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Objectives

Upon successful completion of this module, the
student should be able to:

(1) determine the chemical diffusion coefficient
from a concentration profile of a binary diffusion couple,
using the Matano—Boltzmann equations.

(2) describe the relation between chemical-,
intrinsic— and tracer-diffusion coefficients.

(3) describe the meaning of the Kirkendall plane and
the Matano plane.

Prerequisites

The reader should have completed a general chemistry
course, introductory courses in differential calculus and
an elementary course in thermodynamics. The reader should
be acquainted with the elementary concepts of defect
chemistry and should have studied Part I of this module.
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ambipolar diffusion

chemical diffusion

interdiffusion

intrinsic diffusion

tracer diffusion

self diffusion

Matano plane

Kirkendall plane

GLOSSARY OF TERMS

diffusion of charged particles

refers to diffusion in a chemical-
potential gradient

is equivalent with chemical
diffusion

describes the diffusion of the
different components during
chemical diffusion

refers to diffusion of a tracer
isotope in very dilute
concentration in an otherwise
homogeneous sample without
chemical potential gradients

is equivalent with tracer
diffusion when the tracer atoms
are of the same species as the
non-tracer atoms

a mathematical plane dividing a
binary diffusion couple in two
halves, such that the total amount
of a component that disappeared
from one half equals the amount
that appears in the other half

the plane indicating the position
of a marker, originally at the
interface between two couple
halves, after a diffusion
experiment
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DIFFUSION IN SOLIDS.
PART TWO: DIFFUSION IN BINARY SYSTEMS

R. Metselaar
Eindhoven University of Technology

INTRODUCTION

In Part I of this module, we have given a
phenomenological definition of diffusion coefficients using
Fick’s laws. We have focussed our attention mainly on the
determination of tracer diffusion coefficients, D* and we
have given an interpretation of D* in terms of atomic
jumps. However, in most of the practical cases which a
materials scientist will encounter, diffusion is driven by
a gradient in the concentration of the diffusing elements
or more generally by a gradient in the chemical potential.
As discussed in Part I, the corresponding diffusion
coefficient, as defined by Fick’s First Law, is called
chemical diffusion coefficient, or interdiffusion
coefficient, B. In this module we will see how B can be
evaluated experimentally and how D is related to the self-
diffusjion coefficients of the migrating elements. Next we
shall trace the influence of the electrical charges when
ions diffuse instead of neutral atoms.
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EXPERIMENTAL DETERMINATION OF CHEMICAL
DIFFUSION COEFFICIENTS

In this section we consider the interdiffusion of two
components. As a simple example we could study the
interdiffusion of Cu and Ni. One then could take a piece
of Cu and a piece of Ni, polish the surfaces and press
these two pieces against each other. This assembly is
called a diffusion couple. At time t=0, we place this
couple in a furnace at a constant temperature and after a
certain time, t, we rapidly cool the sample to room
temperature. Next we measure the concentration profiles
of the components Cu and Ni, e.g. with the aid of an
electron probe microanalyzer. The question now is how to
determine the interdiffusion coefficient D from the
measured concentration profile.

The starting point of our discussion is Fick's First
Law. For one-dimensional diffusion in the z-direction we
have

Sci

Y
J; = =D — 1)
i D Py (

where Ji is the flux of diffusing atoms i and ey the
concentration of component i. In this module, we assume
that the partial molar volume V,; of each component is
constant. The flux of atoms is then defined with respect
to a fixed origin, e.g. the outer edge of the sample.
Note that with the concentration ¢ expressed in mol m™ S,
distance z in m, flux J in mol m 25~ !, B is obtained in
units m“s *. The concentrations ¢; vary with the distance
z. Since the chemical diffusion coefficient D is
concentration dependent, is also a funection of =z.
Experimentally we do not measure the atom flux but the
concentration distribution at a given diffusion time. To
evaluate D from experimentally determined concentration

profiles ey (z,t), we have to solve Fick's Second Law:

— =— (D —) (2)
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For tracer diffusion this equation could be solved under
the assumption that the diffusion constant is independent
of concentration. For chemical diffusion this assumption
is generally not applicable. Exceptions are often found
for atoms moving via the interstitial mechanism. An
example of chemical diffusion where B varies only weakly
with concentration is that of carburization (or
decarburization) of iron. In this system, the carbon
atoms move via interstitial positions and the interaction
with the iron lattice is small.

