

The contracting agent : concepts and architecture of a generic
software component for electronic business based on
outsourcing of work
Citation for published version (APA):
Dijk, van, A. (2001). The contracting agent : concepts and architecture of a generic software component for
electronic business based on outsourcing of work. [Phd Thesis 2 (Research NOT TU/e / Graduation TU/e),
Mathematics and Computer Science]. Technische Universiteit Eindhoven. https://doi.org/10.6100/IR549629

DOI:
10.6100/IR549629

Document status and date:
Published: 01/01/2001

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 04. Oct. 2023

https://doi.org/10.6100/IR549629
https://doi.org/10.6100/IR549629
https://research.tue.nl/en/publications/b6eeb7d5-9116-45cc-9930-4a28d249135f

The Contracting Agent
concepts and architecture of a generic software component

for electronic business based on outsourcing of work

CIP-DATA LIBRARY TECHNISCHE UNIVERSITEIT EINDHOVEN

Dijk, Andries van

The Contracting Agent: concepts and architecture of a generic software component for elec-
tronic business based on outsourcing of work / by Andries van Dijk. - Eindhoven : Technische
Universiteit Eindhoven, 2001. Proefontwerp. - ISBN 90-386-0941-8

NUGI 852
Subject headings : software design / electronic commerce / Petri nets
CR Subject Classification (1998) : K.4.4, D.2.11

Cover design by Paul Verspaget
Printed by Eindhoven University Press Facilities

© 2001, A. van Dijk

Alle rechten voorbehouden. Uit deze uitgave mag niet worden gereproduceerd door middel van
boekdruk, fotokopie, mikrofilm of welk ander medium dan ook, zonder voorafgaande
schriftelijke toestemming van de auteur.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system,
or transmitted in any form by any means, mechanical, photocopying, recording, or otherwise,
without the prior written consent of the author.

The Contracting Agent
concepts and architecture of a generic software component

for electronic business based on outsourcing of work

Proefontwerp

ter verkrijging van de graad van doctor aan de Technische
Universiteit Eindhoven, op gezag van de Rector Magnificus,

prof.dr. R.A. van Santen, voor een commissie aangewezen door het
College voor Promoties in het openbaar te verdedigen op

maandag 19 november 2001 om 16.00 uur

door
Andries van Dijk
geboren te Giessenburg

De documentatie van het proefontwerp is goedgekeurd door de promotoren:

prof.dr. K.M. van Hee
en
prof.dr. P.M.E. de Bra

Preface
The work on this dissertation started in August 1997 with a presentation of initial ideas at the
Technical University Eindhoven and ended four years later in August 2001. During these four
years I have developed the initial ideas into the results as they are today. The process brought
moments of excitement as well as moments of disappointment, but was always interesting.
Often, the results have grown at a speed much slower than I liked. Sometimes, I have followed
an approach that did not bring the results I wanted. However, the result is a contribution to the
theory and practice of electronic contracting and a basis for further research.

This dissertation could not exist without the support of many people. First of all I thank my
supervisors Kees van Hee and Paul de Bra for their support during the entire period. Your sug-
gestions and ideas were very important to me and guided me towards the results as they are
now. When looking at some of the first versions of this dissertation I admire your confidence in
a successful end. I also want to thank Wil van der Aalst and Ron Lee for their important con-
tribution in the last months. By asking me the right questions and by giving me the right sug-
gestions, I have been able to increase the quality of the dissertation significantly.

Second, I want to thank Deloitte & Touche Bakkenist for giving me the opportunity, the time
and a stimulating environment to work on my dissertation. Without it this dissertation would
not have come to life. I thank my colleagues from the ICT Strategy & Architecture group for
sharing their knowledge and experience. Especially I want to thank Wout Hofman for working
together in many projects in the area of electronic business transactions. Also thanks to my
colleagues in Dordrecht for their patience at those times they had to wait at the printer when I
was printing yet another version of this dissertation.

During the four years I have worked on this dissertation many people belonging to my relatives
and friends have shown interest in the status of my work, especially during the last one and a
half year when it was ‘nearly’ finished. When you asked me when I planned to finish my dis-
sertation, I often could not give you the answer I would have liked to give. However, most of
the times, your concern inspired me to continue and I want to thank you all for it. Furthermore,
I want to thank my parents for always stimulating me to have a good education, which has been
the basis for the work I have now finished.

vi PREFACE

Finally, I want to thank my wife and daughters, Heleen, Rachel and Loïs for their continuous
support. Writing a dissertation has a price, which often had to be paid by the three of you.
Though physically present, you have found me mentally absent for quite a couple of times,
especially in the last year. Rachel and Loïs, you do not even remember a time when I was not
upstairs and ‘writing a book’. I owe the three of you a lot and hope and expect that you will see
a difference. This work is dedicated to you.

Hendrik-Ido-Ambacht,
August, 2001

Table of contents

Preface v

Table of contents vii

Summary xi

1. Introduction 15
1.1 Motivation .. 15
1.2 Electronic commerce.. 18

1.2.1 Introduction.. 18
1.2.2 Internet as enabling technology ... 18
1.2.3 Changes to the business ... 21

1.3 Industry solutions for electronic contracting.. 23
1.3.1 Electronic data interchange.. 23
1.3.2 XML based messaging frameworks... 24
1.3.3 Workflow interoperability.. 26

1.4 Scientific research on electronic contracting.. 30
1.4.1 Definition ... 30
1.4.2 The Language / Action Perspective ... 30
1.4.3 Documentary Petri Nets ... 31
1.4.4 Interorganisational workflows ... 33
1.4.5 Mobile agents... 34
1.4.6 Other related projects ... 37

1.5 Software engineering.. 39
1.5.1 Specification... 39
1.5.2 Construction ... 40
1.5.3 Component based software engineering .. 41

1.6 Research ... 43
1.6.1 Research problem and objectives... 43
1.6.2 Research scope... 44
1.6.3 Research approach ... 45
1.6.4 Research questions... 45

1.7 Outline .. 47

viii TABLE OF CONTENTS

2. A conceptual framework for service contracting 49
2.1 Inter-organisational systems... 49
2.2 Underpinning concepts... 50

2.2.1 Workflows.. 50
2.2.2 Services .. 55
2.2.3 Transactions ... 58

2.3 Basic service contracting concepts... 65
2.3.1 Definitions.. 65
2.3.2 Frameworks.. 67
2.3.3 Structure of the rest of this chapter .. 70

2.4 Specification of the interface agreements .. 72
2.4.1 Data model ... 72
2.4.2 Transaction protocol patterns... 76

2.5 Specification of contracting requirements.. 88
2.5.1 Definitions.. 88
2.5.2 A data model for contracting requirements.. 90

2.6 Construction of the contracting workflow ... 96
2.6.1 Basic operations in service contracting processes 96
2.6.2 The contracting workflow.. 104
2.6.3 Standard transitions for the contracting workflow................................... 106
2.6.4 The ‘negotiation’ transition.. 113
2.6.5 The ‘execution’ transition .. 121
2.6.6 The ‘acceptance’ transition .. 125
2.6.7 Composing the contracting workflow.. 127

2.7 Use case ‘business trip’ .. 132
2.7.1 Introduction.. 132
2.7.2 Case type ‘Trip’ ... 132
2.7.3 Service type ‘Book flight’.. 133
2.7.4 Service type ‘Cancel flight’ ... 135
2.7.5 Service type ‘Book hotel’ .. 136
2.7.6 Service type ‘Book rental car’ ... 138
2.7.7 Service providers.. 140
2.7.8 Contracting requirements... 141

3. Logical architecture of the Contracting Agent 149
3.1 Introduction .. 149

3.1.1 Relation to the conceptual framework ... 149
3.1.2 Definition of the term architecture... 150
3.1.3 Design goals... 151

3.2 Architecture of the ‘Contracting Agent’ component.. 153
3.2.1 Distribution of functionality over components .. 153
3.2.2 Structure of interfaces .. 154
3.2.3 Behaviour on the component interfaces... 164

3.3 Architecture of the ‘Server’ component... 164
3.3.1 Distribution of functionality over components .. 164
3.3.2 Structure of interfaces and persistent data ... 167
3.3.3 Behaviour on the component interfaces... 183

TABLE OF CONTENTS ix

3.4 Architecture of the ‘Configurator’ component... 187
3.4.1 Distribution of functionality over components .. 187
3.4.2 Structure of interfaces and persistent data ... 189
3.4.3 Behaviour on the component interfaces... 197

4. Technical architecture of the Contracting Agent 199
4.1 Basic construction choices ... 199

4.1.1 Objectives... 199
4.1.2 Windows and COM ... 200
4.1.3 XML, XML-Schema, XSLT, DOM, MSXML4...................................... 202
4.1.4 Relational databases, ADO and Access 2000 Jet engine 203
4.1.5 ExSpect as workflow engine.. 205
4.1.6 WOFLAN 2.0 as Workflow net analyser... 206
4.1.7 MS Outlook as message exchange component .. 207

4.2 Application architecture ... 208
4.3 Relational databases ... 211

4.3.1 Relational database ‘CaConfC.mdb’.. 211
4.3.2 Relational database ‘CaState.mdb’ .. 214
4.3.3 Relational database ‘CaConfS.mdb’ .. 216

4.4 COM components .. 217
4.4.1 Out-of-process COM server ‘CaIntMan.exe’ .. 217
4.4.2 Stand alone executable program ‘CaConfig.exe’ 220
4.4.3 Stand alone executable program ‘CaMonitor.exe’ 221

4.5 Structure of the generated ExSpect model ... 222
4.5.1 Hierarchic level 1: the main system... 222
4.5.2 Hierarchic level 2: case type .. 224
4.5.3 Hierarchic level 3: candidate service type ... 224
4.5.4 Hierarchic level 4: contracting phase... 226

4.6 Examples of the user interfaces.. 228
4.6.1 Defining available services (repository) .. 228
4.6.2 Defining contracting requirements... 236
4.6.3 Configuring the Server component .. 242
4.6.4 Monitoring the Server component ... 242

5. Evaluation 247
5.1 The research problem in retrospective ... 247
5.2 Achievements ... 248
5.3 Contribution ... 250
5.4 Business opportunities.. 251
5.5 Conclusions .. 252
5.6 Directions for future research... 253
5.7 Concluding remark... 255

A. Modelling techniques 256
A.1 Functional data modelling.. 256
A.2 High level coloured Petri nets .. 259
A.3 EBNF.. 261

x TABLE OF CONTENTS

References 263

Abbreviations and acronyms 273

Samenvatting (Dutch) 275

Summary
Business processes are seldom confined to the boundaries of a single organisation. Instead,
there is an increasing tendency towards inter-organisational business processes for which sev-
eral mechanisms can be used among which: information sharing, capacity sharing, case transfer
and contracting. This research addresses inter-organisational business processes based on elec-
tronic contracting. Although a distinction between ‘products’ and ‘services’ is often made, we
will use the term ‘service’ as a synonym for both.

Scope
The term ‘electronic contracting’ is used for a variety of phenomena. This research is focused
on a specific part of this area, which is demarcated by the following characteristics. First, we
focus on electronic contracting processes in an environment with loosely coupled participants,
i.e. all communication is performed via business transactions consisting of structured messages
of which the static aspects (data semantics and data syntax) as well as the dynamic aspects (al-
lowed sequence of messages) are mutually agreed. We do not assume a central brokerage or
mediation service between the participants, nor do we assume parties to have knowledge of
each others internal business processes. Furthermore, although the issue of establishing trust
between parties that have no prior relationship is very important, it is outside the scope of this
research.

A contracting process involves at least two parties; one in the role of buyer and one in the role
of seller, each with its distinctive type of actions. Our research addresses the actions performed
by the buyer only. The term ‘service contracting’ will therefore be used for the following ac-
tivities performed by a service client to contract a service from a service provider:
- specify the details of the required service;
- negotiate a commitment from a service provider;
- monitor the execution of the service;
- accept the result.
When we look at the type of contracting processes, we focus on complex processes where each
business case requires N different services, each of which can be contracted from M service
providers. For these N required services, we assume constraints on the order in which they
must be contracted and dependencies between their details. For example, when a flight to New
York and a rental car at the airport of destination must be contracted, the contracting of the
rental car can not start until the flight is booked and the airport of destination is known. Fur-
thermore, we assume that parties are autonomous and have at most partial knowledge of each
others available resources. Therefore, a service client can not simply assign the execution of a
service to a service provider, but has to negotiate instead. Finally, our research focuses on
completely automated contracting processes that require a highly structured and computer in-
terpretable specification of the contracting process.

xii SUMMARY

Approach
The approach followed in this research is illustrated in Figure 1. The left part of the figure il-
lustrates the conceptual level of the research and the right part illustrates the technical (soft-
ware infrastructure) level. At the conceptual level, we consider the internal workflow of an
organisation that contains one or more outsourced tasks, i.e. tasks that are not executed by in-
ternal resources. The execution of an outsourced task requires one or more services to be con-
tracted from external service providers. Communication with these external service providers is
performed via business transactions consisting of structured messages, of which the static and
dynamic aspects are defined in transaction protocols. The activities to negotiate and monitor
contracts for the required services is modelled in a separate workflow, the contracting
workflow. The specification of contracting requirements and the construction of the contracting
workflow is the subject of this research. In addition, the research also focuses on the imple-
mentation of the contracting workflow. The objective of the research is to design and develop a
separate software component, the Contracting Agent, to which the internal information system
delegates the execution of the entire service contracting process as defined by the contracting
workflow. The Contracting Agent uses standard software for inter-organisational message
exchange for the operations required to send and receive messages to and from external parties
(i.e. conversion, authentication, communication, etc.).

a

b

c

d

Contracting Workflow

Service
Provider

Internal workflow of the service client

x y Transaction
Protocols

Service
Provider

x y

Outsourced task Internal Information System

Contracting Agent

Inter-organisational
Message Exchange System

Internet

Figure 1 Illustration of the research approach

Objective and claim
The business objective of this research is to contribute to the efficiency of organisations by
providing an optimal support for the demarcated class of service contracting processes with
information and communication technology. The claim of this research is to have provided:

- the explication of the demarcated area of electronic contracting by providing a conceptual
framework;

- a specification language for contracting requirements of outsourced tasks;

SUMMARY xiii

- a set of standard transitions from which contracting workflows can be composed;

- a mechanism by which sound contracting workflows can be generated from contracting
requirements;

- an architecture (logical and technical) of a software component that supports the demar-
cated class of service contracting processes;

- a proof of concept of the conceptual framework, the specification language and the archi-
tecture in the form a working software component.

Results
The results of the research consist of (i) a conceptual framework for the class of service con-
tracting processes, (ii) a logical architecture for the Contracting Agent, (iii) a technical archi-
tecture for the Contracting Agent and (iv) an implementation of the Contracting Agent.

• Conceptual framework (Chapter 2)
The conceptual framework starts with a definition of underpinning concepts like
‘workflows’, ‘services’ and ‘business transactions’. There after, we introduce the term
‘service contracting’ and discuss frameworks for contracting processes found in literature:
Action Workflow, DEMO and BAT. A synthesis of these frameworks leads us to the dis-
tinction of four consecutive phases in service contracting processes: specification, negotia-
tion, execution and acceptance. Here after, we define the concepts required to describe the
necessary interface agreements between parties involved in contracting processes: ‘service
type’, ‘service provider’, ‘transaction protocol’ and ‘message type’. Furthermore, for each
contracting phase that involves message exchange with service providers (negotiation, exe-
cution and acceptance), we define a number of patterns for the transaction protocol during
that phase. After having defined the interface agreements between service client and service
providers, we focus on the specification of contracting requirements for outsourced tasks.
These contracting requirements define which services must be contracted for an outsourced
task and how these services must be contracted. Important parts of the contracting require-
ments are specification rules to define the details of a required service, triggering mecha-
nisms that define the order in which required services are contracted and contracting strate-
gies that define the behaviour of the service client within the restrictions of the transaction
protocol. With the specification of the interface agreements with service providers on one
hand and the specification of the contracting requirements for outsourced tasks on the other
hand, we have the basis for defining the contracting workflow. First, we define the state
data of service contracting processes, a set of standard operations on the state data and the
configuration parameters used by these standard operations. After having defined this, we
consider the contracting workflow as a high level coloured Petri net that defines the control
flow of service contracting processes and in which standard operations on the state data are
invoked. We propose a set of standard transitions from which contracting workflows can be
assembled. We use these standard transitions to create composite transitions that implement
an entire negotiation strategy, execution strategy or acceptance strategy. Here after, we ad-
dress the rules according to which an entire contracting workflow can be constructed from
the contracting requirements on one hand and the standard transitions on the other hand. Fi-
nally, the conceptual framework is illustrated by a use case that involves service contracting
for a business trip: inbound flight, outbound flight, hotel and rental car.

xiv SUMMARY

• Logical architecture (Chapter 3)
The logical architecture identifies the sub-components of which the Contracting Agent con-
sists with their structure and behaviour. The structure of the persistent data and the data ex-
changed on the component’s interfaces is defined via functional data models. The behaviour
of each component on its interfaces and the collaboration of the components via their inter-
faces is defined by using the modelling technique of high level coloured Petri nets. On the
highest level, the logical architecture defines three major components: Server, Configurator
and Monitor. The Server component is designed according to workflow management prin-
ciples: separation of execution and control. Persistent data is stored in a relational database,
standard operations on the persistent data are implemented in a number of smaller applica-
tions, and the control flow of the service contracting process is implemented in a workflow
definition enacted by a workflow engine, from which the standard operations are invoked in
the right order and with the right parameters. The Configuration component offers a reposi-
tory function to store interchange agreements with service providers. Furthermore, it sup-
ports the user in defining the contracting requirements for outsourced tasks. With these
contracting requirements as input, the Configuration component generates the entire
workflow definition used in the Server component together with all configuration parame-
ters used by the standard operations on the state data invoked by the contracting workflow.
Finally, the Monitor component queries the state data of the Server component and presents
it to the user via a graphical user interface.

• Technical architecture (Chapter 4)
In this part we translate the logical architecture to a technical architecture with the objective
to create a working prototype of the Contracting Agent component. The prototype is used as
proof of concept for the conceptual framework and the logical architecture. Therefore, we
have an emphasis on functionality rather than on aspects like performance, security, multi-
platform, scalability, etc. We choose the Windows operating system and the COM compo-
nent framework as platform for the prototype. Furthermore, we use XML technology to
store hierarchic data (XML documents) and for performing operations on XML documents:
validation (XML-Schema), transformation (XSLT) and presentation (XSL). These standards
allow us to use the MSXML4 component as validating XML parser and as XSL(T) proces-
sor. Furthermore, we use MSXML4 as implementation of the DOM for all operations that
require creation, parsing or modification of XML documents. The second major commer-
cial-off-the-shelf (COTS) component is the ExSpect engine, which is used as workflow en-
gine. The ability of ExSpect to execute high level coloured Petri nets allows us to have an
almost one-to-one translation of the conceptual framework to the technical architecture. Fi-
nally, we use the WOFLAN workflow validation tool to analyse Petri nets in order to proof
the property of soundness.

• Evaluation (Chapter 5)
The last chapter discusses the achievements and contribution of the research. We will show
that the use of domain knowledge in the configuration function and the generation of the
contracting workflow definition brings a significant improvement in efficiency compared to
current solutions. The contribution of this research is in the possibility of the results being
applied by software designers who want to use ICT for service contracting processes.

1. Introduction
This research focuses on information and communication technology to support inter-
organisational business processes based on outsourcing of work. The objective is to
define a conceptual framework for a class of contracting processes, to provide the ar-
chitecture of a new generic software component for this class of contracting processes
and to prove its usefulness by creating a prototype. Before stating the research prob-
lem (1.6) and defining an outline for the research approach (1.7), we will give a ra-
tionale for our study first.

1.1 Motivation
A business process is a structured, measured set of activities designed to produce a specific
output for a particular customer or market (Davenport [32]). According to this definition, a
business process is an essential characteristic of an organisation, together with for instance the
organisation structure, financial structure etc. The importance of business processes is reflected
by a significant number of publications during the last decades. Womack et al [146] used the
example of Japanese auto manufacturers who created a major competitive advantage by
streamlining their business processes. Davenport [32] (p.1) argued that ‘business must not be
viewed in terms of functions, divisions or products, but of key processes’. Instead of directing
investments mainly to product innovation research, investments should be balanced between
product innovation and process innovation. Davenport called this the ‘process approach’ [32]
(p.6) and used the term ‘process innovation’ to refer to a fundamental change in business proc-
esses that brings a large improvement to an organisations performance. He argued that ‘no sin-
gle business resource is better positioned than information technology to bring about radical
improvement in business processes’ [32] (p.17). A similar perception of business processes
was given by Hammer and Champy [60], who introduced the term ‘business process
reengineering’. The central thesis in their work was that corporations must undertake a radical
reinvention of their business processes. Hammer defined ‘reengineering’ as ‘the fundamental
rethinking and radical redesign of business processes to achieve dramatic improvements in
critical contemporary measures of performance, such as cost, quality, service and speed.’ The
book starts with the observation that for two hundred years people have founded and built
companies around Adam Smith’s discovery that industrial work should be broken down into its
simplest and most basic tasks. Although this works fine in a period of mass markets and mass
production, it is no longer the best solution in an environment characterised by rapid changes,
strong competition and customers who want tailor made products and services to be available
immediately. Due to these changes, organisations have to put aside knowledge of how work
was done before and have to decide how the work can best be done now.

16 INTRODUCTION

Inter-organisational business processes
A business process is seldom confined to the boundaries of a single organisation. Instead, an
increasing tendency towards inter-organisational business processes is reported. Womack [146]
showed that new logistic approaches require a higher level of co-ordination between customers
and suppliers. Tapscott and Caston [113] (p.17) propose a new paradigm in information tech-
nology with ‘a shift from internal to interenterprise computing’. They signal the rise of what
they call the ‘extended enterprise’, an organisation that reaches out to its customers and suppli-
ers. They state that the ‘value chain’ introduced by Porter [104] is becoming a ‘value network’
encompassing multiple organisations. Normann and Ramirez [97] describe a shift towards a
‘value constellation’ as opposed to Porter’s ‘value chain’. The authors signal increasingly
complex inter-organisational relationships that are subject to frequent reconfiguration (p.77).
A trend that increases inter-organisational business processes is the tendency that organisations
limit themselves to the activities in which they excel. This phenomenon has been reported by
for instance Kalakota and Whinston [79] and Tapscott and Caston [113] (p.8). These so-called
core activities are provided as services to other organisations. In return, they will use services
of other organisations for the activities that do not belong to their core activities, causing net-
works of organisations to emerge. If the level of co-operation between corporations increases a
‘virtual corporation’ emerges, a theme addressed by for instance Davidow and Malone [33].
They describe how organisations cut down the number of suppliers and maintain a close link
with the remaining suppliers. Concluding, inter-organisational business processes and inter-
connectivity between business processes are becoming an issue increasingly.

Several mechanisms can be used for inter-organisational business processes, for example:

- information sharing: two or more organisations share information about for instance cus-
tomers, sales, production, etc.

- capacity sharing: two or more organisations have a common pool of resources, which are
shared between the organisations.

- case transfer: two or more organisations have interchangeable case types and transfer cases
from one organisation to another to balance the workload.

- contracting: a client organisation contracts a provider organisation to supply products
and/or services required in his business process.

Service contracting
This research addresses inter-organisational business processes that involve contracting. When
one organisation buys something from another organisation, a distinction between ‘products’
and ‘services’ is often made. When the result of the suppliers activities consists of tangible
goods and when ownership of the goods is transferred, one generally speaks of a ‘product’. If
on the other hand the added value is characterised by activities performed at a particular place
and time, one speaks of a ‘service’. In some cases however, it is difficult to make a clear dis-
tinction between ‘products’ and ‘services’ when a transaction involves a mix of tangible prod-
ucts and intangible services. When we look at their nature, products and services have different
characteristics. For example, a tangible product can be produced and taken in stock, whereas
intangible services can not. Although these differences exist, the question is whether they are
relevant from the perspective of the contracting or buying process. This question is answered
by for instance Normann and Ramirez [97], who state “whether customers buy a ‘product’ or a
‘service’, they really buy access to resources”. Hence, the authors use the term ‘offering’ to
refer to both ‘product’ and ‘service’. Others, like Merz et al [93], have the same approach when

INTRODUCTION 17

they consider payments and tangible goods as services too. In this dissertation, we will use the
term ‘service’ as a synonym for both ‘product’ and ‘service’. Not because we deny the differ-
ences between products and services, but because the contracting concepts presented apply to
products and services alike. Furthermore, we will use the term ‘service contracting’ for the
activities that have to be performed by the service client to contract a service:
- specify the details of the required service;
- negotiate a commitment from a service provider;
- monitor the execution of the service;
- accept the result.
The simplest type of service contracting is when each business case requires one well-defined
service. Situations that are more complex emerge when each business case requires a combina-
tion of different services and dependencies between the required services exists.

Service contracting and ICT
Service contracting is a process performed by the information system of a service client and
requires inter-organisational information exchange. Information and communication technol-
ogy (ICT) is therefore likely to contribute highly to the efficiency and effectiveness of service
contracting, especially in situations of the more complex service contracting processes where a
combination of services is required. An efficient service contracting process is becoming in-
creasingly important. Due to developments like electronic commerce, customers expect a quick
response 24 hours a day. When a customer enters an order on a web site, he wants to get an
immediate response from the seller. This means that both the order acceptance (front-office)
and the order fulfilment (back-office) must adhere to high standards. A fast front-office com-
bined with a slow back-office makes no sense. When a seller makes a start with electronic
commerce, the front-office is often given much attention. However, when the front-office is not
connected to an efficient back-office, the result will not be very effective. Clearly, service con-
tracting is part of an organisations back-office. The motivation for this research is to contribute
to the efficiency of an organisations back-office in order to contribute to the performance of the
organisation as a whole.

Structure of the chapter
Before stating the research problem (1.6) and the outline of this dissertation (1.7), we will first
discuss recent developments in business-to-business electronic commerce (1.2 - 1.4) and soft-
ware engineering (1.5). The area of electronic commerce is closely related to this research be-
cause it provides concepts and techniques for inter-organisational business transactions. The
area of software engineering is closely related to this research because it provides state-of-the-
art techniques for the new software component.

18 INTRODUCTION

1.2 Electronic commerce
The application of ICT to service contracting requires some form of structured com-
munication between the information systems of service client and service provider.
This section focuses on electronic commerce in general (1.2.1), the enabling tech-
nologies (1.2.2) and the changes it brings to the business (1.2.3).

1.2.1 Introduction
Commerce and trade between individuals and between organisations has been conducted from
the origin of mankind. The appearance of commerce however has changed significantly. The
transition from barter to a system based on money was one of the first milestones in the evolu-
tion of commerce. Recent history has shown significant changes in the way commerce is con-
ducted too. Almost without exception, the use of ICT has been the driving force or enabling
factor behind these changes. The new possibilities for conducting commerce induced by ICT
are often indicated by the notion electronic commerce. This notion is used for a variety of phe-
nomena, which share the common characteristic that one or more phases of the trading process:
information, transaction, delivery and financial settlement are performed electronically. With
respect to electronic commerce, a distinction is often made between business-to-consumer
electronic commerce and business-to-business electronic commerce. In both cases, digital in-
formation is exchanged between information systems. However, there is a difference in the
type of information that is exchanged and in the processing of information. Business-to-
consumer electronic commerce can involve a combination of structured and unstructured in-
formation. One party, the consumer, enters and interprets data manually. Business-to-business
electronic commerce on the other hand involves only highly structured information, which is
automatically generated by one application and automatically interpreted and processed by
another application.

1.2.2 Internet as enabling technology
The Internet had a massive impact on electronic commerce and is expected to retain this im-
pact. A definition of the term 'Internet' is given by the Federal Networking Council in the USA.

"Internet refers to the global information system that (i) is logically linked together
by a globally unique address space based on the Internet Protocol (IP) or its sub-
sequent extensions/follow-ons; (ii) is able to support communications using the
Transmission Control Protocol/Internet Protocol (TCP/IP) suite or its subsequent
extensions/follow-ons, and/or other IP-compatible protocols; and (iii) provides,
uses or makes accessible, either publicly or privately, high level services layered
on the communications and related infrastructure herein."

TCP/IP
The start of the Internet was in 1970 when the computers of four American universities were
connected via the Network Control Protocol (NCP) as the beginning of ARPANET. It was in
1972 that an electronic mail application was introduced. In the mean time efforts were made to
develop a new communication protocol which would eventually be called TCP/IP. As of Janu-
ary 1, 1983 all ARPANET hosts made the transition from NCP to TCP/IP. The TCP/IP
(Transmission Control Protocol/Internet Protocol) consists of two layers. The IP (Internet Pro-
tocol) is the basis for the communication on the Internet. Each computer connected to the
Internet is identified by a unique IP-address, which consists of four digits, each smaller than

INTRODUCTION 19

256, separated by dots. All data exchanged between IP-addresses is split in packages and each
package is wrapped into an IP-envelope. The IP-envelope contains the IP-address of the sender
and the IP-address of the recipient. TCP (Transmission Control Protocol) is used on top of IP.
At the sending computer, TCP splits messages in one or more packages. Each package is
wrapped in a TCP-envelope, which is then wrapped in an IP-envelope. The IP-packages are
sent via the Internet independent from each other. At the receiving computer the TCP protocol
unwraps the data from the TCP-envelope and assembles the original message. If a package is
received damaged, or is not received at all, the receiving computer asks the sending computer
to retransmit the package.

Electronic mail
A popular application of Internet technology is Electronic Mail, which relies on the following
types of standards:
• Transport mechanisms (SMTP, POP, IMAP4);
• Message encoding (RFC 822, MIME).

The Simple Mail Transport Protocol (SMTP), defined in RFC 821, is a peer-to-peer model and
used for the exchange of email messages between SMTP servers. The Post Office Protocol
(POP) is used for the communication between email server and mail clients. A mail client can
use the POP or IMAP4 protocol to download the email messages that are waiting for him on
the email server. Since its publication in 1982, RFC 822 has defined the standard format of
textual mail messages on the Internet. As the format has seen wider use, a number of limita-
tions have proven increasingly restrictive for the user community. The Multipurpose Internet
Mail Extension (MIME) specification describes several mechanisms to solve most of these
problems without introducing any serious incompatibilities with the existing world of RFC 822
mail. The MIME specification is given in RFC 2045 - 2049.

World Wide Web
World Wide Web is a network of information resources. The Web relies on three mechanisms
to make these resources available to the widest possible audience:
• Communication protocols (HTTP / FTP)
• Mark-up languages (HTML, XML)
• Addressing schemes (URL)

The HyperText Transfer Protocol (HTTP) is an application-level protocol for distributed, col-
laborative information systems that has been in use since 1990. It usually takes place over
TCP/IP connections, but can be implemented on top of other protocols too. The HTTP protocol
is a request/response protocol. A client sends a request message to a server, which processes
the information and returns a message to the client. The HyperText Markup Language (HTML)
was developed at CERN in 1989. HTML was intended to serve as a format for documents that
allowed information exchange between very different computer platforms. Complete platform
independence was therefore the first requirement. Hypertext, by which a word or group of
words could refer to another document, was the technique by which a user could navigate
through documents. The work on HTML was based on the existing standard SGML (Standard
Generalised Markup Language). SGML is a system for defining markup languages. Authors
mark up their documents by representing structural, presentational and semantic information
alongside content. The markup information takes the form of tags that are inserted in the con-
tents. When an HTML document is displayed on a computer system the markup information is
mapped to the graphic capabilities of the computer system, for instance by mapping a title to a

20 INTRODUCTION

font Arial 18 pt, centred. The Extensible Markup Language (XML) is -like HTML- an appli-
cation of SGML. However, unlike HTML, XML allows the user to define the tags to appear in
the document. This makes XML an ideal standard for exchanging structured data. A Uniform
Resource Locator (URL) is a reference to a document or other entity on the Internet and is used
as universal address. A URL typically consists of three parts: (1) the naming scheme of the
mechanism used to access the resource (2) the name of the machine hosting the resource and
(3) the name of the resource itself, given as a path.

Organisation
The Internet is not a network that is owned or under the control of a central organisation. There
is a number of organisations that play an important role for the development of the Internet
though. The most influential international organisations are:

• Internet Society
The Internet Society (www.isoc.org) is a professional membership organisation of Internet
experts that comments on policies and practices and oversees a number of other boards and
task forces. Its principal purpose is to maintain and extend the development and availability
of the Internet and its associated technologies and applications.

• Internet Engineering Task Force (IETF)
The Internet Engineering Task Force (www.ietf.org) is a large open international commu-
nity of organisations and individuals concerned with the evolution of the Internet architec-
ture. The actual technical work of the IETF is done in its working groups, which are organ-
ised by topic into several areas (e.g., routing, transport, security, etc.).

• Internet Engineering Steering Group (IESG)
The Internet Engineering Steering Group is responsible for the technical management of
IETF activities and the Internet standards process. The IESG is directly responsible for the
actions associated with entry into and movement along the Internet "standards track", in-
cluding final approval of specifications as Internet Standards.

• Internet Architecture Board (IAB)
The Internet Architecture Board (www.iab.org) is the technical advisory group of the Inter-
net Society. It is responsible for defining the overall architecture of the Internet providing
guidance and broad direction to the IETF. The IEFT chair and all other IESG candidates are
appointed by the IAB. The IAB is further responsible for editorial management and publi-
cation of the Request for Comments (RFC) document series. It also serves as an appeal
board for complaints of improper execution of the standards process.

• Internet Assigned Numbers Authority (IANA)
The Internet Assigned Numbers Authority (www.iana.org) is in charge of all "unique pa-
rameters" on the Internet, including IP (Internet Protocol) addresses.

An organisation that is not part of the 'official' Internet standardisation bodies as listed above,
but which is very active and influential is the World Wide Web Consortium.

• World Wide Web Consortium (W3C)
The World Wide Web Consortium (www.w3.org) is an international industry consortium
that was founded in 1994. The consortium attempts to find common specifications for the
Web and to make it freely available throughout the world. W3C is funded by member or-
ganisations and is vendor neutral.

INTRODUCTION 21

1.2.3 Changes to the business
Electronic business is expected to bring enormous changes to the way business is done. The
changes that electronic commerce will bring to suppliers and consumers are described by for
instance Bollier [18] and Kalakota et al [79] as: reduced transaction costs, lower product cycle
times, faster consumer response and improved service quality. The effect of electronic business
to economic transactions is described in reports of Deloitte Research [105, 106], which de-
scribe (among others) the following forces:

• Markets become more like “textbook” markets
For many retail products, internet-based software agents will be used to search products,
compare prices, conduct transactions and arrange for delivery. This will lead to a situation
where the same information is shared by all market participants, which in turn leads to mar-
kets that are more alike the markets described in economic textbooks.

• Tangible products transform into digital form
Certain types of products will “morph” into digital form in order to minimise distribution
costs by delivering the product via the Internet. Products types like software and publica-
tions have already begun this process. An identical wave is expected in the music industry.

• Development of markets for trust and privacy
In order to move to transactions on the Internet, questions about reliability, identity, security
and privacy must be answered. This gives opportunities to a whole new industry whose pri-
mary purpose to Internet users is to evaluate vendor claims, guarantee transactions and serve
as a general seal of approval.

A joint research report [43] of The Economist Intelligence Unit and Booz • Allen & Hamilton
identifies the following seven megatrends as driving forces behind the transformation of global
business due to electronic commerce.

• The Internet offers new marketing and sales channels
Internet provides companies with a new channel to reach customers, in addition to the tradi-
tional brick & mortar channel. The new channel allows companies to establish a global
reach combined with a one-on-one relationship with their customers. The Internet as new
sales channel did not only make existing markets more efficient; it also created new markets
and changed the structure of existing markets. Examples of new possibilities for marketing,
sales and distribution in an electronic marketplace are described by Choi et al [27]. Banks
and insurance companies have discovered the Internet as a new distribution channel that al-
lows direct communication with customers. Companies are becoming increasingly aware of
the importance to control this new distribution channel, resulting in new instruments like
web-portals and free Internet access.

• The balance of power is shifting to the customer
Due to the possibilities of the Internet, customers become highly informed before they enter
the retail store. These customers have been empowered by the information they find on the
Internet and are able to compare products or services easily. They expect customised prod-
ucts and services, fast delivery times, excellent customer service and round-the-clock avail-
ability.

22 INTRODUCTION

• Competition is intensifying
The Internet declined the barriers to enter international markets. Furthermore, Internet tech-
nology allows new business models to be used. These factors will increase competition.
Traditional companies will have to rethink their situation and maximise their value in the
new environment.

• The pace of business has accelerated
Internet has accelerated the speed at which companies must operate: quicker customer re-
sponse, faster decision making, faster product distribution and shorter time-to-market. The
driving forces behind this acceleration are a technology push (more possibilities) and a cus-
tomer pull (higher expectations).

• Companies are transforming into extended enterprises
The Internet is enabling companies to break through organisational and geographic bounda-
ries and create extended enterprises. Extended enterprises can result in enormous cost sav-
ings because of the ability to streamline the entire supply chain. An example of the latter is
Supply Chain Management (SCM). A supply chain is a chain of organisations in which each
organisation is the supplier of the next organisation. If all organisations in a chain try to op-
timise their own performance by making bilateral agreements with their direct suppliers and
customers, the resulting performance of the chain as a whole may be sub-optimal. The es-
sence of Supply Chain Management is to look at a supply chain as a whole and to optimise
the total performance of the chain. This may for instance lead to a solution in which a manu-
facturer at the beginning of the chain becomes responsible for maintaining the stock level in
the store at the end of the chain, based on actual sales information. Another advantage that
can be achieved in an extended enterprise is Efficient Customer Response (ECR). In most
cases where multiple departments of multiple organisations are involved in a customer re-
quest, the total response time to the customer is the sum of a large waiting time and a small
actual processing time. If the co-ordination between departments or organisations can be
enhanced, the waiting time can be decreased because of better planning.

• Companies are re-evaluating their role in the value chain
Internet allows companies to re-invent their existing marketing and distribution channels.
Selling directly to customers or retailers has become a viable option, reducing the depend-
ency on intermediaries. With the rise of the Internet, intermediaries in particular must add
value or risk being cut out entirely. Examples of added value, which an intermediary can of-
fer, are: matching customers with suppliers economically, providing access to targeted
groups of customers, delivering goods more efficiently, etc.

• Knowledge is becoming a key strategic asset
Companies can use Internet technology to exploit the collective knowledge that is available.
One of the most powerful features of the Internet as distribution channel is the possibility to
gather detailed information about the behaviour of each individual customer. Innovative
companies therefore are using the Internet to acquire, analyse and share information about
individual customers and customer segments. This customer information can be used to tar-
get and secure the most profitable customers. Instead of using one marketing strategy for an
entire population of customers, we are now able to use a different marketing strategy for
each individual customer, based on his customer profile. This approach is often called Cus-
tomer Relationship Management (CRM).

INTRODUCTION 23

1.3 Industry solutions for electronic contracting

1.3.1 Electronic data interchange
Electronic Data Interchange (EDI) is one of the oldest techniques for structured business-to-
business communication. A number of definitions for EDI are used, among which:

Electronic Data Interchange is the electronic transfer from computer to computer
of commercial or administrative transactions using an agreed standard to structure
the transaction or message data. (ISO 9735)

Electronic Data Interchange is the inter-company computer-to-computer commu-
nication of standard business transactions in a standard format that permits the re-
ceiver to perform the intended transaction. (Sokol [110])

Electronic Data Interchange is the electronic exchange of structured and stan-
dardised data between computers of parties involved in a (business) transaction.
(Hofman [62])

Electronic Data Interchange is the interprocess communication (computer appli-
cation to computer application) of business information in standardised electronic
form. (Kalakota et al [79])

However, in general, the term EDI is often used to refer to message exchange characterised by
the use of the EDIFACT standard [69, 70, 71] and message handling services like X.400. The
advantages of EDI can be phrased in one sentence as a considerable reduction of transaction
costs by improving speed and efficiency (Kalakota et al [79]). Others report the same advan-
tages (Sokol [110]; Hofman [62]; Van der Vlist et al [122, 123]). The question whether the
benefits of EDI exceed the costs of implementing EDI are addressed by for example Hooge-
wegen et al [65, 66]. Clearly, efficiency can be improved because manual activities such as
document handling and data entry are no longer needed. The result of this is a decrease of
costs, but also a decrease in the number of errors that occur when data is being entered manu-
ally. In addition to the direct advantages of EDI, more advantages can be reached when EDI is
used as an enabling technology to change business processes.

The use of EDI started in the eighties and increased every year since then. Currently, EDI is
considered as ‘proven technology’ for a considerable number of years already. However, the
use of EDI is almost entirely restricted to stable and long-term business relationships with a
high information exchange volume (Lee [91]). There are several reasons to explain this. The
first reason is the combination of highly structured information and an inter-organisational
context. Organisations with different business processes and different corporate data models
must agree on a common interchange standard. This requires considerable information analysis
and standardisation efforts, which may take months or years. The second reason is the com-
plexity of the EDIFACT standard. Translation of functional requirements to message imple-
mentation guidelines that include a mapping to the EDIFACT syntax requires expertise that is
often not available within organisations. Similarly, configuration of standard EDI software
must often be performed by a third party. All this together makes implementation of EDI a
costly and time-consuming affair.

24 INTRODUCTION

Finally, we will discuss standard software components for EDI. The functionality of standard
EDI software is in most cases limited to data conversion and communication. Internal applica-
tions create so-called ‘inhouse files’ with messages in internal format (often fixed record files).
These inhouse files are read by the EDI software, converted to EDIFACT format and sent to
the Message Handling System. In the same communication session, EDIFACT messages are
received from the Message Handling System, converted to internal format and made available
to internal applications in the form of inhouse files. Typical EDI software is batch-oriented;
conversion and communication actions are scheduled on regular times during a day.

Client Provider

EDI software:
Conversion

Communication
X.400
MHS

Internal
Application(s)

Files with messages in
Edifact format

Files with messages in
inhouse format

EDI software:
Conversion

Communication

Internal
Application(s)

Figure 2 Position of EDI software

1.3.2 XML based messaging frameworks
The importance of Internet technology for electronic commerce can hardly be exaggerated.
However, when Internet technology became first available, it was used for electronic mail and
distribution of static information via web-sites mainly. The use of Internet technology for busi-
ness transactions was very limited due to the following reasons. First, although a number of
successful standards like HTTP, HTML, SMTP and MIME were available, the Internet was
lacking a standard for exchanging structured data. Second, because the Internet is not under the
control of a single entity, guaranteed delivery of messages and preventing unauthorised persons
to view or alter the contents of a message could not be obtained without implementing pro-
prietary solutions at both parties involved in a business transaction. Finally, due to the lack of
standards and due to the maturity level of the Internet at that time, standard software was
hardly available.

Today, using Internet technology for business-to-business electronic commerce is a viable op-
tion. A number of developments made this possible. A major breakthrough was the acceptance
of the eXtensible Markup Language (XML) [125] as a standard for structured information on
the Internet. Although XML is a standard with great potential itself, its power is even increased
because of a large number of supporting standards. Among these are XML-Schema (validation
of XML documents) [130, 131, 132], XSL (presentation of XML documents) [134], XSLT
(transformation of XML documents) [128] and DOM (manipulation of XML documents)
[126]. Because XML allows the user almost complete freedom in defining the structure of
XML documents, there was a need for standard XML document schemas that could be used in
electronic business transactions. This challenge has been answered by a number of initiatives.

INTRODUCTION 25

• BizTalk
The BizTalk (www.biztalk.org) initiative provides a common approach to using XML for
application integration and electronic commerce, with the objective to accelerate the rapid
adoption of XML. BizTalk was launched by Microsoft in 1999 and is an open standard that
can be supported by other software vendors too. The specification of BizTalk documents
and transport bindings for HTTP and MIME can be found in the BizTalk Framework 2.0
[96]. The standard encompasses the use of special BizTalk XML tags for header informa-
tion and the use of SOAP for exchange of XML messages.

• ebXML
The ebXML initiative (www.ebxml.org) is a joint initiative of the United Nations
(UN/CEFACT) and OASIS in which many companies participated. The standard is based
on proven Internet technologies like HTTP, MIME, SMTP, FTP, UML and XML. Accord-
ing to [41, 42] the ebXML standard is designed for electronic interoperability, allowing
businesses to find each other, agree to become trading partners and conduct business. This
ambition is realised by a shared repository with company profiles, business process models
and message structures. The information can be used by partners to agree on a formal col-
laboration protocol agreement. Here after, partners can use the ebXML messages through a
standard message transport mechanism.

• cXML
The objective of the ‘commerce XML’ specification (www.cxml.org) [14] is to provide a
streamlined XML-based protocol between procurement applications and suppliers. The
specification is developed by a group of organisations, among which Ariba, and is a public
standard. The specification consists of a cXML document framework, which is used as a
generic ‘envelope’ structure for all cXML messages (cXML.dtd). Based on this framework,
a number of message types is defined, e.g. ‘OrderRequest’ and ‘OrderResponse’. The speci-
fication also defines mechanisms for transfer of messages via HTTP.

The notion that standard components for electronic purchasing require standard purchasing
frameworks is addressed by a number of initiatives. The Internet Open Trading Protocol
(IOTP), of which version 1.0 is published as RFC 2801 by the IETF [68], provides an interop-
erable framework for electronic commerce. The developers of IOTP seek to provide a virtual
capability that safely replicates the traditional methods of trading, buying, selling and value
exchanging. Another initiative is launched by the Open Buying on the Internet (OBI) consor-
tium (www.openbuy.org) dedicated to developing open standards for business-to-business
Internet commerce [98]. The initial focus of OBI is on automating high-volume, low-dollar
transactions between trading partners. Finally, a last example is RosettaNet
(www.rosettanet.org), a consortium of major technology companies working to create and im-
plement industry-wide, open electronic business standards. RosettaNet standards encompass a
dictionary, an implementation framework and partner interface processes; specialised XML-
based dialogs that define business processes between supply chain partners.

Clearly, XML is very much suited to express structured data. However, in order to perform a
business transaction, a messaging mechanism is required to carry messages between the busi-
ness partners. The Simple Object Access Protocol (SOAP) [137] is an answer to this challenge.
It builds on the existing XML and HTTP standards and offers a standard for invoking a service
exposed by a web-application. SOAP messages can be used in a “request/response” pattern in
which a client invokes a service by sending a SOAP message after which the answer is re-

26 INTRODUCTION

turned to the client by another SOAP message. The message data is formatted as XML docu-
ment, which is encapsulated in an HTTP protocol message.

The XML standard for expressing structured data and the SOAP standard for invocation of
web-services in a distributed environment are major steps in creating a level of interoperability
required for business-to-business transactions. In an open environment, there are millions of
businesses, which are potential trading partners. Finding the right trading partner and discov-
ering how to conduct business with that partner is a major challenge. The Universal Descrip-
tion, Discovery and Integration (UDDI) standard [114, 115] is an answer to this challenge. The
objective of the UDDI project (www.uddi.org) is to create a framework that allows businesses
to discover each other and define how they interact over the Internet. Information is shared in a
global registry that is meant to accelerate the global adoption of business-to-business electronic
commerce. The UDDI specifications build on existing Internet standards like XML, HTTP and
DNS. Furthermore, it uses the SOAP messaging specification. The core information model
used by UDDI contains general information about businesses and the services they offer.
Technical specifications like communication protocols, interchange formats and interchange
sequencing rules are not contained in UDDI. Instead, a reference to this kind of specifications
is used in the UDDI registry.

1.3.3 Workflow interoperability
Information systems support business processes. A business process consists of a number of
tasks and conditions that specify the order in which tasks are executed. An information system
used to automate a business process must have functionality to execute a task for a specific
case and it must have functionality to route a business case through the right tasks in the right
order. We will refer to the former functionality as execution and to the latter as control. Until
some years ago, execution and control were interwoven in information systems. The structure
of the business process was ‘hidden’ in the application logic. Adaptation of information sys-
tems to changes in the business process or re-use of applications was difficult. The emergence
of workflow management systems marked an important step in information technology. The
essence of workflow management is the separation of execution and control. Execution takes
place in a number of smaller applications that are independent of the context or place in the
business process. Control is housed in a generic software component: the workflow manage-
ment system.

Workflow
Management

System

Applications

Control

Execution
Case
data

Workflow definition

Figure 3 Workflow Management is separation of execution and control

INTRODUCTION 27

A workflow management system is configured with an explicit model of the business process.
Each business case processed by the workflow management system has its own case attributes.
The workflow management system uses these case attributes to route the case through the
business process. The routing may involve sequential execution of tasks, selection of tasks,
parallelism and iteration. Each task is executed by a resource. The resource can be a person or
(a part of) an organisation, a machine or a computer application. The workflow management
system is responsible for allocating resources to tasks.

An overview of issues related to workflow management is given by for instance Joosten [78].
Van der Aalst and Van Hee [12] describe methods and techniques for modelling workflows.
Standards for workflow management systems are being developed by the Workflow Manage-
ment Coalition (WFMC). The WFMC (www.wfmc.org) is a grouping of companies who have
joined to achieve a level of interoperability by common standards for various functions. The
Workflow Reference Model [140] is a document in which a common reference model for
workflow management systems is provided. It covers the concepts, terminology, and general
structure of a workflow management system, its major functional components and the inter-
faces and information flows between them. The WFMC defines workflow as ‘the computerised
facilitation or automation of a business process, in whole or in part’. A workflow management
system is defined as: ‘a system that completely defines, manages and executes "workflows"
through the execution of software whose order of execution is driven by a computer represen-
tation of the workflow logic’. The major components and interfaces within the WFMC
workflow architecture are shown in Figure 4.

Workflow API and Interchange formats

Workflow Enactment Service

Workflow
Engine(s)

Workflow
Client

Applications

Invoked
Applications

Interface 2 Interface 3

Interface 5 Interface 4

Interface 1

Administration
& Monitoring

Tools

Other Workflow
Enactment
Service(s)

Process
Definition

Tools

Figure 4 The Workflow Reference Model - Components and Interfaces

The heart of the system is the Workflow Enactment Service, defined as ‘a software service that
may consist of one or more workflow engines in order to create, manage and execute workflow
instances’. The workflow enactment service is configured by Process Definition Tools. These
tools are used to analyse, model, describe and document a business process. The process defi-
nitions can be exchanged from the Process Definition Tools to the Workflow Enactment Serv-
ice, or the process definitions can be stored in a repository accessible to both products. Interac-
tion with external resources (humans, applications) occurs via one of two interfaces, the client
application interface or the invoked application interface. A client application is an application
that is not activated by the workflow enactment service, but communicates with the workflow
enactment service via a work list. A work list is a queue of work items to which the workflow

28 INTRODUCTION

enactment service adds items and from which the client application retrieves items. Workflow
relevant data may be embedded in the work item. Data can also be passed to the client applica-
tion via some form of shared store to which the work item contains a unique reference. An in-
voked application is an application that is invoked by the workflow management system to
automate an activity, fully or in part, or to support a workflow participant in processing a work
item.

The concepts of workflow management as well as techniques for modelling workflows have
been described by Van der Aalst and Van Hee [12]. Jablonski and Bussler [74] describe ex-
pectations and fears with respect to the business implications of workflow management sys-
tems. The major expectations are increasing quality of service, improving service to the clients,
increasing productivity and reducing costs. Fears and reservations caused by the introduction
of these new technologies are: too rigid control, too little functionality and too much inflexibil-
ity. Although business process reengineering (Hammer and Champy [60]) is often associated
with workflow management, there is no direct link between the two concepts. However, one of
the advantages of workflow management systems, the ability to change business processes
easily, can be a great help in the implementation of a reengineered business process. Further,
the introduction of a workflow management system can be a catalyst to rethink the structure of
the business process.

The Workflow Management Coalition addressed the integration of workflow management and
electronic commerce in two white papers [143, 144]. The solution they propose is an integra-
tion of the workflow management systems of customer and supplier based on the WFMC
Workflow Interoperability Specification [142]. The workflows of customer and supplier then
become part of an inter-organisational workflow, in which each organisation executes a sub-
process. This is illustrated in Figure 5 where workflow engine A initiates a process instance in
workflow engine B, waits for its completion after which the own process is resumed. The
WFMC published the Wf-XML standard [145], based on XML and HTTP, to be used for this
purpose.

Workflow
Engine A

Workflow
Engine B

Network

messages

a1 a2 a3

b1 b2

a4

b3

a5

Figure 5 Interoperability between workflow engines

Interoperability between workflow engines belonging to different organisations has great po-
tential for inter-organisational business processes. However, in order to be successfully ap-
plied, three conditions must be fulfilled.

1. Technical infrastructure
The proposed solution requires each participating organisation to have a workflow man-
agement system that conforms to the WFMC interoperability specification. Furthermore, a

INTRODUCTION 29

communication infrastructure must be available for the exchange of messages between the
workflow engines.

2. Interoperability contract
If the infrastructure is available, organisations will have to make agreements in an
interoperability contract [144]. This contract contains the identifications of the workflow
definitions that can be initiated by the other organisation and the workflow engine(s) that
can be used for this purpose. It also contains agreements about semantics and syntax of
workflow relevant data that is passed from one workflow engine to another. Furthermore, it
specifies the communication protocol between the two workflow engines in terms of mes-
sage types (requests, responses, notifications) and message sequencing. Finally, the
interoperability contract describes exception handling.

3. Workflow definition
When the interoperability contract is concluded, parties will have to change their internal
workflow definitions accordingly to support the agreed communication protocol. Each out-
going message must be triggered by the internal workflow and each incoming message must
be a trigger for the internal workflow. It is important to check the correctness of the
workflow definition in combination with the agreed communication protocol. Wrong im-
plementation of the communication protocol may for instance cause a deadlock situation to
occur in a specific process instance.

With the interoperability specification, the technical barriers for inter-organisational workflow
have been lowered significantly. However, although the solution lowers technical barriers, it
still leaves a number of organisational barriers that are associated with inter-organisational
business processes. Some of these are described by Van der Aalst and Van Hee [12].

1. Authority
Internal resources are under the authority of the organisation to which they belong. Ma-
chines, for instance, are owned by an organisation and employees have a contract with the
organisation in which the mutual obligations are arranged. This makes it possible for a
workflow management system to assign the execution of a task to an internal resource. Be-
cause this decision can be based on full information of available internal resources, (sub)
optimality in scheduling can be obtained. External resources are part of another, autono-
mous, organisation. Therefore, the workflow management system can not simply assign the
execution of a task to an external resource but has to negotiate instead. A negative result of
the negotiation process must be reckoned with. Furthermore, information about availability
of external resources is often not available to the workflow management system. Instead, a
trial-and-error approach must often be followed in the negotiation with external service pro-
viders.

2. Information semantics
Resources are controlled by information. In general, all resources belonging to one organi-
sation have, either implicit or explicit, a common understanding of information semantics,
for instance because they are based on a corporate data model. External resources however,
can be based on different standards. Additional facilities such as data conversion are often
required.

30 INTRODUCTION

3. Correction mechanisms
Each organisation has its own - formal and informal - correction mechanisms. Cases can be
transferred between internal resources without the intervention of the workflow manage-
ment system, solving a large amount of smaller disruptions. External resources do not have
a similar correction mechanism. If an external resource fails, the work is not automatically
handed over to an alternative resource. Instead, the workflow management system must ini-
tiate negotiations with one or more alternative resources. Furthermore, status information of
internal resources can be available immediately. Possible disruptions can be signalled in an
early stage. External resources however can hide status information or make it available
with a delay, possibly causing disruptions to be signalled too late. A pro-active approach of
disruptions at external resources might therefore be required.

1.4 Scientific research on electronic contracting

1.4.1 Definition
This section gives an overview of publications in the field of electronic contracting. The term
‘electronic contracting’ was already mentioned by Lee in 1988 [86]. The paper discussed im-
provement of contracting processes through computer support. In this research, we define a
contract as ‘an agreement between two parties in which the mutual obligations are stated’.
Furthermore, we define the term ‘electronic contracting’ as ‘a contracting process in which the
communication between parties is performed by electronic means and in which the processes
at the involved parties are supported by computer applications.’

1.4.2 The Language / Action Perspective
An influential approach to the modelling of communicating information systems is called the
language / action perspective (LAP). The basis for LAP was a growing awareness that linguis-
tic theories are relevant for the design of communicating information systems. A cornerstone of
the LAP approach is the linguistic theory of speech acts developed by Searle in 1969 [108].
Later, Searle and Vanderveken developed illocutionary logic as a logical formalisation of the
theory of speech acts [109]. Further, an important contribution to the LAP was made by Kim-
brough [80, 81]. Various authors like Lee [86] and Dignum and Weigand [35] have shown that
deontic logic can be successfully applied to electronic contracting. The origin of deontic logic
was in the classic philosophy of ethics and has a major application in the philosophy of law.
One of the features of deontic logic that makes it attractive for electronic commerce is that
concepts like ‘obligation’ ‘permission’ and ‘authorisation’ are part of the formalism intrinsi-
cally. Because of this, Weigand, van den Heuvel and Dignum [139] argue that other formal-
isms like Petri nets and Data Flow Diagrams are less suitable for modelling electronic com-
merce processes because they do not contain these concepts intrinsically. An example of a
formula in which deontic logic and speech acts are combined is given in the expression below.
The formula is of the form [α]ϕ which means that after the performance of the action α the
formula ϕ holds. The example is taken from [39] and means that after agent “i” commits him-
self towards agent “k” to perform “α” and agent “k” declared that agent “i” is permitted to per-
form “α” then agent “i” has the obligation towards agent “k” to actually perform “α”.

[COMMIT(i, k, αααα)] [DECL(k, Pik(αααα(i)))] Oikαααα

INTRODUCTION 31

An important advantage of deontic logic and illocutionary logic is the possibility to reason
about properties of the electronic commerce protocol [35]. For example, it can be possible to
prove that following an order protocol leads to a state where one party has the obligation to
deliver a product and the other party has the obligation to pay for it. This ability to reason
about contracting protocols is used by Bons [19] and Bons, Dignum, Lee and Tan [21] to pro-
pose a formal theory on the design of trustworthy trade procedures.

