rayleigh–B́enard problem (which is the free fluid equivalent of the
Lapwood problem), weakly nonlinear analysis is discussed in a fairly rigorous math-
ematical context by Mielke (2002). Although weakly nonlinear stability analysis still
provides significant insight to the underlying problem, this mathematical method only
gives information close to critical conditions. In different contexts, van der Vaart et al.
(2002) use Galerkin projections for the nonlinear analysis of time-dependent wind-
driven ocean gyres, while Schuttelaars (1998), Calvete et al. (1999, 2002) (among
others) use this method for studying nonlinear problems arising in morphodynamics.

At first sight, the projection method is a very powerful tool, but one of the diffi-
culties with this concept is the determination of the dynamically active eigenmodes
that have to be chosen for the projection basis. The most natural way is to select
the eigenmodes that are close to criticality since they are expected to represent the
convective steady-state solution which appears just beyond threshold. This approach
works fine for normal systems (Schramkowski et al., 2004). However, as in the ocean
gyre problem (van der Vaart et al., 2002), the salt lake problem with evaporation is a
non-normal problem, see Chapter 3. This implies that the eigenmodes do not form an
orthogonal set. This lack of orthogonality may seriously complicate the choice of an
appropriate projection basis. The non-orthogonality of the eigenfunctions may imply
that the set of parameters in which the method is a valid approximation is very small.
To be more precisely, nonlinear interactions between the non-orthogonal modes may
not be necessarily restricted to the dynamically active eigenmodes close to critical-
ity, but other interactions involving eigenmodes which are relatively far away in the
spectrum may be well possible. As a consequence, convergence tests by successively
increasing the number of eigenmodes are very misleading (van der Vaart et al., 2002,
Table II shows that the accuracy of the approximation can decrease when one in-
corporates additional eigenmodes). Therefore it should be emphasized to check the
results from the reduced model with numerical simulations of the full set of equa-
tions.

Keeping these pitfalls in mind, order-reduction is still valuable from a numerical
viewpoint. Reduced models are preferred above the full model equations with re-
spect to time-integrations and bifurcation analysis, in particular when the models are
considered in 3D. Furthermore, the resulting patterns and bifurcation structures are
more easily interpreted in the reduced model (see e.g. van der Vaart et al. (2002)).

In this chapter we consider both the 2D and 3D cases. For the 2D case we com-
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Figure 4.1.Stability thresholds corresponding to linearised stability (stars) and energy method (dashed
horizontal line) forh = 5. The Fourier modes with wavenumbera have to fit in the laterally bounded
box, and this gives a discrete set of wavenumbers. The dash-dotted vertical lines correspond to
wavenumbers that fit in a box with̀ = 1

350, the vertical dashed lines to wavenumbers that fit in a
box with`= 1

450 and solid lines to wavenumbers that fit in a box with`=50.

pare the results of the reduced model with finite element simulations. After choosing
and validating an appropriate projection basis, we construct a reduced model and
show that the transition of roll patterns is indeed subcritical, as suggested in Sec-
tion 3.2.2. For the 3D case we only consider hexagonal structures and we show that
these structures bifurcate transcritically. Based on the bifurcation diagrams for both
the roll and hexagonal patterns, we give a numerical upperbound for theglobal sta-
bility thresholdRG as discussed in Chapter 1.

In this chapter we consider several flow domains of decreasing length:` =

50, 1
350 and1

450. For all these flow domains the thickness of the layer is fixed and is
given byh=5. The equilibrium boundary layer for this setting reads

S̄0(z) =
e5−z

− 1

e5 − 1
z ∈ (0,5) . (4.0.2)

With respect to the equilibrium boundary layer (4.0.2), the linear stability ‘curve’ as
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well as the energy stability threshold are depicted in Figure 4.1. The linear instability
threshold, i.e. the minimum of the stability ‘curve’ with respect to the modes that fit
in the box, clearly depends oǹ. For`=50 it is given byR?L =14.71, for`= 1

350 it
is given byR?L =14.81, and finally for̀ = 1

450 it is given byR?L =15.02. The energy
stability threshold is given byR?E2

= 11.06. Comparing Figure 4.1 with Figure 3.3
(corresponding to the caseh = ∞), we observe that the linear instability threshold
R?L increases with decreasing depth. The curves for the growing boundary behave
similarly to Figure 3.3.

Remark 4.1. All perturbations, and their corresponding salt distributions, computed
in this chapter are depicted for the flow domain in which`=50. This means that for
`= 1

350 we glue three of such domains to one, and for`= 1
450 we glue four of these

domains to one. It should be emphasized that this is only possible when we impose
periodic boundary conditions at the lateral boundaries of the flow domain. Thus,
when talking about the x-finger solution, the number x is counted with respect to the
flow domain in which̀ =50 !

4.1 Two-dimensional finite element simulations

In this section we verify the stability thresholds as derived in Chapter 3 by means
of two-dimensional simulations. For this purpose we use the finite element package
SEPRAN(Segal, 1993). In particular we introduce the energy functionalU (t), which
is based on theL2-norm of the velocity perturbationu, and we track its transient
behaviour during the time-integration. We first introduce the numerical method, then
we present some numerical simulations which lead to different steady-state solutions.

Since we consider here two-dimensional finite element simulations, we redefine
the flow domain:

� :=
{
(x, z) : 0<x<50, 0<z<5

}
.

In � we solve problem(P1) in terms of the saturationS and the stream function9,
where

U =

(
−
∂9

∂z
,
∂9

∂x

)
. (4.1.1)

Following De Josselin de Jong (1960) we obtain the system
∂S

∂t
+ Ra

(
∂9

∂x

∂S

∂z
−
∂9

∂z

∂S

∂x

)
= 1S in �, t > 0 , (4.1.2a)

19 =
∂S

∂x
in �, t > 0 . (4.1.2b)

The corresponding boundary conditions result directly from the imposed saturation
and flow behaviour, see also the boundary condition in(P1). Hence we impose at
{z = h} a zero Dirichlet condition. To mimic a flow domain of infinite horizontal
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extent, we impose for the saturationS periodic boundary conditions at the lateral
boundaries.

Now let tk
= k∆t , k = 0,1, · · · , N, N sufficiently large, and letSk denote the

saturation att = tk. The corresponding stream function is found from

19 =
∂Sk

∂x
in � . (4.1.3)

This problem is discretised by the finite (linear) element method. The correspond-
ing matrix equation is iteratively solved using the conjugate gradient method. The
numerical approximation of (4.1.3) is denoted by9k

n.
Next we consider

∂S

∂t
+ Ra

(
∂9k

n

∂x

∂S

∂z
−
∂9k

n

∂z

∂S

∂x

)
= 1S , (4.1.4)

in � and for t > tk. Again we use a finite element discretisation, together with an
upwind discretisation for the convective part. The corresponding linear system is
now iteratively solved with the bi-conjugate gradient stabilized method. For the time
integration we use a predictor-corrector implicit Euler scheme. Let the preliminary
numerical solution (predictor) of (4.1.4) att = tk+1 be denoted bySk+1,∗

n . Replacing
Sk by Sk+1,∗

n in equation (4.1.3), we obtain9k+1,∗
n . This solution is then plugged

in (4.1.4) to obtain at time-levelt = tk+1 a correctedsolution which will be again
denoted bySk+1,∗

n . This process is iterated until convergence is reached. In this way
we obtainSk+1

n = Sk+1,∗
n . The above cycle is repeated for subsequent time steps until

Sk does not change anymore with increasingk.
The numerical method does not involve automatic time-step adaptation nor does

it include algorithms for local mesh refinement. This implies that the time-step and
mesh are fixed during the computations. Motivated by the convergence behaviour of
the scheme, we use a time-step of∆t =0.004 and 16,000 square elements.

The energy method involves the definition of an energy functional. We adopt this
concept for the numerical simulations and hence we introduce the functional

U (tk) =

∫
�

|uk
n|

2 dx dz , uk
n = Uk

n − U0 , (4.1.5)

whereU0 = −Ra−1ez (the ground state uniform upflow) and whereUk
n follows from

(4.1.1).
Our main goal is to verify the stability thresholdsR?L andR?E2

by using the func-
tionalU (t). In addition, we discuss the interpretation of the global measureU (t) in
relation to the stability of the fully nonlinear model. For this purpose we investigate
the response of the full model with zero initial condition to specific initial perturba-
tions.

Implicit in the finite element simulation is the coexistence of three time-scales:
a fast time-scale at which the boundary layer grows faster than the perturbations, a
slow time-scale at which the boundary has nearly reached its equilibrium form, and
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an intermediate time-scale at which the growth of the boundary layer balances with
the growth of the perturbations. The time-scale at which the boundary grows fast
is, as shown in Section 3.2.2, an unconditionallystablesituation in the sense that
the functionalU (t) will always decrease initially. At later stages of the simulation,
there is a slow time scale at which the background state can be considered to be con-
stant and linear stability analysis predicts the behaviour of the growing instabilities.
Generally speaking, at the intermediate time-scale there is less that can be said about
the nonlinear behaviour of the system, but one should realize that the dynamics in
this regime may significantly influence the behaviour of the system on the slow time
scale, i.e. when the boundary layer is close to equilibrium. Therefore care must be
taken with respect to the finite element simulations that are presented in this section.

We compute the solution of (4.1.2) and the corresponding global measureU (t)
for the initial conditions summarized in Table 4.1. In this table we also give predic-
tions of the behaviour ofU (t) which are based on the results from Chapter 3.

Table 4.1.A, B and C are initial perturbations far from the equilibrium̄S0(z). All initial perturbations
are given by a single Fourier mode with a dominant wavenumber.

Rayleigh number Initial perturbationf (x, z) Prediction
A Ra =10 cos(12πx/50) sin(πz/5) Decay ofU (t) for all

(stable) times

B1 Ra=14.5 0.1 cos( 6πx/50) sin(πz/5) Initial decay ofU (t) up
(subcritical) tot = t? ; possible

transitionat large times
2 0.25 cos( 6πx/50) sin(πz/5) id.
3 0.1 cos( 8πx/50) sin(πz/5) id.
4 0.25 cos( 8πx/50) sin(πz/5) id.
5 0.1 cos(12πx/50) sin(πz/5) id.
6 0.25 cos(12πx/50) sin(πz/5) id.

C1 Ra=15 0.1 cos(12πx/50) sin(πz/5) Initial decay ofU (t) up
(unstable) tot = t? andtransitionto

a nontrivial solution
2 0.25 cos(12πx/50) sin(πz/5) id.

The numerically computed energy functionalsU (t) are depicted in Figure 4.2.
We will discuss each of the cases in Table 4.1 separately.

Experiment A

According to Figure 4.1 we expect decay ofU (t). This is indeed the case and the
relatively large perturbation eventually decays to zero.
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Experiment B

The situation in the subcritical region is more interesting. We first observe that
for small times all perturbations decay, conform Theorem 3.3 and using inequality
(3.2.3). As already mentioned in Chapter 3, there may exist subcritical transition de-
pending on amplitude and shape of the initial perturbation. When the perturbation
is sufficiently small (B1, B3, B5) thenU (t) decreases to zero indicating that the
perturbed system returns to the ground-state solution. However, when the initial per-
turbation is sufficiently large (B2, B4, B6), then the system bifurcates to a nontrivial
solution, and the resulting pattern depends on the form of the initial perturbation: the
number of fingers correspond to the dominant wavenumber of the initial perturbation.
Observe that the energyU (t → ∞) increases with increasing number of fingers.

Experiment C

Now the parameters are in the unstable region, implying that the ground state has
exchanged stability with a convective regime. Hence,independent of the amplitude
of the initial perturbation, the system will always bifurcate to some convective state.
The number of fingers, however, still depends on the shape of the initial perturbation.
Prior to this transition, the system is stable, just as in experiment B.

The existence of non-trivial finite-amplitude steady solutions in the subcritical region
does not contradict the energy stability boundRE3(a) obtained in Subsection 3.2.3.
Suppose that the eventual equilibrium pattern would consist of one Fourier mode
of wavenumbera only, then this perturbation would be in the setH3. This gives a
contradiction since no perturbations from this class can exist in the subcritical region.
Therefore the eventual equilibrium patternmustconsist of a series of Fourier modes
since these perturbations are definitely not in the setH3. This statement will be made
more precisely in Subsection 4.3.1.

4.2 Reduction to a Landau type amplitude equation

The disadvantage of solving the initial-value problem by finite element simulations is
that no information is obtained about unstable convection states. In addition, a struc-
tured search for possibly other stable solutions is not possible with this approach.
The picture of stable states alone is incomplete, especially in the regimes where mul-
tiple stable states are likely to exist. Although unstable states are not accessible to
experiments, knowledge of these states is often necessary to understand transitions,
as well as the dynamical mechanics underlying the physics of transition. There-
fore, the approach followed in this section is to construct a lower-dimensional model
using numerical Galerkin projection of the full model onto the dynamically active
eigenmodes. Once obtained, the lower-dimensional model is then used to determine
the different (both stableand unstable) steady-state solutions for Rayleigh numbers
within a relevant range.

Let us consider the nonlinear perturbation equations (2.2.3). Relation (2.2.4) can
be used to reduce the number of unknowns in (2.2.3): Using (2.2.3c) in (2.2.3a),
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and taking the divergence of (2.2.3c) and again using (2.2.3b) gives the perturbation
equation in terms ofs, w and the pressure perturbationp

∂s

∂t
= 1s +

∂s

∂z
+ Rw

∂S0

∂z
+ R∇ p · ∇s − Rs

∂s

∂z
in �, t > 0 , (4.2.1a)

1w = 1⊥s in �, t > 0 , (4.2.1b)

1p =
∂s

∂z
in �, t > 0 , (4.2.1c)

s = w =
∂p

∂z
= 0 at{z=0} ∪ {z=h}, t > 0 , (4.2.1d)

n · ∇s = n · ∇w = n · ∇ p = 0 at∂�⊥ × (0, h), t > 0 , (4.2.1e)
s = f in �, t = 0 , (4.2.1f)

where�=�⊥ × (0, h) and where�⊥ is given by (4.0.1). The Neumann boundary
condition forw in (4.2.1e) follows from the no-flow condition along∂�⊥ × (0, h),
i.e. n · u = 0, and the relation∇ × u = ∇ × (sez). The boundary conditions for the
pressure perturbationp follow directly from Darcy’s law.

We choose a basis for projection that is spanned by selected modes from the
eigenspectrum of problem (3.1.1). These modes are chosen in such a way that they
build the perturbation pattern. The finite set of these wavenumbers is referred to as
the dynamically active wavenumbers and is denoted byAn =An[adom], whereadom
denotes thedominantwavenumber andn refers to the number of modes taken into
account. These modes are explicitly available from the analysis of the full model, see
Section 3.1. Whereas in Section 3.1 we used single Fourier modes, here we make the
following generalization concerning the shape of the perturbations in thehorizontal
plane: {

sj , w j , p j
}
(x, y, z) =

{
sj , w j , p j

}
(z)H j (x, y) ,

where the planform functionH j (x, y) satisfies1⊥H j (x, y) = −a2
j H j (x, y) anda j ∈

An. Then the functionssj (z) satisfiesLsj = σ j sj ( j = 1, · · · ,n) with L given by
(3.1.1a). Thesj , w j and p j are related byD2w j − a2

jw j = −a2
j sj

w j (0) = w j (h) = 0
and

D2 p j − a2
j p j = Dsj

Dp j (0) = Dp j (h) = 0
,

conform equations (4.2.1a) and (4.2.1b). Observe thatp j (z) is uniquely determined
up to a constant. This constant of integration is found from relationsD2 p j = Dsj −

Dw j (Darcy’s law) andD2 p j − a2 p j = Dsj , and it is determined by the condition
p j (0)=−Dw j (0)/a2, a>0.
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Next we project the set of equations (4.2.1) onto the eigenfunctions
{
sj , w j , p j

}
.

We write

{s, w, p}(x, y, z, t) =

n∑
j =1

m∑
i =1

Ai
j (t)

{
si

j , w
i
j , pi

j

}
(z)H i

j (x, y)

wherem denotes the number of eigenfunctions in thez-direction. To simplify nota-
tion, we introduce the indexing conventionk :=m× ( j − 1)+ i , where j =1, · · · ,n
andi =1, · · · ,m. Substitution of this decomposition into (4.2.1) yields the system

mn∑
k=1

dAk(t)

dt
sk(z)Hk(x, y) =

mn∑
k=1

Ak(t)
(
(D2

+D−a2
k)sk(z)+Re−zwk(z)

)
Hk(x, y)+

+ R
mn∑
k=1

mn∑
l=1

Ak(t)Al (t)
{

Dpk(z)Dsl (z)− Dsk(z)sl (z)
}

Hk(x, y)Hl (x, y)+

+R
mn∑
k=1

mn∑
l=1

Ak(t)Al (t)
{

pk(z)sl (z)
}{

Hk,x(x, y)Hl ,x(x, y)+Hk,y(x, y)Hl ,y(x, y)
}
,

(4.2.2)

whereHk,x ≡ ∂Hk/∂x andHk,y ≡ ∂Hk/∂y.
Now observe that〈sk, sj 〉1 = C j δk j , whereC j > 0 denotes some constant, see

Remark 3.8. Hence, multiplying (4.2.2) bysj (z)ezH j (x, y) and integrating over the
flow domain� gives

α j
dA j (t)

dt
=

mn∑
k=1

β jk Ak(t)+ R
mn∑
k=1

mn∑
l=1

γ jkl Ak(t)Al (t) , (4.2.3)

where the coefficients in the projected system are defined as

α j =

∫
�

sksj e
zHk H j , (4.2.4a)

β jk =

∫
�

[
D2sk + Dsk − a2

ksk + Re−zwk

]
sj e

zHk H j , (4.2.4b)

γ jkl =

∫
�

[
Dpk Dsl − Dsksl

]
sj e

zHk Hl H j +

+

∫
�

[
pksl

]
sj e

z(Hk,x Hl ,x + Hk,y Hl ,y)H j . (4.2.4c)

The functionssj , Dsj , D2sj , w j , p j , Dp j are computed by an efficient modified Che-
byshev–Galerkin method, see Appendix A. The coefficientsα j , β jk andγ jkl in (4.2.4)
are computed by a Gauss quadrature rule.
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4.3 Bifurcation analysis by means of continuation of the re-
duced model

We are now in the position to analyse the nonlinear behaviour of the system by means
of continuation of the Landau equation (4.2.3) with respect to the bifurcation parame-
ter R. Thus for Rayleigh numbers in the range [0,65] we compute possible nontrivial
steady-state solutions of this equation and we determine their stability by evaluating
the eigenvalues of the Jacobian, obtained after linearizing (4.2.3) around these non-
trivial steady-state solutions.

In the bifurcation diagrams we use the following color codes: black denote stable
solutions, red denote unstable solutions where just one eigenvalue has positive real
part, green are unstable solutions where two eigenvalues have real parts, and magenta
are unstable solutions where three eigenvalues have positive real parts.

4.3.1 Validation of the reduced model

We start with the validation of the reduced model by comparing its results with the
finite element simulations from Section 4.1. We construct a lower-order model for
the case of parallel rolls in they-direction:

H j (x, y) = cos(a j x) . (4.3.1)

This is in fact a 2D flow problem since the roll (or stripe) patterns in the three-
dimensional space correspond to two-dimensional fingers, making a comparison with
the finite element simulations meaningful.