Consider a piece of iron with 100 cm2 cross—section
(assume the sample to be semi-infinite). The sample is
heated in an atmosphere with constant carbon activity,
e.g. in a gas mixture of C0/CO, or of CH4/H2. After 15
hours the sample has gained 1.0g in weight. Calculate the
chemical diffusion coefficient of carbon in iron. The
maximum solubility of C in Fe at the diffusion temperature
is 0.12 g/cm3.

Answer:

Due to the carbon atmosphere, a constant C surface
concentration ¢, is maintained in the Fe, wjith cj equal to
the saturation concentration of 0.12 g/cm®. For a semi-
infinite sample with a constant concentration c, we have
[Eq. (23), Part Il

z

2/Dt

cl(z,t) = eo[l - erf( )1

with

Il exp(-x2)dx

erf y = 0

e
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The flux through the surface is, acecording to Fick's first
law '

J = -B(se/s2)

Differentiating the error function gives

Bo,
J —

(nBt)1/2

The total amount of carbon that diffused through the
surface in t seconds is

Be S
R Dty1/2
u=J YD) dt = 2¢5(—)

With M = 1/100 = 1072 g/em?, t = 15.3600 = 5.4.10%s, and
e, = 0.12 g/em”, we find

D=1, 10711 241

Alternative Answer:

In part I of this module we also gave an equation
[Eq. (25)] which gives a quick estimate of the penetration
depth z_.:
p
2 Ny
zp ~ Dt
In our exercise, the penetration depth after t = 15 hours
can be approximated: when we have 1g of carbon in a
sample with 100 cmz crosg—-section and a saturation
concentration of 0.12 g/cm® the penetration depth zP_;B
0,08 cm. Therefore D ~ (8.10°4)2/(15.3600) = 1.2 . 10-11
m? 8"*. We see that this approximation quickly leads to a
value which is close to the more accurate value obtained
above.
As stated earlier, in most cases of chemical
diffusion, D is a function of concentration. In the
following, we will therefore discuss how to solve Eq. (2)

JOURNAL OF MATERIALS EDUCATION
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for the general case., For this purpose a method was
introduced by Matano. The assumption made by Matano is
that the concentrations are a unique function of z/vt
[compare for instance the solutions Eq. (22) and (23)
discussed in Part I and also exercise 1]. This assumption
is valid in many cases, but it should in fact be verified
always before we use the Matano analysis. On the basis of
this assumption, we introduce the new variable A = z/vt.
With the substitution t = z2/A% and 8t = - 2/A t A. The
left half of Eq. (2) can be written as

o

i1

i
ol

o
o
[ )
n

1
N

In the right half of Eq. (2), we substitute z = A/t, so 82
=+/T 8A.

dc. da. A oc &8¢,
i 1 i ) i 186 Y1

—_— e — d D— — —(D—)

52 4t sn ¢ ( ) =3 P

With these substitutions, Eq. (2) becomes

“2a %% (3

Consider now the case that the concentration profile
of the diffusing element at a given moment is represented

by Fig. la. At the ends of the sample, the concentrations
are constant:

for A = —=, ¢ = °1'

for A = +», @ = cI
We integrate Eq. (3) from A = - to A*, i.e. fromc =

¢ j toc =c* (cf. Fig. 1b):
Q* Sci Sci

-1/2 e;f Mdey = D[(M Yoot = (G e=cl (4)

JOURNAL OF MATERIALS EDUCATION
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> (O)

—p 2 (0rA)
(a) (b)

FIG. 1

Concentration profile c(z) of one of the elements in a
diffusion couple at a given time t. 2z gives the distance
in the couple, A is the variable z/¥T. The plane z=0
(called Matano plane) is defined by making the shaded
areas in Fig. la equal. The shaded area in Fig. 1b
gives the value of the integral in Eq. (4); integration
is carried out with respect to the c—axis.

Since

we obtain

or

dc

i
(-s-x-)c=c;{ =0
c¥
1
_f A dci
Blc#) = -1/2 1 (5a)
1 (601/8)‘)(}{
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Y 1 %
) = ———
Plel) = 3% oy /omr, 50
1

Equation (5) is known as the Matano-— Boltzmann equation.
Using this expression, we can evaluate D at each point of
the penetration curve.