The language / action perspective is heavily used in research on intelligent agents. An example
of an agent architecture in which the concepts mentioned above are used is given by Verharen
and Dignum in [120, 121]. In their view, a Co-operative Information Agent (CIA) has an
agenda containing the actions to be performed by the agent (obligations). The agent can reason
about the actions on the agenda, add new actions to the agenda and remove existing actions
from the agenda. The architecture of the CIA is shown in Figure 6. The main engine is the task
manager, which maintains the agenda and plans and schedules the tasks. The contract manager
stores and monitors contracts; a formal description of the communication behaviour between
two agents. The communication manager handles all external communication of the CIA,
which is not expected to follow a fixed communication protocol. Instead, a rich communication
language based on the theory of speech acts is used allowing the CIA to react when other
agents do not follow the same protocol. The Lexicon is used by the communication manager
for the definition of the terms that are used in communication with other CIA’s. Finally, the
service manager checks whether another agent is authorised to request a specific service from
the CIA and if the service is available.

Contract
Manager

Task
Manager

Service
Execution
Manager

Communication
Manager

Agenda Tasks Database Lexicon

Contracts

Peer CIA

Peer CIA

Interpreter

CIA

Figure 6 Architecture of a ‘co-operative information agent’ proposed by Verharen and Dignum

1.4.3 Documentary Petri Nets
Another approach to model the inter-organisational communication is a formalism called
Documentary Petri Nets (DPN) proposed by Lee [86, 89, 91, 92]. The development of the for-
malism was initiated by the observation that most electronic data interchange links were lim-
ited to long lasting trading relationships involving a high number of transactions and between
parties with a high level of mutual trust [86]. An explanation for this was the high setup costs
that could only be recovered over a longer period with a large number of transactions. These
high setup costs stem from the necessity to know about each others “way of doing business”
before data can be exchanged electronically and to agree on a common trade procedure that
will be followed by both parties. The term “trade procedure” is defined in [86] as “the mutually

32 INTRODUCTION

agreed upon set of rules that governs the activities of all parties involved in a set of related
business transactions”. The idea behind Documentary Petri Nets is to decrease the setup costs
significantly by making available standard trade procedures. This requires a common language
in which the trade procedures are described, which must be formal, graphical and computer
interpretable. There after, groups of business experts can use the formalism to specify trade
procedures. Finally, companies can download standard trade procedures from a repository and
configure internal software systems with it. The formalism of Documentary Petri Nets is an
attempt for such a common language for expressing standard trade procedures.

The formalism of Documentary Petri Nets is described in [86, 89]. Each DPN is a coloured
Petri net with the following extensions:

• The exchange of information is modelled by document places represented as a square box.
The colour of the place models the structure of the information in the information parcel.
Sending an information parcel is represented by a transition labelled X to Y: D, in which X
identifies the sender, Y the receiver and D the type of information parcel that is exchanged.
The transition has a document place of type D as output place. Conversely, receiving an in-
formation parcel is modelled by a transition labelled Y from X: D. This transition has a
document place of type D as input place.

• The exchange of goods is modelled by goods places represented as cubes. The colour of the
place models the properties of the goods like quantity, weight, etc. The transfer of goods
among parties is modelled by transitions labelled X to Y: G and Y from X: G similarly to
the modelling of information exchange, but in this case G refers to goods.

• The exchange of funds is modelled similar to the modelling of information.

• The deontic states of each individual role are modelled by tokens in the control places in
the sub-net of each role. The control places are represented by a circle and have a label with
the description of the deontic state, e.g. the label oblig(x, a) to indicate that party x has an
obligation to perform action a.

Although a DPN describing a trade procedure between two roles is in fact one model, it is pos-
sible to create a view on the DPN for each individual role involved that gives the sub-net which
contains only the transitions that model actions which are under control of that role. A state
transition in a DPN is enabled by receiving an information parcel, goods or funds, or the expi-
ration of a timer. Firing a transition can lead to sending information parcels, goods or funds
and/or setting a timer. Finally, since the formalism of DPN’s is based on Petri nets, properties
like liveness and boundness can be analytically checked.

The DPN formalism and the ideas behind it are used in a practical implementation of a soft-
ware system called InterProcs [90]. The motivation behind InterProcs is to validate the con-
cepts and to demonstrate the feasibility. There are two main components: InterProcs Designer
and InterProcs Executor. The Designer component offers a graphical user interface by which
the user can create DPN’s. The Executor component loads the specification of a DPN and
simulates and executes the trade procedures defined in the DPN. An example of the InterProcs
user interface is given in Figure 7 and can be found at www.euridis.fbk.eur.nl.

INTRODUCTION 33

Figure 7 Example of the InterProcs user interface

1.4.4 Interorganisational workflows
The formalism of classical Petri nets was defined in 1962 By Carl Adam Petri [103]. Later,
others like Jensen [77] and Van Hee [61] proposed an extension with time, colour and hierar-
chy. The application of Petri nets to workflow management was already described in 1979 by
Ellis [48] who used the formalism of Petri nets for office information flows in what he called
‘Information Control Nets’. Since then, the application of Petri nets to workflow management
has been addressed by for instance Van der Aalst [1, 2, 6] and Van Hee [12]. The reasons for
using Petri nets as modelling technique for workflows are given by Van der Aalst [4] as (i)
formal semantics despite graphical nature (ii) state-based instead of event-based and (iii) abun-
dance of analysis techniques. An important notion in the analysis of workflows is a notion of
correctness called ‘soundness’ [6] (see page 53). The analysis techniques to prove the property
of soundness are given in [5, 9]. A software tool in which these analysis techniques are imple-
mented is Woflan [119].

The interoperability between local workflows has been addressed by Van der Aalst [7] who
identified six forms of interoperability: capacity sharing, chained execution, subcontracting,
case transfer, extended case transfer and loosely coupled. Furthermore, he extended the notion
of soundness of a local workflow to the notion of global soundness of a system of loosely cou-
pled workflows [7]. A drawback of this approach is that in order to check the global soundness
one needs a model of the entire global workflow. A formal approach where knowledge of the
global workflow is not required is presented by Kindler, Martens and Reisig [84]. The authors
specify the dynamics of the inter-organisational system by a set of scenarios in the form of
message sequence charts. Each local workflow can then be checked for local soundness with
respect to these scenarios. It is proven that if each local workflow is sound, the entire workflow
is globally sound. A different approach to the same problem is proposed by Van der Aalst [10]
and Van der Aalst and Weske [13]. The authors propose a P2P (Public-to-Private) approach
that consists of three steps. First, the parties define a common understanding of the inter-
organisational coordination by defining a global public workflow. In the second step, the pub-
lic workflow is partitioned over a number of domains (organisations). Finally, for each domain
a private workflow is constructed such that the private workflow is a subclass of the corre-
sponding part of the global workflow. If this approach is followed, the global workflow is free

34 INTRODUCTION

of deadlocks and other similar anomalies. Moreover, the overall workflow is a subclass of the
public workflow, which guarantees that the protocol specified in the public workflow is actu-
ally realised.

i

a

b

c

d

o

i

o

Figure 8 Example of a public workflow (left) and partitioned public workflows (right)

i

o

i

o

Figure 9 Example of a private workflow

1.4.5 Mobile agents
Much research on electronic contracting is focused on agent technology. An agent is an entity
that acts of behalf of another entity. For example, a real estate agent tries to sell houses on be-
half of the owners of the houses. A software agent is a software component that performs a task
for a human or another software component (Dalmeijer, Hammer and Aerts [31]). A weak no-
tion of agency can be given by four characteristics (Wooldridge and Jennings [147]; Jennings
et al [75, 76]).

INTRODUCTION 35

- autonomy: agents operate without the direct intervention of humans or others, and have
some kind of control over their actions and internal state.

- social ability: agents interact with other agents (and possibly humans) via some kind of
agent-communication language.

- reactivity: agents perceive their environment, and respond in a timely fashion to changes
that occur in it.

- pro-activeness: agents do not simply act in response to their environment, they are able to
exhibit goal-directed behaviour by taking the initiative.

Intelligent software agents can be used for a variety of tasks. The use of intelligent agents for
retail electronic commerce is discussed by Guttman and Maes [59]. They describe a first gen-
eration of shopping agents that assist the user in making a buying decision. Given a specific
article (e.g. a music CD), the agent requests its price at different on-line shops and presents the
result to the user. Unfortunately for on-line retailers, the shopping agents compare on price
only, ignoring value-added services by which retailers distinguish themselves from competi-
tors. More advanced agents can be used for distributed negotiation, e.g. dynamically negotiat-
ing a price for a product. Kasbah (Chavez and Maes [25]) is a multi-agent system that supports
distributed negotiation. A user that wants to sell goods creates a selling agent and a user that
wants to buy goods creates a buying agent. The agents operate in a common environment (the
marketplace) that allows them to interact. Each agent has a specification of the item to buy or
sell, an initial desired price and an ultimate date at which the transaction must be completed.
Furthermore, a selling agent has a lowest acceptable price and a buying agent has a maximum
acceptable price. The ‘negotiation’ between a selling agent and a buying agent depends on the
mechanism by which a selling agent lowers its price and a buying agent increases its price over
its given time frame. When the price of a selling agent equals the price of a buying agent, a
deal can be made.

The earlier mentioned weak notion of agency can be extended with other attributes, like mobil-
ity. Mobile agents are software agents possessing all earlier mentioned characteristics, but with
the additional ability to move from one computer system to another. If an agent is relatively
small, it can be more efficient to transport the agent instead of the data. As soon as an agent is
transported, it can operate disconnected from its client (see Figure 10). This makes a mobile
agent ideal for clients that do not have a permanent network connection, such as users of mo-
bile computers.

36 INTRODUCTION

ClientClient

ServerServer

Network

ClientClient

ServerServer

NetworkClient
Agent
Client
Agent

Client
Agent
Client
Agent

Information exchange

transport

Information exchange

ServerServerClient
Agent
Client
Agent

ServerServer

Client
Agent
Client
Agent

Figure 10 Mobile agents (above) versus immobile agents (below)

The architecture of the environment in which mobile agents can operate is illustrated in Figure
11 (Dalmeijer et al [31]). A ‘dock’ is a software component that acts as a front-end for local
systems and allows mobile agents to anchor and perform their job. Docks provide agents with
facilities to communicate with local systems and other agents and provide a mechanism for
being transferred to others docks. For agent communication to be successful, agents, docks and
local systems need a common ontology. This is why efforts are being made to develop a stan-
dard Agent Communication Language (ACL). An example of an ACL is the Knowledge Query
and Manipulation Language (KQML) (Finin et al [52, 53]), which is both a message format
and a message-handling protocol to exchange knowledge among agents. Each KQML message
has a content, composed in a language of choice, and a performative. The performative is cho-
sen from a set of mutually agreed speech acts, e.g. ‘tell’, ‘achieve’, ‘ask-if’, and ‘deny’.

server

Network

AgentAgent

DockDock

AgentAgent

Business Information SystemBusiness Information System

AgentAgent

DockDock

AgentAgent

Business Information SystemBusiness Information System

ACL ACL

server

Figure 11 Architecture of the mobile agent environment

INTRODUCTION 37

1.4.6 Other related projects
The area of electronic contracting is subject of many research projects. This section discusses a
number of influential projects.

COSMOS
The aim of the COSMOS project is ‘to develop a support platform for business transactions
across the Internet based on a generic contracting service which enables its users to negotiate,
sign and settle electronic contracts across the Internet without leaving a uniform and flexible
system environment’. The theoretical foundation for the COSMOS system is given in [58, 93].
According to [58], the COSMOS architecture consists of the components shown in Figure 12.
The offer catalogue component is used to store service offerings of market participants in a
structured way. Brokers are used to match offers in the catalogue with a quality of service
specification given by a market participant. Output of a broker is references to those market
participants that match the quality of service specification best. The negotiation support can be
understood as the collaborative editing of a contract as a structured document. A contract that
is edited collaboratively can be signed by the participants by mechanisms known from public
key systems. Finally, workflow execution supports and monitors the activities that have to be
performed according to the signed contract.

Market
Participants

COSMOS Service

Offer
Catalogue

Brokerage Negotiation Signing Workflow
Execution

?

Figure 12 COSMOS architecture (after [58])

MeMo
The MeMo project (Mediation and Monitoring electronic commerce)
(www.abnamro.com/memo) is another example of an initiative that aims at developing a plat-
form to facilitate and mediate business-to-business commerce. The objective of the project is to
develop an environment that will serve as an Electronic Commerce Broker Service (ECBS) for
small and medium sized companies. The ECBS contains a partner searching mechanism that
allows companies to quickly locate potential business partners. Furthermore, a multi-lingual
negotiation module is available to facilitate the negotiation process in which a range of best-
practice negotiation protocols can be used. Finally, the ECBS supports also the settlement of
financial obligations.

38 INTRODUCTION

Seller BuyerECBS

Provide
Info

Find
Customer

Negotiate

Delivery

Identify
need

Find
Seller

Negotiate

Payment

Search Engine

Company
Profile

Product
Database

(website)

Negotiating
&

Contracting

Contract
database

(website)

Fulfillment Phase

Send info

Query

E-mail

Exchange info Exchange info

Query

Request info

E-mail

Figure 13 MEMO architecture

WISE
The WISE project focuses on the enactment of inter-organisational business processes, for
which the term ‘virtual business process’ is used. A virtual business process is a process in
which the tasks correspond to entire subprocesses at different organisations that together form
the ‘virtual enterprise’. According to Lazcano et al [85], the WISE project aims at providing a
software platform that supports (i) process definition functions for modelling virtual business
processes, (ii) process enactment to execute virtual business processes during which subproc-
esses in different organisations are invoked, (iii) monitoring and analysis and (iv) coordination
and communication.

Figure 14 WISE architecture (after [85])

CrossFlow
A research project addressing the inter-operability between workflow engines is the CrossFlow
project [30] (www.crossflow.org); a European research project aiming at cross-organisational
workflow support for virtual enterprises (Grefen et al [57]). Currently, the functionality of
workflow management systems is often confined to the boundaries of a single organisation.
The objective of the CrossFlow project is to define additional functionality required for inter-
organisational workflows. The deliverables of the CrossFlow project include a detailed archi-
tecture of inter-organisational workflow. Furthermore, a framework for describing service

INTRODUCTION 39

contracts will be developed. Service clients and service providers can use this framework to
define their requests and offers, hereby allowing dynamic matchmaking of service contracts.
Finally, the CrossFlow project will deliver software components that can be used in combina-
tion with existing workflow management systems to establish a virtual enterprise.

1.5 Software engineering
Like many other complex technologies, software has a life cycle that can be divided
into five phases: specification, construction, testing, integration and maintenance.
Although the individual phases remain in place, the content of the phases has shown a
rapid evolution over the past years. Some of the developments in the specification and
construction phases relevant to the research will be described in this section. There-
after, we will discuss recent developments in component based software engineering.

1.5.1 Specification
A specification is a description of the structure and behaviour of a system, encompassing both
a data and a process perspective. The practice of developing information systems has revealed
a structural weakness in the specification techniques for software. This weakness is the infor-
mal way in which specifications are developed. Vague specifications often lead to information
systems that do not meet the expectations and requirements of the users. If unclear parts of a
specification force constructors to fill in the details themselves, the resulting product may devi-
ate from the system as it was meant to be originally. Errors in the specification may be revealed
only in the testing phase, causing high costs to be corrected. These observations revealed the
need for better methods and techniques for specification of software. A 'better' technique is a
technique which allows the designer to be more precise in his specifications and which allows
verifications and validations to be performed before the construction starts. High-level Petri
nets described by Jensen [77] and Van Hee [61] are an example of a formal specification lan-
guage used to define the dynamic behaviour of a system. The formalism allows a very precise
specification on one hand and the possibility of automatic verification and simulation on the
other hand. The ExSpect [50] tool is an example of software with which a system can be de-
fined as a high level Petri net and can be simulated. Another type of specification languages is
based on process algebra’s. An example of such a specification language is LOTOS [47],
which is adopted as ISO standard for modelling communicating processes. The communication
between processes is modelled by offering events on gates. The behaviour of each process is
defined by expressions.

A recent approach to software specification is the Object-Oriented (OO) approach. The object-
oriented paradigm is based on the concept of an object, which combines both data structure and
behaviour in a single entity. Object oriented approaches have been described by for instance
Booch [22] and Rumbaugh et al [107]. The oldest Object Oriented ideas go back to O. Dahl
with its language Simula. Applying the object-oriented paradigm to software design means that
software is organised as a collection of discrete objects that incorporate both data structure and
behaviour. This is in contrast with conventional programming in which data structure and be-
haviour are only loosely connected. Objects have attractive features, of which the most ap-
pealing are: encapsulation, classification, polymorphism and inheritance. Encapsulation con-
sists of separating the external aspects of an object, which are accessible to other objects, from
the internal implementation details of the object, which are hidden from other objects. Encap-
sulation prevents a program from becoming so interdependent that a small change has massive

40 INTRODUCTION

effects. Classification means that objects with the same data structure (attributes) and behav-
iour (operations) are grouped into a class. An object is said to be an instance of a class. The
implementation of an operation by a certain class is called a method. Polymorphism means that
the same operation may behave differently on different types of objects. The classes 'circle',
'square' and 'triangle' for instance may share a 'draw' method, which can be implemented dif-
ferently for each class. Finally, inheritance is the sharing of attributes and operations among
classes based on a hierarchical relationship. A class can be broadly defined and then refined
into successively specialised subclasses. Each subclass incorporates, or inherits, all of the
properties of its superclass and adds its own unique properties. The ability to factor out com-
mon properties of several classes into a common superclass and to inherit the properties from
the superclass can greatly reduce repetition within programs and is one of the main advantages
of an object-oriented system.

Efforts have been made to unify different OO specification languages into a unified language.
The result of these efforts is the Unified Modelling Language (UML) [101], which is presented
as a language for specifying, constructing, visualising and documenting the artefacts of a soft-
ware-intensive system. UML tries to fuse the concepts of Booch [22], OMT by Rumbaugh
[107] and OOSE, incorporating the object-oriented community's consensus on core modelling
concepts. The focus of UML however is aimed at a common meta-model and common nota-
tion, not on the development methods in the context of which the language is used.

Design patterns are another example of efforts aiming at improving the quality of software
design by reusing existing knowledge. The concept of design patterns originates from the
world of architecture. A design pattern is a solution to a generic design problem and has the
ambition to capture the knowledge and experience of the one who created the solution and
make it available to other designers who might encounter the same problem. A design pattern
is more than just a solution, it gives insight in the opposite forces that create the design prob-
lem and it shows why the solution is a good solution. Software patterns first became popular
with the book of Gamma et al [55]. Others, like Florijn et al [54], reported successful use of
patterns in large software engineering projects.

1.5.2 Construction
The construction methods for creating software have shown a significant evolution too. In the
construction phase, four basic construction techniques are available to the software engineer.
These techniques can be characterised with the key words: programming, generation, configu-
ration and assembly. The programming method consists of developing software by writing
code in third or fourth generation programming languages based on specifications. Klint and
Verhoef [83] describe techniques used by programmers, among which: (i) information hiding,
(ii) subroutine libraries, (iii) code scavenging and (iv) tools. Code scavenging is a frequently
used, but largely under-documented technique: when a programmer needs to implement a cer-
tain function, he searches sources of existing programs for code that is comparable to the one
that is desired. Tools, as for editing, compiling, debugging, testing and configuration and ver-
sion management are frequently used and had a large impact on software quality. An impor-
tant, but often underestimated, issue is the maintenance or renovation of existing software sys-
tems. Klint and Verhoef [83] report that only 30% of the total costs of a system are devoted to
its initial construction. The remaining 70% are spent on maintenance and adjustments to new
requirements. Klint and Wijers [82] describe the problems that can be encountered during
renovation of software systems and propose techniques for successful renovation of software
systems.

INTRODUCTION 41

The generation method is based on the automatic generation of software from (formal) specifi-
cations. Standard case-tools are already on the market for the generation of classical database
applications (data entry and retrieval). More advanced specification languages and tools are
being researched in laboratory environments, but these methods still require much knowledge
to be used.

The configuration method aims at creating a specific information system by configuring the
parameters of a generic information system. Examples of generic systems that are configured
to the needs of a specific situation can for instance be found in the area of enterprise resource
planning (ERP) systems.

Finally, the assembly method consists of assembling a number of standard components into
one information system. A software engineer can create a component by himself, or he can buy
the component. Advantages of using components developed by others can be found in reduc-
tion of costs (the investments for developing the component are shared by a number of parties),
reduction of time (buying a component takes less time than developing one) and finally quality
improvement (standard components have already passed the testing phase). The use of compo-
nents brings about a number of new issues that require the attention of the programmer too.
First, there is the question of how to find the (best) component. Various sources of information
can be used for this purpose. The Internet is an ideal medium for publishing catalogues of ge-
neric components, closing the deal, distributing the software and making the payment. Second,
since components are created by a third party an organisation must trust the component well
enough to use it in his business information system. This introduces the concept of ‘trusted
components’. Finally, a programmer may be confronted with a component from which the be-
haviour is only known partially.

1.5.3 Component based software engineering
As we have seen in discussing the assembly construction technique, components are becoming
increasingly important in software engineering. Therefore, we will now discuss component
based software engineering in more detail. A generic software component is a piece of soft-
ware that offers well-defined ‘services’ to client applications. A component has an operational
interface and a management interface. The operational interface with a client application is a
transaction that consists of one or more messages. A generic component must be able to sup-
port concurrent transactions with different client applications. The specification of a generic
software component includes the transaction protocol (the possible orders of messages) and the
data types of each possible message type. The management interface consists of a configura-
tion function and a monitor function. The configuration parameters exchanged on the configu-
ration interface can have a simple structure like a table or a more complex structure like ex-
pressions or diagrams. The monitor function lets a client application query the internal state of
the software component.

The search for standard components is not new. The historic development in recognising ge-
neric functions is described by Van der Aalst and Van Hee [12]. In the seventies data manage-
ment was recognised as a generic function and data base management systems (DBMS)
emerged, releasing the application from data management. In the eighties a similar thing hap-
pened with user interfaces which lead to the emergence of user interface management systems
(UIMS), releasing the applications of user interfacing. The development of the nineties was the
recognition of the support of business processes as a generic function. Because of this,

42 INTRODUCTION

workflow management systems (WFMS) emerged, as a generic software component to support
the logistics of business processes.

OS OS OS

APPL APPL

D
BM

S

APPL

D
BM

S

U
IM

S

OS

APPL

D
BM

S

U
IM

S

W
FM

S

seventiessixties eighties nineties

Figure 15 Historic development in standard components

The use of the concept component in the software industry has an analogy in many other pro-
duction sectors. The electronics industry for instance is based on the existence of a large
amount of standard components like semi-conductors, microchips, etc. Each component type is
strictly defined, allowing the same type of component to be manufactured by different parties
and offered to the market at competitive prices. The examples where a manufacturer does not
produce a single component by itself, but only configures and assembles components bought
from others are not rare.

Bergstra and Klint [15] proposed the Toolbus as a means for the co-operation of individual
components. They suggest a clear distinction between computation (performed by the compo-
nents) and co-ordination (performed by the Toolbus). The Toolbus architecture is shown in
Figure 16. There are m components (C1, .. Cm) and a Toolbus in which n parallel processes (P1,
..., Pn) are active. A component does not communicate directly with other components, but only
with the Toolbus. The initiative for communication can be taken by either the component or the
Toolbus.

P1 | … | Pn

C1 Cm

Toolbus

Components

Coordination

Computation...

Intermediate data

Figure 16 The Toolbus architecture

The object-oriented paradigm in software design is matched with object-oriented technology
for the construction of software. Object-oriented programming languages like C++ and Java
make it possible to make an almost seamless transition from specification to software. A C++
or Java class can be seen as a component that can be assembled seamlessly with tailor-made
classes into one information system. Every Java programmer who uses the standard classes in
for instance the java.awt package is assembling a standard component. However, it should
be noted that the use of standard classes is limited to one programming language. One can not
assemble a standard C++ class with one or more tailor-made Java classes.

The Java language has powerful facilities for the development and assembly of standard com-
ponents. A part of the Java framework is the Java Beans specification by Sun [111], a compo-
nent based software model for building and using dynamic Java components. A Java Bean is

INTRODUCTION 43

designed to be assembled with other components via a builder tool. One of the interesting char-
acteristics of a Java Bean is introspection, the ability to expose its properties, events and meth-
ods to other objects both at runtime and in the builder environment (design time). Support for
customisation, by which the appearance and behaviour of the Java Bean can be customised in
the design environment, is another appealing feature of Java Beans.

The area of communication between objects sitting on different platforms, connected via a
network is addressed by the Object Management Group (OMG). Standards as these are very
important for the implementation of distributed applications on a wide scale. The OMG
(www.omg.org) has proposed a common object communication bus called CORBA [100]
(Common Object Request Broker Architecture) which is a common messaging standard for
distributed objects. The Object Request Broker (ORB) is the middleware that establishes the
client-server relationships between objects. Using an ORB the client can transparently invoke a
method on a server object, which can be on the same machine, or across a network. The client
does not have to be aware of the location of the server object, nor the programming language
used for the implementation, nor any other aspect that is not reflected in the object's interface.

Client Object Server Object

Object Request Broker (ORB)

Figure 17 Communication between objects via the ORB

A technology for component based software development that is widely used on the MS-
Windows platform is the Microsoft Component Based Object Model (COM) [94]. The COM
standard is an object-based programming model designed for interoperability between binary
software components that can be developed in different software languages. COM defines and
implements mechanisms that allow applications to connect to each other as software objects, an
instantiation of a class that conforms to the COM standard. A COM object is accessed only via
its interfaces, a set of strongly typed semantically related functions (called member functions
of that interface). Microsoft extended the COM technology to support distributed computing
with the DCOM (Distributed COM) standard [95]. Distributed applications consist of compo-
nents that reside on different hardware components, connected by a network.

1.6 Research

1.6.1 Research problem and objectives
Electronic commerce is expected to have an enormous impact on organisations, both on the
business processes and on the information systems that support the business processes. These
expectations can only become true when high-quality standard software components for elec-
tronic commerce are available on the market. Although a significant number of such standard
software components is already available, electronic commerce components are still in a di-
verging stage and there is little consensus on concepts, architectures, building blocks, etc. [17].
However, as we have seen before, many research activities are devoted to the area of electronic
contracting. This research contributes to the existing research and focuses on a specific sub-

44 INTRODUCTION

class of service contracting processes. The business objective behind this research is to im-
prove the competitiveness of organisations by providing an optimal support of these service
contracting processes with ICT. More specific, the objective is to provide a generic software
component for service contracting that can be assembled with business applications seamlessly
and requires minimal configuration time and maximal flexibility in the type of service con-
tracting processes supported.

1.6.2 Research scope
The term ‘electronic contracting’ is used for a variety of phenomena. This research is focused
on a specific part of this area, which is demarcated by the following characteristics that define
a class of service contracting processes.

• Loosely coupled organisations
We assume a loosely coupled relationship between service clients and service providers.
This means that all communication is performed by exchanging structured messages, of
which only the data types (static aspects) and constraints on the sequence of message types
(dynamic aspects) are mutually agreed. In particular, we assume no central brokerage or
mediation service between service clients and service providers. Furthermore, we assume no
knowledge of each others business processes for the participating organisations.

• Buyer side only
Electronic contracting of services always involves a buyer (client) and a seller (provider).
Although these parties communicate via a common message protocol, they execute different
processes. This research focuses on the part of the process executed by the buyer (service
client) only. Therefore, the seller (service provider) is treated as a black box, of which only
the external interface (transaction protocol) is known. The software component that will be
developed is therefore not a complete solution for electronic contracting (buyer side + seller
side), but can only be used for the buyer side.

• N required services, M available providers
A service contracting process is performed for a business case in the enterprise information
system. This research focuses on the more complex service contracting processes where
each business case requires N different services to be contracted, for which M different
service providers are available.

• Dependencies between services
Furthermore, we assume dependencies between required services. We consider two types of
dependencies. First, there can be constraints on the order in which required services must be
contracted. For example, service B must be contracted when service A has been completed
(sequential relation). Or: service B must be contracted only if service A could not be con-
tracted (alternative relation). The second dependency type involves the details of the re-
quired services. For example, a logistic chain requires two services: sea transport from a
port of departure to a port of destination and road transport from the production plant to the
port of departure. Clearly the ‘place of delivery’ of the road transport service must be equal
to the ‘port of departure’ of the sea transport service. Furthermore, the ‘date/time of deliv-
ery’ of the road transport service must be before the ‘date/time of loading’ of the sea trans-
port service. Therefore, the details of the road transport service can only be defined after a
contract for the sea transport service is established.

INTRODUCTION 45

• Completely automated processes
The research focuses on completely automated service contracting processes. Therefore, the
specification of the service contracting process must be highly structured and computer in-
terpretable. All decisions must be made automatically, based on configuration parameters
defined in design time.

1.6.3 Research approach
The literature overview in Section 1.4 showed different approaches to electronic contracting.
The approaches differ in postulates and modelling techniques. One of the approaches is the
LAP approach that uses deontic logic as formalism and is heavily used in research on intelli-
gent agents. A different approach views contracting processes as interorganisational workflows
and uses Petri nets as modelling technique. This research chooses the workflow approach based
on Petri nets as starting-point. By making this choice we do not claim that the workflow ap-
proach is superior to the LAP approach. Instead, we have made this choice for the following
reasons.

• Workflow management techniques have been successfully applied to internal business proc-
esses. Since business processes are becoming inter-organisational increasingly, the applica-
tion of workflow management techniques to inter-organisational processes is an obvious
choice.

• Workflow management techniques have proven to be a good solution for repeating, well-
structured and potentially long-running processes. The character of the demarcated class of
service contracting processes has many similarities with this kind of processes.

• Workflow management techniques are increasingly integrated in software tools for elec-
tronic messaging. Apparently, the market recognises the usefulness of workflow manage-
ment in combination with electronic business.

1.6.4 Research questions
We will now formulate the research questions that will be addressed in this dissertation. First,
we need a clear understanding of the underpinning concepts for service contracting processes.
We have chosen the approach of modelling a service contracting process as a workflow. There-
fore, our first research question is:

Research question 1:

“What is a suitable underlying conceptual framework to model the
demarcated service contracting processes via workflow management techniques?”

The hypothesis behind this research is that service contracting is a generic business function,
for which a generic software component can be created. Clearly, although designed as a ge-
neric system, each software component has its limitations on the types of service contracting
processes that can be handled. Since service contracting is still in an early stage and there is no
common understanding of requirements to a service contracting component, it is important to

46 INTRODUCTION

have a software component that can be adapted to changing requirements easily. Our second
research question is therefore:

Research question 2:

 “What is a suitable logical architecture of a service contracting software component
that maximises the flexibility of the software component to handle different types

of service contracting processes?”

One of the results of the research is a generic software component for service contracting, the
‘Contracting Agent’, which can be configured to a specific business situation. When it comes
to the design of the configuration parameters and the configuration user interface, we are con-
fronted with conflicting goals: ease-of-use and flexibility. On one hand we want to maximise
the ease-of-use, especially in the configuration of the component. This goal can be obtained by
adding domain knowledge to the component, hereby inevitably limiting its flexibility. On the
other hand however, we want to maximise the flexibility of the component to make it suited for
the widest class of service contracting processes possible. We therefore formulate our third
research question as follows:

Research question 3:

 “How can domain knowledge of service contracting processes be used in the design of
the configuration parameters and the configuration user interface of the service

contracting software component in order to bring maximum ease-of-use while maintaining
the flexibility of the component to handle a wide variety of contracting processes?”

A short time-to-market is one of the critical success factors for software components. One of
the lessons learned from component-based software engineering is to re-use existing software
components maximally. Our fourth research question is therefore:

Research question 4:

 “What is a suitable technical architecture of the service contracting software component
that utilises existing standards and existing software components maximally in order to

minimise the effort to develop the component and to maximise maintainability?”

INTRODUCTION 47

1.7 Outline
The structure of this dissertation is as follows. This chapter describes the background of the
research, the research problem and the research approach. The rest of this dissertation consists
of the following chapters.

• Chapter 2: Conceptual framework
This chapter addresses the first research question and provides a conceptual framework for
the demarcated class of service contracting processes. We start with a brief introduction into
inter-organisational systems based on contracting and define basic concepts like ‘workflow’,
‘service’ and ‘business transaction’. Furthermore, we define the term ‘service contracting’
and its position in inter-organisational systems. Next, we provide a conceptual framework
for the agreements that have to be made between service clients and service providers in or-
der to establish a loosely coupled collaboration successfully. Here after, we propose a meta
model for the contracting requirements of an outsourced task in the internal workflow. Next,
we define the service contracting process as a workflow, propose standard building blocks
from which this workflow can be composed and define correctness criteria to which a con-
tracting workflow must adhere. Finally, we illustrate the concepts by a use case. Modelling
techniques used in this chapter are high-level coloured Petri nets to model the contracting
workflow and functional data models to capture the data structure of tokens in the
workflow.

Book
inbound

flight

start_A

completed_A

failed_A

Book
hotel

start_D

skipped_D

completed_D

failed_D

Book
outbound

flight

start_B completed_B

failed_B

Cancel
inbound

flight

start_C

failed_C

completed_C

Arrange
full size

car

start_E

skipped_E

completed_E

failed_E

Arrange
compact
size car

start_F

failed_F

completed_F

T4

T2

T3

T1

start

end

 E4

T3

 E2

 E1

 E3

a

b

CASE

identification

CANDIDATE
SERVICE

provider identification

type identification

data

TRANSACTION
identification

MESSAGE

identification

type identification

VIOLATION

type identification

state

data

date

type identification

AVAILABLE
PROVIDER

identification

preference

date

time

time

data

direction

status

status

value

status

date

time

Figure 18 Illustration of modelling techniques used in Chapter 2

• Chapter 3: Logical architecture
The objective of this chapter is to address the second and the third research question and to
provide a logical architecture for a software component that executes the service contracting
processes defined in Chapter 2. The software component will be designed as a workflow
application with a clear separation of execution and control. One of the issues in this chapter
is to recognise generic tasks in the service contracting processes that can be housed in
autonomous applications triggered by the workflow engine. Another issue is the transfor-
mation of the conceptual contracting workflow net into an implementation contracting
workflow net. Modelling techniques used in this chapter are Petri nets to model the compo-
nents and interfaces and functional data models to capture the data structure of data stores
and interfaces.

48 INTRODUCTION

SERVICE TYPE

name

description

schema

AVAILABILITY

SERVICE
PROVIDER name

type identification

identification

VIOLATION TYPE
name

type identification

constraints

constraints

type identification

name

description

schema

name

URL

identification

protocol definition

type identification

generic name

TRANSACTION
PROTOCOL

MESSAGE TYPE

PROTOCOL
PATTERN

PATTERN
MESSAGE TYPE

STRATEGY
TYPE

schema syntax

schema syntax

constraints syntax

constraints syntax

PARAMETER
TYPE

type identification

name

name

Interaction Manager

State
data

Storage

st
at

e
da

ta
 q

ue
ry

st
at

e
da

ta
 re

sp
on

se

Workflow Manager

in
iti

at
e

st
ar

t

re
ce

iv
ed

se
nd

Configuration
data

Storage

co
nf

ig
ur

. d
at

a
qu

er
y

co
nf

ig
ur

a.
 d

at
a

 re
sp

on
se

Schema
Processor

ap
pl

y
sc

he
m

a

sc
he

m
a

ap
pl

ie
d

Constraint
Processor

ap
pl

y
co

ns
tra

in
ts

co
ns

tra
in

ts
 a

pp
lie

d

fin
is

he
d

sk
ip

pe
d

state data config. data

Transfor-
mation

Processor

ap
pl

y
tra

ns
fo

rm
at

io
n

tra
ns

fo
rm

at
io

n
ap

pl
ie

d

workflow
definition

up
da

te
 w

or
kf

lo
w

Strategy
Processor

ev
al

ua
te

 m
es

sa
ge

m
es

sa
ge

 e
va

lu
at

ed

in
iti

at
ed

ad
ju

st

pr
oc

es
s

ev
al

ua
te

ev
al

ua
te

d

initiate request

initiate accept

initiate reject

finished notification

outbound message

inbound message

case list request

case list response

case details request

case details response

configuration request

configuration response

ad
ju

st
 s

er
vi

ce
 d

at
a

se
rv

ic
e

da
ta

 a
dj

us
te

d

Figure 19 Illustration of modelling techniques used in Chapter 3

• Chapter 4: Technical architecture
This chapter addresses the fourth research question and discusses the transformation of the
logical architecture into a technical architecture consisting of commercial-off-the-shelf
software components and custom-made software components. Modelling techniques used in
this chapter are software component architectures, XML document type definitions, Ex-
Spect models, relational database schema’s and screen layouts.

CaState.mdb

ADO

CaConfS.mdb

ADO

CaConfC.mdb

CaIntMan.exe

ADO

Client
application

EXSPECT.exe MS OutlookMSXML4.dll

CaMonitor.exe

Iexplore.exe

xml xsl.ex

Wofapp.exe

.tpn

CaConfig.exe

CaStrategy.dll

 <!ELEMENT CaseList (Case+)>
 <!ELEMENT Case (#PCDATA)>

 <!ATTLIST CaseList
owner CDATA #REQUIRED
type CDATA #REQUIRED
startdate CDATA #REQUIRED
enddate CDATA #REQUIRED >

 <!ATTLIST Case
identification CDATA #REQUIRED
owner CDATA #REQUIRED
type CDATA #REQUIRED
status CDATA #REQUIRED
date CDATA #REQUIRED
time CDATA #REQUIRED >

tblCase

tblCandidateService

tblTransaction

tblMessage

tblViolationtblAvailableProvider

Figure 20 Illustration of modelling techniques used in Chapter 4

• Chapter 5: Evaluation and conclusions
A final reflection on the research is given in Chapter 5. We will discuss the achievements
and draw conclusions. Furthermore, we will compare our work with the work of others.
There after, we will point out directions for future research.

2. A conceptual framework
for service contracting
This chapter addresses the first research question and provides a conceptual frame-
work for service contracting processes. We start with a brief introduction into inter-
organisational systems based on contracting in Section 2.1 and define the underpin-
ning concepts ‘workflow’, ‘service’ and ‘business transaction’ in Section 2.2. Here
after, we introduce the term ‘service contracting’ in Section 2.3. A detailed specifica-
tion of the conceptual model is given in sections 2.4-2.6. Finally, we illustrate the
conceptual framework by a use case in Section 2.7.

2.1 Inter-organisational systems
An organisation can be seen as a system composed of actors and objects. Actors are the active
components, they consume and produce objects, which are the passive components. Actors can
for instance be human beings, computer applications, machines, vehicles, etc. Objects can be
material objects such as containers or abstract objects such as insurance and money. An organ-
isational system can be broken down into an information system and a business system which
have a relation to each other. In the business system, objects have an economical value and are
often of a physical nature. The objective of the business system is to produce objects with an
economical value higher than the economical value of the consumed objects. The information
system is the part of the organisational system that deals with information objects only and
uses this information to control the business system.

We speak of an inter-organisational system if the systems of two or more organisations are
connected. In this research, we focus on inter-organisational systems that emerge from
outsourcing of work. Outsourcing of work implies the exchange of physical and/or abstract
objects between two business systems. In order to control the exchange of objects between the
business systems, information objects are exchanged between the corresponding information
system. Figure 21 illustrates these concepts.

50 A CONCEPTUAL FRAMEWORK FOR SERVICE CONTRACTING

Information System Information System

Information objects

Business System

Physical objects /
Abstract objects

Control signal Report signal

Business System

Organisation X Organisation Y

Figure 21 Structure of an inter-organisational system

Formalisms used
The objective of this chapter is to provide a conceptual framework for service contracting. We
will use the formalism of high-level coloured Petri nets to model processes and we will use
functional data modelling to capture data structures. These formalisms are discussed in Appen-
dix A.

2.2 Underpinning concepts

2.2.1 Workflows
We will now focus on modelling the structure and behaviour of information systems. We will
follow the wording used by Van der Aalst and Van Hee [12] and the WorkFlow Management
Coalition [141].

The work that most organisations do is often case based and therefore of a discrete nature. Ex-
amples of cases are: a purchase order from a customer, a patient in a hospital, the repair of a
car in a garage, etc. Most organisations focus on a limited set of activities in which they excel
and handle cases with specific characteristics only. A set of cases with identical structure that
can be processed identically is called a case type. For example, the case type ‘container road
transport’ is the set of all cases that require a container to be transported from one location to
another by truck. Although each case involves a different container and has different transport
details, it is described by a common data structure and is handled by a common process in the
information system. Case types are part of the structure of the system whereas cases are part of
the behaviour of the system.

Definition: case, case type
A case is the information system representation of a discrete piece of work in the busi-
ness process of an organisation. A case type is a class of cases, with a common repre-
sentation and common processing in the information system.

A CONCEPTUAL FRAMEWORK FOR SERVICE CONTRACTING 51

A case has a unique identification by which it can be distinguished from other cases and is
further defined by information elements called case attributes which together are called the
case data. In the example of the purchase order the case data could consist of the customer
name and address, the article number, ordered quantity and the requested delivery date. The
case data consists of objects and attributes. An object is described by one or more attributes
and one attribute belongs to one object. Objects are organised in a tree structure, in which one
object is the root of the tree and all other objects are nested below another object. An object
belongs to an object type and an attribute belongs to an attribute type and has an attribute value
too. Each case type has a fixed set of object types and attribute types by which the structure of
its case data is defined. Each attribute type defines constraints on the attribute value (e.g. data
type).

 Definition: case attribute, case data
A case attribute is an information element that describes a property of a case in the in-
formation system. The set of all case attributes of a case is called the case data. The
structure of case data is defined by the case type entirely.

The work that is performed on a case can be divided in one or more tasks. A task is an indivisi-
ble unit of work and is therefore executed entirely or not at all.

 Definition: task, work item, resource, activity
A task is an indivisible unit of work. A work item is a task that must be performed for a
specific case. A resource is an entity (person, machine or computer application) that is
required for executing a work item. An activity is the execution of a work item by a re-
source.

The work to be performed on a case consists of executing one or more tasks. A workflow de-
fines the tasks that must be performed on a case and the conditions to the order in which they
must be performed. Examples of such conditions are sequencing, parallelism, choice, iteration,
etc. All cases that belong to the same case type are handled by the same workflow. A workflow
however can handle one or more case types.

 Definition: workflow
A workflow defines the tasks that must be performed on cases of one type and the con-
ditions to the order in which they must be performed.

The actual execution of a workflow requires triggering mechanisms to start the execution of
tasks. Three different triggering mechanisms can be distinguished. First, the resource can take
the initiative to start the execution of a task. Second, an external event can trigger the start of
the execution of a task. An example of an external event is the receipt of an EDI-message. Fi-
nally, a task can be triggered by a clock event: a certain amount of time elapsed or a time is
reached.

The relationships between the concepts that are introduced in this section are shown in Figure
22. We use the formalism of functional data modelling, discussed in Appendix A.

52 A CONCEPTUAL FRAMEWORK FOR SERVICE CONTRACTING

Workflow

Task

Case type

Resource
class

Case

Work item

Resource

Activity

Figure 22 Object model of workflow concepts

Workflow nets
We will now discuss modelling techniques for the workflow concepts defined before. First, a
workflow is modelled as a workflow-net (WF-net), a high-level Petri net with a special struc-
ture. A formal definition of WF-nets can for instance be found in [5]. We will now give an in-
formal definition of WF-nets. A high-level Petri net is called a WF-net if and only if:
(i) there are two special places i and o, of which i is a source place (no incoming connectors)

and o is a sink place (no outgoing connectors);
(ii) every place and every transition is on a path from the source place to the sink place.
A task is modelled by a transition and the partial ordering of tasks is modelled by places con-
necting these transitions. A case is modelled as a token and the case data is modelled as part of
the colour of the token. The processing of a case starts when the case token is put in place i and
ends the moment a token appears in place o. The execution of a task is modelled as the firing of
a transition. The routing of a case through the process is defined by the way transitions are
connected to each other by places and by the pre- and post-conditions of the transitions. The
Work Flow Management Coalition [140] identified the following six routing primitives.

• Sequential routing: a segment of a process instance in which several activities are executed
in sequence under a single thread of execution.

• Iteration: a cycle in the process involving the repetitive execution of one (or more) activ-
ity(s) until a condition is met.

• AND-split: a point within the process where a single thread of control splits into two or
more parallel activities.

• AND-join: a point in the process where two or more parallel executing activities converge
into a single common thread of control.

• OR-split: a point within the process where a single thread of control makes a decision upon
which branch to take when encountered with multiple alternative process branches.

• OR-join: a point within the process where two or more alternative branches converge to a
single common activity as the next step in the process.

These six routing primitives can be mapped onto classical Petri nets as shown in Figure 23.

A CONCEPTUAL FRAMEWORK FOR SERVICE CONTRACTING 53

t11 t12

Sequential routing

t22

t21

Iteration

t41

AND-join

t31

AND-split

t51

t52

OR-split

t61

t62

OR-join

Figure 23 Routing primitives mapped onto classical Petri nets

Instead of the OR-split and OR-join constructs shown in Figure 23 we will use the equivalent
high-level Petri net constructs shown in Figure 24.

AND-joinAND-split

OR-split OR-join

Figure 24 Routing primitives mapped onto high-level Petri nets

Soundness
An important property of WF-nets is called soundness. A formal definition of soundness can be
found in for instance [9]. We will now give an informal definition of soundness. In this defini-
tion, we will refer to state i as the state in which place i contains one token and all other places
contain no tokens. Similarly, state o is the state with one token in place o and no tokens in
other places. A WF-net is sound if the following requirements are satisfied.
(i) For any state reachable from state i there exists a firing sequence leading to state o.
(ii) State o is the only state reachable from state i with at least one token in place o.
(iii) There are no dead tasks, i.e. for each transition t there is a firing sequence from state i in

which transition t fires.

54 A CONCEPTUAL FRAMEWORK FOR SERVICE CONTRACTING

When a process is modelled as a Petri net, cases are modelled as tokens and the case data is
modelled as the colour of the token. The colour of a token is in fact defined as a complex and
the complex class of a case token is defined by the object model in Figure 25. The complex
class contains an entity ‘CASE’ with attributes ‘identification’ and ‘type identification’. The
‘identification’ attribute models the unique identification of the case in the information system.
The ‘type identification’ attribute models the unique identification of the case type to which the
case belongs. A ‘CASE’ entity has a relationship to one or more ‘OBJECT’ entities. An ‘OBJECT’
entity has one attribute ‘type identification’, which models the identification of the object type
to which the object belongs. The hierarchic relationship between objects is modelled by the
tree-relationship (see A.1) from entity ‘OBJECT’ to itself. Finally, an ‘OBJECT’ entity has a rela-
tionship to one or more ‘ATTRIBUTE’ entities with attributes ‘type identification’ and ‘value’.
The attribute ‘type identification’ models the unique identification of the attribute type to
which the attribute belongs, whereas the attribute ‘value’ models the value of the case attribute
in the case data.

CASE

OBJECT

ATTRIBUTE

identification

type identification

type identification

type identification

value

T

Figure 25 Object model of complex class ‘case’

When a case is modelled as a complex, the specification of the case data structure is modelled
as a case type complex of which the complex class is shown in Figure 26. The case type itself
is modelled by an entity ‘CASE TYPE’ with attributes ‘type identification’, ‘name’ and ‘descrip-
tion’. The attribute ‘type identification’ models the unique identification of a case type, which
is used in a case complex to reference the case type. The attributes ‘name’ and ‘description’
model the name and description of the case type in clear text. Each ‘CASE TYPE’ entity has a
relationship to one or more ‘OBJECT TYPE’ entities and the hierarchical relationship between
object types is modelled by the tree-relationship from entity ‘OBJECT TYPE’ to itself. An
‘OBJECT TYPE’ entity has five attributes: ‘type identification’, ‘name’, ‘description’, ‘status’ and
‘maximum repeats’. The ‘type identification’ attribute models the unique identification of the
object type, which is used in a case complex to reference the object type to which an object
belongs. The ‘name’ and ‘description’ attributes model the name and description of the object
type in free text. The ‘status’ attribute models the status of an object type in the object type
hierarchy, and is either ‘required’ or ‘optional’. If the status of an object type is ‘required’,
each ‘CASE’ complex must contain an ‘OBJECT’ simplex of this object type. Otherwise, the
‘OBJECT’ simplex of this type can be omitted from the ‘CASE’ complex. The ‘maximum repeats’
attribute models the maximum number of instances of the object type that is allowed. Both the
status and the maximum number of repeats of an object type are relative to the parent object
type. Each ‘OBJECT TYPE’ entity has a relationship to one or more ‘ATTRIBUTE TYPE’ entities
with attributes ‘type identification’, ‘name’, ‘description’, ‘status’ and ‘data type’. The ‘type
identification’ attribute models the unique identification of the attribute type, which is used in a
case complex to reference the attribute type to which an attribute belongs. The ‘name’ and ‘de-

A CONCEPTUAL FRAMEWORK FOR SERVICE CONTRACTING 55

scription’ attributes model the name and description of an attribute type in free text. The
‘status’ attribute models the status of an attribute type in the object type, and is either ‘re-
quired’ or ‘optional’. The ‘data type’ attribute models the data type of an attribute. Finally, if
the domain of an attribute type consists of a fixed set of values, the ‘ATTRIBUTE TYPE’ entity
has a relationship to a ‘CODE LIST’ entity which has two attributes ‘name’ and ‘description’.
These attributes model the name and description of a code list in free text. A ‘CODE LIST’ entity
has a relationship to one or more ‘CODE’ entities with attributes ‘value’, ‘name’ and ‘descrip-
tion’. The ‘value’ attribute models one of the possible code values. The ‘name’ and ‘descrip-
tion’ attributes model the name and description of the code in free text.

CASE TYPE

OBJECT TYPE

ATTRIBUTE TYPE

type identification

description

status

type identification

type identification

status

T

CODE

CODE LIST

maximum repeat

data type

descriprion

value

name

description

name

name

description

name

description

name

Figure 26 Object model of complex class ‘case type’

2.2.2 Services
It is possible that an organisation does not execute a task in its business process itself, but out-
sources the execution of the task to another organisation. In case of outsourcing of work, we
will call the execution of a task by another organisation a service that is provided. The service
is contracted by the service client and executed by the service provider. For instance, if a
manufacturer outsources the execution of a task ‘transport’ to a road carrier, the manufacturer
has the role of service client and the road carrier has the role of service provider. Services can
have a physical nature like the transport of a container or the delivery of materials. A service
can also have an abstract nature like the insurance of a consignment, the transfer of money
from one account to another or the custom declaration to get approval for exporting goods.

56 A CONCEPTUAL FRAMEWORK FOR SERVICE CONTRACTING

 Definition: service, service client, service provider
A service is the execution of a business process in one organisation with the objective
to execute a task in the business process of another organisation. The organisation that
executes the work is called the service provider. The organisation that contracts the
work is called the service client.

Outsourcing of tasks shows that the indivisibility of a task depends on the perspective of the
observer. If a task is outsourced by a superior to a subordinate, it is indivisible (atomic) for the
superior (the task is outsourced entirely or not at all) but the subordinate may look at it as com-
posed of a number of smaller tasks. An example of this is the task ‘transport’ which is outsour-
ced by a manufacturer to a carrier, who in turn sees the work as composed of the tasks ‘load-
ing’, ‘transport’ and ‘discharge’.

Business process

task

Service client

Service provider

outsourced task

Figure 27 Indivisibility of a task depends on the perspective

In general, organisations are designed to provide a limited set of service types to their custom-
ers. Their business process is designed to produce this limited set of service types in the most
efficient way. A transport company for instance may limit itself to the transport of containers
from the northern part of Holland to Rotterdam and back. A shipping line may limit itself to
container transport between Rotterdam and Asia. The behaviour of a service provider to service
clients is defined by the service types he is able to provide.

 Definition: service type
A service type is a set of services with identical type of results and with identical
structure of the service data. One service type can be offered by one or more service
providers. Each service provider can offer one or more service types.

Because the information system is responsible for controlling the business system, the infor-
mation system is also responsible for controlling the services used by the business system. For
this purpose, the information system needs a specification of the required service. The infor-
mation by which a service is represented in the information system is called the service data.

 Definition: service attribute, service data
A service attribute is an information element that describes a property of a service in
the information system. All service attributes of one service together are called the
service data of that service.

A CONCEPTUAL FRAMEWORK FOR SERVICE CONTRACTING 57

Service data consists of objects and attributes. The structure of the service data of one service
type is defined in terms of the allowed object types and attribute types. Services are modelled
as tokens of which the colour is defined as a complex. The complex class of a service token is
defined by the object model in Figure 28. The complex class contains an entity ‘SERVICE’ with
attributes ‘identification’, ‘type identification’, ‘case identification’, ‘provider identification’
and ‘client identification’. The attribute ‘identification’ models the identification of the service,
which must be unique in the relation between service client and service provider. The attribute
‘type identification’ models the unique identification of the service type to which the service
belongs. The attribute ‘case identification’ models the identification of the business case for
which the service is required. The attributes ‘provider identification’ and ‘client identification’
model the identification of the service provider and service client. The rest of the complex class
is similar to the case complex class defined Figure 25.

SERVICE

OBJECT

ATTRIBUTE

identification

type identification

provider identification

type identification

type identification

value

T

client identification

case identification

Figure 28 Object model of complex class ‘service’

A complex of complex class service type models the specification of a service type. The object
model of the service type complex class is defined in Figure 29. Each service type is modelled
by a ‘SERVICE TYPE’ entity with attributes ‘type identification’, ‘name’ and ‘description’. The
attribute ‘type identification’ models the identification of the service type which is unique in
the relation between one service client and one service provider. The ‘name’ and ‘description’
attributes model the name and description of the service type in free text. The remaining part of
the complex class is similar to the complex class that defines a case type from Figure 26.

58 A CONCEPTUAL FRAMEWORK FOR SERVICE CONTRACTING

OBJECT TYPE

SERVICE TYPE

description

name

type identification

T

type identification

description

name

ATTRIBUTE TYPE

type identification

description

CODE

CODE LIST

data type

value

name

description

name

description

name

Figure 29 Object model of the complex class ‘service type’

2.2.3 Transactions
The execution of services by service providers is controlled by information exchange between
the information systems of service client and service provider. Information is exchanged via
information objects called messages. To control the execution of a service one or more mes-
sages are exchanged, e.g. a request, a confirmation, status information and a report. We define
a transaction as the sequence of messages that is exchanged to control the execution of one
service. In this dissertation we will use the phrase ‘business transaction’ to distinguish from
other types of transactions, e.g. financial transactions or database transactions. However, when
we use just the word ‘transaction’, it always has the meaning of ‘business transaction’.

 Definition: message, message type, message data
A message is the smallest unit of information exchanged between the information sys-
tems of two organisations and consists of one or more information elements, which to-
gether are called the message data. A message type is a set of messages with identical
function and identical message data structure.

A CONCEPTUAL FRAMEWORK FOR SERVICE CONTRACTING 59

 Definition: transaction, superior, subordinate
A transaction is a sequence of messages exchanged between a service client and a
service provider to control the execution of one service. In each transaction, the service
client has the role of superior and the service provider has the role of subordinate.

There is a minimal set of information elements that must be present in all messages, which we
will call the message control attributes. This set consists of the following information ele-
ments:
• sender identification;
• receiver identification;
• message type identification;
• transaction identification.
The message attributes ‘sender identification’ and ‘receiver identification’ are required to
identify the actors involved in the business transaction. The message attribute ‘message type
identification’ is required to identify the function of the message in the business transaction
(e.g. ‘order’, ‘planning’ or ‘report’). The message attribute ‘transaction identification’ is re-
quired to identify the business transaction to which the message belongs. A transaction identi-
fication should be unique in the context of the relation between service client and service pro-
vider. All messages that belong to one business transaction must have the same transaction
identification.

We have seen that each message belongs to one message type and that one or more message
types can be used in a business transaction. In most cases the order in which message types are
exchanged is not entirely free, but must follow a pattern called the transaction protocol.

 Definition: transaction protocol, scenario
A transaction protocol defines the message types that can be exchanged in a business
transaction and the conditions to the order in which this can be done. One specific se-
quence of message types in a transaction is called a scenario. A transaction protocol
allows one or more scenario’s.

Although the transaction protocol and the underlying message types must be agreed upon by
the business partners involved in a business transaction, exceptions can occur if the specifica-
tion is not implemented correctly. In general, there are two types of errors:

 Definition: data error, protocol error
A data error occurs when a message is exchanged that does not conform to the defini-
tion of its message type. A protocol error occurs when a message is exchanged that is
not valid in its business transaction at that moment according to the transaction proto-
col.

The relationships between the concepts that are introduced in this section are shown in Figure
30. We have added the concepts ‘service type’ and ‘service’ to show the relationship between
‘transaction protocol’ and ‘service type’, and between ‘transaction’ and ‘service’.

60 A CONCEPTUAL FRAMEWORK FOR SERVICE CONTRACTING

Transaction Protocol Transaction

Actor

Message type Message

Service type Service

sender

receiver

superior

subordinate

client

provider

Figure 30 Relationships between business transaction concepts

Messages are modelled as tokens of which the colour is defined as a complex. The complex
class of a message token is defined by the object model in Figure 31. The complex class con-
tains an entity ‘MESSAGE’ with attributes ‘identification’, ‘type identification’, ‘transaction
identification’, ‘sender identification’ and ‘receiver identification’. The attribute ‘identifica-
tion’ models the identification of the message, which should be unique in the transaction. The
attribute ‘type identification’ models the unique identification of the message type to which the
message belongs. The attribute ‘transaction identification’ models the identification of the
transaction to which the message belongs. The rest of the complex class is analogous to the
‘case’ and ‘service’ complex classes defined in Figure 25 and Figure 28.