The strategy to choose the projection basis is as follows. We use the results from
the linear stability analysis to obtain information about the stability of the modes (and
thus the least stable mode) that fit in the finite box, see Figure 4.1. Subsequently,
we choose a fixed dominant wave number (for example the least stable onea? =

a?(`), see Figure 4.1), and determine the wavenumbers that nonlinearly interact with
the dominant wavenumber. To complete the setAn[adom], we first observe that the
equations for the coefficients, (4.2.4a) and (4.2.4c), involve quadratic and cubic terms
with respect to the planform functionH j . Based on this observation, it is natural to
take the modesAn[adom] =

{
( j − 1) × adom , j = 1, · · · ,n

}
as basis for projection.

One should realize that, in order to get sufficient cubic interaction terms, the number
n must be taken sufficiently large. The number of modes in thez-direction, denoted
by m, cannot easily be determineda priori, since they do not form an orthogonal set.
Hence bothn andm are determined by means of convergence tests.

Next we compare the finite element steady-state solution from experiment B2
(see Section 4.1) with the one obtained by the reduced model. To build up the re-
duced model, we use the other parameters from experiment B2. We fix the flow
domain at̀ = 1

350 and setadom = 2π/ 1
350= 6π/50. Based on convergence results,

we takem = 15 andn = 9, i.e. we approximate the infinite dimensional problem
with a 15× 9 = 135-dimensional one. The dimension of the projection basis is
fixed for all computations in this section. Both the finite element (FEM) perturba-
tion and the reduced model (R-M) perturbation are depicted in Figure 4.3(top and
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bottom). In the same figure we constructed for the finite element simulation spectral
density plots of the perturbation patterns at various instances of time. The pertur-
bation pattern is found by subtracting the ground stateS0(z, t) from the numerically
obtained saturationS. We also computed a spectral density plot for the equilibrium
perturbation as obtained from the reduced model (R-M). For each slice 0< z< 5
we applied the Fourier transform in thex-direction to obtain information about the
horizontal wave numbers that build the pattern. For each wavenumber we computed
the amplitude in the Fourier expansion. As to be expected, the spectral density plot
at t = 0 only shows one mode, namely 6π/50. As time increases, the number of
interacting wavenumbers increases as well and for large time an equilibrium number
of active modes is reached. Clearly visible in the spectral density plot att = 60 are
three vertical black ‘bands’ indicating the most relevant wavenumbers in the pattern:
a = 0, 0.375 ≈ 6π/50 (corresponding to 3 fingers, as in the initial perturbation),
0.754≈ 12π/50, and minor higher-order multiples of 6π/50. This is in agreement
with our choice of the projection basis. The validity of this projection basis is even
further confirmed in the spectral density plot corresponding to the perturbation pat-
tern obtained by the reduced model. The dominant wavenumbers are exactly the
wavenumbers that are in the setA9[2π/ 1

350]. In fact, taking the difference between
both patterns and analysing the absolute error, we found that both patterns are nearly
the same, indicating that the reduced model captures the infinite-dimensional nonlin-
ear model extremely well.

4.3.2 The dynamics of roll/stripe patterns

For the roll/stripe patterns we constructed a reduced model and computed bifurca-
tion diagrams which are depicted in Figure 4.4. We considered the following sets of
dynamically active wavenumbers:A9[2π/ 1

350] (diagrams(A) and(B); the dominant
wavenumber is subharmonical, i.e. it does not correspond to the least unstable mode),
A9[4π/ 1

350] (diagrams(C) and (D)). These dynamically active eigenmodes are con-
sidered in the flow domain in which̀= 1

350. Further we consider the setA9[2π/ 1
450]

((E) and(F)). For this experiment we use a smaller flow domain in which` is given by
`= 1

450. From these bifurcation diagrams we observe the following.
As a first observation, the bifurcation diagrams look already very complicated in

the vicinity of the threshold Rayleigh number. Many other branches exist, in partic-
ular for larger Rayleigh numbers, but the analysis of these branches is beyond the
scope of this section. We only focus on the branches depicted in Figure 4.4.

In the setA9[2π/ 1
350], the least stable eigenmode has wavenumbera=12π/50,

see Figure 4.1. Thus the ground-state solution loses its stability atR = 14.81 by
a subcritical pitchfork bifurcation, see diagram(A). This subcritical bifurcation is
now referred to as the primary bifurcation. Further, the primary bifurcation diagram
in (A) is asymmetric with respect to its positive and negative branch. The negative
(unstable) branch, starting from the pitchfork inR=14.81, corresponds to solutions
in which the convection is shallower. These solution disappear via a fold bifurcation
at R∼=14.02 and returns as a stable branch. On the other hand, the positive (unstable)
branch has another bifurcation atR∼= 14.38, a pitchfork. From this pitchfork a sub-
branch pops up that corresponds to the 3-finger solutions, thereby destabilizing the
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Figure 4.4. Bifurcation diagrams for roll patterns computed by the reduced model. See text for the
color convention. For Rayleigh numbers indicated by the open circles we computed the corresponding
saturationSdistributions. White crosses correspond to pitchfork bifurcations in the primary bifurcation
diagram, yellow crosses to pitchforks in the secondary bifurcation diagram. White circles correspond
to fold bifurcations, and triangles to Hopf bifurcations.
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Figure 4.5.Bifurcation diagrams for hexagonal patterns computed by the reduced model. See text for
the color convention. For Rayleigh numbers indicated by the open circles we computed the correspond-
ing saturationS distributions. White crosses correspond to transcritical bifurcations in the primary
bifurcation diagram, yellow crosses to transcritical bifurcations in the secondary bifurcation diagram.
White circles correspond to fold bifurcations, and triangles to Hopf bifurcations.
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(unstable) 6-finger solutions, viz. the green unstable primary branch that continues
after the bifurcation. This green branch disappears via a fold bifurcation atR∼=14.02
to a less unstable solution branch untilR∼=14.085. There the 6-finger solution branch
bifurcates and regains its stability.

The sub-branch corresponding to the 3-finger solutions is ‘unfolded’ in diagram
(B). Observe that this branch is symmetric with respect to its positive and negative
parts. It turns out that the bifurcation atR∼=14.38 is subcritical. One should realize
that this is a bifurcation with respect to the 6-finger solution, andnot with respect
to the ground-state solution̄S0. Therefore, Figure 4.1 does not predict the critical
Rayleigh number at which this bifurcation occurs. However, the critical bifurcation
point can be determined via linear stability analysis in which the 6-finger solution
functions as ground state, i.e. when one linearizes around the 6-finger solution. The
unstable branch starting from the subcritical bifurcation disappears again via a fold
bifurcation atR∼= 14.025 and continues with stable 3-finger solutions until the next
fold bifurcation atR ∼= 14.53, to eventually return as an unstable branch atR ∼=

14.085.
Now we consider the setA9[4π/ 1

350]. This case is similar to the first experiment
(diagrams(A) and (B)), except that now the 3-finger solutions are not included. In
fact, bifurcation diagram(C) is a continuation of diagram(A) for larger Rayleigh
numbers, but without the 3-finger solutions sub-branch that destabilizes the 6-finger
solution branch. However, the situation in diagrams(C) and(D) is different. The least
stable wavenumber is the dominant wavenumberadom = 4π/ 1

350= 12π/50. Hence
the ground state solution again loses its stability atR = 14.81, thus the primary
bifurcation diagram is depicted in diagram(C). Observe that this bifurcation diagram
is symmetric, i.e. there are no sub-branches that destabilize the 6-finger solutions.

Starting from the subcritical pitchfork bifurcation atR = 14.81 in diagram(C),
there exist two (positive and negative amplitude) unstable branches which disappear
via a fold bifurcation atR∼=14.02 to a stable 6-finger solution branch, as in diagram
(A). At R ∼= 57.9 these stable branches disappear via a fold bifurcation to unstable
branches that terminate in a pitchfork bifurcation atR ∼= 27.4. These two primary
branches in diagram(C) reappear in the positive part of diagram(D). For Rayleigh
numbers beyond the pitchfork valueR= 27.4, see diagram(D), there exists a stable
12-finger solution branch. For Rayleigh numbers below this pitchfork value, there
exists an unstable 12-finger solution branch that does not interact with the 6-finger
solution branch since for these Rayleigh values the amplitudes of the 6-finger so-
lutions are zero (see diagram(C)). Further decreasing the Rayleigh number in(C)
brings us to the next bifurcation point atR∼= 18.1. This pitchfork bifurcation marks
the point at which the ground-state solution becomes unstable with respect to the 12-
finger solution, see diagram(D). For Rayleigh numbers beyond this point there exists
an unstable 12-finger solution branch in the negative part of diagram(D) that again
does not interact with the 6-finger solution branch. The unstable branch exists up
to R ∼= 22.04, again a pitchfork bifurcation. At this bifurcation point two unstable
6-finger solutions branches appear (diagram(C)). These branches ‘terminate’ with a
Hopf bifurcation atR ∼= 46. In (D) we continuated this branch for larger Rayleigh
numbers, see the branch in the dashed box, to show the complex dynamics of the
system that occur after the Hopf bifurcation. In this thesis we do not investigate Hopf
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bifurcations in detail.
To conclude the experiments for the roll patterns, we decrease the flow domain

by setting`= 1
450 and consider the setA9[2π/ 1

450] and . The least stable mode in
the setA9[2π/ 1

450] is now given by 4π/ 1
450 = 16π/50, see again Figure 4.1, and

therefore the ground state solution loses its stability atR = 15.02 by a subcritical
bifurcation. For the explanation of the behaviour of the branches in diagrams(E) and
(F) we refer to diagramsA and(B). The fold bifurcation at which the unstable 8-finger
solutions disappears in favour of stable 8-finger solutions is given byR ∼= 14.92.
The (subcritical) bifurcation point at which the 4-finger solutions enters the positive
branch of diagram(D) is given byR∼=14.99 and the point where it leaves this branch
is given byR∼=17.3, see also diagram (C). For the 4-finger solutions we find the fold
bifurcationsR∼=14.093 andR∼=49.44.

In diagrams(A) and(E) it is striking that there exist sub-branches in the positive
branch of the primary bifurcations only. The negative branches in these subfigures
suggest that these 6 and 8 finger patterns differ only from solutions of the positive
branches by a phase-shift. However, it turns out that this is not the case. The asym-
metry in diagram(E) is reflected by the amplitudesA9[2π/ 1

450], see Figure 4.6. In
this figure we plotted the amplitudes of the 9 eigenmodes in clusters of 15 (the num-
ber of modes with respect to the depth). Observe that the clusters corresponding
to the wavenumbers 8π/50, 24π/50, 40π/50 and 56π/50 are not activated in this
regime. Further, the clusters of the wavenumbers 0, 32π/50 and 64π/50 are invari-
ant with respect to the sign changeAk = −Ak, but the clusters corresponding to the
wavenumbers 4π/ 1

450=16π/50 (primary bifurcation) and 48π/50 are not invariant
under the sign change.

From the bifurcation diagrams we conclude that the stable 3-, 4-, and 6-finger
solutions only exist in finiteR-intervals: stable 3-finger solutions exist for 14.025<
R<14.53; stable 4-finger solutions exist for 14.093<R<49.44; and stable 6-finger
solutions exist for 14.02< R< 57.9 This typical phenomenon is related to Busse
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stability balloons (Manneville, 1990).

4.3.3 The dynamics of hexagonal patterns

So far we have only considered 2D and quasi-3D (i.e. rolls/stripes) pattern formation.
One of the benefits of the reduced model is that it can be easily extended to the
bifurcation analysis of genuine 3D patterns. In this subsection we consider structures
that have a hexagonal shape with respect to the horizontal plane, i.e. we consider the
planform function

H j (x, y) = 2 cos( 1
2a j x) cos( 1

2a j
√

3y)+ cos(a j x) (4.3.2)

satisfying1⊥H j = −a2
j H j . These hexagonal structures have aspect ratio 1 :2

3

√
3.

In order to let them fit in the truncated flow domain, the aspect ratio of�⊥ has to
be chosen 1 :23

√
3 as well. This explains the particular flow domain (4.0.1). The

asymmetric geometry makes the problem asymmetric as a whole and based on this
observation we may expect transcritical bifurcations, see Section 1.3.

The model reduction with respect to (4.3.2) is considered for the setA9[14π/50]
only. For the flow domain we set̀ = 50 in (4.0.1). The dominant wavenumber
14π/50 is the least stable eigenmode and corresponds to 7-finger solutions. The
bifurcation diagrams are depicted in Figure 4.5. The least stable eigenmodea =

14π/50 bifurcates transcritically atR = 14.71. The stable ground-state solution
branch continues in the negative part of diagram(A) until it disappears via a fold
bifurcation atR ∼= 37.98 to an unstable branch. This unstable branch disappears
again via a fold bifurcation to a stable branch atR ∼= 36.63 which terminates with
a Hopf bifurcation atR ∼= 37.19 . Further continuation of this branch reveals a
second Hopf bifurcation atR ∼= 37.72. After the second Hopf bifurcation, the 7-
finger solution branch becomes less unstable and even stable via a fold atR∼=37.58.
Further continuation shows that this stable 7-finger solution branch intersects theR-
axis again atR∼=42.75. This intersection demarcates a transcritical bifurcation point
in the negative part of the 14-finger solution branch, see Figure 4.5(B).

The 14-finger solution branch in diagram(B) bifurcates transcritically atR ∼=

20.25. The behaviour of this diagram is more or less similar to Figure 4.4(D). The
unstable 14-finger solution branch regains its stability atR∼=46.25 via a transcritical
bifurcation. This bifurcation is basically initiated by the interaction of the 7-finger
solution branch in diagram(A).

At the primary bifurcation pointR = 14.71, there also exist in the positive part
of the diagram an unstable subcritical branch that vanishes via a fold bifurcation at
R∼=13.22 to a stable branch corresponding to the 7-finger solutions. Its definite fate
is not clear since forR>65 we have to dramatically increase the setA9[14π/50] to
obtain a valid representation of the nonlinear system.

Considering again the bifurcation diagrams in this section, we may conclude that
the bifurcation structure of the dynamical system is extremely complex. For Rayleigh
numbers in the range [13.22,65] there exist, depending on the horizontal planform
function one considers, many stable and unstable patterns, i.e. spatial distributions
of salt. Therefore, an upperbound for the global stability threshold is given byRG<
13.22.
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4.4 Discussion and future directions

Although the method is very powerful, it also has its limitations. For large Rayleigh
numbers, one has to incorporate many modes to get a reliable convergence. This
is also to be expected: the modes for projection are based on the one-dimensional
ground statēS0(z), and the patterns that may pop up in this large Rayleigh number
regime do not have very much in common with the modes that form the projection
basis. Therefore it would be better to change the projection basis when one con-
tinuates a specific branch for large Rayleigh numbers. The most natural way is to
linearize around the solutions of the followed branch, and then to determine the new
eigenfunctions that can be used for the projection basis. Clearly, these convective
solutions do not longer have a one-dimensional structure, thus one has to solve a
two-dimensional eigenvalue problem. On the other hand, the number of projection
modes can be drastically reduced to obtain convergence for large Rayleigh numbers.

Reconsidering the bifurcation diagrams(C) and(B) in Figure 4.6, predictions of
the length scale of the observed patterns that are based on the least stable wavenum-
ber, can be misleading. Indeed, from these diagrams we deduce forR> 27.4 four
stable solutions. Two of them are entirely build up by the 12-finger solution, i.e. they
do not interact with the 6-finger solutions, which are for this case the least stable
solutions. Hence it is not clear which of these patterns will eventually show up when
doing (numerical) experiments. To answer this question, one has to determine for
each of these solutions their domain of attraction. These attraction domains can be
determined numerically by means of stochastic methods, see Gardiner (2004, Chap-
ter 9).

Although not considered in this thesis, all these roll/hexagonal/square etc. pat-
terns interact with each other in a very complicated way. Therefore, the bifurcation
analysis presented in this section cannot predict what kind of pattern the system will
eventually select since we considered the different planform distributions indepen-
dently. What we do know is that this pattern selection problem will be a hard and
challenging future research topic.

References

Calvete, D., H. E. de Swart, and A. Falqués: 2002, ‘Effect of depth-dependent wave
stirring on the final amplitude of shoreface-connected sand ridges’.Cont. Shelf
Res.22, 2763–2776.
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Chapter 5

Convection as a transport mechanism in peat
moss layers

?

The upper part of a living mire consists of a sponge-like layer of predominantly
moss species, the acrotelm, with a porosity above 95% (Ingram, 1978). The

green and brownish plants near the surface (Figure 1.1(C)) intercept light and fix
CO2. Further down, the older plants turn yellow and start to decay. Aerobic decay
in the acrotelm takes place relatively rapidly and makes nutrients available for recy-
cling. Below the acrotelm a denser layer, the catotelm, is present where the hydraulic
conductivity is much lower than in the acrotelm (Ingram et al., 1974) and where
the decay rate is several orders of magnitude smaller due to the anoxic conditions
(Clymo, 1984). It is the peat formation in the slowly growing catotelm that repre-
sents a sink of atmospheric CO2 (Gorham, 1991; Van Breemen, 1995; Clymo et al.,
1998).

R²I
Φ

Catotelm

Acrotelm H

q⋅e  = 0z

q⋅e  = 0z

ez

Figure 5.1. Schematized picture of a mire.
The surface temperatureΦ(t) is given in Ta-
ble 5.1.

The production of organic matter at the surface largely depends on the recycling
of nutrients originating from decomposing plant material. Since decomposition and
photosynthesis take place at different depths, the transport of oxygen, carbon com-
pounds and nutrients is an important process in the functioning of the mire ecosystem.
This transport takes place both inside the plants (Rydin and Clymo, 1989) and outside

? This chapter is an extended version of a paper that has appeared in theProceedings of the National
Academy of Sciences, USA(PNAS) (Rappoldt et al., 2003).
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86 Chapter 5. Convection as a transport mechanism in peat moss layers

the plants by diffusion and fluid flow.
In this chapter we investigate a mechanism for fluid flow in a water-saturated peat

moss layer, which does not depend on capillarity or an external hydraulic pressure.
During the night the surface cools, leading to relatively cold water on top of warm
water, and if the temperature drop is sufficiently large, the cold water sinks and the
warm water rises. This type of flow is called buoyancy flow and it implies convective
transport of the heat and solutes carried with the water. Buoyancy flow often occurs
as “cells” consisting of adjacent regions with upward and downward flow.

To obtain a better understanding of this phenomenon, we consider various types
of both static and time-periodic surface temperatures. We first consider the case
where the surface temperature impulsively drops from maximum daytime tempera-
ture T̄ + ∆T to minimum night temperaturēT . Then we consider the case where
the impulsive temperature drops and rises betweenT̄ + ∆T andT̄ are periodic. To
mimic day and night cycles, we also consider the case in which the surface tempera-
ture varies harmonically.

Considerable theoretical work has been done on the stability of flows in fluid
layers and fluid-saturated porous layers subject to static and time periodic boundary
conditions, see Nield and Bejan (1992) and Homsy (1973, 1974) for an overview.