We can only apply Eq. (5b) if we know the origin of
the z-coordinate. Note that for c* = °i’ Eq. (5) reduces
to

+ +

Ci Ci
J T Mdey = S 7 zdey =0 (6)
ey ey
This condition defines the plane z=0, called the Matano
plane (cf, Fig. la). At time t=0, with our restriction
that the partial molar volumes V, are constant, this plane
coincides with the contact interface between the two
starting materials. It follows from this definition that
the Matano plane is situated so that all atoms leavingmthe
part z<0, reappear in the part z>0. In the case that D is
independent of concentration, the penetration curve is
symmetric with respect to the Matano plane and the
concentration gradient reaches a maximum value in this
plane. "

Example. Suppose we want to determine D from the
concentration profile shown in Fig. 1b, in the plane with
coordinate z*. We determine first the Matano plane using
Eq. (6), as shown in Fig. 1a. Next we can apply Eq. (5b)
to calculate B. The numerator in this equation is
obtained by measuring the shaded area in Fig. 1b) note
that the integration is carried out with respect to the c-
axis. The denominator of Eq. (5b) is given by the slope
of the concentration curve at z*.

The parameter x(ci) is very important since, at a
particular temperature, it is only a function of
concentration. This implies that each concentration ¢, is
connected with a value of z/v/t. Therefore, a plane with a
given value ¢; moves through the diffusion couple in such

JOURNAL OF MATERIALS EDUCATION
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a way that
d2=kt (7)
where d is the distance between the plane and the Matano
interface, t the diffusion time and k a proportionality
constant called the penetration constant (dimension
w?s~ 1),
INTRINSIC DIFFUSION COEFFICIENTS

The Kirkendall Effect

Let us consider in more detail the interdiffusion via
a vacancy mechanism in single phase, binary metal alloys.
As an example we bring metal A in close contact with metal
B, and we assume that A and B form a continuous solid
solution. To avoid mathematical complications we further
assume: _ _

a. The atomic volumes VA and Vg are equal and
independent of concentration; consequently the total
volume of the couple remains constant VA = VB = Ve

b. The diffusion couple is semi-infinite i.e. the
concentrations of A and B at the ends of the couple are
constant. Also, the cross-section of the couple remains
constant.

c¢. Diffusion takes place only in the direction
perpendicular to the contact interface between A and B
(the z—direction).

Figure 2 shows a couple where atoms A diffuse fronm
left to right and atoms B from right to left. To mark the
original interface between A and B we separate the lower
parts of the couple from each other with the aid of an
inert foil which acts as a diffusion barrier. In the
upper part, we mark the interface with inert markers (Fig.
2a). As such, one can use small particles or thin wires,
as long as they do not react with the components of the
diffusion couple. Also a pore or an indentation (e.g. as
made in a Vickers microhardness test) at the interface can
be used as such. After a certain diffusion duration we
often find a displacement of the markers with respect to

JOURNAL OF MATERIALS EDUCATION
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the plane of the foil (Fig. 2b). This was first
demonstrated by Kirkendall and Smigelskas [1] in a
diffusion couple of copper and brass, using Mo wires as
markers. Therefore, the phenomenon of displacement of the
marker interface relative to a fixed point outside the
diffusion zone (the foil in our example) is called the
Kirkendall effect. An explanation was given by Darken.
He has shown that the effect occurs in all systems where
diffusion takes place via the vacancy mechanism and where
the two components have unequal diffusion coefficients, D

# Dg. We call these coefficients intrinsic diffusion
coefficients.

/vvires
5
A : B a
/l
foil
A B b
|
FIG. 2

Diffusion couple A vs. B. At the interface
between A and B an inert metal foil and some
inert markers have been inserted.

(a) Indicates the initial marker position,
(b) shows the marker position after diffusion.

We can illustrate the Kirkendall effect with the aid
of Fig. 3. Assume that component A diffuses faster than
B, i.e. the flux Jy through the interface between A and B
exceeds the flux Jg through this interface. As a result

JOURNAL OF MATERIALS EDUCATION
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the right over a distance Zg. If the sample is brought

fixed, external reference frame.