MESSAGE

OBJECT

ATTRIBUTE

identification

type identification

sender identification

type identification

type identification

value

T

receiver identification

transaction identification

Figure 31 Object model of complex class ‘message’

We will now discuss the structure of the message data. Since a service is specified by its serv-
ice data, both service client and service provider must at each time have the complete and up-
to-date service data at their disposal. However, service attributes are created and updated by the
service client as well as the service provider, and at different moments too. For instance, the
service attribute ‘requested date of delivery’ is created by the service client at the start of the
business transaction, whereas the service attribute ‘planned time of delivery’ is created by the
service provider after the route planning has been performed. To avoid miscommunication, it is

A CONCEPTUAL FRAMEWORK FOR SERVICE CONTRACTING 61

important that service client and service provider always have the same service data at their
disposal. This goal can only be obtained if service client and service provider notify the other
party of each relevant change in the service data. Concluding, messages in a business transac-
tion can be viewed as a means to synchronise the service data of service client and service pro-
vider. This is illustrated in Figure 32 where service client and service provider each have a
place containing service tokens. The service token at the client side is created by the service
contracting process, where after a message is sent to the provider to create the service token
there too. Here after, service client and service provider notify the other party by a message if
changes are made to the service data in order to make the same changes in the service token of
the other party. This exchange of messages makes it possible for service client and service pro-
vider to use consistent service data at all times.

initiate message

client update message

provider update message

c1 p1

c2 p2

c3 p3

client
service

data

provider
service

data

Se
rv

ic
e

co
nt

ra
ct

in
g

Se
rv

ic
e

fu
lfi

llm
en

t

Service client Service provider

Figure 32 Message are exchanged to synchronise service data

If messages in a business transaction are used for synchronisation of service data, the structure
of the message data can be defined as a subset to the structure of the service data. The structure
of the message data in a message depends on its message type which is modelled as a complex
of which the object model is given in Figure 33. The complex contains an entity ‘MESSAGE
TYPE’ with attributes ‘type identification’, ‘name’ and ‘description’. The attribute ‘type identi-
fication’ is a unique identification of the message type. The attributes ‘name’ and ‘description’
contain the name and description of the message type in clear text. The relationship between
the entities ‘MESSAGE TYPE’ and ‘SERVICE TYPE’ models the service type for which a message
type is used and the message types that can be used for a service type. A message type defines
the structure of its message data as a subset to the service data. Therefore, the entities ‘OBJECT
TYPE’ and ‘ATTRIBUTE TYPE’ are used to model the structure of the service data associated with
the service type. Both entities have only one attribute ‘type identification’, which is used as
references to the service type complex (see Figure 29). The entities ‘OBJECT TYPE USAGE’ and
‘ATTRIBUTE TYPE USAGE’ define the status in the message data model (required, optional, not
used) of each object type and attribute type in the service data model. The attribute ‘maximum
repeat’ of entity ‘OBJECT TYPE USAGE’ models the maximum number of instances allowed for
an object type.

62 A CONCEPTUAL FRAMEWORK FOR SERVICE CONTRACTING

OBJECT TYPE

ATTRIBUTE TYPE

type identification
status

type identification

SERVICE TYPE

maximum repeat

type identification

OBJECT TYPE USAGE

MESSAGE TYPE

type identification

name

status
ATTRIBUTE TYPE

USAGE

description

Figure 33 Object model of complex class ‘message type’

A transaction protocol defines conditions to the order of message types in a transaction. A
number of techniques can be used to define a transaction protocol. Frequently used techniques
are: message sequence charts, state transition diagrams and Petri nets. All three techniques
have a graphical representation and have their own advantages and disadvantages. The mes-
sage sequence chart [73, 101] models two or more actors, between which a sequence of mes-
sage types is exchanged. The actors are drawn as vertical bars, the message types are drawn as
arrows between the vertical bars. The order of the messages in the diagram, read from top to
bottom, represents the order of the messages in the transaction. An example of a message se-
quence chart is shown in Figure 34. Message sequence charts have the advantage of simplicity,
which allows easy communication with people. However, the formalism has limited expressive
power. It is therefore the appropriate technique to model a scenario.

Client Provider

Request reservation

Confirm reservation

Request commit

Status information

Report

Figure 34 Example of a message sequence chart (UML notation)

The second technique, state transition diagrams, has more expressive power. A state transition
diagram (or statechart diagram [101] in UML) consists of states and transitions between
states. A transition corresponds to the exchange of a message between actors involved in the
transaction. States are drawn as rectangles with rounded corners and transitions are drawn as
arrows from one state to another. The major advantage of a state transition diagram is the ca-
pability to model all possible orders of message types in a transaction, if the transaction proto-
col does not contain parallelism. Combined with a graphical representation that is still easy to

A CONCEPTUAL FRAMEWORK FOR SERVICE CONTRACTING 63

understand, this makes the technique a good choice to model transaction protocols without par-
allelism.

Idle Requested
Request reservation

No contract
Reject reservation

Reserved
Cancel reservation

Confirm reservation

Request commit

Contracted Status informationCompleted
Final report

Figure 35 Example of a state transition diagram (UML notation)

The third technique to define a transaction protocol is coloured Petri nets. This technique can
be used for transaction protocols that contain parallelism too. We will construct a Petri net for a
transaction protocol as follows. A transaction protocol is modelled as a process between the
superior and the subordinate of the transaction. Each actor has an input place for each message
type he can receive and an output place for each message type he can send. A message is a to-
ken that is produced in an output place of the sending actor and has a colour defined by the
object model in Figure 31. The transaction protocol consists of a place for each possible state
and a processor for each allowed message type. The tokens in the places that model the trans-
action state have a colour defined by the object model in Figure 36.

TRANSACTION
Transaction identification

Transaction superior

Figure 36 Object model of ‘transaction’ complex

The processor that models a message type has two input places: the state in which the message
type can be sent and the place in which the sending actor produces the message token. There
are also two output places: the state of the transaction after sending the message and the place
from which the receiving actor consumes the message token. Because multiple transactions can
be active simultaneously, each processor has a precondition. The precondition of a processor
that models a message from service client to service provider is:

 MESSAGE.transaction identification = TRANSACTION.transaction identification
 MESSAGE.sender identification = TRANSACTION.transaction superior

The precondition of a processor that models a message from service provider to service client
is:

 MESSAGE.transaction identification = TRANSACTION.transaction identification
 MESSAGE.receiver identification = TRANSACTION.transaction superior

64 A CONCEPTUAL FRAMEWORK FOR SERVICE CONTRACTING

Request

Service
Client

Service
Provider

Reject

Accept

requested

Figure 37 Example of a transaction protocol modelled as a Petri net

The example in Figure 37 shows a simple request / response protocol in which the response is
either an accept or a reject. In this example, the response of the service provider can be send at
any moment after the request has been made. In reality, there will be a need to specify a maxi-
mum period of time between the request and the response. If the response is not sent within this
time interval, a time out occurs and the transaction moves to a different state. This can be mod-
elled by adding an extra ‘time stamp’ attribute to the token colour which contains a time stamp
and by assuming that transitions marked with a symbol have access to a real time clock.
When the ‘request’ transition fires, it produces a token in place ‘requested’ of which the time
stamp attribute is equal to the current time. Transition ‘time out’ is enabled when the current
time is larger than the value of the ‘time stamp’ attribute of the token in the ‘requested’ place
incremented with the maximum delay. If a time out occurs, the ‘time out’ transition fires and
the transaction protocol moves to the end state. If no time out occurs, the ‘time out’ transition
will not fire because the transaction token is already consumed from place ‘requested’.

Request

Service
Client

Service
Provider

Reject

Accept

Timeout
requested

Figure 38 Example of time outs in a transaction protocol modelled as a Petri net

Finally, the information to create the transaction protocol Petri nets, used in this research, is
defined by a complex of which the object model is given in Figure 39.

A CONCEPTUAL FRAMEWORK FOR SERVICE CONTRACTING 65

TRANSACTION
PROTOCOL identification

TRANSITIONSTATEidentification
delay

identification

MESSAGE TYPE
USAGE

message type identification

sender role

to

from

Figure 39 Object model of complex class ‘transaction protocol’

2.3 Basic service contracting concepts
This section introduces the concept ‘service contracting’ (2.3.1) and discusses frame-
works for contracting processes found in literature (2.3.2). Section 2.3.3 describes the
structure of the rest of this chapter in which the conceptual framework for service
contracting is further developed.

2.3.1 Definitions
As we have seen in Chapter 1, the term ‘contracting’ is used for a variety of phenomena. This
research focuses on the type of contracting that emerges when one organisation outsources the
execution of one or more tasks in his business process to another organisation. In case of
outsourcing, there must be an agreement between service client and service provider in which
the mutual obligations are defined. We will use the term service contract for that purpose.

 Definition: service contract
A service contract is a commitment from a service provider to execute a specific serv-
ice for a service client, and the commitment of the service client to use the service exe-
cuted by the service provider.

Clearly, when a service client outsources a task to a service provider, he has to perform activi-
ties to establish the service contract, to monitor the execution of the service according to the
service contract and to maintain the service contract after it has been established (e.g. updates,
aborts). We will use the term service contracting for this activity.

 Definition: service contracting
Service contracting is the activity performed in the information system of a service cli-
ent which is directed at establishing service contracts for business cases in the infor-
mation system and monitoring and maintaining those service contracts thereafter.

The position of service contracting in an organisational system is illustrated in Figure 40.
Service contracting is an activity that consists of information processing only and is therefore
part of the information system of a service client. The information system of an organisation is
responsible for allocating resources to tasks in the business process of that organisation. It is
the specific responsibility of the service contracting process to find external resources for out-

66 A CONCEPTUAL FRAMEWORK FOR SERVICE CONTRACTING

sourced tasks in the business process. Service contracting processes communicate with the
information system of service providers via messages. There can be message exchange be-
tween service client and service provider which is not related to service contracting too.

Information
System

Information
System

messages

Business
System

services

Control signal Report signal

Business
System

Service Client Service Provider

Service
Contracting

Figure 40 Position of service contracting in an organisational system

This research aims at automating service contracting processes for which we want to use
workflow management and electronic commerce technology. For this reason, we will view the
service contracting process as a workflow, expressed as a sound WF-net. In the remaining part
of this research we will use the term contracting workflow, defined as follows.

 Definition: contracting workflow
A contracting workflow is a representation of a service contracting process in the form
of a sound WF-net.

It is important that a contracting workflow is sound for the obvious reasons of preventing
deadlocks and livelocks. Furthermore, the property of soundness also guarantees that in the
end-state one token is present in the sink place and all other places are empty. Because all in-
ternal places are empty, we can prove that after the workflow reaches the end-state, no actions
like sending or receiving messages will be performed any more and no changes to the state data
will be made.

In addition to establishing service contracts, service contracting also involves monitoring the
execution of the service thereafter. All monitoring activities are based on information received
from the service provider after the service contract is established (either spontaneously or on
request). The result of this monitoring activities can be the detection of a service contract vio-
lation, defined as follows.

 Definition: service contract violation, violation type
A service contract violation occurs when a service provider does not execute a con-
tracted service according to the service contract. A violation type is a class of service
contract violations with similar characteristics.

We will now introduce some properties of service contracting processes, which we will use to
demarcate the class of service contracting processes to which this research focuses. First, we
address the amount of information that is available to the service client. We distinguish be-
tween the situations of full knowledge and partial knowledge, which are defined as follows.
We will speak of full knowledge when a service client has access to the entire resource plan-
ning of its service providers. We will speak of partial knowledge when a service client has no
knowledge or partial knowledge of the availability of its service providers resources. This re-

A CONCEPTUAL FRAMEWORK FOR SERVICE CONTRACTING 67

search focuses on service contracting processes in situations of partial knowledge. This, and
the fact that external service providers are often autonomous organisations, implies that a
service client can not simply assign a task to a service provider but has to negotiate with the
service provider instead. A contract is established only if there is an offer made by the service
provider and an acceptance of the offer by the service client. Second, we will focus on the
complexity of service contracting processes and the associated service contracting strategy. For
this purpose, we make a distinction between simple service contracting processes and com-
pound service contracting processes. A service contracting process is simple if a business case
requires exactly one service of a specific type to be contracted. A service contracting process is
compound when two or more services must be contracted and it can not be divided into two or
more isolated simple service contracting processes. This research focuses on compound service
contracting processes, primarily because in these cases the service contracting process is not
trivial and the added value of a software component for service contracting is highest. Finally,
we will make a distinction between repeating and one-of-a-kind service contracting processes.
We will speak of a repeating service contracting process when a business case type has many
instances and each instance requires the same service contracting process to be executed. We
will speak of a one-of-a-kind service contracting process when each business case type has
only one instance or each instance requires a different service contracting process to be exe-
cuted. This research focuses on repeating service contracting processes, because automating
these kind of processes can bring a large efficiency gain to an organisation.

2.3.2 Frameworks
In Chapter one we have mentioned different types of inter-organisational processes, e.g. those
based on information sharing, capacity sharing, case transfer and contracting. This research
focuses on inter-organisational processes that emerge because of contracting, which means
buying products or services from a third party. We will now present examples of frameworks
for buying products or services found in literature. The examples are: Action Workflow,
DEMO and BAT.

• Action Workflow
Action Workflow can be seen as a generic framework for business between a customer and
a performer, and is the name of a supporting software tool. The transactions that occur in a
business process consist of four steps: preparation, negotiation, performance and accep-
tance. The preparation and negotiation steps aim at establishing a commitment to perform
an action. The performance and acceptance steps aim at establishing an agreement that the
action has been performed. In both parts there is negotiation aimed at mutual agreement of
what has to be established.

Customer Performer

Preparation Negotiation

Performance
Acceptance

Figure 41 Action Workflow transaction concept

68 A CONCEPTUAL FRAMEWORK FOR SERVICE CONTRACTING

• DEMO
DEMO (Dynamic Essential Modelling of Organisations) is motivated by the need to have a
theory about the dynamics of activities in organisations for the purpose of Information Sys-
tems analysis (Dietz [34]). The concept for business transactions that is part of DEMO is
shown in Figure 42.

1 2 3 4 5

I:
Request

E:
Promise Execution

E:
Declaration

I:
Acceptance

SW

OW

t1 t2 t3 t4 time

Fact

Requested Promised Declared Accepted

O-phase E-phase R-phase

Figure 42 DEMO transaction concept

The upper part of the figure contains the so called ‘transaction diagram’. Each rounded
square is a state in the transaction and the arrows are state transitions. A transaction consists
of three phases: the order phase (O-phase), the execution phase (E-phase) and the result
phase (R-phase). The figure shows the transactions in the System World (SW) and the Ob-
ject World (OW) too. The order phase starts at time t1 when the status ‘requested’ is
reached and ends at time t2 when the status ‘promised’ is reached. The result phase starts at
time t3 when the status ‘declared’ is reached and ends at t4 in the status ‘accepted’. In-
between the order phase and the result phase is the execution phase. The actor that performs
the ‘request’ action is called the initiator or superior of the transaction. The actor that per-
forms the ‘promise’ action is called the executor or subordinate of the transaction. All trans-
actions have one actor as superior and one actor as subordinate.

• Business as Action game Theory (BAT)
The Business as Action game Theory of Goldkuhl [56] describes a generic framework for a
business transaction between a supplier and a customer of products (goods or services). An
illustration of the generic business framework is given in Figure 43. Goldkuhl views the
business transaction as an interchange process between supplier and customer that involves
the creation and sustainment of business relations. Four different phases can be recognised
in a business transaction:
- proposal phase;
- commitment (contractual) phase;
- fulfilment phase;
- completion (acceptance/claim) phase.

A CONCEPTUAL FRAMEWORK FOR SERVICE CONTRACTING 69

SUPPLIER CUSTOMER

Capacity, know-how Problems, objectives

Offers
(available,
possible) Purchase interest

(inquiries, bids)

Needs

Confirm order
(= commitment

of delivery)
Contract

(mutual commitments)

Fulfil commitment
(delivery) Receive delivery

Fulfill commitment
(payment)

Invoice
(request of payment)

Receive payment

Supplier satisfaction
or

Supplier dissatisfaction
Claim

Acceptance

Claim management

Claim management

Customer satisfaction
or
Customer dissatisfaction

Order
(= request +

commitment to pay)

(Negotiation)

Claim management

Acceptance

Claim

Figure 43 Business as Action Theory transaction concept

The three examples of frameworks for business transactions found in literature share the idea
that business transactions consist of four phases:

• Phase 1: Specification
In the specification phase, the service client specifies the details of the service to be con-
tracted. Since a service is modelled in the information system by its service data, the speci-
fication phase is about creating the initial value of the service data with which the negotia-
tion phase starts. In fact, because each service requires a service provider to execute his
business process, the specification phase is in its essence the creation of a case token for the
workflow in the service providers information system.

• Phase 2: Negotiation
The negotiation phase aims at establishing a contract with a service provider for the speci-
fied service. This research focuses on service contracting processes in situations of partial
knowledge. This, and the fact that external service providers are often autonomous organi-
sations, implies that a service client can not simply assign a task to a service provider but
has to negotiate with the service provider instead. A contract is established only if there is
an offer made by the provider and an acceptance of the offer by the client. The negotiation
phase ends either with a contract after which the execution phase starts, or without contract
after which the process ends (failed).

70 A CONCEPTUAL FRAMEWORK FOR SERVICE CONTRACTING

• Phase 3: Execution
If a negotiation process resulted in a service contract, both service client and service pro-
vider will have to fulfil the commitments they entered in the contract. An important aspect
of the execution phase is the exchange of status information from service provider to service
client, used by the service client to monitor the fulfilment of the contract. This information
informs the client about the planned execution and/or actual execution of the service. A
typical example of status information is tracking and tracing information during a transport.
Status information can be send by the service provider spontaneously or as a response to a
request from the service client. The latter allows the service client to have a pro-active be-
haviour. The execution phase ends either with the completion of the execution after which
the acceptance phase starts, or it ends with an abortion of the execution after which the pro-
cess ends.

• Phase 4: Acceptance
The objective of the acceptance phase is to obtain a mutual agreement on the fulfilment of
commitments. The service provider declares the fulfilment of his commitments, the service
client accepts this declaration and settles the financial obligations towards the service pro-
vider. Settlement of financial obligations is however outside the scope of this research.
During the acceptance phase, information must be exchanged between service client and
service provider. At this point, mutual satisfaction is obtained and the transaction is com-
pleted.

 Specification Negotiation Execution Acceptance

Failed Aborted

Figure 44 Flow of service contracting processes

2.3.3 Structure of the rest of this chapter
A detailed framework for service contracting processes is given in the rest of this chapter, of
which the structure is illustrated in Figure 45. First, Section 2.4 addresses the specification of
interchange agreements between service clients and service providers (service types, transac-
tion protocols). There after, Section 2.5 addresses the specification of contracting requirements
for outsourced tasks in the internal workflow. Contracting requirements define which services
must be contracted for a specific business case and how these services must be contracted (e.g.
negotiation strategy). Next, Section 2.6 describes the structure of the contracting workflow as a
high level coloured Petri net. We will define standard transitions of which contracting
workflows can be composed. Furthermore, we will give rules by which the contracting
workflow can be generated from the interface agreements (2.4) and the contracting require-
ments (2.5).

A CONCEPTUAL FRAMEWORK FOR SERVICE CONTRACTING 71

a

b

c

d

Contracting Workflow

Service
Provider

Internal workflow

§2.4

§2.6

x y
Transaction
Protocols

Service
Provider

x y

Outsourced task §2.5

Figure 45 Elements of the conceptual framework

72 A CONCEPTUAL FRAMEWORK FOR SERVICE CONTRACTING

2.4 Specification of the interface agreements
Service providers and service clients are
autonomous organisations, for which we assume
no knowledge of each others business processes.
However, service contracting involves co-
operation between service client and service
provider via the mechanism of business transac-
tions. To make this co-operation possible, serv-
ice providers and service clients must have a
minimal set of agreements acting as interface
specification. A meta model for this interface
specification is given in this section.

2.4.1 Data model
The definition of the interchange agreements in terms of available services is a complex of
which the object model is given in Figure 46. The basis is the ‘SERVICE TYPE’ entity that mod-
els a service type as defined in Section 2.2.1. The ‘type identification’ attribute is a unique
identification of the service type. The ‘name’ attribute is a textual representation of the main
characteristics of the service type, e.g. ‘container road transport’. The ‘description’ attribute
models a detailed textual specification of the service type’s nature including conditions like
payment terms, etc. Finally, the ‘data model’ attribute defines the service data structure in the
form of a hierarchic data model consisting of entities, attributes, code lists and codes. In the
object model in Figure 46 we modelled a hierarchic data model as a single attribute ‘data
model’ to keep the object model simple. However, each time we use an attribute ‘data model’
in an object model, the attribute is in fact a complex of which the object model is given in
Figure 47.

Service types are offered to the market by service providers, modelled by the ‘SERVICE
PROVIDER’ entity. The ‘identification’ attribute contains a unique identification of the service
provider, whereas the ‘name’ attribute contains a textual representation of the service providers
identity. Finally, the attribute ‘URL’ models the web location where further details of service
provider like addresses, financial accounts, communication addresses, etc. can be found.

The relationship between service types and service providers is modelled by the
‘AVAILABILITY’ entity. The ‘constraints’ attribute models constraints to the service data and are
used to demarcate a class of services that can be contracted from a specific service provider.
Constraints can for instance be used to limit the available services to a specific geographic
area. For example, a transport company could impose the constraints “country of loading =
‘NL’ and country of delivery = ‘NL’” to offer transport services in the Netherlands to the
global market.

The ‘VIOLATION TYPE’ entity models a possible violation type for a service type. The ‘type
identification’ attribute is a unique identification of a violation type. The ‘name’ attribute mod-
els a textual representation of the nature of the violation type. Finally, the ‘constraints’ attrib-

A CONCEPTUAL FRAMEWORK FOR SERVICE CONTRACTING 73

ute models one or more constraints to the service data that are used to detect the occurrence of
a violation. A violation occurs when these constraints are not fulfilled. For example, a con-
straint “latest date of delivery >= actual date of delivery” can be used to detect a violation
type with name ‘delivery date exceeded’.

The co-ordination between service client and service provider takes place via a business trans-
action according to a transaction protocol. Because defining a transaction protocol from scratch
can be a complex task, we use patterns for transaction protocols. A transaction protocol pattern
is a transaction protocol with a generic structure in which message types have generic names.
A transaction protocol for a specific service type is defined by selecting a transaction protocol
pattern in which the generic message names are replaced by specific message names and by
defining a data model for each message type in the pattern as a subset of the service type data
model. A transaction protocol pattern is modelled by a ‘PROTOCOL PATTERN’ entity. The ‘iden-
tification’ attribute models the unique identification of the pattern and the ‘protocol definition’
attribute models the constraints on the sequence in which the message types are used during the
transaction. In order to keep the object model simple we used a single attribute ‘protocol defi-
nition’ which is in fact itself a complex of which the object model is given in Figure 39. A
message type used in a transaction protocol pattern is modelled by a ‘PATTERN MESSAGE TYPE’
entity. The ‘type identification’ attribute models the unique identification of the message type.
The ‘generic name’ attribute models a textual representation of the function and purpose of the
message type, stated in generic terms since we are dealing with a pattern. Examples of transac-
tion protocol patterns are given in Section 2.4.2.

The transaction protocol for a service type is modelled by a ‘TRANSACTION PROTOCOL’ entity.
The entity has no attributes of its own and refers to exactly one ‘SERVICE TYPE’ entity, exactly
three ‘PROTOCOL PATTERN’ entities and one or more ‘MESSAGE TYPE’ entities. The three rela-
tions to a ‘PROTOCOL PATTERN’ entity model the underlying negotiation, execution and accep-
tance protocol patterns. A ‘MESSAGE TYPE’ entity models a message type used in a transaction
protocol for a specific service type. It refers to exactly one ‘PATTERN MESSAGE TYPE’ entity and
has two attributes. The ‘name’ attribute models the specific name of the message type in the
context of the service type, e.g. ‘transport instruction’ instead of the generic name ‘request
contract’. The ‘data model’ attribute models the structure of the message data and is itself a
complex of which the object model is given in Figure 47. The data model of a message type
must be a subset of the data model of the corresponding service type. Furthermore, if a
‘PROTOCOL PATTERN’ entity has a relation to a ‘TRANSACTION PROTOCOL’ entity, we impose the
restriction that each ‘PATTERN MESSAGE TYPE’ entity related to the ‘PROTOCOL PATTERN’ entity
has a relation to exactly one ‘MESSAGE TYPE’ entity related to the ‘TRANSACTION PROTOCOL’
entity.

74 A CONCEPTUAL FRAMEWORK FOR SERVICE CONTRACTING

SERVICE TYPE
name

description

data model

AVAILABILITYSERVICE
PROVIDERname

type identification

identification

VIOLATION TYPEname

type identification

constraints

constraints

TRANSACTION
PROTOCOL

MESSAGE TYPE
data model

name

URL

PROTOCOL
PATTERN

identification

protocol definition

PATTERN
MESSAGE TYPE

type identification

name

generic name

Figure 46 Object model of the complex class ‘available services’

OBJECT TYPE

ATTRIBUTE TYPE

type identification

description

status
type identification

status

T

CODE

CODE LIST

maximum repeat

data type

descriprion

value

name

description

name

name

description

name

Figure 47 Object model of the complex class ‘data model’

A CONCEPTUAL FRAMEWORK FOR SERVICE CONTRACTING 75

A grammar for the ‘constraints’ attribute
The ‘constraints’ attribute defines constraints on a hierarchic data set of which the structure is
defined by a ‘data model’ attribute. A constraint is a Boolean expression in which attributes of
the input data set are operands. We will now present a simple grammar for expressing con-
straints as an example. If necessary, this grammar can be replaced by another one with more
expressive power. We will first define a grammar to reference a single attribute in a hierarchic
data set of which the structure is defined by a ‘data model’ attribute. An attribute is identified
by the attribute type name, prefixed by the entity type name. Because we allow an entity type
to occur on multiple locations in the hierarchy, we will use a vector of entity type names in-
stead of the name of a single entity type.

 Letter := <a-zA-Z>
 Digit := <0-9>
 Char := Letter | Digit | ‘_’ | ‘ ’
 Name := Char+

 EntityType := ‘[‘ Name ‘]’
 AttributeType := ‘(‘ Name ‘)’
 DataRef := EntityType+ AttributeType

Figure 48 Grammar for references to data attributes

For example, the following expression refers to the attribute type ‘name’ in entity type
‘CUSTOMER’ nested below root entity ‘ORDER’ of the case type.

 [ORDER] [CUSTOMER] (name)

We use this grammar for referencing attributes to build Boolean expressions of which the syn-
tax is defined by the element BoolExpr in Figure 49.

 Constant := Digit+ (‘.’ Digit+) | “’” Char+ “’”
 Opr1 := (‘+’ | ‘-‘ | ‘*’ | ‘/’ | ‘&’)
 Opr2 := (‘=’ | ‘<>’ | ‘>’ | ‘<’ | ‘>=’ | ‘<=’)
 Opr3 := (‘AND’ | ‘OR’) [‘NOT’]
 Expr := Constant | DataRef | ‘(‘ Expr Opr1 Expr ‘)’
 Comp1 := ‘(‘ Expr Opr2 Expr ‘)’
 Comp2 := DataRef ‘IN {‘ Constant (‘,’ Constant)* ‘}’
 BoolExpr := Comp1 | Comp2 | ‘(‘ BoolExpr Opr3 BoolExpr ‘)’

Figure 49 Grammar for constraints

A few examples of the use of constraints is given below. First, an example of a constraint used
for detecting a contract violation is given. The expression compares the planned date of deliv-
ery received from the service provider with the latest date of delivery created when the service
was specified.

[TRANSPORT] (planned date of delivery) <= [TRANSPORT] (latest date of delivery)

76 A CONCEPTUAL FRAMEWORK FOR SERVICE CONTRACTING

An example of a constraint used in the service type ‘AVAILABILITY’ entity is given next. The
expression imposes constraints on the length, width and height of a consignment and limits the
places of loading and delivery to locations in the Netherlands, Belgium or Luxembourg.

([TRANSPORT] [GOODS] (length) <= 5.0) AND
([TRANSPORT] [GOODS] (width) <= 2.8) AND
([TRANSPORT] [GOODS] (height) <= 2.2) AND
([TRANSPORT] [PLACE OF LOADING] (country) IN {‘NL’, ‘BE’, ‘LU’}) AND
([TRANSPORT] [PLACE OF DELIVERY] (country) IN {‘NL’, ‘BE’, ‘LU’})

2.4.2 Transaction protocol patterns
An essential part of the available service specification is the transaction protocol used for a
service type. Clearly, there is not a single transaction protocol common to all possible service
types. Differences in transaction protocols are likely to occur due to differences in legislation,
business model, fulfilment processes, etc. However, although we can not present a single trans-
action protocol for all services, we are able to define patterns for transaction protocols. These
patterns can be used to derive the actual transaction protocol by replacing the generic names of
message types with specific names. Since a transaction protocol encompasses the consecutive
negotiation, execution and acceptance phases, it can be seen as composed of three smaller
transaction protocols, one for each phase. In the rest of this section, we will present the patterns
per phase, starting with patterns for the negotiation phase.

 Definition: transaction protocol pattern
A transaction protocol pattern captures the underlying common structure of a set of
transaction protocols with different message types but identical dynamic behaviour. It
is used to derive specific transaction protocols by replacing the generic message type
names by specific ones.

The examples of negotiation patterns presented in this section are not taken randomly, but form
a coherent set of which the taxonomy is given in Figure 50.

A CONCEPTUAL FRAMEWORK FOR SERVICE CONTRACTING 77

Multiple non-binding offers

Root

Implicit accept Binding request Non-binding request

Binding offer Non-binding offer

Multiple binding offers Single non-binding offer

Non-binding counter offer

Single binding offer

Single counter offer Alternating counter offers

Figure 50 Taxonomy of negotiation patterns

Correctness criteria for transaction protocols
As we have seen before, we use high-level coloured Petri nets to model transaction protocols.
It is important that transaction protocol specifications must adhere to correctness criteria to
prevent anomalies in the message exchange between the parties involved in the contract. Es-
sential criteria are for instance the absence of deadlocks and livelocks. Furthermore, when the
transaction reached an end-state, it must not be possible to exchange any more messages in the
transaction. These criteria are covered by the soundness property of WF-nets. However, in their
original form the transaction protocols are not WF-nets. Therefore we define extensions to the
transaction protocol net after which we insist that the resulting net is a sound WF-net. First, we
impose the following constraints on negotiation, execution and acceptance protocols.

• A negotiation protocol contains no source place and exactly one sink place ‘committed’.

• An execution protocol contains one source place ‘committed’ and exactly one sink place
‘executed’.

• An acceptance protocol contains exactly one source place ‘executed’ and no sink place.

78 A CONCEPTUAL FRAMEWORK FOR SERVICE CONTRACTING

A transaction protocol WF-net is created from one negotiation protocol, one execution protocol
and one acceptance protocol as follows.

• Delete all places that model messages exchanged between service client and service pro-
vider.

• Add an extra source place ‘start’ and connect it to each transition in the negotiation proto-
col that has no inbound connector.

• Combine the sink place ‘committed’ in the negotiation protocol and the source place ‘com-
mitted’ in the execution protocol into one place ‘committed’.

• Combine the sink place ‘executed’ in the execution protocol and the source place ‘exe-
cuted’ in the acceptance protocol into one place ‘executed’.

• Add an extra sink place ‘end’ and connect it to each transition in the protocol that has no
outbound connector.

The resulting Petri net must be a sound WF-net.

Negotiation patterns

• Negotiation pattern: ‘implicit accept’
This negotiation pattern is used in situations where there is no explicit response by the
service provider to a request made by the service client. Instead, the contract is considered
to be established after the request has been made. Clearly, this variant can only be applied
under circumstances where the implicit accept is agreed in previous agreements or laws.

Request contract

Service
Client

Service
Provider

committed

Figure 51 The ‘implicit accept’ protocol pattern for the negotiation phase

• Negotiation pattern: ‘binding request’
This negotiation pattern is used in a situation where a service client makes a binding request
to a service provider, who responds by either accepting or rejecting the request. If the serv-
ice provider accepts the request, a service contract is established, after which the execution
protocol starts. If the service provider rejects the request, neither of the parties has a com-
mitment to each other and the transaction ends.

A CONCEPTUAL FRAMEWORK FOR SERVICE CONTRACTING 79

Request contract

Service
Client

Service
Provider

Reject contract

Accept contract

requested

committed

Figure 52 The ‘binding request’ protocol pattern for the negotiation phase

• Negotiation pattern: ‘single binding offer’
Instead of requesting a contract from a service provider directly, a service client can also re-
quest an offer from a service provider. Offers can be binding or non-binding. This negotia-
tion pattern is based on a single binding offer given by the service provider to the service
client. When the service provider receives a request for an offer, he either responds by
sending a notification that he will not make an offer (e.g. because he is not able to fulfil the
request) or he responds by sending an offer message. When the service client receives an of-
fer, he will either accept the offer after which a service contract is established and the exe-
cution phase starts, or he rejects the offer after which neither of the parties has a commit-
ment to each other and the transaction ends.

Request offer

Service
Client

Service
Provider

No offer

Offer

Reject offer

Accept offer

offer requested

offer made

committed

Figure 53 The ‘single binding offer’ protocol pattern for the negotiation phase

80 A CONCEPTUAL FRAMEWORK FOR SERVICE CONTRACTING

• Negotiation pattern: ‘single non-binding offer’
An extension to the ‘single binding offer’ pattern emerges when the service provider sends a
non-binding offer instead of a binding offer. This leaves the possibility that after the service
client accepted the offer the contract can still not be established, e.g. because the resources
required for the fulfilment have been exhausted in the period between sending the offer and
accepting it. The pattern is equal to the ‘single binding offer’ pattern, but has two additional
message types that can be received by the service client after he accepted the offer. The con-
firm accept message indicates that a service contract has been established and the execution
phase started. The reject accept message indicates that no contract could be established after
all which ends the transaction and leaves both parties without any obligation towards each
other.

Request offer

Service
Client

Service
Provider

No offer

Offer

Reject offer

Accept offer

Reject accept

Confirm accept

offer accepted

offer made

offer requested

committed

Figure 54 The ‘single non-binding offer’ protocol pattern for the negotiation phase

A CONCEPTUAL FRAMEWORK FOR SERVICE CONTRACTING 81

• Negotiation pattern ‘multiple binding offers’
An extension to the ‘single binding offer’ pattern is to allow the service provider to send
multiple binding offers instead of a single binding offer, in order to give the service client
alternatives to choose from. The negotiation pattern starts with a request from the service
client to the service provider. The provider answers either by sending an offer, or by sending
a notification that he will not send an offer. If the service provider sends one offer, he can
send an arbitrary number of additional offers thereafter. When the service client received
one or more offers, he evaluates them and either rejects all offers by sending a reject offers
message or he accepts the offer he finds ‘best’ by sending an accept offer message, which
contains a reference to the particular offer he is accepting. If the service client accepts an of-
fer, a service contract is established and the execution phase starts. Otherwise, the transac-
tion ends and leaves both parties without any obligation towards each other.

Request offer

Service
Client

Service
Provider

No offer

First offer

Additional offer

Reject offers

Accept offer

offer requested

offer made

committed

Figure 55 The ‘multiple binding offers’ protocol pattern for the negotiation phase

82 A CONCEPTUAL FRAMEWORK FOR SERVICE CONTRACTING

• Negotiation pattern: ‘multiple non-binding offers’
An extension to the ‘multiple binding offers’ pattern emerges when the service provider
sends non-binding offers instead of binding offers. This leaves the possibility that after the
service client accepted an offer the contract can still not be established, e.g. because the re-
sources required for the fulfilment have been exhausted in the period between sending the
offer and accepting it. The pattern is equal to the ‘multiple binding offers’ pattern, but has
two additional message types that can be received by the service client after he accepted the
offer. The confirm accept message indicates that a service contract has been established and
the execution phase started. The reject accept message indicates that no contract could be
established. However, the transaction returns to state ‘offer made’, in which the service cli-
ent can cancel the negotiation or accept another offer from the pool of offers received from
the service provider. In the same state, the service provider can send new offers to the serv-
ice client.

Request offer

Service
Client

Service
Provider

No offer

First offer

Additional offer

Reject offers

Accept offer

requested

offer made

committed

Reject accept

Confirm accept

accepted

Figure 56 The ‘multiple non-binding offers’ protocol pattern for the negotiation phase

A CONCEPTUAL FRAMEWORK FOR SERVICE CONTRACTING 83

• Negotiation pattern: ‘single binding counter offer’
An extension to the ‘binding request’ pattern is to allow the possibility of a binding counter
offer by the service provider as a third type of response to a direct request for a contract.
When the service provider makes a counter offer, the negotiation process enters a state in
which the service client can either accept or reject the counter offer and in which the service
provider can withdraw the counter offer. If the service client accepts the counter offer, a
service contract is established and the execution phase starts. Otherwise, the transaction
ends leaving both parties without any obligations towards each other.

Service
Client

Service
Provider

Reject contract

Accept contract

Counter offer

Accept offer

Reject offer

Withdraw offer

 contract requested

offer made

committed

Request contract

Figure 57 The ‘single binding counter offer’ protocol pattern for the negotiation phase

84 A CONCEPTUAL FRAMEWORK FOR SERVICE CONTRACTING

• Negotiation pattern: ‘alternating binding counter offers’
An extension to the ‘single binding counter offer’ pattern is to allow the possibility of a
counter offer to be followed by a different counter offer made by either the service client of
service provider. If a counter offer is made, it replaces all earlier made counter offers.
Hence, a maximum of one counter offer can be under consideration at each moment. The
party that made the current counter offer can replace it by a different counter offer or with-
draw it. The party that did not make the counter offer under consideration can either accept
it, reject it, or make a counter offer himself. If a party accepts an offer made by the other
party, a service contract is established and the execution phase starts. Otherwise, the trans-
action ends leaving both parties without any obligations towards each other.

Request contract

Service
Client

Service
Provider

Reject contract

Accept contract

Counter offer P

Accept offer P

Reject offer P

Withdraw offer P

Replace offer P

Counter offer C

Replace offer C

Accept offer C

Reject offer C

Withdraw offer C

Counter offer P

committed

offer by C

offer by P

contract requested

Figure 58 The ‘alternating binding counter offers’ protocol pattern for the negotiation phase

A CONCEPTUAL FRAMEWORK FOR SERVICE CONTRACTING 85

Execution phase patterns

For the execution phase, the following patterns are given as an example:

• Execution pattern: ‘silent execution’
This execution pattern is used in a transaction protocol when no messages are exchanged
during the execution phase. The state of the transaction protocol moves directly from
‘committed’ to ‘executed’.

Service
Client

Service
Provider

Dummy

committed

executed

Figure 59 The ‘silent execution’ protocol pattern for the execution phase

• Execution pattern: ‘single phase execution’
In this execution pattern, there is a state ‘committed’ in which the service provider can send
an arbitrary number of ‘intermediate status’ messages. The provider will eventually inform
the service client on the completion of the execution by sending a ‘final report’ message or
he will notify the client that the service could not be executed after all by sending an ‘abort
notification’ message after which the transaction ends.

Service
Client

Service
Provider

Intermediate status

Abort notification

Final report

committed

executed

Figure 60 The ‘single phase execution’ protocol pattern for the execution phase

86 A CONCEPTUAL FRAMEWORK FOR SERVICE CONTRACTING

• Execution pattern: ‘two phase execution’
In this execution pattern, we distinguish a phase in which execution of the service is pre-
pared followed by a phase in which the actual execution takes place. During the preparation
phase, the service provider can send an arbitrary number of planning information messages.
The preparation phase ends when the service provider informs the service client of the ac-
tual start of the execution. Here after, the service provider is no longer able to abort the
service execution. During the execution, the service provider can send an arbitrary number
of intermediate status reports. Eventually, the service provider will inform the service client
on the completion of the execution (either successful or not successful) by sending a ‘final
report’ message that describes the end state of the execution phase after which the accep-
tance phase starts.

Service
Client

Service
Provider

Planning information

Abort notification

Start notification

Final report

Intermediate status

executed

started

committed

Figure 61 The ‘two phase execution’ protocol pattern for the execution phase

A CONCEPTUAL FRAMEWORK FOR SERVICE CONTRACTING 87

• Execution pattern: ‘prepare to start / start’
This execution pattern is used when the actual execution of the service does not follow the
completion of the negotiation immediately, but is postponed to a later moment when the
service client explicitly triggers the service provider to start the execution.

Service
Client

Service
Provider

Intermediate status

Abort notification

Final report

started

executed

Permission to start

committed

Figure 62 The ‘prepare to start / start’ protocol pattern for the execution phase

Acceptance phase patterns

For the acceptance phase, we define the following two patterns as an example:

• Acceptance pattern: ‘silent accept’
It is possible that no message exchange occurs during the acceptance phase, because accep-
tance of the result is either implicit or handled via other channels.

Service
Client

Service
Provider

Dummy

executed

Figure 63 The ‘silent accept’ protocol pattern for the acceptance phase

88 A CONCEPTUAL FRAMEWORK FOR SERVICE CONTRACTING

• Acceptance pattern: ‘accept / reject result’
The acceptance phase starts when the service provider informs the service client of the
completion of the execution and of the end state of the execution. The service client re-
sponds either by sending an ‘accept result’ message, hereby releasing the service provider of
his contractual obligations, or he sends a ‘reject result’ message indicating he does not ac-
cept or partially accepts the result of the work executed by the service provider.

Service
Client

Service
ProviderAccept result

Reject result

executed

Figure 64 The ‘accept / reject result’ protocol pattern for the acceptance phase

2.5 Specification of contracting requirements
A service contracting process is executed for a busi-
ness case in the business process of an organisation
when this business process contains an outsourced
task. Each case belongs to a case type and each case
requires a specific set of services to be contracted.
This section addresses the specification of contract-
ing requirements that define which services must be
contracted for a business case and how they must be
contracted.

2.5.1 Definitions
We will use the term ‘contracting requirements’ for the information that defines which services
must be contracted for an outsourced task in the business process of an organisation and how
these services must be contracted. An important aspect of the contracting requirements is the
possibility that a service contracting process involves more services than must actually be con-
tracted for a specific business case. This can for instance be due to the fact that a specific serv-
ice is only required for some business cases, depending on the value of the case data. Further-
more, it is possible that a service is required only if another (preferred) service could not be
contracted (alternative service). These two examples illustrate that we can not simply refer to
all services involved in a service contracting process as required services. Instead, we will use
the term candidate services which is defined as follows.

A CONCEPTUAL FRAMEWORK FOR SERVICE CONTRACTING 89

 Definition: candidate service, candidate service type
A candidate service is a service of a specific service type and with specific service data
that is involved in the service contracting process for a specific business case. A can-
didate service type is a class of candidate services with similar characteristics defined
for a case type.

Each candidate service type corresponds with one service type and therefore with one transac-
tion protocol too. Although a transaction protocol defines constraints on the sequence of mes-
sage types used in one business transaction, it still leaves a degree of freedom for the service
client. The first example of this freedom is when the transaction protocol allows one of two
different message types to be sent in a specific state, e.g. an ‘accept offer’ message or a ‘reject
offer’ message. Furthermore, the service client has a free choice in creating the contents of
outgoing messages, e.g. the contents of a ‘counter offer’ message as a response to a counter
offer made by the service provider. Finally, when multiple service providers are available for
one service type, a service client can have multiple concurrent business transactions for one
required service. Although the transaction protocol defines constraints on the use of message
types in one transaction, it does not impose constraints on the interleaving of concurrent trans-
actions. Therefore, although a transaction protocol imposes constraints on the behaviour of a
service client in a business transaction, the behaviour of the service client is not entirely deter-
mined by the transaction protocol, but involves choices to be made by him. Clearly, when we
want to automate the service contracting process, we need a decision rule for every choice the
service client is encountered with during a business transaction. We therefore introduce the
notion of a contracting strategy, which defines the interleaving of concurrent business transac-
tions, the rules according to which a service client chooses between alternative branches in a
transaction protocol and the rules according to which the contents of outgoing messages is cre-
ated. For each transaction protocol pattern we can define one or more contracting strategies.

 Definition: contracting strategy
A contracting strategy defines the behaviour of a service client towards a service pro-
vider in a business transaction, within the constraints of the agreed transaction proto-
col.

We will use the term ‘contracting strategy’ (or just ‘strategy’) as a generic term for the decision
rules that govern the entire business transaction (negotiation, execution and acceptance). If we
refer to a specific part of a contracting strategy that applies to one contracting phase only, we
will use the terms ‘negotiation strategy’, ‘execution strategy’ and ‘acceptance strategy’. An
important part of a negotiation strategy is dealing with multiple service providers. At a high
level of abstraction, there are two types of negotiation strategies.

• Sequential exploration
In this approach, the service client always negotiates with one service provider at a time.
Before the negotiation starts, the service client ranks the available service providers ac-
cording to his preference. He then starts a negotiation with the first service provider on the
list. If this negotiation results in a contract, the process ends. Otherwise, a negotiation is
started with the next service provider on the list. The process ends when a contract is estab-
lished or when the list of available service providers is exhausted.

• Parallel exploration
In this approach, the service client negotiates with two or more service providers simultane-
ously. Clearly, since the negotiation task must end in exactly one service contract, this can

90 A CONCEPTUAL FRAMEWORK FOR SERVICE CONTRACTING

only be done in situations where a negotiation protocol is not based on a binding request by
the service client.

Contracting strategies are described in plain English. An example of a negotiation strategy for
the ‘multiple binding offer’ negotiation pattern is:

“Send a ‘request offer’ message to all available providers. Wait 60 seconds and rank the
received ‘offer’ messages according to increasing value of the message attribute ‘Total-
NetPrice’. If the value of the offer on top of the list is lower than the case attribute ‘Maxi-
mumPrice’, accept the offer and reject all other offers. Otherwise, reject all received of-
fers.”

Clearly, this negotiation strategy is used for a very specific business situation. However, it is
possible to distinguish a generic structure behind different strategies, which we will call the
strategy type.

 Definition: strategy type, parameter type
A strategy type is a class of strategies with similar characteristics. It has the form of a
strategy and uses one or more parameter types as placeholders for actual values. A
strategy is derived from a strategy type by assigning a parameter value to each pa-
rameter type.

An example of a negotiation strategy type, which is the basis for the negotiation strategy ex-
ample shown above is the following. The example uses three parameter types: P1, P2 and P3.

“Send a ‘request offer’ message to all available providers. Wait <P1> seconds and rank
the received ‘offer’ messages according to increasing value of message attribute <P2>. If
the value of the offer on top of the list is lower than the case attribute <P3>, accept the of-
fer and reject all other offers. Otherwise, reject all received offers.”

2.5.2 A data model for contracting requirements
The relationship between the concepts ‘protocol pattern’, ‘strategy type’ and ‘parameter type’
is defined in Figure 65.

PROTOCOL
PATTERN

identification

protocol definition

STRATEGY
TYPE

type identification

name

description

type identification

description

name

PARAMETER
TYPE

Figure 65 relationship between protocol patterns, strategy types and parameter types

Having defined the concepts of strategy and strategy type, we can define the contracting re-
quirements in a complex of which the object model is given in Figure 66.

A CONCEPTUAL FRAMEWORK FOR SERVICE CONTRACTING 91

CASE TYPE

type identification

CANDIDATE
SERVICE TYPE

type identification

trigger

SELECTED
PROVIDERpreference

constraints

data model

STRATEGY

identification

type identification

SELECTED
VIOLATION TYPE

type identification

parameter data

STRATEGY
PARAMETERexpression

type identification

name

description

constraints

service type identification

specification rules

EN A

Figure 66 Object model of the complex class ‘contracting requirements’

The basis for the contracting requirements parameter is a ‘CASE TYPE’ entity, for which we al-
ready defined an object model in Figure 26. As has been explained before, in order to keep the
object model in Figure 66 simple, we modelled the hierarchic data model of the case data by a
single attribute ‘data model’. Furthermore, we added a ‘constraints’ attribute to model con-
straints on the case data that must be fulfilled by all business cases that are handled by a service
contracting process. A ‘CANDIDATE SERVICE TYPE’ entity models a candidate service type in-
volved in the service contracting process belonging to a case type. The ‘type identification’
attribute models the unique identification of the candidate service type. The ‘service type iden-
tification’ attribute models the service type on which the candidate service type is based and is
a reference to a ‘SERVICE TYPE’ entity in the available services definition (Figure 46). The
‘specification rules’ attribute defines a data transformation operation of which the result is the
service data with which the negotiation process starts. The ‘constraints’ attribute can be de-
fined for a candidate service type that must be contracted only when one or more constraints
are fulfilled. If there is a constraint on the order in which different candidate services must be
contracted, the ‘trigger’ attribute is used to model the events that together form a precondition
on the contracting process for candidate services belonging to the candidate service type.

The ‘SELECTED PROVIDER’ entity models a service provider to be used in the contracting proc-
ess for candidate services belonging to the candidate service type. The ‘identification’ attribute
is a reference to a ‘SERVICE PROVIDER’ entity in the available services definition (Figure 46).
The ‘preference’ attribute is used to rank the selected service providers according to preference
and is an integer from the range 1, 2, 3, …

The ‘SELECTED VIOLATION TYPE’ entity models a violation type defined for the corresponding
service type as relevant for the candidate service type. The ‘type identification’ attribute is a

92 A CONCEPTUAL FRAMEWORK FOR SERVICE CONTRACTING

reference to a ‘VIOLATION TYPE’ entity in the available services definition (Figure 46). The ‘pa-
rameter data’ attribute contains the values for parameters used in the constraints by which the
violation type can be detected.

The ‘STRATEGY’ entity models a negotiation, execution or acceptance strategy for the candidate
service. The ‘type identification’ attribute is a reference to a ‘STRATEGY TYPE’ entity (see
Figure 65). The ‘STRATEGY PARAMETER’ entity models the value for a parameter type in the
strategy type. The ‘type identification’ attribute is a reference to a ‘PARAMETER TYPE’ entity
and the ‘expression’ attribute models the actual parameter value.

A grammar for the ‘specification rules’ attribute
As we have seen in Section 2.3.2, the first phase of a contracting process involves the specifi-
cation of the service data of the required service. The object model in Figure 66 contains an
attribute ‘specification rules’ that defines a data transformation function of which the result is
the service data of the candidate service. We will now address the input of this transformation
function and the consequences for the conditions under which the function can be applied. In-
put for the specification rules that generate service data is:
• case attributes;
• service attributes of already contracted services.
If a transformation function is expressed in terms of case attributes only, it is possible to spec-
ify the service data at the start of the service contracting process as a whole. If a specification
rule uses one or more service attributes, it always concerns service attributes of which the value
becomes known to the service client during the negotiation and/or the execution phase (other-
wise, the information would be available as case attribute). Consequently, it is not possible to
specify the service data at the start of the service contracting process. Instead, the service data
can only be specified after the value of the service attributes used in the specification rules has
become available. An example of the use of a service attribute in the specification rules in-
volves booking a flight to London and a rental car at the airport of destination. Since London
has different airports, the airport of destination depends on the flight that is selected and
booked by the service client. However, the service data of the rental car service requires the
airport where the car will be picked up. Therefore, the specification rules that are used to gen-
erate the service data of the rental car candidate service uses the ‘airport of destination’ service
attribute from the flight service.

We will now define a grammar for the specification rules used to create the initial value of
service data. Again, the presented grammar has a limited expressive power, but can be replaced
by another grammar if required. A specification rule consists of one or more assignments in
which the left-hand side is a reference to a service attribute and the right-hand side is an ex-
pression in which case attributes and service attributes of earlier contracted services for the
same business case can be operands. The grammar uses the grammar for constraints in Figure
48 and Figure 49 with one extension. This extension is required because the input of the speci-
fication rules consists of multiple hierarchic data sets: the case data and the service data of
other candidate services. Therefore, we prefix each attribute reference with a reference to the
data set it comes from. Since each service contracting process relates to exactly one business
case, we can use the prefix ‘CASE:’ to reference the case data in a service contracting process.
Furthermore, since each candidate service type has its own unique identification, the service
data of a candidate service can be referenced by using its type identification as prefix.

A CONCEPTUAL FRAMEWORK FOR SERVICE CONTRACTING 93

 DataRef := (‘CASE’ | Name) ‘:’ (EntityType)+ AttributeType
 Assignment := DataRef ‘=’ Expr (‘|’ Expr)*
 SpecRules := Assignment*

Figure 67 Grammar for specification rules

We will give some examples to illustrate the use of the grammar. The simplest example is the
assignment of a constant to a service attribute, e.g.:

Pre-carriage : [TRANSPORT] [PLACE OF LOADING] (name) = ‘Industrieweg 34’

It is also possible to assign the value of a case attribute to a service attribute, e.g.:

Pre-carriage : [TRANSPORT] (date of delivery) =
 CASE : [ORDER] (requested delivery date)

The right hand side of the assignment can also be an expression of two or more case attributes,
e.g. a string concatenation:

Pre-carriage : [PLACE OF DELIVERY] (address) =
 CASE : [ORDER] [CUSTOMER] (street) & ‘ ‘ &
 CASE : [ORDER] [CUSTOMER] (number)

An example of a specification rule in which a service attribute is created based on a service
attribute in an earlier contracted service is:

Main-carriage : [TRANSPORT] (earliest date of loading) =
 Pre-carriage : [TRANSPORT] (planned date of delivery)

Finally, an assignment can contain the ‘|’ operator. When an assignment has the form ‘a | b | c |
…. ‘ the processor that executes it will evaluate the expressions a, b and c from left to right. It
will return the value of the first expression that is not empty. This construct can for instance be
used when the service data of a candidate service depends on an earlier contracted service, for
which two or more alternative candidate service types are defined.

Main-carriage : [TRANSPORT] (earliest date of loading) =
 Pre-carriage1 : [TRANSPORT] (planned date of delivery) |

 Pre-carriage2 : [TRANSPORT] (planned date of delivery)

A grammar for the ‘constraints’ attribute
The ‘constraints’ attribute of a ‘CANDIDATE SERVICE TYPE’ entity is used to model whether a
candidate service is required or not for a specific business case depending on the case data of
the business case. For example, a service of type ‘insurance’ may be required only for business
cases of which the insured value exceeds a minimum value. Likewise, if external logistics is
outsourced to service providers, a business case with a domestic delivery address may require
different services than a business case with a foreign delivery address. So, the constraints on a

94 A CONCEPTUAL FRAMEWORK FOR SERVICE CONTRACTING

candidate service type can be used to contract different services depending on differences in
case data. The grammar of the ‘constraints’ attribute is already defined in Figure 49.

A grammar for the ‘trigger’ attribute
The role of the ‘trigger’ attribute is to start the contracting process for a candidate service at
the right moment, or maybe not at all. When multiple candidate services are involved in a
service contracting process, the contracting process for each particular candidate service must
be triggered at one of the following events, or a combination of these events:
• the start of the entire service contracting process;
• the negotiation for another service ended with a contract (committed);
• the negotiation for another service ended without a contract (failed);
• the execution of another service was completed (completed);
• the execution of another service was aborted (aborted);

A trigger is a Boolean expression in which the events listed above are operands. An event is the
completion of a contracting phase with a certain end-state. It is defined by the type identifica-
tion of the candidate service, the identification of the contracting phase and the identification of
the end-state. Therefore, the grammar of a ‘trigger’ attribute is defined by the element ‘Trig-
ger’:

Event := ServiceId ‘=’ (‘COMMITTED'|‘FAILED’|‘COMPLETED’|‘ABORTED’)
CompositeEvent := Event | ‘(‘ CompositeEvent Opr3 CompositeEvent ‘)’
Trigger := ServiceId ‘:’ (‘NEGOTIATION’ | ‘EXECUTION’)

‘AFTER’ CompositeEvent

Figure 68 Grammar for the ‘trigger’ attribute

We will give a number of examples to illustrate the use of the grammar. The first example
shows a trigger for a candidate service ‘transport’ where two candidate services ‘order1’ and
‘order2’ must have resulted in a service contract before the contracting process of the ‘trans-
port’ candidate service starts.

Transport : NEGOTIATION AFTER
 (Order1 = COMMITTED AND Order2 = COMMITTED)

Another example shows a trigger for a candidate service type ‘order2’ which is an alternative
for another candidate service ‘order1’:

Order2 : NEGOTIATION AFTER Order1 = FAILED

A ‘trigger’ attribute defines a sequence in the contracting phases of different candidate services
for one business case. There are two main reasons for modelling a sequential relationship be-
tween two candidate service types A and B.

• Data dependencies in specification rules
The specification of candidate service B requires a service attribute of candidate service A
that becomes available when the contract for candidate service A is concluded. A typical
example of such an attribute is the ‘earliest start time’ of B which is equal to the ‘promised

A CONCEPTUAL FRAMEWORK FOR SERVICE CONTRACTING 95

completion time’ of A. In those cases, the negotiation of candidate services A and B can not
be performed in parallel, but must be performed sequentially.

• Data dependencies in constraints
A candidate service B is required under conditions defined by the ‘constraints’ attribute of
the candidate service type. If this ‘constraints’ attribute uses a service attribute of another
candidate service A that becomes known when the service contract for candidate service A
is established, the ‘trigger’ attribute of candidate service B must indicate that candidate
service A must have been contracted first.

We will now focus on the situation where candidate services must be executed consecutively
and are therefore related by their start- and end-times. Clearly, a sequential approach in con-
tracting these candidate services is required. There is however a choice in the sequence used.

• Forward scheduling
Forward scheduling starts with specification and negotiation of the service that must be exe-
cuted first. The earliest start time is derived from the case data. During the negotiation phase
or the execution phase, the planned start time and planned completion time is received from
the service provider. This information is then used to specify the earliest start time of the
second service, etc.

1

2

3

4

A : Earliest t.o.l. A : Latest t.o.d.

A : Planned t.o.l. A : Planned t.o.d.

B : Earliest t.o.l. B : Latest t.o.d.

B : Planned t.o.l. B : Planned t.o.d.

Request contract

Accept contract

(Specify service data)

Request contract

(Specify service data)

Accept contract

Service
client

Provider
A

Provider
B

Figure 69 Example of forward scheduling

• Backward scheduling
Backward scheduling starts with specification and negotiation of the service that must be
executed last. The latest completion time is derived from the case data. During the negotia-
tion phase or the execution phase, the planned start time and planned completion time is re-
ceived from the service provider. This information is then used to specify the latest comple-
tion time of the service that must be executed previously, etc.

96 A CONCEPTUAL FRAMEWORK FOR SERVICE CONTRACTING

1

2

3

4

B : Earliest t.o.l. B : Latest t.o.d.

A : Planned t.o.l. A : Planned t.o.d.

A : Earliest t.o.l. A : Latest t.o.d.

B : Planned t.o.l. B : Planned t.o.d.

Request contract

Accept contract

(Specify service data)

Request contract
(Specify service data)

Accept contract

Service
client

Provider
A

Provider
B

Figure 70 Example of backward scheduling

2.6 Construction of the contracting workflow
A contracting workflow defines the structure and behav-
iour of a service contracting process. We will use high
level coloured Petri nets and functional data models as
modelling techniques for contracting workflows. This sec-
tion defines the structure of the contracting workflow,
standard building blocks of which the contracting
workflow can be composed and construction rules by
which the contracting workflow can be derived from the
available services (Figure 46) and the contracting re-
quirements (Figure 66).