The case of the impulsive temperature drop is treated by Caltagirone (1980) for a
finite fluid-saturated porous layer. In this chapter both linear stability analysis based
on Galerkin projections and the energy method are discussed and compared to 2D
numerical computations. Basically, the Galerkin projection method results in anon-
autonomoussystem of ordinary differential equations for the amplitudes. Two diffi-
culties arise in this approach. Firstly, for non-autonomous systems a stability analysis
in terms of the eigenvalues of the system has no meaning, except for asymptotically
large times since then the coefficients are constant (steady ground state), and hence
an appropriate stability criterion has to be introduced. However, as indicated by Cal-
tagirone (1980), there are no universal guidelines for determining such criterion. The
second difficulty with this class of methods is the effect the choice of initial condi-
tions has on the computed amplitudes (Foster, 1965, 1968). This is in conflict with
the physical intuition that initial conditions should be relatively unimportant. In con-
trast to the Galerkin projection method, energy methods do not suffer from these
problems.

Gresho and Sani (1971) also examined this problem in a fluid layer using two
different approaches. The first approach is again based on Galerkin projections,
while the second employs the “frozen profile” hypothesis in which time is treated
as a parameter. Their stability criterion for the Galerkin projection method is arbi-
trarily chosen and is based on thez-component of the velocity perturbation. They
pointed out that the frozen profile hypothesis is violated for small times, since then
the growthrate of the perturbations is small compared to the rate of change of the
ground state. However, the frozen profile approximation gets progressively better for
large times.

The case in which the surface temperature varies harmonically is considered by
Chhuon and Caltagirone (1979) and Caltagirone (1976) for a finite fluid-saturated
porous medium. Their analyses are based on the Galerkin projection method, giving
a system of ordinary differential equations withtime-periodiccoefficients. The sta-
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bility of such problems is then determined by straightforward application of classical
Floquet theory (Cesari, 1963), see also Rosenblat and Tanaka (1971).

Here we study the stability of the ground states by means of the energy method
in both semi-infinite and finite peat moss layers. In addition, we apply the method
of linearised stability and compare both results. We determine the critical system
Rayleigh number at which instability occurs and estimate the time delays to insta-
bility. We show for the case of a square wave surface temperature in a semi-infinite
domain and for a fixed system Rayleigh number that the time delays to instability,
as predicted by the energy method and the method of linearised stability with the
frozen profile approximation, are close together. Buoyancy flow is shown to occur in
a cooling porous layer if the system Rayleigh number Ra exceeds 25. This bound is
in agreement with 2D numerical simulations and laboratory experiments.

The chapter is organized as follows. In Section 5.1 we introduce the dimension-
less model equations and give explicit formulas for the ground states. Then we dis-
cuss in Section 5.2 the stability of the ground states by using the methods as discussed
in Chapter 3. These theoretical stability bounds are confirmed by 2D numerical sim-
ulations in Section 5.3. To conclude this chapter we compare the stability results with
laboratory experiments.

5.1 Problem formulation

We model the peat moss layer as a fully saturated, uniform, isotropic porous medium
occupying the three-dimensional strip�= {(x, y, z) : −∞< x, y<∞ , 0< z<
H}, wherez points vertically downwards, see Figure 5.1 for further details. The
boundary{z = H}, which separates the acrotelm from the catotelm, is considered
to be thermally isolated. Since the catotelm is almost impermeable, we impose in
addition a no-flow boundary condition. Along the upper boundary{z= 0} we apply
a time-dependent Dirichlet boundary condition that ranges betweenT̄ , the minimum
temperature during the night, andT̄ +∆T , the maximum temperature during the day.
Here the temperature difference∆T is defined accordingly. We do not incorporate
evaporation in the model.

5.1.1 Model equations

We suppose that Darcy’s law is valid, and that the Oberbeck–Boussinesq approxi-
mation is applicable. We also make the other standard assumptions as discussed in
Section 1.4. The equation for heat transport is given by

φ
∂T

∂t
+ ∇ ·

(
q T −Deff ∇T

)
= 0 , (5.1.1)

whereT = T(x, y, z, t) [K] denotes the temperature in the layer,q = q(x, y, z, t)
[m·s−1] velocity, φ [−] porosity, andDeff := κT/ceff [m2

·s−1] the effective thermal
diffusivity. Hereceff [kg/(m·s2

·K)] andκT [m·kg/(s3
·K)] are, respectively, the ef-

fective heat capacity and the (overall) thermal conductivity.
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For the velocityq we have Darcy’s law

q = −
κ

µ

(
∇ p − ρ(T)g ez

)
, (5.1.2)

where p = p(x, y, z, t) [kg/(m·s2)] denotes the pressure,µ [kg/(s ·m)] viscos-
ity, κ [m2] permeability andρ(T) [kg·m−3] the temperature dependent density,g
[m·s−2] the gravity constant. The propertiesφ, Deff, κ, κT , ceff andµ in (5.1.1) and
(5.1.2) are assumed to be independent of the temperatureT and the spatial coordi-
nates{x, y, z}. We disregard inertial effects in the Darcy law, i.e. it is assumed that
flow velocities are small and that frictional loss, pressure gradient and gravity are
instantaneously balanced.

Further, we have the incompressibility condition

∇ · q = 0 (5.1.3)

and the equation of state

ρ(T) = ρ̄ − αρ̄
(
T − T̄

)
, (5.1.4)

whereα [K−1] is the relative density change per unit temperature andρ̄ the mean
density of water.

Equations (5.1.1–5.1.4) are considered in� and for allt>0 subject to the bound-
ary conditions

T = Φ(t) and q · ez = 0 atz=0 ,
∇T · ez = 0 and q · ez = 0 atz= H ,

(5.1.5a)

with Φ(t) given in Table 5.1, and initial condition

T |t=0 = T̄ +∆T in � . (5.1.5b)

When the layer thicknessH >
√
Deffτ0, whereτ0 is the duration of the cooling

phase, we can recast the flow problem in dimensionless form by introducing the
cooling front thickness

√
Deffτ0 andφτ0, respectively, as scales for length and time

and redefining the variables as follows:

(RV)


{x, y, z} :=

{x, y, z}
√
Deffτ0

, t :=
t

φτ0
,

T :=
T − T̄

∆T
, q :=

q
Kα∆T

, p :=
p − ρ̄gz

αρ̄g∆T
√
Deffτ0

,

with K := ρ̄gκ/µ. The dimensionless thicknessh of the layer becomes

h =
H

√
Deffτ0

> 1 . (5.1.6)
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Table 5.1.Three different types of the boundary conditionΦ(t) along the upper boundary{z=0}. The
indexk is given byk = 0,1,2, · · · . Note thatt =0 corresponds to the maximum negative temperature
gradient.

Non-dimensionless form Dimensionless form

(i)

{
T̄ +∆T t=0 ,
T̄ t>0 .

{
1 t =0 ,
0 t>0 .

(ii)


T̄ +∆T (2k+1)<

t

τ0
<(2k+2) ,

T̄ 2k<
t

τ0
<(2k+1) .


1 (2k+1)< t<(2k+2) ,

0 2k< t<(2k+1) .

(iii ) T̄ + 1
2∆T

{
1 − sin

(
π t

τ0

)}
t>0 . 1

2

{
1 − sin(π t)

}
t>0 .

Remark 5.1. The length scale
√
Deffτ0 characterizes the distance over which a

daily “temperature wave” penetrates by conductive heat transport. Note that when
H <

√
Deffτ0, then H andφH2/Deff may be used as scales for length and time,

respectively.

The reduced variables(RV) allow us to increase the layer thicknessh to infinity,
leaving the time-scale invariant. This in turn makes comparison of times much easier.
Substitution of(RV) in (5.1.1–5.1.3) and (5.1.5) yields

∇ · q = 0 , (5.1.7a)

q + ∇ p + Tez = 0 , (5.1.7b)

∂T

∂t
+ ∇ · (Ra qT − ∇ T) = 0 , (5.1.7c)

in � :={(x, y, z) : −∞<x, y<∞,0<z<h}, and for allt>0, subject to

T = Φ(t) and q · ez = 0 atz=0 ,
∇T · ez = 0 and q · ez = 0 atz=h ,

(5.1.8a)

and

T |t=0 = 1 in� . (5.1.8b)

Here Ra represents the Rayleigh number, which is defined by

Ra = Kα∆T

√
τ0

Deff
. (5.1.9)
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This dimensionless group of model parameters plays a crucial role in the presence
or absence of buoyancy flow. Note that the velocity scale can also be written as
Ra

√
Deff/τ0.

5.1.2 Groundstate solutions

A ground state solution of (5.1.7) is defined as a solution without fluid flow (q ≡ 0)
and which satisfies (5.1.8a,b). Since we only considersteadyperiodic flows, initial
condition (5.1.8b) is superfluous for boundary conditions that vary in time. A ground-
state solution is characterized by a one-dimensional temperature profileT0(z, t), i.e.
there are no horizontal temperature differences and heat transport takes place by con-
duction only. Depending onΦ(t), the ground-state solution may be periodic with
period 2. We consider the ground-state solutions that correspond to theΦ(t) in Ta-
ble 5.1. Boundary conditions(I) and(II) are considered in both a semi-finite and a
finite layer, and condition(III ) is considered in a semi-infinite domain only. For the
derivation of these explicit solutions we refer to Carslaw and Jaeger (1959).

(I) An impulsive temperature drop at the surface of a semi-infinite layer [0,∞)

T0(z, t) = erf

(
z

2
√

t

)
, (5.1.10)

and a finite layer [0, h]

T0(z, t) = 2
∞∑

n=0

(−1)n

λ+
n

e−(λ+
n )

2t/h2
cos
(
λ+

n (h − z)/h
)
, (5.1.11)

whereλ+

n = 1
2(2n + 1)π .

(II) A ‘square wave’ at the surface of a semi-infinite layer [0,∞)

T0(z, t) = 1
2 −

∞∑
n=1

1

λ−
n

e−z
√
λ−

n sin
(
2λ−

n t − z
√
λ−

n

)
, (5.1.12)

with λ−

n = 1
2(2n − 1)π , and a finite layer [0, h]

T0(z, t) =



2
∞∑

n=0

(−1)n

λ+
n

e−(λ+
n )

2t/h2

1 + e−(λ+
n )

2/h2
cos
(
λ+

n (h − z)/h
)

2k6 t 62k + 1 ,

1 − 2
∞∑

n=0

(−1)n

λ+
n

e−(λ+
n )

2(t−1)/h2

1 + e−(λ+
n )

2/h2
cos
(
λ+

n (h − z)/h
)

2k + 16 t 62k + 2 .

(5.1.13)
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(III) A harmonic wave at the surface of a semi-infinite layer [0,∞)

T0(z, t) = 1
2 − 1

2e
−z

√
1
2π sin

(
π t − z

√
1
2π
)
. (5.1.14)

Figure 5.2, for example, shows the ground-state solution forΦ(t) given by(II)
in Table 5.1 for a thick layer (h =∞). Since there is no fluid flow, there is a perfect
symmetry between diurnal heating and nocturnal cooling.

Remark 5.2. During the cooling phase, the ground-state solutions are in some sense
closely related to each other. For instance, for small times, ground state(5.1.10)
resembles(5.1.11)for finite domains. Further, for thin layers (h small) ground state
(5.1.13)resembles ground state(5.1.11), and for small times also(5.1.10).
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Figure 5.2. Temperature cycles at various
dimensionless depths calculated for a thick
layer (H �

√
Deffτ0) with heat transport

by conduction only. The nocturnal cooling
takes place in precisely the same way as the
diurnal heating. Only the direction of the
heat flow has reversed.

5.2 Stability of the ground states

During the cooling phase a ground state is not necessarily stable, however. Cold
surface water may start to fall and warm water from below may start to rise. If the
Rayleigh number of the system is sufficiently large, this process amplifies itself and
leads to the formation of convection cells.

To analyse the stability of the ground states, we write (as in Section 2.2)

T = T0 + θ , q = 0 + u , p = p0 + % , (5.2.1)

with u = (u, v, w)T, and whereT0 denotes the ground-state solution. Again we re-
quire that the perturbations vanish at{z= 0} and{z= h}. Substitution of (5.2.1) in
(5.1.7) yields the system (in� and for 0< t<1)

∇ · u = 0 , (5.2.2a)

u + ∇% + θez = 0 , (5.2.2b)

∂θ

∂t
+ Rw

∂T0

∂z
+ Ru · ∇θ = 1θ . (5.2.2c)
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Equations (5.2.2a) and (5.2.2b) can again be combined to give forθ andw the linear
relation

1w = −1⊥θ in � , (5.2.2d)

where1⊥ denotes the horizontal Laplacian∂xx + ∂yy.
For the stability analysis of the perturbation equations (5.2.2) we follow the same

techniques as discussed in Chapter 3. We restrict the stability analysis to the cooling
phase only, i.e. we consider the ground-state solutions fort ∈ [0,1]. Hence, all flow
problems considered in this section can be seen as variations of the Lapwood problem
(Lapwood, 1948).

We apply the energy method with differential constraint to the perturbation equa-
tions (5.2.2) with the techniques from Section 3.2. This leads to the sixth orderw
equation

(
D2

− a2
)3
w −

a2R

2

{(
D2

− a2
) (∂T0

∂z
w

)
+
∂T0

∂z

(
D2

− a2
)
w

}
= 0 , (5.2.3)

wherea denotes the wavenumber of the perturbation,R the Rayleigh number and
wheret appears as parameter sinceT0 = T0(z, t). Depending on the problem to be
considered, equation (5.2.3) needs to be solved inR+ or (0, h). The corresponding
boundary conditions are for layers of semi-infinite extent (thick layers) given by

w(∞) = w(0) = D2w(0) = D4w(0) = 0 ,

and for layers of finite thickness they are given by

w(0) = D2w(0) = w(h) = D2w(h) = 0 .

For a given wavenumbera > 0 and timet > 0, let RE(a, t) denote the smallest
possible eigenvalue of problem (5.2.3). Further, let

RE(t) := min
a>0

RE(a, t) for t ∈ (0,1) .

This quantities are depicted in Figure 5.3 for the ground states (5.1.10), (5.1.11),
(5.1.12) and (5.1.13) for varioush. We discuss the semi-infinite (thick) layer and
finite layers separately.

Thick layer

The curveRE(t) for this case is depicted in Figure 5.3 as a fat dashed line, and this
curve functions here as a reference. It can be easily shown thatRE(t) = R?E/

√
t

and aE(t) = a?E/
√

t , where R?E := mina>0 RE(a,1) ≡ RE(a?E,1). The behaviour
of RE(t) can be understood from the penetration of a cooling front into the layer.
After a sudden temperature drop, the depth of the top layer affected by the cooling
increases as

√
t . Initially, a thin cold layer is easily stabilized by conduction and

requires a large Rayleigh number to decrease the time delay to instability. In the case
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of a smaller Rayleigh number, the time delay to instability is considerably longer. In
fact, for Rayleigh numbers below the thresholdRE(1) = R?E ≈ 7 we obtain a time
delay that spans the whole night, i.e. the cooling front reaches the bottom of the layer
and cooling continuous without fluid flow. It turns out that the threshold of 7 is the
minimum bound for stability.

For the square wave surface temperature, we computed the fat solid curve in Fig-
ure 5.3. The behaviour of this curve can be understood from the curve corresponding
to the impulsive temperature drop. As already indicated in Remark 5.2, initially,
the square wave ground state behaves like

√
t , giving a close resemblence to the fat

dashed curve. As time increases, we see that the dashed fat curve deviates from the
solid one. During the day, the layer warms up by a (stable) heating front. However, it
is impossible to heat up the entire semi-infinite layer during the day, and this implies
that there exists a certain depth at which the temperature is at equilibrium. This equi-
librium temperature is given bȳT + 1

2∆T and is entirely due to the periodic behaviour
of the ground state, see also Figure 5.2. During the cooling phase, a cooling front pen-
etrates the layer and after a short time it meets the equilibrium temperature. Since the
mean temperature is lower than the maximum daytime temperature, the temperature
gradient is much smaller resulting in a more stable ground state compared to ground
state (5.1.10). This results in a longer time delay to instability. This immediately
explains why we find for this case a threshold of approximatelyRE(1)= 17, which
is higher than the one corresponding to an impulsive temperature drop.
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Figure 5.3.The relation between
the system Rayleigh number Ra
and the time delay to the onset of
buoyancy flow for a square wave
ground state (solid curves) and
an impulsive surface temperature
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computed by means of the energy
method. Graphs are given for a
thick layer (h = ∞), h = 2 (≈
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thin layerh = 0.5 (≈ 4 cm). For
h = 0.5 dashed and solid curves
coincide.

Layers of intermediate thickness

The stability curvesRE(t) for finite layers are depicted in Figure 5.3 as solid and
dashed curves. We first discuss the case with an impulsive temperature drop. For
small times ground state (5.1.11) is close to ground state (5.1.10). This explains why
all dashed curves coincide with the fat dashed curve. At a later stage, however, the
influence of the lower boundary becomes more important. Since on this boundary we
have a no-flux condition, the system will stabilize and this results in stability curves
that go up in time. Forh = 2 the threshold is 20 (see Figure 5.3), forh = 1 the
threshold is 40 and forh = 0.5 we find 79. Hence, the thinner the layer, the more
stable the system is.
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Similar observations can be made for the square wave surface temperature case.
For h = 2 the threshold is 32 (see Figure 5.3), forh = 1 the threshold is 43 and for
h = 0.5 we find 79. For thin layers (i.e.h small) we observed in Remark 5.2 that
(5.1.13) for 06 t 6 1 is close to (5.1.11). This explains why forh = 0.5 the solid
curve coincides with the dashed curve. For Rayleigh numbers below these thresholds,
the cooling front reaches the bottom of the layer before the flow sets in, and cooling
continues without fluid flow.

Table 5.2.Parameter values for the water-saturated peat moss layer used in the experiment. The corre-
sponding Rayleigh number Ra (cf. (5.1.9)) is 83. Note thatα is expressed as arelativedensity change
per unit temperature.

Parameter Value Unit Remark
∆T 10 K surface temperature difference between day

and night, see Section 5.5
τ0 43200 s half a day
H 0.15 m typical acrotelm thickness is 0.1-0.4 m

(Van Breemen, 1995)
α 15×10−5 K−1 for water between 10◦C and 20◦C

(Gebhart et al., 1988)
Deff 1.4×10−7 m2

·s−1 quotient between thermal conductivity and
thermal capacity of water at 10◦C

K 0.1 m·s−1 based on measured values, see Appendix 5.A

Remark 5.3. For parameter values in Table 5.2, the length scale is given by0.078 m.

Comparison with linear stability analysis

For the sake of completeness, we also consider the method of linearised stability
analysis, see also Section 3.2. Since here the ground stateT0 depends on timet , such
a construction is only possible under the assumption that the rate of change of the
ground state is small compared with the growth rate of infinitesimal perturbations.
This frozen profile approach leads to a fourth order equation for the perturbationw:(

D2
− a2

)2
w − a2R

∂T0

∂z
w = 0 , (5.2.4)

subject tow(0) = D2w(0) = w(∞) = 0 for thick layers, andw(0) = D2w(0) =

w(h)= D2w(h)=0 for layers of finite thickness. For a given wavenumbera>0 and
time t > 0, let RL(a, t) denote the smallest possible eigenvalue of problem (5.2.4).
Further, let

RL(t) := min
a>0

RL(a, t) ≡ RL(aL , t) and aL = aL(t) for t ∈ (0,1) .