_I.__.’J (a)
Ay Ap
B <+
y4
e
! (b)
|
1
2
e
:
: {c)
i
FIG. 3

i The Kirkendall effect. The dotted line indicates
i the position of inert markers. (a) Gives the marker
position at the start of the diffusion experiment,
(b) and (c) give the position after diffusion. In
(b) the position of the markers is thought to be fixed
in space and as a result the ends of the couple are
shifted. In (c) the couple is brought to its original
position and as a result the marker plane is shifted.
The arrows indicate the flux of atoms, with JA>JB'

the volume of the couple at the right—hand side of the
marker plane increases, while the volume on the left
decreases (see Fig. 3b). If the plane containing the
markers is held in a fixed position, the couple moves to

back to its original position, the markers appear to have
moved to the left over the distance zy (see Fig. 3c), this
is just what we see when we look at the markers from a

In the original experiment by Kirkendall and

JOURNAL OF MATERIALS EDUCATION

Smigelskas we have the following explanation. Both the Cu
and the Zn atoms move over vacancies in the same lattice.
However, the mobility of Cu atoms is smaller than of Zn
atoms. In the Cu-rich part, the number of vacancies will
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decrease and to maintain the local equilibrium
concentration, new vacancies have to be created, e.g. on
the surface of the sample., The opposite takes place in
the Zn-rich part of the couple. The Kirkendall shift has
been observed in many metal systems. The effect is often
accompanied by the occurrence of porosity at the side of
the diffusion zone bordering the metal with the highest
diffusion rate. Referring to Fig. 3, we see that in the
region left of the markers more A atoms disappeared than
were replenished by B atoms. In this region, therefore, a
high concentration of vacancies is created. When the
vacancy concentration exceeds the thermal equilibrium
concentration these vacancies can cluster and form pores.

Determination of Intrinsic Diffusion Coefficients

Let us investigate how one can obtain the intrinsic
diffusion coefficients D;, and how they are related to the
chemical diffusion coefficient D. Using Fick’s First Law
we can write expressions for the fluxes of components A
and B, We assume that there are inert markers in the
original interface between the two couple halves. With
respect to this (moving) plane, generally called the
Kirkendall plane, we can write the fluxes as

de
JK=—D_.£
A ASZ
e
K. _p. 2B
J§ = -vp < (8)

where the superscript K indicates that the fluxes are
evaluated in the Kirkendall plane.

The sum of the concentrations is constant, ey teg =
¢p. Therefore, dcy = —8cp. K K

Because DA#DB, the fluxes Jj and Jp will be
different. If DA>DB, the number of A atoms arriving at
the right-hand side exceeds the number of B atoms leaving
this side. The difference in fluxes is compensated by a
flux of vacancies Jy from right to left:
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8CA
3§ = -(§ + J§) = (D, - D) — (9

The velocity of the marker displacement, Vg, is obtained
by dividing J% by the total number of atoms per unit
volume

vg = &feq = — (10)

In Eq. (8) we have defined the fluxes with respect to
a moving coordinate system. Let us next consider the
fluxes with respect to the Matano plane (which is fixed in
an external reference frame). We will indicate this with
the suﬁerscrlpt M, i.e. Ji. K

JA consists of the flux JA through the Kirkendall
plane, plus the flux resulting from the displacement of
the Kirkendall plane with respect to the Matano (z=0)
plane, i.e. e, Vg*

SeA
JM = JK + Cpvy;, = =Dy —— + @,V
A A ZYk A 52 A"K

Substitution of vy from Eq. (10) gives

8¢ c dc
A A A
M_ p = 4+ 2 -

Introducing molar fractions
NA=CA/CT=1"’NB
we get

SeA
Ty = ~(Ngdy + NyDp) +— (11)

JOURNAL OF MATERIALS EDUCATION




671
DIFFUSION IN BINARY SYSTEMS

Experimentally we determine

dc
3o M2
D = -3}/ ()

for instance with the Boltzmann—-Matano procedure described
in Section 2. Comparison with Eq. (11) shows that