2.6.1 Basic operations in service contracting processes
As we have seen in Chapter 1, workflow management is about separation of execution and
control. We will follow the same approach in this chapter, where we first define the state data
of service contracting processes and a set of standard operations on that state data (execution)
after which we use this result to define a workflow that invokes these standard operations in the
right order and with the right parameters (control). The structure of the state data in a service
contracting process is defined by Figure 71.

The basis of the state data is the entity ‘CASE’ that models a business case for which a service
contracting process is executed. The ‘identification’ attribute of the ‘CASE’ entity is a unique
identification for the business case. The case type to which a business case belongs is modelled
by the attribute ‘type identification’ which is a reference to a ‘CASE TYPE’ entity. The ‘status’
attribute contains a value from the set {‘accepted’, ‘rejected’} and indicates whether the case
data is valid and the service contracting process can be executed for this business case or not.
The ‘date’ and ‘time’ attributes model the date and time at which the service contracting proc-
ess started for the business case. Finally, the ‘data’ attribute contains the entire case data.

A CONCEPTUAL FRAMEWORK FOR SERVICE CONTRACTING 97

The ‘CANDIDATE SERVICE’ entity models a candidate service of a specific candidate service
type involved in the service contracting process for a specific case. The ‘type identification’
attribute is a reference to the corresponding ‘CANDIDATE SERVICE TYPE’ entity. The ‘provider
identification’ attribute is the unique identification of the service provider with which a con-
tract is established, and is filled when the negotiation phase ends successfully. The ‘status’
attribute indicates whether the candidate service is required or must be skipped. Finally, the
‘data’ attribute models the candidate service data which is filled for required candidate services
only.

The ‘AVAILABLE PROVIDER’ entity models a service provider from which the candidate service
can be contracted. The ‘identification’ attribute is a reference to a ‘SELECTED PROVIDER’ entity
related to the corresponding ‘CANDIDATE SERVICE TYPE’ entity. The ‘preference’ attribute de-
fines a ranking between available providers and is an integer 1, 2, 3, …

The ‘VIOLATION’ entity models a violation that occurred for a specific candidate service. The
‘type identification’ attribute refers to a ‘VIOLATION TYPE’ entity. The ‘date’ and ‘time’ attrib-
utes model the date and time at which the violation occurred.

The ‘TRANSACTION’ entity models a business transaction with the service provider identified by
the related ‘AVAILABLE PROVIDER’ entity and for the candidate service identified by the related
‘CANDIDATE SERVICE’ entity. The ‘identification’ attribute is a unique identifier for the business
transaction, assigned by the service client. The ‘state’ attribute models the state in the transac-
tion protocol the business transaction is in.

The ‘MESSAGE’ entity models a message in a business transaction. The ‘identification’ attribute
is a unique identifier for the message. The ‘type identification’ is a reference to the corre-
sponding ‘MESSAGE TYPE’ entity. The ‘date’ and ‘time’ attributes model the date and time at
which the message was created. The ‘direction’ attribute has the value ‘in’ if the message is
inbound and the value ‘out’ if the message is outbound (from the perspective of the service
client). The ‘status’ attribute has the value ‘accepted’ if the message data conforms to the mes-
sage type data model and has the value ‘rejected’ otherwise. Finally, the ‘data’ attribute con-
tains the entire message data.

98 A CONCEPTUAL FRAMEWORK FOR SERVICE CONTRACTING

CASE

identification

CANDIDATE
SERVICE

provider identification

type identification

data

TRANSACTION
identification

MESSAGE

identification

type identification

VIOLATION

type identification

state

data

date

type identification

AVAILABLE
PROVIDER

identification

preference

date

time

time

data

direction

status

status

value

status

date

time

Figure 71 State data of a service contracting process

The structure of the configuration data used by the standard operations in a service contracting
process is defined in Figure 72. The colour of this ‘configuration’ store is derived by joining
the relevant information from the ‘available services’ token in Figure 46 and the ‘contracting
requirements’ token in Figure 66.

A CONCEPTUAL FRAMEWORK FOR SERVICE CONTRACTING 99

CASE TYPE

type identification

CANDIDATE
SERVICE TYPE

type identification

constraints

SELECTED
PROVIDERpreference

specification rules

data model

SERVICE
TYPE

constraints

identification

type identification

data model

MESSAGE
TYPE

type identification

data model

SELECTED
VIOLATION TYPE

type identification

constraints

parameter data

STRATEGY
PARAMETERexpression

type identification

constraints

Figure 72 Configuration data used by the standard operations on the state data

We will now define the standard operations on the state data. Each operation has a name, one
or more parameters and a description of the actions that are performed on the state data.

• Operation: ‘validate case’
Parameters: P0: case identification
This operation is used to check the validity of a specific business case, before the actual
service contracting starts. First, the ‘CASE’ entity of which the ‘identification’ attribute
equals parameter P0 is selected. Next, the entity ‘CASE TYPE’ entity of which the attribute
‘type identification’ equals the attribute ‘type identification’ in the selected ‘CASE’ entity is
selected. If this ‘CASE TYPE’ entity does not exist, the value of the ‘status’ attribute in the
selected ‘CASE’ entity is changed to ‘rejected’. Otherwise, the ‘constraints’ attribute in the
selected ‘CASE TYPE’ entity is applied to the ‘data’ attribute of the selected ‘CASE’ entity. If
the constraints are not fulfilled, the value of the ‘status’ attribute in the selected ‘CASE’ en-
tity is changed to ‘rejected’. Otherwise the value of the ‘status’ attribute is changed to ‘ac-
cepted’.

100 A CONCEPTUAL FRAMEWORK FOR SERVICE CONTRACTING

• Operation: ‘determine candidate service status’
Parameters: P0: case identification

P1: candidate service type identification
This operation is used to check whether a specific candidate service type is required for a
specific business case or can be skipped. First, the ‘CASE’ entity of which the attribute
‘identification’ equals parameter P0 is selected. Next, the ‘CASE TYPE’ entity of which the
attribute ‘type identification’ equals the attribute ‘type identification’ in the selected ‘CASE’
entity is selected. To perform the check, the operation applies the ‘constraints’ attribute in
the ‘CANDIDATE SERVICE TYPE’ entity, of which the attribute ‘type identification’ equals pa-
rameter P1, to the ‘data’ attribute of the selected ‘CASE’ entity and the ‘data’ attribute of the
already existing ‘CANDIDATE SERVICE’ entities related to the selected ‘CASE’ entity. Here
after, a new ‘CANDIDATE SERVICE’ entity is created which is related to the selected ‘CASE’
entity and of which the ‘type identification’ attribute is equal to parameter P1. If the con-
straints are fulfilled, the ‘status’ attribute of the new ‘CANDIDATE SERVICE’ entity gets the
value ‘required’. Otherwise, the ‘status’ attribute of the new ‘CANDIDATE SERVICE’ entity
gets the value ‘skipped’.

• Operation: ‘specify candidate service data’
Parameters: P0: case identification

P1: candidate service type identification
This operation is used to assign an initial value to the ‘data’ attribute of a specific
‘CANDIDATE SERVICE’ entity, which represents the service data with which the negotiation
phase starts. First, the ‘CASE’ entity of which the ‘identification’ attribute equals parameter
P0 is selected. Second, the ‘CANDIDATE SERVICE TYPE’ entity of which the attribute ‘type
identification’ equals parameter P1 is selected. Thereafter, the ‘CANDIDATE SERVICE’ entity
related to the selected ‘CASE’ entity and the selected ‘CANDIDATE SERVICE TYPE’ entity is
selected. The ‘data’ attribute of the selected ‘CANDIDATE SERVICE’ entity is changed into the
result of applying the ‘specification rules’ attribute of the selected ‘CANDIDATE SERVICE
TYPE’ entity to the ‘data’ attribute of the selected ‘CASE’ entity and the ‘data’ attribute of all
other ‘CANDIDATE SERVICE’ entities related to the selected ‘CASE’ entity.

• Operation: ‘determine available providers’
Parameters: P0: case identification

P1: candidate service type identification
This operation is used to determine which service providers are available to start a negotia-
tion with for a specific candidate service. First, the ‘CASE’ entity of which the ‘identifica-
tion’ attribute equals parameter P0 is selected. Second, the ‘CANDIDATE SERVICE TYPE’ en-
tity of which the attribute ‘type identification’ equals parameter P1 is selected. Thereafter,
the ‘CANDIDATE SERVICE’ entity related to the selected ‘CASE’ entity and the selected
‘CANDIDATE SERVICE TYPE’ entity is selected. For each ‘SELECTED PROVIDER’ entity related
to the selected ‘CANDIDATE SERVICE TYPE’ entity the operation applies the ‘constraints’ at-
tribute to the ‘data’ attribute of the selected ‘CANDIDATE SERVICE’ entity. If the constraints
are fulfilled, a new ‘AVAILABLE PROVIDER’ entity is created related to the selected
‘CANDIDATE SERVICE’ entity. The ‘preference’ attributes of the created ‘AVAILABLE
PROVIDER’ entities form a sequence 1, 2, 3, …

A CONCEPTUAL FRAMEWORK FOR SERVICE CONTRACTING 101

• Operation: ‘create transaction’
Parameters: P0: case identification

P1: candidate service type identification
P2: provider identification

This operation is used to create a new business transaction for a specific candidate service
and service provider. First, the ‘CASE’ entity of which the ‘identification’ attribute equals
parameter P0 is selected. Second, the ‘CANDIDATE SERVICE’ entity related to the selected
‘CASE’ entity and of which the attribute ‘type identification’ equals parameter P1 is selected.
Finally, the ‘AVAILABLE PROVIDER’ entity of which the attribute ‘identification’ equals pa-
rameter P2 and which is related to the selected ‘CANDIDATE SERVICE’ entity, is selected. A
new ‘TRANSACTION’ entity, related to the selected ‘CANDIDATE SERVICE’ entity and the se-
lected ‘AVAILABLE PROVIDER’ entity, is created. The value of the ‘identification’ attribute is
a unique identifier and the value of the ‘state’ attribute is ‘start’.

• Operation: ‘create outbound message’
Parameters: P0: case identification

P1: candidate service type identification
P2: provider identification
P3: message type

This operation is used to create a new outbound message in an existing business transaction.
First, the ‘CASE’ entity of which the ‘identification’ attribute equals parameter P0 is se-
lected. Second, the ‘CANDIDATE SERVICE’ entity, related to the selected ‘CASE’ entity, and of
which the ‘type identification’ attribute equals parameter P1 is selected. Next, the
‘TRANSACTION’ entity, related to the selected ‘CANDIDATE SERVICE’ entity, and related to the
‘AVAILABLE PROVIDER’ entity of which the ‘identification’ attribute equals parameter P2 is
selected. Finally, the ‘MESSAGE TYPE’ entity of which the ‘type identification’ attribute
equals parameter P3 is selected. A new ‘MESSAGE’ entity is then created, related to the se-
lected ‘TRANSACTION’ entity, of which the ‘identification’ attribute is made equal to a
unique identifier, the ‘type identification’ attribute is made equal to parameter P3, the ‘di-
rection’ attribute is made equal to ‘out’ and the ‘date’ and ‘time’ attributes are made equal
to the current system date and time. The ‘data’ attribute of the new ‘MESSAGE’ entity is de-
rived by copying the entities and attributes referenced in the ‘data model’ attribute of the
selected ‘MESSAGE TYPE’ entity from the ‘data’ attribute of the selected ‘CANDIDATE
SERVICE’ entity.

• Operation: ‘store inbound message’
Parameters: P0: case identification

P1: candidate service type identification
P2: provider identification
P3: message type
P4: message data

This operation is used to store a received inbound message in its business transaction. First,
the ‘CASE’ entity of which the ‘identification’ attribute equals parameter P0 is selected. Sec-
ond, the ‘CANDIDATE SERVICE’ entity, related to the selected ‘CASE’ entity, and of which the
‘type identification’ attribute equals parameter P1 is selected. Next, the ‘TRANSACTION’ en-
tity, related to the selected ‘CANDIDATE SERVICE’ entity, and related to the ‘AVAILABLE
PROVIDER’ entity of which the ‘identification’ attribute equals parameter P2 is selected. Fi-
nally, the ‘MESSAGE TYPE’ entity of which the ‘type identification’ attribute equals parameter
P3 is selected. A new ‘MESSAGE’ entity is then created, related to the selected

102 A CONCEPTUAL FRAMEWORK FOR SERVICE CONTRACTING

‘TRANSACTION’ entity, of which the ‘identification’ attribute is made equal to a unique iden-
tifier, the ‘type identification’ attribute is made equal to parameter P3, the ‘direction’ attrib-
ute is made equal to ‘in’, the ‘date’ and ‘time’ attributes are made equal to the current sys-
tem date and time and the ‘data’ attribute is made equal to parameter P4.

• Operation: ‘process inbound message’
Parameters: P0: case identification

P1: candidate service type identification
P2: provider identification
P3: message identification

This operation is used to update the service data of a specific candidate service with the
message data of a specific inbound message. First, the ‘CASE’ entity of which the ‘identifi-
cation’ attribute equals parameter P0 is selected. Second, the ‘CANDIDATE SERVICE’ entity,
related to the selected ‘CASE’ entity, and of which the ‘type identification’ attribute equals
parameter P1 is selected. Finally, the ‘MESSAGE’ entity of which the attribute ‘identification’
equals parameter P3 is selected. Here after, he ‘data’ attribute of the selected ‘MESSAGE’
entity is used to update the value of the ‘data’ attribute of the selected ‘CANDIDATE SERVICE’
entity.

• Operation: ‘check for violations’
Parameters: P0: case identification

P1: candidate service type identification
This operation is used to check if the service data of a specific candidate service indicates
that a violation has occurred. First, the ‘CASE’ entity of which the ‘identification’ attribute
equals parameter P0 is selected. Second, the ‘CANDIDATE SERVICE TYPE’ entity of which the
attribute ‘type identification’ equals parameter P1 is selected. Thereafter, the ‘CANDIDATE
SERVICE’ entity related to the selected ‘CASE’ entity and the selected ‘CANDIDATE SERVICE
TYPE’ entity is selected. For each ‘SELECTED VIOLATION TYPE’ entity, related to the selected
‘CANDIDATE SERVICE TYPE’ entity, the operation applies the ‘constraints’ attribute in the
‘SELECTED VIOLATION TYPE’ entity to the ‘data’ attribute in the selected ‘CANDIDATE
SERVICE’ entity. If the constraints are not fulfilled, an entity ‘VIOLATION’ related to the se-
lected ‘CANDIDATE SERVICE’ entity is created and of which the ‘type identification’ attribute
is equal to the ‘type identification’ attribute of the ‘SELECTED VIOLATION TYPE’ entity.

• Operation: ‘determine message value’
Parameters: P0: case identification

P1: candidate service type identification
P2: message identification
P3: strategy parameter type identification

This operation is used to apply a function to the message data of an inbound message that
yields a value which is used in the contracting strategy, e.g. to be able to compare offers in
order to select the ‘best’ offer from a set of received offers. First, the ‘CASE’ entity of which
the ‘identification’ attribute equals parameter P0 is selected. Second, the ‘CANDIDATE
SERVICE TYPE’ entity of which the attribute ‘type identification’ equals parameter P1 is se-
lected. Thereafter, the ‘CANDIDATE SERVICE’ entity related to the selected ‘CASE’ entity and
the selected ‘CANDIDATE SERVICE TYPE’ entity is selected. Next, the ‘MESSAGE’ entity of
which the ‘identification’ attribute equals parameter P2 is selected. Finally, the ‘STRATEGY
PARAMETER’ entity related to the selected ‘CANDIDATE SERVICE TYPE’ entity and of which
the ‘type identification’ attribute equals parameter P3 is selected. The expression in attribute

A CONCEPTUAL FRAMEWORK FOR SERVICE CONTRACTING 103

‘expression’ in the selected ‘STRATEGY PARAMETER’ entity is then applied to the ‘data’ at-
tribute of the selected ‘MESSAGE’ entity and the ‘data’ attribute of the selected ‘CANDIDATE
SERVICE’ entity. The resulting value is then stored in the attribute ‘value’ of the selected
‘MESSAGE’ entity.

• Operation: ‘adjust candidate service data’
Parameters: P0: case identification

P1: candidate service type identification
P2: strategy parameter type identification

This operation is used to update the service data of a specific candidate service, in order to
create data for an outbound message that is not present in the service data yet. This opera-
tion is for instance used when a counter offer must be made according to the contracting
strategy. First, the ‘CASE’ entity of which the ‘identification’ attribute equals parameter P0
is selected. Second, the ‘CANDIDATE SERVICE TYPE’ entity of which the attribute ‘type iden-
tification’ equals parameter P1 is selected. Thereafter, the ‘CANDIDATE SERVICE’ entity re-
lated to the selected ‘CASE’ entity and the selected ‘CANDIDATE SERVICE TYPE’ entity is se-
lected. Finally, the ‘STRATEGY PARAMETER’ entity, related to the selected ‘CANDIDATE
SERVICE TYPE’ entity, and of which the ‘type identification’ attribute equals parameter P2 is
selected. The expression in attribute ‘expression’ in the selected ‘STRATEGY PARAMETER’
entity is then applied to the ‘data’ attribute of the selected ‘CANDIDATE SERVICE’ entity. The
value of the ‘data’ attribute of the selected ‘CANDIDATE SERVICE’ entity is then replaced by
the result of that transformation.

The create-read-update matrix in Figure 73 shows the relationship between the entities in the
state data and configuration data on one hand and the standard operations on the other hand.

 C
AS

E

 C
AN

D
ID

AT
E

SE
R

VI
C

E

 A
VA

IL
AB

LE
 P

R
O

VI
D

ER

 T
R

AN
SA

C
TI

O
N

 M
ES

SA
G

E

 V
IO

LA
TI

O
N

 C
AS

E
TY

PE

 C
AN

D
ID

AT
E

SE
R

VI
C

E
TY

PE

 S
EL

EC
TE

D
 P

R
O

VI
D

ER

 S
TR

AT
EG

Y
PA

R
AM

ET
ER

 S
EL

EC
TE

D
 V

IO
LA

TI
O

N
 T

YP
E

 S
ER

VI
C

E
TY

PE

 M
ES

SA
G

E
TY

PE

 validate case RU R
 determine candidate service status R CR R R
 specify candidate service data R RU R R R
 determine available providers R R C R R
 create transaction R R R C
 create outbound message R R R R C R R
 store inbound message R R R R C R R
 process inbound message R RU R R R R R
 check for violations R R C R R R
 determine message value R R RU R R R
 adjust candidate service data R RU R R R R R

Figure 73 Create-Read-Update matrix of standard operations in the service contracting process

104 A CONCEPTUAL FRAMEWORK FOR SERVICE CONTRACTING

2.6.2 The contracting workflow
In the previous section we have defined the basic operations of which a service contracting
process exists (execution). This section uses this basic operations to define a workflow that
models an entire service contracting process, and in which the basic operations are invoked
with the right parameters and in the right order (control).

We use high-level coloured Petri nets to model the contracting workflow, mainly because of
the formal basis that allows analysis techniques to be applied. On the highest level of abstrac-
tion, a contracting workflow is a system with the input and output places as shown in Figure
74. The contracting workflow has two input places, ‘start’ and ‘message in’ and two output
places, ‘end’ and ‘message out’. Because of this structure, the contracting workflow can never
be a workflow net according to the definition given before. As a consequence, we can not ap-
ply standard analysis techniques to prove important properties like soundness. Clearly, this is a
very undesirable situation. As we have stated in Section 1.4.4, one of the major issues in
interoperability between workflows in different organisations is to check the correctness of the
workflow, for example to prevent deadlocks. The solution to this problem is to consider the
contracting workflow without the places ‘message in’ and ‘message out’ and without the con-
nectors that connect transitions with these places. The resulting contracting workflow must
then be a sound WF-net.

start
Contracting workflow

end

message out message in

Figure 74 Input and output places of the contracting workflow

We will now define the colour of the places in the contracting workflow. First, the colour of
places that model messages between service client and service provider (‘message in’ and
‘message out’) is a complex of which the object model is defined in Figure 31. The configura-
tion data defined in Figure 72 is modelled by a store ‘configuration’ to which all transitions in
the contracting workflow have access. For this reason, we do not draw the connectors with the
‘configuration’ store in order to keep the Petri nets simple. Finally, the case data is modelled as
case tokens that flow through the contracting workflow. Each case is represented by one or
more (in case of parallelism in the contracting workflow) case tokens, and each case token
contains exactly one ‘CASE’ entity. The colour of a case token consists of a complex of which
the object model is given in Figure 71 extended with an entity ‘CONTROL’ that models the con-
trol data used by the transitions in the contracting workflow for routing purposes. Therefore,
the colour of a case token is a complex of which the object model is defined in Figure 75. The
white entities and attributes are used to model the state data in a service contracting process:
cases, candidate services, available providers, transactions, messages and violations. This in-
formation is persistent data and is relevant during the service contracting process and after the
service contracting process has ended (e.g. for monitoring purposes). The grey entities and at-
tributes are used in the contracting workflow as control information that is used only tempo-
rally. At the start of the service contracting process, the case token only contains a ‘CASE’ en-
tity and a ‘CONTROL’ entity of which all attributes are empty. During the service contracting
process, the state data is modified by applying the standard operations defined in Section 2.6.1.

A CONCEPTUAL FRAMEWORK FOR SERVICE CONTRACTING 105

CASE

identification

CANDIDATE
SERVICE

provider identification

type identification

data

TRANSACTION
identification

MESSAGE

identification

type identification

VIOLATION

type identification

state

data

date

type identification

time stamp

counter maximum

CONTROL

provider id

counter

last message id

optimal message id

AVAILABLE
PROVIDER

identification

preference

value

date

time

time

data

direction

status

status

value

status

value maximum date

time

Figure 75 Object model of the case token in the contracting workflow

We will now describe the function of the attributes in the ‘CONTROL’ entity. The ‘time stamp’
attribute is used to model timeouts in real-time contracting processes. The ‘counter’ and
‘counter maximum’ attributes are used as control variables for iterations (loops). The ‘value’
attribute is used to store the result of the last ‘determine message value’ operation, whereas the
‘value maximum’ attribute is used to store the current optimum value in an optimisation proc-
ess. The ‘provider id’ attribute is used in iterations on the list of available providers to store the
identification of the current provider. Finally, the ‘last message id’ attribute is used to store the
identification of the last received message, whereas the ‘optimal message id’ attribute is used
to store the identification of the message that yielded the ‘value maximum’ attribute.

106 A CONCEPTUAL FRAMEWORK FOR SERVICE CONTRACTING

2.6.3 Standard transitions for the contracting workflow
Before discussing contracting workflows that involve two or more candidate services, we will
describe a standard building block for contracting one candidate service. To define the struc-
ture of that building block, we will now concentrate on the consecutive steps in the process and
the possible results of these steps. Step one is to evaluate the constraints defined for the candi-
date service type, to decide whether the candidate service is required for a specific business
case or not. If a candidate service is required, the actual service contracting process is contin-
ued with four consecutive phases: specification, negotiation, execution and acceptance. The
specification phase has one possible outcome: the specified service data for the required serv-
ice. The negotiation phase has two possible outcomes, either the negotiation is completed suc-
cessfully and ends with a contract or the negotiation fails and ends without a contract. The exe-
cution phase has also two possible outcomes: either the execution is completed (with or with-
out violations) or the execution is aborted. Finally, the acceptance phase has exactly one possi-
ble outcome: the completion of the transaction (with or without claim). Concluding, the Petri
net that models the contracting process for one candidate service type is given in Figure 76.
The ‘establish contract’ system models the constraint checking, the specification phase and the
negotiation phase, whereas the ‘monitor contract’ system models the execution and the accep-
tance phase.

Establish
Contract

start

skipped

failed

Monitor
Contract

completed

committed

aborted

Figure 76 Petri net modelling of contracting one candidate service type

In the rest of this section we will define the structure of the ‘establish contract’ and ‘monitor
contract’ systems. We will define a number of standard transitions, from which these systems
can be composed. Two types of standard transitions are distinguished. The first type is formed
by the standard transitions that represent a standard operation on the state data defined in Sec-
tion 2.6.1. The second type is formed by the transitions that do not change the state data but are
used for the routing of tokens in the contracting workflow only. A first decomposition of the
systems ‘establish contract’ and ‘monitor contract’ is given in Figure 77.

A CONCEPTUAL FRAMEWORK FOR SERVICE CONTRACTING 107

Service
Provider

Negotiation
Negotiation

protocol

Specify

start

specified

failed
a

b

Determine status

required

skipped

Service
Provider

Execution

Acceptance

Execution
protocol

Acceptance
protocol

executed

c

d

e

f

committed

completed

aborted

Figure 77 Petri net modelling of system ‘establish contract’ and ‘monitor contract’

This Petri net in Figure 77 contains two standard transitions:

• Standard transition ‘determine status’
This standard transition invokes the standard operation ‘determine candidate service status’
and has the input and output places as shown in Figure 78. The transition has no precondi-
tion. When the transition fires, the standard operation ‘determine candidate service status’ is
invoked with the following parameters:

P0: case identification ‘identification’ in ‘CASE’
P1: candidate service type identification literal

This operation creates a new ‘CANDIDATE SERVICE’ entity in the state data. If the ‘status’ at-
tribute of the created ‘CANDIDATE SERVICE’ entity is equal to ‘required’, the case token is
produced in place ‘required’. Otherwise, the case token is produced in place ‘skipped’.

108 A CONCEPTUAL FRAMEWORK FOR SERVICE CONTRACTING

Determine
status

start

skipped

required

configuration

Figure 78 Standard transition ‘determine status’

• Standard transition ‘specify’
This standard transition invokes the standard operation ‘specify candidate service data’ and
has the input and output places as shown in Figure 79. The transition has no precondition.
When the transition fires, the standard operation ‘specify candidate service data’ is invoked
with the following parameters:

P0: case identification ‘identification’ in ‘CASE’
P1: candidate service type identification literal

The operation modifies the colour of the case token after which the case token is produced
in place ‘specified’.

Specify
required specified

configuration

Figure 79 Standard transition ‘specify’

In the following sections, we will discuss the structure of the transitions ‘negotiation’, ‘execu-
tion’ and ‘acceptance’. However, in order to be able to do this, we will first define standard
transitions of which these larger ‘negotiation’, ‘execution’ and ‘acceptance’ transitions can be
composed. We will first define the standard transitions that correspond to a standard operation
described in Section 2.6.1. There after, we will define standard transitions that do not change
the state data, but are used for the control flow only.

• Standard transition ‘determine available providers’
This standard transition invokes the standard operation ‘determine available providers’ and
has the input and output places as shown in Figure 80. The transition has no precondition.
When the transition fires, the standard operation ‘determine available providers’ is invoked
with the following parameter values:
P0: case identification ‘identification’ in ‘CASE’
P1: candidate service type identification literal

Determine
available providers

case in case out

configuration

Figure 80 Standard transition ‘determine available providers’

A CONCEPTUAL FRAMEWORK FOR SERVICE CONTRACTING 109

• Standard transition ‘create transaction’
This standard transition invokes the standard operation ‘create transaction’ and has the input
and output places as shown in Figure 81. The transition has no precondition. When the tran-
sition fires, the standard operation ‘create transaction’ is invoked with the following pa-
rameter values:
P0: case identification ‘identification’ in ‘CASE’
P1: candidate service type identification literal
P2: provider identification ‘provider id’ in ‘CONTROL’

Create
transaction

case in case out

configuration

Figure 81 Standard transition ‘create transaction’

• Standard transition ‘send <message type>’
This standard transition invokes the standard operation ‘create outbound message’ and has
the input and output places as shown in Figure 82. The transition has no precondition. When
the transition fires, the standard operation ‘create outbound message’ is invoked with the
following parameter values.
P0: case identification ‘identification’ in ‘CASE’
P1: candidate service type identification literal
P2: provider identification ‘provider id’ in ‘CONTROL’
P3: message type literal <message type>
After the operation is performed, the attributes of the ‘MESSAGE’ entity that has been created
in the case token are used to create a message token that is produced in place <message
type>.

Send
<message type>

case in case out

<message type>

configuration

Figure 82 Standard transition ‘send message’

110 A CONCEPTUAL FRAMEWORK FOR SERVICE CONTRACTING

• Standard transition: ‘receive <message type>’
This standard transition invokes the standard operation ‘store inbound message’ and has the
input and output places as shown in Figure 83. The transition has the following precondi-
tion: “the token in place ‘case in’ contains a ‘TRANSACTION’ entity of which the ‘identifica-
tion’ attribute is equal to the ‘transaction identification’ attribute in the ‘MESSAGE’ entity of
the token in place ‘<message type>’”. When the transition fires it consumes a token from
place ‘case in’ and from place ‘<message type>’, after which the standard operation ‘store
inbound message’ is invoked with the following parameter values.

P0: case identification ‘identification’ in ‘CASE’
P1: candidate service type identification literal
P2: provider identification ‘sender identification’ in ‘MESSAGE’
P3: message type ‘type identification’ in ‘MESSAGE’
P4: message data ‘data’ in ‘MESSAGE’

After the operation is performed, the ‘last message id’ attribute in the ‘CONTROL’ entity is
filled with the ‘identification’ attribute of the new ‘MESSAGE’ entity.

Receive
<message type>

case in case out

<message type>

configuration

Figure 83 Standard transition ‘receive message’

• Standard transition ‘process message’
This standard transition invokes the standard operation ‘process inbound message’ and has
the input and output places as shown in Figure 84. The transition has no precondition. When
the transition fires, the standard operation ‘process inbound message’ is invoked with the
following parameter values:
P0: case identification ‘identification’ in ‘CASE’
P1: candidate service type identification literal
P2: message identification ‘last message id’ in ‘CONTROL’

Process
message

case in case out

configuration

Figure 84 Standard transition ‘process message’

• Standard transition ‘check for violations’
This standard transition invokes the standard operation ‘check for violations’ and has the in-
put and output places as shown in Figure 85. The transition has no precondition. When the

A CONCEPTUAL FRAMEWORK FOR SERVICE CONTRACTING 111

transition fires, the standard operation ‘check for violations’ is invoked with the following
parameter values:
P0: case identification ‘identification’ in ‘CASE’
P1: candidate service type identification literal

Check for
violations

case in case out

configuration

Figure 85 Standard transition ‘check for violations’

• Standard transition ‘determine value’
This standard transition invokes the standard operation ‘determine message value’ and has
the input and output places as shown in Figure 86. The transition has no precondition. When
the transition fires, the standard operation ‘determine message value’ is invoked with the
following parameter values:
P0: case identification ‘identification’ in ‘CASE’
P1: candidate service type identification literal
P2: message identification ‘last message id’ in ‘CONTROL’
P3: strategy parameter type identification literal
After the operation is performed, the ‘value’ attribute in the ‘CONTROL’ entity is filled with
the ‘value’ attribute of the ‘MESSAGE’ entity of which the ‘identification’ attribute equals the
‘last message id’ attribute in entity ‘CONTROL’. Finally, the case token is produced in place
‘message values’ and in place ‘case out’.

Determine value
case in case out

message values

configuration

Figure 86 Standard transition ‘determine value’

• Standard transition ‘adjust specification’
This standard transition invokes the standard operation ‘adjust candidate service data’ and
has the input and output places as shown in Figure 87. The transition has no precondition.
When the transition fires, the standard operation ‘adjust candidate service data’ is invoked
with the following parameter values:
P0: case identification ‘identification’ in ‘CASE’
P1: candidate service type identification literal
P2: strategy parameter type identification literal

112 A CONCEPTUAL FRAMEWORK FOR SERVICE CONTRACTING

Adjust
specification

case in case out

configuration

Figure 87 Standard transition ‘adjust specification’

In addition to the standard transitions that create and change state data (candidate service,
transaction, message, etc.), we will now present standard transitions that do not change the
state data, but are used to control the flow of tokens only. These transitions modify the attrib-
utes of the ‘CONTROL’ entity that are used as parameters in consecutive transitions though. The
next two standard transitions are used for an iteration on the available providers.

• Standard transition ‘select first service provider’
This standard transition is used to fill the ‘provider id’ attribute of the ‘CONTROL’ entity
with the identification of the available provider with the highest preference. The input and
output places of the transition are shown in Figure 88. The transition has no precondition
and uses one parameter P1 with the identification of the candidate service type. When this
transition fires, it consumes a case token from place ‘case in’. Here after, the ‘AVAILABLE
PROVIDER’ entity of which attribute ‘preference’ equals 1 and which is related to the
‘CANDIDATE SERVICE’ entity of which attribute ‘type identification’ equals parameter P1 is
selected. If the entity exists, the ‘counter’ attribute of the ‘CONTROL’ entity is changed to 1
and the ‘provider id’ attribute of the ‘CONTROL’ entity is changed to the ‘identification’ at-
tribute of the selected ‘AVAILABLE PROVIDER’ entity. Here after, the case token is produced
in place ‘available’. If the searched ‘AVAILABLE PROVIDER’ entity does not exist, the case
token is produced in place ‘none available’.

Select first
service provider

case in

available

none available

configuration

Figure 88 Standard transition ‘select first service provider’

• Standard transition: ‘select next service provider’
This standard transition is used to fill the ‘provider id’ attribute of the ‘CONTROL’ entity
with the identification of the next available provider relative to the provider identified by the
‘provider id’ attribute in the ‘CONTROL’ entity. The input and output places of the transition
are shown in Figure 89. The transition has no precondition and uses one parameter P1 with
the identification of the candidate service type. When this transition fires, it consumes a case
token from place ‘case in’. Here after, the ‘AVAILABLE PROVIDER’ entity of which attribute
‘preference’ equals the attribute ‘counter’ in the ‘CONTROL’ entity incremented by 1 and
which is related to the ‘CANDIDATE SERVICE’ entity of which attribute ‘type identification’
equals parameter P1 is selected. If the entity exists, the ‘counter’ attribute of the ‘CONTROL’
entity is incremented by 1 and the ‘provider id’ attribute of the ‘CONTROL’ entity is changed
to the ‘identification’ attribute of the selected ‘AVAILABLE PROVIDER’ entity. Here after, the
case token is produced in place ‘available’. If the target ‘AVAILABLE PROVIDER’ entity does
not exist, the case token is produced in place ‘exhausted’.

A CONCEPTUAL FRAMEWORK FOR SERVICE CONTRACTING 113

Select next
service provider

case in

available

exhausted

configuration

Figure 89 Standard transition ‘select next service provider’

Another set of standard transitions is used for adding a time stamp to a case token and for sig-
nalling time outs. This is used to model the situation where the service client sends one or more
messages and waits a period of time in which messages from service providers can be received.

• Standard transition ‘add time stamp’
This standard transition is used to set the ‘time stamp’ attribute of the ‘CONTROL’ entity to
the current time. The transition has no precondition and uses no parameters. When the tran-
sition fires, it consumes a case token from place ‘case in’. Here after, the colour of the case
token is changed by making the ‘time stamp’ attribute of the ‘CONTROL’ entity equal to the
current time. There after, the token is produced in place ‘case out’.

Add
time stamp

case in case out

Figure 90 Standard transition ‘add time stamp’

• Standard transition ‘timeout’
This standard transition is used to model the expiration of a timer (time out). The transition
uses one parameter P1 that models the length of the delay and has the precondition “the
‘time stamp’ attribute of the ‘CONTROL’ entity of the token in place ‘case in’, incremented
with a delay P1, is equal to or earlier than the current time”. When the transition fires, it
consumes the token from place ‘case in’ and produces it in place ‘case out’.

Time out

case in case end

Figure 91 Standard transition ‘timeout’

2.6.4 The ‘negotiation’ transition
The structure of the ‘negotiation’ transition is not identical for all contracting processes. In-
stead it is determined by two factors: (i) the transaction protocol used in the negotiation phase
and (ii) the negotiation strategy used in combination with that transaction protocol. In this sec-
tion we will give examples of the structure of the ‘negotiation’ transition for a number of pro-
tocol patterns presented before: ‘implicit accept’, ‘binding request’ and ‘single binding offer’.
Before we give the examples, we will discuss correctness criteria for the ‘negotiation’ transi-
tion.

114 A CONCEPTUAL FRAMEWORK FOR SERVICE CONTRACTING

Correctness criteria
A ‘negotiation’ transition must suffice the following conditions in order to be used in a con-
tracting workflow:

1. The transition has one input place ‘specified’ of which the colour is defined by the object
model in Figure 75.

2. The transition has two output places ‘failed’ and ‘committed’ of which the colour is defined
by the object model in Figure 75.

3. The transition has one input place for each inbound message type in the negotiation trans-
action protocol. The colour of the places is defined by the object model in Figure 31.

4. The transition has one output place for each outbound message type in the negotiation
transaction protocol. The colour of the places is defined by the object model in Figure 31.

5. Create the workflow net as shown in Figure 92 by deleting the places that represent in-
bound and outbound messages from the ‘negotiation’ transition and by adding an extra
place ‘end’ and an extra OR-join transition ‘end’. This workflow net must be sound.

 EndNegotiation

specified

committed

failed

end

Figure 92 WF-net to prove correctness criterion 5

6. The behaviour of the ‘negotiation’ transition on its interface with service providers (places
that model inbound and outbound messages) conforms to the corresponding negotiation
transaction protocol. In other words, the ‘negotiation’ transition will never produce a token
in a place that models an outbound message that will not be consumed by the protocol
workflow. Similarly, a token produced by the protocol workflow in a place that models an
inbound message will always be consumed by the ‘negotiation’ transition. The correctness
criterion 6 can be proved analytically by constructing a workflow net like the one Figure 93
(if necessary with modifications depending on the structure of the negotiation protocol) and
proving its soundness. If the WF-net is not sound, an empirical approach must be followed.

 EndNegotiation

specified

committed

failed
end

……..

Negotiation
Protocol

Figure 93 WF-net to prove correctness criterion 6

A CONCEPTUAL FRAMEWORK FOR SERVICE CONTRACTING 115

Rationale
We will now give the rationale behind these correctness criteria. First, criteria 1-4 are used to
guarantee that the negotiation processes have a standardised interface (i.e. input places and
output places) so that they can be used in the contracting workflow net seamlessly. Criterion 5
is used to prove that the ‘negotiation’ transition behaves like an OR-split in the contracting
workflow. This property of the ‘negotiation’ transition can then be used later to prove that the
entire contracting workflow is sound. As we will see, even when a ‘negotiation’ transition be-
haves like an OR-split, it is not always possible to prove the soundness of the WF-net in Figure
92. A reason for this is for instance the use of a time stamp in preconditions. If this is the case,
we can use an empirical approach where we consider the ‘negotiation’ transition as a black box
and observe its behaviour as we feed it with all possible responses of service providers in the
transaction protocol. Finally, because each ‘negotiation’ transition is designed for a specific
negotiation protocol and negotiation strategy, we want to prove that the ‘negotiation’ transition
behaves according to the agreed negotiation protocol.

Example for negotiation pattern ‘implicit accept’
An example of the structure of the ‘negotiation’ transition in case of the ‘implicit accept’ ne-
gotiation pattern is given in Figure 94. All transitions are based on the standard transitions de-
fined before.

Send
‘request contract’

specified

Select first
service provider

committed failed

b

Create
transaction

c

Determine
available providers

a

request contract
-

Figure 94 A ‘negotiation’ transition for the ‘implicit accept’ pattern

The transition suffices correctness criteria 1-4. In order to prove correctness criterion 5, we
construct the workflow net shown in Figure 95 and analyse it with Woflan. The results of the
analysis shows that the workflow is sound and the ‘negotiation’ transition suffices correctness
criterion 5.

116 A CONCEPTUAL FRAMEWORK FOR SERVICE CONTRACTING

Send
‘request contract’

specified

Select first
service provider

committed

failed

b

Create
transaction

c

Determine
available providers

a

 End end

Figure 95 Structure of the WF-net to prove correctness criterion 5

In order to prove correctness criterion 6, we construct the workflow net shown in Figure 96 and
analyse it with Woflan. The result of the analysis shows that the workflow is sound and the
‘negotiation’ transition suffices correctness criterion 6.

Send
‘request contract’

specified

request contract

Select first
service provider

committed

failed

b

Create
transaction

c

Determine
available providers

a

Request contract

 End end

protocol endJoin

committed2

Figure 96 Structure of the WF-net to prove correctness criterion 6

A CONCEPTUAL FRAMEWORK FOR SERVICE CONTRACTING 117

Example for negotiation pattern ‘binding request’
An example of the structure of the ‘negotiation’ transition in case of the ‘binding request’ ne-
gotiation pattern is given in Figure 97. The process is based on a sequential approach and starts
by sending a ‘request contract’ message to the first available provider on the list. If the service
provider responds by sending a ‘reject contract’ message, or if the service provider does not
answer within a predefined time interval (defined in the negotiation strategy), a ‘request con-
tract’ message is sent to the next available service provider on the list. The process ends as
soon as an ‘accept contract’ message is received or when the list of available providers is ex-
hausted. All transitions are based on the standard transitions presented before.

Send
‘request contract’

specified

request contract

reject contract
Receive

‘reject contract’

Select first
service provider

Select next
service provider

accept contract

f

Timeout

committed failed

b

e

Create
transaction

c

Receive
‘accept contract’

Add
time stamp

d

Determine
available providers

a

Process
message

g

Figure 97 A ‘negotiation’ transition for the ‘binding request’ negotiation pattern

118 A CONCEPTUAL FRAMEWORK FOR SERVICE CONTRACTING

In order to prove correctness criterion 5 for this ‘negotiation’ transition, we construct the WF-
net shown in Figure 98 and check the soundness property with Woflan. The analysis shows that
the WF-net is not sound. The reason for this is the ‘timeout’ transition, for which we have de-
fined a precondition that uses the real time clock. Since the analysis techniques do not take into
account these preconditions, soundness can not be proven. However, if we delete the ‘timeout’
transition, the WF-net is sound. With this result, we can reason that if the timeout period is
longer than the maximum response time between the ‘request contract’ message and the ‘ac-
cept contract’ and ‘reject contract’ messages, the ‘negotiation’ transition still behaves like an
OR-split as defined in correctness criterion 5.

Send
‘request contract’

specified

Receive
‘reject contract’

Select first
service provider

Select next
service provider

f

Timeout

committed failed

b

e

Create
transaction

c

Receive
‘accept contract’

Add
time stamp

d

Determine
available providers

a

Process
message

g

End

end

Figure 98 Structure of the WF-net to prove correctness criterion 5

A CONCEPTUAL FRAMEWORK FOR SERVICE CONTRACTING 119

In order to prove correctness criterion 6, we construct the workflow net shown in Figure 99
(transition ‘timeout’ excluded) and analyse it with Woflan. The result of the analysis shows
that the workflow is sound and the ‘negotiation’ transition suffices correctness criterion 6.

Send
‘request contract’

specified

request contract

reject contract
Receive

‘reject contract’

Select first
service provider

Select next
service provider

accept contract

f

Timeout

committed failed

b

e

Create
transaction

c

Receive
‘accept contract’

Add
time stamp

d

Determine
available providers

a

Process
message

g

Request contract

Reject contract

Accept contract

requested

End

end

Figure 99 Structure of the WF-net to prove correctness criterion 6

Negotiation procedure for negotiation pattern ‘single binding offer
When the negotiation process is based on the ‘single binding offer’ pattern, the structure of the
‘negotiation’ transition is as given in Figure 100. The process starts by sending a ‘request of-
fer’ message to all available providers. Here after, the responses received from the service pro-
viders are evaluated after which the ‘best’ offer is selected and accepted. The other received
offers are then rejected. If an offer is accepted, the process ends by producing a token in place
‘committed’. If no offer is accepted (or when no offer is received), the process ends by pro-
ducing a token in place ‘failed’. All transitions in Figure 100 are based on standard transitions,
except transitions ‘choose response’ and ‘end’.

120 A CONCEPTUAL FRAMEWORK FOR SERVICE CONTRACTING

Send
request offer

request offer

c

offer
Receive

offer

accept offer

failedcommitted

e

no offer
Receive
no offer

Add
time stamp

f

h Determine
value g

Timeout

l

Choose
response

End

k

i

Send
Accept offer

reject offer
Send

Reject offer

specified

Select first
service provider

Select next
service provider

Create
transaction

Determine
available providers

a

b

d

j

Process
message

Figure 100 A ‘negotiation’ transition for the ‘single binding offer’ negotiation pattern

A CONCEPTUAL FRAMEWORK FOR SERVICE CONTRACTING 121

The ‘negotiation’ transition suffices correctness criteria 1-4. However, we can not prove the
correctness criteria 5 and 6 analytically because the workflow nets for which we must prove
the soundness property contains a number of transitions with a precondition in which a time
stamp or a counter is used. It is therefore necessary to prove the characteristics in an empirical
way.

2.6.5 The ‘execution’ transition
The structure of the ‘execution’ transition depends on (i) the execution protocol and (ii) the
execution strategy used in combination with that execution protocol. In this section we will
give an example of the structure of the ‘execution’ transition. First, we will discuss correctness
criteria for ‘execution’ transitions.

Correctness criteria
An ‘execution’ transition must suffice the following conditions in order to be used in a con-
tracting workflow:

1. The transition has one input place ‘committed’ of which the colour is defined by the object
model in Figure 75.

2. The transition has two output places ‘aborted’ and ‘executed’ of which the colour is de-
fined by the object model in Figure 75.

3. The transition has one input place for each inbound message type in the execution transac-
tion protocol. The colour of the places is defined by the object model in Figure 31.

4. The transition has one output place for each outbound message type in the execution trans-
action protocol. The colour of the places is defined by the object model in Figure 31.

5. Create the workflow net as shown in Figure 101 by deleting the places that represent in-
bound and outbound messages from the ‘execution’ transition and by adding an extra place
‘end’ and an extra OR-join transition ‘end’. This workflow net must be sound.

 EndExecution

committed

executed

aborted

end

Figure 101 WF-net to prove correctness criterion 5

6. The behaviour of the ‘execution’ transition on its interface with service providers (places
that model inbound and outbound messages) conforms to the corresponding execution
transaction protocol. In other words, the ‘execution’ transition will never produce a token in
a place that models an outbound message that will not be consumed by the execution pro-
tocol workflow. Similarly, a token produced by the execution protocol workflow in a place
that models an inbound message will always be consumed by the ‘execution’ transition.
The correctness criterion 6 can be proved analytically by constructing a workflow net like
the one in Figure 102 (if necessary with modifications depending on the structure of the
negotiation protocol) and proving its soundness. If the WF-net is not sound, an empirical
approach must be followed.

122 A CONCEPTUAL FRAMEWORK FOR SERVICE CONTRACTING

 EndExecution

committed

executed

aborted
end

……..

Execution
Protocol

Figure 102 WF-net to prove correctness criterion 6

Example
When the ‘single phase execution’ pattern is used for the execution phase, the structure of the
execution transition is as shown in Figure 103.

committed

intermediate status

Copy

a
Receive

‘intermediate status’

Receive
‘final report’

final report

executed

Check for
violations c

Receive
‘abort notification’

aborted

abort notification

d

Process
message

e

Process
message

f

Check for
violations

b

Process
message

Figure 103 An ‘execution’ transition for the ‘two phase execution’ execution pattern

A CONCEPTUAL FRAMEWORK FOR SERVICE CONTRACTING 123

All transitions, except transition ‘copy’ are standard transitions. The ‘copy’ transition produces
all tokens consumed from place ‘committed’ in place ‘a’ without changing the colour of the
token. In order to prove correctness criterion 5 for this ‘execution’ transition, we construct the
WF-net shown in Figure 104 and check the soundness property with Woflan. The analysis
shows that the WF-net is sound.

committed

Copy

a
Receive

‘intermediate status’

Receive
‘final report’

executed

Check for
violations

c

Receive
‘abort notification’

aborted

d

Process
message

e

Process
message

f

Check for
violations

b

Process
message

End end

Figure 104 Structure of the WF-net to prove correctness criterion 5

In order to prove correctness criterion 6 of this ‘execution’ transition, we construct the WF-net
shown in Figure 105 and check the soundness property with Woflan. The analysis shows that
the WF-net is not sound. The reason for this is the possibility that a token is produced in place
‘intermediate status’ where after a token is produced in place ‘abort notification’ or ‘final re-
port’ immediately. If the ‘execution’ transition does not consume the token in place ‘interme-

124 A CONCEPTUAL FRAMEWORK FOR SERVICE CONTRACTING

diate status’ before the token in place ‘abort notification’ or ‘final report’ is produced, it is
possible that either transition ‘receive abort notification’ or ‘receive final report’ fires. If this
situation occurs, the token in place ‘intermediate status’ will never be consumed. However, if
we make an extra assumption that inbound messages are processed in the order in which they
are created, the described anomaly will not occur.

committed_1

intermediate status

Copy

a
Receive

‘intermediate status’

Receive
‘final report’

final report

executed

Check for
violations

c

Receive
‘abort notification’

aborted

abort notification

d

Process
message

e

Process
message

f

Check for
violations

b

Process
message

End

Intermediate status

Abort notification

Final report

committed_2

Start

start

end

Figure 105 Structure of the WF-net which is checked for soundness

A CONCEPTUAL FRAMEWORK FOR SERVICE CONTRACTING 125

2.6.6 The ‘acceptance’ transition
The structure of the ‘acceptance’ transition depends on (i) the acceptance protocol and (ii) the
acceptance strategy used in combination with that acceptance protocol. In this section we will
give an example of the structure of the ‘acceptance’ transition. First, we will discuss correct-
ness criteria for ‘acceptance’ transitions.

Correctness criteria
An ‘acceptance’ transition must suffice the following conditions in order to be used in a con-
tracting workflow:

1. The transition has one input place ‘executed’ of which the colour is defined by the object
model in Figure 75.

2. The transition has one output place ‘completed’ of which the colour is defined by the object
model in Figure 75.

3. The transition has one input place for each inbound message type in the acceptance trans-
action protocol. The colour of the places is defined by the object model in Figure 31.

4. The transition has one output place for each outbound message type in the acceptance
transaction protocol. The colour of the places is defined by the object model in Figure 31.

5. Create a workflow net by deleting all places representing inbound and outbound messages
from the ‘acceptance’ transition. The workflow must be sound.

6. The behaviour of the ‘acceptance’ transition on its interface with service providers (places
that model inbound and outbound messages) conforms to the corresponding acceptance
transaction protocol. In other words, the ‘acceptance’ transition will never produce a token
in a place that models an outbound message that will not be consumed by the acceptance
protocol workflow. Similarly, a token produced by the acceptance protocol workflow in a
place that models an inbound message will always be consumed by the ‘acceptance’ tran-
sition. The correctness criterion 6 can be proved analytically by constructing a workflow
net like the one in Figure 106 (if necessary with modifications depending on the structure
of the negotiation protocol) and proving its soundness. If the WF-net is not sound, an em-
pirical approach must be followed.

Acceptance

executed completed

……..

Acceptance
Protocol

Figure 106 WF-net to prove correctness criterion 6

126 A CONCEPTUAL FRAMEWORK FOR SERVICE CONTRACTING

Example
When the ‘explicit accept’ pattern is used for the acceptance phase, the structure of the accep-
tance transition is as shown in Figure 107. All transitions, except transition ‘evaluate result’,
are standard transitions.

Send
‘Accept result’

executed

accept result

Evaluate
result

a b

Send
‘Reject result’

reject result

completed

-

Figure 107 An ‘acceptance’ transition for the ‘explicit accept’ acceptance pattern

• Firing rules for transition: ‘evaluate result’
When the transition fires, it consumes a case token from place ‘executed’. When the token is
consumed, the following attributes are read from the case token:
- the ‘data’ attribute of the corresponding ‘CANDIDATE SERVICE’ entity (here after referred

to as service data).
- the ‘VIOLATION’ entities related to the ‘CANDIDATE SERVICE’ entity (here after referred to

as violations).
The service data and violations are used to decide whether the result is accepted or rejected.
In the former case, the case token is produced in place ‘a’. Otherwise, the case token is pro-
duced in place ‘b’.

In order to prove correctness criterion 5 for this ‘acceptance’ transition, we construct a WF-net
by deleting the places ‘accept result’ and ‘reject result’ from the ‘acceptance’ transition in
Figure 107. Here after we check the soundness property of this WF-net with Woflan. The
analysis shows that the WF-net is sound.

In order to prove correctness criterion 6 for this ‘acceptance’ transition, we construct the WF-
net shown in Figure 108 and check the soundness property with Woflan. The analysis shows
that the WF-net is sound.

A CONCEPTUAL FRAMEWORK FOR SERVICE CONTRACTING 127

Send
‘Accept result’

executed_1

accept result

Evaluate
result

a b

Send
’Reject result’

reject result

completed

Accept result

Reject result

executed_2

Start

start

end

 End

protocol end

Figure 108 WF-net to prove correctness criterion 6

2.6.7 Composing the contracting workflow
This section discusses the rules according to which the contracting workflow is composed from
the building blocks defined before and from the contracting requirements. As we have seen
before, the contracting workflow must be a sound WF-net if we omit the places via which mes-
sage tokens are exchanged with workflows of service providers. Therefore, the starting point
for each contracting workflow is a source place ‘start’ and a sink place ‘end’.

start end

Figure 109 Starting point for the contracting workflow

The next step in creating the contracting workflow is to add the transitions and places that
model the contracting process for each individual candidate service type. Section 2.6.2 dis-
cussed this structure. If the successful completion of the negotiation phase of the candidate
service type is not part of the trigger of another candidate service type, the following structure
is used to represent the candidate service type in the contracting workflow.

128 A CONCEPTUAL FRAMEWORK FOR SERVICE CONTRACTING

Establish
Contract_N

Monitor
Contract_N

start_N

skipped_N

failed_N

committed_N

completed_N

aborted_N

Figure 110 Structure of the basic building block ‘contract service’ of the contracting workflow (1)

If on the other hand the successful completion of the negotiation phase of the candidate service
type is part of the trigger of another candidate service type, the following structure is used to
represent the candidate service type in the contracting workflow. The extra AND-split is neces-
sary to produce a token in place ‘committed_N’.

Establish
Contract_N

Monitor
Contract_N

Split_N

committed2_N

committed_N

start_N

skipped_N

failed_N

committed1_N

completed_N

aborted_N

Figure 111 Structure of the basic building block ‘contract service’ of the contracting workflow (2)

Finally, if the execution phase does not start automatically when the negotiation phase ends
with a commitment, but requires a trigger, the following structure is used to represent the can-
didate service type in the contracting workflow.

Establish
Contract_N

start_N

failed_N

Monitor
Contract_N

committed_N

 Join_N

completed_N

aborted_N

Committed2_N

skipped_N

Figure 112 Structure of the basic building block ‘contract service’ of the contracting workflow (3)

At this point, we have a contracting workflow where transitions and places belonging to differ-
ent candidate service types are not connected. One reason why these connections should exist
is to represent the trigger defined for each candidate service type, modelled by the ‘trigger’
attribute in the ‘CANDIDATE SERVICE TYPE’ entity. The trigger of a candidate service type de-
fines the conditions under which the service contracting process can start for a specific candi-
date service of that type. We will now show how to represent these triggers in the contracting
workflow.

Trigger: none
The contracting process of a candidate service type for which no trigger is defined starts im-
mediately when the entire service contracting process is started. The transition that implements
this triggering mechanism is given in Figure 113 and consists of a trigger transition ‘T0’.

A CONCEPTUAL FRAMEWORK FOR SERVICE CONTRACTING 129

T0

Establish
Contract_B

start_B

skipped_B

failed_B

Monitor
Contract_B

committed_B

Establish
Contract_A

Monitor
Contract_A

start_A

skipped_A

failed_A

committed_A

start

completed_A

aborted_A

completed_B

aborted_B

Figure 113 A and B start immediately (triggering mechanism)

Trigger: successful negotiation
A typical type of triggering is when the contracting for a candidate service B is started when a
candidate service A has been contracted. Or, in the grammar presented in Figure 68, the trigger
for candidate service B is:

B : NEGOTIATION AFTER A = COMMITTED

The transition ‘T1’ that implements the value of the ‘trigger’ attribute of the candidate service
type B is given in Figure 114. A typical example of a situation in which this kind of triggering
is used is when the ‘constraints’ attribute or the ‘specification rules’ attribute of the candidate
service type B contains a service attribute of candidate service type A that becomes known to
the service client only when the service contract is established.

Establish
Contract_B

start_B

skipped_B

failed_B

Monitor
Contract_B

committed_B

Establish
Contract_A

Monitor
Contract_A

Split_A

committed2_A

committed_A

start_A

skipped_A

failed_A

committed1_A

T1

completed_B

aborted_B

completed_A

aborted_A

Figure 114 B starts when a contract for A is established (triggering mechanism)

130 A CONCEPTUAL FRAMEWORK FOR SERVICE CONTRACTING

Trigger: failed negotiation
In this type of relationship, candidate service B is an alternative for candidate service A. This
means that the contracting process for candidate service B is started only when the contracting
process for candidate service A failed. Or in the grammar presented before, the trigger for can-
didate service B is:

B : NEGOTIATION AFTER A = FAILED

The transition ‘T1’ that implements the ‘trigger’ attribute of the candidate service B is given in
Figure 115.

Establish
Contract_B

start_B

skipped_B

failed_B

Monitor
Contract_B

committed_B

Establish
Contract_A

Monitor
Contract_A

start_A

skipped_A

failed_A

committed_A

T1

completed_A

aborted_A

completed_B

aborted_B

Figure 115 B starts when a contract for A could not be established (triggering mechanism)

Trigger: completion
Another typical example of triggering is when the contracting of a candidate service B starts
when a candidate service A has been executed completely. Or, in the grammar presented be-
fore, the trigger for candidate service B is:

B : NEGOTIATION AFTER A = COMPLETED

The transition ‘T1’ that implements the ‘trigger’ attribute of the candidate service type B is
given in Figure 116. A typical example of a situation in which this kind of triggering is used is
when the ‘constraints’ attribute or the ‘specification rules’ attribute of the candidate service
type B contains a service attribute of candidate service type A that becomes known to the
service client only when the service provider informs the service client of the end-state of the
execution phase. The triggering mechanism can also be used when the candidate services A
and B must be executed consecutively and the completion time of candidate service A is not
known in advance. The service client has to wait for a signal from the service provider before
he starts contracting candidate service B.