These quantities are depicted in Figure 5.4 for the ground states (5.1.10), (5.1.11),
(5.1.12) and (5.1.13) for varioush.
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The difference between the energy method and the method of linearised stability
is depicted in Figure 5.4(A) for the case of a square wave surface temperature in a
finite layer (h=2). As explained in the introduction, the two stability bounds do not
coincide. However, for a fixed Rayleigh number the difference in the time delay to
instability is small. Compare also Figure 5.4(B) with Figure 5.3. This means that we
find nearly necessary and sufficient conditions for instability.

Let us now consider the square wave surface temperature. For a thick layer (h=

∞), the Rayleigh number must exceed 18 to get fluid flow before the end of the night.
Fluid flow in a finite layer requires a lower Rayleigh number. Forh=2 the threshold
for instability is given by 32, forh=1 it is given by 44, and forh=0.5 the threshold
is 80, see Figure 5.4(B).

For the parameter values in Table 5.2, i.e. forh = 2, we find R ≈ 83, which
is sufficiently large. For this Rayleigh number Figure 5.4(B) predicts a time delay
to the onset of flow of 0.015 which is about 11 minutes(0.015×43200= 648 s).
The expected size of the buoyancy cells that become first unstable is found from
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Figure 5.4(C), and is approximately 0.5.

Remark 5.4. The stability analyses in this section does not explicitly make use of the
periodicity of the ground-state solutions. In particular, after the unstable period there
is a stable period in which the system can recover from instabilities triggered by per-
turbations during the cooling phase. Taking this ‘restabilizing’ effect into account,
the system is less unstable for the period t∈ (0,2) then it would be for t∈ (0,1).
This implies that the critical Rayleigh number (7) found in this section is just a lower-
bound for instability. To analyse the stability of the system for t∈ (0,2), i.e. for a
complete cooling and heating cycle, one should use Floquet theory to find the proper
instability threshold.

5.3 Finite Element simulations

The stability analyses in the previous section provides us with conditions for con-
vective flow, but it does not predict the further development of the convection cells
nor their final fate. Therefore we carried out numerical experiments in the two-
dimensional truncated flow domain

� :=
{
(x, z) : −h < x < h ,0< z< h

}
.

The truncated flow domain needs additional boundary conditions: we impose no-flow
and no heat transport along the lateral boundaries. At the surface we prescribe the
temperature according to a square wave, i.e. we apply the Dirichlet condition (II) in
Table 5.1. To trigger instabilities, we perturb this boundary condition:

Φ(t) = Φ(t)+ ε cos(2πx) with ε=0.01 .

Since we only consider steady periodic flows, the initial condition can be taken arbi-
trarily. The steady periodic flow is then reached after several day and night cycles.
For further details concerning the numerical method we refer to Section 4.1. The
particle tracking in Figure 5.5 involved spatial interpolation of the finite element flow
field q(x, z, t) (using Renka, 1999) and second order integration of the particle posi-
tions along the streamlines with time step 0.001.

Thearrows in Figure 5.5 show a simulated flow fieldq(x, z, t) at several stages
of its development. These arrows are just local velocities, however, and in order to
follow the moving water we tracked the position of notional “colored dust particles”
carried around by the fluid and with initial positions indicated in Figure 5.5(A). A
movie of the simulation is available as supporting Movie1 on the PNAS website? .

Using Ra
√
Deff/τ0 as velocity scale (withDeff andτ0 from Table 5.2), we can

describe the results as follows. Figure 5.5(A) shows a “daytime” situation without
flow at about 8 hours before the temperature drop. Buoyancy flow started within a
few minutes after the temperature drop, which is in accordance with Figure 5.4(B) for
Ra = 100. The cells rapidly grew in height and after about two hours they almost
reached the bottom of the layer. After 4.4 hours (Figure 5.5(B)) the fluid velocity

? http://www.pnas.org/cgi/doi/10.1073/pnas.1936122100

http://www.pnas.org/cgi/doi/10.1073/pnas.1936122100
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reached a maximum of 2.5 mm·s−1 in the middle of the regions with downward flow.
Then the flow gradually slowed down and towards the end of the night the buoyancy
cells almost disappeared (Figure 5.5(C)).

The decay of the cells is caused by the absence of a heat source at the bottom of
the layer. When the entire layer has cooled down, then the temperature difference is
too small to keep the flow going.

The visual impression given by the simulation is that the buoyancy cells turn
around once every night. The continuously changing flow field also leads to mixing,
however. This is illustrated by Figure 5.5(D), showing the system at precisely 4 days
after the situation of Figure 5.5(B). Flow field and temperatures are the same, but a
considerable mixing of the dust particles has taken place.

5.4 Analysis of measured temperatures

Laboratory measurements have been carried out in a climate chamber using a cylin-
drical sample of 50 cm height and 35 cm diameter. During the sampling in the field,
the spongy top layer inevitably got disturbed, but after a few weeks in a growth cham-
ber the peat moss had restored itself. Radial heat transport was minimized by 10 cm
of insulating foam around the cylinder.

We applied a temperature difference of 10 K between “days” and “nights” of
12 hours. Temperatures were measured with a vertical array of thermocouples in-
stalled at eight depths between 1 mm and 99 mm. Details are provided in Ap-
pendix 5.A.

Figures 5.6(A), 5.6(B) and 5.6(C) show daily temperature cycles measured at three
consecutive horizontal positions of the thermocouple array. At each position, tem-
perature recording was started one or two days after the installation of the thermo-
couples.

The temperatures in Figures 5.6(D), 5.6(E) and 5.6(F) have been calculated with
the above mentioned two-dimensional model for the three locations indicated in Fig-
ure 5.5. The convective flow in the simulated system indeed caused the expected
asymmetry between diurnal heating and nocturnal cooling (cf. Figure 5.2). The dif-
ferences between the cooling patterns in Figures 5.6(D), 5.6(E) and 5.6(F) are caused
by the differences in direction and size of the nocturnal flow in the model system.

The asymmetry between heating and cooling is also visible in the measured cy-
cles in Figures 5.6(A), 5.6(B) and 5.6(C). The cooling curves lie much closer together
than the heating ones and there are also signs of fluid flow, marked by arrows. In
Figures 5.6(B) and 5.6(C), for instance, the temperatures between 25 and 99 mm prac-
tically coincide between 1 and 3 hours after the temperature drop. This suggests
upward flow of relatively warm water similar to the simulated upward flow causing
the temperatures of Figure 5.6(F).

In the simulated system the buoyancy cells gradually decay after about 4 hours
(cf. Figure 5.5). Both in the measured and simulated temperature profiles we indeed
see that the cooling curves “normalize” towards the end of the night. They describe
again a normal temperature gradient, without the bumps and coinciding temperatures
of the first half of the night.

A consequence of the fluid flow is that nocturnal cooling takes place more effi-
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ciently than diurnal heating. Hence, starting at the same temperature everywhere, the
nocturnal heat lossfrom the layer will be larger than thediurnal heat gain, which
means that we have a heat pump. The average temperature of the layer will decrease
until nocturnal loss and diurnal gain balance each other.

We indeed find this decrease. For each of the measured curves in Figure 5.6(A),
5.6(B) and 5.6(C) a 24 hour average temperature has been calculated. Figure 5.7
shows the deviation of these averages from the average surface temperature, together
with curves for the simulated system. The points for Figure 5.6(A) and 5.6(B) clearly
show a decrease with depth, which is somewhat larger than the decrease in the simu-
lated system. The points for Figure 5.6(C) (the open circles) reach a plateau at about
−0.7 K. The reason is probably that daily averages were still decreasing in the lower
part of the layer.
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measurements in Figure 5.6 (using the sig-
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curves have been obtained from two di-
mensional model calculations using Ra=

100.

We finally mention a noticeable small effect for upward flow locations. The pre-
dicted average temperature just below the surface slightly exceeds the surface average
(cf. the curve for upward flow in Figure 5.7).

5.5 Discussion

A simplification made in the model is the use of an insulated lower boundary. Be-
low a real peat moss layer, there is a denser zone (the catotelm) in which conductive
heat flow will occur. This dense zone will not have much effect on the onset of flow,
however, which is caused by the instability of a cooling top layer. Furthermore, con-
ductive heat flow from below cannot keep the buoyancy cells going for a prolonged
period of time, which implies that the decay of the cells is inevitable. Hence, the dif-
ference in the lower boundary condition is unlikely to have important consequences.

Quantitative deviations between observed and calculated temperatures in Fig-
ure 5.6 may be caused by the absence of dispersion in the model, by heterogeneity of
the peat moss layer, by the more gradual surface temperature changes in the exper-
iment and by the limitations of Darcy’s law. There is a good qualitative agreement
between the measured and calculated temperature patterns, however, and the decrease
of the average temperature with depth fits surprisingly well (Figure 5.7).
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From the consistency between the mathematical stability analysis, the numerical
calculations and the cooling patterns observed, we conclude that buoyancy flow in a
peat moss layer will occur provided the Rayleigh number of the system is sufficiently
large.

The layer thicknessH is of little importance for the stability of the system as
long as the dimensionless thicknessh exceeds a value of about 2 (cf. Figure 5.4(B)).
The reason is the fast decrease of the amplitude of temperature waves with depth
(Figure 5.2). There is little difference between a layer withh = 2 (≈ 16 cm) and a
semi-infinite system.

Temperature changes in the field will usually be more gradual than the sudden
transitions in Figures 5.3 and 5.4. A linear stability analysis for a harmonic (sinu-
soidal) temperature wave is shown in Figure 5.8. The Rayleigh number required for
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fluid flow is 25, which is somewhat higher than the threshold of 18 for a square wave.
Numerical simulation forh=1.92 again shows significant mixing for Ra=100 (with
an average fluid displacement 14 cm per day, cf. Figure 5.5). For a Rayleigh number
of 50, however, the displacement is less than 1 cm per day and there will be little mix-
ing. Movies of these simulations are available as supporting Movie2 and Movie3?

at the PNAS website.
Significant mixing apparently requires Rayleigh numbers well above the thresh-

old for instability. Rayleigh numbers in the field will vary with the values of three
parameters: the hydraulic conductivityK of the layer, the thermal expansion coef-
ficient α, which increases almost linearly with the (average) temperature in degrees
Celcius (Gebhart et al., 1988, Appendix F), and the temperature drop∆T .

The hydraulic conductivity of 0.1 m·s−1 in Table 5.2 is a conservative estimate
for the peat moss layer in our experiment (see Appendix 5.A). We have used this
value, which is also typical for coarse grained materials like gravel (Klute and Dirk-
sen, 1986) to calculate Rayleigh numbers from the minimum temperatureTmin and
the maximum daily temperatureTmax which are available (in Fahrenheit!) from the
NATIONAL OCEANIC AND ATMOSPHERICADMINISTRATION (NOAA)? . For the
average of these two, the value of the thermal expansion coefficient of water has been

? http://www.pnas.org/cgi/doi/10.1073/pnas.1936122100
? ftp.ncdc.noaa.gov/pub/data/globalsod

http://www.pnas.org/cgi/doi/10.1073/pnas.1936122100
ftp://ftp.ncdc.noaa.gov/pub/data/globalsod
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calculated using

α(T) = −
1

ρ(T)

dρ(T)

dT
(5.5.1)

whereα is the relative density change per unit temperature in K−1 andρ(T) is the
equation of the density of water given in Gebhart et al. (1988, Appendix F). A
Rayleigh number is then found from (5.1.9) with the calculated value ofα, ∆T =

Tmax − Tmin and the other parameters taken from Table 5.1.
For about 5625 weather stations for altitudes below 1000 m we calculated the

fraction of days in summer with a Rayleigh number above 100. A graph of this
probability as function of station latitude is depicted in Figure 5.9.

For coastal stations in Europe and Alaska the probability is below 10%, which
implies that buoyancy flow will be rare. For many continental weather stations in
Alaska, Canada and Russia, however, summer Rayleigh numbers are above 100 at
30-60% of the days and above 140 at 20-40% of the days.
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The relation between a difference in air temperature and a difference in water
surface temperature is not straightforward due to effects of radiation, both by day
and at night. The daily temperature differences in huge continental areas, however,
seem large enough to cause frequent nocturnal buoyancy flow.

The main ecological consequence of this flow is solute transport and mixing of
the water. This mixing will be enhanced by dispersion and diffusion and at the time
scale of a few days the peat moss layer can be considered as well mixed.

Reeve et al. (2000, 2001) describe the “shallow-flow” and “ground-water” flow
hypotheses of peatland hydrology. Clearly, the dominant transport process at a land-
scape scale is the flow of water which is driven by rainfall and evaporation. The
buoyancy flow described in this chapter operates at the much smaller scale of a water-
saturated acrotelm, but there it may play an important role. Besides nutrients and
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oxygen, also dissolved organic compounds and CO2 formed by aerobic decay and by
methane oxidation (Frenzel and Karofeld, 2000; Dedysh et al., 1998; Smolders et al.,
2001) will be carried by the water.

Since buoyancy flow takes place only at night, the solute concentrations involved
will show periodic behavior. Periodic behavior of the pH has indeed been observed
in the hollows of a mire (Wehrle, 1927; Redinger, 1934), but resolving the roles of
fluid flow and peat moss physiology will probably require new field measurements.

We studied nocturnal buoyancy flow in saturated peat moss having in mind the
hollows of a mire. In the vast continental wetland areas of the world many other
types of terrestrializing vegetation occur in which nocturnal buoyancy flow may play
a significant ecological role, either as a mixing mechanism or perhaps even as a heat
pump.

Appendix 5.A
Hydraulic conductivity and temperature measurements in
peat moss

We measured the hydraulic conductivity using the constant head method (Klute and
Dirksen, 1986). We carefully packed green peat moss into a transparent column with
a length of 100 cm and a diameter of 9 cm. The hydraulic head over a distance of
61 cm was measured by means of open piezometer tubes. We plotted the measured
flux density as function of the hydraulic head and fitted a parabolic curve (y = ax−

bx2) to the data. The slope of this curve at the origin (the fitteda value) has been taken
as the hydraulic conductivity. For the maximum velocity of 0.25 cm·s−1 occurring
in the simulated buoyancy cells (Figure 5.5), the observed non-linearity corresponds
to a decrease in apparent conductivity of about 10%, which seems unlikely to cause
important effects.

We measured conductivities of 25.6±1.8 cm·s−1 (after packing), 17.3±1.5 cm·s−1

(three days later) and 16.6± 3.5 cm·s−1 (after another 11 days). The dry matter con-
tent of the column (determined afterwards) of 5.2 g·liter −1 is within the range of
3-10 g·liter −1 reported by Clymo (1970, page 39) for a green and growing peat moss
layer. The measurements are depicted in Figure 5.5.

Sincetheconductivity of a peat moss layer obviously does not exist we have put
the order of magnitude of 10 cm·s−1 in Table 5.2. Note that Poiseuille flow through
the tube is more than 4 orders of magnitude larger than the flow rates observed, which
implies that the peat moss represented a considerable resistance.

The temperatures in a cylindrical peat moss sample of 50 cm were measured in
a climate chamber using eight full Copper-Constantan-Copper thermocouples with
two junctions, junction 1 and junction 2, say. The wires were supported by a vertical
rod and the eight junctions 1 pointed a horizontal distance of 1 cm away from the rod
at the vertical positions listed in the legend of Figure 5.6. This reduces effects of the
supporting rod and of heat conduction through the thermocouple wires. The eight
junctions 2 were collected at the lower tip of the rod, at about 18 cm depth where
also a thermistor was installed.

Each thermocouple measured the temperature difference between its first junc-
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Figure 5.10.(A) Flux density versus hydraulic conductivity. (B) A transparant Darcy column packed
with peat moss. The conductivity primarily depends on the packing of the peat moss. Slowly raising
the water level while packing prevents unrealistic compaction of the moss.

tion, installed at a specific depth, and its second junction, installed at 18 cm together
with the thermistor. Hence, all thermocouples shared the same offset temperature (the
slowly changing temperature at thermistor depth) and temperature differences could
be easily measured with an accuracy of 0.1 K. The thermocouple signals reverse sign
if the system changes from heating to cooling.
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Chapter 6

The stability of steady flows in unsaturated
soils

?

A bout 70 years ago, Lorenzo A. Richards consolidated the efforts of previous
generations of soil physicists by formulating a general, macroscopic theory for

movement of water in rigid, unsaturated soils (Richards, 1931). The theory of Ri-
chards can be formulated within the framework of the modern continuum theory of
mixtures, provided that one recognizes from the outset the existence of the separate
solid, liquid, and gaseous phases (Raats, 1984). It can also be justified on the basis
of the principles of surface tension and viscous flow at the pore scale (Miller and
Miller, 1956; Whitaker, 1986). Richards theory combines the balance of mass, ex-
pressed in the equation of continuity, and of momentum, expressed in Darcy’s law.
The Richards equation describes movement of water in unsaturated, isothermal, rigid
soils, with the air pressure everywhere and always at atmospheric pressure.

Complications beyond the standard theory may arise from thermal gradients,
chemical influences (density variations, limited wettability, electrical charges on solid
phase balanced by a diffuse double layer in the fluid phase), mechanical aspects asso-
ciated with swelling and shrinkage, finite permeability for the gaseous phase, spatial
heterogeneity, and temporal changes of the soil. But even in the realm of the standard
theory, nonlinearity and the hysteretic nature of the process of water retention remain
challenging. In particular, observations of seemingly unstable flows raise the ques-
tion whether these can be explained in the context of the standard theory or suggest
that the theory be extended.

The first studies of unstable flow in porous media dealt with the displacement
of oil by water in connection with water-drive processes in oil reservoirs (Engelberts
and Klinkenberg, 1951) and the displacement of sugar liquors by water from columns
of granular bone charcoal in the process of refining raw sugar (Hill, 1952). Numerous
studies soon followed, including studies using displacement of one fluid by another
in a Hele-Shaw cell, i.e. two closely spaced parallel glass sheets serving as a model
of an oil reservoir (Saffman and Taylor, 1958) and in columns of layered glass parti-

? This chapter is a slightly adapted version of a paper that has appeared inTransport in Porous Media
(van Duijn et al., 2004)
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cles serving as a model for the displacement of air by water in layered soils (Tabuchi,
1961). The earliest studies focussed on the stability of the interface between two
fluids, using either simple physical reasoning (Hill, 1952; Tabuchi, 1961) or formal
linear stability analysis (Saffman and Taylor, 1958; Chuoke et al., 1959). The latter
used the surface tension of the interface between the two fluids as the damping mech-
anism. In the 1960s and 1970s there was a steadily growing awareness and interest
in the stability of movement of water in unsaturated soils. Systematic study of the
stability of the displacement of air by water during infiltration and redistribution in
soils started in the early 1970s (Hill and Parlange, 1972; Raats, 1973b; Parlange and
Hill, 1976; Philip, 1975a,b) and has been pursued ever since, theoretically as well
as experimentally (see recent reviews of some aspects by de Rooij (2000), Parlange
et al. (2002), and Hendrickx and Flury (2001)).