4%

This equation is known as the Darken equation. It can be
shown that, if we drop the limitation. introduced earlier,

that the partial molar volume V, = Vg, the equation
becomes

’\' — —

Equation (12) gives the relation between the chemical
diffusion coefficient D and the intrinsic diffusion
coefficients Dy and Dg in the Kirkendall plane. At this
time it is good to consider once again the meaning of the
Kirkendall plane. We have purposely inserted our markers
at the interface between the two couple halves since this
is a plane of constant concentration. This condition of
constant concentration is only fulfilled at the Kirkendall
interface. Since the concentration is constant c(i) =
e(z/ /&) is constant. Therefore, the displacement of the
Kirkendall plane is proportional to vt:

zg = at1/2 (13)
Consequently, the velocity of the displacement of this

plane with respect to the Matano plane is:

\)K = 3t ot = "2? (14)

This means that we can determine the velocity of the
Kirkendall plane by measuring the marker displacement.
Also, by combining Egqs. (10) and (14) we obtain

JOURNAL OF MATERIALS EDUCATION
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_ CT ZK 50A -1

D_
B a2t 5z

Dy

Of course, we could have inserted markers at other places
in our diffusion couple. However, at these markers the
concentration varies continuously with time and Eq. (13)
does not hold. Therefore, only for the Kirkendall plane
relatively simple expressions are found for the intrinsic
diffusion coefficients.

Relations (13) and (14) have been verified in many
experiments. An example is shown in Fig. 4 for a couple
of U against a U-Mo alloy.

200 T T T 4 i
8 1050°C
o 1000.C
150 ® 950°C
x 850C
R T
100} .
50 .
0 ] L ] L I

0 2 4 6 8 10 12

1
(time in he)

FIG. 4
The displacement of the marker plane in a diffusion
couple of U vs. a U-Mo alloy, plotted as a function
of the square root of time (from Y. Adda and
J. Philibert, C.R. Acad. Sci. 246, 113 (1958).
Exercise 2:
What is the velocity of the Kirkendall plane in the
system U vs. U-Mo at 1000°C?
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Answer:

From Fig. 4 at t=100 hr we find Zg = 107 pm at
1000°C. Equation (14) then gives vy = 107x1076/200x3600 =
1.5x10710 g1,

Combination of Egs. (4), (12) and (14) leads to an
expression for DA (or DB) in the Kirkendall plane:

K
1 6z cA

Dp(ek) = — (=), 1Kz - [ zde,l

aAtC Zt SAZKAK c}; A |
In practice, one often prefers to carry out the
integration with respect to the z-—axis instead of the
concentration axis. This is easily accomplished by
partial integration of the above equation:

Z
K -
Dy(ek) = (6 o)z, 1L [ 7 (ey - cp)dz]  (15a)

If at least one of the starting materials is a pure
component, e.g. ¢,=0, Eq. (15a) reduces to
4

K
Dy(cf) = 2t (8 z) . f cydz (15b)

Exercise 3:

Calculate the interdiffusion coefficients in the
Kirkendall plane and the velocity of the markers for the
system U vs. Zr at 1000°C, using the data in Fig. 5. Also
calculate the chemical diffusion coefficient for the U/Zr
ratio in the Kirkendall plane.
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1.0 T 0
08 4 0.2
NU L - NZr
T 0.6 F 404 l
0.4+ ° 406
02+ 408
0 1 1 | O | 1.0

1
-400-200 0 200 400 600
z(pm) —»

FIG. 5

Concentration profile as measured with an electron
microprobe for a couple of U vs. Zr, after 24 hr at
1000°C. 2z=0 is chosen at the Matano plane,
zg indicates the marker plane. [From Y. Adda
and J. Philibert, "La diffusion dans les solides,"
Presses Univ. de France (1966).]