A CONCEPTUAL FRAMEWORK FOR SERVICE CONTRACTING 131

Establish
Contract_B

start_B

skipped_B

failed_B

Monitor
Contract_B

committed_B

Establish
Contract_A

Monitor
Contract_A

start_A

skipped_A

failed_A

committed_A

T1

completed_B

aborted_B

completed_A

aborted_A

Figure 116 B starts when A is executed (triggering mechanism)

Trigger combination: commitment / completion
A more complex example of triggering is when the negotiation phase for a candidate service B
is triggered by the commitment for candidate service A, and the execution phase for candidate
service B is triggered by the completion of candidate service A. Or, in the grammar presented
before, the trigger for candidate service B is:

B : NEGOTIATION AFTER A = COMMITTED
B : EXECUTION AFTER A = COMPLETED

The transitions ‘T1’ and ‘T2’ that implement the ‘trigger’ attribute of the candidate service
type B are given in Figure 117.

Establish
Contract_B

start_B

failed_B

Monitor
Contract_B

committed_B

Establish
Contract_A

Monitor
Contract_A

 Join

start_A

skipped_A

failed_A

committed1_A

T1

completed_B

aborted_B

completed_A

aborted_A

started_B

Split

committed2_A

T2

skipped_B

Figure 117 B starts when A is committed, B executes when A is completed (triggering mechanism)

132 A CONCEPTUAL FRAMEWORK FOR SERVICE CONTRACTING

Completion of the partial contracting workflow
At this point, we have created a partial contracting workflow in which the place ‘end’ is not
connected to any transition yet. Furthermore, other places belonging to the basic building
blocks defined in Figure 110, Figure 111 and Figure 112 do not have an outgoing connector.
Clearly, this partial contracting workflow is not a sound WF-net. Therefore, the last action is to
add those transitions and places to the partial contracting workflow that make the resulting
contracting workflow a sound WF-net. This can be done by first constructing the partial con-
tracting workflow and analysing the distribution of tokens in possible end-states. There after,
new transitions and places are added in such a way that in each end-state the tokens that define
the end-state are consumed and one token is produced in place ‘end’. An example of a partial
contracting workflow is given in Figure 128. An example of a sound contracting workflow is
given in Figure 129.

2.7 Use case ‘business trip’

2.7.1 Introduction
The use case is about a company in which employees have to travel frequently. Each business
trip requires two flights to be booked (outbound and inbound). If the employee is not able to
travel on one day, a hotel reservation has to be made. Finally, if the employee wants to, a rental
car must be made available at the airport of arrival. The service providers (airline carriers, ho-
tels and car rental organisations) offer a business-to-business electronic commerce interface by
which their services can be contracted. The company has an Intranet web-application in which
employees can enter the details of their business trip after which a service contracting process
is started. The rest of this section consists of the following parts. First, we will define the case
type (2.7.2), the service types (2.7.3-2.7.6) and the service providers (2.7.7). There after, we
define the contracting requirements and the contracting workflow (2.7.8)

2.7.2 Case type ‘Trip’
The structure of the case data, entered via the intranet application, is defined by the hierarchic
data model shown in the left part of Figure 118.

 name format example

 TRIP
 City of departure an..35 ‘Amsterdam’
 City of destination an..35 ‘Seattle’
 Latest date of arrival n8 ‘25-09-2001’
 Latest time of arrival n4 ‘18:00’
 Earliest date of departure n8 ‘28-09-2001’
 Earliest time of departure n4 ‘10:00’
 Rental car yes/no a1 (1) ‘Y’

EMPLOYEE
Name an..35 ‘van Dijk’
Initials an..6 ‘A.’
Mr / mrs a1 ‘M’

 (1) Y Yes
N No

Figure 118 Case data structure in the ‘business trip’ use case

A CONCEPTUAL FRAMEWORK FOR SERVICE CONTRACTING 133

2.7.3 Service type ‘Book flight’
Booking a seat on a scheduled flight is offered by a number of airline carriers via the service
type ‘book flight’. The transaction protocol is based on the ‘multiple non-binding offers’ nego-
tiation pattern and no messages are exchanged in the execution and acceptance phase. The
service client sends his travel preferences (departure city/date/time, arrival city/date/time) to an
airline carrier who will respond by sending information about one or more flights that match
the preferences and for which seats are still available. The service client responds either by
booking a seat on one of the possible flights, or by cancelling the negotiation. If the service
client books a flight, the airline carrier responds by sending a confirmation or a rejection (if the
available seats have been booked in the mean time). In the latter case, the service client can
book a seat on another possible flight, if one is still available.

Travel preferences

Service
Client

Service
Provider

No possible flight

Possible flight

Possible flight

Cancel

Flight booking

requested

offer made

committed

Booking failed

Booking confirmation

accepted

Dummy E

executed

Dummy A

Figure 119 Transaction protocol for the ‘book flight’ service type

134 A CONCEPTUAL FRAMEWORK FOR SERVICE CONTRACTING

The data model of the service data, and the data model of the message types in the business
transaction are defined in Figure 120.

 Travel preferences..♦
 Possible flight.. ♦
 No possible flight♦
 Cancel♦
 Flight booking ♦
 Booking confirmation♦
 Booking failed♦

 MESSAGE 1x
 Message identification an..20 R R R R R R R
 Message type an..20 R R R R R R R
 Transaction identification an..20 R R R R R R R
 Sender identification an..50 R R R R R R R
 Receiver identification an..50 R R R R R R R

 FLIGHT 1x
 Code an..6 - R - - R R R
 Class a1 R R - - R R R (1)
 Price n..6 - R - - - R -
 Currency an3 O R - - - R - (2)
 Booking reference an..10 - - - - - R -

DEPARTURE 1x
Airport an3 O R - - R R - (3)
City an..35 R R - - - R -
Earliest date n8 R - - - - - -
Earliest time n4 O - - - - - -
Latest date n8 O - - - - - -
Latest time n4 O - - - - - -
Schedule date n8 - R - - R R -
Schedule time n4 - R - - - R -

ARRIVAL 1x
Airport an3 O R - - R R - (3)
City an..35 R R - - - R -
Earliest date n8 O - - - - - -
Earliest time n4 O - - - - - -
Latest date n8 R - - - - - -
Latest time n4 O - - - - - -
Schedule date n8 - R - - R R -
Schedule time n4 - R - - - R -

CLIENT 1x
 Name an..50 - - - - R R -
 Initials an..5 - - - - R R -

Sex a1 - - - - R R - (4)

 (1) E Economy class (2) ISO 4217 currency codes
B Business class

 (3) IATA airport codes (4) M Male
F Female

Figure 120 Service data and message data for the ‘book flight’ service type

A CONCEPTUAL FRAMEWORK FOR SERVICE CONTRACTING 135

2.7.4 Service type ‘Cancel flight’
The service type ‘Cancel flight’ is offered by the airline carriers that also offer the ‘Book
flight’ service type. It can be used to cancel a flight that has been booked earlier. The transac-
tion protocol is based on the ‘binding request’ pattern and has no message exchange in the exe-
cution and acceptance phases.

Cancel flight

Service
Client

Service
Provider

Cancel rejected

Cancel confirmed

cancel requested

committed

Dummy E

executed

Dummy A

Figure 121 Transaction protocol for the ‘cancel flight’ service type

The data model of the service data, and the data model of the message types in the business
transaction protocol is defined in Figure 122.

 Cancel flight ..♦
 Cancel confirmed.. ♦
 Cancel rejected...♦

 MESSAGE 1x
 Message identification an..20 R R R
 Message type an..20 R R R
 Transaction identification an..20 R R R
 Sender identification an..50 R R R
 Receiver identification an..50 R R R

 FLIGHT 1x
 Code a1 R R R
 Booking reference an..10 R R R

Figure 122 Service data and message data for the ‘cancel flight’ service type

136 A CONCEPTUAL FRAMEWORK FOR SERVICE CONTRACTING

2.7.5 Service type ‘Book hotel’
Reservation of a hotel room for one or more days is offered by a number of hotel chains via the
‘Book hotel’ service type. If a room is available for the specified period, the reservation will be
confirmed and a contract is established. If no rooms are available, the client will be notified.
After a contract is established, the hotel will send a notification when the client checked in.
When the client checks out, the hotel will send a check out notification with a specification of
the costs. The transaction protocol is based on the ‘binding request’ negotiation pattern and on
the ‘two phase execution’ execution pattern. No messages are exchanged in the acceptance
phase.

Request reservation

Service
Client

Service
Provider

No vacancies notification

Reservation confirmation

Check-in notification

Check-out notification

Reservation expired

requested

committed

executed

Dummy A

Figure 123 Transaction protocol for the ‘book hotel’ service type

A CONCEPTUAL FRAMEWORK FOR SERVICE CONTRACTING 137

The data model of the service data, and the data model of the message types in the business
transaction is defined in Figure 124.

 Request reservation...♦
 Reservation confirmation ♦
 No vacancies notification ♦
 Check-in notification...♦
 Check-out notification ♦
 Reservation expired♦

 MESSAGE 1x
 Message identification an..20 R R R R R R
 Message type an..20 R R R R R R
 Transaction identification an..20 R R R R R R
 Sender identification an..50 R R R R R R
 Receiver identification an..50 R R R R R R

 ROOM 1x
 Requested type an1 R R R - - - (1)
 Actual type an1 - - - R R - (1)
 Price per day n..6 - R - R R -
 Total price n..6 - R - - R -
 Currency an3 O R - - R - (2)

LOCATION 1x
City an..35 R R R R R -
Name an..35 O R - - - -
Address an..35 - R - - - -
Telephone an..12 - R - - - -

ARRIVAL 1x
Planned date n8 R R R - - -
Planned time n4 O O - - - -
Actual date n8 - - - R R
Actual time n4 - - - R R

DEPARTURE 1x
Planned date n8 R R R - - -
Planned time n4 O O - - - -
Actual date n8 - - - - R -
Actual time n4 - - - - R -

 CLIENT 2x
 Name an..50 R R - - - -
 Initials an..5 R R - - - -

Sex a1 R R - - - - (3)

 (1) B Budget
S Standard
L Luxurious

 (2) ISO 4217 currency codes

 (3) M Male
F Female

Figure 124 Service data and message data for the ‘book hotel’ service type

138 A CONCEPTUAL FRAMEWORK FOR SERVICE CONTRACTING

There is one violation type defined for this service type, which occurs when the agreed type of
room is not available when the guest checks-in.

 [ROOM] (requested type) <> [ROOM] (actual type)

2.7.6 Service type ‘Book rental car’
Reservation of a rental car for one or more days is offered by a number of service providers via
the ‘Book rental car’ service type. A service client can request a reservation at a rental car or-
ganisation. If a car is available for the specified period, the reservation will be confirmed and a
contract is established. If no car is available, the client will be notified. After a contract is es-
tablished, the rental organisation will send a notification when the client picks up the car.
When the client returns the car, the rental organisation will send a notification with a specifica-
tion of the costs. The transaction protocol is based on the ‘binding request’ negotiation pattern
and on the ‘two phase execution’ execution pattern.

Request reservation

Service
Client

Service
Provider

Not available notification

Reservation confirmation

Pick-up notification

Return notification

Reservation expired

requested

committed

executed

Dummy A

Figure 125 Transaction protocol for the ‘book rental car’ service type

The data model of the service data, and the data model of the message types in the business
transaction protocol is defined in Figure 126.

A CONCEPTUAL FRAMEWORK FOR SERVICE CONTRACTING 139

 Request reservation...♦
 Reservation confirmation ♦
 Not available notification ♦
 Pick-up notification...♦
 Return notification.. ♦
 Reservation expired...♦

 MESSAGE 1x
 Message identification an..20 R R R R R R
 Message type an..20 R R R R R R
 Transaction identification an..20 R R R R R R
 Sender identification an..50 R R R R R R
 Receiver identification an..50 R R R R R R

 RENTAL CAR 1x
 Requested type an1 R R - - - - (1)
 Actual type an1 - - - R - - (1)
 Price per day n..6 - R - - R -
 Extra costs n..6 - - - - R -
 Total price n..6 - R - - R -
 Currency an3 - R - - R - (2)

PICK-UP 1x
Planned date n8 R R - - - -

 Planned time n4 R R - - - -
 Actual date n8 - - - R - -
 Actual time n4 - - - R - -

Airport code an3 R R - R - - (3)
Flight number an..6 R R - - - -

RETURN 1x
Planned date n8 R R - - - -
Planned time n4 R R - - - -
Actual date n8 - - - - R -
Actual time n4 - - - - R -
Airport code an3 R R - - - - (3)
Flight number an..6 R R - - - -
Damage description an..100 - - - - O -

CLIENT 1x
 Name an..50 R R - - - -
 Initials an..5 R R - - - -

Sex a1 R R - - - - (4)

 (1) C Compact size
M Medium size
F Full size
4 Four wheel drive

 (2) ISO 4217 currency codes

 (3) IATA airport codes

 (4) M Male
F Female

Figure 126 Service data and message data for the ‘book rental car’ service type

140 A CONCEPTUAL FRAMEWORK FOR SERVICE CONTRACTING

There are two violation types defined for this service type, which occur when the agreed type
of car is not available when the car is picked up, or when the car is returned with damage.

[RENTAL CAR] (requested type) <> [RENTAL CAR] (actual type)
[RENTAL CAR] [RETURN] (damage description) <> ‘’

2.7.7 Service providers
The four service types are offered by the following service providers.

Book flight Cancel flight Book hotel Book rental
car

Airline 1 Yes Yes - -
Airline 2 Yes Yes - -
Hotel 1 - - Yes -
Hotel 2 - - Yes -
Car rental 1 - - - Yes (*)
Car rental 2 - - - Yes (*)

(*) The two car rental organisations are not located on each airport. This is modelled by con-
straints on the availability of the service types. The first car rental organisation is located at the
50 largest airports of the world and has the following availability constraint:

[RENTAL CAR] [PICK-UP] (Airport code) IN {‘ATL’, ‘ORD’, ‘LAX’, ‘LHR’, ‘DFW’, ‘HND’, ‘FRA’,
‘CDG’, ‘SFO’, ‘DEN’, ‘AMS’, ‘MSP’, ‘DTW’, ‘MIA’, ‘LAS’, ‘EWR’, ‘PHX’, ‘SEL’, ‘IAH’, ‘JFK’,
‘LGW’, ‘STL’, ‘HKG’, ‘MCO’, ‘MAD’, ‘YYZ’, ‘SEA’, ‘BKK’, ‘BOS’, ‘SIN’, ‘NRT’, ‘ORY’, ‘FCO’,
‘LGA’, ‘PHL’, ‘HNL’, ‘CVG’, ‘SYD’, ‘CLT’, ‘MUC’, ‘ZRH’, ‘MEX’, ‘BRU’, ‘SLC’, ‘KIX’, ‘IAD’, ‘FUK’,
‘PMI’, ‘PIT’, ‘CTS’ }

The second car rental organisation is located in the largest airports in the United States of
America and Canada only, which is modelled by the following availability constraint:

[RENTAL CAR] [PICK-UP] (Airport code) IN {‘ATL’, ‘ORD’, ‘LAX’, ‘DFW’, ‘SFO’, ‘DEN’, ‘MSP’,
‘DTW’, ‘MIA’, ‘LAS’, ‘EWR’, ‘PHX’, ‘IAH’, ‘JFK’, ‘STL’, ‘MCO’, ‘YYZ’, ‘SEA’, ‘BOS’, ‘LGA’, ‘PHL’,
‘HNL’, ‘CVG’, ‘CLT’, ‘SLC’, ‘IAD’, ‘PIT’ }

A CONCEPTUAL FRAMEWORK FOR SERVICE CONTRACTING 141

2.7.8 Contracting requirements
A business trip always requires two flights (outbound and inbound) and optionally a hotel res-
ervation and a rental car reservation. Cancelling a flight reservation is necessary when other
required services can not be contracted after a flight reservation has been made. We model this
by the following six candidate service types.

A. ‘Outbound flight’ of service type ‘Book flight’
B. ‘Inbound flight’ of service type ‘Book flight’
C. ‘Cancel outbound flight’ of service type ‘Cancel flight’
D. ‘Hotel’ of service type ‘Book hotel’
E. ‘Medium car’ of service type ‘Book rental car’
F. ‘Compact car’ of service type ‘Book rental car’

In order to keep the contracting workflow as simple as possible, we use the construction in the
upper part of Figure 127 as equivalent for the construction in the lower part. The places and
connectors associated with states ‘skipped’ and ‘aborted’ are dashed, because they do not apply
to each candidate service type.

Establish
Contract_N

start_N

skipped_N

failed_N

Monitor
Contract_N

committed_N

Contract_N

start_N

skipped_N

failed_N

completed_N

Completed_N

Aborted_N

aborted_N

=

Figure 127 Basic building block used in the contracting workflow for the use case

The partial contracting workflow that contains the candidate service type transitions comple-
mented with the transitions and places that model the triggers for candidate service types is
given in Figure 128. The entire contracting workflow presented in Figure 129 is a sound WF-
net.

142 A CONCEPTUAL FRAMEWORK FOR SERVICE CONTRACTING

O
ut

bo
un

d

fli
gh

t

st
ar

t_
A

co
m

pl
et

ed
_A

fa
ile

d_
A

H
ot

el

st
ar

t_
D

sk
ip

pe
d_

D

co
m

pl
et

ed
_D

fa
ile

d_
D

In
bo

un
d

fli
gh

t

st
ar

t_
B

co
m

pl
et

ed
_B

fa
ile

d_
B

C
an

ce
l

ou
tb

ou
nd

fli
gh

t

st
ar

t_
C

fa
ile

d_
C

co
m

pl
et

ed
_C

M
ed

iu
m

ca

r

st
ar

t_
E

sk
ip

pe
d_

E

co
m

pl
et

ed
_E

fa
ile

d_
E

C
om

pa
ct

ca

r

st
ar

t_
F

fa
ile

d_
F

co
m

pl
et

ed
_F

T4

T2

T3

T1 st
ar

t

en
d

T5

Figure 128 Partial contracting workflow corresponding to the business case

A CONCEPTUAL FRAMEWORK FOR SERVICE CONTRACTING 143

O
ut

bo
un

d

fli
gh

t

st
ar

t_
A

co
m

pl
et

ed
_A

fa
ile

d_
A

H
ot

el

st
ar

t_
D

sk
ip

pe
d_

D

co
m

pl
et

ed
_D

fa
ile

d_
D

In
bo

un
d

fli
gh

t

st
ar

t_
B

co
m

pl
et

ed
_B

fa
ile

d_
B

C
an

ce
l

in
bo

un
d

fli
gh

t

st
ar

t_
C

fa
ile

d_
C

co
m

pl
et

ed
_C

M
ed

iu
m

ca

r

st
ar

t_
E

sk
ip

pe
d_

E

co
m

pl
et

ed
_E

fa
ile

d_
E

C
om

pa
ct

ca

r

st
ar

t_
F

fa
ile

d_
F

co
m

pl
et

ed
_F

T4

T2

T3

T1 st
ar

t

en
d

E4

T5

E2

E1

E3

a

b

Figure 129 Sound contracting workflow corresponding to the business case

144 A CONCEPTUAL FRAMEWORK FOR SERVICE CONTRACTING

Candidate service type ‘Outbound flight’

• Specification rules: the service data for the outbound flight is completely determined by the
case data.

Outbound flight : [FLIGHT] (Class) = ‘E’
Outbound flight : [FLIGHT] [DEPARTURE] (City) = CASE : [TRIP] (City of departure)
Outbound flight : [FLIGHT] [DEPARTURE] (Earliest date) = CASE : [TRIP] (Latest date of arrival) - 1
Outbound flight : [FLIGHT] [ARRIVAL] (City) = CASE : [TRIP] (City of destination)
Outbound flight : [FLIGHT] [ARRIVAL] (Latest date) = CASE : [TRIP] (Latest date of arrival)
Outbound flight : [FLIGHT] [ARRIVAL] (Latest time) = CASE : [TRIP] (Latest time of arrival)
Outbound flight : [FLIGHT] [CLIENT] (Name) = CASE : [TRIP] [EMPLOYEE] (Name)
Outbound flight : [FLIGHT] [CLIENT] (Initials) = CASE : [TRIP] [EMPLOYEE] (Initials)
Outbound flight : [FLIGHT] [CLIENT] (Sex) = CASE : [TRIP] [EMPLOYEE] (Mr / Mrs)

• Trigger: none (contracting starts immediately).

• Constraints: none (the candidate service type is always required)

• Negotiation strategy: The corresponding service type (Book flight) is controlled by a
transaction protocol in which the negotiation phase is based on the ‘multiple non-binding of-
fers’ pattern. Therefore, it is possible to follow a parallel negotiation approach by sending
the flight preferences to all available airlines. There are two optimisation criteria: (i) select
the flight with lowest price from the set of possible flights that arrive no later than the latest
arrival date/time and no earlier than 4 hours before the latest arrival date/time. If there are
no flights that match this criterion, the following optimisation criterion is applied: (ii) select
the flight with the latest arrival date/time that arrives no later than the latest arrival
date/time.

Candidate service type ‘Inbound flight’

• Specification rules: the service data for the inbound flight is also completely determined by
the case data.

Inbound flight : [FLIGHT] (Class) = ‘E’
Inbound flight : [FLIGHT] [DEPARTURE] (City) = CASE : [TRIP] (City of destination)
Inbound flight : [FLIGHT] [DEPARTURE] (Earliest date) = CASE : [TRIP] (Earliest date of departure)
Inbound flight : [FLIGHT] [DEPARTURE] (Earliest time) = CASE : [TRIP] (Earliest time of departure)
Inbound flight : [FLIGHT] [ARRIVAL] (City) = CASE : [TRIP] (City of departure)
Inbound flight : [FLIGHT] [CLIENT] (Name) = CASE : [TRIP] [EMPLOYEE] (Name)
Inbound flight : [FLIGHT] [CLIENT] (Initials) = CASE : [TRIP] [EMPLOYEE] (Initials)
Inbound flight : [FLIGHT] [CLIENT] (Sex) = CASE : [TRIP] [EMPLOYEE] (Mr / Mrs)

• Trigger: the inbound flight can be booked after the outbound flight has been booked.

Inbound flight : NEGOTIATION AFTER Outbound flight = COMPLETED

• Constraints: none (the candidate service type is always required)

• Negotiation strategy: the negotiation strategy for this candidate service type is similar to
the one of the candidate service type ‘Outbound flight’. The earliest date/time of departure
is used instead of the latest date/time of arrival.

A CONCEPTUAL FRAMEWORK FOR SERVICE CONTRACTING 145

Candidate service type ‘Cancel outbound flight’

• Specification rules: the service data is completely determined by the service data of candi-
date service type ‘Outbound flight’.

Cancel outbound flight : [FLIGHT] (Code) = Outbound flight : [FLIGHT] (Code)
Cancel outbound flight : [FLIGHT] (Booking reference) = Outbound flight : [FLIGHT] (Booking reference)

• Trigger: the outbound flight must be cancelled when the inbound flight could not be
booked.

Cancel outbound flight : NEGOTIATION AFTER Inbound flight = FAILED

• Negotiation strategy: the negotiation protocol does not require any additional decisions.

Candidate service type ‘Hotel’

• Specification rules: The service data for the overnight stay in the hotel is partially deter-
mined by the case data and partially determined by the details of the contracted flights.

 Hotel : [ROOM] (Requested type) = ‘S’
 Hotel : [ROOM] [LOCATION] (City) = CASE : [TRIP] (City of destination)
 Hotel : [ROOM] [ARRIVAL] (Planned date) = Outbound flight : [FLIGHT] [ARRIVAL] (Schedule date)
 Hotel : [ROOM] [ARRIVAL] (Planned time) = Outbound flight : [FLIGHT] [ARRIVAL] (Schedule time)
 Hotel : [ROOM] [DEPARTURE] (Planned date) = Inbound flight : [FLIGHT] [DEPARTURE] (Schedule date)
 Hotel : [ROOM] [DEPARTURE] (Planned time) = Inbound flight : [FLIGHT] [DEPARTURE] (Schedule time)
 Hotel : [ROOM] [CLIENT] (Name) = CASE : [TRIP] [EMPLOYEE] (Name)
 Hotel : [ROOM] [CLIENT] (Initials) = CASE : [TRIP] [EMPLOYEE] (Initials)
 Hotel : [ROOM] [CLIENT] (Sex) = CASE : [TRIP] [EMPLOYEE] (Mr / Mrs)

• Trigger: this candidate service type can only be contracted when the inbound flight and the
outbound flight have been contracted because the specification rules and the constraints use
service attributes of the inbound flight and outbound flight.

Hotel : NEGOTIATION AFTER
 (Inbound flight = COMPLETED AND Outbound flight = COMPLETED)

• Constraints: This candidate service type must be contracted only if the arrival date of the
outbound flight is not equal to the departure date of the inbound flight.

Outbound flight : [FLIGHT] [ARRIVAL] (Schedule date) <>
 Inbound flight : [FLIGHT] [DEPARTURE] (Schedule date)

• Negotiation strategy: the transaction protocol is based on the ‘binding request’ pattern. A
sequential approach is therefore required for this candidate service type.

146 A CONCEPTUAL FRAMEWORK FOR SERVICE CONTRACTING

Candidate service type ‘Medium car’

• Specification rules: the service data for the preferred rental car service is partially derived
from the case data and partially derived from the contracted inbound flight. This is because
the pick-up location of the rental car is equal to the airport of arrival.

 Medium car : [CAR] (Type of car) = ‘M’
 Medium car : [CAR] [PICK-UP] (Planned date) = Outbound flight : [FLIGHT] [ARRIVAL] (Schedule date)
 Medium car : [CAR] [PICK-UP] (Planned time) = Outbound flight : [FLIGHT] [ARRIVAL] (Schedule time)
 Medium car : [CAR] [PICK-UP] (Airport code) = Outbound flight : [FLIGHT] [ARRIVAL] (Airport code)
 Medium car : [CAR] [PICK-UP] (Flight number) = Outbound flight : [FLIGHT] (Flight number)
 Medium car : [CAR] [RETURN] (Planned date) = Inbound flight : [FLIGHT] [DEPARTURE] (Schedule date)
 Medium car : [CAR] [RETURN] (Planned time) = Inbound flight : [FLIGHT] [DEPARTURE] (Schedule time)
 Medium car : [CAR] [RETURN] (Airport code) = Inbound flight : [FLIGHT] [DEPARTURE] (Airport code)
 Medium car : [CAR] [RETURN] (Flight number) = Inbound flight : [FLIGHT] (Flight number)
 Medium car : [CAR] [CLIENT] (Name) = CASE : [TRIP] [EMPLOYEE] (Name)
 Medium car : [CAR] [CLIENT] (Initials) = CASE : [TRIP] [EMPLOYEE] (Initials)
 Medium car : [CAR] [CLIENT] (Sex) = CASE : [TRIP] [EMPLOYEE] (Mr / Mrs)

• Trigger: this candidate service type can only be contracted when the inbound flight and the
outbound flight have been contracted, because the specification rules uses service attributes
from the inbound flight and outbound flight candidate service types.

Medium car : NEGOTIATION AFTER
 (Inbound flight = COMPLETED AND Outbound flight = COMPLETED)

• Constraint: this candidate service must be contracted only if the case attribute ‘rental car
yes/no’ equals ‘Y’.

CASE : [TRIP] (Rental car yes/no) = ‘Y’

• Negotiation strategy: the transaction protocol is based on the ‘binding request’ pattern. A
sequential approach is therefore required for this candidate service.

Candidate service type ‘Compact car’

• Specification rules: the service data for the alternative rental car service is identical to the
service data of the ‘Medium car’ candidate service type, except for the attribute ‘Requested
type’.

 Compact car : [CAR] (Requested type) = ‘C’
 Compact car : [CAR] [PICK-UP] (Planned date) = Outbound flight : [FLIGHT] [ARRIVAL] (Schedule date)
 Compact car : [CAR] [PICK-UP] (Planned time) = Outbound flight : [FLIGHT] [ARRIVAL] (Schedule time)
 Compact car : [CAR] [PICK-UP] (Location) = Outbound flight : [FLIGHT] [ARRIVAL] (Airport code)
 Compact car : [CAR] [PICK-UP] (Flight number) = Outbound flight : [FLIGHT] (Flight number)
 Compact car : [CAR] [RETURN] (Planned date) = Inbound flight : [FLIGHT] [DEPARTURE] (Schedule date)
 Compact car : [CAR] [RETURN] (Planned time) = Inbound flight : [FLIGHT] [DEPARTURE] (Schedule time)
 Compact car : [CAR] [RETURN] (Location) = Inbound flight : [FLIGHT] [DEPARTURE] (Airport code)
 Compact car : [CAR] [RETURN] (Flight number) = Inbound flight : [FLIGHT] (Flight number)
 Compact car : [CAR] [CLIENT] (Name) = CASE : [TRIP] [EMPLOYEE] (Name)
 Compact car : [CAR] [CLIENT] (Initials) = CASE : [TRIP] [EMPLOYEE] (Initials)
 Compact car : [CAR] [CLIENT] (Sex) = CASE : [TRIP] [EMPLOYEE] (Mr / Mrs)

A CONCEPTUAL FRAMEWORK FOR SERVICE CONTRACTING 147

• Trigger: this candidate service type will only be contracted when the candidate service type
‘Medium car’ could not be contracted.

Compact car : NEGOTIATION AFTER Medium car = FAILED

• Constraint: none (already covered by constraint on ‘Medium car’)

• Negotiation strategy: the transaction protocol is based on the ‘binding request’ pattern. A
sequential approach is therefore required for this candidate service type.

3. Logical architecture of
the Contracting Agent
This chapter defines the logical architecture of a software component for the class of
service contracting processes of which the concepts have been given in Chapter 2. We
will refer to this software component as the ‘Contracting Agent’ from now on. First,
we address the relation of the logical architecture to the conceptual framework pre-
sented in Chapter 2. Because the term ‘architecture’ is used in many different ways,
we continue by giving our definition of the term ‘software architecture’ used in this
research (3.1.2) and the design goals by which the architecture is judged (3.1.3).
Thereafter we give the logical architecture of the Contracting Agent according to this
definition (3.2 – 3.4).

3.1 Introduction

3.1.1 Relation to the conceptual framework
Chapter 2 addressed service contracting processes on a conceptual level in which the entire
world (service client, service providers, contracting processes) was viewed as a Petri net. Be-
cause of this abstraction, we were able to define the conceptual framework for expressing a
service contracting process as a sound workflow net. In this chapter, we will decrease the level
of abstraction and view the world as a network of interacting software components. Therefore,
we need to map the concepts to software components. As we have stated in Section 1.6.3, we
have chosen to design the software component according to the principles of workflow man-
agement: separation of execution and control. The former is housed in one or more application
components for data storage and data transformation, whereas the latter is implemented in a
workflow engine that triggers the earlier mentioned application components. The workflow
engine is configured by an explicit model of the service contracting process, which we will call
the implementation contracting workflow. Although the conceptual domain and the implemen-
tation domain both involve a contracting workflow, they are not identical. In the conceptual
contracting workflow, the entire state data is modelled as tokens flowing through the net and
all transformation on the state data is performed by the transitions. In the implementation do-
main however, state data is stored outside the contracting workflow as much as possible and
transformations are performed by application components outside the contracting workflow.
The function of the implementation contracting workflow is to trigger the right transformation
of the state data at the right moment and with the right parameters.

150 LOGICAL ARCHITECTURE OF THE CONTRACTING AGENT

Workflow engine (control)

Conceptual domain (Ch. 2)

start end

start end
Implementation

contracting workflow

Storage

Implementation domain (Ch. 3/4)

...

Transformation

Data storage & Transformation (execution)

Conceptual
contracting workflow

Figure 130 Relation of the Conceptual domain versus the Implementation domain

3.1.2 Definition of the term architecture
The term ‘software architecture’ is used in many different ways and there is no universally
accepted definition of it, nor is the purpose of a software architecture well defined. However,
there is a consensus that a software architecture is not a complete specification of a system but
an abstraction of it, capturing the essentials of a software system and omitting information that
is not relevant for the purpose of the architecture (which we will define below). In this re-
search, we will use the following definition of software architecture.

Definition: software architecture
The high-level specification of the organisation of a software system in terms of its
components, the distribution of functionality and data among the components, the ex-
ternally visible properties of the components and the collaboration between compo-
nents. Externally visible properties of a component encompasses both structural (static)
and behavioural (dynamic) aspects.

In our view, the purpose of a software architecture is to demonstrate that the system - if organ-
ised according to the architecture - satisfies the requirements set to the system. These require-
ments cover aspects as functionality, flexibility, performance, scalability, reliability, etc. (see
Section 3.1.3). Furthermore, since conflicting requirements often occur, the architecture of a
system can be used in the design phase as a means of communication between stakeholders to
the system. Finally, being a high-level specification of a software system, the software archi-
tecture is the starting point for a detailed specification of the entire software system. Major
design-decisions are always made in the software architecture first, and have their effect in the
detailed specification thereafter.

A ‘good’ software architecture is always the right balance between too little information and
too much information. On one hand, the architecture must provide enough information for
analyses and decision making. On the other hand, the architecture must abstract away from all
details that are irrelevant for this purpose. Clearly, an architecture is more than a diagram con-
sisting of boxes connected by lines. Although these drawings give an idea of the sub-

LOGICAL ARCHITECTURE OF THE CONTRACTING AGENT 151

components in a system, they fail to capture the structure and behaviour of components and
therefore miss out essential aspects of the system.

In this chapter, we will present a logical architecture of the Contracting Agent system. The
prefix ‘logical’ before the term ‘architecture’ means that we abstract from the physical imple-
mentation of the components. We will use the modelling techniques of high-level coloured
Petri nets and functional data modelling to define the logical architecture. In the next sections,
we will define the sub-components of the Contracting Agent by the following information.

• Distribution of functionality over components
The first part of an architecture identifies the components and gives a high-level specifica-
tion of the functionality of each component. We will use informal drawings (box-and-line
drawings) and plain English for this purpose.

• Structure of interfaces and persistent data
After having identified the components, we define the structure of the interfaces exposed by
each software component and the structure of the persistent data maintained by each com-
ponent. We use the formalism of high-level Petri nets and functional data models as model-
ling techniques. A component is modelled as a system. The interfaces of a component are
modelled as places connected to the system. Persistent data in a component is modelled as a
store in the system. The static aspects of the interfaces and persistent data are defined by the
colour of the tokens in the places, which defines the semantics of the data. We will use
functional data models as modelling technique for this purpose.

• Behaviour on the interfaces
Finally, we define the behaviour of each component on its interfaces and specify the col-
laboration between the components via their interfaces. The behaviour of a component is
defined by a Petri net, which we will call the behaviour net, and contains just as many tran-
sitions as are required to model the externally visible behaviour of the component.

3.1.3 Design goals
This section defines the design goals according to which the logical architecture presented in
the next sections is judged.

• Functionality
The first design goal is to create a logical architecture that brings the functionality of exe-
cuting service contracting processes according to the conceptual framework in Chapter 2.
Furthermore, the following additional requirements must be fulfilled too:

• Multiple client applications
A client application is an information system that delegates the execution of service con-
tracting processes to the Contracting Agent. It must be possible to use one Contracting
Agent by different client applications simultaneously.

• Multiple service contracting processes
The Contracting Agent must allow an arbitrary number of service contracting processes
to be executed simultaneously and independently. The situation where one service con-
tracting process influences another service contracting process is outside the scope of this
research.

152 LOGICAL ARCHITECTURE OF THE CONTRACTING AGENT

• Maximum use of domain knowledge
The second design goal is to make maximum use of domain knowledge for service con-
tracting processes in order to minimise the effort to configure the Contracting Agent. The
conceptual framework presented in Chapter 2 is the basis for our domain knowledge and
gives us standard building blocks (protocol patterns and contracting strategies). Further-
more, the conceptual framework provides us with a set of rules on how to construct a sound
contracting workflow from these standard building blocks.

• Extensibility
The third design goal is to create a logical architecture that brings maximal flexibility in
adapting to changes in the functionality of the Contracting Agent. This goal can be obtained
by housing functionality that logically belongs together and is subject to change in a sepa-
rate sub-component with a standardised interface. The conceptual framework contains sev-
eral parts that are subject to change:

• Constraint syntax
Constraints must be expressed in a syntax. The conceptual framework in Chapter 2 pre-
sented a simple syntax for constraints. Since we do not claim that this syntax can be used
to express all possible constraints to hierarchic data sets, the architecture must allow dif-
ferent constraint syntaxes to coexist in a Contracting Agent. Furthermore, the architecture
must support adding a new constraint syntax to the Contracting Agent in a ‘plug-and-
play’ kind of way.

• Schema syntax
Data models must be expressed in a syntax. The conceptual framework in Chapter 2 pre-
sented an object model for data models in Chapter 2. From now on, we will use the term
‘schema’ instead of the term ‘data model’. Since we do not claim that the object model in
Chapter 2 can be used to capture all possible characteristics of a hierarchic data set, the
architecture must allow different schema syntaxes to coexist in a Contracting Agent.
Furthermore, the architecture must support adding a new schema syntax to the Contract-
ing Agent in a ‘plug-and-play’ kind of way.

• Transformation syntax
Transformation functions (e.g. specification rules) must be expressed in a syntax. The
conceptual framework in Chapter 2 presented a simple syntax for transformation func-
tions. Since we do not claim that this syntax can be used to express all possible transfor-
mation functions, the architecture must allow different transformation syntaxes to coexist
in a Contracting Agent. Furthermore, the architecture must support adding a new trans-
formation syntax to the Contracting Agent in a ‘plug-and-play’ kind of way.

• Protocol patterns
Each service type has a transaction protocol for which we have presented a number of
patterns in Chapter 2. These patterns are used as domain knowledge in the Contracting
Agent to define transaction protocols more efficiently. Since we do not claim that the
presented protocol patterns cover all situations, the architecture must allow new transac-
tion protocol patterns to be added in a ‘plug-and-play’ kind of way.

• Contracting strategies
The conceptual framework defined the service contracting process as a workflow con-
sisting of ‘negotiation’, ‘execution’ and ‘acceptance’ transitions that have a standard in-
terface to their environment. Each of these transitions implements a negotiation, execu-

LOGICAL ARCHITECTURE OF THE CONTRACTING AGENT 153

tion or acceptance strategy. Since we do not claim that the presented strategies cover all
possible situations, the architecture must allow new contracting strategies to be added in
a ‘plug-and-play’ kind of way.

• Specialisation
By dividing the entire functionality of a system into smaller, autonomous sub-components,
we allow these sub-components to be developed by different actors. A user is then able to
select the best-of-breed sub-components for his particular situation.

• Re-use
A component that implements a generic function can be used in more than one system. Re-
using an existing component has a number of advantages: time, quality and costs.

• Maintainability
By dividing a complex information system into multiple less-complex components, we
contribute to the maintainability of the system as a whole. The components should be de-
signed such that each component supports a well-defined function of a complexity that is
significantly smaller than the complexity of the entire system.

3.2 Architecture of the ‘Contracting Agent’ component

3.2.1 Distribution of functionality over components
The Contracting Agent consists of three components, as illustrated in Figure 132 in which we
use the symbols shown in Figure 131. We distinguish two types of actors: humans and soft-
ware components. A program interface is an interface by which a software component interacts
with another software component. A user interface is an interface by which a software compo-
nent interacts with a human.

human software
component

program
interface

user
interface

Figure 131 Legend of symbols used

• The Server component
The Server component is responsible for executing service contracting processes on behalf
of one or more client applications. For that purpose, it has a program interface by which it
interacts with these client applications. The Server component has no user interface and uses
configuration parameters in which the structure of the service contracting process is defined.
It offers a program interface by which its configuration parameters can be modified. Finally,
the Server component offers a program interface via which its state data can be queried.

• The Configurator component
The Configurator component is responsible for creation and modification of the configura-
tion parameters used by the Server component. It offers a user interface by which the con-
figuration parameters can be created, inspected and modified. It uses the program interface
of a Repository component to load information about service types, service providers, pro-

154 LOGICAL ARCHITECTURE OF THE CONTRACTING AGENT

tocol patterns and contracting strategies. Finally, it uses the program interface of the Server
component to submit new configuration parameters to the Server component, after having
checked them for completeness and correctness.

• The Monitor component
The Monitor component is responsible for querying the state data of the Server component
and presenting the results to the user. The functionality of a Monitor user interface may be
tailored to one or more specific types of service contracting processes. There is however a
minimum set of functions that must be supported by every Monitor component. This mini-
mum set of functions is to get an overview of all business cases for which a service con-
tracting process is executing or has been executed. Furthermore, for each instance of a
service contracting process the user must be able to view the entire state data.

‘configuration’
program interface

‘client’
program interface

MonitorConfigurator

‘message exchange’
program interface

Client application

Server

‘monitor’
user interface

Message exchange

‘configurator’
user interface

‘monitoring ‘
program interface

user user

Repository

‘repository’
program interface

Contracting Agent

Figure 132 Main components and interfaces of the Contracting Agent

3.2.2 Structure of interfaces
We have defined the Contracting Agent as composed of three components: Server, Configura-
tor and Monitor. Furthermore, the Contracting Agent interfaces with at least two external com-
ponents: client applications and message exchange applications. A formal model of the inter-
faces between client application, Server, Configurator, Monitor and message exchange appli-
cation is given in Figure 133.

LOGICAL ARCHITECTURE OF THE CONTRACTING AGENT 155

initiate request

initiate accept

initiate reject

finished notification

outbound message

inbound message

co
nf

ig
ur

at
io

n
re

qu
es

t

co
nf

ig
ur

at
io

n
re

sp
on

se

ca
se

 li
st

 re
qu

es
t

ca
se

 li
st

 re
sp

on
se

ca
se

 d
et

ai
ls

 re
qu

es
t

ca
se

 d
et

ai
ls

 re
sp

on
se

M
es

sa
ge

 E
xc

ha
ng

e

C
lie

nt
 a

pp
lic

at
io

n

Server

Configurator

screen event

screen updateU
se

r

screen event

screen updateU
se

r

Monitor

service type

service provider

R
ep

os
ito

ry

protocol pattern

contracting strategy

Figure 133 Interfaces between sub components in the Contracting Agent

We will now define the structure of the following program interfaces:
- The ‘client’ program interface;
- The ‘message exchange’ program interface;
- The ‘monitoring’ program interface;
- The ‘configuration’ program interface;
- The ‘repository’ program interface.

156 LOGICAL ARCHITECTURE OF THE CONTRACTING AGENT

Structure of the Client program interface
A client application must be able to initiate the execution of a service contracting process in the
Contracting Agent. For that purpose, a client application passes a business case to the Con-
tracting Agent, who will perform a validity check, after which the business case is either ac-
cepted or rejected. If the business case is rejected, the reason of rejection must be passed to the
client application. If the business case is accepted, the service contracting process will be
started after which the client application will receive a confirmation of the initiation. When the
service contracting process ends, the client application receives a notification with the end-
state. This interface consists of four places of which we will now define the colour.

Place ‘initiate request’

R
ole A token in this place models a request from a client application to the Server compo-

nent to start a service contracting process for a business case.

Type

The colour of the place is a complex of which the object model is given in Figure 134.
The ‘identification’ attribute models the identification of the business case as assigned
by the client application. The ‘owner identification’ attribute models the unique identi-
fication of the client application making the request. The combination of the attributes
‘identification’ and ‘owner identification’ must be unique. The case type and case data
are modelled by the ‘type identification’ attribute and the ‘data’ attribute respectively.

CASE
owner identification

type identification

identification

data

Figure 134 Object model for the colour of the ‘initiate request’ place

Place ‘initiate accept’

R
ole A token in this place models the positive response of the Server component to an ‘initi-

ate request’ message and notifies the client application that the service contracting pro-
cess has started.

Type

The colour of the place is a complex of which the object model is given in Figure 135.
The ‘identification’ and ‘owner identification’ attributes identify the business case
uniquely.

CASE
identification

owner identification

Figure 135 Object model for the colour of the ‘initiate accept’ place

LOGICAL ARCHITECTURE OF THE CONTRACTING AGENT 157

Place ‘initiate reject’

R
ole A token in this place models the negative response of the Server component to an ‘ini-

tiate request’ message and notifies the client application that the service contracting
process could not be started due to a specified error.

Type

The colour of the place is a complex of which the object model is given in Figure 136.
The ‘identification’ and ‘owner identification’ attributes identify the business case
uniquely. The ‘rejection reason’ attribute models the reason of the rejection, which can
be:
- ‘case identification missing’
- ‘case identification is not unique’
- ‘case type missing’
- ‘case type invalid or unknown’
- ‘case data missing’
- ‘case data invalid: ‘ <error description>

CASE

identification

owner identification

rejection reason

Figure 136 Object model for the colour of the ‘initiate reject’ place

Place ‘finished notification’

R
ole A token in this place models the notification of the Server component to the client ap-

plication that a service contracting process has ended.

Type
The colour of the place is a complex of which the object model is given in Figure 137.
The ‘identification’ and ‘owner identification’ attributes identify the business case
uniquely. The ‘end-state’ attribute models the state in which the process ended and
indicates whether all required services have been contracted and whether violations
have occurred. Further details of the contracting process can be retrieved by the client
application via the Monitor interface.

owner identification

identification

CASE

end-state

Figure 137 Object model for the colour of the ‘finished notification’ place

158 LOGICAL ARCHITECTURE OF THE CONTRACTING AGENT

Structure of the Message exchange program interface
A Server component sends messages to service providers and receives messages from service
providers. The exchange of messages requires well-known functions like data-conversion,
communication, authentication, etc. Because message exchange is a generic function for which
standard software components are available, we choose not to include the function as part of
the Contracting Agent but to interface with one or more standard message exchange compo-
nents. This interface consists of two places of which we will now define the colour.

Place ‘outbound message’

R
ole A token in this place models a message from service client to service provider passed

by the Server component to the message exchange component for processing.

Type

The colour of this place is a complex of which the object model is given in Figure 138.
The ‘identification’ attribute models the unique identification of the message in combi-
nation with the ‘sender identification’. The ‘transaction identification’ attribute models
the identification of the business transaction to which the message belongs. The
‘sender identification’ and ‘receiver identification’ attributes identify the actors be-
tween which the message is exchanged. The ‘type identification’ attribute is used to
identify the message type. The ‘creation date’ and ‘creation time’ attributes identify
the date and time at which the service client created the message. Finally, the ‘data’
attribute is used to contain the entire message data.

MESSAGE

type identification

transaction identification

identification

sender identification

receiver identification

creation date

creation time

data

Figure 138 Object model for the colour of the ‘outbound message’ place

Place ‘inbound message’

R
ole A token in this place models a message from service provider to service client passed

to the Server component by the message exchange component.

Type

Identical to place ‘outbound message’.

LOGICAL ARCHITECTURE OF THE CONTRACTING AGENT 159

Structure of the Monitoring program interface
The Monitor component is used to query the state of the Server component and present the
information to the user in a suitable way. To retrieve the state data from the Server component,
the Server component offers two functions. The first function is used to retrieve a list of busi-
ness cases for which a service contracting process is running, or has been completed. The sec-
ond function is used to retrieve the entire state data associated with the service contracting pro-
cess of one specific business case. This interface consists of four places of which we will now
define the colour.

Place ‘case list request’

R
ole A token in this place models a request to the Server component to retrieve a list of

cases stored in the state data that match certain selection criteria.

Type

The colour of this place is a complex of which the object model is given in Figure 139.
The attributes of the complex are used as selection criteria. The ‘owner identification’
attribute is used to limit the response to cases from one owner. The ‘type identification’
attribute is used to limit the response to cases from one type. The ‘period start date’
and ‘period end date’ attributes are used to limit the response to cases for which the
service contracting process started in a specific date interval.

CASE LIST
period start date

period end date

owner identification

type identification

Figure 139 Object model for the colour of the ‘case list request’ place

Place ‘case list response’
R

ole A token in this place models the response from the Server component to a request for a
list of cases stored in the state data.

Type

The colour of this place is a complex of which the object model is given in Figure 140.
The ‘CASE LIST’ entity is copied from the case list request and has a relation to zero,
one or more ‘CASE’ entities with the following attributes. The ‘identification’ attribute
identifies the business case uniquely in combination with the ‘owner identification’
attribute. The ‘type identification’ attribute contains the identification of the case type.
The ‘status’ attribute contains a code that identifies the state of the service contracting
process uniquely and is an item from the set {‘rejected’, ‘executing’, ‘completed’}. The
‘date’ and ‘time’ attributes contain the date and time at which the case was received
from the client application by the Server component and created in the state data.

160 LOGICAL ARCHITECTURE OF THE CONTRACTING AGENT

CASE

identification

status

CASE LIST
period start date

type identification

date

owner identification

time

period end date

owner identification

type identification

Figure 140 Object model for the colour of the ‘case list response’ place

Place ‘case details request’

R
ole A token in this place models a request to the Server component for the entire state data

associated with the service contracting process for one specific business case.

Type

The colour of this place is a complex of which the object model is given in Figure 141.
The ‘identification’ attribute identifies the business case uniquely in combination with
the ‘owner identification’ attribute.

CASE
identification

owner identification

Figure 141 Object model for the colour of the ‘case details request’ place

Place ‘case details response’

R
ole A token in this place models the response from the Server component to a case details

request.

Type

The colour of this place is identical to the colour of the state data store in Figure 152. A
token in this place contains zero or one ‘CASE’ entities.

LOGICAL ARCHITECTURE OF THE CONTRACTING AGENT 161

Structure of the Configuration program interface
The Configurator component is used to maintain the configuration parameters used by the
Server component. However, the Configurator component can not modify the configuration
parameters of the Server component directly because of temporally inconsistencies that will
exist inevitably during modification of the configuration parameters. Therefore, the Configu-
rator component and the Server component each have their own copy of the configuration pa-
rameters. The Configurator component operates on its own copy of the configuration parame-
ters, without affecting the working of the Server component. The Server component offers an
interface by which the Configurator component can submit its own copy of the configuration
parameters to update the existing configuration parameters of the Server component. This in-
terface consists of two places of which we will now define the colour.

Place ‘configuration request’

R
ole A token in this place models the request to the Server component to update its set of

configuration parameters with new configuration parameters which are valid within a
specified period by setting the start date and end date.

Type

The colour of this place is a complex of which the object model is equal to the object
model of the configuration data in the Server component, which is defined in Figure
153, extended with an attribute ‘workflow definition’ of entity ‘CONFIGURATION’.

Place ‘configuration response’

R
ole A token in this place models the response from the Server component to a previous

request to update its configuration parameters with new configuration parameters.

Type

The colour of this place is a complex of which the object model is given in Figure 142.
The ‘identification’ attribute refers to the identification of a prior configuration request,
whereas the ‘status’ attribute indicates whether the update request was executed suc-
cessfully or not. The value of the attribute is an element from the set {‘accepted’, ‘re-
jected’}.

CONFIGURATION
identification

status

Figure 142 Object model for the colour of the ‘configuration response’ place

162 LOGICAL ARCHITECTURE OF THE CONTRACTING AGENT

Structure of the Repository program interface
The Configurator component is used to maintain the configuration parameters of the Server
component. Because the offerings of service providers are relevant for many companies, it is
likely to have an external Repository from which a service client can import service types,
service providers, protocol patterns and contracting strategies. The Repository program inter-
face defines the structure of the information exchanged from Repository to Configurator. This
interface consists of four places of which we will now define the colour.

Place ‘service type’

R
ole A token in this place models the specification of a service type with the transaction

protocol by which it is controlled and the violation types that can occur for it.

Type

The colour of this place is a complex of which the object model is defined in Figure
143.

SERVICE TYPE

name

description

schema

type identification

VIOLATION
TYPE

name

type identification

constraints

schema

name TRANSACTION
PROTOCOL

MESSAGE
TYPE

schema syntax

schema syntax

constraints syntax

execution pattern id

type identification
negotiation pattern id

acceptance pattern id

Figure 143 Object model for the colour of the ‘service type’ place

Place ‘service provider’

R
ole A token in this place models the specification of a service provider and references to

the service types he offers to the market and the conditions under which he does so.

Type

The colour of this place is a complex of which the object model is defined in Figure
144.

AVAILABILITYSERVICE
PROVIDERname

service type identificationidentification

constraints

URL constraints syntax

Figure 144 Object model for the colour of the ‘service provider’ place

LOGICAL ARCHITECTURE OF THE CONTRACTING AGENT 163

Place ‘protocol pattern’

R
ole A token in this place models the specification of a protocol pattern, consisting of a

protocol definition and the generic name of each message type used in the protocol
definition.

Type

The colour of this place is a complex of which the object model is defined in Figure
145.

identification

protocol definition

type identification

generic name

PROTOCOL
PATTERN

PATTERN
MESSAGE TYPE

name

Figure 145 Object model for the colour of the ‘protocol pattern’ place

Place ‘contracting strategy’

R
ole

A token in this place models the specification of a strategy type for a specific protocol
pattern with its parameter types.

Type

The colour of this place is a complex of which the object model is defined in Figure
146.

STRATEGY
TYPE

type identification

name

description

type identification

name

PARAMETER
TYPE

protocol pattern identification

Figure 146 Object model for the colour of the ‘contracting strategy ’ place

164 LOGICAL ARCHITECTURE OF THE CONTRACTING AGENT

3.2.3 Behaviour on the component interfaces
The behaviour of the Server component on the interfaces it exposes to client applications and
the message exchange component is defined in Figure 147. A token in place ‘initiate request’
is followed by either a token in place ‘initiate accept’ or in place ‘initiate reject’. After a token
is produced in place ‘initiate accept’, messages can be exchanged with service providers.
When a token is produced in place ‘finished notification’, the process is in an end-state and no
messages can be exchanged with service providers any more.

initiate request

initiate reject

initiate accept

finished notification

outbound message

inbound message

c

a b

e

d

Figure 147 Behaviour of the Server component on the client application interface

The behaviour of the Server component on the interface it exposes to the Configurator compo-
nent follows a simple request/response protocol defined in Figure 148.

a

configuration
request

configuration
response

Figure 148 Behaviour of the Server component on the configuration program interface

The behaviour of the Server component on the interface it exposes to the Monitor component
follows a simple request/response protocol defined in Figure 149.

a

case list
request

case list
response

b

case details
request

case details
response

Figure 149 Behaviour of the Server component on the monitor program interface

3.3 Architecture of the ‘Server’ component

3.3.1 Distribution of functionality over components
The Server component is responsible for executing service contracting processes on behalf of
client applications. A conceptual model of service contracting processes has been given in
Chapter 2, where we modelled the entire service contracting process in a conceptual contract-
ing workflow. Because we viewed the service contracting process at a conceptual level, the
conceptual contracting workflow combined both execution and control. The entire state data of

LOGICAL ARCHITECTURE OF THE CONTRACTING AGENT 165

the service contracting process was modelled as case tokens flowing through the workflow net
and operations on the state data were performed by the firing of transitions that consumed and
produced case tokens. This section addresses the mapping of the conceptual model on a soft-
ware architecture. The first architectural decision is to separate execution from control. There
will at least be three types of components: (i) storage components for state data and configura-
tion data, (ii) processing components that perform the necessary operations on the state data
and (iii) a workflow engine, that triggers the right operations on the right moment and with the
right parameters. An important decision that has to be made next is the type of processing
components that will be used. One option is to implement each standard operation (see Section
2.6.3) to the state data in a separate processing component, which accesses the storage compo-
nents directly. However, since these standard operations are very specific for service contract-
ing processes, they will almost certain not be suited for re-use. Another option is to implement
a generic function (e.g. transformation) in a processing component, that is invoked with pa-
rameters and therefore needs no direct access to the storage components. A major advantage of
this approach is the ability to re-use these processing components later, or to use existing proc-
essing components. Furthermore, since there is no direct access of the processing components
to the storage components, storage and processing components have become more independent
of each other. A drawback is that in order to perform one standard operation on the state data
(e.g. ‘create outbound message’), one has to perform several queries on the storage components
to retrieve state data and configuration data, invoke one or more processing components with
the retrieved data as parameters after which several queries on the storage components have to
be performed to store the result of the processing. If we want all operations on storage compo-
nents and processing components to be triggered by the workflow engine, the workflow defini-
tion will become too complex and too dependent of the storage and processing components.
The solution for this is to add an extra component, the interaction manager, that is used be-
tween the workflow engine and the storage and processing components. This new component
offers an interface to the workflow engine by which the workflow engine can trigger operations
with the highest possible granularity, after which the new component performs the required
smaller operations on the storage components and processing components.

Schema
Processor

Constraint
Processor

C
lie

nt
 a

pp
lic

at
io

n

M
es

sa
ge

 e
xc

ha
ng

e
M

on
ito

r

C
on

fig
ur

at
or

Interaction Manager

Transformation
Processor

Workflow Manager

Strategy
Processor

State
data

Storage

Configuration
 data

Storage

Figure 150 The server component is designed as a workflow application

166 LOGICAL ARCHITECTURE OF THE CONTRACTING AGENT

• State data Storage
This component is responsible for maintaining the state data of service contracting proc-
esses executed by the Server component. The component exposes a program interface by
which the state data can be inspected and modified. It is the responsibility of the component
to handle large volumes of data and to maintain the integrity of the state data.

• Configuration data Storage
This component is responsible for maintaining the configuration data required for the exe-
cution of service contracting processes. The component exposes a program interface by
which the configuration data can be inspected and modified.

• Schema Processor
This component is responsible for applying a schema to a hierarchic data set. The compo-
nent exposes an interface by which it takes a hierarchic data set and a schema as input. Out-
put is the set of validation errors that have been detected (can be empty).

• Transformation Processor
This component is responsible for the transformation of one hierarchic data set into another.
The component exposes an interface by which it takes a hierarchic data set and a transfor-
mation function as input. Output is the hierarchic data set, which is the result of the trans-
formation.

• Constraint Processor
This component is responsible for applying constraints to a hierarchic data set. The compo-
nent exposes an interface by which it takes a hierarchic data set and constraints as input.
Output is a list of constraints that have not been fulfilled (can be empty).

• Strategy Processor
This component is responsible for evaluating inbound messages and for adjusting service
data, according to a contracting strategy parameter. The component exposes an interface by
which it takes a strategy parameter type with a hierarchic data set as input. Output is either a
message value or a modified hierarchic data set.

• Workflow Manager
This component is responsible for the control of service contracting processes. The compo-
nent is configured by an implementation contracting workflow that defines the structure of
service contracting processes.

• Interaction Manager
This component is the ‘glue’ between all other Server sub-components. All other Server
components communicate with the Interaction manager only. Furthermore, all communica-
tion of the Server component with external components (client applications, message ex-
change application, Configurator component, Monitor component) is handled by the Inter-
action Manager. The Interaction Manager is passive; it acts only when it is triggered by an-
other component.

LOGICAL ARCHITECTURE OF THE CONTRACTING AGENT 167

3.3.2 Structure of interfaces and persistent data
We will first define the interfaces between the components by modelling the components as
systems and the interfaces as places between the systems.