Raats (1973b) reviewed early observations and presented some tentative explana-
tions. He focussed on the infiltration process and extended the Green–Ampt approach
pioneered by Tabuchi (1961) to discuss effects of soil crusts, vertical heterogeneity of
hydraulic conductivity, air pressure build-up ahead of wetting front, hysteresis, and
wettability. Generally unstable displacement of air by water arises if the pressure gra-
dient is such that it opposes the advance of the wetting front, but less so as the front
advances. Theoretical studies and observations in the laboratory and the field have
shown that this may occur for infiltration at a rate less than the hydraulic conductivity
at saturation, either due to limited supply of water or due to the presence of a surface
crust, infiltration of ponded water with compression of air ahead of the wetting front,
infiltration in soils with a fine textured layer overlying a coarse textured layer, infiltra-
tion in water repellent soils, and during redistribution of water following infiltration
(Raats, 1973b; de Rooij, 2000; Hendrickx and Flury, 2001; Parlange et al., 2002).

Philip (1975a,b) analyzed the stability of the Green–Ampt model for vertical in-
filtration, using linear stability analysis with a macroscopic surface tension of the
wetting front as a damping mechanism, thus essentially following Saffman and Tay-
lor (1958) and Chuoke et al. (1959). Rather than applying linear stability analysis to
the equation of motion of a Green–Ampt sharp interface, Diment and Watson (1982,
1983, 1985) applied it directly to the Richards equation. Their numerical solution
indicated infiltration to be stable (Diment and Watson, 1983). Egorov et al. (2002)
confirmed this analytically for the long time, diffuse front travelling wave solution
for infiltration into initially wet soil. However, for infiltration into an initially dry
soil, they found the long time, sharp front travelling wave solution to be unstable for
any perturbation mode. Without the surface tension damping mechanism, Saffman
and Taylor (1958), Chuoke et al. (1959), and Philip (1975a,b) would have reached
the same conclusion for the motion of the sharp interfaces. Egorov et al. (2002)
demonstrated that the extension of the Richards equation by Hassanizadeh and Gray
(1990, 1993), to take into account dynamic memory effects, may provide a damping
mechanism. This critically depends on the relaxation parameter involved.

Kapoor (1996) derived stability criteria for the various types of steady, vertical
upward and downward flows in homogeneous, unsaturated porous media. Using the
energy method, he showed that purely gravitational flows are stable. For the other
types of steady, vertical flows he derived criteria for stability/instability. Based on
experimental evidence that observed fingers often are long and narrow, he assumed
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that the vertical length scale of the perturbations is large compared to the horizontal
length scale and on that basis simplified the perturbation equation. However, linear
stability analysis concerns the process of initiation of the fingers and in that stage the
vertical length scale of the perturbations is still small. The observed long and narrow
fingers are always connected with infiltration and redistribution processes reviewed
briefly above. Therefore in this chapter we reconsider the problem studied by Kapoor,
without ignoring the vertical gradients. Like Kapoor, we ignore possible effects of
hysteresis. Our analysis will show that the vertical gradients play an essential role
in the analysis. In Section 6.7 we will state the conclusions of Kapoor and compare
them with our results.

In Section 6.1, we start with three equivalent formulations of the model for flow
of water in unsaturated soils, namely the pressure head, water content, and matric
flux potential formulations. Making the equations dimensionless by using the limit-
ing saturated reference state and the layer thickness, we introduce the dimensionless
Rayleigh number as the ratio of the layer thickness and the capillary length scale of
the soil. To illustrate general results and derive special results, use is made of several
representative classes of soils defined by specific water retention and hydraulic con-
ductivity characteristics, i.e. the Broadbridge–White, Burgers, and Gardner classes
of soils.

In Section 6.2 the steady background flows are analyzed. In Subsection 6.2.1 we
prove uniqueness of steady flows for all classes of soils with a Lipschitz continu-
ous relationship between the hydraulic conductivity and the matric flux potential and
show that among these are the Broadbridge–White, Burgers, and Gardner classes of
soils. In Subsection 6.2.2 we identify the various types of steady vertical flows.

Since the uniqueness theorem suggests stability of steady vertical flows, we con-
centrate in this chapter on deriving estimates of the rate of decay of perturbations of
these steady flows. In Subsection 6.3.1 we prove, again subject to certain require-
ments concerning the relationship between the hydraulic conductivity and the matric
flux potential, the stability of steady vertical flows, and, moreover, show that the
squared of the weightedL2-norm of the perturbation of the matric flux potential de-
cays exponentially with time. In Subsection 6.3.2, we show that the requirements for
this stability theorem are fulfilled by the Broadbridge–White, Burgers, and Gardner
classes of soils and the corresponding estimates of the decay rates are derived.

In Section 6.4 we consider estimates of the decay rate in terms of the squared of
the L2-norm of the perturbation of the saturation. First we derive such an estimate
directly from the estimate in terms of the perturbation of the matric flux potential. The
resulting saturation based estimate shows that transient growth may occur, except for
the Burgers class of soils. However, in Subsection 6.4.2 it is also indicated that in
some cases a direct and sharp saturation based estimate can be obtained from the
linearized equation for the perturbation of the saturation. In Appendix 6.B this is
worked out in detail for the Gardner class of soils. At the end of Subsection 6.4.2 it
is shown that the steady solutions for the Burgers class of soils are nonlinearly stable
with respect to arbitrary finite-amplitude perturbations.

In Section 6.5 we consider an extension of the Richards equation to take into
account dynamic memory effects, in a form suggested by Hassanizadeh and Gray
(1990, 1993). Using the saturation formulation, we show that linear stability of the
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steady solutions corresponding to the standard Richards equation implies linear sta-
bility of the steady solutions of the extended equation.

Finally in Section 6.6, again for the Burgers class of soils, transient growth is
studied in more detail, using a norm based on the pressure head.

6.1 Problem formulation

In this chapter we use the convention that a prime (′ ) denotes differentiation with
respect to the argument. We restrict ourselves to a flow domain� which is bounded
in the horizontal plane and which has vertical boundaries betweenz= 0 andz= H ,
i.e.

� = {(x, y, z) : (x, y) ∈ �⊥ ,0< z< H} ,

with z being the vertical coordinate taken positive downward and where�⊥ is a
bounded set inR2 with a piecewise smooth boundary∂�⊥.

Assuming the water to be incompressible, the balance of mass can be written as
a volumetric balance equation

∂θ

∂t
= −∇ · F , (6.1.1)

wheret is the time,∇ is the vector differential operator,θ is the volumetric water
content,F = θv is the volumetric flux of the water, withv being the velocity of the
water.

The pressure head9 of the water is defined by

9 =
(pw − pg)

γg
= −

pc

γg
, (6.1.2)

where pw and pg are the pressures of the aqueous and gaseous phases,pc is the
capillary pressure,γ is the density of water, andg is the gravitational constant. In
the theory of Richards, it is assumed that the pressure of the gaseous phase is spa-
tially uniform and constant. Furthermore, it is assumed that the pressure head9 is a
monotonically increasing function of the volumetric water contentθ . In this chapter
we ignore the generally hysteretic nature of the9(θ) relationship. The volumetric
water capacityc is defined as

c =
dθ

d9
. (6.1.3)

Darcy’s law for the volumetric fluxF of the water has three alternative forms:

F = −k∇9 + kez = −D∇θ + kez = −∇8+ kez . (6.1.4)
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Here,k is the hydraulic conductivity,ez=∇z is the unit vector field in thez-direction,
D =kd9/dθ is the soil water diffusivity, and8 is the matric flux potential or Kirch-
hoff potential defined by

8 =

∫ 9

−∞

k d9 =

∫ θ

0
D dθ . (6.1.5)

The volumetric fluxF is the sum of a matric component−k∇9 = −D∇θ = −∇8
and a gravitational componentkez. The matric component of the volumetric flux is
given by the gradient of8 and therefore it is appropriate to call8 the matric flux
potential. A transformation of the type (6.1.5) was given around 1880 by Kirchhoff
in his lectures on heat conduction (Kirchhoff, 1894). For this reason,8 is often called
the Kirchhoff potential and the transformation from9 andθ to8 is then referred to
as the Kirchhoff transform.

The hydraulic conductivityk is a monotonically increasing function of the volu-
metric water contentθ . Based on thisk(θ) relationship, we introduce

ν =
dk

dθ
(6.1.6)

as the kinematic wave speed of the water.
Let θ0 be the volumetric water content at saturation andθr the irreducible volu-

metric water content. Using the saturated state as the reference state, the (apparent)
saturationS is defined as

S =
θ − θr

θ0 − θr
, (6.1.7)

so thatS(θr ) = 0 6 S6 S(θ0) = 1. Using the layer thicknessH and the saturated
reference state, we redefine the variables as follows:

(RV1)



{x, y, z} :=
{x, y, z}

H
,

∇ := H∇ ,

t :=
t

tref
=

t

H2/D0
,

F :=
F

|Fref|
=

F
k0
,

9 :=
9

9ref
=

9

(θ0 − θr )/c0
,

8 :=
8

8ref
=

8

D0(θ0 − θr )
,

(RV2)



c :=
c

c0
,

k :=
k

k0
,

D =
k

c
:=

D

D0
=

k/k0

c/c0
,

ν :=
ν

ν0
.

Since9→0 asS→1, the scaling of9 cannot be based on its value in the reference
state. Instead(θ0 − θr )/c0 serves as the capillary length scale. The redefinitions
(RV2) of c, k, D, andν imply c=k= D =ν=1 whenS=1.
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In terms of these reduced variables, the volumetric mass balance and the three
forms of Darcy’s law become

∂S

∂t
= −∇ · (RF) , (6.1.8)

and

RF = −k∇9 + Rkez = −D∇S+ Rkez = −∇8+ Rkez , (6.1.9)

in � := {(x, y, z) : (x, y) ∈ �⊥ ,0< z< 1}. Here R denotes the dimensionless
Rayleigh number defined as

R =
k0H

(θ0 − θr )D0
=

H

(θ0 − θr )/c0
. (6.1.10)

Note that the Rayleigh numberR is the ratio of the layer thickness and the capillary
length scale(θ0 − θr )/c0.

Substituting Equations (6.1.9) into Equation (6.1.8) gives three alternative forms
of the Richards equation, namely the pressure head, saturation, and matric flux po-
tential forms, respectively

(RE)



∂S(9)

∂t
= c(9)

∂9

∂t
= ∇ · (k(9)∇9 − Rk(9)ez) ,

∂S

∂t
= ∇ · (D(S)∇S− Rk(S)ez) ,

∂S(8)

∂t
=

1

D(8)

∂8

∂t
= ∇ · (∇8− Rk(8)ez) .

Remark 6.1. Sometimes, alternative forms of these equations are used. For instance,
Kapoor (1996) writes instead of(RE)1, after redefining our pressure head to his
suction head9 := −9,

c(−9)
∂9

∂t
= k(−9)19 +

dk(−9)

d9
∇9 · (∇9 + Rez) .

Introducing c̄(9) := c(−9), k̄(9) := k(−9), and b̄(9) := −
dk(−9)

d9
, we find

exactly Kapoor’s formulation (3a–b):

c̄(9)
∂9

∂t
+ b̄(9)∇9 · (∇9 + Rez)− k̄(9)19 = 0 . (6.1.11)

6.1.1 Classes of soils

In the context of the Richards equation, the relationships among the saturationS,
pressure head9, and hydraulic conductivityk define the hydraulic properties of a
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soil. Different classes of soils have been identified with different functions approxi-
mating the physical properties. In this chapter we restrict ourselves to three typical
classes.

One soil class is defined by Broadbridge and White (1988),

(I)



k(S) =
C − 1

C − S
S2 ,

D(S) =
(C − 1)C

(C − S)2
,

9(S) = 1 −
1

S
−

1

C
ln

C − S

(C − 1)S
,

8(S) =
(C − 1)S

C − S
,

where 1< C < ∞. This soil class is usually referred to as the versatile nonlinear
model. Note that9(S) has an inflection point atS=

2C
3 , for 1<C6 3

2.
We also consider the soil class defined by Clothier et al. (1981),

(II)



k(S) = S2 ,

D(S) = 1 ,

9(S) = 1 −
1

S
,

8(S) = S ,

Note that with(II)1,2 Equation(RE)2 is Burgers equation for inviscid flows. There-
fore we refer to(II) as the Burgers class of soils. For this class of soils the saturation
and matric flux potential coincide. Note that the Burgers class of soils corresponds to
the limiting caseC→∞ of the versatile nonlinear model.

Finally we consider the Gardner class of soils, where

(III )



k(S) =
S2

(1 − S)2 + S2
,

D(S) =
1

(1 − S)2 + S2
,

9(S) = 1 −
1

S
,

8(S) = arctan(2S− 1)+
π
4 ,

Originally only thek(9) relationship given by(III )1 was introduced to study steady
upward and downward flow for this class of soils (Gardner, 1958; Raats, 1973a).
Note thatk(S) has an inflection point atS=

1
2.
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6.2 Steady-state background flows

Problem(RE) is a nonlinear evolution equation. It is well known that certain non-
linear evolution equations may have multiple steady solutions and each of these so-
lutions has its own stability property. Once a steady-state is qualified and quantified
as being unstable, the system bifurcates from this solution to a neighboring steady
solution, which is completely different from the first one. Note that this concept of
instability only makes sense when multiple steady solutions exist.

Hence, the first question that needs to be answered is: has Richards’ equation
(RE) subject to given boundary data multiple steady solutions?

In the following subsections we show for Broadbridge–White, Burgers, and Gard-
ner soils uniqueness and some important properties of the steady solutions of(RE).
In this chapter we restrict ourselves to constant boundary data, which we give in
terms of the saturation:

(BC)


S|z=0 = ST

S|z=1 = SB

for all x, y ∈ �⊥, t > 0,

and along the vertical boundary we impose∂S
∂n =∇S · n=0 for all t>0.

6.2.1 Uniqueness of steady vertical flows

We first note that the different formulations in(RE) are equivalent. For instance,
(RE)2 and(RE)3 are equivalent since

8 = f (S) =

∫ S

0
D(S) dS (D(S)>0) (6.2.1)

is strictly increasing. HenceS= f −1(8) exists and uniqueness of solutions of(RE)3
implies uniqueness of solutions of(RE)2. We show here uniqueness for(RE)3 be-
cause for steady flow in the8-formulation only the gravity term is nonlinear. Thus
we consider the problem

(P1)


∇ ·

(
∇8− Rκ(8)ez

)
= 0 in� =: �⊥ × (0,1) ,

∂8

∂n
= 0 on∂�⊥ × (0,1) ,

8 = 8BC = f (SBC) on�⊥ × ({0} ∪ {1}) ,

whereκ(8) := k(S(8)), ∂8
∂n = ∇8 · n, with n the outward normal at∂�⊥ × (0,1),

and whereSBC denotes boundary conditions(BC). We prove the following general
statement:
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Theorem 6.2. Let M := f (1) and letκ(8) : [0,M ] → [0,∞) be Lipschitz continu-
ous: i.e. there exists a constant L>0 such that

|κ(81)− κ(82)| 6 L|81 −82| ,

for all 0681,82 6 M. Then problem(P1) has a unique solution for each R>0. It
is given by the one-dimensional profile80=80(z) satisfying

(P2)



d

dz

(
d80

dz
− Rκ(80)

)
= 0 for 0<z<1 ,

80(0) = f (ST) =: 8T ,

80(1) = f (SB) =: 8B .

Proof. Since(P1)1 is in divergence form, we follow Gilbarg and Trudinger (1977)
to prove a comparison result and uniqueness. For technical reasons we extend the
domain of definition ofκ. Let

κ̂(8) =


0 for 8<0 ,
κ(8) for 0686 M ,

κ(M) = 1 for 8> M .

The function̂κ is clearly uniformly Lipschitz continuous onR. Now suppose81 and
82 are two solutions of Problem(P1), with ordered boundary data: i.e.

81 > 82 at �⊥ × ({0} ∪ {1}) .

We show below that

81 > 82 in �̄ .

Let δ>0 (fixed) and set

ϕ =
w

δ + w
, w = (81 −82 − δ)+ > 0 ,

where(u)+ =max{u,0}. We test(P1)1 for the difference81 −82 with ϕ:∫
�

{
∇(81 −82)− R

(̂
κ(81)− κ̂(82)

)
ez

}
· ∇ϕ = 0 .

This gives

δ

∫
{81−82>δ}

|∇w|
2

(δ + w)2
− δR

∫
{81−82>δ}

∂zw

(δ + w)2

(̂
κ(81)− κ̂(82)

)
= 0 .
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Since

R
∫

{81−82>δ}

∂zw

(δ + w)2

(̂
κ(81)− κ̂(82)

)
6

6
1

2

∫
{81−82>δ}

|∇w|
2

(δ + w)2
+

R2

2

∫
{81−82>δ}

(̂
κ(81)− κ̂(82)

)2
(δ + w)2

,

andδ+w=81−82 on {81−82−δ>0}, we find∫
{81−82>δ}

|∇w|
2

(δ + w)2
6 R2

∫
{81−82>δ}

(̂
κ(81)− κ̂(82)

)2
(81 −82)2

.

Sincêκ is Lipschitz-continuous with constantL, we have∫
{81−82>δ}

|∇w|
2

(δ + w)2
6 R2 L2 meas(�) .

Next we apply the Poincaré inequality to∣∣∣ln (1 +
w

δ

)∣∣∣ = |ln(δ + w)− ln(δ)|

and obtain that there existsK >0 such that∫
�

∣∣∣ln (1 +
w

δ

)∣∣∣2 6 K (for all δ>0) .

Letting δ→0, we see thatw must vanish in�, that is81682. Since

0 = f (0) 6 8 6 f (1) = M ,

and since constants satisfy the equation, we immediately deduce for any solution of
(P1)

0 6 8 6 M in �̄ .

As a consequence we can replaceκ̂ by κ. Now suppose81 and82 are two solutions
of (P1) for the same boundary data. The above comparison argument then implies
both81682 and81>82 in �̄. Hence81=82 in �̄. �

For Broadbridge–White soils the matric flux potential is given by(I)4. Hence
S= f −1(8)= C8

8+C−1 implying κ(8)= C82

8+C−1 with 0686 M =1. This function is
Lipschitz continuous since

|κ(81)− κ(82)| =

∣∣∣∣∣C
(
8182 + (81 +82)(C − 1)

)
(81 −82)

(81 + C − 1)(82 + C − 1)

∣∣∣∣∣ 6

6
C(2C − 1)

(C − 1)2
|81 −82| =: L(C)|81 −82| ,
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for all 0681,82 6 1. For 1<C <∞ we have 2< L(C) <∞. Hence the steady
solutions for the Broadbridge–White class of soils, including the Burgers class of
soils as a limiting special case, are unique.

For Gardner class soils the matric flux potential is given by(II)4. HenceS =

f −1(8)= 1
1+cot(8) , implying κ(8) = sin2(8) for 0686 M =

π
2 . Hence

|κ(81)− κ(82)| =
1
2 |cos(281)− cos(282)| 6 |81 −82| ,

for all 0681,82 6 π
2 . We conclude that the steady solutions for the Gardner class

of soils are also unique.
The theorem rules out any other stationary solution satisfying the boundary con-

ditions. In particular finger-like solutions, describing steady convection cells, do not
exist. The theorem also suggests that problem(P2) describes the large time behaviour
of transient solutions for anyR>0. With the exception of chaotic or temporally peri-
odic behaviour, what else could be possible large time behaviour? In the next section
we show that indeed problem(P2) describes the large time behaviour and we give
rates of convergence.