Answer:

The Matano plane, 2z=0 is found according to the
procedure shown in Fig. la. This has been done already in
Fig. 5. (You can check this by measuring the areas left
and right of the z=0 line.) The marker displacement

K=165 pm. This is the displacement after 24 hroat
1000°C, so the velocity vK=165x10' /2.24x3600=9,55x10"10 p
s™1. The difference (Dy-Dy,) is obtained from Eq. (10).
To this end we measure ghe slope (SNUISZ) of the
penetration curve in z=zp. This yields a value of
(8Ny/82),)=570 m %, so Dy-D;,=9.55.10"10/570=1.67.10712
m“s~*, Next we calculate Dy, using Eq. (15b). From the
figure we measure the area f?"N,. dz=14.10"° m. This
gives us

Dy, = 14x1076/2.24%3600x570 = 1.42x10713 p? 571
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S0
Dy = (16.7 + 1.4)x10713 = 18,1x10713 p2 71 |

The chemical diffusion coefficient is given by Eq. (12a).
In the marker plane N 0 89 q =0,11, 80
B=(0.89x1.4+0.11x18.1)10- 13=3.2.10" ~1%7 ye can also
calculate U at z=Zy directly from Eq. (5). From Fig. 5 we
obtain

NU=O.89 0.6 0.89
2 dNU = [ Z dNU + [ zZ dNU
0 0 0.6

-34.10"%n

Here the first integral is negﬁtive Sane z<0. With this
value we obtain I = 3.5 ., 10 m s~ *. The difference
with the value calculated above is due to unavoidable
errors in the reading of the graphs.

The diffusion coefficient can generally be written as

D(e) = D,(e) exp[-Q(c)/RT] (16)
where D, Do and Q are concentration dependent. Further we
notice that D, t and the penetration z are related to each
other by the dimensionless quantity

k = z2/Dt (17)

If we combine Egs. (16) and (17) and apply them to the
Kirkendall plane, we find

zg = (kDy xt)1/? exp(-Qu/2RT) (18)
Therefore, from the temperature dependence of the marker

displacement we can directly calculate the activation
energy Q.
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THE RELATION BETWEEN CHEMICAL DIFFUSION AND SELF-DIFFUSION

We have defined the diffusion coefficient by means of
Fick’s first law [Eq. (1)]. In many cases, diffusion is
not caused by a gradient in the concentration but by,
e.g., a gradient in the electrical potential, or a
temperature gradient, etc. Intuitively we therefore
expect that a more general formulation should be possible.
A sound base for this idea is given by the thermodynamics
of irreversible processes (a general treatment of this
theory is given, e.g., in ref. 23 a module on this topic
is in preparation for JME by J.M. Chaix). In the
thermodynamic theory it is assumed that the particle
current Ji of component i can be expressed in terms of
driving forces X, by

Jg = Ejag Ly Xy i=1,2,...n (19)

J
For instance, the driving force could be a gradient in the
chemical potential p, i.e. X- = —du;/8z. The coefficients
Li“ which are lndependent of thg force X, are called
phenomenological coefficients. It follows from Eq. (19)
that the flux J; depends not only on X, j» but also on X; (i
# j). Although the cross-terms L X can be quite
significant, we here only eonsider tge case that a
particle diffuses without interaction with other
components. Such is the case for a species migrating via
the interstitial mechanism. Under this assumption, Eq.
(19) simplifies to

Su S 80
Jd=-L — =~ 20)
8z L 3o 80 Sz (

Comparison with Eq. (1) shows that

= L(du/8c)
Next we apply this result to study a binary system, e.g. a
diffusion couple of A/B. We assume that the cross-terms

L; s, which represent the interaction between A and B, are
negligible. Equation (20) can now be used to obtain the
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flux of atoms A and B. With the aid of p; = 4§ + RT 1n
YiN;, where vy is the activity coefficient anlei is the
molar fraction of component i, Eq. (20) becomes

Slnai Sln'riNi

= —LiiRT —5—2——' (21)

Let us now apply this equation to obtain the flux of A
atoms in the marker plane. As an abbreviation we write
Ly; = Ly and Ly, = Lp. From Eq. (21) we find

8z

K
Ja

]

_LART SlnyANA ScA

CT SNA o5z

CA 81ln NA 8z

= -[___... (1 + )] — (22)
ey 81nN, &z

In Eq. (8), we have defined the intrinsic diffusion
coefficient D,, with

K _ p, —
R =05 (8)

Comparison of Eqs. (8) and (22) shows

LyRT slny,

+
QA 81nNA
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The expression in parentheses is often called the
thermodynamic coefficient. In the case of tracer-
diffusion of A* in AB, the concentration gradient is
negligible, so

3N, =0 and Df-=

Cp

This gives us a very useful relation between the intrinsic
diffusion coefficient DA and the directly measurable
tracer-diffusion coefficient D} (see Part I of this
module):

SlnYA

SlnNA) (14)

DA = DK(I +
Another important relation is obtained if Eqs. (24) and
(12a) are combined:

B - ny08i0p (1 + ootk (25)
A 81nN,

where we have used SlnvA/SInNA = SlnyB/SlnNB. This latter
relation can easily be derived from the thermodynamic
Gibbs-Duhem relation i.e. Npdp, + Ngdug = 0. Equations
(24) and (25) have been derived by Darken [3]. They are,
in fact, approximations because we have neglected the off-
diagonal terms in the derivation. For a more rigorous
treatment we refer to the literature [4].

