

A logic for one-pass, one-attributed grammars

Citation for published version (APA):
Marcelis, A. J. J. M. (1990). A logic for one-pass, one-attributed grammars. (Computing science notes; Vol.
9007). Technische Universiteit Eindhoven.

Document status and date:
Published: 01/01/1990

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 04. Oct. 2023

https://research.tue.nl/en/publications/d7be76ff-5bc9-43c7-89ea-00ed7631145c

A logic for one-pass, one-attributed grammars

by

AJ.J.M. Marcelis

90n

July, 1990

COMPUTING SCIENCE NOTES

This is a series of notes of the Computing
Science Section of the Department of
Mathematics and Computing Science
Eindhoven University of Technology.
Since many of these notes are preliminary
versions or may be published elsewhere, they
have a limited distribution only and are not
for review.
Copies of these notes are available from the
author or the editor.

Eindhoven University of Technology
Department of Mathematics and Computing Science
P.O. Box 513
5600 MB EINDHOVEN
The Netherlands
All rights reserved
Editors: prof.dr.M.Rem

prof.dr.K.M. van Hee

A logic for one-pass, one-attributed grammars

A.J.J.M. Marcelis

Department of Mathematics and Computing science
Eindhoven University of Technology
P. O.Box 513, 5600 MB Eindhoven

The N ether/ands
e-mail: wsinmar@eutwsl.win.tue.nl

April 1990

Abstract

A proof system for one-pass grammars is presented as an extension of a very general logic,
with elements from typed A-calculus and natural deduction. In the formulae of the logic,
the emphasis is on contexts, which, at all times during a proof or derivation step, explicitly
express the environment in which a step must take place. The proof method arrived at is
compositional: to prove the correctness of a grammar (w.r.t. a specification), a proof per
production rule suffices, where the contexts in which such a proof must be carried out ensure
that local information is used only. The proof method is also reminiscent of the Hoare-style
of proving programs.

Contents

1

2

3

4

5

Introduction
1.1 Motivation
1.2 Notational conventions

Attribute grammars and correctness conditions
2.1 One-attributed grammars
2.2 Production trees
2.3 Translation mappings
2.4 Correctness condition

A logic for one-pass, one-attributed grammars

Consistency of TISjj w.r.t. TISB

Evaluation / Related work

References

1
1
2

2
2
4
5
8

9

10

13

14

1 Introduction

1.1 Motivation

In [C&D88] a particular method for proving the correctness of attribute grammars with respect
to a specification has been presented. As the authors state, this method can be considered as
an extension of the inductive assertions method [Flo67]. The inductive assertions method is one
of the oldest forms of proving program correctness. It essentially amounts to labeling the nodes
in a flowchart with assertions and showing that each branch respects these assertions. More
recent methods for proving program correctness are usually based on Hoare's logic (see [Apt81]
for a survey paper), which differs from the inductive assertions method in two essential aspects:
first, it is a formal system with formulae and inference rules, and, second, proofs follow the
syntactic structure of the program. Due to these properties, Hoare's logic lends itself better to
the construction of correct programs than the inductive assertions method. The question arises
whether a similar approach can be followed for attribute grammars, i.e., is it possible to design a
logic for attribute grammars that can be considered as an analogon to Hoare's logic?

As a first step towards such a logic, this paper presents an inference system for one-pass, one
attributed grammars. The system is an extension of a typed inference system, as described in
[MargO].

More specifically, the line of reasoning pursued in this paper is the following.
In Section 2, we start off by introducing one-pass, one-attributed grammars. Here, "one

attributed" means that each nonterminal is supplied with exactly one inherited and one synthesized
attribute domain (or type, as we shall call it), and "one-pass" denotes the well-known restriction on
the evaluation rules, causing the attributes of each derivation tree t to be evaluatable in a single
(left-to-right) pass over t. The demand for "one-attributed"-ness is for notational convention
only; it is not very restrictive, as tupling can always be used to simulate multi-attributes by one
attribute.

Through one of its constituent components, an attribute grammar - according to our defini
tion - has an associated typed inference system, denoted TISB, and the well-formedness of the
grammar is expressed via the derivability of certain formulae within TISB . The latter turns out
to be an important stepping-stone for the embedding of ag in formal logic.

Also in Section 2, we develop the notion of the correctness of an attribute grammar G' -
with underlying context-free grammar (N, T, P, Z) - w.r.t. a specification. To that end, we first
introduce production trees (which are derivation trees labeled with context-free production rules),
and we show how G' gives rise to a collection {FA I A E N} of translation mappings, acting on the
production trees. More specifically, FA maps production trees of type PTA onto functions from
itA to stA (where PTA is the type of all production trees with root labeled by A _ Ct (for some
a), and itA (stA) denotes the inherited (synthesized) attribute type of nonterminal A), Le., FA
has signature PTA - itA --+ stA.

A specification for G' then consists of a pair of predicates (Q, R) of signature Q : itz _ bool
and R : itz - stz _ bool, and the correctness condition for G' is expressed as

IId:PTz , i:itz.(Q·i =} R.i.(Fz·d.i))

i.e., for all complete production trees, and for all values i in the inherited domain of Z that satisfy
Q.i, Fz applied to d and i satisfies R.i.(Fz·d.i).

If G' is an attribute grammar as in Section 2, with associated inference system TISB , then
in Section 3 we present a logic for G', denoted TISJj, as an extension ofTISB. More precisely,
per production rule pr of G' there is an additional formula expressing 'pr is correct', and there
is an additional formula expressing 'G' is correct' (all in a context without notions concerning
production trees or translation mappings). Furthermore, an additional inference rule expresses 'if
all pr are correct, then G' is correct' (in ditto context).

In the following section, an interpretation 'I is provided from formulae in TISJj onto formulae
in TISB . In particular, the interpretation of the formula 'G' is correct' is the correctness condition

1

for G'. We then show the consistency ofTIS~ w.r.t. TISB underI. This means that for each
formula '1', derivable within T IS~, its interpretation I(cp) is derivable within T ISB .