6.2.2 Classification of steady vertical flows

To obtain the steady solution, we integrate(P2)1 with respect toz, i.e.

d80

dz
= R

{
κ(80)− F

}
, (6.2.2)

whereRF denotes the flux. The solutions of (6.2.2) subject to(P2)2 and(P2)3, can
be classified as follows (see also Figure 6.1):

The case8T>8B, or equivalently ST>SB.

(1) Downward flow aided by capillarity: for this case8′

0(z) < 0. From (6.2.2),
using the fact thatκ(80) is a monotonically increasing function, and since
R>0 we findF>κ(8T)>κ(80).

The case8T ≡8B, or equivalently ST ≡ SB.

(2) Purely gravitational downward flow: for this case we have8′

0(z) ≡ 0. From
(6.2.2) it then follows thatF =κ(8T)=κ(8B).

The case8T<8B, or equivalently ST<SB.

(3) Downward flow opposed by capillarity: we now have8′

0(z) > 0. By again
using (6.2.2), the monotonicity ofκ(80), and since we still deal with a down-
ward flow, we obtain 0< F < κ(8T )6 κ(80). These flows only exist when
8T>0.

(4) Equilibrium: for this caseF ≡ 0. Note that this case is only possible when
ST<SB. From (6.2.2) we derive8′

0(z)= Rκ(80).
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Figure 6.1.The Rayleigh numberR as function ofF .

(5) Upward flow: now we haveF<0 and8′

0(z)>Rκ(80)>0.

Separation of variables in (6.2.2) yields

Rz=

∫ 80(z)

8T

1

κ(80)− F
d80 . (6.2.3)

The solution strategy is as follows. For given boundary condition8T and Rayleigh
numberR> 0, we solve (6.2.3). HereF is still unknown. It has to be chosen such
that the second boundary condition8=8B is satisfied. Again using (6.2.3), such a
F can be found by inverting

R = R(F) =

∫ 8B

8T

1

κ(80)− F
d80 . (6.2.4)

A typical R(F) relation is depicted in Figure 6.1. Note thatR(F) is a strictly mono-
tonic decreasing (when8T > 8B) or increasing (when8T < 8B) function and for
everyR>0 we find a uniqueF and hence a steady state.

6.3 Transient behaviour of perturbations of the matric flux
potential

6.3.1 General approach

In this section we consider transient solutions8=8(x, y, z, t) of (RE)3 in � that
satisfy the boundary conditions8T at {z= 0}, 8B at {z= 1}, ∇8 · n = 0 along the
vertical boundaries, and some initial condition8|t=0 =8(x, y, z). In particular, we
investigate the stability of the steady solution80. For this purpose we write

8 = 80(z)+ ϕ , (6.3.1)
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where the perturbationϕ=ϕ(x, y, z, t) vanishes at the top (z=0) and bottom (z=1)
of the flow domain and satisfies∇ϕ · n=0 along∂�⊥ × (0,1).

We substitute (6.3.1) into(RE)3 and disregard nonlinear terms inϕ. Thus we
investigate linearized stability. A common way, e.g. see Egorov et al. (2003), is to
investigate the spectrum of the linearized operator. This is outlined in Appendix 6.A,
where we make use of an observation communicated to us by Prof. Y. C. Yortsos
(Yortsos, 2004). However, in this section we follow a different route. We are going
to estimate the weightedL2-norm of the perturbationϕ. We prove that this norm is
decreasing in time and we give an estimate of the rate of convergence.

We assume here thatκ : [0,M ] → [0,∞) is a smooth function satisfyingκ(0)=
0, κ(M)= 1, andκ ′(8)> 0 for 0686 M . Further,κ is possible convex-concave:
i.e. there exists 0< M̂ 6 M such that

κ ′′(8) =

{
> 0 for 068< M̂ ,

< 0 for M̂<86 M .
(6.3.2)

With respect toS(8) we assume

0<K16 S′(8) =
1

D(8)
6 K2 < ∞ for 0686 M . (6.3.3)

Then we prove the following stability result:

Theorem 6.3. Let m∗ :=min{8T, M̂}, m∗ :=max{8T, M̂}, and let

λ :=


1

2

∫ m∗

0

κ ′(m∗)− κ ′(φ)

κ(m∗)− κ(φ)
dφ for ST>SB (or 8T>8B) ,

−
1

2

∫ M

m∗

κ ′(m∗)− κ ′(φ)

κ(m∗)− κ(φ)
dφ for ST<SB (or 8T<8B) .

(6.3.4)

Further we consider the weighted L2-norm

‖ϕ(t)‖2 :=
∫
�

S′
(
80(x, y, z)

)
ϕ2(x, y, z, t) dx dy dz for t>0 .

If λ<1, then

(A) ‖ϕ(t)‖2 is strictly decreasing for t>0,

and in particular

(B) ‖ϕ(t)‖2 6 e−2(1−λ)t/K2 ‖ϕ(0)‖2 for all t >0.

Hence ifλ<1, the steady solution80 is linearly exponentially stable.
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Proof. Substitution of (6.3.1) in(RE)3 and linearizing the resulting equation gives
for the perturbationϕ

S′(80)
∂ϕ

∂t
= 1ϕ − R

∂

∂z

(
κ ′(80)ϕ

)
. (6.3.5)

To obtain estimates from (6.3.5) we use the energy method (Straughan, 2004). Mul-
tiplying (6.3.5) byϕ and integrating the equation over� gives

1

2

d

d t
‖ϕ(t)‖2

= −

∫
�

|∇ϕ|
2
− R

∫
�

∂

∂z

(
κ ′(80)ϕ

)
ϕ , (6.3.6)

Integration by parts of the last term in (6.3.6) and using the condition thatϕ vanishes
along the horizontal boundaries gives

1

2

d

d t
‖ϕ(t)‖2

= −

∫
�

|∇ϕ|
2
+

R

2

∫
�

κ ′(80)
∂ϕ2

∂z
=

= −

∫
�

|∇ϕ|
2
−

R

2

∫
�

(
κ ′′(80)

d80

dz

)
ϕ2 .

Let ST>SB. Thend80
dz <0. Using this monotonicity and (6.3.2) gives

1

2

d

d t
‖ϕ(t)‖2 6 −

∫
�

|∇ϕ|
2
−

R

2

∫
�∗

(
κ ′′(80)

d80

dz

)
ϕ2 , (6.3.7)

where�∗ := {(x, y, z) : (x, y) ∈ �⊥, z∗ < z< 1} and80(z∗) = m∗. To estimate
the sign of the second term on the right-hand side of (6.3.7) we use the following
argument. For any fixed(x, y) ∈ �⊥ and t > 0 we writeϕ(z) := ϕ(x, y, z, t) and
estimate with Cauchy–Schwarz

ϕ(z) 6 | − ϕ(z)| =

∣∣∣∣∫ 1

z
ϕ′(ζ ) dζ

∣∣∣∣ 6

(∫ 1

z
12 dζ

)1/2(∫ 1

z
(ϕ′(ζ ))2 dζ

)1/2

6

6
√

1 − z

(∫ 1

0
(ϕ′(ζ ))2 dζ

)1/2

. (6.3.8)

Then, using Fubini’s Theorem and inequality (6.3.8) in (6.3.7), we have

1

2

d

d t
‖ϕ(t)‖2 6 −

∫
�

|∇ϕ|
2
−

R

2

{∫ 1

z∗

(1 − z)
d

dz
κ ′(80) dz

}∫
�

|∇ϕ|
2

=:

=: −(1 − λ)

∫
�

|∇ϕ|
2 . (6.3.9)
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For the factorλ in (6.3.9) we obtain, using (6.3.4) and the fact thatm∗ 68T,

λ = −
R

2
(1 − z)κ ′(80)

∣∣∣∣1
z∗

−
R

2

∫ 1

z∗

κ ′(80) dz =

=
R

2

∫ 1

z∗

{
κ ′(m∗)− κ ′(80)

}
dz =

1

2

∫ m∗

8B

κ ′(m∗)− κ ′(80)

κ(8T)− κ(80)
d80 6

6
1

2

∫ m∗

0

κ ′(m∗)− κ ′(80)

κ(m∗)− κ(80)
d80 < 1

by assumption. Hence, with the Poincaré inequality
∫
�
ϕ2 6

∫
�

|∇ϕ|
2 (Zeidler,

1995) and using (6.3.3), we obtain from (6.3.9) the estimate

1

2

d

d t
‖ϕ(t)‖2 6−(1−λ)

∫
�

ϕ2 6−((1−λ)/K2) ‖ϕ(t)‖2 6 0 , (6.3.10)

which proves(A). Integrating (6.3.10) with respect to timet gives

‖ϕ(t)‖2 6 e−2(1−λ)t/K2 ‖ϕ(0)‖2 , (6.3.11)

which proves(B).
The caseST<SB follows in a similar fashion. Its proof is therefore omitted.�

6.3.2 Application to specific classes of soils

Broadbridge–White and Burgers classes

First observe thatκ(8) has no inflection points for 0686 M =1. HenceM̂ ≡ M =1
andm∗

≡ 1. This immediately implies thatλ ≡ 0 < 1 for the caseST < SB, and,
hence, that in terms of the classification of the steady vertical flows in Subsection 3.2,
downward flows opposed by capillarity, equilibrium, and upward flows are linearly
stable.

For the caseST>SB, i.e. for downward flows aided by capillarity, we estimateλ.
Since 06m∗ 6 M̂ =1 we have

λ =
1

2

∫ m∗

0

κ ′(m∗)− κ ′(φ)

κ(m∗)− κ(φ)
dφ =

=
1

2

[
ln

(
2C − 2 + m∗

C − 1 + m∗

)
+

(
C − 1

C − 1 + m∗

)2

ln

(
2C − 2 + m∗

C − 1

)]
6 ln 2

for all C>1. Henceλ6 ln 2< 1 and this implies that80 is linearly stable.
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Gardner class

Observe that for this caseκ(8) has an inflection point at8=
π
4 . This impliesM̂ =

π
4 .

We first consider the caseST>SB. Since 06φ6m∗ 6 π
4 we have

λ =
1

2

∫ m∗

0

κ ′(m∗)− κ ′(φ)

κ(m∗)− κ(φ)
dφ =

=
1

2

∫ m∗

0

(
sin(2m∗)− sin(2φ)

)
(φ + m∗)

sin2(m∗)− sin2(φ)

1

φ + m∗

dφ 6

6
2m∗ cos2(m∗)− m∗

sin(m∗) cos(m∗)

∫ m∗

0

1

φ + m∗

dφ 6 ln 2< 1 ,

implying that the steady solution80 is linearly stable.
For the caseST<SB we again obtainλ6 ln 2, and hence, as to be expected, these

steady states are also linearly stable.

6.4 Saturation estimates

6.4.1 Estimates that may involve transient growth

Up to now we have estimates in terms of the matric flux potential perturbationϕ. In
this subsection we show that estimates for the saturation formulation can be obtained
directly from the estimates derived in the previous section.

As for the matric flux potential8, we writeS= S(x, y, z, t) in the form

S = S0(z)+ s ,

wheres = s(x, y, z, t) vanishes at the top (z = 0) and bottom (z = 1) of the flow
domain, and satisfies∇s · n=0 along∂�⊥ × (0,1), and whereS0 = f −1(80). The
relation between the saturation perturbations and matric flux potential perturbation
ϕ follows from the expansion

S = S0(z)+ s = S(80 + ϕ) = S(80)+ S′(80)ϕ +O(ϕ2) ,

which impliess= S′(80)ϕ=ϕ/D(80) in the linearized sense. Next we use (6.3.11)
and (6.3.3) to obtain

1

K2

∫
�

s2(t) 6
∫
�

s2(t)

S′(80)
6 e−2(1−λ)t/K2

∫
�

s2(0)

S′(80)
6

6
1

K1
e−2(1−λ)t/K2

∫
�

s2(0) ,
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Figure 6.2. The norm gap
may imply transient growth of
Es(t), but Es(t) is nevertheless
bounded byBs(t).

or

Es(t) :=
∫
�

s2(t) 6
K2

K1
e−2(1−λ)t/K2

∫
�

s2(0) =: Bs(t) . (6.4.1)

Note that this estimate doesnot imply dEs(t)
d t 6 0. In fact, sinceBs(0) =

K2
K1

Es(0)
> Es(0), transient growth ofEs(t) mayoccur as sketched in Figure 6.2. We discuss
this in more detail in Section 6.6.

Remark 6.4. For Broadbridge–White soils we derive from(I)4 that

K1 =
C − 1

C
6 S′(80) 6

C

C − 1
= K2 .

Using these estimates in(6.4.1)gives∫
�

s2(t) 6
C2

(C − 1)2
e−

2(C−1)
C (1−λ)t

∫
�

s2(0) . (6.4.2)

Note that for the limit C→∞ (Burgers soils), we obtain the sharp estimate∫
�

s2(t) 6 e−2(1−λ)t
∫
�

s2(0) . (6.4.3)

This means that for Burgers soils Es(t) decreases monotonically in time and is bounded
by an exponential decaying function.

For Gardner soils we obtain from(III )4 the estimates

K1 =
1

2
6 S′(80) 6 1 = K2 .

Subtitution in(6.4.1)gives∫
�

s2(t) 6 2 e−2(1−λ)t
∫
�

s2(0) .

Since Bs(0)= 2, this is again not a sharp bound, and transient growth of Es(t) may
occur.
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6.4.2 Sharp estimates

In some cases a sharp estimate of the saturation perturbation can be obtained directly
from (6.3.5). Substituting the relations= S′(80)ϕ gives the linearised perturbation
equation

∂s

∂t
= ∇ · (D(S0)∇s)+

∂

∂z

{
D′(S0)

dS0

dz
s − R k′(S0)s

}
. (6.4.4)

Note that this equation is more complex then Equation (6.3.5) forϕ. This is the main
reason why we choose the matric flux potential to study stability.

Multiplying (6.4.4) bys and integrating over� gives

1

2

d

dt

∫
�

s2
= −

∫
�

D(S0)|∇s|2 +
1

2

∫
�

(
d2

dz2
D(S0)− R

d

dz
k′(S0)

)
s2

=: −

∫
�

D(S0)|∇s|2 + I . (6.4.5)

The expression forI can also be written as:

I =
1

2

∫
�

d

dS0

(
dD(S0)

dz
− Rk′(S0)

)
dS0

dz
s2 .

Observe further thatdD(S0)

dz = D′(S0)
dS0
dz =

D′(S0)

D(S0)
R
(
k(S0)− F

)
, where we have used

(6.2.2). Hence

I =
R

2

∫
�

{
d

dS0

(
D′(S0)

D(S0)

(
k(S0)− F

)
− k

′

(S0)

)}
dS0

dz
s2

=:
R

2

∫
�

γ (S0)
dS0

dz
s2 .

(6.4.6)

Expandingγ (S0) in (6.4.6) and splitting the result into parts gives

γ (S0) = γ1(S0)+ γ2(S0) ,

with

γ1(S0) =
D′(S0)

D(S0)
k′(S0)− k′′(S0) = −D(S0)

(
k′(S0)

D(S0)

)′

, (6.4.7a)

γ2(S0) =

(
D′(S0)

D(S0)

)′ (
k(S0 − F)

)
. (6.4.7b)

For sharp estimates we want to have

I 6µ
∫
�

|∇s|2 with µ<β andβ :=min
S0

D(S0) , (6.4.8)
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since then, using the Poincaré inequality−(β − µ)
∫
�

|∇s|2 6 −(β − µ)
∫
�

s2 in
(6.4.5), d

d t

∫
�

s2<0 and in particular∫
�

s2(t) 6 e−2(β−µ)t
∫
�

s2(0) 6
∫
�

s2(0) . (6.4.9)

This would rule out transient growth as in Figure 6.2.
In Appendix 6.B we show that for the Gardner class of soilsµ ≈ 0.9296 and

β = 1. For the Broadbridge–White class of soils, however, we are not able to prove
(6.4.8) for the range 1<C < 2.5. For the caseC → ∞, which corresponds to the
Burgers class of soils, one can show, using techniques from Appendix 6.B, thatµ≡0
andβ≡1.

For the Burgers class of soils we obtain even more than linear stability alone. For
this particular case thenonlinearperturbation equation fors is given by

∂s

∂t
= 1s − 2R

∂

∂z
(S0s)− R

∂s2

∂z
. (6.4.10)

Disregarding the quadratic term in (6.4.10) gives Equation (6.4.4). However, multi-
plying this quadratic term bys and integration over� yields∫

�

∂s2

∂z
s = 2

∫
�

s2∂s

∂z
=

2

3

∫
�

∂s3

∂z
= 0 ,

implying that the steady solutions of the Burgers class of soils arenonlinearly(un-
conditionally) stable with respect to arbitrary finite-amplitude perturbations.

6.5 Non-equilibrium Richards equation

An extension of the Richards equation to take into account dynamic memory effects
was suggested by Hassanizadeh and Gray (1990, 1993). The key point in their model
is the rejection of the equilibrium pressure-saturation relation. Instead they proposed:

(RE′)


∂S

∂t
= ∇ ·

(
k(S)∇9̂ − Rk(S)ez

)
,

τ
∂S

∂t
= 9̂ −9(S) ,

where9̂ is the water pressure head and whereτ is a dimensionless relaxation coeffi-
cient (taken as a positive constant). Combining the two equations in(RE′) gives

∂S

∂t
= ∇ ·

(
D(S)∇S

)
+ τ∇ ·

(
k(S)∇

∂S

∂t

)
+ R

∂

∂z
k(S) = 0 . (6.5.1)

This equation will be referred to as the extended model.
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Remark 6.5. The steady solutions of(6.5.1)do not depend onτ . In fact, the steady
equations are the same for both the standard Richards equation(RE)2 and the ex-
tended model(6.5.1). So is the uniqueness result from Section 6.2.1.

In line with the general approach in Subsection 6.3.1, the normal procedure would
be to rewrite (6.5.1) in terms of the matric flux potential8 and consider the associated
linearized perturbation equation. Rewriting (6.5.1) gives

∂S(8)

∂t
= 18+ τ∇ ·

(
κ(8)∇

∂S(8)

∂t

)
+ R

∂

∂z
κ(8) = 0 . (6.5.2)

Using the decomposition8=80 +ϕ in (6.5.2) and linearizing the resulting equation
gives

S′(80)
∂ϕ

∂t
= 1ϕ + τ∇ ·

(
κ(80)∇

{
S′(80)

∂ϕ

∂t

})
+ R

∂

∂z

(
κ ′(80)ϕ

)
. (6.5.3)

Following the variational approach, theτ -term in (6.5.3) gives an expression of
which the sign is not fixed. Therefore the matric flux potential (8) formulation is
unsuitable for analyzing the stability of the(RE′) steady states.

To circumvent this problem, we consider the saturation perturbation equation
related to(RE′). In the linearized sense we find

∂s

∂t
=∇ ·

(
D(S0)∇s

)
+τ∇ ·

(
k(S0)∇

∂s

∂t

)
+
∂

∂z

{
D′(S0)

dS0

dz
s−R k′(S0)s

}
.