Interaction Manager

State
data

Storage

st
at

e
da

ta
 q

ue
ry

st
at

e
da

ta
 re

sp
on

se

Workflow Manager

in
iti

at
e

st
ar

t

re
ce

iv
ed

se
nd

Configuration
data

Storage

co
nf

ig
ur

. d
at

a
qu

er
y

co
nf

ig
ur

a.
 d

at
a

 re
sp

on
se

Schema
Processor

ap
pl

y
sc

he
m

a

sc
he

m
a

ap
pl

ie
d

Constraint
Processor

ap
pl

y
co

ns
tra

in
ts

co
ns

tra
in

ts
 a

pp
lie

d

fin
is

he
d

sk
ip

pe
d

state data config. data

Transfor-
mation

Processor

ap
pl

y
tra

ns
fo

rm
at

io
n

tra
ns

fo
rm

at
io

n
ap

pl
ie

d

workflow
definition

up
da

te
 w

or
kf

lo
w

Strategy
Processor

ev
al

ua
te

 m
es

sa
ge

m
es

sa
ge

 e
va

lu
at

ed

in
iti

at
ed

ad
ju

st

pr
oc

es
s

ev
al

ua
te

ev
al

ua
te

d
initiate request

initiate accept

initiate reject

finished notification

outbound message

inbound message

case list request

case list response

case details request

case details response

configuration request

configuration response

ad
ju

st
 s

er
vi

ce
 d

at
a

se
rv

ic
e

da
ta

 a
dj

us
te

d

Figure 151 Sub-components in the Contracting Agent Server

168 LOGICAL ARCHITECTURE OF THE CONTRACTING AGENT

Structure of persistent data
The stores ‘state data’ and ‘configuration data’ in the ‘Server’ system model persistent data of
the Server component. The colour of the tokens in these stores is defined by the object models
in Figure 152 and Figure 153 respectively.

CASE

identification

CANDIDATE
SERVICE

provider identification

type identification

data

TRANSACTION
identification

MESSAGE

identification

type identification

VIOLATION

type identification

state

data

date

type identification

AVAILABLE
PROVIDER

identification

preference

date

time

time

data

direction

status

status

value

status

date

time

owner identification

Figure 152 Structure of persistent data store ‘state data’ of the Server component

LOGICAL ARCHITECTURE OF THE CONTRACTING AGENT 169

SERVICE TYPE

MESSAGE TYPE

schema

type identification

CASE TYPE

type identification

schema

CANDIDATE
SERVICE TYPE

type identification

constraints syntax

SELECTED
PROVIDER

identification

preference

CONFIGURATION

identification

validity start date

validity start time

schema

type identification

constraints

schema syntax

constraints

constraints syntax

specification rules

specification rules syntax

schema syntax

STRATEGY
PARAMETER

type identification

expression

schema syntax

SELECTED
VIOLATION TYPE

type identification

constraints

constraints syntax

parameter data

constraints

constraints syntax

Figure 153 Structure of persistent data in store ‘configuration data’ of the Server component

170 LOGICAL ARCHITECTURE OF THE CONTRACTING AGENT

Structure of the Workflow Manager interface
The Workflow Manager exposes a configuration interface to the Interaction Manager to update
its configuration parameters (the contracting workflow). Furthermore, the Workflow Manager
exposes an operational interface to the Interaction Manager to control the flow of events in a
service contracting process. We assume that the Interaction Manager handles requests in FIFO
order. Therefore, we do not model a response signal for every request signal. A response signal
is only used when the Workflow Manager needs information generated by the Interaction
Manager during handling of the request.

Place ‘start’

R
ole A token in the ‘start’ place models a signal from the Interaction Manager to the

Workflow Manager to create a new instance of a service contracting process for a spe-
cific business case.

Type

The colour of a token in this place is a complex of which the object model is shown in
Figure 154. The token contains three attributes: the ‘case identification’ and ‘case
owner identification’ attributes identify the business case uniquely. The ‘case type
identification’ attribute models the case type.

START

case identification

case owner identification

case type identification

Figure 154 Object model for the colour of the ‘start’ place

Place ‘initiate’
R

ole A token in the ‘initiate’ place models a signal from the Workflow Manager to the In-
teraction Manager that a service contracting process for a business case is at the point
where the contracting of a specific candidate service type must be initiated.

Type

The colour of a token in this place is a complex of which the object model is shown in
Figure 155. The token contains three attributes: the ‘case identification’ and ‘case
owner identification’ attributes identify a business case uniquely and the ‘candidate
service type identification’ attribute identifies a candidate service type for the associ-
ated case type.

INITIATE

case identification

case owner identification

candidate service type identification

Figure 155 Object model for the colour of the ‘initiate’ place

LOGICAL ARCHITECTURE OF THE CONTRACTING AGENT 171

Place ‘skipped’

R
ole A token in the ‘skipped’ place models a signal from the Interaction Manager to the

Workflow Manager that a candidate service type must be skipped in the service con-
tracting process for a business case.

Type

The colour of a token in this place is a complex of which the object model is shown in
Figure 156, which consists of the same attributes as the object model of place ‘initiate’.

SKIPPED

case identification

case owner identification

candidate service type identification

Figure 156 Object model for the colour of the ‘skipped’ place

Place ‘initiated’

R
ole A token in the ‘initiated’ place models a signal from the Interaction Manager to the

Workflow Manager that a new candidate service is created in the state data, of which
the service data is specified and the available providers are determined.

Type

The colour of a token in this place is a complex of which the object model is shown in
Figure 157. The token contains four attributes. The attributes ‘case identification’,
‘case owner identification’ and ‘candidate service type identification’ are copied from
the ‘INITIATE’ entity. The ‘number of available providers’ attribute models the number
of ‘AVAILABLE PROVIDER’ entities that has been created for the candidate service in the
state data. Because each ‘AVAILABLE PROVIDER’ entity has a unique sequence number
that indicates the preference, it is sufficient to pass the number of providers. The con-
tracting workflow references a provider by its sequence number, which can be trans-
lated to the identity via the ‘AVAILABLE PROVIDER’ entity in the state data.

INITIATED

case identification

case owner identification

candidate service type identification

number of available providers

Figure 157 Object model for the colour of the ‘initiated’ place

172 LOGICAL ARCHITECTURE OF THE CONTRACTING AGENT

Place ‘send’

R
ole A token in the ‘send’ place models a signal from the Workflow Manager to the Inter-

action Manager to create a new outbound message of a specific type in a specific trans-
action. If the message is the first message in the transaction, the transaction must be
created in the state data too.

Type

The colour of a token in this place is a complex of which the object model is shown in
Figure 158. The ‘case identification’ and ‘case owner identification’ attributes identify
a business case uniquely. These attributes, together with the ‘candidate service type
identification’ attribute and the ‘provider identification’ attribute identify the business
transaction in which the outbound message must be created uniquely. Finally, the ‘mes-
sage type identification’ attribute identifies the message type to be created in the busi-
ness transaction.

SEND

case owner identification

candidate service type identification

case identification

provider identification

message type identification

Figure 158 Object model for the colour of the ‘send’ place

Place ‘received’

R
ole A token in the ‘received’ place models a signal from the Interaction Manager to the

Workflow Manager that an inbound message has been received in a business transac-
tion.

Type

The colour of a token in this place is a complex of which the object model is shown in
Figure 159. The structure of the token is identical to the structure of the tokens in place
‘send’, except for an extra attribute ‘message identification’.

RECEIVED

case owner identification

candidate service type identification

case identification

provider identification

message identification

message type identification

Figure 159 Object model for the colour of the ‘received’ place

LOGICAL ARCHITECTURE OF THE CONTRACTING AGENT 173

Place ‘process’

R
ole A token in the ‘process’ place models a signal from the Workflow Manager to the In-

teraction Manager that the message data of an inbound message must be used to update
the service data of the candidate service it belongs to after which the service data must
be checked for violations.

Type

The colour of a token in this place is a complex of which the object model is shown in
Figure 160. The ‘case identification’ and ‘case owner identification’ attributes identify
a business case uniquely. The ‘candidate service type identification’ attribute identifies
the candidate service of which the service data must be updated and the ‘message iden-
tification’ attribute identifies the message of which the message data must be used.

PROCESS
case owner identification

candidate service type identification

case identification

message identification

Figure 160 Object model for the colour of the ‘process’ place

Place ‘evaluate’

R
ole A token in the ‘evaluate’ place models a signal from the Workflow Manager to the

Interaction Manager to evaluate an expression on the message data of an inbound mes-
sage.

Type
The colour of a token in this place is a complex of which the object model is shown in
Figure 161. The ‘case identification’ and ‘case owner identification’ attributes identify
a business case uniquely. The ‘candidate service type identification’ attribute identifies
the candidate service to which the message belongs and the ‘message identification’
attribute identifies the message to be evaluated. Finally, the ‘strategy parameter type
identification’ attribute models the strategy parameter that defines the expression to
evaluate.

EVALUATE

case owner identification

candidate service type identification

case identification

message identification

strategy parameter type identification

Figure 161 Object model for the colour of the ‘evaluate’ place

174 LOGICAL ARCHITECTURE OF THE CONTRACTING AGENT

Place ‘evaluated’

R
ole A token in the ‘evaluated’ place models the response of the Interaction Manager to the

Workflow Manager on a request to evaluate an expression on the message data of an
inbound message.

Type

The colour of a token in this place is a complex of which the object model is shown in
Figure 162. The first five attributes are copied from the ‘EVALUATE’ entity in the re-
quest. The attribute ‘value’ models the value of the expression that has been applied to
the message data.

EVALUATED

case owner identification

candidate service type identification

case identification

message identification

value

strategy parameter type identification

Figure 162 Object model for the colour of the ‘evaluated’ place

Place ‘adjust’

R
ole A token in the ‘adjust’ place models a signal from the Workflow Manager to the Inter-

action Manager that the service data of a candidate service must be updated according
to the rules defined in a strategy parameter.

Type
The colour of a token in this place is a complex of which the object model is shown in
Figure 163. The ‘case identification’ and ‘case owner identification’ attributes identify
a business case uniquely. The ‘candidate service type identification’ attribute identifies
the candidate service of which the service data must be updated. The ‘strategy pa-
rameter type identification’ attribute defines the strategy parameter that contains the
transformation rules that have to be applied to the current service data.

ADJUST
case owner identification

candidate service type identification

case identification

strategy parameter type identification

Figure 163 Object model for the colour of the ‘adjust’ place

LOGICAL ARCHITECTURE OF THE CONTRACTING AGENT 175

Place ‘finished’

R
ole A token in the ‘finished’ place models a signal from the Workflow Manager to the In-

teraction Manager that a service contracting process for a specific business case has
ended.

Type

The colour of a token in this place is a complex of which the object model is shown in
Figure 164. The ‘case identification’ and ‘case owner identification’ attributes identify
a business case uniquely. The ‘case status’ attribute defines the end-state of the service
contracting process.

FINISHED

case identification

case owner identification

case status

Figure 164 Object model for the colour of the ‘finished’ place

Place ‘update workflow’

R
ole A token in the ‘update workflow’ place models a signal from the Interaction Manager

to the Workflow Manager to update its workflow definition with a new workflow defi-
nition.

Type

The colour of a token in this place is a complex of which the object model is shown in
Figure 165. The token contains only one attribute: ‘workflow definition’ that contains
the definition of the contracting workflow in the syntax used by the Workflow Man-
ager.

UPDATE
WORKFLOW workflow definition

Figure 165 Object model for the colour of the ‘update workflow’ place

176 LOGICAL ARCHITECTURE OF THE CONTRACTING AGENT

Structure of the State Data Storage interface
The State Data Storage exposes an operational interface to the Interaction Manager by which it
can retrieve state data and modify state data.

Place ‘state data request’

R
ole A token in the ‘state data request’ place models a signal from the Interaction Manager

to the State Data Storage to retrieve or update a specific part of the state data.

Type

The colour of a token in this place is a complex of which the object model is shown in
Figure 166. The ‘identification’ attribute is a unique identifier for the request. The ‘re-
quest data’ attribute models the request itself in the syntax used by the State Data Stor-
age component.

STATE
DATA REQUEST

identification

request data

Figure 166 Object model for the colour of the ‘state data request’ place

Place ‘state data response’

R
ole A token in the ‘state data response’ place models the response from the State Data

Storage to the Interaction Manager on a state data request.

Type

The colour of a token in this place is a complex of which the object model is shown in
Figure 167. The ‘request identification’ attribute is used to match the response with the
request. The ‘response data’ attribute models the response to the request in the syntax
used by the State Data Storage component.

STATE
DATA RESPONSE

request identification

response data

Figure 167 Object model for the colour of the ‘state data response’ place

LOGICAL ARCHITECTURE OF THE CONTRACTING AGENT 177

Structure of the Configuration Data Storage interface
The Configuration Data Storage component exposes an operational interface to the Interaction
Manager by which it can retrieve configuration data.

Place ‘config data request’

R
ole A token in the ‘config data request’ place models a signal from the Interaction Man-

ager to the Configuration Data Storage to retrieve a specific part of the configuration
data.

Type

The colour of a token in this place is a complex of which the object model is shown in
Figure 168. The ‘identification’ attribute is a unique identifier for the request. The ‘re-
quest data’ attribute models the request itself in the syntax used by the Configuration
Data Storage component.

CONFIGURATION
DATA REQUEST

identification

request data

Figure 168 Object model for the colour of the ‘config data request’ place

Place ‘config data response’

R
ole A token in the ‘config data response’ place models the response from the Configura-

tion Data Storage to the Interaction Manager on a configuration data request.

Type

The colour of a token in this place is a complex of which the object model is shown in
Figure 169. The ‘request identification’ attribute is used to match the response with the
request. The ‘response data’ attribute models the response of the request in the syntax
used by the Configuration Data Storage component.

CONFIGURATION
DATA RESPONSE

request identification

response data

Figure 169 Object model for the colour of the ‘config data response’ place

178 LOGICAL ARCHITECTURE OF THE CONTRACTING AGENT

Structure of the Schema Processor interface
The Schema Processor exposes an operational interface to the Interaction Manager by which
his services can be invoked.

Place ‘apply schema’

R
ole A token in the ‘apply schema’ place models a signal from the Interaction Manager to

the Schema Processor to validate a hierarchic data set subject to a schema.

Type

The colour of a token in this place is a complex of which the object model is shown in
Figure 170. The token contains four attributes: the ‘identification’ attribute that con-
tains a unique identification of the request, the ‘data’ attribute that models the hierar-
chic data to be validated, the ‘schema’ attribute that models the schema to validate with
and the ‘schema syntax’ that identifies the syntax used to express the schema.

APPLY
SCHEMA

data

schema

identification

schema syntax

Figure 170 Object model for the colour of the ‘apply schema’ place

Place ‘schema applied’

R
ole A token in the ‘schema applied’ place models the response from the Schema Processor

to the Interaction Manager on a request to apply a schema.
Type

The colour of a token in this place is a complex of which the object model is shown in
Figure 171. The ‘identification’ attribute of the ‘SCHEMA APPLIED’ entity is used to
match the response with the request. If errors have been found during the validation,
the ‘SCHEMA APPLIED’ entity has one or more ‘ERROR’ entities of which the ‘descrip-
tion’ attribute contains the description of the error.

SCHEMA
APPLIED

ERROR description

identification

Figure 171 Object model for the colour of the ‘schema applied’ place

LOGICAL ARCHITECTURE OF THE CONTRACTING AGENT 179

Structure of the Constraint Processor interface
The Constraint Processor exposes an operational interface to the Interaction Manager by which
his services can be invoked.

Place ‘apply constraints’

R
ole A token in the ‘apply constraints’ place models a signal from the Interaction Manager

to the Constraint Processor to apply a set of constraints to a hierarchic data set in order
to check if the data fulfils the constraints.

Type

The colour of a token in this place is a complex of which the object model is shown in
Figure 172. The token contains four attributes: the ‘identification’ attribute that con-
tains a unique identification of the request, the ‘data’ attribute that models the hierar-
chic data to be checked, the ‘constraints’ attribute that models the constraints to check
with and the ‘constraint syntax’ that models the identification of the syntax used to
express the constraints.

APPLY
CONSTRAINTS

data

constraints

identification

constraint syntax

Figure 172 Object model for the colour of the ‘apply constraints’ place

Place ‘constraints applied’

R
ole A token in the ‘constraints applied’ place models the response from the Constraint

Processor to the Interaction Manager on a apply constraints request.

Type
The colour of a token in this place is a complex of which the object model is shown in
Figure 173. The ‘identification’ attribute of the ‘CONSTRAINTS APPLIED’ entity is used
to match the response with the request. If errors have been found during the validation,
the ‘CONSTRAINTS APPLIED’ entity has one or more ‘ERROR’ entities of which the ‘de-
scription’ attribute contains the description of the error.

CONSTRAINTS
APPLIED

ERROR description

identification

Figure 173 Object model for the colour of the ‘constraints applied’ place

180 LOGICAL ARCHITECTURE OF THE CONTRACTING AGENT

Structure of the Transformation Processor interface
The Transformation Processor exposes an operational interface to the Interaction Manager by
which its services can be invoked.

Place ‘apply transformation’

R
ole A token in the ‘apply transformation’ place models a signal from the Interaction Man-

ager to the Transformation Processor to transform a hierarchic data set to another hier-
archic data set with a different structure.

Type

The colour of a token in this place is a complex of which the object model is shown in
Figure 174. The token contains four attributes: the ‘identification’ attribute that con-
tains a unique identification of the request, the ‘data’ attribute that models the hierar-
chic data to be transformed, the ‘transformation function’ attribute that models the
transformation to be performed and the ‘transformation syntax’ attribute that identifies
the syntax in which the transformation function is expressed.

APPLY
TRANSFORMATION

data

transformation function

identification

transformation syntax

Figure 174 Object model for the colour of the ‘apply transformation’ place

Place ‘transformation applied’

R
ole A token in the ‘transformation applied’ place models the response from the Transfor-

mation Processor to the Interaction Manager on an apply transformation request.
Type

The colour of a token in this place is a complex of which the object model is shown in
Figure 175. The ‘identification’ attribute is used to match the transformation response
with the transformation request. The ‘data’ attribute models the hierarchic data set that
was the result of the transformation operation.

TRANSFORMATION
APPLIED data

identification

Figure 175 Object model for the colour of the ‘transformation applied’ place

LOGICAL ARCHITECTURE OF THE CONTRACTING AGENT 181

Structure of the Strategy Processor interface
The Strategy Processor exposes an operational interface to the Interaction Manager by which
its services can be invoked.

Place ‘evaluate message’

R
ole A token in the ‘evaluate message’ place models a signal from the Interaction Manager

to the Strategy Processor to evaluate a hierarchic data set with message data according
to a specific contracting strategy parameter.

Type

The colour of a token in this place is a complex of which the object model is shown in
Figure 176. The token contains four attributes: the ‘identification’ attribute that con-
tains a unique identification of the request, the ‘data’ attribute that models the message
data to be evaluated, the ‘strategy parameter type’ attribute that identifies the evalua-
tion type to be performed and the ‘expression’ attribute that contains the parameters to
be used.

EVALUATE
MESSAGE

data

strategy parameter type

identification

expression

Figure 176 Object model for the colour of the ‘evaluate message’ place

Place ‘message evaluated’

R
ole A token in the ‘message evaluated’ place models the response from the Strategy Proc-

essor to the Interaction Manager on an evaluate message request.
Type

The colour of a token in this place is a complex of which the object model is shown in
Figure 177. The ‘identification’ attribute is used to match the message evaluated re-
sponse with the evaluate message request. The ‘value’ attribute models the message
value that was the result of the evaluation operation.

MESSAGE
EVALUATED value

identification

Figure 177 Object model for the colour of the ‘message evaluated’ place

182 LOGICAL ARCHITECTURE OF THE CONTRACTING AGENT

Place ‘adjust service data’

R
ole A token in the ‘adjust service data’ place models a signal from the Interaction Manager

to the Strategy Processor to adjust the service data of a candidate service according to a
contracting strategy parameter.

Type

The colour of a token in this place is a complex of which the object model is shown in
Figure 178. The token contains four attributes: the ‘identification’ attribute that con-
tains a unique identification of the request, the ‘data’ attribute that models the service
data to be adjusted, the ‘strategy parameter type’ attribute that models the type of ad-
justment to be performed and the ‘expression’ attribute that contains any parameter
value required for the adjustment.

ADJUST
SERVICE DATA

data

strategy parameter type

identification

expression

Figure 178 Object model for the colour of the ‘adjust service data’ place

Place ‘service data adjusted’

R
ole A token in the ‘service data adjusted’ place models the response from the Strategy

Processor to the Interaction Manager on an request to adjust service data.

Type

The colour of a token in this place is a complex of which the object model is shown in
Figure 179. The ‘identification’ attribute is used to match the service data adjusted re-
sponse with the adjust service data request. The ‘data’ attribute models the adjusted
service data.

SERVICE DATA
ADJUSTED data

identification

Figure 179 Object model for the colour of the ‘service data adjusted’ place

LOGICAL ARCHITECTURE OF THE CONTRACTING AGENT 183

3.3.3 Behaviour on the component interfaces
The previous section defined the structure of the interfaces. We will now define the behaviour
of the components on their interfaces and the collaboration between the components via their
interfaces.

Storage components
The behaviour of the State Data Storage component and the Configuration Data Storage com-
ponent is defined in Figure 180. Each component behaves according to a request/response
protocol.

State data Storage

state data
request

state data
response

Configuration data Storage

config data
request

config data
response

Figure 180 Behaviour of the Storage components

Processing components
The behaviour of the Schema Processor, the Constraints Processor, the Transformation Proces-
sor and the Strategy Processor is defined in Figure 181. Each component behaves according to
a request/response protocol.

Schema Processor

apply
schema

schema
applied

Constraints Processor

apply
constraints

constraints
applied

Transformation Processor

apply
transformation

transformation
applied

Strategy Processor

evaluate
message

message
evaluated

Strategy Processor

adjust
service data

service data
adjusted

Figure 181 Behaviour of the processing components

Workflow Manager and Interaction Manager
We will now define the behaviour of the Workflow Manager and the Interaction Manager. As
we have described in Section 3.3.1, the Workflow Manager triggers the Interaction Manager to
perform one standard operation on the state data (see Section 2.6.1), or a group of functionally
related standard operations on the state data. As a response, the Interaction Manager invokes

184 LOGICAL ARCHITECTURE OF THE CONTRACTING AGENT

the storage components to retrieve relevant state data and configuration data, whereafter it in-
vokes the required processing components. Next, the storage components are invoked again to
store the result of the operation. The behaviour of the Interaction Manager towards the State
Data Storage, Configuration Data Storage, Schema Processor, Transformation Processor, Con-
straints Processor and Strategy Processor is defined by the definition of the standard operations
in Section 2.6.1. We will now define the behaviour of the Interaction Manager by defining the
relation between its interface towards the Workflow Manager and the standard operations it
executes.

• Places ‘start’ and ‘finished’
The model in Figure 182 shows that after the Interaction Manager consumes a token from
place ‘initiate request’ it executes the standard operation ‘validate case’. If the validation is
successful, the case is created in the state data and tokens are produced in places ‘initiate
accept’ and ‘start’. If the validation is not successful, the case is not accepted and a token is
produced in place ‘initiate reject’. When the Workflow Manager produces a token in place
‘finished’, the client application is notified by producing a token in place ‘finished notifica-
tion’.

start

VALIDATE
 CASE

initiate
request

valid

invalid

Accept

Reject

initiate
reject

initiate
accept

finished

Notify
client application

finished
notification

Figure 182 Behaviour of the Workflow Manager and the Interaction Manager (1)

• Places ‘initiate’, ‘initiated’, ‘skipped’
The Workflow Manager produces a token in place ‘initiate’ when the contracting process
for a specific candidate service type must start. The model in Figure 183 shows that after a
token is consumed from place ‘initiate’ the Interaction Manager first executes the standard
operation ‘determine candidate service status’. If the candidate service type is not required, a
token is produced in place ‘skipped’. Otherwise, the Interaction Manager executes standard
operations ‘specify candidate service data’ and ‘determine available providers’. Here after, the
Interaction Manager produces a token in place ‘initiated’.

DETERMINE CANDIDATE
SERVICE STATUS

required

SPECIFY CANDIDATE
SERVICE DATA

specified

DETERMINE
AVAILABLE PROVIDERS

initiate skipped initiated

Figure 183 Behaviour of the Workflow Manager and the Interaction Manager (2)

LOGICAL ARCHITECTURE OF THE CONTRACTING AGENT 185

• Place ‘send’
The model in Figure 184 shows that after the Workflow Manager produces a token in place
‘send’, the Interaction Manager consumes the token and queries the state data for the exis-
tence of the transaction. If the transaction does not exist, the standard operations ‘create
transaction’ and ‘create outbound message’ are executed. Otherwise, only standard operation
‘create outbound message’ is executed.

CREATE
OUTBOUND MESSAGE

existing
transaction

outbound
message

CREATE
TRANSACTION

new
transaction

send

Find
transaction

Figure 184 Behaviour of the Workflow Manager and the Interaction Manager (3)

• Place ‘received’
The model in Figure 185 shows that after the Interaction Manager consumes a token from
place ‘inbound message’, the standard operation ‘store inbound message’ is executed, after
which a token is produced in place ‘received’.

STORE
INBOUND MESSAGE

received

inbound
message

Figure 185 Behaviour of the Workflow Manager and the Interaction Manager (4)

• Place ‘evaluate’, ‘evaluated’
The model in Figure 186 shows that after the Workflow Manager produces a token in place
‘evaluate’ the Interaction Manager executes standard operation ‘determine message value’,
after which a token with the result is produced in place ‘evaluated’.

DETERMINE
MESSAGE VALUE

evaluate evaluated

Figure 186 Behaviour of the Workflow Manager and the Interaction Manager (5)

186 LOGICAL ARCHITECTURE OF THE CONTRACTING AGENT

• Place ‘process’, ‘adjust’
The model in Figure 187 shows that after the Workflow Manager produces a token in place
‘process’ or place ‘adjust’, the Interaction Manager executes standard operations ‘process
inbound message’ / ‘check for violations’ or ‘adjust candidate service data’ respectively.

PROCESS
INBOUND MESSAGE

process

ADJUST CANDIDATE
SERVICE DATA

adjust

CHECK FOR
VIOLATIONS

Figure 187 Behaviour of the Workflow Manager and the Interaction Manager (6)

Finally, we define the behaviour of the Interaction Manager on the configuration program in-
terface and the monitoring program interface. We will define the behaviour in parts, each part
for one input place or a group of input places.

• Places belonging to the Configuration program interface
The configuration program interface is used to update the configuration parameters of the
Server component for which a simple ‘request / response’ protocol is used.

Configuration
request

Configuration
response

Update
Configuration

Figure 188 Behaviour of the ‘Interaction Manager’ component (1)

• Places belonging to the Monitoring program interface.
The monitoring program interface of the Interaction Manager is used for two functions: to
retrieve a list of business cases and to retrieve the state data of one specific business case.
For both functions a simple ‘request / response’ protocol is used.

Case list
request

Case list
response

Retrieve
case list

Case details
request

Case details
response

Retrieve
case details

Figure 189 Behaviour of the ‘Interaction Manager’ component (2)

LOGICAL ARCHITECTURE OF THE CONTRACTING AGENT 187

3.4 Architecture of the ‘Configurator’ component

3.4.1 Distribution of functionality over components
The Configurator component consists of the following sub components as is illustrated in
Figure 190.

• Available services
This data store contains the specification of available service types and service providers, as
well as protocol patterns and contracting strategies. The structure of the store is defined in
Figure 192.

• Contracting requirements
This data store contains the specification of case types and the contracting requirements for
cases belonging to these case types in terms of candidate service types, selected providers,
selected violations, strategies, etc. The structure of the store is defined in Figure 193.

• Configuration manager
The Configuration Manager maintains the persistent data in the two data stores described
before. It provides a user interface that supports the user in creating and modifying these
configuration parameters. For this purpose, the user can import service types, service pro-
viders, protocol patterns and strategy types from a Repository. The creation and modifica-
tion of attributes for which an extensible number of syntaxes must be supported is not part
of the functionality of the Configuration Manager. Instead, if such a parameter must be cre-
ated or modified, the Configuration Manager invokes another component dedicated for that
task. This architectural decision allows us to add support of a new syntax by replacing that
sub-component or by adding a new sub-component. Finally, the Configuration Manager al-
lows the user to configure the Server component via the Configuration program interface of
the Server component.

• Schema editor
The Schema editor provides a syntax-aware user interface that supports the user in creating
and modifying the ‘schema’ attributes of the ‘CASE TYPE’ and ‘SERVICE TYPE’ entities in the
persistent data. It implements one or more schema syntaxes for hierarchic data models.

• Schema subset editor
The Schema subset editor provides a syntax-aware user interface that supports the user in
creating and modifying the ‘schema’ attributes of the ‘MESSAGE TYPE’ entities in the persis-
tent data, based on the ‘schema’ attribute of a ‘SERVICE TYPE’ entity in the persistent data. It
implements one or more schema syntaxes for hierarchic data models.

• Constraints editor
The Constraints editor provides a syntax-aware user interface that supports the user in cre-
ating and modifying the ‘constraints’ attributes of the ‘AVAILABILITY’, ‘VIOLATION TYPE’,
‘CASE TYPE’ and ‘CANDIDATE SERVICE TYPE’ entities in the persistent data. It implements
one or more constraint syntaxes.

• Transformation editor
The Transformation editor provides a syntax-aware user interface that supports the user in
creating and modifying the ‘specification rules’ attribute of the ‘CANDIDATE SERVICE TYPE’
entities in the persistent data. It implements one or more transformation syntaxes.

188 LOGICAL ARCHITECTURE OF THE CONTRACTING AGENT

• Strategy editor
The Strategy editor provides a user interface that supports the user in creating and modify-
ing the ‘expression’ attribute in the ‘STRATEGY PARAMETER’ entities related to the
‘STRATEGY’ entity defined for a candidate service type. It implements one or more con-
tracting strategies.

• Workflow analyser
The Workflow analyser is used to check whether a generated contracting workflow is a
sound WF-net.

• Workflow generator
The Workflow generator generates the workflow definition enacted in the Workflow Man-
ager of the Server component. Its input is the contracting requirements of an outsourced task
and it has knowledge of the negotiation strategies, execution strategies and acceptance
strategies referred to in the contracting requirements.

Strategy
editor

Schema
subset
editor

Constraints
editor

Configuration Manager

Transformation
editor

user

Se
rv

er

repository

Schema
editor

Workflow
analyzer

Available
services

Contracting
requirements

Workflow
generator

Figure 190 Main components and interfaces of the Configurator component

LOGICAL ARCHITECTURE OF THE CONTRACTING AGENT 189

3.4.2 Structure of interfaces and persistent data
A formal model of the interfaces between the sub components of the Configurator component
is given in Figure 191.

Configurator

screen event

screen updateU
se

r

transformation in

transformation out
Tr

an
sf

or
m

at
io

n
ed

ito
r

available services

contracting requirements

strategy in

strategy out

St
ra

te
gy

ed
ito

r

schema in

schema out

Sc
he

m
a

ed
ito

r

constraints in

constraints out

C
on

st
ra

in
ts

ed
ito

r

co
nf

ig
ur

at
io

n
re

qu
es

t

co
nf

ig
ur

at
io

n
re

sp
on

se

se
rv

ic
e

ty
pe

s

se
rv

ic
e

pr
ov

id
er

s

pr
ot

oc
l p

at
te

rn
s

co
nt

ra
ct

in
g

 s
tra

te
gi

es

Repository

Server

schema subset in

schema subset out

Sc
he

m
a

Su
bs

et
ed

ito
r

WF-net

WF-net properties

W
or

kf
lo

w
an

al
yz

er

WF generate

generate WF

W
or

kf
lo

w
ge

ne
ra

to
r

Figure 191 Interfaces between sub components in the Configurator component

190 LOGICAL ARCHITECTURE OF THE CONTRACTING AGENT

Structure of persistent data
The stores ‘available services’ and ‘contracting requirements’ in the ‘Configurator’ system
model the persistent data of the Configurator component. The colour of the tokens in these
stores is defined by the object models in Figure 192 and Figure 193 respectively.

The object model of the ‘available services’ store maintained by the Configurator component
is based on the available services complex class in Figure 46 with the following changes. First,
in the implementation domain we use the term ‘schema’ instead of the term ‘data model’. Sec-
ond, since the logical architecture allows different syntaxes for schemas and constraints, we
added a ‘schema syntax’ attribute to each ‘schema’ attribute and a ‘constraints syntax’ attribute
to each ‘constraints’ attribute. Third, since configuration parameters often must be configured
from scratch, only those attributes are required which are always filled when an object is in-
stantiated. Finally, we added the entities ‘STRATEGY TYPE’ and ‘PARAMETER TYPE’ from Figure
65.

The object model of the ‘contracting requirements’ store maintained by the Configurator com-
ponent is based on the contracting requirements complex class in Figure 66 with the following
changes. First, since the logical architecture allows different syntaxes for schemas, constraints
and transformations, we added a ‘schema syntax’ attribute to each ‘schema’ attribute, a ‘con-
straints syntax’ attribute to each ‘constraints’ attribute and a ‘specification rules syntax’ attrib-
ute to the ‘specification rules’ attribute. Finally, since configuration parameters often must be
configured from scratch, only those attributes are required which are always filled when an
object is instantiated.

LOGICAL ARCHITECTURE OF THE CONTRACTING AGENT 191

SERVICE TYPE

name

description

schema

AVAILABILITY

SERVICE
PROVIDER name

type identification

identification

VIOLATION TYPE
name

type identification

constraints

constraints

type identification

name

description

schema

name

URL

identification

protocol definition

type identification

generic name

TRANSACTION
PROTOCOL

MESSAGE TYPE

PROTOCOL
PATTERN

PATTERN
MESSAGE TYPE

STRATEGY
TYPE

schema syntax

schema syntax

constraints syntax

constraints syntax

PARAMETER
TYPE

type identification

name

name

description

Figure 192 Structure of persistent data store ‘available services’ of the Configurator component

192 LOGICAL ARCHITECTURE OF THE CONTRACTING AGENT

CASE TYPE

name

type identification

constraints

CANDIDATE
SERVICE TYPE

type identification

trigger

description

specification rules

SELECTED
PROVIDERpreference

constraints

schema

STRATEGY

E

type identification

service type identification
identification

SELECTED
VIOLATION TYPE

type identification

parameter data

constraints syntax

schema syntax

specification rules syntax

constraints syntax

STRATEGY
PARAMETERexpression

type identification

N A

Figure 193 Structure of persistent data store ‘contracting requirements’ of the Configurator component

Structure of the Schema editor program interface
The Schema editor is a memory-less component that takes a schema as input, modifies it and
produces the modified schema as output. The Schema editor supports one or more schema
syntaxes.

Place ‘schema in’, ‘schema out’

R
ole These places model the input and output of the Schema editor. The attributes that can

be modified by the Schema editor are marked with a grey background.

Type

The colour a token in one of these places is a complex of which the object model is
given in Figure 194. The ‘schema’ attribute models the schema to be maintained,
whereas the syntax of this schema is given by the ‘schema syntax’ attribute.

SCHEMA
schema

schema syntax

Figure 194 Object model for the colour of the ‘schema in’ and ‘schema out’ places

LOGICAL ARCHITECTURE OF THE CONTRACTING AGENT 193

Structure of the Schema subset editor program interface
The Schema subset editor is a memory-less component that takes a template schema and one or
more subset schemas as input, modifies the subset schemas and produces them as output. A
Schema subset editor supports one or more schema syntaxes.

Place ‘schema subset in’, ‘schema subset out’

R
ole These places model the input and output of the Schema subset editor. The attributes

that can be modified by the Schema subset editor are marked with a grey background.

Type

The colour of a token in one of these places is a complex of which the object model is
given in Figure 195. The schema used as template on which the subset schemas are
based is modelled by the ‘TEMPLATE SCHEMA’ entity. A schema that is a subset on the
template schema is modelled by the ‘SUBSET SCHEMA’ entity. Because multiple subset
schema’s are allowed, a ‘name’ attribute is used in each ‘SUBSET SCHEMA’ entity to
distinguish the subset schema’s from each other.

TEMPLATE
SCHEMA

schema

schema syntax

SUBSET
SCHEMA schema

name

schema syntax

Figure 195 Object model for the colour of the ‘schema subset in’ and ‘schema subset out’ places

Structure of the Constraints editor program interface
The Constraints editor is a memory-less component that takes a schema and a set of constraints
as input, modifies the set of constraints and produces the modified set of constraints as output.

Place ‘constraints in’, ‘constraints out’

R
ole These places model the input and output of the Constraints editor. The attributes that

can be modified by the Constraints editor are marked with a grey background.
Type

The colour of a token in one of these places is a complex of which the object model is
given in Figure 196. The ‘constraints’ attribute models the set of constraints to be
modified (can be empty), whereas the syntax of the constraints is given by the ‘con-
straints syntax’ attribute. Since constraints are meant to operate on hierarchic data with
a specific structure, the ‘schema’ attribute models the structure of the hierarchic data on
which the constraints operate. The ‘schema syntax’ attribute models the syntax used for
the schema.

CONSTRAINTS
constraints syntax

schema

constraints

schema syntax

Figure 196 Object model for the colour of the ‘constraints in’ and ‘constraints out’ places

194 LOGICAL ARCHITECTURE OF THE CONTRACTING AGENT

Structure of the Transformation editor program interface
The Transformation editor is a memory-less component that takes two schemas and a trans-
formation as input, modifies the transformation, and produces the modified transformation as
output.

Place ‘transformation in’, ‘transformation out’

R
ole These places model the input and output of the Transformation editor. The attributes

that can be modified by the Transformation editor are marked with a grey background.

Type

The colour of a token in one of these places is a complex of which the object model is
given in Figure 197. The ‘transformation’ attribute models the transformation function
to be modified (can be empty), whereas the syntax of the transformation function is
given by the ‘transformation syntax’ attribute. Since transformation functions are
meant to operate on a source data set with a specific structure and generates a target
data set with a specific structure, the ‘source schema’ attribute models the structure of
the source data set and the ‘target schema’ attribute models the structure of the target
data set. The ‘target schema syntax’ attribute and the ‘target schema syntax’ attribute
model the syntax used for the source schema and target schema respectively.

TRANSFORMATION

source schema

target schema syntax

target schema

transformation

source schema syntax

transformation syntax

Figure 197 Object model for the colour of the ‘transformation in’ and ‘transformation out’ places

LOGICAL ARCHITECTURE OF THE CONTRACTING AGENT 195

Structure of the Strategy editor program interface
A strategy defined for a specific candidate service type can require parameter data, e.g. an ex-
pression to evaluate offers. The Strategy editor is a memory-less component that takes the
identification of a contracting strategy, a service type schema and the parameter data for the
selected strategy as input. It lets the user modify the parameter data and produces the modified
parameter data as output.

Place ‘strategy in’, ‘strategy out’

R
ole These places model the input and output of the Strategy editor. The attributes that can

be modified by the Strategy editor are marked with a grey background.

Type

The colour of a token in one of these places is a complex of which the object model is
given in Figure 198. The ‘type identification’ attribute of the ‘STRATEGY’ entity models
the unique identification of the strategy type and is a reference to a ‘STRATEGY TYPE’
entity. Since a strategy is meant to operate on service data (and message data) with a
specific structure, the ‘service type schema’ attribute models the structure of the service
data and the ‘service type schema syntax’ attribute models the syntax used for the
service type schema. Each ‘STRATEGY PARAMETER’ entity models a specific parameter
used in the contracting strategy. The ‘type identification’ attribute models the parame-
ter type and is a reference to a ‘PARAMETER TYPE’ entity. The ‘data’ attribute of the
‘STRATEGY PARAMETER’ entity models the parameter data to be modified (can be
empty).

STRATEGY

type identification

service type schema syntax

service type schema

STRATEGY
PARAMETER data

type identification

Figure 198 Object model for the colour of the ‘strategy in’ and ‘strategy out’ place

196 LOGICAL ARCHITECTURE OF THE CONTRACTING AGENT

Structure of the Workflow generator program interface
The Workflow generator takes the contracting requirements as input and generates the corre-
sponding implementation contracting workflow in the format expected by the Workflow Man-
ager. The Workflow generator has knowledge of contracting strategies and their implementa-
tion in high level coloured Petri nets.

Place ‘generate WF’

R
ole A token in this place models the input to the Workflow generator and contains the part

of the contracting requirements relevant to the generation of the contracting workflow.

Type

The colour of a token in this place is a complex of which the object model is given in
Figure 199. The entities other than entity ‘GENERATE WORKFLOW’ are taken from the
contracting requirements object model in Figure 193. The entity ‘GENERATE
WORKFLOW’ models the request and contains one attribute ‘WF syntax’ that defines the
syntax in which the generated workflow definition must be expressed.

CASE TYPE type identification

CANDIDATE
SERVICE TYPE

type identification

trigger

STRATEGY type identificationSTRATEGY
PARAMETERexpression

type identification

GENERATE
WORKFLOWWF syntax

EN A

constraints

Figure 199 Object model for the colour of the ‘generate WF’ place

Place ‘WF generated’
R

ole A token in this place models the output of the Workflow generator.
Type

The colour of a token in this place is a complex of which the object model is given in
Figure 200. If the workflow was successfully generated, no ‘ERROR’ entities are present
and the ‘workflow definition’ attribute contains the entire definition of the generated
workflow. Otherwise, the ‘workflow definition’ attribute is empty and one or more
‘ERROR’ entities are present.

GENERATED
WORKFLOW workflow definition

ERROR description

Figure 200 Object model for the colour of the ‘WF generated’ place

LOGICAL ARCHITECTURE OF THE CONTRACTING AGENT 197

3.4.3 Behaviour on the component interfaces
The sub-components invoked by the Configuration manager component have a simple request /
response protocol as defined in Figure 201.

Schema subset editor

schema subset
in

schema subset
out

Constraints editor

constraints
in

constraints
out

Transformation editor

transformation
in

transformation
out

Strategy editor

strategy
in

strategy
out

Schema editor

schema
in

schema
out

Workflow analyzer

WF-net WF-net properties

Workflow generator

generate WF WF generated

Figure 201 Behaviour of the components invoked by the Configuration manager

4. Technical
architecture of the
Contracting Agent

This chapter describes the technical architecture of a software component that imple-
ments the logical architecture described in the previous chapter. The objectives of this
component in the context of the research are given in Section 4.1.1. Basic construction
choices like platform, programming system, the use of standards and standard com-
ponents are discussed in section 4.1.2 – 4.1.7. There after, Section 4.2 gives the tech-
nical software architecture of the Contracting Agent by specifying all individual soft-
ware components and their interfaces. A specification of the custom-made components
is given in sections 4.3 and 4.4. An important part of the system is the generated con-
tracting workflow which is enacted by the workflow engine in the Server component.
Examples from a generated contracting workflow are given in Section 4.5. Finally,
Section 4.6 gives an impression of the use of the configuration and monitoring func-
tions of the software by presenting examples of the user interface.

4.1 Basic construction choices

4.1.1 Objectives
The main objective for constructing a Contracting Agent is to provide a proof of concept for
the conceptual framework (Chapter 2) and the logical architecture (Chapter 3). The conse-
quence of this objective is an emphasis on functionality, rather than on aspects like perform-
ance, maintainability, multi-platform, scalability, etc. We will therefore choose technologies
that allow us to implement the desired functionality efficiently. The second objective for con-
structing a Contracting Agent prototype is to show how construction efforts can be minimised
by using available standards and components. This objective is derived from a research ques-
tion formulated in Chapter 1: ‘What is a suitable technical architecture of the service con-
tracting software component that utilises existing standards and existing components maxi-
mally in order to minimise the effort to develop the component and to maximise maintainabil-
ity’.

200 TECHNICAL ARCHITECTURE OF THE CONTRACTING AGENT

4.1.2 Windows and COM
Due to the focus on functionality rather than aspects like performance, multi-platform and scal-
ability we have made the following choices for the platform under which the Contracting
Agent will be developed.

• Windows as operating system
The Contracting Agent will be developed for the Microsoft Windows platform. Windows is
a platform for which a large number of software development tools is available and has a
large installed base. Furthermore, the choice for Windows allows us to use standard soft-
ware components available for that platform, such as MSXML4, ExSpect, WOFLAN and
MSOutlook.

• COM as component framework
The Contracting Agent will not be implemented as a monolithic piece of software, but will
consist of several autonomous software components. In order to be assembled seamlessly
with other software components, a software component must be based on a component
framework as COM, CORBA or JavaBeans. We have chosen to use the COM framework
for the Contracting Agent prototype, because it gives the best fit with the Windows plat-
form, is well supported by popular programming systems like Visual Basic or Visual C++
and does not require any additional components like middleware.

• Visual Basic as programming system
The custom-made software components will be developed in Visual Basic. This system is
known for its development speed and productivity, especially for graphical user interfaces
and data-centric applications on the desktop. The ActiveX technology allows a programmer
to compose a Graphic User Interface (GUI) from a wide range of standard ActiveX controls.
Another powerful aspect of Visual Basic is its facilities to create a broad variety of COM-
based components, e.g. in-process Dynamic Link Libraries (DLL) and out-of-process COM-
servers.

The COM framework
The COM standard is an object-based programming model designed for interoperability be-
tween binary software components that can be developed in different software languages.
COM defines and implements mechanisms that allow applications to connect to each other as
software objects, an instantiation of a class that conforms to the COM standard. A COM object
is accessed only via its interfaces, a set of strongly typed semantically related functions (called
member functions of that interface). An interface can be defined by the Interface Description
Language (IDL) and is implemented by one or more software objects. If a software object im-
plements an interface, it has to implement each of the member functions in that interface. Each
interface in each software object has a 128-bit integer Globally Unique Identifier (GUID). A
software object can implement one or more interfaces simultaneously. If a vendor creates a
new version of a software object, he does not change the existing interfaces, but simply adds
new interfaces if necessary. When a client application has access to a software object, it has
nothing more than a pointer through which it can access the functions in the interface, called
the interface pointer. Figure 202 shows the drawing technique for software objects. The inter-
faces of an object are drawn as a small circle connected to the object via a line. An interface
pointer of a client application to an interface is drawn as an arrow.

TECHNICAL ARCHITECTURE OF THE CONTRACTING AGENT 201

Client
Software
Object

A

B

Interface pointer

Figure 202 COM objects accessed via interfaces

When a client application initially gains access to an object, it is given one interface pointer.
The COM standard defines a mechanism by which a client can navigate through the interfaces
of an object. This mechanism relies on the function QueryInterface that must be implemented in
each interface. The client calls QueryInterface with the unique identifier of an interface as pa-
rameter. If the object implemented the interface, it returns a pointer to the interface. Otherwise,
it returns the null value and the client application will not be able to use the interface.

Components based on COM can be distinguished into two categories with respect to the client
that is using the component: in-process and out-of-process. An in-process component runs in
the same process and address space as the client that uses the component. Out-of-process com-
ponents run in a separate process and address space (or even on a different machine). However,
COM is designed to allow clients to transparently communicate with objects, regardless of
where those objects are running, be it in the same process, on the same machine or on a remote
machine. This functionality is provided by the COM run-time library, which is part of the
Windows operating system. If a client calls a function in an interface of an in-process object,
the call reaches it directly as illustrated in Figure 203.

Client
Application

In-Process
Object

Client process

Figure 203 Communication between COM objects in the same process

If the client and server object are not in the same process, the call is intercepted by an in-
process ‘proxy’ object provided by COM. The ‘proxy’ object generates the appropriate Remote
Procedure Call (RPC) to a ‘stub’ object provided by COM that runs in the same process as the
server object. The ‘stub’ object receives the Remote Procedure Call and makes an interface call
to the server object. Communication between objects in different processes is illustrated in
Figure 204.

Client
Application

Local
Object Proxy

Client process

Stub

Local Server process

Local
ObjectRPC

Figure 204 Communication between COM objects in different process

Microsoft extended the COM technology to support distributed computing with the DCOM
(Distributed COM) standard [95]. Distributed applications consist of components that reside on
different hardware components, connected by a network. The advantage of distributed applica-
tions is the possibility to run a component on the platform that is best suited, and the scalabil-

202 TECHNICAL ARCHITECTURE OF THE CONTRACTING AGENT

ity. One could start with a single server running all components and deploy additional ma-
chines to run one or more components when the load increases.

Client
Application

Remote
Object Proxy

Client process

Stub

Remote Server process

Local
Object

RPC

Client machine Remote machine

network
protocol

Figure 205 COM components on different machines

There are two types of in-process components: ActiveX controls and Dynamic Link Libraries.
An ActiveX control (with file extension OCX) is a reusable component and is always used in a
container, for instance a form in a Visual Basic application or an HTML document. The most
well known examples of ActiveX controls are the controls to create user-interfaces from. A
number of standard ActiveX controls are distributed with development tools like Visual Basic
and Visual C++. In addition to this, a market for ActiveX controls from third-party suppliers
emerged. The second type of in-process components are Dynamic Link Libraries (with file
extension DLL). A DLL is used to store reusable class libraries, from which client applications
can create instances of objects. The object exists in the same address space and process space
as the application that created the object. DLL’s are ideal for generic functions used by differ-
ent applications, such as business rules. They are fast to load, and have a high rate of data
transfer with the client application because they occupy the same address space.

Out-of-process servers run in a separate process and address space. Because they run in a sepa-
rate thread of execution, they are ideal for performing background tasks or asynchronous tasks.
A client application can invoke a method in an out-of-process server and continue with its own
processing. As soon as the out-of-process server completed the task, it raises an event for the
client to signal the completion of the task. A disadvantage of out-of-process servers is the
slower communication between client and server object because data must be transferred from
one address space to another. Out-of-process servers are used when the server must run in a
separate thread of execution or when the server can run as a stand-alone application too.

4.1.3 XML, XML-Schema, XSLT, DOM, MSXML4
We have defined case data, service data and message data as hierarchic data structures on
which different functions must be performed: validation, transformation, parsing and presenta-
tion. Furthermore, case data, service data and message data must also be stored and exchanged.
Programming this functionality from scratch (as generic functions) would be a complex and
time-consuming effort. XML standards and standard components that support these standards
will therefore be used.

• Storage and exchange: XML documents
Case data, service data and message data are modelled as XML documents that are part of
the persistent data of the Server component. By using the XML standard, we can make use
of many additional standards for operations on the XML documents. Furthermore, XML
documents can be easily exchanged between software components in the form of a text file

TECHNICAL ARCHITECTURE OF THE CONTRACTING AGENT 203

or via a string parameter in a method on a COM component. The ‘data’ attributes in the
functional data models in Chapter 3 are therefore implemented as XML documents.

• Parsing: DOM with MSXML4
When the value of one or more elements or attributes must be retrieved from an XML
document, we require a parsing mechanism. The Document Object Model (DOM) is a
specification of a standard API for manipulating XML documents. A COM-component that
implements the DOM specification is the Microsoft XML parser (MSXML4.DLL). The
XML parser can be used to instantiate an object in which the XML document is loaded
whereafter it exposes the content of the XML document via a set of methods and properties.

• Schema validation: XML-Schema with MSXML4
Validation is checking a hierarchic data set against a schema. The validation function is of-
fered by validating XML parsers such as MSXML4. These parsers take a DTD or a schema
of the XML document as input, together with the XML document itself. Although a DTD
can be used for validation purposes, its expressive power is not enough to check the struc-
tural elements defined by the data model in Figure 47. A standardised schema language with
enough expressive power is XML-Schema, which is supported by the MSXML4 validating
parser. The ‘schema’ attributes in the functional data models in Chapter 3 are therefore im-
plemented as XML-Schema documents.

• Transformation: XSLT with MSXML4
Transformation is performed on case data and service data in the specification phase of a
service contracting process in order to specify the service data of a candidate service. We
will use an XML document to represent the case data and service data which is input for the
transformation. Furthermore, we will use the XSLT standard to define the transformation
that takes the XML document with case data and service data as input and creates the XML
document that contains the service data of the candidate service as output. Therefore, the
‘specification rules’ attribute in the ‘contracting requirements’ store (see Figure 66) is im-
plemented as an XSLT document. Furthermore, we will use MSXML4 as XSL(T) proces-
sor.

• Constraints checking: XSL/XPath with MSXML4
The Contracting Agent for which we define the technical architecture implements only sim-
ple constraints, for which we will use the XSL standard as representation syntax. Operands
in the constraints are represented as an XPath expression. Furthermore, we will use
MSXML4 as XSL and XPath processor.

• Presentation: XSL with Internet Explorer
Presentation of hierarchic data is required in the Monitor component where case data, serv-
ice data and message data can be viewed by the user. We will use the XSL standard to de-
fine the layout of the case data, service data and message data in HTML structure. We will
use Internet Explorer as XSL processor and HTML viewer for presentation of case data,
service data and message data.

4.1.4 Relational databases, ADO and Access 2000 Jet engine
The Configurator component and the Server component rely on persistent data heavily. As we
have seen before, some attributes of the functional data models that represent persistent data
stores are implemented as XML documents. For example, the ‘data’ attributes of the ‘CASE’,
‘SERVICE’ and ‘MESSAGE’ entities are implemented as XML documents. The ‘schema’ attrib-

204 TECHNICAL ARCHITECTURE OF THE CONTRACTING AGENT

utes of the ‘CASE TYPE’, ‘SERVICE TYPE’ and ‘MESSAGE TYPE’ entities are implemented as
XML-Schema documents, which are XML documents too. Finally, other attributes like the
‘specification rules’ attribute of the ‘CANDIDATE SERVICE TYPE’ entity, implemented as XSLT
document, are also XML documents.

In general, we have two options for storing the persistent data: in a relational database or as an
XML document. The main advantages of a relational database are the use of SQL as query
language, support of multi-user access and the ability to handle large volumes of data and large
numbers of database transactions efficiently. Because an XML document does not provide this
functionality, we choose to use a relational database to store persistent data. The database
schema of the relational databases is derived from the functional data models by implementing
an entity as a table and an attribute of an entity as a column in the table. The choice for a rela-
tional database leaves us with the question how to store XML documents, for which two op-
tions are available:

• Data-centric
If the XML document has a well-defined structure, it is possible to map the structure of the
XML document to one or more relational tables. When the XML document is stored, its in-
dividual elements and attributes are distributed among columns in the relational tables. Once
stored in relational tables, the information can be updated and queried by using SQL. If nec-
essary, the information from the relational tables can be retrieved and formatted into an
XML document again.

• Document-centric
If the XML document does not have a well-defined structure, or if updates on the XML
document are always made by replacing the entire XML document, a document-centric ap-
proach can be followed. In this approach, the XML document is stored as a BLOB (binary
large object) in a column of a relational table. The advantage of storing intact XML docu-
ments in a relational databases is the reliability of a relational database system over file
system storage.

We will choose a document-centric approach for storing the XML documents in the persistent
data of the Configurator and Server component because they are stored, retrieved and updated
as entire XML documents only. Finally, we must choose a database management system
(DBMS) and an mechanism to access the relational database from Visual Basic programs.

• DMBS / access mechanism: ADO / Access 2000
We will use the Jet 4.0 engine of the Microsoft Access 2000 relational database system.
Although the Jet engine does not provide the same level of scalability and robustness as for
instance SQL Server offers, its ease-of-use makes it a good choice from the perspective of
the objective to provide a proof of concept. The relational database is accessed from the
Visual Basic programming environment by ActiveX Data Objects (ADO) which can be
used from any COM compliant programming language and which supports a broad range of
data sources. Furthermore, since we use ADO to access the database engine, we can easily
replace the Jet engine by another database engine.

TECHNICAL ARCHITECTURE OF THE CONTRACTING AGENT 205

4.1.5 ExSpect as workflow engine
We will use the ExSpect engine as commercial-of-the-shelf component to implement the func-
tionality of the Workflow Manager. ExSpect is a powerful process-modelling tool, based on
the formalism of high-level coloured Petri nets. The components of which the ExSpect tool
consists are shown in Figure 206:

• Design interface
The Design interface provides a graphical user interface by which a user can define process
models in the form of high level coloured Petri nets.

• Model definition file
An ExSpect model is stored in a flat file according to the ExSpect notation for high-level
coloured Petri nets. The extension ‘.ex’ is used for these files. A model definition file al-
ways contains the structure of a Petri net and optionally contains information on the graphi-
cal representation in the Designer user interface (size, position, colour).

• Engine
The Engine is the part of ExSpect that executes high level coloured Petri nets. It reads a
model definition from a ‘.ex’ model definition file and computes the firing sequence.

• Dashboard
The Dashboard is the part of the ExSpect simulation environment in which the user can in-
stall one or more graphical objects to represent the state of the simulation process. For this
purpose, graphical objects in the dashboard can be connected to places in the Petri net exe-
cuted by the Engine.

• Animator
The Animator is the part of the ExSpect simulation environment that displays the structure
of the Petri net under execution. The user can see the distribution of tokens over the places.
When a transition fires, the user can see tokens being consumed and produced.

Design
interface

Dashboard Animator

Engine

Simulation interface

Model
definition
file (*.ex)

Figure 206 Components of ExSpect and position of the Engine component

The ExSpect engine has been isolated from the other parts of ExSpect and is housed in a sepa-
rate COM-component. This allows the ExSpect engine to be embedded in other software prod-
ucts as an out-of-process COM-server. The ExSpect engine then acts as a workflow engine,
handling the control flow of the application. We will now describe in plain English the use of
the API as used in the Contracting Agent.

206 TECHNICAL ARCHITECTURE OF THE CONTRACTING AGENT

• Start the execution
To start the execution of a Petri net, the client has to call the ‘init’ method. Parameters of
this method are the path and file name of the model definition file and the name of the sys-
tem at the top of the system hierarchy. When the model is initialised, a ‘tracePlace’ method
is applied for all places that model signals from Workflow Manager to Interaction Manager.