Thus we have achieved that, in order to prove the correctness condition for G' in TISB, it
suffices to infer 'G' is correct' within TISt. The latter, in its turn, is accomplished by inferring
'pr is correct' for each production rule pr; all without reference to production trees or translation
mappings whatsoever.

Finally, in Section 5 we provide an evaluation of the method and formalism just described, and
we state the relation with previous work (notably that of [C&D88]).

1.2 Notational conventions

All notations concerning typed inference systems are taken from [MargO]. In particular, it is useful
to recall that the correctness condition displayed above is shorthand for

Vd:PTz.(Vi:itz.(Q·i:} R.i.(Fz·d.i)))

and similar abbreviations apply to nested A-abstractions and let-constructs. Also, ~ (for denoting
function types) associates to the right and· (application) associates to the left.

For details concerning the "flag notation" , which is used to express the proofs of Section 4, see
Section 3 of [MargO].

If S is a set, then S· denotes the set of all finite sequences over S, and for a sequence Q' and
set S, notation", r S is used for the projection of", onto S.

2 Attribute grammars and correctness conditions

In Subsection 2.1 we define one-attributed grammars, and one-pass grammars as a special case of
them. Such a grammar can be viewed as a context-free grammar (in the usual sense), extended
with some restricted form of attribute structure.

Within the notational framework of typed inference systems, we then introduce some concepts
related to (attribute) grammars, resulting in a notion of correctness for an attribute grammar w.r.t.
a specification. More precisely, Subsection 2.2 defines production trees for a context-free grammar.
An inference rule expressing structural induction over production trees is also given. Subsection
2.3 is concerned with the translation mappings induced by a one-pass, one-attributed grammar,
and Subsection 2.4 states the correctness condition for such a grammar w.r.t. a specification.

2.1 One-attributed grammars

This subsection deals with one-attributed grammars, and one-pass grammars as a special case
of them. The well-formedness of such grammars is expressed largely in terms of the derivability
of formulae within a typed inference system. To that end, a typed boolean structure B (which
forms the basis of such an inference system) appears in the definition of a one-attributed grammar.
Another constituent is r, a context over B (in the sense of definition 2.4 of [MargO]). r contains
the "theory" of attribute-types involved. For instance, if, in a practical case, an attribute has as
its domain the type "stack of integer" , then r would contain the definition of this type, and an
(axiomatic) definition of the operations on the type.

Definition 2.1 (one-attributed grammar)
A one-attributed grammar is a 8-tuple G' = (N,T,P',Z,it,st,B,r), where

• N is a finite set

• T is a finite set

• NnT= 0

.ZEN

2

o

• B = (C" 11" C" V,, L, TA) is a typed boolean structure

• r is a context over B

• it = {itA I A E N}
st = {stA I A E N}

, where, for all A E N, B i-TIS r [> itA: * and B i-TIS r [> StA : *
• pI is a finite set of constructs, a typical element of which, p' say, reads

Ao(io, so) ---> Wo AI(il,sl) WI. "Wn_1 An(in,sn) Wn
So = eo , i l = el , ... , in = en

where

n?:O
Wk E T' , for all k : 0 :0; k :0; n

{Ao,AI, ... ,An} ~ N

{io,so, ... ,in,sn} ~ Ve

io, So, ... , in, So are pairwise different

B I-T1S r, io:itAo' 81 :stA1 ,.", Sn:StA" l> ek: itAk I for all k: 1:5 k:5 n

B rTIS r, io :itAo 151 :StAI I'" ,So :stA .. [> eo: stAo

Nand T are the sets of nonterminal and terminal symbols, respectively, and Z is the start
symbol of the grammar.

For a nonterminal A, itA and stA are the inherited and synthesized attribute types of A,
respectively.

pi is the set of attributed production rules. For a typical element pi of pi, as specified above,
i k and Sk denote the inherited and synthesized attributes of nonterminal Air; (for a :s: k :s: n),
So = eo, i l = el"", in = en are the evaluation rules (sometimes also referred to as semantic
rules), and Ao -4 Wo Al wI ... Wn_l An Wn is the underlying (context-free) production rule. Ifwe
let P denote the set of all underlying production rules, then (N, T, P, Z) is a context-free grammar,
the underlying context-free grammar of C'.

For attributed production rule pi, exactly one evaluation rule occurs for each of the attributes
So, i l , ... , in. Moreover, the restrictions on the type deduction for expressions ek (0 ~ k ~ n)
imply that - as far as attribute variables are concerned - FEV(ek) ~ {io, Sl," ., sn}. Thus, via
the evaluation rules, attributes So, ii, .. . , in are expressed in terms of attributes io, SI, ...) Sn .
These restrictions on the attributed production rules establish the usual normal form requirement
for an attribute grammar (see [Boc76]).

This normal form supports the common view on inherited and synthesized attributes as car
riers of downward ("input") and upward ("output") information, respectively, in any attributed
derivation tree of the grammar. Namely, via the attributed production rules (that constitute
such a tree) each inherited attribute in the tree is defined in terms of attributes in its "upper
neighbourhood" and thus conveys information downward through the tree, while each synthesized
attribute is defined in terms of its "lower neighbourhood" and as such provides for the upward flow
of data. (See [Boc76] for details.) We shall re-encounter this nature of attributes when defining
the translation mappings of an attribute grammar, later on in this section.

By limiting the occurrence of free variables in the expressions ek (1 ~ k ~ n) of definition 2.1
still further, a sub-class of the one-atributed grammars is obtained:

3

Definition 2.2 (one-pass condition)
A one-attributed granunar is called one-pass (left-to-right) if each element

Ao(io,so) - Wo A,(i"s,) w, ... Wn_' An(in,sn) Wn
So = eo , i1 = el , ... , in = en

of P' satisfies

(Hence, for all k: 1 ~ k ~ n, FEV(e.) <; {io,s" ... ,sk-d.)
o

forallk:l~k~n

An attribute grammar G' satisfying the one· pass condition has the property that the attributes
of a derivation tree t, associated with G', can be evaluated in a single (left-to-right) pass over t
(see e.g. [Eng84], [Boc76]).