(6.5.4)

Multiplying (6.5.4) bys, integrating over�, and collecting terms with a time deriva-
tive gives for anyτ >0

1

2

d

d t

{∫
�

s2
+ τ

∫
�

k(S0)|∇s|2
}

= −

∫
�

D(S0)|∇s|2 + I ,

where I is given by (6.4.6). Now suppose that (6.4.8) holds. Then, with
∫
�

s2 6∫
�

|∇s|2,

1

2

d

d t

{∫
�

s2
+ τ

∫
�

k(S0)|∇s|2
}

6 −

∫
�

D(S0)|∇s|2 + µ

∫
�

|∇s|2 6

6 −(β−µ)

∫
�

|∇s|2 6 −
(β−µ)

2τ
τ

∫
�

k(S0)|∇s|2 −
(β−µ)

2

∫
�

s2 6

6 µ∗

{∫
�

s2
+ τ

∫
�

k(S0)|∇s|2
}
, (6.5.5)

where we have used thatk(S0)61 and where, sinceτ >0,

µ∗
= max

{
−
β − µ

2τ
,−
β − µ

2

}
< 0 .
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Integrating (6.5.5) gives∫
�

s2(t) 6
∫
�

s2(t)+ τ

∫
�

k(S0)|∇s(t)|2 6 eµ
∗t

{∫
�

s2(0)+ τ

∫
�

k(S0)|∇s(0)|2
}
.

Sinceµ∗<0, we obtain ∫
�

s2(t) → 0 ast → ∞.

We conclude that once (6.4.8) is satisfied, linear stability of the steady solutions of
both the standard and extended Richards equation is guaranteed. Estimates forI were
listed already in Section 6.4 following (6.4.8).

6.6 Different norms and transient growth

In Sections 6.3 and 6.4 we considered linearized stability in terms of the (weighted)
L2-norms of the perturbationsϕ of the matric flux potential and of the perturbations
s of the saturation. Independent of the chosen variable we obtained stability, but not
necessarily time-monotonicity of the chosen norm. In this section we give an example
of transient growth: initial growth of the norm of a perturbation which decays towards
zero ast → ∞, see sketch in Figure 6.2. We consider Burgers soil for which the
steady solution is unconditionally stable and for which the norms in terms ofϕ and
s decay monotonically in time. We show below that in terms of the pressure head
transient growth may occur.

For Burgers soils the relation betweenS=8 and9 is explicitly given by9(S)=
1 − S−1, or S(9) =

1
1−9

. We write90 = 9(S0) and redefinek(90) := k(S(90)),
D(90) := D(S(90)) and c(90) := c(S(90)). As in Section 6.3, we write9 =

90(z) + ψ , whereψ = ψ(x, y, z, t) vanishes along the top and bottom of the flow
domain. LinearizingS(9) gives the relations= S′(90)ψ=

1
(1−90)

2ψ= S2
0 ψ .

We consider the case 0< SB< ST 6 1. Using the relation betweens enψ in the
saturation estimate (6.4.3) gives

S4
B

∫
�

ψ2(t) 6
∫
�

s2(t) 6 e−2(1−λ)t
∫
�

s2(0) 6 S4
T e−2(1−λ)t

∫
�

ψ2(0) ,

or

Eψ(t) :=
∫
�

ψ2(t) 6

(
ST

SB

)4

e−2(1−λ)t
∫
�

ψ2(0) =: Bψ(t) , (6.6.1)

with λ 6 ln 2, see Section 6.2.1 and Remark 6.4. From (6.6.1) we observe that
Bψ(0) → Eψ(0) as ST/SB → 1 and therefore transient growth ofEψ(t) cannot
occur for purely gravitational flows. However, forST> SB we can select a perturba-
tion for which transient growth does occur.
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To show this we consider the linearized perturbation equation forψ . Using the
relation betweens andψ in (6.4.4) and using the fact thatD(90) = k(90)/c(90)
gives

∂ψ

∂t
=

k′(90)

c(90)

[
2

d90

dz
− R

]
∂ψ

∂z
+

k(90)

c(90)
1ψ−

−

[
(k′(90))

2

k(90)c(90)
−

k′′(90)

c(90)

][(
d90

dz

)2

− R
d90

dz

]
ψ . (6.6.2)

We restrict ourselves tox, y-periodic solutionsψ=ψ(z, t)ei k·x, wherek = (kx, ky)
T

denotes the wave vector andx = (x, y)T. Usingk(9) andc(9) in (6.6.2) gives for
the amplitudeψ=ψ(z, t)

∂ψ

∂t
=
∂2ψ

∂z2
− k2ψ +A1(90)

∂ψ

∂z
+A2(90)ψ =: A(90)ψ , (6.6.3)

wherek=|k| and

A1(90) =
49 ′

0(z)− 2R

1 −90
and A2(90) =

2
(
9 ′

0(z)
)2

− 2R9 ′

0(z)

(1 −90)2
.

Multiplying Equation (6.6.3) byψ and integrating the result gives

1

2

dEψ(t)

d t
:=

1

2

d

d t

∫ 1

0
ψ2(t) dz =

∫ 1

0

(
A(90)ψ(t)

)
ψ(t) dz . (6.6.4)
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Transient growth is said to occur ifEψ(t)>Eψ(0) for somet>0. This happens,

for instance, if 1
Eψ (0)

dEψ (t)
d t

∣∣∣
t=0
> 0, see Figure 6.3 (left). To find the maximal initial

growth we use (6.6.4) and consider

1

2

1

Eψ(0)

dEψ(t)

d t

∣∣∣∣
t=0

=

∫ 1

0

(
A(90)ψ(0)

)
ψ(0) dz

/∫ 1

0
ψ2(0) dz .

This leads to the maximum problem

σmax = sup
ψ(0)6=0

{∫ 1

0

(
A(90)ψ(0)

)
ψ(0) dz

/∫ 1

0
ψ2(0) dz

}
. (6.6.5)

Farrell and Ioannou (1996), among others, showed that the normalized maximal ini-
tial slopeσmax and the initial perturbationψ(0) producing this initial growth are found
from the eigenanalysis of the symmetric part of operatorA(90), i.e.

1
2

(
A(90)+A∗(90)

)
ψ(0) = σ ψ(0) , (6.6.6)

where∗ denotes the adjoint operator with respect to theL2-norm. In particular, the
maximal positive eigenvalue and its associated eigenfunction provide the initial slope
of Eψ(t) and the initial perturbation.

Remark 6.6. The estimates obtained in Sections 6.3 and 6.4 imply that the eigen-
values ofA(90) all have negative real parts. Hence ifA(90) were a self-adjoint
operator, then all (real) eigenvalues of(6.6.6)would have been negative as well and
no transient growth would occur, see also Reddy and Henningson (1993).

We solved (6.6.6) numerically for fixed9T ≡0 and various−∞<9B<0, and for
Rayleigh numbersR and wavenumbersk in relevant ranges. The result is shown in
Figure 6.3 (right). Given the boundary conditions9T, 9B, and the Rayleigh number
R, we can distinguish grey regions whereσmax>0, indicating initial transient growth,
and white regions whereσmax< 0. We do note here that sinceEψ(t) is bounded by
Bψ(t), the growth of the norm is only a transient phenomenon becauseBψ(t) → 0
ast →∞.

6.7 Discussion

Kapoor (1996) derived stability criteria for the various types of steady vertical upward
and downward flows in homogeneous, unsaturated soils. These criteria are summa-
rized in Figure 6.4. Based on experimental evidence that observed fingers often are
long and narrow, he assumed that the vertical length scale of the perturbations is large
compared to the horizontal length scale and on that basis he simplified the linearized
equation for the perturbation of the suction head. Allowing for the sign changes in
going from the suction head to the pressure head, Kapoor (1996) in effect ignored in
the right hand side of equation (6.6.2) the entire first term andz-dependent part of the
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Figure 6.4.Overview of Kapoor’s stability results.

second term. The results shown in Figure 6.4 then follow from considering the sign
of the coefficient ofψ in the last term.

Linear stability analysis concerns the process of initiation of the fingers and in
that stage the vertical length scale of the perturbations is still small. Therefore we
reconsidered the stability of steady vertical flows, without ignoring the vertical gra-
dients. First, we proved the uniqueness of the solutions for steady vertical flows.
Subsequently we used the so-called energy method to prove the stability of the steady
flows for various classes of soils and derived estimates of the rate of decay of pertur-
bations. The decay of the perturbation is proportional to exp(−2(1−λ)Dmint), where
Dmin is an appropriate minimum value of the diffusivity. As is to be expected, using
(RV1) to return to dimensional variables shows that an increase ofDmin or a decrease
of H speeds up the decay. The analysis is complicated by the fact that, depending
on the norm used in the analysis, the ultimate decay may be preceded by transient
growth. Contrary to Kapoor’s hypothesis, our analysis shows that the vertical gradi-
ents play an essential stabilizing role. In the analysis we considered several classes of
soils, spanning a wide range of soil properties. For the Burgers class of soils, we were
able to show that the steady solutions are nonlinearly stable with respect to arbitrary
finite-amplitude perturbations. Finally, we showed that for the Richards equation ex-
tended with a term accounting for dynamic memory effects steady flows also remain
stable.

Appendix 6.A
The spectrum of the linearised perturbation equation

In this appendix we show that the spectrum of the linearized perturbation operator
(6.3.5) is real and that it is located in the left stable halfplane.

For this purpose we make use of an argument by Prof. Y. C. Yortsos. Consider
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again the linearised perturbation equation (6.3.5) and write

ϕ(x, y, z, t) = eσ tϕ(x, y, z) .

Substitution in (6.3.5) yields

S′(80)σϕ = 1ϕ − R
∂

∂z

(
κ ′(80)ϕ

)
. (6.7.1)

Introducing the transformation

ϕ =
d80

dz
ϕ̃ (6.7.2)

in (6.7.1) gives the equation

σS′(80)
d80

dz
ϕ̃ =

∂

∂z

(
d80

dz

∂ϕ̃

∂z

)
+

d80

dz
1⊥ϕ̃ +

∂

∂z

(
d280

dz2
ϕ̃ − Rκ ′(80)

d80

dz
ϕ̃

)

=
∂

∂z

(
d80

dz

∂ϕ̃

∂z

)
+

d80

dz
1⊥ϕ̃ , (6.7.3)

where we have used equation(P2)1 for the steady solution80 and where1⊥ denotes
the horizontal Laplacian. Yortsos suggested the use of transformation (6.7.2) in com-
bination with the use of80 as coordinate in thez direction. Therefore we introduce
the ‘flow domain’

�8 :=
{
(x, y,8) : (x, y) ∈ �⊥ , 8 between8B and8T

}
,

and consider (6.7.3) in�8, i.e. we writeϕ̃ = ϕ̃(x, y, z(80)) =: ϕ̃(x, y,80). This
gives the following second-order (generalized) eigenvalue problem (in�8):

(EVP)


σS′(80)ϕ̃ =

∂

∂80

((
d80

dz

)2
∂ϕ̃

∂80

)
+1⊥ϕ̃ =: ∇ · (A∇ϕ̃) ,

ϕ̃ = 0 on�⊥ × ({8B} ∪ {8T}) ,

∇ϕ̃ · n = 0 on∂�⊥ × (8B,8T) ,

with n the outward normal at∂�⊥ × (8B,8T), and where∇ := (∂x, ∂y, ∂80)
T and

A =


1 0 0
0 1 0

0 0

(
d80

dz

)2

 .
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The homogeneous boundary conditions(EVP)2,3 follow directly fromϕ via (6.7.2),
see also Section 6.4.1. Now observe that problem (EVP) is self-adjoint, and hence its
eigenvalues are all real.

Multiplying (EVP)1 by ϕ̃ and integrating the result over�8 yields

0 > − min

{
1,
(

d80
dz

)2
}∫

�8

|∇ϕ̃|
2 > −

∫
�8

(A∇ϕ̃) · (∇ϕ̃) = σ

∫
�8

S′(80)ϕ̃
2 ,

(6.7.4)

and sinceS′(80) > 0 this implies thatσ < 0. This confirms again the uniqueness
statement as discussed in Section 6.3.1.

In line with this chapter, we prefer not to work with the assumption of separation
of variables, but consider the general case

S′(80)
∂ϕ̃

∂t
= ∇ ·

(
A∇ϕ̃

)
in �8 .

Multiplying this equation bỹϕ and integrating over�8 gives the relation (using the
estimate in (6.7.4) and the Poincaré inequality)

1

2

d

dt

∫
�8

S′(80)ϕ̃
2

= −

∫
�8

(A∇ϕ̃) · ∇ϕ̃ 6

6 −C(8B,8T)min

{
1,
(

d80
dz

)2
}∫

�8

ϕ̃2 6 0 ,

implying exponential decay of theL2(�8)-norm ofϕ̃.

Appendix 6.B
Saturation estimates for Gardner class soils

First we evaluate the componentsγ1(S0) and γ2(S0) of γ (S0). This can be done
by direct lengthy computation, using the expressions(II)1 for k(S0) and (II)2 for
D(S0) in (6.4.7a) and (6.4.7b). A simpler procedure is to observe that(II)1,2 imply
k′(S0)= (D(S0)− 1)D(S0) andD′(S0)= (2 − 4k(S0))D(S0) so that the expressions
for γ1(S0) andγ2(S0) reduce to

γ1(S0) = −D(S0)D
′(S0) = − 1

2

(
D2(S0)

)′
, (6.7.5a)

γ2(S0) = 4k′(S0)
(
F − k(S0)

)
. (6.7.5b)

We need to estimate

I =
R

2

∫
�

γ (S0)
dS0

dz
s2

=
R

2

∫
�

(
γ1(S0)+ γ2(S0)

)dS0

dz
s2 . (6.7.6)
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We first consider the downward flow case, i.e.F>k(ST)>k(S0) for every 06 SB 6
S0 < ST 6 1. SincedS0

dz is negative, we want to show thatγ (S0) is positive for all
R>0. From (6.7.5a) and (6.7.5b) it follows thatγ2(S0)>0 and

γ1(S0) =

{
< 0 for 06 SB<S0<

1
2 ,

> 0 for 1
2<S0<ST 61 .

(6.7.7)

We distinguish the following cases:

(i) 0 6 SB <
1
2 6 ST 6 1. Let z∗ be such thatS0(z∗)=

1
2. ThenSB 6 S0 <

1
2 for

z ∈ (z∗,1], see also the construction in Figure 6.5(a). Hence, with (6.7.7) and
inequality (6.3.9), we obtain

I 6
R

2

∫
�∗

γ1(S0)
dS0

dz
s2

=
R

4

∫
�∗

(
D2(S0)

)′ (
−

dS0

dz

)
s2

=

= −
R

4

∫
�∗

d

dz

(
D2(S0)

)
s2 6

(
−

R

4

∫ 1

z∗

d

dz

(
D2(S0)

)
(1 − z) dz

)∫
�

|∇s|2 =:

=: µ
∫
�

|∇s|2 .
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Integration by parts gives forµ

µ =

[
−

R

4
D2
(
S0(z)

)
(1 − z)

]1

z∗
−

R

4

∫ 1

z∗

D2
(
S0(z)

)
dz =

=
R

4

∫ 1

z∗

[
D2(1

2)− D2
(
S0(z)

)]
dz =

=
1
4

∫ 1
2

SB

D2(1
2)− D2(S0)

F − k(S0)
D(S0) dS0 . (6.7.8)

The factorµ in (6.7.8) can be estimated by usingF>k(ST)>k(1
2) =

1
2. This

gives, usingD′(S) = 2(1 − 2S)D2(S) and
(
D(1

2) − D(S)
)
/
(
k(1

2) − k(S)
)

=

2(1 − 2S),

µ < 1
4

∫ 1
2

SB

D2(1
2)− D2(S0)

k(1
2)− k(S0)

D(S0) dS0 6

6 1
4

∫ 1
2

0
2(1 − 2S0)

(
2 + D(S0)

)
D(S0) dS0 =

6 1
2

∫ 1
2

0

D′(S0)

D(S0)
dS0 +

1

4

∫ 1
2

0
D′(S0) dS0 =

1
2(ln 2 +

1
2) =: µ1 ,

with µ1≈0.5966.

(ii ) SB<ST<
1
2. For this case we havez∗

=0, see Figure 6.5(c). Again we obtain
for µ an expression similar to (6.7.8):

µ =
1
4

∫ ST

SB

D2(ST)− D2(S0)

F − k(S0)
D(S0) dS0 . (6.7.9)
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For a givenST, SB and R> 0, there exists aε > 0 such thatF = k(ST) + ε.
Hence

µ =
1
4

∫ ST

0

D2(ST)− D2(S0)

k(ST)+ ε − k(S0)
D(S0) dS0 =: J(ST; ε) .

Since we could not find a closed form expression forJ(ST; ε), we evaluate it
numerically. This is rather straight forward since the presence ofε >0 makes
the integral nonsingular. Note thatJ(ST; ε1) < J(ST; ε2) when ε1 > ε2 for
every 0< ST <

1
2. Maximizing J(ST; ε) for 0 < ST <

1
2 and ε ↓ 0 gives

µ<0.9296=:µ2 (see Figure 6.6). For the derivation of this upperbound forµ,
we have only used the soil propertiesD(S0) andk(S0). As a consequence, this
upperbound is rather crude.

(iii ) 1
2 6 SB < ST 6 1. Now we havez∗

= 1, see Figure 6.5(b). This case is trivial
sinceγ1(S0)>0 for every1

2 6 SB<S06 ST 61.

Remark 6.7. The case ST 6 SB is treated in a similar way. NowdS0
dz > 0 and F<

k(ST). Henceγ2(S0)
dS0
dz <0. Further,

γ1(S0) =

{
< 0 for 06 ST<S0<

1
2 ,

> 0 for 1
2<S0<SB 61 ,

This implies a repetition of the derivation where now ST is replaced by SB and vice
versa. It gives the same estimates forµ.

Finally, letµ=max{µ1, µ2}=0.9296. Usingµ and the fact thatβ=1 in (6.4.9),
we obtain ∫

�

s2 6 e−2(1−µ)t
∫
�

s2(0) 6
∫
�

s2(0) , (6.7.10)

with −2(1 − µ)≈−0.1408.
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Appendix A

A modified spectral Chebyshev–Galerkin
method

I n this appendix we discretize problem (3.1.8) by using a modified spectral Galerkin
method. We use the method of lines, considering space and time discretisations

separately. For the discretisation of operatorLα in (3.1.8) we apply a modified
Chebyshev–Galerkin method. Essentially, there are two approaches to discretize this
operator with emphasis on the semi-infinite domain:

(i) the truncation of the semi-infinite domain(0,∞) to a finite interval (Mack,
1976; van Stijn and van de Vooren, 1980),

(ii ) the transformation of(0,∞) to a finite interval by virtue of analgebraic map-
ping (Grosch and Orszag, 1977) or anexponential mapping(Spalart, 1984).

Option (ii ) result in a modified operator̃Lα in which the derivatives are multiplied by
additional coefficients that depend on the mapping and vary in space. In particular,
these transformations bring in singular coefficients in the operator and this strongly
influences the efficiency of the method. Therefore we choose here for option (i). For
the domain truncation we need an additional boundary condition atz=h. For initial
conditions satisfyingg ∈ L2(R+) ∩ L∞(R+) we haveu → 0 asz → ∞ (see also
Chapter 2). Based on this observation, it is reasonable to impose a zero Dirichlet
boundary condition atz=h.