AMBIPOLAR DIFFUSION

The discussion of the preceding sections is valid for
neutral diffusing particles, e.g. atomic movements in
metals or alloys. In many cases, however, charged
particles are involved. For instance, when a metal is
oxidized metal ions or oxygen ions have to be transported
through the oxide layer. Such an ion movement is possible
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only if at the same time a counterdiffusion occurs of a
species with the same charge or if a parallel diffusion
occurs of a species with opposite charge (Fig. 6).

M MO .. |0,
@t M
w0

e M
()37 (e)_z—
FIG. 6

Possible transport mechanisms involved in the oxidation
reaction of a metal M into MO: (a) transport of metal
ions and electrons, resulting in growth at the outside

of the oxide layer; (b) transport of oxygen ions and
counterdiffusion of electrons, resulting in growth at
the M/MO interface; (c¢) transport of metal ions and
electrons and counterdiffusion of oxygen ions,
resulting in growth within the MO layer.

This is necessary because otherwise an electric field
would be created which would counteract the ion movement.

Take, as an example, the situation of Fig. 6a. At
the M/MO interface M atoms dissolve in MO forming M2+ ions
and electrons. As a rule, the electrons move faster than
the ions and an electric field dé/dx is built up. Due to
this field, the M2+ jons will try to keep up with the
electrons and a stationary state is reached when

2J 9, -d _=0 (26)
M e
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For a detailed discussion of ambipolar diffusion and its
influence on chemical diffusion coefficients we refer to
the literature [5]. However, some general conclusions can
be given.

Looking at the example of Fig. 6a one finds that the
mobility of the slowest of the two particles (here the
metal ion) limits the diffusion rate. On the other hand,
the chemical diffusion coefficient exceeds the intrinsic
diffusion coefficient of the slowest particle by a factor
of 2 or 3, depending on the charges involved. This effect
is due to the drag exerted by the faster partner (the
electron). This conclusion is always valid for the case
that we are dealing with: two mobile species.

In the situation shown in Fig. 6c, there are three
charged particles involved. 1In this case, the particle
with the lowest mobility can be left out of our
discussion.

INTERDIFFUSION IN MULTIPHASE, BINARY SYSTEM

In the preceding sections, the discussion has been
restricted to single phase, binary systems., In practice,
however, situations occur where several phases are present
at the same time. For instance, in metallic diffusion
couples this is frequently the case. Figure 7 shows an
example of a diffusion couple A/B for a system with three
solid solutions, called e, B and Y.

Figure 7a shows the composition temperature diagram,
Figure 7b shows the concentration at temperature To of
component B as a function of distance going from pure A& to
pure B. The concentration of B gradually increases from
zero in the o phase. Above a certain concentration,
however, a mixture of a and Y is formed. From the phase
rule it follows that there are only two degrees of freedom
in a two—phase region of a binary system. Therefore, at a
fixed pressure and temperature the concentrations of the
components are constant. As a result, two—phase regions
do not occur in diffusion couples of a binary system. The
penetration curves of A and B have discontinuities at the
boundaries between the different phases (Fig. 7b).
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A (o} .’...

FIG. 7

(a) A fictitious phase diagram of the metals A and B,
rotated 90 degrees. (b) The diffusion couple A-B with
layers of a and B and the penetration curve of
component B after t seconds at temperature Ty

However, the diffusion coefficients can still be
determined with the aid of Eq. (15), since the only
condition for its applicability is that the penetration
curve can be integrated. In passing, we remark that
multiphase diffusion experiments, as described above, are
an important tool in investigating phase diagrams since,
in principle, all equilibrium phases occur in such a
diffusion couple.