2.2 Production trees

Throughout, derivation trees of a context-free grammar G = (N, T, P, Z) are assumed to be labeled
with production rules (rather than grammar symbols), and will be called production trees for that
reason. A production tree is fully determined by the label of its root and a sequence of direct
subtrees; the latter in accordance - qua size and type - with that root label.

The following defines PTA, for each nonterminal A E N, to be the type of the production trees
issued from A, i.e., the trees with root labeled by a production rule with left-hand side A. PTA
is a sum type with an alternative for each such production rule (i.e., possible root label). The
collection {PTA I A E N} is defined with mutual recursion.

Definition 2.3 (production trees)
Let G = (N, T, P, Z) be a context-free grammar. The collection of types {PTA I A E N} is defined
with mutual recursion as

rec (...

, PTA, =, surn(... , Ao - a : prod(PTA" .. . , PTA.) , ...)
, ...
)

Herein, the rec-construct contains a clause per nonterminal. Above the clause is shown for nonter
minal Ao. In its turn, the sum type defining PTAo contains an alternative per production rule with
AD as its left-hand side. Above the alternative is displayed for rule AD _ a, with a E (N U T)'
such that atN = A, ... An.

An expression of type PTA is called a production tree issued from A. A complete production
tree is a production tree issued from start symbol Z.
o

Several matters should be noted.
In particular, a production tree issued from Ao (i.e., an expression of type PTAo) is a construct

[AD - a,(d" ... ,dn) l, where AD - a E P and (d" ... ,dn) is a sequence of production trees,
such that dk is issued from Ak , the kth nonterminal in a, for 1 :S k :S n.

The notation of concepts according to definition 2.3 leaves the relation to grammar G implicit;
it will always be clear from the environment which grammar is meant. A similar remark applies
to forthcoming definitions.

In addition to definition 2.3 it is possible to define the type, PT say, of the production trees
of G (without further differentiation), namely

PT =, surn(... , Eo - f3 : prod(PTB" .. . , PTB_) , .")

where the sum type contains an alternative per production rule in P. Above the alternative for

4

rule Bo -> (3 is shown, with (3 t N = B , ... Bm. Thus, the sum type defining PT contains the
collected alternatives of the definitions for {PTA I A EN}. However, for our purposes the use of
the separate definitions for PTA will suffice, therefore the notion of PT has not been included in
definition 2.3.

Example 2.4 (on production trees)
Consider the context-free grammar G = (N, T, P, Z), with

oN={Z,Y}

o T={z,y,x}

o P = {Z -> z, Z -> YYy, Y -> Zx}

The types of the production trees of G are PTz and PTy , defined with mutual recursion as follows

rec (PTz =, sum(Z -> z : pro dO , Z -> YY y : prod(PTy , PTy))

, PTy =, sum(Y -> Zz: prod(PTz))

)

Hence, an expression of type PTz is of either of the forms [Z -> z, 0] or [Z -> YY y, (d!, d2)] ,
where dl and d2 are expressions of type PTy. Likewise, an expression of type PTy is of the form
[Y -> Zz,(d)], with doftype PTz. An example of the latter is [Y -> Z",([Z-> z,()])].
o

For an attribute grammar G' with underlying context-free grammar G we formulate an infer
ence rule from T [SB, expressing structural induction over the production trees of G. To that end,
let D he a context containing the appropriate recursive type definition, as in definition 2.3 above,
and let B i-T1S D I> RA : PTA -> bool (for all A EN). Then the induction rule reads

D I> V A -> " E P, (d
"

... , dn) :prod(PTAu . .. , PTA.)

. (RA, .d, II ... II RA.·dn =? RA· [A -> ", (d
"

... , dn)])

wherein" E (N UT)' , with "tN = A, ... An.

2.3 Translation mappings

A one-pass, one-attributed grammar G' gives rise to a collection {FA I A E N} of translation
mappings. Herein, FA has type PTA -4 itA --+ stA, i.e., it maps production trees issued from A
onto functions from the inherited to the synthesized attribute domain of A. Stated differently,
given a tree d of type PTA and an expression ("value") i of the inherited type itA, FA·d.i yields
a value of synthesized type stA.

This way, an attribute grammar can be considered to realise, through Fz, a translation from
the language produced by the underlying context-free grammar - plus environment information,
modelled by domain itz - to some target language (represented by domain stz). More generally,
each FA (A E N) realises such a translation from the sublanguage produced by A - plus itA -
to stA .

For A E N, FA is defined to be a lambda-expression, the body of which consists of a case
construction, selecting among the possible forms of expressions of type PTA_

Definition 2.5 (translation mappings)
Let G' = (N, T, P', Z, it, st, B, r) be a one-pass, one-attributed grammar, with (N, T, P, Z) as its
underlying context-free grammar. The collection of expressions {FA I A E N} is defined with
mutual recursion as

5

rec (...
FA, =, >. d: PTA, . (case d of

, ...
)

, ...

Herein, the rec-construct contains a clause per nonterminal. Above the clause is shown for nOll

terminal Ao. In its turn, the case-expression in the definition of FAo contains an alternative per
kind of production tree of type PTAo ; there are as many of these kinds as there are production
rules in P with left-hand side Ao (such production rules act as root labels). Above the alternative
is displayed for the kind of trees with Ao - fr as their root label, where fr t N = A" .. . , An.
The direct subtrees d1) ... ,dn are hence of types PTAI' ... , PTAnl respectively. The above def
inition also expresses that FA, applied to a tree of the form [Ao - fr,(d" ... ,dn } J yields
HA,_ao(FA, od,)o ... o(FA• odn). Herein, FA,od, through FA.odn are the applications of the appro
priate translation mappings to the direct subtrees of [Ao - fr,(d" ... ,dn } J , and HA,_a is
a higher-order function completely determined by the attributed production rule in pi that has
Ao - fr as its underlying context-free rule (the structure of the H-functions will be dealt with
hereafter) .
D