The standard Chebyshev–Galerkin method uses the Chebyshev polynomials for
both the shape and the test functions. This leads in general to full matrices, which
is numerically inefficient. The modification of the standard Chebyshev–Galerkin
method is basically a combination of ideas posed by Heinrichs (1989, 1991) and
Shen (1995), see also (Pop, 1995). Key feature in Galerkin methods is the use of
shape and test functions that satisfya priori the boundary conditions. However, there
are many ways to put the boundary conditions in the shape and test functions. In this
appendix they are chosen in such a way that they lead to banded matrices having good
condition numbers, which makes the numerical treatment more efficient. Further, the
technique followed in this appendix also removes so-called spurious eigenvalues.

139
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The discretization of (3.1.8) will be used to compute the eigenvalue problems
(3.1.7) and (3.3.4), and to compute the transient growth behaviour of the system
(Section 3.3). Further, the eigenfunctions ofL = L0 and the correspondingw and p
eigensolutions, which all play an important role in the model reduction in Chapter 4,
are determined as well.

A.1 Discretization of the initial value problem

We consider the initial value problem (3.1.8) in the truncated domainQh :=
{
(z, t) :

z ∈ (0, h) , t > 0
}
, 0 < h < ∞. Subsequently increasing the value ofh until

convergence is reached gives us the desired truncation depth. Thus we discretize the
problem

∂u

∂t
= D2u + (1 − α)Du +

+
(

1
4α

2
− 1

2α − a2
)
u − a2Re

1
2αz∂S0

∂z
(z, t)w in Qh , (A.1.1a)

−D2w + a2w = a2e−
1
2αzu in Qh , (A.1.1b)

u = w = 0 at{z = 0} ∪ {z = h}, t > 0 , (A.1.1c)

u = g in (0, h), t = 0 . (A.1.1d)

To use the Chebyshev polynomials, we need to transform (A.1.1) to the finite interval
I := (−1,1) for all t > 0. For this purpose we introduce thelinear transformation
ζ : (0, h) 7−→ (−1,1) defined by

ζ(z) =
2z − h

h
, z(ζ ) = 1

2h(ζ + 1) . (A.1.2)

Now letu(z)=u(z(ζ ))= ũ(ζ ),w(z)=w(z(ζ ))= w̃(ζ ) andS0(z, t)= S0(z(ζ ), t)=
S̃0(ζ, t). Then substitution in (A.1.1) yields

∂ũ

∂t
=

4
h2 D̃2ũ +

2
h(1 − α)D̃ũ +

(
1
4α

2
− 1

2α−a2
)
ũ −

−
2
ha2Re

1
2αz(ζ ) ∂ S̃0

∂ζ
(ζ, t)w̃ in (−1,1), t > 0 , (A.1.3a)

−
4
h2 D̃2w̃ + a2w̃ = a2e−

1
2αz(ζ )ũ in (−1,1), t > 0 , (A.1.3b)

ũ = w̃ = 0 at{ζ = −1} ∪ {ζ = 1}, t>0 , (A.1.3c)

ũ = g̃ in (−1,1), t = 0 . (A.1.3d)
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From this point on we drop the tildes. The unknown functions{u, w} in (A.1.3) are
represented by the series expansion

{u, w}(ζ, t) =

∞∑
j =0

{u j , w j }(t)W j (ζ ) , (A.1.4)

where
{
W j

}
are the – yet unspecified – shape functions. We approximate the solu-

tionsu andw by truncating the series expansion in (A.1.4). The result is projected
on a finite dimensional space in order to get a finite algebraic system.

Let Tk(ζ ) denote the Chebyshev polynomial of degreek. We define the shape
functions (Heinrichs, 1989, 1991)

W j (ζ ) = (1 − ζ 2)Tj (ζ ) , j > 0 ,

and approximate{u, w} by {uK , wK }=
∑K

j =0 {u j , w j } W j . Clearly,

XK = span
{
W j , j = 0, K

}
=
{

p ∈ PK+2 : p(±1) = 0
}
,

wherePk denotes the space of polynomials of orderk, and therefore{uK , wK } satisfy
the boundary conditionsa priori. For the definition of the test functions we use the
functions (Gottlieb and Orszag, 1983; Shen, 1995)

V j (ζ ) = Tj (ζ )− Tj +2(ζ ) , j > 0 .

Obviously,

YK = span
{
V j , j = 0, K

}
=
{

p ∈ PK+2 : p(±1) = 0
}
.

Substitution of (A.1.4) in (A.1.3a,b), multiplying byω(ζ )Vk(ζ ) and integrating over
I yields the semi-discretizations

K∑
p=0

dup

dt

∫
I
Wp(ζ )Vk(ζ )ω(ζ ) dζ =

K∑
p=0

up

∫
I

4
h2 D2Wp(ζ )Vk(ζ )ω(ζ ) dζ+

+ (1−α)

K∑
p=0

up

∫
I

2
h DWp(ζ )Vk(ζ )ω(ζ ) dζ+

+ ( 1
4α

2
− 1

2α−a2)

K∑
p=0

up

∫
I
Wp(ζ )Vk(ζ )ω(ζ ) dζ−

− a2R
K∑

p=0

wp

∫
I

2
he

1
2αz(ζ ) ∂S0

∂ζ
Wp(ζ )Vk(ζ )ω(ζ ) dζ (A.1.5)
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and

−

K∑
p=0

wp

∫
I

4
h2 D2Wp(ζ )Vk(ζ )ω(ζ ) dζ + a2

K∑
p=0

wp

∫
I
Wp(ζ )Vk(ζ )ω(ζ ) dζ =

= a2
K∑

p=0

up

∫
I
e−

1
2αz(ζ )Wp(ζ )Vk(ζ )ω(ζ ) dζ , (A.1.6)

where the prime denotes differentiation with respect toζ and whereω(ζ ) = (1 −

ζ 2)−
1
2 .

Now let the matricesI , D2, D1, E1 andE2 be defined as follows:

I p,k =
〈
Wp,Vk

〉
ω
, D2p,k =

〈
4
h2 D2Wp,Vk

〉
ω
, D1p,k =

〈
2
h DWp,Vk

〉
ω
,

E1p,k =

〈
e−

1
2αz(·)Wp,Vk

〉
ω
, E2p,k(t) =

〈
2
he

1
2αz(·) ∂S0

∂ζ
(·, t)Wp,Vk

〉
ω

,

where〈u, v〉ω =
∫ 1
−1 u v ω dζ . The matricesD2, D1 andI can be determined explic-

itly. Table A.1 shows the coefficients of these matrices. MatricesE1 andE2(t) are
determined by a Gauss–Lobatto integration method, i.e.

E1p,k
∼=

(p+2)(k+2)+1∑
j =0

β e−
1
2αz(ζ j )Wp(ζ j )Vk(ζ j )

and

E2p,k(t) ∼=
2

h

(p+2)(k+2)+1∑
j =0

β e
1
2αz(ζ j )

∂S0

∂ζ
(ζ j , t)Wp(ζ j )Vk(ζ j ) ,

where

ζ j := − cos
(2 j + 1)π

2
(
(p + 2)(k + 2)+ 1

) , β :=
π

(p + 2)(k + 2)+ 1

are respectively the Gauss nodes and the corresponding (constant) weighting coeffi-
cients (Quarteroni et al., 2000).

Using the notationsu = (u0,u1, · · · ,uK )
T andw = (w0, w1, · · · , wK )

T, we
obtain the semi-discretization

I
du
dt

= D2u + (1 − α)D1u + ( 1
4α

2
− 1

2α − a2)Iu − a2RE2(t)w (A.1.7a)

Bw := −D2w + a2Iw = a2E1u , (A.1.7b)

u(0) = uo . (A.1.7c)
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The initial conditionuo is defined as follows. Assume

g(ζ ) =

K∑
p=0

uo
pWp(ζ ) , (A.1.8)

which implies thatg(−1)= g(1)= 0. Multiplying (A.1.8) byVk(ζ )ω(ζ ), and inte-
grating overI yields

uo
= I−1Uo with uo

=(uo
0, · · · ,u

o
K )

T andUo
k =〈g,Vk〉ω .

The entriesUo
k are again computed using the Gauss–Lobatto method.

For the equilibrium boundary layer the implicitθ -scheme (Wesseling, 2001) is
used for time marching. The scheme is unconditionally von Neumann stable for
1
2 6 θ 6 1. Furthermore, the local truncation error is maximal of order 2 forθ =

1
2.

Our choice ofθ =0.55 falls within the stability region and the local truncation error
is nearly of second order. Letun be the solution of (A.1.7) at timet =n ·∆t and let
A := D2 + (1 − α)D1 + ( 1

4α
2
− 1

2α − a2)I . Discretization in time is given by

u0
= uo ,

Bw0
= a2E1u0

(I − θ∆tA)un+1
= (I + (1 − θ)∆tA)un

−∆ta2RE2(∞)wn

Bwn+1
= E1un+1 .

A.2 Solving the discrete eigenvalue problem

To obtain the eigenvalues and eigenfunctions of operatorLα as defined in (3.1.8a),
we use the discretization (A.1.7). We consider the generalized eigenvalue problem

D2u + (1 − α)D1u + ( 1
4α

2
− 1

2α − a2)Iu − a2RE2(∞)B−1u = σ Iu . (A.2.1)

The eigenvalues of the matrix eigenvalue problem (A.2.1) form a finite set of approx-
imations of the spectrum of operatorLα. With respect to the Chebyshev–Galerkin
method, a rule of thumb is that only one third of the lowest order eigenvalues of
(A.2.1) are accurate approximations of the eigenvalues ofLα.

The eigenvectoru j corresponding to eigenvalueσ j of (A.2.1) is used to build the
approximate eigenfunction, i.e.

ū j (ζ ) =

K∑
p=0

u j pWp(ζ ) =

K∑
p=0

u j pWp(ζ(z)) =: u j (z) . (A.2.2)

In the Galerkin projection method as discussed in Chapter 4, we need the eigen-
functionssj (z), w j (z), p j (z) and its derivatives to compute the coefficients in the
amplitude expansion. The eigenfunctionssj are found by settingα=0 in (A.2.1).
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Table A.1. Discretization matrices. Herecp = 0 for p<0, cp = 2 for p= 0 andcp = 1 for p>0. All
coefficients have to be multiplied by12π .

k= p − 4 k= p − 3 k= p − 2

I p,k =
〈
Wp,Vk

〉
ω

1
4 − 1

2 − 1
4cp−2

D2p,k =
〈
D2Wp,Vk

〉
ω

p(p − 3)+ 2cp

D1p,k =
〈
DWp,Vk

〉
ω

1 − 1
2 p

W p,k =
〈
Wp, Tk

〉
ω

− 1
4cp−2

k= p − 1 k= p k= p + 1 k= p + 2〈
Wp,Vk

〉
ω

1
2 + 1

2cp − 1
4cp−1 − 1

4cp

〈
D2Wp,Vk

〉
ω

−p(p + 3)− 2cp

〈
DWp,Vk

〉
ω

p + 1
2(cp − cp−1) −cp − 1

2 p

〈
Wp, Tk

〉
ω

cp − 1
4c2

p − 1
4cp−1 − 1

4cp

〈
Tp, Tk

〉
ω

cp
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The eigenfunctionsw j (ζ ) are computed from (A.1.7b):w j = a2B−1E1u j and

w j (ζ ) =

K∑
p=0

w j pWp(ζ ) =

K∑
p=0

w j pWp(ζ(z)) =: w j (z) .

For the pressure eigenfunctionsp j (z) we follow a different route. From the Darcy
law (2.2.3c) we deriveDp = s−w, hencep′

j =sj − w j . This also impliesDp(0) =

Dp(h) = 0 and the solution can thus be represented by

Dp j (z) =

K∑
p=0

p′

j p
Wp(ζ(z)) . (A.2.3)

The eigenfunctionp j (z) is then found by integrating (A.2.3) with respect toz. The
constant of integration is found from relationsD2 p = Ds − Dw andD2 p − a2 p =

Ds (cf. equation (4.2.1c)). This gives the additional condition thatp(0) = −Dw(0)/a2,
a 6=0.

Since the derivatives ofu j (z) andw j (z) are not expected to be zero inz= 0, h,
we have to change the basis{W j } by standard Chebyshev polynomials{Tj }, i.e.

{u j , w j }(ζ ) =

K∑
p=0

{u j p, w j p}Wp(ζ ) ≡

K+2∑
p=0

{ũ j p, w̃ j p}Tp(ζ ) . (A.2.4)

In (A.2.4) we need Chebyshev polynomialsTp(ζ ) up to orderK +2 sinceWK is a
polynomial of orderK+2. Next we multiply (A.2.4) byTk(ζ )ω(ζ ) and integrate over
I to obtain

W{u j ,w j } :=
K∑

p=0

{u j p, w j p}
〈
Wp, Tk

〉
ω

≡

K+2∑
p=0

{ũ j p, w̃ j p}
〈
Tp, Tk

〉
ω

=: T{ũ j , w̃ j } ,

and this implies{ũ j , w̃ j } = T−1W{u j ,w j }, whereW ∈ R
(K+3)×(K+1) and T ∈

R
(K+3)×(K+3), see Table A.1. We are now in the position to take derivatives ofu j (z)

andw j (z):

D{u j , w j }(ζ ) =

K+2∑
p=0

{ũ j p, w̃ j p}DTp(ζ ) . (A.2.5)

Observe that the right-hand side of (A.2.5) is a polynomial of orderK+1. To project
this polynomial onto the Chebyshev basis, we only needK +1 basis functions:

K+2∑
p=0

{ũ j p, w̃ j p}DTp(ζ ) ≡

K+1∑
p=0

{ũ′

j p
, w̃′

j p
}Tp(ζ ) . (A.2.6)
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Figure A.1. Plots of s1(z), Ds1(z), s3(z), Ds3(z) and the correspondingw1(z), Dw1(z), w3(z),
Dw3(z), p1(z), Dp1(z), p3(z) and Dp3(z) as function ofz for h = 5 andh = 15. The parameters
areR=14.5 anda=12π/50.

Again we multiply (A.2.6) byTk(ζ )ω(ζ ) and integrate overI to obtain

T1{ũ j , w̃ j } :=
K+2∑
p=0

{ũ j p, w̃ j p}
〈
DTp, Tk

〉
ω

=

K+1∑
p=0

{ũ′

j p
, w̃′

j p
}
〈
Tp, Tk

〉
ω

= T{ũ′

j , w̃
′

j } ,

(A.2.7)

whereT1 ∈ R
(K+2)×(K+3) andT ∈ R

(K+2)×(K+2). In this way we find{ũ′

j , w̃
′

j } =

T−1
0 T1{ũ j , w̃ j }. The matricesW, T, T1 and T2 can be determined explicitly, see

Table A.1 and Gottlieb and Orszag (1983). Figure A.1 depicts the first and third
eigenfunctions1(z) ands3(z) together with their first derivative.
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Summary

I n this thesis we analyse the stability of flows in porous media, where the action of
gravity on the distribution of a fluid

1. with decreasing density due to spatial variations of solute concentration or tem-
perature in a fully saturated porous medium, or

2. with constant density during infiltration into an (partly) unsaturated porous
medium

may give rise to convective motion, mixing and pattern formation. The stability anal-
yses give stability thresholds in terms of the physical parameters of the system. Based
on these thresholds, we predict the evolution of these flows.

The analysis involves the method of linearised stability, the energy method with
different constraints, and a nonlinear stability analysis by means of a reduced model.
In addition, we investigated the small time behavior of the evolution of growing per-
turbations. These methods give a complete picture in the sense that a) we can predict
for which parameters the system remains stable with respect to perturbations of spe-
cific classes; b) we can predict when the system becomes unstable to infinitesimally
small perturbations; c) we have full insight in the small time behavior of the sys-
tem; d) we can predict what kind of patterns may possibly appear when the system is
unstable.

For the verification and validation of the (in)stability thresholds, we use both an
advanced two-dimensional numerical method and results obtained from laboratory
experiments. All experiments show excellent agreement with the theory.

The analysis also applies to gravity-driven flow problems arising in ecology and
hydrology. One application is solute transport in fully saturated peat moss layers.
We give criteria for which convection and mixing of dissolved solutes occurs when
the surface of a fully saturated porous medium is cooled during the night. This is
confirmed by laboratory experiments and two-dimensional numerical simulations.
The second application deals with steady infiltration of water in an unsaturated porous
medium. We show for several soil classes that this is always a stable proces.
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Samenvatting

I n dit proefschrift onderzoeken we de stabiliteit van vloeistofstromingen in poreuze
media waar de werking van de zwaartekracht op een vloeistof

1. met afnemende dichtheid als gevolg van ruimtelijke variaties in concentratie
en temperatuur in een volledig verzadigd porous medium, of

2. met een constante dichtheid tijdens infiltratie in een onverzadigd of gedeeltelijk
verzadigd poreus medium

aanleiding kan geven tot convectieve stromingen, menging en de vorming van ruim-
telijke stromingspatronen. Stabiliteitsanalyses geven stabiliteitsgrenzen in termen
van de fysische parameters van het onderliggende stromingsprobleem. Aan de hand
van deze stabiliteitsgrenzen kunnen we voorspellingen doen over het gedrag van de
stroming in de tijd.

De in dit proefschrift gebruikte stabiliteitsanalyses zijn de (klassieke) lineaire
stabiliteitsanalyse, de energie-methode met verschillende beperkingen voor de ver-
storingen, en niet-lineaire stabiliteitsanalyse met behulp van een gereduceerd model.
Bovendien onderzoeken we voor kleine tijden het gedrag van de verstoringen. Deze
technieken geven een compleet beeld in de zin dat: a) we kunnen voorspellen voor
welke parameters het systeem stabiel blijft met betrekking tot willekeurige verstorin-
gen; b) we kunnen voorspellen wanneer het systeem instabiel wordt met betrekking
tot willekeurig kleine verstoringen; c) we volledig inzicht hebben in het gedrag van de
stroming voor kleine tijden; d) we kunnen voorspellen wat voor soort stromingspatro-
nen er mogelijk kunnen ontstaan wanneer het systeem daadwerkelijk instabiel wordt.

Voor de verificatie en validatie van de gevonden stabiliteitsgrenzen gebruiken we
zowel een geavanceerde numerieke methode als laboratoriumexperimenten. Beide
experimenten vertonen uitstekende overeenkomsten met de theoretische drempel-
waarden.

De stabiliteitsanalyses zijn ook toepasbaar op andere ecologische en hydrologis-
che zwaartekrachts-geı̈nduceerde stromingen. Een toepassing betreft het transport
van opgeloste (voedings)stroffen in volledig verzadigde veenlagen. We geven sta-
biliteitsgrenzen voor het ontstaan van convectie en menging in een veenlaag tijdens
de afkoeling van deze laag gedurende de nacht. Deze menging is bevestigd door
zowel numerieke als laboratorium experimenten. De tweede toepassing betreft de
stationaire infiltratie in een onverzadigd poreus medium. We laten voor verschillende
grondtypes met name zien dat dit altijd een stabiel proces is.
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