Figure 8 gives an example of a penetration curve for
the system Au-Pt after 200 hrs at 1020°C. We see fronm
this curve that at 1020°C the maximum solubility of Au in
Pt is reached at 14 at% Au, while the maximum solubility
of Pt in Au is 34 at%.

This is only one of many examples. In many systems
of practical importance, two-phase regions may occur. For
instance, the Fe-C system or the Al-Cu system are well
known in metallurgy.
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z
K
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FIG. 8

Penetration curve of the couple Au-Pt
after 100 hrs at 1020°C.

In this module, we have only treated the basic
phenomena of binary diffusion. Many points of great
practical importance have not been discussed. For
example, grain boundary diffusion may strongly influence
the thickness of a diffusion layer: the formation of
cracks can completely spoil the protective action of an
oxide layer, etc. Another point to keep in mind is that
systems are not always in thermodynamic equilibrium. For
instance, the precipitation of a new phase may be hindered
or completely suppressed when nucleation kinetics is slow.
For more details and examples, the student is referred to
the literature.

JOURNAL OF MATERIALS EDUCATION



683
DIFFUSION IN BINARY SYSTEMS

SELF-TEST

1. Figure 9 shows a concentration profile for a
couple of metals, A and B, after 20~hr diffusion.
a. Verify that the Matano plane is situated at z =
-78 punm.
b. Determine ¥ for N, = 0.2, 0.4, 0.6, 0.8 and 0.88
(i.e. in the Kirkendall plane).
c. Calculate DA and DB in the Kirkendall plane.

1.0

T 0.8

Ny 06

matano

0.4

0.2

T T T T T T T T

marker,
plane .

0
-300 -200 -100 0 100 200

z{pgm) —>»

FIG. 9

Concentration profile of a couple A-B
after 20-hr diffusion.

2, After a diffusion experiment with a couple of Al
vs. NijAlj, a layer of NiAlz is formed. The Kirkendall
plane is found at the interface of Al anvaiAl3.

What is your conclusion about the relative values of
the diffusion coefficients DNi and DAl in this system?

3. Calculate the activation energy (in kJ/mole) for

the displacement of the Kirkendall plane for the couple U
vs. U-Mo, using the data in Fig. 3.
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1a.

1b.

lec.

ANSWERS TO SELF-TEST
By integration, we verify
0f0"6 zaN, = (/04 zang =25.8. 107 .

D values are calculated from Eq. (5b), with 2t =
1.44 . 10° s.

Y

~[zdN 8z/8N D
N G’ Gm" @
0.2 16.3 120 1.35 . 10714
0.4 24.6 113 1.93 . 10714
0.6 26.3 164 2.99 ., 1014
0.8 22.3 347 5.38 . 10714
0.88 18.1 858  1.08 . 10713

The marker velocity is vg = 78x1076/1.44x10° =

5.41x10710 ps=1, yith Eq. (10) we obtain D,-Dp

= 5.41x10"10x858x1076 = 4.65x10"13 p25-1]

Combination with Eq. (12a) then Pives Dy =

5.1x10”13 p2 -1, Dg = 5.2x10”14 2 g™

%not?er way to obtain Dy and Dy is to use Eq.
15b).

Only Al atoms take part in the diffusion
process.

By plotting 1ln zg for a fixgg time as a function
of reciprocal temperature T ~ we get a straight
line with slope -0.57.10% K. From Eq. (18) we
see Q = 0.57 . 104 . 2R = 94.5 kJ/mole.

JOURNAL OF MATERIALS EDUCATION



685
DIFFUSION IN BINARY SYSTEMS

REFERENCES

A.D., Smigelskas and E.O. Kirkendall, Trans. Met. Soc.
AIME 171, 130 (1947).

S.R. de Groot, Thermodynamics of Irreversible
Processes, North Holland Publ. Co., Amsterdam (1951).
L.S. Darken, Trans. Met. Soc. AIME 174, 184 (1948).
J.R. Manning, Diffusion Kinetics for Atoms in
Crystals, van Nostrand, Princeton (1968),

F.A., Kroger, The Chemistry of Imperfect Crystals, Vol.
3, North—-Holland/American Elsevier (1974).

JOURNAL OF MATERIALS EDUCATION