Example 206 (on translation mappings)
Consider the one-pass, one-attributed grammar G' = (N, T, pi, Z, it, st, B, r), of which only the
following components will be specified

oN={Z,Y}

o T={z,y,x}

o p l ={ Z(io,so}-z
So = Uo

, Z(io,so) - Y(i"SI) Y(i2,S2) y

}

So = Va , i l = VI , i2 = V2

Y(io,so) - Z(i"SI) x
So = Wo , i l = WI

Notice that grammar G of example 2.4 is the underlying context-free grammar of G' .
The translation mappings Fz and Fy induced by G' are defined as mutually recursive expres

sions. Herein Fz has type PTz _ itz - stz and Fy has type PTy - ity _ sty. The definition
reads

rec (Fz =, Ad: PTz . (case d of
[Z _ z,() J then Hz_"
[Z - YYy, (d

"
d2) J then Hz_yyyo(Fyod,)0(Fyod2)

)
, Fy =, >. d: PTy . (case d of [Y - Zx, (d ,) J then Hy_zxo(Fzod,»
)

wherein Hp (for P E {Z _ z, Z _ YY y, Y - Zx}) is a higher-order function fully determined by
the evaluation rules of the attributed production rule p' that has p as its underlying context-free
rule.
D

6

Next we specify how an attributed production rule pi, with underlying context-free rule p, gives
rise to a function H p as used in the definition of translation mappings.

As may be checked from the latter definition and the (required) type of FA" HA,_a, with
"rN = A, ... An, has type

(itA, -> stA') -> ... -> (itA. -> stA.) -> (itAo -> StAo)

We shall give the definition of H Ao_ a first, and go into its meaning (in connection with translation
mappings) afterwards.

Definition 2.7
Let G' be a one-pass, one-attributed grammar. An attributed production rule p':

Ao(io,50) -I> Wo AI(i l ,SI) WI· .. Wn-l An(in ,5n) Wn

50 = eo , il = el , ... , in = en

of G' gives rise to Hp , where p is the underlying context-free rule of p', defined by

Hp =, A h, : (itA, -> stA,) , ... , hn : (itA. -> stA.)

D

. (A io : itAo
.(let i, : itA, =e"

51: StAI = h l ·i1 ,

)

in : itA .. = en
Sn : stA .. = hn·in
So : StAo = eo

in So

The above presentation clearly shows how the evaluation rules So = eo, il = e1, ... , in = en of
p' appear in the body of Hp and, in fact, completely determine Hp.

A more concise denotation is obtained by substituting expressions ek for ik (1 :'0 k :'0 n) and
eo for So, which yields 1

Hp =, Ah,: (itA, -> stA,) , ... , hn : (itA. -> stA.)
. (A io : itA,

. (let SI : stA, = h , ·e, ,

sn : stA .. = hn·en ,
In eo

Recall that the meaning ("value") of the let-construct in (*) equals that of eo, with the proviso that
variables 51, ... , Sn (that may occur free in eo, cf. definition 2.1) are bound to h1·el, ... , hn ·en ,
respectively.

In fact, notice also that the order of bindings in the (nested) let-construct reflects the left-to
right nature of the evaluation rules of p', in the following sense: according to definition 2.2, for each
k (1 :'0 k:'O n) FEV(ek) ~ {io, s" ... , sk-d, of which io is bound in the enclosing A-abstraction,
and 51, ... , Sk-l are bound "earlier" in the let-construct.

1 By the normal Corm requirement, a variable i k (1 S; k ~ n) does not occur Cree in any oC the expressions el
(1 ~ I ~ n), and neither does 80. Therefore i k is used only in the subsequentCormula hk ·ik (so only in "... in so"),
and (*) is a correct abbreviation.

7

Example 2.8 (on H-functions)
We give the functions Hz _, and Hz_yyy, determined by attributed production rules

Z(ia, sa} - z
So = Uo

and Z(ia,sa} - Y(i
"

SI} Y(i2 ,S2} Y
So = Va 1 it = VI 1 i2 = V2

of example 2.6 (and used in the translation mappings of that example).
Hz_, is a function of type itz _ stz. Using the abbreviated notation (*), it is defined by

Hz_z =e A io: itz . Uo

Hz_yyy is a function of type (ity _ sty) ---; (ity _ sty) ---; (itz ---; stz). Its definition reads

Hz_yyy =,)'h , : (ity - sty), h2 : (ity - sty)
.(>.ia:itz

. (let s, : sty = h
"

V, , S2 : sty = h2 ,V2 in vo)
)

o

Now consider the use of HAo __ a in the definition of translation mapping FAo (Ao -+ a is the
underlying context-free rule of p' as in definition 2.7). According to definition 2.5, FA. applied to
[Ao - Ct, (d

"
... , dn) J yields HA._a·(FA, .d,) •...• (FA •. dn). The latter reduces to (using (*)

for simplicity):

)

Sn : st A .. = FAn .do·en

in eo

Thus, HAo-+a applied to FAl ,d1 , .•. , FA .. ·dn uses ek (associated with the inherited attribute of
A. by the evaluation rules ofp') as argument ("input") for the application of translation mapping
FAIe to the kth direct subtree dk1 and it incorporates the result of FAIe .dk·ek by binding it to s. (the synthesi2ed attribute of A. in p'). The overall result is a function that, when applied to
a value io of type itAo' yields eo (with the appropriate bindings), which is associated with the
synthesized attribute of Ao.

This way, HA ._a reflects the nature of the inherited and synthesized attributes of Ao - Ct (cf.
the discussion following definition 2.1): the former act as input information for the application
of translation mappings to (sub)trees, whereas the latter are identified with the results of these
applications.

In fact, for this reason Hp may well be conceived as the meaning of attributed production rule
p'. Likewise, the collection of translation mappings {FA IA E N} - determined by {Hp Ip E P}
according to definition 2.5 - may be considered as the meaning of attribute grammar G'. More
precisely, the application of FA to a production tree d of type PTA simulates attribute evaluation
for d, considered as a function from itA to stA. This way, an attribute grammar is identified
with the translation mappings it induces; such a characterisation forms the basis for the relation
between attribute grammars and functional programming, see for instance [Joh87].