Set oExServer = CreateObject("ExServObj.ExServObj.1")
Set oEvents = oExServer

oExServer.Init("c:\ContractingAgent", "contracting", "main")

varRet = oExServer.TracePlace("IM_initiate")
varRet = oExServer.TracePlace("IM_send")
varRet = oExServer.TracePlace("IM_process")
varRet = oExServer.TracePlace("IM_evaluate")
varRet = oExServer.TracePlace("IM_adjust")
varRet = oExServer.TracePlace("IM_finished")

• Produce tokens
At the start of a service contracting process, a token must be produced in the ‘start’ place.
During a service contracting process, tokens are produced in the places ‘initiated’,
‘skipped’, ‘received’ and ‘evaluated’. To produce a token in the Petri net executed by the
ExSpect engine, the ‘produceToken’ method is applied with three parameters: the name of
the place, the value of the token and the delay, for example:

strValue = "[caseid:'" & pstrCaseId & "',caseowner:'" &
varRet = oExServer.ProduceToken("IM_start", strValue, 0)
varRet = oExServer.Continue

• Consume tokens
When a token is produced in a place for which a ‘tracePlace’ method was applied, the Ex-
Spect engine raises a ‘produce’ event for the client. The event has three parameters: the
name of the place, a unique identification of the token and the time stamp of the token. The
client then uses the ‘getTokenValue’ method with this identification as parameter to retrieve
the token value. Finally, the client applies the ‘consumeToken’ method with the identifica-
tion as parameter to delete the token from the place.

Private Sub oEvents_Produce(ByVal TokenID As Long,
 ByVal Place As String,

 ByVal Time As Double)
. . . .
strValue = oExServer.GetTokenValue(TokenID)
varRet = oExServer.ConsumeToken(TokenID)

4.1.6 WOFLAN 2.0 as Workflow net analyser
The Woflan tool is used to verify soundness of the contracting workflow, derived from the
triggers for candidate service types defined by the user. If the contracting workflow is not
sound, the user has to modify his triggering mechanisms in order to correct the error. Woflan
reads a file with a classic Petri net definition as input. Thereafter, it applies standard analysis

TECHNICAL ARCHITECTURE OF THE CONTRACTING AGENT 207

techniques to it to determine whether the Petri net is a sound workflow net. If errors are found,
Woflan guides the user towards finding the causes of these errors. The Woflan tool contains a
number of modules: a GUI module, an analysis module for loading, verifying and diagnosing
process definitions, and three conversion modules for process definitions from commercial
products. An example of a small Woflan input file is given in Figure 207.

place "start";
place "started";
place "end";

trans "A"
 in "start"
 out "started";

trans "B1"
 in "started"
 out "end";

trans "B2"
 in "started"
 out "end";

Figure 207 Example of a Woflan input file

4.1.7 MS Outlook as message exchange component
The Contracting Agent uses one or more message exchange components for inter-
organisational message exchange. Clearly, a commercial component for service contracting
must have adapters for the major standard message exchange components available on the
market. Because the emphasis of our prototype is on the functionality of the service contracting
process instead of the functionality of the message exchange, we have chosen for Microsoft
Outlook as lightweight and low-cost message exchange component. Microsoft Outlook is a
desktop information system providing email capabilities and personal management functions to
organise contacts, appointments and tasks. Besides a graphical user interface, Outlook also
uses COM to expose an object model by which Outlook functionality can be integrated into
other applications. We will use this feature to add message exchange functionality to the Con-
tracting Agent.

208 TECHNICAL ARCHITECTURE OF THE CONTRACTING AGENT

4.2 Application architecture
The application architecture in Figure 209 defines all software components of which the Con-
tracting Agent consists, together with all software components that interface with the Con-
tracting Agent. The components that are commercial off-the-shelf (COTS) products are marked
by a dark grey background. The other components are custom made. A connector between two
software components represents an interaction between these components. The following three
connector types are used to represent types of interaction.

shared files

COM interface

ADO interfaceADO

Figure 208 Legend for types of interfaces between components

Two components A and B have a file sharing interface when component A creates a file and
component B reads the file. In this model, there is no direct communication between the soft-
ware components A and B. All communication is done via one or more shared files. Two com-
ponents A and B have a COM interface when both components use the COM framework to
communicate. In the drawing technique, component A has the role of COM client, whereas
component B has the role of COM server.

CaState.mdb

ADO

CaConfS.mdb

ADO

CaConfC.mdb

CaIntMan.exe

ADO

Client
application

EXSPECT.exe MS OutlookMSXML4.dll

CaMonitor.exe

Iexplore.exe

xml xsl.ex

Wofapp.exe

.tpn

CaConfig.exe

CaStrategy.dll

.xml

Figure 209 Application architecture of the Contracting Agent

Component name Function

CaConfig.exe Stand alone executable program which provides a graphical user interface to
maintain configuration parameters used by the Server component

CaIntMan.exe Out-of-process COM server which is the glue between all subcomponents of
the Server component.

CaMonitor.exe Stand alone executable program that provides a graphical user interface by
which the user can inspect the state data of the Server component.

CaStrategy.dll In-process COM server that executes the strategy depending tasks during a
service contracting process (evaluation and adjustment).

TECHNICAL ARCHITECTURE OF THE CONTRACTING AGENT 209

Component name Function

CaConfC.mdb Relational database to store the persistent data of the Configurator component.

CaState.mdb Relational database to store the persistent state data of the Server component.

CaConfS.mdb Relational database to store the persistent configuration data of the Server
component.

Component name Function

ExSpect.exe Out-of-process COM server that provides workflow engine functionality.

Wofapp.exe Stand alone executable program that reads a flat file with the definition of a
workflow net and analyses the properties of that workflow net (e.g. soundness).

Iexplore.exe Stand alone executable program that displays the content of an XML document
formatted according to an XSL document.

MSXML4.dll In-process COM server that combines the functionality of a validating XML
parser, implementation of the DOM and XSL(T) processor.

Outlook.exe Out-of-process COM server that provides message exchange functionality to
the Server component.

Finally, we give the mapping of components in the logical architecture presented in Chapter 3
to the components in the technical architecture presented in Figure 209. As can be seen, seven
logical sub-components of the Configuration component are implemented in one technical
component. This choice has been made to implement the configuration functionality effi-
ciently. However, a commercial software product would require at least the logical Workflow
Generator component to be housed in a separate technical component, in order to make it pos-
sible to support new contracting strategies by replacing that single sub-component only.

210 TECHNICAL ARCHITECTURE OF THE CONTRACTING AGENT

CaState.mdb

CaConfS.mdb

CaConfC.mdb

CaIntMan.exe

EXSPECT.exe

MSXML4.dll

CaMonitor.exe

Iexplore.exe

Wofapp.exe

CaConfig.exe

CaStrategy.dll

Schema
Processor

Constraint
Processor

Interaction
Manager

Transformation
Processor

Workflow
Manager

Strategy
Processor

State data
Storage

Configuration
 data Storage

Strategy
editor

Schema
subset
editor

Constraints
editor

Configuration
Manager

Transformation
editor

Schema
editor

Workflow
analyzer

Available
services

Contracting
requirements

Workflow
generator

Monitor

Figure 210 Mapping of components in the logical architecture on components in the technical architecture

TECHNICAL ARCHITECTURE OF THE CONTRACTING AGENT 211

4.3 Relational databases

4.3.1 Relational database ‘CaConfC.mdb’
This relational database is used to store persistent data of the Configuration component. The
schema of the relational database is given in Figure 211 and Figure 212 and is derived from the
functional datamodel in Figure 192. Auxiliary tables and columns, used to store temporary data
or derived data are not shown. We documented the schema in two parts for reasons of clarity.
An entity is implemented as a table and an attribute is implemented as a column in a table.
XML documents are stored in data type ‘Memo’ which allows up to 64 kb of character data.
Other data is stored in data type ‘String’. Finally, we do not use the ‘identification’ and ‘type
identification’ attributes as keys, but add an additional primary key ‘identification’ to each ta-
ble that is not an association table. Therefore, the ‘identification’ and ‘type identification’ at-
tributes in the functional data models of Chapter 3 are represented by a column ‘code’ in the
relational database.

tblServiceType

tblAvailability tblServiceProvider

tblViolationType

tblTransactionProtocol

tblMessageType

tblProtocolPattern

tblPatternMessageType

tblStrategyType

tblParameterType

Figure 211 Part I of the relational database ‘CaConfC.mdb’ schema

tblCaseType tblCandidateServiceType

tblSelectedProvider

tblStrategy

tblSelectedViolationType

tblStrategyParameter

Figure 212 Part II of the relational database ‘CaConfC.mdb’ schema

212 TECHNICAL ARCHITECTURE OF THE CONTRACTING AGENT

The following table defines the table structures. The column names printed in bold are primary
keys, and the column names printed in italics are foreign keys.

Table Column Data type

TblServiceProvider Identification Long
Code String (50)
Name String (100)
URL String (250)

TblAvailability ServiceProvider_Id Long
ServiceType_Id Long
Constraints Memo (xml)
ConstraintsSyntax String (10)

TblServiceType Identification Long
Code String (50)
Name String (100)
Description Memo
Schema Memo (xml)
SchemaSyntax String (10)

TblViolationType Identification Long
ServiceType_Id Long
Code String (50)
Name String (100)
Constraints Memo (xml)
ConstraintsSyntax String (10)

TblTransactionProtocol Identification Long
ServiceType_Id Long
ProtocolPattern_N_id Long
ProtocolPattern_E_id Long
ProtocolPattern_A_Id Long

TblMessageType Identification Long
TransactionProtocol_Id Long
PatternMessageType_Id Long
Name String (100)
Schema Memo (xml)
Schema syntax String (10)

TblProtocolPattern Identification Long
Code String (50)
Name String (100)
Description Memo
ProtocolDefinition Memo (xml)

TECHNICAL ARCHITECTURE OF THE CONTRACTING AGENT 213

TblPatternMessageType Identification Long
ProtocolPattern_Id Long
Code String (50)
Name String (100)

TblStrategyType Identification Long
ProtocolPattern_Id Long
Code String (50)
Name String (50)
Description Memo

TblParameterType Identification Long
StrategyType_id Long
Code String (50)
Name String (100)
Description Memo

Table Column Data type

TblCaseType Identification Long
Code String (50)
Name String (100)
Description Memo
Schema Memo (xml)
SchemaSyntax String (10)
Constraints Memo (xml)
ConstraintsSyntax String (10)

TblCandidateServiceType Identification Long
CaseType_Id Long
ServiceType_Id Long
Code String (50)
SpecificationRules Memo (xml)
SpecificationRulesSyntax String (10)
Constraints Memo (xml)
ConstraintsSyntax String (10)
Trigger Memo

TblSelectedProvider CandidateServiceType_Id Long
ServiceProvider_Id Long
Preference Integer

TblStrategy CandidateServiceType_Id Long
StrategyType_Id Long
Phase String(20)

214 TECHNICAL ARCHITECTURE OF THE CONTRACTING AGENT

TblStrategyParameter Strategy_id Long
ParameterType_id Long
Code String(50)
Expression Memo

TblSelectedViolationType CandidateServiceType_Id Long
ViolationType_Id Long
ParameterData Memo

Figure 213 Data types of columns in relational database ‘CaConfC.mdb’

4.3.2 Relational database ‘CaState.mdb’
The schema of the relational database is given in Figure 214. The schema is derived from the
functional datamodel in Figure 152. Auxiliary tables and columns, used to store temporary data
or derived data are not shown. An entity is implemented as a table and an attribute is imple-
mented as a column in a table. XML documents are stored in data type ‘Memo’ which allows
up to 64 kb of character data. Other data is stored in data type ‘String’.

tblCase

tblCandidateService

tblTransaction

tblMessage

tblViolationtblAvailableProvider

Figure 214 Schema of relational database ‘CaState.mdb’

Table Column Data type

TblCase Identification Long
CaseType_Id Long
Code String (50)
OwnerCode String (50)
Status String (50)
Date Date
Time Time
Data Memo (xml)

TECHNICAL ARCHITECTURE OF THE CONTRACTING AGENT 215

TblCandidateService Identification Long
Case_Id Long
CandidateServiceType_Id Long
Provider_Id Long
Data Memo (xml)

TblTransaction Identification Long
CandidateService_Id Long
AvailableProvider_Id Long
Code String (50)
State String (100)

TblMessage Identification Long
Transaction_Id Long
MessageType_id Long
Code String (50)
Date Date
Time Time
Direction String(1)
Value String(250)
Status String(50)
Data Memo (xml)

TblViolation Identification Long
CandidateService_id Long
ViolationType_id Long
Date Date
Time Time

TblAvailableProvider Identification Long
CandidateService_id Long
Code String (50)
Preference Integer

Figure 215 Data types of columns in relational database ‘CaState.mdb’

216 TECHNICAL ARCHITECTURE OF THE CONTRACTING AGENT

4.3.3 Relational database ‘CaConfS.mdb’
The schema of the relational database is given in Figure 216. The schema is derived from the
functional datamodel in Figure 153. Auxiliary tables and columns, used to store temporary data
or derived data are not shown. An entity is implemented as a table and an attribute is imple-
mented as a column in a table. XML documents are stored in data type ‘Memo’ which allows
up to 64 kb of character data. Other data is stored in data type ‘String’.

tblServiceType

tblMessageType

tblCaseType tblCandidateServiceType

tblSelectedProvider

tblStrategyParameter

tblSelectedViolationType

Figure 216 Schema of relational database ‘CaConfigS.mdb’

Table Column Data type

TblCaseType Identification Long
Code String (50)
Schema Memo (xml)
SchemaSyntax String (10)
Constraints Memo (xml)
ConstraintsSyntax String (10)

TblCandidateServiceType Identification Long
CaseType_Id Long
Code String (50)
Constraints Memo (xml)
ConstraintsSyntax String (10)
SpecificationRules Memo (xml)
SpecificationRulesSyntax String (10)

TblServiceType Identification Long
Code String (50)
Schema Memo (xml)
SchemaSyntax String (10)

TblMessageType Identification Long
ServiceType_Id Long
Code String (50)
Schema Memo (xml)
SchemaSyntax String (10)

TECHNICAL ARCHITECTURE OF THE CONTRACTING AGENT 217

TblSelectedProvider Identification Long
CandidateServiceType_Id Long
Code String (50)
Preference String (50)
Constraints Memo (xml)
ConstraintsSyntax String (10)

TblSelectedViolationType Identification Long
CandidateServiceType_Id Long
Code String (50)
Constraints Memo (xml)
ConstraintsSyntax String (10)
ParameterData Memo

TblStrategyParameter Identification Long
CandidateServiceType_Id Long
Code String (50)
Expression Memo

Figure 217 Data types of columns in relational database ‘CaConfigS.mdb’

4.4 COM components

4.4.1 Out-of-process COM server ‘CaIntMan.exe’
The purpose of this component is to act as the ‘glue’ connecting the other components. As can
be seen in Figure 209, the component is used both as COM-client and as COM-server. There-
fore, the application is developed as ‘ActiveX EXE’ in the Visual Basic system. We will now
define the structure of the COM-interface exposed by the component. The interface consists of
a class ‘clsContractingAgent’ with the following methods.

Place (in Figure 133) Implemented as
Initiate request (in) Method ‘Initiate’ of COM server ‘CaIntMan’
Initiate accept (out) Return value of method ‘Initiate’
Initiate reject (out) Return value of method ‘Initiate’
Finished notification (out) Event ‘Finished’ raised by COM server ‘CaIntMan’
Case list request (in) Method ‘GetCaseList’ of COM server ‘CaIntMan’
Case list response (out) Return value of method ‘GetCaseList’
Case details request (in) Method ‘GetCaseDetails’ of COM server ‘CaIntMan’
Case details response (out) Return value of method ‘GetCaseDetails’
Configuration request (in) Method ‘SetConfiguration’ of COM server ‘CaIntMan’
Configuration response (out) Return value of method ‘SetConfiguration’

Figure 218 Mapping of the places in the logical architecture to the technical architecture

218 TECHNICAL ARCHITECTURE OF THE CONTRACTING AGENT

• Method ‘Initiate’

Public Function Initiate(strCaseId As String,
strCaseOwner As String,
strCaseType As String,
strCaseData As String) As String

The method returns an empty string if the service contracting process for the new business
case was started successfully. Otherwise, the method returns a string that contains a de-
scription of the error. Possible error messages are:
- ‘case identification missing’
- ‘case identification is not unique’
- ‘case type missing’
- ‘case type invalid or unknown’
- ‘case data missing’
- ‘case data invalid: ‘ <error description>

• Event ‘Finished’

Public Event Finished (strCaseId As String,
 strCaseOwner As String,

 strEndState As String) As String

This event is raised by the Contracting Agent when a service contracting process ends, ei-
ther normally or with exceptions.

• Method ‘GetCaseList’

Public Function GetCaseList(strCaseOwner As String,
strCaseType As String,
strCaseStartDate As String,
strCaseEndDate As String) As String

This method is part of the monitor interface and is used to retrieve a list of all business
cases for which a service contracting process is being executed or has been executed. The
method returns a string containing an XML document based on the DTD in Figure 219.

 <!ELEMENT CaseList (Case+)>

 <!ELEMENT Case (#PCDATA)>

 <!ATTLIST CaseList
owner CDATA #REQUIRED
type CDATA #REQUIRED
startdate CDATA #REQUIRED
enddate CDATA #REQUIRED >

 <!ATTLIST Case
identification CDATA #REQUIRED
owner CDATA #REQUIRED
type CDATA #REQUIRED
status CDATA #REQUIRED
date CDATA #REQUIRED
time CDATA #REQUIRED >

Figure 219 DTD of a ‘CaseList’ XML document type

TECHNICAL ARCHITECTURE OF THE CONTRACTING AGENT 219

• Method ‘GetCaseDetails’

Public Function GetCaseDetails(strCaseId As String,
strCaseOwner As String) As String

This method is part of the monitoring interface and is used to retrieve an overview of all
candidate services, transactions, messages and violations that has been created in the serv-
ice contracting process of one specific business case. The method returns a string that
contains an XML document defined by the DTD in Figure 220. The ‘data’ elements do not
contain the actual data, but contain file names that refer to files in the file system.

<!ELEMENT Case (CandidateService*)>

<!ELEMENT CandidateService (Provider*, Transaction*, Violation*)>

<!ELEMENT Transaction (Message*)>

<!ELEMENT Message (#PCDATA)>

<!ELEMENT Violation (#PCDATA)>

<!ELEMENT Provider (#PCDATA)>

<!ATTLIST Case
identification CDATA #REQUIRED
owner CDATA #REQUIRED
type CDATA #REQUIRED
status CDATA #REQUIRED
date CDATA #REQUIRED
time CDATA #REQUIRED
data CDATA #REQUIRED >

<!ATTLIST CandidateService
type CDATA #REQUIRED
providerid CDATA #REQUIRED
status CDATA #REQUIRED
data CDATA #REQUIRED >

<!ATTLIST Provider
identification CDATA #REQUIRED
name CDATA #REQUIRED
preference CDATA #REQUIRED >

<!ATTLIST Transaction
identification CDATA #REQUIRED
providerid CDATA #REQUIRED
state CDATA #REQUIRED >

<!ATTLIST Message
identification CDATA #REQUIRED
type CDATA #REQUIRED
direction CDATA #REQUIRED
value CDATA #REQUIRED
status CDATA #REQUIRED
date CDATA #REQUIRED
time CDATA #REQUIRED
data CDATA #REQUIRED >

220 TECHNICAL ARCHITECTURE OF THE CONTRACTING AGENT

<!ATTLIST Violation
type CDATA #REQUIRED
date CDATA #REQUIRED
time CDATA #REQUIRED >

Figure 220 DTD of a ‘Case’ XML document type

4.4.2 Stand alone executable program ‘CaConfig.exe’
This program implements the functionality of the entire Configurator component. It offers a
user interface by which the relational database ‘CaConfC.mdb’ can be maintained (for exam-
ples see Section 4.6). Besides manual data entry, the configuration database can also be filled
by importing XML documents with service types, service providers, protocol patterns and
contracting strategies. The structure of these XML documents is defined by the following
DTD’s.

 <!ELEMENT ServiceTypeDef (ServiceType, ViolationType*, Protocol?)>
 <!ELEMENT ServiceType (TypeId, Name, Description, Schema)>
 <!ELEMENT ViolationType (TypeId, Name, Constraints)>
 <!ELEMENT Protocol (PatternId_N, PatternId_E, PatternId_A,
 MessageType+)>
 <!ELEMENT Schema (Specification, Syntax)>
 <!ELEMENT Constraints (Specification, Syntax)>
 <!ELEMENT MessageType (TypeId, Name, Schema)>
 <!ELEMENT TypeId (#PCDATA)
 <!ELEMENT Name (#PCDATA)
 <!ELEMENT Description (#PCDATA)
 <!ELEMENT PatternId_N (#PCDATA)
 <!ELEMENT PatternId_E (#PCDATA)
 <!ELEMENT PatternId_A (#PCDATA)
 <!ELEMENT Specification (#PCDATA)
 <!ELEMENT Syntax (#PCDATA)

Figure 221 DTD of a ‘ServiceTypeDef’ XML document type

 <!ELEMENT ServiceProviderDef (ServiceProvider, Availability*)>
 <!ELEMENT ServiceProvider (Identification, Name, Url)>
 <!ELEMENT Availability (ServiceType, Constraints?)>
 <!ELEMENT Constraints (Specification, Syntax)>
 <!ELEMENT Identification (#PCDATA)
 <!ELEMENT Name (#PCDATA)
 <!ELEMENT Url (#PCDATA)
 <!ELEMENT ServiceType (#PCDATA)
 <!ELEMENT Specification (#PCDATA)
 <!ELEMENT Syntax (#PCDATA)

Figure 222 DTD of a ‘ServiceProviderDef’ XML document type

TECHNICAL ARCHITECTURE OF THE CONTRACTING AGENT 221

 <!ELEMENT ProtocolPatternDef (ProtocolPattern, MessageType+)>
 <!ELEMENT ProtocolPattern (Identification, Name, ProtocolDefinition)>
 <!ELEMENT MessageType (Type, Name)>
 <!ELEMENT Identification (#PCDATA)
 <!ELEMENT ProtocolDefinition (#PCDATA)
 <!ELEMENT Type (#PCDATA)
 <!ELEMENT Name (#PCDATA)

Figure 223 DTD of a ‘ProtocolPatternDef’ XML document type

 <!ELEMENT StrategyTypeDef (Identification, ProtocolPatternId, Name,
 Description, ParameterType*)>

 <!ELEMENT ParameterType (Identification, Name, Description)>
 <!ELEMENT Identification (#PCDATA)
 <!ELEMENT ProtocolPatternId (#PCDATA)
 <!ELEMENT Name (#PCDATA)
 <!ELEMENT Description (#PCDATA)

Figure 224 DTD of a ‘StrategyTypeDef’ XML document type

4.4.3 Stand alone executable program ‘CaMonitor.exe’
This program implements the functionality of the Monitor component. The component has no
persistent data, but uses the monitoring program interface (methods ‘GetCaseList’ and ‘Get-
CaseDetails’) of the Server component to query its state data and present it to the user. Exam-
ples of this user interface are given in Section 4.6. The Monitor component invokes the Internet
Explorer when case data, service data or message data must be presented to the user. Internet
Explorer 5 supports XML and XSL, which makes it a suitable component for displaying the
contents of XML documents in a user-friendly way. The Monitor component creates an output
file with the XML document that must be displayed, preceded by a reference to the appropriate
stylesheet, for example:

 <?xml-stylesheet type="text/xsl" href="c:\temp\case_businesstrip.xsl"?>
 <Case>
 <Type>Business Trip</Type>
 <Identification>12345</Identification>

Figure 225 Including a reference to an XSL stylesheet in an XML document

When the output file containing the XML document and the reference to the XSL style sheet is
created, Internet Explorer is started with the file name of the output file as parameter. Internet
explorer reads the input file, signals the reference to the XSL style sheet and loads the style
sheet too. There after, the information in the XML document is transformed into HTML ac-
cording to the transformation rules in the style sheet. The HTML is then displayed in the
browser user interface.

222 TECHNICAL ARCHITECTURE OF THE CONTRACTING AGENT

Internet Explorer

XML document

XSL document

(references)

Figure 226 Displaying XML documents formatted by XSL stylesheets in IE

4.5 Structure of the generated ExSpect model

4.5.1 Hierarchic level 1: the main system
We will now give some examples of the structure of the generated ExSpect model, which acts
as workflow definition in the Server component. The generated ExSpect model contains one
top level system ‘main’ that consists of a channel for each place in the interface between the
Workflow Manager and the Interaction Manager as shown in Figure 151. The channel names
are prefixed with ‘IM_’ for clarification of the generated workflow and to indicate their role as
interface with the Interaction Manager. Furthermore, the system contains a subsystem for each
case type. An example of the main system in a generated ExSpect model is shown in Figure
227.

Figure 227 Example of a generated ExSpect model (top level)

The following channel types are used in this ExSpect model.

type Tcase := [caseid: str,
 caseowner: str,
 casetype: str,
 ctrl_i: num,
 ctrl_n: num,
 ctrl_v: str,
 ctrl_vmax: str,
 ctrl_pid: num,
 ctrl_lastmid: str,
 ctrl_optmid: str];

TECHNICAL ARCHITECTURE OF THE CONTRACTING AGENT 223

type Tstart := [caseid: str,
 caseowner: str,
 casetype: str];

type Tinitiate := [caseid: str,
 caseowner: str,
 candidateid: str];

type Tskipped := [caseid: str,
 caseowner: str,
 candidateid: str];

type Tinitiated := [caseid: str,
 caseowner: str,
 candidateid: str,
 providers: num];

type Tsend := [caseid: str,
 caseowner: str,
 candidateid: str,
 providerid: num,
 messagetype: str];

type Treceived := [caseid: str,
 caseowner: str,
 candidateid: str,
 providerid: num,
 messageid: str,
 messagetype: str];

type Tprocess := [caseid: str,
 caseowner: str,
 candidateid: str,
 messageid: str];

type Tevaluate := [caseid: str,
 caseowner: str,
 candidateid: str,
 messageid: str];

type Tevaluated := [caseid: str,
 caseowner: str,
 candidateid: str,
 messageid: str,
 messagevalue: str];

type Tadjust := [caseid: str,
 caseowner: str,
 candidateid: str,
 strategyparid: str];

type Tfinished := [caseid: str,
 caseowner: str,
 casestatus: str];

224 TECHNICAL ARCHITECTURE OF THE CONTRACTING AGENT

4.5.2 Hierarchic level 2: case type
The second hierarchic level of the generated ExSpect model represents the contracting
workflow for a single case type. The structure of this system is derived from the contracting
requirements and consists of systems representing a candidate service type (see 4.5.3) and sys-
tems representing OR-joins, AND-splits and AND-joins. An OR-join is modelled as N separate
elementary transitions. An example of a system for a case type that involves just two candidate
service types is given in Figure 228.

Figure 228 Example of a generated ExSpect model (hierarchic level 2)

An example of an elementary transition used at this level in the hierarchy is the transition that
consumes tokens from the ‘IM_start’ place of which the case type is equal to the case type cor-
responding to the system. The transition produces a token in the start place for all systems rep-
resenting candidate service types without a trigger.

proc StartA[in IM_start: Tstart,
 out bookhotel_start: Tcase
 | pre IM_start@casetype = 'My case type']
:=
 bookhotel_start <- IM_start
;

Figure 229 Example of a processor for initiating a candidate service

4.5.3 Hierarchic level 3: candidate service type
The third hierarchic level of the generated ExSpect model represents the contracting process
for a single candidate service. The structure of this system, shown in Figure 230, implements
the relevant part of the model in Figure 77.

TECHNICAL ARCHITECTURE OF THE CONTRACTING AGENT 225

Figure 230 Example of a generated ExSpect model (hierarchic level 3)

We will give two examples of processor definitions used in this system.

proc C_initiate[in CA_start: Tcase,
 out CA_inireq: Tcase,
 out IM_initiate: Tinitiate]
:=
 CA_inireq <- CA_start,
 IM_initiate <- [caseid: CA_start@caseid,
 caseowner: CA_start@caseowner,
 candidateid: 'Book Outbound']
;

Figure 231 Example of a processor for initiating a candidate service

proc C_waitforinitiated[in CA_inireq: Tcase,
 in IM_initiated: Tinitiated,
 out CA_initiated: Tcase
 | pre IM_initiated@caseid = CA_inireq@caseid and
 IM_initiated@caseowner = CA_inireq@caseowner and
 IM_initiated@candidateid = 'Book Outbound']
:=

226 TECHNICAL ARCHITECTURE OF THE CONTRACTING AGENT

 CA_initiated <- upd(CA_inireq, [ctrl_n:
 IM_initiated@providers])
;

Figure 232 Example of a processor for responding to an initiated candidate service

proc C_waitforskipped[in CA_inireq: Tcase,
 in IM_skipped: Tskipped,
 out CA_skipped: Tcase
 | pre IM_skipped@caseid = CA_inireq@caseid and
 IM_skipped@caseowner = CA_inireq@caseowner and
 IM_skipped@candidateid = 'Book Outbound']
:=
 CA_skipped <- CA_inireq
;

Figure 233 Example of a processor for responding to a candidate service that must be skipped

4.5.4 Hierarchic level 4: contracting phase
The fourth hierarchic level of the generated ExSpect model represents a negotiation phase, an
execution phase or an acceptance phase. The structure of these systems depends on the strategy
chosen. The example in Figure 234 is based on a ‘binding request’ protocol pattern.

Figure 234 Example of a generated ExSpect model (hierarchic level 4)

Two important types of processors are the equivalents of the standard transitions for sending
and receiving messages.

TECHNICAL ARCHITECTURE OF THE CONTRACTING AGENT 227

proc CSndReqCon[in N_start: Tcase,
 out N_end: Tcase,
 out IM_send: Tsend]
:=
 IM_send <- [caseid: N_start@caseid,
 caseowner: N_start@caseowner,
 candidateid: 'Book Outbound',
 providerid: N_start@ctrl_i,
 messagetype: 'request contract'],
 N_end <- N_start
;

Figure 235 Example of a processor for sending a message

proc CRecAccCon[in N_start: Tcase,
 in IM_received: Treceived,
 out N_end: Tcase
 | pre IM_received@caseid = N_start@caseid and
 IM_received@caseowner = N_start@caseowner and
 IM_received@candidateid = 'Book Outbound' and
 IM_received@messagetype = 'accept contract']
:=
 N_end <- upd(N_start, [ctrl_lastmid: IM_received@messageid])
;

Figure 236 Example of a processor for receiving a message

Another example of a processor definition used in this system is the processor that selects the
next available service provider.

proc CSelNext[in N_start: Tcase,
 out N_end: Tcase,
 out N_failed: Tcase]
:=
if N_start@ctrl_i < N_start@ctrl_n then
 N_end <- upd(N_start, [ctrl_i: N_start@ctrl_i + 1])
else
 N_failed <- N_start
fi
;

Figure 237 Example of a processor for selecting the next provider

228 TECHNICAL ARCHITECTURE OF THE CONTRACTING AGENT

4.6 Examples of the user interfaces

4.6.1 Defining available services (repository)
The user interface provided by the Configurator component starts with the screen in Figure 238
from which all available functions can be accessed.

Figure 238 Example of the main screen of the Configurator component

Screen: ‘Protocol patterns and strategies’
This screen appears when the user selects the menu option ‘Repository | Protocol patterns’
from the menu bar in the main screen. The layout of the screen is shown in Figure 239. It con-
tains the available protocol patterns per phase (negotiation, execution, and acceptance) and the
available strategies per protocol pattern. The user can click a protocol pattern or strategy, after
which an illustration of the protocol pattern or strategy appears in the right part of the screen.

TECHNICAL ARCHITECTURE OF THE CONTRACTING AGENT 229

Figure 239 Example of the ‘protocol patterns’ screen

Screen: ‘Service types’
This screen appears when the user selects the menu option ‘Repository | Service types’ from
the menu bar in the main screen. The layout of the screen is shown in Figure 240. It contains a
list of service types with for each service type the name and description.

Figure 240 Example of the ‘Service types’ screen

The user can add, modify and delete items in the list. The user can invoke the schema editor to
maintain the service type schema by selecting a service type in the list and clicking the but-
ton. The user can navigate to the ‘transaction protocol’ screen by selecting a service type in the
list and clicking the button. The user can navigate to the ‘violation types’ screen by select-
ing a service type in the list and clicking the button.

230 TECHNICAL ARCHITECTURE OF THE CONTRACTING AGENT

Screen: ‘Schema editor’
The service type schema is maintained by the schema editor, of which the screen layout is
given in Figure 241. The hierarchic data model is represented as a tree in which a node rep-
resents an entity and a node represents an attribute. The user can select a node by clicking on
it, after which the properties of the node can be maintained in the right part of the screen. The
name property is used to identify the entity or attribute in documentation, and for deriving the
XML tag in ‘CamelCase’ format. The required property applies to attribute nodes only and is
used to specify whether the attribute must occur in an instance of the data model or not. The
description property is used to specify a description in free text of the meaning of an entity or
attribute. The minoccurs and maxoccurs properties apply to entity nodes only. They specify the
minimum and maximum number of instances of an entity type in a data model. The type and
length properties apply to attribute nodes only. They specify the datatype and maximum length
of the value an attribute can take.

Figure 241 Example of the ‘Schema editor’ screen

All functions to manipulate the structure of the tree are available via context sensitive menus.
These menus appear when the user selects a node and clicks the right mouse button. Each node
type has its own menu containing only the functions applicable for that node type. The screen
in Figure 241 shows the functions that can be applied to any entity that is not the root-entity.

Finally, the user can view the underlying XML-Schema specification by selecting the menu
item ‘View | Source’. Here after, a screen like shown in Figure 242 appears.

TECHNICAL ARCHITECTURE OF THE CONTRACTING AGENT 231

Figure 242 Source view in the Schema editor

Screen: ‘Select transaction protocol patterns’
A transaction protocol is based on a negotiation pattern, an execution pattern and an acceptance
pattern. The ‘select transaction protocol patterns’ screen allows the user to select these three
patterns from three lists of available protocol patterns. The layout of this screen is shown in
Figure 243. The three lists contain the available patterns for the three phases. The user can se-
lect a pattern in each list and click the ‘Ok’ button to select these patterns for the transaction
protocol of the selected service type.

Figure 243 Example of the ‘Select transaction protocol patterns’ screen

232 TECHNICAL ARCHITECTURE OF THE CONTRACTING AGENT

Screen: ‘Service type transaction protocol’
This screen allows the user to define a transaction protocol by selecting a subset of the message
types used in the selected patterns and by assigning specific names to the message types from
the selected protocol patterns, e.g. ‘transport instruction’ instead of ‘request contract’. The
screen shows a list of message types grouped by the phases negotiation, execution and accep-
tance. Each arrow represents a message type. The generic name of the message type is printed
in the middle of the screen, whereas the specific name can be entered for selected message
types at the right part of the screen. If the arrow is displayed dark blue, it is selected in the
transaction protocol. If the arrow is displayed grey, it is not used in the transaction protocol.
The user can change the status of a message (selected <-> not selected) by clicking on the ar-
row.

Figure 244 Example of the ‘Service type transaction protocol’ screen

Screen: ‘Schema subset editor’
The function of defining message schemas is available in the screen shown in Figure 245. The
screen contains a matrix in which the columns represent the message types that have been se-
lected in the transaction protocol. The rows represent entities and attributes in the service type
schema. Nesting of entities is modelled by indentation. The cells represent the status of an en-
tity / attribute in a message type schema, which can be ‘R’ (= required), ‘O’ (= optional) and ‘-‘
(not used). The user can change the status from ‘R’ to ‘O’, from ‘O’ to ‘-’ and from ‘-‘ to ‘R’
by double clicking the cell.

TECHNICAL ARCHITECTURE OF THE CONTRACTING AGENT 233

Figure 245 Example of the ‘Schema subset editor’ screen

Screen: ‘Violation types’
Each service type can have one or more violation types defined, which are used during the exe-
cution and acceptance phases to detect violations of the contract. The screen by which the vio-
lation types are defined is shown in Figure 246 and contains a grid in which each row repre-
sents a violation type. The user can add a new violation type by clicking the button and de-
lete an existing violation type by clicking the button. Finally, the user can open the con-
straint editor for a violation type by clicking the button.

Figure 246 Example of the ‘Violation types’ screen

234 TECHNICAL ARCHITECTURE OF THE CONTRACTING AGENT

Screen: ‘Constraint editor’
This screen allows the user to create and modify constraints. The layout of the screen is shown
in Figure 247. The input field ‘constraint syntax’ is used to define the constraint expression in
the applicable constraint syntax. A constraint can contain parameters, which are identified by
using the keywords <P1>, <P2> and <P3> in the constraint syntax. The operands that can be
used in the constraint expression are listed in the listbox at the bottom of the screen.

Figure 247 Example of the ‘Constraint editor’ screen

Screen: ‘Service providers’
This screen appears when the user selects the menu option ‘Repository | Service providers’
from the menu bar in the main screen. The layout of the screen is shown in Figure 248. It con-
tains a list of service providers, with for each service type the code, the name and the URL.

TECHNICAL ARCHITECTURE OF THE CONTRACTING AGENT 235

Figure 248 Example of the ‘Service providers’ screen

The user can add, modify and delete items in these lists and open the details of a provider by
clicking the buttons left of the grid.

Screen: ‘Service provider details’
This screen lets the user edit the identification, name and URL of a service provider. Further-
more, the user can select the service types provided by the service provider. The layout of the
screen is shown in Figure 249. The first column of the grid contains the name of a service type.
The second column in the grid contains ‘yes’ if the service provider offers the service type and
‘no’ otherwise. The user can change the value from ‘yes’ to ‘no’ and from ‘no’ to ‘yes’ by
double clicking the cell. If a service type is offered subject to constraints on the service data,
the availability constraints can be defined by double clicking the third column in the row of
that service type.

Figure 249 Example of the ‘Service provider details’ screen

236 TECHNICAL ARCHITECTURE OF THE CONTRACTING AGENT

4.6.2 Defining contracting requirements
Screen: ‘Case types’
This screen is used to maintain the list of case types that can be processed by the Server com-
ponent. The layout of the screen is shown in Figure 250. Each row represents a case type with
his name and description. The user can add a new case type by clicking the button and de-
lete an existing case type by clicking the button. The schema editor can be invoked to
maintain the case type schema by clicking the button. The constraints editor can be invoked
to maintain the constraints on the case type data by clicking the button. Finally, the user can
navigate to the ‘contracting workflow’ screen to define candidate service types and the struc-
ture of the contracting workflow (triggers) by clicking the button.

Figure 250 Example of the ‘Case types’ screen

Screen: ‘Contracting workflow’
This screen is used to define the candidate service types for a case type and the structure of the
contracting workflow (triggers). An example of the layout of this screen is shown in Figure
251. The contracting workflow is modelled as a graph consisting of nodes and arcs. There are
two types of nodes: a yellow node represents a candidate service type and a white node repre-
sents a routing construct. A candidate service type refers to a specific service type and has a
label that is a unique identifier for the candidate service type in the graph. A routing construct
can be an OR-join, an AND-split or an AND-join.

An important function of this screen is to complete the partial contracting workflow (consisting
of candidate service type transitions and places and transitions that model triggers) into a sound
contracting workflow. The user can invoke this function by selecting the ‘Tools – Complete
contracting workflow’ option in the menu bar. The places, transitions and connectors added by
this function can be modified by the user thereafter. Finally, the user can check the soundness
of the contracting workflow by selecting the ‘Tools – Check soundness’ option from the menu
bar.

TECHNICAL ARCHITECTURE OF THE CONTRACTING AGENT 237

Figure 251 Example of the ‘Contracting workflow’ screen

Adding a candidate service type or a routing construct is done by clicking the right-mouse
button at the desired location on the screen. The popup menu from Figure 252 appears in which
the user selects the appropriate option. If he selects the option ‘add candidate service’, a selec-
tion list with all available service types appears from which one service type must be selected.

Figure 252 Popup menu to add tasks to the contracting workflow

Figure 253 Result of the ‘add candidate service’ operation

After a candidate service type is added to the graph, the user is able to perform operations on it
by clicking the right mouse button above the candidate service type. The popup menu from
Figure 254 appears.

238 TECHNICAL ARCHITECTURE OF THE CONTRACTING AGENT

Figure 254 Popup menu with operations on a candidate service type

After a routing construct is added to the contracting workflow, the user is able to perform op-
erations on it by clicking the right mouse button above it. The popup menu from Figure 255
appears.

Figure 255 Popup menu with operations on an routing construct

Screen: Workflow analyser (Woflan)
When the user has completed the contracting workflow, he can use Woflan to check the sound-
ness of the contracting workflow. An example of the Woflan user interface with the result of
the diagnosis is given in Figure 256.

Figure 256 Example of the diagnosis result presented by Woflan

TECHNICAL ARCHITECTURE OF THE CONTRACTING AGENT 239

Screen: Selected providers
After defining a new candidate service type, the user can select the service providers that will
be involved in the negotiation phase. Since each candidate service type refers to exactly one
service type and each service type has one or more available providers defined, the screen in
Figure 257 displays all available providers for the service type and lets the user make a selec-
tion. Furthermore, the user can make a ranking indicating the preference of a provider.

Figure 257 Example of the ‘Selected providers’ screen

Screen: ‘Transformation editor’
When the candidate service types are defined, each candidate service type must be assigned
specification rules used to create the initial value of the service data. The screen via which this
is done is shown in Figure 258. A transformation is defined from a source hierarchic data
structure to a target hierarchic data structure. In this case, the target data structure is the service
type data structure, which is displayed in the grid in the upper part of the screen. The left col-
umn of the grid contains the entities and attributes in the hierarchic service type data model,
whereas the right column contains an expression in which elements from the source data
structure appear as operands. The available elements in the source data structure are listed in
the listbox at the bottom of the screen. In this case, the source data structure consists of the case
data and the service data of all candidate service types contracted before in the contracting
workflow.

The user can assign an attribute from the source data structure to an attribute in the target data
structure by double clicking the item in the listbox after which the item can be dropped on the
target attribute.

240 TECHNICAL ARCHITECTURE OF THE CONTRACTING AGENT

Figure 258 Example of the ‘Transformation editor’ screen

Screen: ‘Constraints’
Each candidate service type can have a constraint that must be fulfilled in order to start the
contracting process for the candidate service. Constraints are defined by the constraint editor,
of which the layout has already been shown in Figure 247.

Screen: ‘Strategy selection’
The negotiation, execution and acceptance phases of the contracting process for a candidate
service are based on a selected transaction protocol. The next step is to define the structure of
the negotiation, execution and acceptance processes, for which one or more strategies are
available. This screen, of which the layout is shown in Figure 259, allows the user to select a
strategy for a specific phase. When a selected strategy requires parameters, the ‘next’ button
becomes enabled and invokes the strategy parameter editor.

TECHNICAL ARCHITECTURE OF THE CONTRACTING AGENT 241

Figure 259 Example of the ‘Strategy selection’ screen

Screen: ‘Strategy parameters editor’
This screen allows the user to enter parameters for a selected strategy. The layout of the screen
is shown in Figure 260. Parameters can be expressions in which service attributes are used as
operands.

Figure 260 Example of the ‘Strategy parameters editor’ screen

242 TECHNICAL ARCHITECTURE OF THE CONTRACTING AGENT

4.6.3 Configuring the Server component
Screen: ‘Server configuration’
The screen by which the user can submit the configuration parameters maintained in the Con-
figurator component to the Server component is shown in Figure 261. Submitting configuration
parameters to the Server component starts by checking the configuration data for completeness
and correctness. If the check is successful, the user can click the ‘send’ button to actually sub-
mit the configuration parameters to the Server component.

Figure 261 Example of the ‘Server configuration’ screen

4.6.4 Monitoring the Server component
The ‘Monitor’ component has no data storage of its own. It queries the Server component and
presents the result in the user interface. The user interface is structured as a hierarchy of
screens that is illustrated in Figure 262.

Case status
overview

Case overview

Case data /
Service data /
Message data

Case scenario

Start

Figure 262 Screen hierarchy for the ‘Monitor’ component

TECHNICAL ARCHITECTURE OF THE CONTRACTING AGENT 243

Screen: ‘Case overview’
The first screen gives the user access to an overview of business cases. The structure of the
screen is given in Figure 263.

Figure 263 Layout of the ‘Case Overview’ monitoring screen

The user can double click a business case in the ‘case overview’ screen, after which the ‘case
status’ screen appears (see Figure 264).

Screen ‘Case status’
The ‘case status’ screen contains a tree with all data objects relevant to the service contracting
process. The root object in the tree is always a business case, displayed by an icon, followed
by the case type description. The root object appears when the service contracting process is
started. Nested under the business case node are the candidate service nodes. A candidate
service node appears when the service data of a candidate service is specified during the speci-
fication phase of the service contracting process. It is displayed by an icon, followed by the
service type description. Nested under the service nodes are the transaction nodes. It is dis-
played by an icon, followed by the name of the service provider. Nested under the transac-
tion nodes are the message nodes. A message node appears when a message is sent or received
in the business transaction that controls the service. It is displayed by an icon, followed by
an arrow to indicate the direction (‘→ from client to provider, ← from provider to client), the
message type description and the date and time at which the message was sent / received.

244 TECHNICAL ARCHITECTURE OF THE CONTRACTING AGENT

Figure 264 Layout of the ‘Case Status’ monitoring screen

Finally, the tree can contain exception nodes displayed by an icon, followed by the descrip-
tion of the exception and the date/time at which the exception occurred. An exception node
appears when an exception (e.g. data error, protocol error and violation) occurs in the service
contracting process. The exception node is nested under the data object to which the exception
applies. For instance, if a business case is rejected because of a missing attribute, the following
situation appears.

Figure 265 Examples of an exception for a business case

Screen ‘Case scenario’
The ‘case status’ screen displays the exchanged messages nested under the services to which
they belong. A different representation of the exchanged messages is a message sequence
chart. An example of such a diagram is shown in Figure 266. The diagram contains a vertical
bar for each candidate service. The service type description and service provider name is
printed above each bar.

TECHNICAL ARCHITECTURE OF THE CONTRACTING AGENT 245

Figure 266 Layout of the ‘Case scenario’ monitoring screen

Screen ‘Case data / Service data / Message data’
Each case, service and message has associated data that can be viewed via the Monitor compo-
nent. To do this, the user can click the right mouse button on a case, service or message. There
after, the case data, service data or message data is displayed via Internet Explorer. An example
of the layout of case data is given in Figure 267.

Figure 267 Layout of the ‘Case data’ monitoring screen

5. Evaluation

5.1 The research problem in retrospective
This research is about a new generic software component for electronic business based on
outsourcing of work. During the last years, electronic business has received much attention.
Companies have been thinking about the changes that electronic business can bring to their
business. Many companies have devoted resources to electronic business development. New
standards, like XML, have become available and new software suppliers emerged, bringing
new standard software components for electronic business to the market. A result of these de-
velopments was an increasing level of maturity, seen from a technological point of view.

In the last decade, we have seen a shift in focus with respect to the use of the Internet. Compa-
nies who started to use the Internet used it as a public relations instrument mainly to provide
static information via their websites. Later, companies added the element of interaction to their
web-sites by integrating their web-applications with a database, hereby allowing the user to
view more dynamic data. Next, we have seen a shift of focus from interaction to transaction.
Companies recognised the Internet as a new distribution place and provided their customers
with the ability to perform a transaction via the Internet. Today, we see another shift in focus
from transaction to integration. Companies start to use the Internet to integrate their business
processes hereby forming virtual organisations. One aspect of the integration of business proc-
esses will certainly be service contracting. The research problem and research objectives are
therefore of high relevance for future electronic business developments.

One of the impacts of Internet technology to existing companies is a shift from batch-oriented
processes to online processes. A front office that is available 24 hours a day during 7 days a
week raises expectations of fast fulfilment processes at the customer. When a customer uses a
website to order a product online, he does not want to wait weeks for a response. The ability to
respond immediately to a customer request does not only require a well-organised front office,
but a state-of-the-art back-office too. Transforming batch-oriented back-office processes to
online processes is a major challenge to an organisation these days. Clearly, an environment
where service providers are able to give an online response to requests of service clients is a
condition under which a component like the Contracting Agent can prosper.

A second aspect of the research is component-based software development. During the last
years, we have seen component-based development become mainstream ICT technology. A
number of reasons can be found. First, there is a widespread acceptance of COM and CORBA
as standard component frameworks. Second, the support of popular software development en-
vironments for these component frameworks brings component development within the reach
of the mass of developers. Third, suppliers of large standard software systems like ERP or

248 EVALUTION

CRM systems have used component technology to make their products open and extensible.
The availability of middleware products makes it possible to integrate standard components
efficiently, while maintaining flexibility. The rapid changing environment of organisations and
the relative ease with which large components can be integrated with the rest of an organisa-
tions ICT infrastructure has contributed to the increasing tendency to use standard components
instead of custom made software.

Concluding, we can say that the relevance of the research has only increased from the moment
we started until this moment.

5.2 Achievements
Chapter 1 gave the background of the research and the research objectives. We will now turn in
retrospect to these objectives and address the achievements of the research by discussing the
research questions phrased in Section 1.6.4.

• Research question 1: modelling service contracting processes as workflows
We have given a conceptual framework for service contracting in Chapter 2. First, we de-
fined underpinning concepts like workflow, service and business transaction. There after,
we discussed frameworks for contracting processes found in literature. Next, we addressed
the specification of interface agreements between parties involved in contracting processes,
for which we have proposed a number of transaction protocol patterns. After having de-
fined the interface agreements between service client and service provider, we focused on
the specification of contracting requirements for outsourced tasks. Here after, we addressed
the contracting process by defining the state data structure, a set of standard operations on
the state data and the configuration parameters used by these standard operations. Next, we
considered the contracting workflow as a high level coloured Petri net that defines the con-
trol flow of service contracting processes and in which standard operations on the state data
are invoked. We proposed a set of standard transitions from which contracting workflows
can be assembled. We used these standard transitions to create composite transitions that
implement an entire negotiation strategy, execution strategy or acceptance strategy. Here
after, we defined the rules according to which an entire contracting workflow can be gener-
ated from the contracting requirements on one hand and the standard transitions on the other
hand.

We have succeeded in modelling service contracting processes as workflows using
the formalism of high level coloured Petri nets. Furthermore, we have shown how
analysis techniques like soundness can be used to define correctness criteria for the
contracting workflow and standard components from which the contracting
workflow is composed.

• Research question 2: flexibility
The logical architecture of the Contracting Agent has been given in Chapter 3. The archi-
tecture identified the sub-components of the Contracting Agent, the structure of persistent
data maintained by the components and the structure of data exchanged on the interfaces.
We also defined the behaviour of each sub-component on its interface and the collaboration
of the sub-components via their interfaces. An important characteristic of the logical archi-

EVALUATION 249

tecture was a clear separation of execution and control by using a workflow engine to con-
trol the behaviour of the Contracting Agent.

We have given a logical architecture in which the behaviour of the component is de-
termined by a workflow engine, which is configured by an explicit model of the
service contracting process in the form of a workflow net. This workflow net is a
configuration parameter of the Server component. The flexibility of the component is
therefore limited by the expressive power of the language in which the workflow net
is expressed. However, since one workflow engine can be easily replaced by another,
we have obtained the highest possible flexibility.

• Research question 3: use of domain knowledge
The conceptual framework showed how domain knowledge in the form of protocol patterns,
contracting strategies and standard building blocks from which the contracting workflow
can be assembled can successfully be used to define service contracting processes effi-
ciently. Furthermore, new service types, service providers, protocol patterns and contracting
strategies can be added to the configuration environment. With all this available, the user
can define his service contracting process in minimal time. Finally, the ability of the
Workflow Generator component to generate a complete workflow definition for the
workflow engine used in the Server component demonstrated the advantages of using do-
main knowledge.

We have shown how domain knowledge can be used in the configuration user inter-
face to assemble a contracting workflow in minimal time by selecting from an exten-
sible repository with standard building blocks. Furthermore, we have shown how
complex configuration parameters for the Server component (e.g. the workflow net
for the workflow engine) can automatically be generated from the contracting re-
quirements entered by the user.

• Research question 4: use of standard software components
The technical architecture of the Contracting Agent identified commercial-of-the-shelf
(COTS) components and custom-made components. Although we did not use many COTS
components, we used them for the most complex functions in the Contracting Agent. First,
we used MSXML4.dll for all operations on XML documents: parsing (with the DOM),
validation (with XML-Schema), transformation (with XSLT) and presentation (with XSL).
The functionality of the Interaction Manager could therefore be minimal and implemented
in very few lines of code. The second COTS component was the ExSpect workflow engine.
The ability of ExSpect to execute high level coloured Petri nets allowed us to define the
structure of the implementation contracting workflow as a Petri net, as we also did with the
conceptual contracting workflow.

We have shown that standard software components can be used for all important
functions of the Contracting Agent.

Concluding, we can say in retrospect that we have achieved the research objectives stated in
Chapter 1.

250 EVALUTION

5.3 Contribution
This research focuses on a specific class of contracting processes, as demarcated in Section
1.6.2. The business objective of this research is to contribute to the efficiency of organisations
by providing an optimal support for the demarcated class of service contracting processes with
information and communication technology. The claim of this research is to have provided:
- the explication of the demarcated area of electronic contracting by providing a conceptual

framework.
- a specification language for contracting requirements of outsourced tasks;
- a set of standard transitions from which contracting workflows can be composed;
- a mechanism by which sound contracting workflows can be generated from contracting

requirements;
- an architecture (logical and technical) of a software component that supports the demar-

cated class of service contracting processes;
- a proof of concept of the conceptual framework, the specification language and the archi-

tecture in the form of a working software component.

We will now compare our work to the work of others, for instance the work that has been dis-
cussed in Section 1.4. When we compare our work to the research related to the Language Ac-
tion Perspective, we see a difference in the techniques used to define the interface agreements
between service client and service provider, for which we have used Petri nets. Weigand et al
[139] argue that deontic logic is more suitable for modelling electronic commerce processes
than Petri nets because concepts like ‘obligation’ and ‘permission’ are part of the formalism
intrinsically and make it possible to reason about properties of electronic contracting processes.
Although we agree with the authors that deontic logic has advantages over Petri nets, we made
a deliberate choice to use the formalism of Petri nets though. The major reason for this choice
was that reasoning about transaction protocols is outside the scope of this research, we just
need a formalism to express transaction protocols. On the other hand, the formalism of Petri
nets has the advantages of a formal basis (e.g. to prove the soundness property) and a graphical
representation that is easily understood. Finally, the formalism of Petri nets has a great fit with
our approach of using workflow management principles for electronic contracting.

The work on Documentary Petri Nets by Lee et al [89, 92] is a research area closely related to
our research. An advantage of the DPN formalism is its ability to model the exchange of in-
formation, goods and money in trade procedures. A DPN can be seen as a workflow that is
distributed among a number of organisations. The InterProcs [90] system shows how an or-
ganisation can download a DPN and execute the part corresponding to his own role. When we
compare our approach to the DPN approach, there is however a difference. First, we consider
message exchange only and ignore the exchange of goods and money. Second, in our approach
service clients and service providers agree on a common transaction protocol, where after each
party has to define his internal procedures. Because the internal procedures are kept private, an
organisation can change his internal procedure easily, as long as he conforms to the transaction
protocol. Clearly, a disadvantage of the approach is that each party must define an internal pro-
cedure, which has the potential of bringing a lot of work to each party. Therefore, our research
focuses on generating contracting workflows (i.e. the procedure of a service client).

EVALUATION 251

The work on verification of inter-organisational workflows by Van der Aalst [9] shows the
importance of applying analysis techniques to avoid anomalies such as livelocks or deadlocks.
We have used standard analysis techniques to the contracting workflow to prove that it is
sound.

Finally, we ask ourselves the question what is the added value of a dedicated component for
service contracting when we see generic workflow enabled (XML) messaging tools emerge in
the market. These tools offer a broad range of functions for inter-organisational message ex-
change, and a workflow engine on top of that. The user can define his own workflow, in which
he can trigger outbound messages and respond to inbound messages. Message data is created
and processed by applications that are invoked by the workflow engine. Clearly, these plat-
forms are powerful tools for organisations that want to implement inter-organisational proc-
esses, and could be used for service contracting processes too. However, although service con-
tracting processes can be implemented in generic workflow enabled XML messaging tools,
this does not mean that is can be done efficiently. Our research shows how domain knowledge
of service contracting processes such as protocol patterns and contracting strategies can be
used as the vocabulary used to specify the contracting requirements in only a few parameters,
from which the entire contracting workflow can be generated. Therefore, the added value of the
Contracting Agent is (i) in the Configurator component that makes maximum use of domain
knowledge by generating the entire contracting workflow and (ii) in the Server component that
contains sub-components for storing the state data of service contracting processes and sub-
components for performing the standard operations of which a service contracting process con-
sists.

5.4 Business opportunities
From the start of this dissertation until this point, we have considered the design of the con-
ceptual framework for service contracting and the architecture of a software component for
service contracting as an academic exercise only. We will now view electronic service con-
tracting from a business point of view: how can a company make business out of service con-
tracting, and what kind of organisations are likely to enter these markets.

• Become a software vendor
The first option to make business out of service contracting is by selling software licenses to
service clients. We distinguish two markets for software vendors. The first one is the market
for service contracting components with extensive functionality to be integrated with client
applications and message exchange components. The second market is the market for add-in
components like constraints editors, transformation editors, strategy editors and strategy
processors. Future vendors of service contracting components are likely to emerge from two
directions. First, current suppliers of generic workflow enabled XML messaging tools can
extend their products with functionality to support specific types of processes, of which
service contracting could be one. Second, new third party suppliers may emerge who would
aim at offering a best-of-breed Configuration component that can be used in combination
with existing workflow enabled XML messaging tools easily.

• Become an intermediary
When service clients outsource the execution of one or more tasks to external service pro-
viders, they can perform the necessary service contracting processes themselves. However,
a service client can also outsource the execution of his service contracting process to an in-

252 EVALUTION

termediary. The intermediary may offer the functionality of the Contracting Agent via a
web-interface and operate a Contracting Agent himself. An intermediary like this could
make a profit from the margin between the price at which he buys services from service
providers and the price he charges the service clients for services. This requires the interme-
diary to establish long term relationships with a number of service providers that grant him a
discount in turn for the business he brings them.

• Offer application consultancy
Current state-of-the-art software components like ERP or CRM systems are highly config-
urable. The number of configuration parameters can be up to tens of thousands and requires
specialists to tailor a generic component to the needs of a specific business situation. Appli-
cation consultancy involves making an inventory of business needs, mapping these business
needs into parameter settings of the component, entering the required parameter settings in
the component and programming additional functions in for instance COM components.