2.4 Correctness condition

Finally we define the correctness condition for a grammar G' = (N, T, P', Z, it, st, B, r) with
respect to a specification. A specification for G' is a pair (Q, R) of predicates such that B f-T1S

r I> Q : itz - bool and B f-TIs r I> R: itz ---; stz ---; bool.

8

Definition 2.9 (correctness condition)
Let G' = (N, T, P', Z, it, st, B, r) be a one-pass, one-attributed grammar. Let Q and R be predi
cates such that B f-TIS r I> Q : itz ~ bool and B f-TIS r I> R : itz ~ stz ~ bool, i.e., the pair
(Q, R) is a specification for G'.
The correctness condition for G' w.r.t. (Q, R) reads

V d: PTz, i: itz . (Q.i => R.i.(Fz·d.i))

wherein PTz is the type of the production trees issued from Z and Fz is the translation mapping
for Z.
o

The correctness condition for G' expresses that for all complete production trees d, and for all
values i in the inherited domain of Z that satisfy Q·i, Fz applied to d and i satisfies R.i.(Fz·d.i).
However, as the collection {FA I A E N} is defined with mutual recursion over production trees, in
order to prove the correctness condition for G' we have to prove similar conditions for incomplete
production trees as well. This leads to the introduction of collections of predicates {QA I A EN}
and {RA I A E N} of the appropriate types (with Qz = Q and Rz = R) and a correctness
condition

for each nonterminal A. The correctness condition for G' then equals the one for start symbol Z.
Indeed, these additional correctness conditions will be encountered in connection with the logic to
be developed next.

3 A logic for one-pass, one-attributed grammars

Let G' = (N, T, pI, Z, it, st, B, r) be a one-pass, one-attributed granunar. We define a logic for
G', denoted by T IS~, as an extension of TISB. To save writing in this definition, assume that
N = {AI, ... , An}, assume that QA I , • •• , QA .. and RA 1 , ••• , RA" are such that

B f-TIS r I> QA, : itA, ~ bool (for all k: 1 :0: k :0: n)

B f-TIS r I> RA. : itA, ~ stA, ~ bool (for all k : 1 :0: k :0: n)

and let r' denote the sequence

qA 1 : itA l ---1- baal, qA 1 =e QAl , ... , qA" : itA" ---1- baal, qA .. =e QA .. ,

TAl: itAI ---1- stAI ---1- baal, rAI =e RAl , ... , rA" : itA" ---1- StA" ---1- baal, TA" =e RAn.

i.e., r' serves to select a collection {QA, , RA, I Ak E N} of predicates and to bind these predicates
to the variables {qA, , r A, I Ak E N}. Notice that the predicates can be typed in a context only
containing r.

The logic T I Sfj consists of inference formulae and rules as follows
Inference formulae are

1. the formulae of TIS B

2. A I> (pr correct), where

pr E P'

A is a context over B

3. A I> (G', Q, R), where

B f-TIS r I> Q : itz ~ bool

B t-TIS r I> R : itz ~ stz ~ bool

9

· A is a context over B

Inference rules are

1. the rules ofTISB

2. For a production rule pr E P' of the form

Ao(io,so) ~ Wo Adi"s,) w, ... W n_, An(in,sn) Wn

So = eo , il = el , ... , in = en

the rule

I>

f, r' ,

io : itAo) So : stAo ,
So =e eo , i 1 =e el ,

, in : itA .. , Sn : stA .. J

in =e en

f , f' I> (pr cor red)

for all k : 1 ~ k ~ n

3.
f, f' I> (pr, corred) , ... , f, r' I> (prm correct)

f I> (G', Q, R)

wherein P' = {pr" ... ,prm} , Q = Qz , R = Rz

Recall that r' selects a collection {QA. , RA. I A. E N} of predicates. Notice that in the last
inference rule above the part r' is dropped from the context. This means that the information
about the selected predicates is lost when applying this rule (except for Qz and Rz, concerning
start symbol Z, which are retained in the conclusion of the rule). On the other hand, if one is
asked to derive (G', Q, R) - i.e., G' is correct w.r.t. Q and R - for some Q and R, a reverse
application of the last rule requires the selection ("invention") of predicates QA/t and RA/t for each
nonterminal A., with the proviso that Q z = Q and Rz = R.
Derivability of an inference formula 'P within TISjj is denoted by B I-T1S+ 'P.

4 Consistency of TIS~ w.r.t. TISB

We define the notion of consistency between two logics as follows

Definition 4.1 (Consistency)
Let L, = (:F, , 1?,) and L2 = (:F2 , 1?2) be two inference systems, with :F, ;2 :F2 and 1?, ;2 1?2.
Denote the derivability of a formula 'P in L, and L2 with I-L, 'P and I-L, 'P, respectively. Let :1
be an interpretation of the formulae in L1 in terms of the formulae in L 2 , i.e., .J E:F1 ---+ :F2.

a. Rule ¥- E'Il I is consistent w.r.t. L2 under:r if

I-L, .J('Pd and ... and I-L, :1('Pn) imply I-L, :1('P)'

b. L, is consistent w. r.t. L2 under.J if for all 'P E :F,
I-L, 'P implies I-L, :1('P)

o

Lemma 4.2
Let L" L2 and :1 be as in the preceding definition. In order to prove that L, is consistent w.r.t.
L2 under :1 it suffices to show that all rules of 1?, are consistent w.r.t. L2 under :1.
proof: straightforward, using the notion of derivability of formulae within an inference system.
o

10

For Gt = (N, T, P', Z, it, st, B, f) we now provide an interpretation of the formulae in TISiI
in terms of those in TISB , and we show the consistency of TIS~ w.r.t. TISB under this inter
pretation.

Definition 4.3 (I, interpretation)
Let G', TISB , TIS~ and f' be as in the preceding section. Let ~ be a piece of context containing

the type definitions for {PTA I A E N}, the types of the production trees of G

the definitions for {FA I A E N} and {HA_ a I A -->" E P}, concerning the
translation mappings induced by G'

Finally, let !:1' be a piece of context containing a clause

for each A E N. Notice that, this way, V d: PTA. ('10 A .d) expresses the correctness condition for FA
w.r.t. QA and RA (cf. subsection 2.4); where the latter two are bound to qA and rA, respectively,
by fl.

Then I maps formulae of TIS~ onto formulae of TISB according to

l. I(D I> <p) = D I> <p , for D I> <p an inference formula of TIS B

2. I(f, f' I> (pr correct» =
f, f',!:1,!:1'

I>
V (d

"
... , dn) : prod(PTA". .. , PTA.)

. ('IoA,·d, II ... II'IoA.·dn => 'IoAo·[Ao -->a, (d" ... ,dn) J)
wherein Ao --+ 0', with 0' = WOAIWI ... Wn_lAnwn, is the underlying production rule ofpr.

3. I(f I> (G',Q,R» f, ~ I> Vd:PTz, ;:;tz. (Q.; => R.;.(Fz·d.;»

Notice that the interpretation of f I> (G', Q, R) displays the correctness condition for G'
(subsection 2.4), in a context containing the appropriate definitions.
o

Theorem 4.4
Let G' , TISB , TIS~ , f' , ~, ~, be as in definition 4.3, and let I be as defined by the latter
definition. Then TIS~ is consistent w.r.t. TISB under I.

proof:
Due to Lemma 4.2, this requires a proof per inference rule in TISiI. These rules come in three
kinds (cf. section 3). We provide a proof for each of the kinds.

Rules of kind 1 (rules of TISB): Obvious, as the rules of TISB form a subset of those of TIS~,
and formulae appearing in these rules have identity interpretation.

Rules of kind 2: Consider attributed production rule pr of the form

Ao{io, so) --+ Wo Adil,SI} WI·· ,wn_l An(in,sn) Wn

So = eo , it = el , ... , in = en

The premises ofthe corresponding inference rule are (n+l) formulae in TISB (hence, with identity
interpretation). Assuming the derivability (in TISB) of these formulae, we provide a proof of
B rTIS I(f, f' I> (pr correct». Namely, starting from

11

r, r'
io : itAo , So : StAO , ... , in : itA .. , Sn : StA .. ,
So =e eo , '1 =e el , ... , in =e en

,forallk:lkn

repeated application of the rules for context extension and reordering of context terms, yields

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

II.

r, r' , ll., ll.'J
(d" ... ,d.) :prod(PTA". .. ,PTA.) J

<P Al od1 A ... A <P A .. ·dn I

io : itAo , qAo oio I

it : itAI , il =e el I
8, : StAI , SI =e F Al odl oil I

in : itA .. , in =e en I
Sn : StA .. , Sn =e FA .. ·dnoin I

So : StAo , So =e eO I

qAo"o /\ /\ .-, (. .) j=1 qAj"j ATAjoljoSj

qAo·io /\ /\7=1 (qAjoij A TAjoijosj)

and the proof continues as indicated:

12.

13.

14.

IS.

16.

17.

18. TAo·io·so

(el \1,3,5-9)

(4)

(el ,*,10,13)

(el,*,12,14)

(el ,*,10, ...)

(el,*,12,16)

(el ,*,11, ...)

19. TAo·io·(let il : itA l = el, 51 : StA I = FAI .d1oi1, ... , So : stAo = eo in so)

(let-rule, repeatedly)

20. rA,·io·(HA,_o·(FA, .d,) (FA.·d.).io) (def. HA,_o)

21. rA,.io.(FA,·[Ao ~ O',(d" ... ,d.)J·'o) (def. FA,)

22.

23.

\I i" itA, . (qA, .io '* r A, .io·(FA,· [Ao ~ 0', (d" .. . , d.) J.io))

<PA,·[Ao ~ 0', (d" ... ,dn) J

24. \I (d" ... , do) : prod(PTA " .. . , PTA.)

. (<PA, ·d, /\ ... /\ <PAn·do '* <PA,' [Ao ~ O',(d" ... , do) J)

12

(in ,*,in \1,4,21)

(def. <p)

(in :::>,in V,2,3,23)

Line 24 (in its proper context, viz. line 1) displays I(r, r/, I> (pr correct». Therefore rules of
kind 2 are consistent W.r.t. TISB under I.

Rules of kind 3:
Starting from B rTIS I((prl correct» , .. ' , B rTIS I((prm correct)) , using rules for reordering
of contexts, and applying (in It), yields

1.

2.

3.

4.

and, continuing:

5.

6.

7.

ll
VAEN,d:PTA.(<I!A.d)

Vd:PTz, i:itz.(Qz·i =? Rz·i.(Fz·d.i»

V d: PTz , i: itz . (Q.i =? R.i.(Fz·d.i»

(induction)

(el '1,5 & def. <l!z,qz,rz)

(context reduction & Qz = Q, Rz = R)

Line 7 (in context 1) displays I((G' , Q, R». Hence rules of kind 3 are consistent.

With Lemma 4.2, the result now holds as claimed.
o

5 Evaluation / Related work

In this paper, we have presented a logic for one-pass, one attributed grammars, as an extension
of a very general inference system based on A-calculus and natural deduction. The proof method
obtained is compositional. As a particular feature, contexts playa very important role in the
inference formulae of the logic.

The merit of such a logic lies in the fact that it is a formal system with well-defined formulae
and rules, and, thanks to the strong emphasis on contexts, the environment in which proofs and
design steps must be carried out is defined very precisely. As an example of the latter phenomenon,
the inference rules introduced in Section 3 express that the proof of the condition pr correct must
take place in a context containing no information about production trees or translation mappings.
Also, the last inference rule in the same section clearly exhibits the precise point where additional
predicates QA and RA must be selected for non terminals A, different from Z.

As a consequence, we expect that an approach like the one presented in this paper will tUrn

out to be well-suited for the derivation of attribute grammars from a specification.

For the scope of this paper we have restricted ourselves to one-pass grammars, but the method
can be extended withou t too much difficulty to more general kinds of grammars; typically multi
pass or multi-sweep ones ([Fil83]). We feel that for the design of practical attribute grammars
- the goal we ultimately strive for - attribute grammars with a more complicated attribute
structure than the ones mentioned above are hardly likely to be of use.