• Offer web-service engineering consultancy
In this research, we have focused on the service client and the service contracting process
performed by him. However, this requires a service provider that is able to offer his services
to the market via a business-to-business electronic commerce interface. A consultancy firm
can provide the following services to a service provider:
- define his service types (schema, transaction protocol, and message types) and publish

these in one or more repositories;
- install and configure a business-to-business electronic commerce infrastructure by which

business transactions with service clients can be performed via a variety of standards;
- design and implement the integration between the business-to-business electronic com-

merce front-end systems and the back-office systems used for the fulfilment processes
(planning applications, etc.).

5.5 Conclusions
• Conclusion 1: Service contracting as a generic function

The research was built on the hypothesis that service contracting is a generic function, for
which a generic software component can be developed. With the creation of the conceptual
framework for service contracting and the logical and technical architecture of the Con-
tracting Agent, we have proven this hypothesis true. We have shown how domain knowl-
edge like transaction protocol patterns and contracting strategies can be used as configura-
tion parameter of the configuration function.

• Conclusion 2: Contracting Agent as a generic component
Although service contracting processes can be implemented in a variety of software prod-
ucts (a C-compiler would be sufficient), we have shown the added value of a dedicated
component for service contracting, especially in the configuration and monitoring functions.
We therefore conclude that there is at least a market for dedicated configuration and moni-
toring tools that operate in conjunction with a more generic engine, e.g. a workflow enabled
XML messaging tool.

EVALUATION 253

• Conclusion 3: Integration of e-business and workflow management
The component on which the research focuses can be characterised by both the terms ‘elec-
tronic business’ and ‘workflow management’. One could view the Contracting Agent as an
electronic business component with embedded workflow technology. It is however also
possible to view the Contracting Agent as a workflow application for a specific purpose, i.e.
electronic business based on outsourcing of work. Clearly, electronic commerce and
workflow management is showing an increasing overlap. This is illustrated by the attention
of the Workflow Management Coalition for electronic business [143, 144]. Currently avail-
able workflow enabled XML messaging tools show that the integration of e-business and
workflow is to stay and set the standard for an entire class of software products.

• Conclusion 4: Aptitude of standard software components
From an architectural point of view, we have designed the Contracting Agent as a workflow
application, separating execution from control. In the construction of the component, we
used the ExSpect COM-server as workflow engine. Looking back on the experiences with
the component, we conclude that this has been a good choice seen from the perspective of
creating a proof of concept. An appealing feature of the ExSpect COM-server is the use of
high-level coloured Petri nets as process modelling technique. These Petri nets have proven
to be a powerful technique for modelling service contracting protocols. Another appealing
feature of the ExSpect COM-server is the API. A client application can start a process, cre-
ate tokens in places and retrieve tokens from places. This interface has proven to be ex-
tremely flexible, yet still easy to use by a programmer. These features, together with the
simplicity by which a COM-component can be assembled with other components, makes it
a good choice for a light-weight workflow engine invisibly embedded into another product.
The other major COTS component, MSXML4.dll, proved to be a very powerful component,
of which the usefulness can hardly be underestimated. The support of industry standards
like XML, XML-Schema, XSL and XSLT makes it a component that provides functionality
to applications for every standard operation to XML documents: creation, parsing, valida-
tion, transformation and presentation. Since these operations are of a complex nature, the
added value of this small component is large.

5.6 Directions for future research
• Research topic: ad-hoc contracting workflows

In this research, we focused on service contracting processes that were ‘repeating’ in nature
(see Section 2.3.1). Therefore, we were able to define the contracting requirements for all
business cases belonging to one business case type during configuration time. The con-
tracting workflow itself is static; it is created once and then used for each business case of a
specific case type. A different approach would be to define the service contracting workflow
on the fly during run time. For this purpose, the Contracting Agent should know the de-
mands of each specific business case and the available service types on the market. The lat-
ter can for instance be obtained from an on-line catalogue of service types and service pro-
viders on the Internet. If both demand and supply are described in a structured way, auto-
matic matchmaking could be performed. The results of the matchmaking process can then
be used to construct a contracting workflow for a specific business case dynamically.

254 EVALUTION

• Research topic: updates
In this research, we did not allow case data to be updated after the service contracting proc-
ess had been initiated. An extension would therefore be to allow case data to be updated
during the service contracting process. These changes can have significant consequences for
a service contracting process. Service data of candidate services will have to be specified
again with the new case data. If negotiations have already started and the changes are rela-
tively small, an update of the service contract can be requested. If the update is not accepted,
or if the changes are too large, an established contract may have to be aborted. The ability to
allow updates is desirable for two reasons. First, business practice shows that unforeseen
circumstances always will occur, inevitably leading to changes in the case data of business
cases being processed. Second, a business process can be designed such that the value of
case data attributes becomes available at different moments. For example, when a shipper
makes a transport booking, he may know the place and time of loading, the place and time
of delivery and the container type, but not the container number. In this case, it should be
possible to start the service contracting process with case data without a container number.
When the container number becomes known, the client application sends the additional in-
formation (container number) as an update to the Contracting Agent.

• Research topic: aborts
In this research, we did not allow a service contracting process to be aborted after the serv-
ice contracting process had been initiated. An extension would therefore be to allow a client
application to abort a running service contracting process. This may require to cancel all ne-
gotiation phases that did not end in a service contract yet and to cancel all established serv-
ice contracts. However, it is possible that a service contract can not be cancelled, either be-
cause the transaction protocol does not offer this function, or because the execution of the
service can not be stopped any more. Finally, abortion of a running service contracting pro-
cess may require compensating actions to be taken to undo the effects of services that have
already been executed.

• Research topic: negotiation mechanisms
This research focused on service contracting in a situation of partial knowledge, i.e. the
service client does not know in advance if a specified service can be provided by a service
provider. Since each service provider has a limited capacity, service clients will sometimes
request services that are not feasible for the service provider. In many cases however, the
service provider would be able to provide a service that is not equal to the requested service,
but very much alike. This may lead to a negotiation between service client and service pro-
vider. The objective of the negotiation is to find a specification of a service that is feasible
for both service client and service provider. In this research, we described simple negotia-
tion mechanisms, which will be too limited for some business cases. Therefore, efforts
should be made to develop more powerful negotiation mechanisms, which in turn can be
integrated in the contracting workflows as standard building blocks.

• Research topic: integration of financial settlement
In Chapter 2, we discussed a pattern for business transactions, consisting of four phases:
specification, negotiation, execution and acceptance. At some point during these phases,
there can be a financial settlement, which was deliberately excluded from the domain of our
research. A minimum requirement for support of financial settlement is an interface by
which the client application can retrieve the financial obligations, in order to be settled by
one of the business applications. A more complex solution is to include financial settlement
in the Contracting Agent itself, using existing industry standards for electronic payment.

EVALUATION 255

5.7 Concluding remark
This research has brought a new generic software component that contributes to the integration
of business processes via electronic business. Considering the efforts that still have to be made,
both from a business point of view and from a technological point of view, our research was
only a brief encounter with the challenging area of service contracting.

A. Modelling techniques

A.1 Functional data modelling
Functional data modelling is a technique to model the structure of objects, described by Van
Hee [61]. A functional data model consists of simple objects called simplexes, which are mutu-
ally related by relationships. Simplexes have the following characteristics:
• a simplex is atomic (it has no internal structure);
• a simplex is distinguishable;
• a simplex belongs to a type, called a simplex class;
• a simplex class can be named by a noun.
Examples of simplexes are ‘Andries’, ‘Heleen’, ‘Rachel’ and ‘Loïs’, all belonging to the sim-
plex class ‘Person’. A simplex is called an instance of a simplex class. A relationship is char-
acterised by a pair of simplexes and a name. Relationships also belong to a type: the relation-
ship class. A relationship is called an instance of a relationship class. A relationship class is
determined by its name and connects a simplex of one simplex class with a simplex of another
(or the same) simplex class. Each relationship has also a direction, indicated by an arrow. We
call the simplex class at the tail of the arrow the domain class and the one at the head of the
arrow the range class. An example of a relationship class is ‘is_father_of’, to which the fol-
lowing two relationships belong: (‘Andries’, ‘Rachel’) and (‘Andries’, ‘Loïs’). A structured set
of simplexes and relationships is called a complex object, or complex. The set of all possible
complexes with the same structure is called a complex class. A complex class is defined by its
simplex classes and the relationship classes.

Simplex classes and relationship classes are defined in an object model, which has the structure
of a labelled graph. A simplex class is denoted by a node in the form of a rectangle. A relation-
ship class is denoted by labelled and directed lines known as edges. For example:

Trip

Harbour

a bstart end

makes
Shipc

Figure 268 Example of an object model (after [61]).

MODELLING TECHNIQUES 257

We often want to impose constraints on relationships. A number of frequently used constraints
can be represented in the object model. We will use the example of two simplex classes, a and
b, connected by a relationship class r.

• unconstrained
A relationship without constraints is denoted by
an arrow with an open double arrowhead.

a br

• total
A relationship is called total if every simplex of
class a is associated with at least one simplex of
class b. Totality is denoted by a solid circle at the
tail of the arrow.

a br

• functional
A relationship is called functional if there is at
most one simplex of class b connected to each
simplex of class a. Functionality is denoted by a
single arrowhead.

a br

• surjective
A relationship a called surjective if every simplex
of class b is connected to at least one simplex of
class a. Surjectivity is denoted by a solid arrow-
head.

a br

• injective
A relationship is called injective if every simplex
of simplex class b is connected to at most one
simplex of simplex class a. Injectivity is denoted
by a vertical bar at the tail of the arrow.

a br

A relationship can have any combination of these four properties. A relationship that has all
four properties is called a bijective relationship.

• Bijective
A relationship is called bijective if every simplex
of simplex class a is connected to exactly one
simplex of class b, and if every simplex of class b
is connected to exactly one simplex of class a.
Bijectivity is denoted by a solid circle and a verti-
cal bar at the tail of the arrow and a solid, single
arrowhead.

a br

Finally, since hierarchic data structures are used frequently in this dissertation, we introduce
another standard type of constraint. The constraint is used to model a hierarchical relationship
(or tree structure) between simplexes of one simplex class. A set of simplexes has a tree struc-

258 MODELLING TECHNIQUES

ture if one simplex is the root of the tree and all other simplexes are nested under another sim-
plex. In other words, one simplex has no father and all other simplexes have one father.

• Tree
A relationship class r from domain class a to
range class a models a tree structure if (i) exactly
one simplex of class a does not appear as domain
in a relationship of class r (ii) all other simplexes
of class a appear as domain in exactly one rela-
tionship of class r and (iii) the network defined by
the relationships does not contain cycles. We will
use a letter T in the arrow to indicate a relation-
ship with a tree constraint.

a T

In the drawing technique we introduced before, each simplex class was represented by a rec-
tangle. We will now introduce different representations for different types of simplex classes.
First, we will use the term attribute for simplex classes that only occur as a range class in rela-
tionship classes. Attributes will be represented by a rounded rectangle. All other simplex
classes are called entities. An entity that only occurs as a domain class in relationship classes of
which the range class is also an entity is called an association. An association is represented by
a diamond.

entity attribute association

Figure 269 Graphical symbols for simplex classes

An example of the drawing technique is given in Figure 270. There is an entity ‘article’ with
three attributes ‘identification’, ‘name’ and ‘price’. The association ‘component’ models a hi-
erarchic relationship between articles: an article can be composed of other articles. Association
‘component’ is the domain class in two relationship classes. The range class of the relation-
ships ‘is_part_of’ and ‘is_composed_of’ model the child article and the parent article respec-
tively.

Article
is part of

is composed of

Compo-
nent

Identification

Name

Price

Figure 270 Example of the drawing technique

MODELLING TECHNIQUES 259

A.2 High level coloured Petri nets
The formalism of Petri nets was introduced by Carl Adam Petri in 1962 [103]. This classical
Petri net is a directed bipartite graph with two kinds of nodes: places and transitions. A syno-
nym for transition is processor. The nodes are connected by directed arcs called connectors. A
connector can only connect a place to a transition or a transition to a place. Places can contain
tokens and transitions can consume and produce tokens. A special kind of place called store
always contains one token. A transition that consumes a token from a store always produces a
token to the store again. The way in which a transition consumes and produces tokens is well
defined. A transition is called enabled when all input places contain at least one token. If a
transition is enabled, it fires immediately. A transition that fires consumes one token from each
of its input places an produces one token in each of its output places.

One of the strong points of the formalism is the graphical representation of which an example
is given in . Places are drawn as circles, transitions as rectangles, connectors are drawn as ar-
rows and tokens are drawn as bullets. Figure 271 shows a Petri net with two transitions, four
places and six connectors. Place a is called an input place of transition r and place b is called
an output place of transition r. A place can be both an input place and an output place, like for
instance place d. Although Petri nets can be represented graphically, they have a sound formal
basis. The formal basis of Petri-Nets makes it possible to prove properties of the process that is
modelled by a Petri-Net.

transition
r

transition
s

place
a

place
d

place
c

place
b

Figure 271 Example of a classical Petri net

Although classical Petri nets proved to be a powerful formalism, its expressive power fell short
for some real-life problems. A number of extensions have therefore been introduced and Petri-
Nets with these extensions are called high-level Petri-Nets. A full definition of high-level Petri-
Nets is given by Jensen [77] and Van Hee [61]. We will discuss (i) the extension with colour,
(ii) the extension with time and (iii) the extension with hierarchy.

The extension with colour
In a classical Petri-Net, two tokens can not be distinguished from each other. If tokens are used
to model objects in the real world however, one often wants to include properties of objects in
the model. In a high-level Petri-Net, tokens can have a value, also called the colour of the to-
ken. The colour of a token is modelled as a complex object, or complex, according to the for-
malism of functional data modelling (appendix A.1). We can use the colour of a token in the
firing rules of a transition by specifying a precondition. A precondition for a transition consists
of constraints to the colour of the tokens that are consumed from the input places. If a precon-
dition is specified, the transition will only be enabled if the colour of the tokens in the input
places satisfies the constraints in the precondition. If a transaction is enabled, it fires. The col-
our of the produced tokens can be different from the colour of the input tokens. Unlike the
classical Petri-Net, where one token is produced in each output place, high-level Petri-Nets
allow the number of tokens produced in each output place to be determined during the firing of

260 MODELLING TECHNIQUES

a transition. The postcondition of a transition determines (i) the number of tokens to be pro-
duced in each output place and (ii) the data transformation rules to create the colour of the pro-
duced tokens out of the colour of the consumed tokens.

In the approach of Van Hee [61], the formalisms of Petri nets and functional data modelling are
integrated. Figure 272 shows the relationships between concepts of Petri nets and functional
data modelling. A Petri-Net consists of transitions, places and connectors. A place can contain
one or more tokens. Each token has a colour expressed as a complex. A complex is a network
of simplexes and relationships. The structure of a complex is defined by a complex class,
which is a network of simplex classes and relationship classes. Each simplex belongs to one
simplex class and each relationship belongs to one relationship class.

Transition

Place

Connector

Token Complex Simplex Relationship

Complex
Class

Simplex
Class

Relationship
Class

Figure 272 Petri nets and functional data modelling

The extension with time
To be able to model the behaviour of a process in time, high-level Petri-Nets are extended with
time. Tokens in a high-level Petri-Net have a timestamp that indicates the time at which the
token is available for consumption by a transition. A transition is only enabled when the time-
stamp of all tokens to be consumed is smaller than or equal to the current time. The enabling
time of a transition is the value of the highest timestamp in the tokens to be consumed. If two
or more transitions are enabled, the transition with the lowest enabling time fires first. If more
than one token is available in a place, tokens are consumed in the order in which they became
available. The token with the lowest timestamp is always consumed first. If a transition fires,
the timestamp of the produced tokens will have a value equal to or larger than the time of fir-
ing. A token that gets a timestamp equal to the time of firing it is available to other transitions
immediately. A token that gets a timestamp higher than the time of firing is only available after
a delay. Although the firing of a transition does not use time, time-consuming processes can be
modelled by a transition of which the produced tokens have a delay equal to the time required
for the process.

The extension with hierarchy
Although Petri-Nets with colour and time can be used to model very complex processes, the
result will always be one large Petri-Net that is often too large to be understood easy. A good
approach to deal with complexity is to view a large complex process as composed of smaller
sub-processes, which can be divided into smaller sub-processes again. This is why high-level
Petri-Nets are extended with hierarchy. A transition can be decomposed into a network of
places, transactions and connectors. A transition that can be decomposed into a net is called a

MODELLING TECHNIQUES 261

non-elementary or composite transition (we will also use the term system for composite transi-
tions). Otherwise, a transition is called an elementary transition. A Petri-Net is called a flat net
if all transitions are elementary transitions. In this dissertation, we will use the following con-
ventions for the graphical representation of high-level Petri-Nets.

Elementary transition

Non-elementary transition

Place

Store

Figure 273 Graphical conventions for Petri-Nets

Furthermore, elementary transitions can have access to a real time clock to create a time stamp
on a token and to compare the time stamp on a token in an input place with the current time
(precondition). If a transition has access to a real time clock, it is presented as shown in Figure
274.

Figure 274 Graphical conventions for a transition with access to a real time clock

A.3 EBNF
This dissertation uses an Extended Backus-Naur Form (EBNF) notation for the definition of
formal grammars. A grammar consists of one or more rules, each of which defines a symbol in
the form of an expression.

symbol := expression

Within the expression on the right-hand side of a rule, the following patterns are used. The
symbols A and B represent simple expressions.

Pattern Matches

A B A followed by B.

A | B A or B but not both.

[A] A or nothing.

A+ One or more occurrences of A.

A* Zero or more occurrences of A.

"string" A literal string matching that given inside the double quotes.

'string' A literal string matching that given inside the single quotes.

(expression) Expression is treated as a unit and may be combined as described in this list.

References

1. AALST, W.M.P. VAN DER, Timed coloured Petri nets and their application to logistics,
PhD thesis, Eindhoven University of Technology, Eindhoven, 1992.

2. AALST, W.M.P. VAN DER, K.M. VAN HEE AND G.J. HOUBEN, Modelleren en analyseren
van workflow: een aanpak op basis van Petri-netten, Informatie, 37(11), pages 590-
599, 1995 (in Dutch).

3. AALST, W.M.P. VAN DER AND K.M. VAN HEE, Business Process Redesign: A Petri-net-
based approach, Computers in industry, 29(1-2), pages 15-26, 1996.

4. AALST, W.M.P. VAN DER, Three Good Reasons for Using a Petri-net-based Workflow
Management System, in S. Navathe and T. Wakayama, editors, Proceedings of the In-
ternational Working Conference on Information and Process Integration in Enterprises
(IPIC'96), pages 179-201, Camebridge, Massachusetts, November 1996.

5. AALST, W.M.P. VAN DER, Verification of Workflow Nets, in P. Azéma and G. Balbo,
editors, Application and Theory of Petri Nets 1997, volume 1248 of Lecture Notes in
Computer Science, pages 407-426, Springer-Verlag, Berlin, 1997.

6. AALST, W.M.P. VAN DER, The Application of Petri Nets to Workflow Management, The
Journal of Circuits, Systems and Computers, 8(1), pages 21-66, 1998.

7. AALST, W.M.P. VAN DER, Interorganizational Workflows: An Approach based on Mes-
sage Sequence Charts and Petri Nets, Systems Analysis – Modelling – Simulation,
34(3), pages 335-367, 1999.

8. AALST, W.M.P. VAN DER, Process-oriented Architectures for Electronic Commerce and
Interorganizational Workflow, Information Systems, 24(8), pages 639-671, 2000.

9. AALST, W.M.P. VAN DER, Workflow Verification: Finding Control-Flow Errors using
Petri-net-based Techniques, in Business Process Management: Models, Techniques and
Empirical Studies, volume 1806 of Lecture Notes in Computer Science, pages 161-183,
Springer-Verlag, Berlin, 2000.

10. AALST, W.M.P. VAN DER, Inheritance of Interorganizational Workflows: How to Agree
to Disagree Without Loosing Control?, BETA Working Paper Series, WP 46, Eindho-
ven University of Technology, Eindhoven, 2000

11. AALST, W.M.P. VAN DER AND T. BASTEN, Inheritance of Workflows: An approach to
tackling problems related to change, BETA Working Paper Series, WP 50, Eindhoven
University of Technology, Eindhoven, 2000.

264 REFERENCES

12. AALST, W.M.P. VAN DER AND K.M. VAN HEE, Workflow Management: Models, Meth-
ods and Systems, MIT Press, Cambridge, MA, 2001.

13. AALST, W.M.P. VAN DER AND M. WESKE, The P2P approach to Interorganizational
Workflows, in Proceedings of the 13th International Conference on Advanced Informa-
tion Systems Engineering (CAiSE’01), volume 2068 of Lecture Notes in Computer
Science, pages 140-156, Springer-Verlag, Berlin, 2001.

14. ARIBA, cXML User’s Guide version 1.2, www.cxml.org, February 2001.

15. BERGSTRA, J.A. AND P. KLINT, The toolbus: a component interconnection architecture,
Technical report P9408, University of Amsterdam, 1994.

16. BLOMMENSTEIN, F. VAN, Electronic Commerce, Internet en EDI, Informatie, January
1998 (in Dutch).

17. BOERTIEN, N., M. BIJLSMA, W. JANSSEN, P. VAN DER STAPPEN, AND M. STEFANOVA,
State of the art in e-business services and components, TI/RS/2000/024, Telematica In-
stituut, Enschede, 2000.

18. BOLLIER, D., The Future of Electronic Commerce, The Aspen Institute, 1996.

19. BONS, R.W.H., Designing trustworthy trade procedures for open Electronic Commerce,
PhD dissertation, Erasmus University Rotterdam, 1997.

20. BONS, R.W.H., R.M. LEE AND R.W. WAGENAAR, Obstacles for the Development of
Open Electronic Commerce, International Journal of Electronic Commerce, Special Is-
sue, Vol. 2, No. 3, pages 61-83, 1998.

21. BONS, R.W.H., F. DIGNUM, R. LEE AND Y-H. TAN, A Formal Analysis of Auditing
Principles for Electronic Trade Procedures, in International Journal of Electronic
Commerce, Vol. 5, No. 1, pages 57-82, 2000.

22. BOOCH, G., Object-oriented analysis and design with applications, 2nd edition, The
Benjamin/Cummings Publishing Company Inc., 1994.

23. BRINKSMA, E., Tussen droom en daad: Formele methoden en gereedschappen bij
specificatie en implementatie van open systemen, Informatie, Vol. 35, No. 9, pages 537-
546, 1993 (in Dutch).

24. CASTELFRANCHI, C., F. DIGNUM, C. JONKER AND J. TREUR, Deliberate Normative
Agents: Principles and Architectures, in N. Jennings and Y. Lesperance (editors), Intel-
ligent Agents VI (LNAI-1757), pages 364-378, Springer-Verlag, 2000.

25. CHAVEZ, A. AND P. MAES, Kasbah: An Agent Marketplace for Buying and Selling
Goods, Proceedings of the First International Conference on the Practical Application
of Intelligent Agents and Multi-Agent Technology, London, 1996.

26. CHEN, P.P.S., The entity-relationship model - toward a unified view on data, ACM
Transactions on Database Systems, Vol. 1, No. 1, pages 9-36, March 1976.

27. CHOI, S.Y., D.O. STAHL, A.B. WHINSTON, The Economics of Electronic Commerce,
Macmillan Technical Publishing, 1997

REFERENCES 265

28. CREEMERS, M.R., Transacties, bedrijfsprocessen en informatietechnologie, Informatie
en Informatiebeleid, Spring 1992 (in Dutch).

29. CREEMERS, M.R., Transaction Engineering - Process design and information technol-
ogy beyond interchangeability, PhD dissertation, 1993.

30. CROSSFLOW, CrossFlow Project Overview, www.crossflow.org, 2001.

31. DALMEIJER, M., D.K. HAMMER AND A.T.M. AERTS, Mobile Software Agents, Comput-
ers in Industry, Vol. 41, No. 3, pages 251-260, 2000.

32. DAVENPORT, T.H., Process innovation: reengineering work through information tech-
nology, Harvard Business School Press, 1993.

33. DAVIDOW, W.H. AND M.S. MALONE, The virtual corporation, HarperBusiness, 1992.

34. DIETZ, J.L.G., Introduction to DEMO, Samson Bedrijfsinformatie, 1996.

35. DIGNUM, F. AND H. WEIGAND, Communication and deontic logic, in R. Wieringa and
R. Feenstra, editors, Information Systems, Correctness and Reusability, pages 242-260,
World Scientific, Singapore, 1995.

36. DIGNUM, F., E. VERHAREN AND H. WEIGAND, A Language/Action perspective on Coop-
erative Information Agents, in N. van der Rijst, E. Verharen and J. Dietz, editors, Inter-
national Workshop on Communication Modelling (LAP-96), pages 40-53, Oisterwijk,
1996.

37. DIGNUM, F., Social interactions of autonomous agents; private and global views on
communication, in J.J. Meyer and P-Y. Schobbens, editors, Formal models of agents
(LNCS-1760), pages 103-122, Springer-Verlag, 1999.

38. DIGNUM, F., Software agents en Electronic Commerce, Informatie, pages 18-22, April
1998 (in Dutch).

39. DIGNUM, F., FLBC: From messages to protocols, In Y-H. Tan and W. Thoen (editors),
Proceedings of the International workshop on Formal Methods in Electronic Com-
merce, pages 15-29, Rotterdam, June 1999.

40. DIGNUM, F., Agent Communication and Cooperative Information Agents, in M. Klusch
and L. Kerschberg (editors), Cooperative Information Agents IV – The Future of In-
formation Agents in Cyberspace (LNCS-1860), pages 191-207, Springer-Verlag, 2000.

41. EBXML, Technical Architecture Specification V1.0.4, ebXML Technical Architecture
Project Team, www.ebxml.org, 16 February 2001.

42. EBXML, E-commerce patterns V1.0, www.ebxml.org, 11 May 2001.

43. EIU, Competing in the digital age (How the Internet will transform global business),
Research report by The Economist Intelligence Unit and Booz • Allen & Hamilton,
1999.

44. EUROPEAN BOARD FOR EDI STANDARDS / EUROPEAN EXPORT GROUP 4 – FINANCE
(EBES/EEG4), A guide to financial EDI – Strategy and Implementation, 1996.

45. EDIFORUM, De Nationale EDI-Gids, 1994 (in Dutch).

266 REFERENCES

46. EDIT, EDI Development and Implementation Tool, Version 2.7, User Manual, Bak-
kenist Management Consultants, Diemen, 1996.

47. EIJK, P.H. J. VAN, C.A. VISSERS AND M. DIAZ, The Formal Description Technique
LOTOS, North-Holland, 1989.

48. ELLIS, C.A., Information Control Nets: A mathematical model of office information
flow, in Proceedings of the Comference on Simulation, Measurement and Modelling of
Computer Systems, Boulder, Colorado, pages 225-240, ACM Press, 1979.

49. ELLIS, C.A. AND G.J. NUTT, Modelling and enactment of Workflow Systems, in M.
Ajmone Marsan, editor, Application and Theory of Petri Nets 1993, volume 691 of
Lecture Notes in Computer Science, pages 1-16, Springer-Verlag, Berlin, 1993.

50. EXSPECT, User manual, Bakkenist Management Consultants, Diemen, 1997.

51. FERREIRA, J., B. DEROCHER AND L. PROKOPETS, Leveraging the e-Business Market-
place, Business-to-busines e-Procurement Trends, Opportunities, and Challenges, De-
loitte Consulting (www.dc.com), 1999.

52. FININ, T., J. WEBER ET AL, Specification of the KQML Agent-Communication language,
The DARPA Knowledge Sharing Initiative, 1993.

53. FININ, T., R. FRITZSON, D. MCKAY AND R. MCENTIRE, KQML as an Agent Communi-
cation Language, The Proceedings of the Third International Conference on Informa-
tion and Knowledge Management (CIKM’94), pages 456-463, ACM Press, 1994.

54. FLORIJN, G. AND M. VAN ELSWIJK, OO ontwerptrend: Design Patterns, Informatie, Vol.
38, No. 2, February 1996 (in Dutch).

55. GAMMA, E., R. HELM, R. JOHNSON AND J. VLISSIDES, Design patterns: elements of re-
usable object-oriented software, Addison Wesley, 1994.

56. GOLDKUHL, G., Generic Business Frameworks and Action Modelling, Proc. of 1st Inter-
national workshop on Communication Moddeling, Springer-Verlag, 1996.

57. GREFEN, P., K. ABERER, Y. HOFFNER AND H. LUDWIG, CrossFlow: Cross-
Organizational Workflow Management in Dynamic Virtual Enterprises, International
Journal of Computer Systems Science & Engineering, Vol. 15, No. 5, pages 277-290,
2000.

58. GRIFFEL, F., M. BOGER, H. WEINREICH, W. LAMERSDORF AND M. MERZ, Electronic
Contracting with COSMOS – How to Establish, Negotiate and Execute Electronic
Contracts on the Internet, in 2nd International Enterprise Distributed Object Computing
Workshop (EDOC’98), 1998.

59. GUTTMAN, R.H AND P. MAES, Agent-mediated Integrative Negotiation for Retail Elec-
tronic Commerce, Proceedings of the Workshop on Agent Mediated Electronic Trading
(AMET-98), Mineapolis, 1998.

60. HAMMER, M. AND J. CHAMPY, Reengineering the corporation, HarperBusiness, 1993.

61. HEE, K.M. VAN, Information System Engineering: a Formal Approach, Cambridge
University Press, 1991.

REFERENCES 267

62. HOFMAN, W.J., EDI handbook, electronic data interchange between organisations,
Tutein Nolthenius, 1989 (in Dutch).

63. HOFMAN, W.J., A conceptual model of a Business Transaction Management System,
PhD dissertation, Tutein Nolthenius, 1994.

64. HOFFNER, Y., Supporting Contract Match-Making, Proceedings of the Ninth Interna-
tional Workshop on Research Issues in Data Engineering, IEEE Computer Society,
1999.

65. HOOGEWEEGEN, M.R., R.W. WAGENAAR, W.E.J.M. BENS AND J.A.E.E VAN NUNEN,
Het bepalen van kosten en baten van EDI-investeringen, Informatie, Vol. 37, No. 1,
1995 (in Dutch).

66. HOOGEWEGEN, M.R. AND F. DE JONG, Naar een zakelijke inschatting van het nut van
EDI, Informatie Management, Vol. 12, No. 11, pages 39-43, 1996 (in Dutch).

67. IAB, Architectural Principles of the Internet, RFC 1958, The Internet Society,
www.ietf.org June 1996.

68. IAB, Internet Open Trading Protocol - IOTP, Version 1.0, RFC 2801, The Internet
Society, www.ietf.org, April 2000.

69. ISO, EDIFACT - Syntax rules common to both batch and interactive EDI, IS 9735-1,
1996.

70. ISO, EDIFACT - Syntax rules specific to batch EDI, IS 9735-2, 1996.

71. ISO, EDIFACT - Syntax rules and controls specific to Interactive EDI, IS 9735-3, 1996.

72. ISO, The Open-Edi Reference Model, IS 14662, ISO/IEC JTC1/SC30, 1997.

73. ITU-TS, ITU-TS Recommendation Z.120: Message Sequence Chart 1996 (MSC96),
Technical report, ITU-TS, Geneva, 1996.

74. JABLONSKI, S. AND C. BUSSLER, Workflow Management, Modelling Concepts, Archi-
tecture and Implementation, International Thomson Computer Press, 1996.

75. JENNINGS, N.R., P. FARATIN, M.J. JOHNSON, P. O’BRIEN AND M.E. WIEGAND, Using
Intelligent Agents to Manage Business Processes, Proceedings of the First International
Conference on the Practical Application of Intelligent Agents and Multi-Agent Tech-
nology (PAAM 96), pages 345-360, London, 1996.

76. JENNINGS, N.R., K. SYCARA, M. WOOLDRIDGE, A Roadmap of Agent Research and De-
velopment, Journal of Autonomous Agents and Multi-Agent Systems, Vol. 1, pages 7-
38, 1998.

77. JENSEN, K., Coloured Petri Nets: Basic Concepts, Analysis Methods and Practical Use,
EATC Monographs on Theoretical Computer Science, Springer-Verlag, 1992.

78. JOOSTEN, S.M.M., Werkstromen: een overzicht, Informatie, Vol. 36, No. 9, pages 518-
528, 1995 (in Dutch).

79. KALATOKA, R. AND A.B. WHINSTON, Frontiers of the Electronic Commerce, Addison-
Wesley Publishing Company, 1996.

268 REFERENCES

80. KIMBROUGH, S.O. AND R.M. LEE, On Illocutionary Logic as a Telecommunications
Language, Proceedings of the International Conference on Information Systems, San
Diego, December 1986.

81. KIMBROUGH, S.O. AND S.A. MOORE, On Automated Message Processing in Electronic
Commerce and Work Support Systems: Speech Act Theory and Expressive Felicity,
ACM Transactions on Information Systems, Vol. 15 No. 4, pages 321-367, October
1997.

82. KLINT, P. AND G. WIJERS, De renovatie van systemen, Informatie, June 1996 (in
Dutch).

83. KLINT, P. AND C. VERHOEF, Evolutionary Software Engineering A Component-based
Approach, Report P9801, Programming Research Group, University of Amsterdam,
1998.

84. KINDLER, E., A. MARTENS AND W. REISIG, Inter-operability of Workflow Applications:
Local Criteria for Global Soundness, in Business Process Management: Models, Tech-
niques and Empirical Studies, volume 1806 of Lecture Notes in Computer Science,
pages 235-253, Springer-Verlag, Berlin, 2000.

85. LAZCANO, A., G. ALONSO, H. SCHULDT, C. SCHULER, The WISE approach to Elec-
tronic Commerce, International Journal of Computer Systems Science & Engineering,
special issue on Flexible Workflow Technology Driving the Networked Economy, Vol.
15, No. 5, pages 345-357, 2000.

86. LEE, R.M., A Logic Model for Electronic Contracting, Decision Support Systems, Vol.
4, No. 1, pages 27-44, 1988.

87. LEE, R.M., R.W.H BONS, C.D. WRIGLEY AND R.W WAGENAAR, Automated Design of
Electronic Trade Procedures Using Documentary Petri Nets, Proceedings Fourth Inter-
national Conference on Dynamic Modeling and Information Systems, Noordwijker-
hout, September 1994.

88. LEE, R.M. AND R.W.H. BONS, Soft-Coded Trade Procedures for Open-edi, Interna-
tional Journal of Electronic Commerce, Vol. 1, No. 1, pages 27-49, 1996.

89. LEE, R.M., CANDID - A Logical Calculus for Describing Financial Contracts, PhD
Dissertation, Department of Decision Sciences, The Wharton School, University of
Pennsylvania, 1980.

90. LEE, R.M., Interprocs: A java-based Prototyping Environment for Distributed Elec-
tronic Trade Procedures, Proceedings of the Hawaii International Conference on Sys-
tem Sciences, pages 202-209, January, 1998.

91. LEE, R.M., Towards Open Electronic Contracting, Journal of Electronic Markets, Spe-
cial issue on Electronic Contracting, Vol. 2, No. 1, 1998.

92. LEE, R.M., Distributed Electronic Trade Scenarios: Representation, Design,
Prototyping, International Journal of Electronic Commerce, Vol. 3, No. 2, pages 105-
120, 1999.

REFERENCES 269

93. MERZ, M., F. GRIFFEL, T. TU, S. MÜLLER-WILKEN, H. WEINREICH, M. BOGER AND W.
LAMERSDORF, Supporting Electronic Commerce Transactions with Contracting Serv-
ices, International Journal of Cooperative Information Systems, Vol. 7, No. 4, World
Scientific, 1998.

94. MICROSOFT CORPORATION, The Component Object Model Specification,
www.microsoft.com, 24 October 1995.

95. MICROSOFT CORPORATION, DCOM Technical Overview, www.microsoft.com, Novem-
ber 1996.

96. MICROSOFT CORPORATION, BizTalk Framework 2.0: Document and Message Specifi-
cation, www.microsoft.com, December 2000.

97. NORMANN, R. AND R. RAMIREZ, Designing interactive strategy: from value chain to
value constellation, John Wiley & Sons Ltd, 1994.

98. OBI, Open Buying on the Internet Technical Specifications, Version 2.0, The OBI Con-
sortium, www.openbuy.org, 1999.

99. OFX, Open Financial Exchange, specification 2.0, Open Financial Exchange,
www.ofx.net, July 2000.

100. OMG, The Common Object Request Broker: Architecture and Specification, Revision
2.5, Object Management Group, www.omg.org, September 2001.

101. OMG, Unified Modelling Language Specification, version 1.4, Object Management
Group, www.omg.org, September 2001.

102. PATTISON, T., Programming Distributed Applications with COM and Microsoft Visual
Basic 6.0, Microsoft Press, 1998.

103. PETRI, C.A., Kommunikation mit Automaten, PhD dissertation, Institut für Instrumen-
telle Mathematik, Bonn, 1962.

104. PORTER, M.E., Competitive Advantage: Creating and Sustaining Superior Perform-
ance, Free Press, 1998.

105. RODDY, D.J., Online B2B Exchanges, the new economics of markets, Deloitte Consult-
ing, www.dc.com, 1999.

106. RODDY, D.J., The New Economics of Transactions, evolution of unique e-business
Internet market spaces, Deloitte Consulting, www.dc.com, 1999.

107. RUMBAUGH, J., M. BLAHA, W. PREMERLANI, F. EDDY AND W. LORENSEN, Object-
Oriented Modelling and Design, Prentice-Hall International, Inc., 1991.

108. SEARLE, J.R., Speech Acts: an essay in the philosophy of language, Cambridge Univer-
sity Press, 1969.

109. SEARLE, J.R. AND D. VANDERVEKEN, Foundations of illocutionary logic, Cambridge
University Press, 1985.

110. SOKOL, P.K., EDI: the competitive edge, Intertext Publications, McGraw-Hill Book
Company, New York, 1989.

270 REFERENCES

111. SUN, Java Beans API specification, version 1.01, Sun Microsystems,
www.java.sun.com/beans, 24 July 1997.

112. SZYPERSKI, C., Component Software, beyond Object-Oriented Programming, Addision-
Wesley, 1998.

113. TAPSCOTT, D. AND A. CASTON, Paradigm Shift – The New Promise of Information
Technology, McGraw-Hill, 1993.

114. UDDI, UDDI Executive White Paper, www.uddi.org, 6 September 2000.

115. UDDI, UDDI Technical White Paper, www.uddi.org, 6 September 2000.

116. UNITED NATIONS, The Business and Information Modelling Framework for
UN/EDIFACT, working draft UN/ECE TRADE/WP.4/R.1212, 1996.

117. UNITED NATIONS, UN/EDIFACT Message Type Directory Batch, Version D.01B,
www.unece.org/trade/untdid, 2001.

118. VANDENBULCKE, J., Met componentensoftware naar de wendbare onderneming, Infor-
matie, February 1998 (in Dutch).

119. VERBEEK, H.M.W. AND W.M.P. VAN DER AALST, Woflan 2.0: A Petri-net-based
Workflow Diagnosis Tool, in M. Nielsen and D. Simpson, editors, Application and
Theory of Petri Nets 2000, volume 1825 of Lecture Notes in Computer Science, pages
475-484, Springer-Verlag, Berlin, 2000.

120. VERHAREN, E.M. AND F. DIGNUM, Cooperative information agents and communication,
In M. Klusch and P. Kandzia, editors, Proceedings of the first international workshop
on cooperative information agents, LNAI-1202, pages 195-209, Kiel, Germany,
Springer-Verlag, 1997.

121. VERHAREN, E.M., A Language-Action Perspective on the Design of Cooperative Infor-
mation Agents, PhD dissertation, 1997.

122. VLIST, P. VAN DER ET AL, EDI in trade, Samson Bedrijfsinformatie, Alphen aan den
Rijn, 1992 (in Dutch).

123. VLIST, P. VAN DER ET AL, EDI in transport, Samson Bedrijfsinformatie, Alphen aan den
Rijn, 1994 (in Dutch).

124. VLIST, P. VAN DER AND A. VAN DIJK, EDI and Internet, Informatie en Informatiebeleid,
Vol. 15, No. 4, 1997 (in Dutch).

125. W3C, Extensible Markup Language (XML) 1.0 (Second Edition), W3C Recommenda-
tion, World Wide Web Consortium, www.w3.org, 6 October 2000.

126. W3C, Document Object Model (DOM) Level 1 Specification, Version 1.0, W3C Rec-
ommendation, World Wide Web Consortium, www.w3.org, 1 October 1998

127. W3C, Namespaces in XML, W3C Recommendation, World Wide Web Consortium,
www.w3.org, 14 January 1999.

128. W3C, XSL Transformations (XSLT) Version 1.0, W3C Recommendation, World Wide
Web Consortium, www.w3.org, 16 November 1999.

REFERENCES 271

129. W3C, XML Path Language (XPath) Version 1.0, W3C Recommendation, World Wide
Web Consortium, www.w3.org, 16 November 1999.

130. W3C, XML Schema Part 0: Primer, W3C Recommendation, World Wide Web Con-
sortium, www.w3.org, 2 May 2001.

131. W3C, XML Schema Part 1: Structures, W3C Recommendation, World Wide Web
Consortium, www.w3.org, 2 May 2001.

132. W3C, XML Schema Part 2: Datatypes, W3C Recommendation, World Wide Web
Consortium, www.w3.org, 2 May 2001.

133. W3C, HTML 4.01 Specification, W3C Recommendation, World Wide Web Consor-
tium, www.w3.org, 24 December 1999.

134. W3C, Extensible Stylesheet Language (XSL) Version 1.0, W3C Proposed Recommen-
dation, World Wide Web Consortium, www.w3.org, 28 August 2001.

135. W3C, Canonical XML Version 1.0, W3C Recommendation, World Wide Web Consor-
tium, www.w3.org, 15 March 2001.

136. W3C, XHTML 1.0: The Extensible HyperText Markup Language, W3C Recommenda-
tion, World Wide Web Consortium, www.w3.org, 26 January 2000.

137. W3C, Simple Object Access Protocol (SOAP) 1.1, W3C Note, World Wide Web Con-
sortium, www.w3.org, 8 May 2000.

138. WEIGAND, H. AND F. DIGNUM, Formalization and rationalization of communication, in
F. Dignum and J. Dietz, editors, Second International Workshop on Communication
Modelling (LAP-97), pages 71-86, Veldhoven, 1997.

139. WEIGAND, H., W-J. VAN DEN HEUVEL AND F. DIGNUM, Modelling Electronic Com-
merce Transactions; A layered approach, In G. Goldkuhl, editor, Third International
Workshop on Communication Modelling (LAP-98), pages 47-58, Stockholm, 1998.

140. WFMC, The Workflow Reference Model, (TC00-1003), Workflow Management Coali-
tion, www.wfmc.org, 19 January 1995.

141. WFMC, Terminology & Glossary, (TC00-1011), Workflow Management Coalition,
www.wfmc.org, February 1999.

142. WFMC, Workflow Standard - Interoperability Abstract Specification, (TC00-1012),
Version 2.0b, Workflow Management Coalition, www.wfmc.org, 30 November 1999.

143. WFMC, Workflow and Internet: Catalysts for Radical Change, Workflow Management
Coalition white paper, www.wfmc.org, June 1998.

144. WFMC, Workflow Interoperability – Enabling E-Commerce, Workflow Management
Coalition white paper, www.wfmc.org, April 1999.

145. WFMC, Workflow Standard - Interoperability Wf-XML binding, (TC-1023), Workflow
Management Coalition Specification, www.wfmc.org, 1 May 2000.

146. WOMACK, J.P, The Machine That Changed the World: The Story of Lean Production,
HarperCollins, 1991.

272 REFERENCES

147. WOOLDRIDGE, M. J. AND N.R. JENNINGS, Intelligent Agents: Theory and Practice, The
Knowledge engineering Review, Vol. 10, No. 2, pages 115-152, 1995.

148. WURMAN, P. R., M. P. WELLMAN, W. E. WALSH, The Michigan Internet AuctionBot: A
Configurable Auction Server for Human and Software Agents, Proceedings of the Sec-
ond International Conference on Autonomous Agents (Agents-98), Minneapolis, 1998.

Abbreviations and
acronyms
API Application Program Interface
BTMS Business Transaction Management System
COM Component Object Model
CORBA Common Object Request Broker Architecture
COTS Commercial Off The Shelf
CXML Commerce XML
DCOM Distributed Component Object Model
DOM Document Object Model
EAN European Article Numbering
EBES European Board for EDI Standards
EBXML Electronic Business XML
ECR Efficient Consumer Response
EXSPECT Executable Specification Tool
EDI Electronic Data Interchange
EDIT Edi Documentation and Implementation Tool
EDIFACT EDI For Administration Commerce and Transport
GUID Globally Unique Identifier
HTML HyperText Markup Language
HTTP HyperText Transfer Protocol
ICT Information and Communication Technology
IP Internet Protocol
IAB Internet Architecture Board
IDL Interface Description Language
IESG Internet Engineering Steering Group
IETF Internet Engineering Task Force
IOTP Internet Open Trading Protocol
ISO International Standardisation Organisation
LAP Language Action Perspective
MIME Multipurpose Internet Mail Extension
MSC Message Sequence Chart
OBI Open Buying on the Internet
OFX Open Financial Exchange
OMG Object Management Group
OO Object-Oriented
ORB Object Request Broker
OTP Open Trading Protocol

274 ABBREVIATIONS AND ACRONYMS

POP Post Office Protocol
RFC Request For Comment
SCM Supply Chain Management
SGML Standard Generalised Markup Language
SMTP Simple Mail Transfer Protocol
STD State Transition Diagram
TCP/IP Transmission Control Protocol / Internet Protocol
TDID Trade Data Interchange Directory
TSD Time Sequence Diagram
UML Unified Modelling Language
URL Uniform Resource Locator
VAN Value Added Network
W3C World Wide Web Consortium
WFM Work Flow Management
WFMC Work Flow Management Coalition
WFMS Work Flow Management System
WWW World Wide Web
XML eXtensible Markup Language
XSL Extensible Stylesheet Language

Samenvatting (Dutch)
Bedrijfsprocessen beperken zich zelden tot de grenzen van één organisatie. In plaats daarvan is
in toenemende mate sprake van inter-organisationele bedrijfsprocessen. Voor deze bedrijfs-
overstijgende processen zijn verschillende vormen mogelijk, bijvoorbeeld gebaseerd op het
delen van kennis en informatie, het delen van verwerkingscapaciteit, het uitwisselen van casus-
sen en het uitbesteden van werk door middel van het contracteren van diensten van derden. Dit
onderzoek richt zich op inter-organisationele processen die gebaseerd zijn op uitbesteding van
werk via het elektronisch contracteren van diensten van derden. Alhoewel er meestal een ver-
schil wordt gemaakt tussen een ‘product’ en een ‘dienst’ zullen we in dit onderzoek het begrip
‘dienst’ gebruiken als synoniem voor beide.

Afbakening
Het Engelstalige begrip ‘electronic contracting’ wordt gebruikt voor een variëteit aan ver-
schijnselen. Dit onderzoek richt zich op een specifiek deel hiervan, dat wordt afgebakend door
de volgende karakteristieken. Ten eerste richten we ons op een omgeving waarin tussen de
deelnemende organisaties een ‘losse’ koppeling bestaat, dat wil zeggen: alle communicatie
vindt plaats door uitwisseling van gestructureerde berichten, waarvan de inhoud (semantiek en
syntax) en het protocol (volgorde van de berichttypen) is overeengekomen. Deze ‘losse’ vorm
van koppeling veronderstelt dat geen gebruik wordt gemaakt van een centrale ‘broker’ compo-
nent, en dat partijen geen kennis (hoeven) hebben van elkaars bedrijfsprocessen.

Een contracteringsproces vergt altijd de deelname van minstens twee partijen: één in de rol van
koper en één in de rol van verkoper. Dit onderzoekt beperkt zich tot het deel van het contracte-
ringsproces dat door de koper wordt uitgevoerd. Het begrip ‘service contracting’ wordt daarom
gebruikt voor de acties uitgevoerd door de inkoper van de dienst:
- specificeren van de details van de benodigde dienst;
- onderhandelen van een contract met een aanbieder;
- bewaken van de uitvoering van het contract;
- aanvaarden van het resultaat.

We geven nu een nadere toespitsing van het type contracteringsproces waarop dit onderzoek
zich richt. Allereerst richten we ons op de complexere processen, waarbij voor iedere casus N
verschillende diensten moeten worden gecontracteerd en waarbij voor iedere dienst M ver-
schillende aanbieders beschikbaar zijn. Voor de N benodigde diensten veronderstellen we ver-
der randvoorwaarden op de volgorde waarin ze gecontracteerd worden. Ook veronderstellen
we afhankelijkheden tussen de details van de te contracteren diensten. Bijvoorbeeld, wanneer
een vlucht naar New York en een huurauto op het vliegveld van bestemming moeten worden
gecontracteerd kan het contracteren van de laatste pas beginnen wanneer het vliegveld van be-
stemming bekend is. Daarom is het nodig om eerst de vlucht te boeken en daarna – als het
vliegveld bekend is – de huurauto. Een andere veronderstelling die we maken is dat partijen
hoogstens gedeeltelijke kennis hebben van elkaars beschikbare capaciteit. Dit, gecombineerd

276 SAMENVATTING (DUTCH)

met de autonomie van aanbieders, maakt het onmogelijk om de uitvoering van uitbesteed werk
toe te wijzen aan een externe partij. In plaats daarvan is het nodig om een onderhandeling aan
te gaan met één of meer aanbieders. Tenslotte richt dit onderzoek zich op geheel geautomati-
seerde contracteringsprocessen, wat een in hoge mate gestructureerde specificatie van het con-
tracteringsproces vraagt die geïnterpreteerd kan worden door computer-toepassingen.

Aanpak
De gevolgde aanpak is geïllustreerd in Figuur 275. Het linkerdeel van de figuur illustreert het
conceptuele domein en het rechterdeel illustreert het technische (software infrastructuur) do-
mein. In het conceptuele domein onderkennen we de interne werkstroom van een organisatie,
die één of meer uitbestede taken kent. De uitvoering van die uitbestede taken vergt het con-
tracteren van één of meer diensten van externe aanbieders. Communicatie met deze aanbieders
vindt plaats via transacties die bestaan uit gestructureerde berichten waarvan de statische en
dynamische aspecten zijn gedefinieerd in het transactieprotocol. De activiteiten gericht op de
onderhandeling en de totstandkoming van het contract, het bewaken van de uitvoering van het
contract en het aanvaarden van het resultaat kunnen gemodelleerd worden in een contracte-
ringswerkstroom. De specificatie van contracteringseisen en de constructie van deze contracte-
ringswerkstroom is het onderwerp van dit onderzoek. In aanvulling daarop richt het onderzoek
zich ook op het ontwerp en de constructie van een softwarecomponent, de Contracting Agent,
waaraan het interne informatiesysteem de uitvoering van contracteringsprocessen, beschreven
door contracteringswerkstromen, delegeert. Voor het uitwisselen van berichten maakt de Con-
tracting Agent gebruik van standaard software voor inter-organisationeel berichtenverkeer, dat
onder andere de functies conversie, authenthicatie en communicatie biedt.

a

b

c

d

Contracteringswerkstroom

Aanbieder

Interne werkstroom van de uitbestedende partij

x y Transactie
protocol

Aanbieder

x y

Uitbestede taak Intern informatiesysteem

Contracting Agent

Inter-organisationeel
berichtenverkeer systeem

Internet

Figuur 275 Illustratie van de gevolgde aanpak

SAMENVATTING (DUTCH) 277

Doelstelling en bijdrage
De doelstelling van dit onderzoek is om een bijdrage te leveren aan de efficiency van organisa-
ties door optimale ondersteuning te bieden voor de afgebakende klasse van contracteringspro-
cesses met behulp van informatie-technologie. De bijdrage van het onderzoek bestaat uit:
- het expliciet maken van het afgebakende gebied door middel van het conceptuele raam-

werk;
- een specificatietaal waarin contracteringseisen voor uitbestede taken kunnen worden uitge-

drukt;
- een verzameling standaard transities waaruit contracteringswerkstromen kunnen worden

samengesteld;
- een mechanisme waardoor ‘sound’ contracteringswerkstromen kunnen worden gegene-

reerd uit contracteringseisen;
- een architectuur (logisch en technisch) van een softwarecomponent die de afgebakende

klasse van contracteringsprocessen ondersteund;
- een ‘proof of concept’ van het conceptuele raamwerk, de specificatietaal en de architectuur

in de vorm van een operationele software component.

Resultaten
De resultaten van het onderzoek bestaan uit (i) een conceptueel raamwerk voor de klasse van
contracteringsprocessen, (ii) een logische architectuur van de Contracting Agent, (iii) een tech-
nische architectuur van de Contracting Agent en (iv) een implementatie van de Contracting
Agent.

• Conceptueel raamwerk (Hoofdstuk 2)
Het conceptueel raamwerk begint met een definitie van onderliggende concepten zoals
werkstromen, diensten en transacties. Daarna introduceren we het begrip ‘contracterings-
proces’ en beschrijven raamwerken voor contracteringsprocessen uit de literatuur: Action
Workflow, DEMO en BAT. Een synthese van deze raamwerken leidt tot het onderscheid in
vier achtereenvolgende fasen: specificatie, onderhandeling, uitvoering en aanvaarding.
Daarna definiëren we de concepten die nodig zijn voor het specificeren van interface-
afspraken tussen partijen in een contracteringsproces: ‘dienst type’, ‘aanbieder’, ‘transactie
protocol’ en ‘bericht type’. Voor iedere fase die berichtuitwisseling met de aanbieder omvat
geven we een aantal ‘patterns’ voor het transactieprotocol in die fase. Hierna richten we ons
op de specificatie van contracteringseisen voor uitbestede taken. Deze eisen bepalen welke
diensten moeten worden gecontracteerd en hoe deze moeten worden gecontracteerd
(bijvoorbeeld de te volgen onderhandelingsstrategie). Met de interface-afspraken aan de ene
kant en de contracteringseisen aan de andere kant hebben we de basis voor het definiëren
van de contracteringswerkstroom. Als voorbereiding hiervoor definiëren we eerst de toes-
tandsdata van het contracteringsproces, de standaard bewerkingen op deze toestandsdata en
de configuratieparameters die deze standaard bewerkingen gebruiken. Daarna gaan we uit
van een contracteringswerkstroom die gemodelleerd is als hoog niveau gekleurd Petri net,
van waaruit de standaard bewerkingen in de juiste volgorde worden aangeroepen. Voor deze
werkstromen stellen we een verzameling van standaard transities voor waaruit zij
samengesteld kunnen worden. Deze standaard transities worden weer gebruikt om standaard
transities te maken met een lagere granulariteit voor bijvoorbeeld een complete onderhan-
delingsfase. Daarna bespreken we de regels volgens welke de contracteringswerkstroom kan
worden samengesteld uit de interface-afspraken aan de ene kant en de contracteringseisen
aan de andere kant. Tenslotte illustreren we het conceptuele raamwerk door een casus

278 SAMENVATTING (DUTCH)

waarin diensten voor een zakenreis moeten worden gecontracteerd: twee vluchten, een ho-
telovernachting en een huurauto.

• Logische architectuur (Hoofdstuk 3)
De logische architectuur beschrijft de structuur en het gedrag van de componenten waaruit
de Contracting Agent bestaat. De structuur van persistente data en van data die wordt uitge-
wisseld op de koppelvlakken van een component beschrijven we via functionele datamod-
ellen. Het gedrag van iedere component op zijn koppelvlakken, en de samenwerking met
andere componenten via de koppelvlakken beschrijven we via hoog niveau gekleurde Petri
netten. Op het hoogste niveau onderscheiden we drie componenten: Server, Configurator en
Monitor. De Server component is ontworpen volgens de principes van ‘workflow manage-
ment systemen’: scheiding van besturing en uitvoering. Persistente data wordt opgeslagen in
een relationele database, standaard bewerkingen op de persistente data wordt geïmplemen-
teerd in relatief kleine applicaties, die op hun beurt worden aangeroepen door de ‘workflow
engine’ die is geconfigureerd met de definitie van de contracteringswerkstroom. De Con-
figuratie component biedt een opslag van interface-afspraken met aanbieders en ondersteunt
de gebruiker in het definiëren van contracteringseisen voor uitbestede taken. Met deze ge-
gevens als invoer genereert de Configuratie component de gehele contracteringswerk-
stroom, samen met alle andere configuratieparameters die door de Server component wor-
den gebruikt. Tenslotte biedt de Monitor component functionaliteit om de Server component
te bevragen op zijn toestandsdata en deze te presenteren aan de gebruiker via een grafisch
gebruikersinterface.

• Technische architectuur (Hoofdstuk 4)
Dit hoofdstuk geeft de vertaling van de logische architectuur in een technische architectuur
met de bedoeling een operationele versie van de Contracting Agent te maken. Omdat de
bedoeling van deze component is te dienen als ‘proof of concept’ ligt de nadruk meer op het
efficient realiseren van de functionaliteit dan op aspecten als schaalbaarheid en inzetbaar-
heid op verschillende platforms. We kiezen daarom voor Windows als besturingsststeem en
COM als componentenraamwerk. Verder modelleren we hierarchische datastructuren als
XML document en gebruiken we afgeleide standaarden voor bewerkingen op XML docu-
menten: validatie (XML-Schema), transformatie (XSLT) en presentatie (XSL). Deze stan-
daarden worden ondersteund door de standaard MSXML4 component. Een tweede stan-
daard component die we gebruiken is de ExSpect engine als werkstroombesturingssysteem.
De mogelijkheid die ExSpect biedt om hoog niveau gekleurde Petri netten te executeren laat
ons de conceptuele contracteringswerkstroom bijna zonder wijziging omzetten naar de
werkstroom die wordt geëxecuteerd in ExSpect. Tenslotte gebruiken we ook het hulpmiddel
WOFLAN voor het analyseren van eigenschappen van werkstromen.

• Evaluatie (Hoofdstuk 5)
Het laatste hoofdstuk beschouwt de behaalde resultaten en de bijdrage van het onderzoek
aan al bestaand onderzoek. We komen tot de conclusie dat het toepassen van domeinkennis
van contracteringsprocessen in de Configuratie component, en het genereren van contrac-
teringswerkstromen uit eenvoudiger contracteringseisen een grote efficientieverbetering
brengt in het implementeren van contracteringsprocessen.

	Contents
	Preface
	Summary
	1. Introduction
	2. A computational framework for service contracting
	3. Logical architecture of the contracting agent
	4. Technical architecture of the contracting agent
	5. Evaluation
	Appendix A
	References
	Abbreviations and acronyms
	Samenvatting