As the most important work related to ours we mention that of Courcelle & Deransart [C&D88].
However, the latter paper is far more theoretically oriented, and, due to the application of the
particular formalism, does not give too much hold where the "rules of the game" allowed are
concerned.

13

The proof rule arrived at in our paper can be regarded as an instance of the annotations
method in [C&D88], that is, with a suitable choice for the arcs in the graphs D(p) - see section
4.3, p. 43 -, reflecting the "one-pass" -ness of the grammar.

In view of what was said in the preceding paragraph, it is in fact expected that in practical
situations the choice of annotations (and the relations between them) will often be inspired by
considerations of pass-orientedness of the attribute scheme under consideration.

Other related work is that of Katayama & Hoshino [K&H81]' who follow a similar approach
for the class of absolutely noncircular attribute grammars, but, again, in a less precisely defined
framework.

Future work will be directed towards a further development of the method, for use in connec
tion with more complicated types of grammars (typically multi-pass and multi-sweep ones). In
addition, the use of the formalism as an aid in deriving correct attribute grammars will be inves
tigated, especially in connection with code generation. This investigation may include the issue of
transforming attribute grammars while preserving their correctness (w.r.t. a specification).

References

[Apt81] Apt, K.R.; Ten Years of Hoare's Logic: A Survey - Part I, ACM TOPLAS 3, 4, pp.
431-483 (1981)

[Boc76] Bochmann, G.V.; Semantic Evaluation from Left to Right, Comm. ACM 19, pp. 55-{)2
(1976)

[C&D88] Courcelle, B., and P. Deransart; Proofs of partial correctness for attribute grammars with
applications to recursive procedures and logic programming, Information and Computation
78, pp. 1-55 (1988)

[Eng84] Engelfriet, J.; Attribute Grammars: Attribute Evaluation Methods, in: Methods and Tools
for Compiler Construction (B. Lorho, ed.), Cambridge U.P., pp. 103-138 (1984)

[FiI83] File, G.; Theory of attribute grammars, Dissertation, Twente University of Technology
(1983)

[Flo67] Floyd, R.W.; Assigning meanings to programs, Proc. AMS Symp. Applied Mathematics,
AMS, pp. 19-31 (1967)

[Joh87] Johnsson, T.; Attribute Grammars as a Functional Programming Paradigm, in: Proc.
Functional Programming Languages and Computer Architecture, Portland (USA), LNCS
274, pp. 154-173 (1987)

[K&H81] Katayama, T., and Y. Hoshino; Verification of Attribute Grammars, Proc. ACM Symp.
on POPL, ACM, pp. 177-186 (19S1)

[Mar90] Marcelis, A.J.J.M.; Typed Inference Systems: A Reference Document, Computing Sci
ence Note 90/06, Eindhoven University of Technology, Dept. of Math. and Compo Sci., The
Netherlands (1990)

14

In this series appeared :

No. Author(s)
85/01 R.H. Mak

85/02 W.M.C.J. van Overveld

85/03 W.J.M. Lemmens

85/04 T. Verhoeff
H.M.L.J.Schols

86/01 R. Koymans

86/02 G.A. Bussing
KM. van Hee
M. Voorhoeve

86/03 Rob Hoogerwoord

86/04 GJ. Houben
1. Paredaens
KM. van Hee

86/05 J.L.G. Dietz
KM. van Hee

86/06 Tom Verhoeff

861m R. Gerth
L. Shira

86/08 R. Koymans
R.K Shyamasundar
W.P. de Roever
R. Gerth
S. Arun Kumar

86/09 C. Huizing
R. Gerth
W.P. de Roever

86/10 J. Hooman

86/11 W.P. de Roever

86/12 A. Boucher
R. Gerth

86/l3 R. Gerth
W.P. de Roever

Title
The formal specification and derivation of CMOS
-circuits.

On arithmetic operations with M-out-of-N-codes.

Use of a computer for evaluation of flow films.

Delay insensitive directed trace structures satisfy
the foam rubber wrapper postulate.

Specifying message passing and real-time systems.

ELISA, A language for formal specification of
information systems.

Some reflections on the implementation of trace
structures.

The partition of an information system in several
systems.

A framework for the conceptual modeling of
discrete dynamic systems.

Nondeterminism and divergence created by
concealment in CSP.

On proving communication closedness of distributed
layers.

Compositional semantics for real-time distributed
computing (Inf.&Control 1987).

Full abstraction of a real-time denotational
semantics for an OCCAM-like language.

A compositional proof theory for real-time
distributed message passing.

Questions to Robin Milner - A responder's
commentary (IF/P86).

A timed failures model for extended communicating
processes.

Proving monitors revisited: a first step towards
verifying object oriented systems (Fund. Informatica
IX-4).

86/14 R Koymans

87/01 R Gerth

87/rJ2 Simon J. Klaver
Chris F.M. Verbcrne

87/03 G.J. Houben
J .Paredaens

87/04 T. Vemoeff

87/05 RKuiper

87/06 RKoymans

87/07 R.Koymans

87/08 H.M.J.L. Schols

871("f) J. KaIisvaart
L.RA. Kessener
W.J.M. Lemmens
ML.P. van Lierop
F.J. Peters
H.M.M. van de Wetering

87/10 T .Vemoeff

87/11 P.Lemmens

87/12 K.M. van Hee and
A.Lapinski

87113 J.C.S.P. van der Woude

87/14 J. Hooman

87/15 C. Huizing
R Gerth
W.P. de Roever

87/16 H.M.M. ten Eikelder
J.C.F. Wilmont

87/17 K.M. van Hee
G.-J.Houben
J.L.G. Dietz

Specifying passing systems requires extending
temporal logic.

On the existence of sound and complete axiomati
zations of the monitor concept.

.' Federatieve Databases.

A formal approach to distributed information
systems.

Delay-insensitive codes - An overview.

Enforcing non-determinism via linear time temporal
logic specification.

Temporele logica specificatie van message
passing en real-time systemen (in Dutch).

Specifying message passing and real-time
systems with real-time temporal logic.

The maximum number of states after projection.

Language extensions to study structures for raster
graphics.

Three families of maximally nondeterministic
automata.

Eldorado ins and outs. Specifications of a data base
management toolkit according to the functional model.

OR and AI approaches to decision support systems.

Playing with patterns - searching for strings.

A compositional proof system for an occam-like
real-time language.

A compositional semantics for statecharts.

Normal forms for a class of formulas.

Modelling of discrete dynamic systems
framework and examples.

87/18 C.W.A.M. van Overveld

87/19 A.J.Seebregts

87/20 G.J. Houben
J. Paredaens

87/2l R. Gerth
M. Codish
Y. Lichtenstein
E. Shapiro

88/01 T. Verhoeff

88/02 K.M. van Hee
G.J. Houben
L.J. Somers
M. Voorhoeve

88/03 T. Verhoeff

88/04 G.J. Houben
JParedaens
D.Tahon

88/05 K.M. van Hee
G.J. Houben
L.J. Somers
M. Voorhoeve

88/06 H.M.J.L. Schols

88/07 C. Huizing
R. Gerth
W.P. de Roever

88/08 K.M. van Hee
G.J. Houben
L.J. Somers
M. Voorhoeve

88/09 A.T.M. Aerts
K.M. van Hee

88/10 J.C. Ebergen

88/11 G.J. Houben
J .Paredaens

88/12 A.E. Eiben

88/l3 A. Bijlsma

An integer algorithm for rendering curved
surfaces.

Optimalisering van file allocatie in
gedistribueerde database system en.

The R2 -Algebra: An extension of an algebra
for nested relations.

Fully abstract denotational semantics for concurrent
PROLOG.

A Parallel Program That Generates the Mllbius
Sequence.

Executable SpeCification for Information Systems.

Settling a Question about Pythagorean Triples.

The Nested Relational Algebra: A Tool to Handle
Structured Information.

Executable Specifications for Information Systems.

Notes on Delay-Insensitive Communication.

Modelling Statecharts behaviour in a fully abstract
way.

A Formal model for System Specification.

A Tutorial for Data Modelling.

A Formal Approach to Designing Delay Insensitive
Circuits.

A graphical interface formalism: specifying nested
relational databases.

Abstract theory of planning.

A unified approach to sequences, bags, and trees.

88/14 H.M.M. ten Eikelder
RH. Mak

88/15 R Bos
C. Hemerik

88/16 C.Hemerik
J.P.Katoen

88/17 K.M. van Hee
G.J. Houben
LJ. Somers
M. Voorhoeve

88/18 K.M. van Hee
P.M.P. Rambags

88/19 D.K. Hammer
K.M. van Hee

88/20 K.M. van Hee
L. Somers
M.Voorhoeve

89/1 E.Zs.Lepoeter-Molnar

89/2 RH. Mak
P.Struik

89/3 H.M.M. Ten Eikelder
C. Hemerik

89/4 J.Zwiers
W.P. de Roever

89/5 Wei Chen
T.Verhoeff
J.T.Udding

89/6 T.Verhoeff

89n P.Struik

89/8 E.H.L.Aarts
A.E.Eiben
K.M. van Hee

89/9 K.M. van Hee
P.M.P. Rambags

89/10 S.Ramesh

89/11 S.Ramesh

Language theory of a lambda-calculus with
recursive types.

An introduction to the category theoretic solution
of recursive domain equations.

Bottom-up tree acceptors.

Executable specifications for discrete event systems.

Discrete event systems: concepts and basic results.

Fasering en documentatie in software engineering.

EXSPECT, the functional part.

Reconstruction of a 3-D surface from its normal vectors.

A systolic design for dynamic programming.

Some category theoretical properties related to
a model for a polymorphic lambda-calculus.

Compositionality and modularity in process
specification and design: A trace-state based
approach.

Networks of Communicating Processes and their
(De-)Composition.

Characterizations of Delay-Insensitive
Communication Protocols.

A systematic design of a paralell program for
Dirichlet convolution.

A general theory of genetic algorithms.

Discrete event systems: Dynamic versus static
topology.

A new efficient implementation of CSP with output
guards.

Algebraic specification and implementation of infinite
processes.

89/12 A.T.M.Aerts A concise fonnal framework for data modeling.
K.M. van Hee

89/13 A.T.M.Aerts A program generator for simulated annealing
K.M. van Hee problems.
M.W.H. Hesen

89/14 H.C.Haesen ELDA, data manipulatie taal.

89/15 J.S.C.P. van der Woude Optimal segmentations.

89/16 A.T.M.Aerts Towards a framework for comparing data models.
K.M. van Hee

89/17 M.J. van Diepen A fonnal semantics for Z and the link between
K.M. van Hee Z and the relational algebra.

90/1 W.P.de Roever-H.Barringer Fonnal methods and tools for the development of
C.Courcoubetis-D.Gabbay distributed and real time systems, pp. 17.
RGerth-B.Jonsson-A.Pnueli
M.Reed-J.Sifakis-J.Vytopil
P.Wolper

90/2 K.M. van Hee Dynamic process creation in high-level Petri nets,
P.M.P. Rambags pp. 19.

90/3 R Gerth Foundations of Compositional Program Refinement
- safety properties - , p. 38.

90/4 A. Peeters Decomposition of delay-insensitive circuits, p. 25.

90/5 J.A. Brzozowski On the delay-sensitivity of gate networks, p. 23.
J.C. Ebergen

90/6 A.J.J.M. Marcelis Typed inference systems : a reference document, p. 17.

90n A.J.J.M. Marcelis A logic for one-pass, one-attributed grammars, p. 14.

	Abstract
	Contents
	1. Introduction
	1.1 Motivation
	1.2 Notational conventions
	2. Attribute grammars and correctness conditions
	2.1 One-attributed grammars
	2.2 Production Trees
	2.3 Translation mappings
	2.4 Correctness condition
	3. A logic for one-pass, one-attributed grammars
	4. Consistency of TIS+b w.r.t. TISb
	5. Evaluation / Related work
	References

