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Abstract

This monograph is concerned with a number of penalty-function tech-
niques for solving a constrained-minimization or nonlinear-program-
ming problem. These techniques are designed to take into account the
constraints of a minimization problem or, since almost none of the
problems arising in practice have interior minima, to approach the
boundary of the constraint set in a specificalty controlled manner. The
monograph starts therefore with a classification of penalty functions
according to their behaviour in the neighbourhood of that boundary.
Appropriate convexity and differentiability conditions are imposed on
the problem under consideration. Furthermore, certain uniqueness con-
ditions involving the Jacobian matrix of the Kuhn-Tucker relations are
satisfied by assumption. This implies that the problem has a unique mini-
mum X with a unique vector = of associated Lagrangian multipliers.
Under these conditions the minimizing trajectory generated by a mixed
penalty-function technique can be expanded in a Taylor series about
(X,%). This provides, as an important numerical application, a basis for
extrapolation towards (X,%). The series expansion is always one in terms
of the controlling parameter independently of the behaviour of the
mixed penalty function at the boundary of the constraint set. Next, there
is the intriguing question of whether some penalty functions are easier
or harder to minimize than other ones. Accordingly, the condition
number of the principal Hessian matrix of a penalty function is studied.
It comes out that the condition number varies with the inverse of the
controlling parameter, independently of the behaviour of the mixed
penalty function at the boundary of the constraint set. The parametric
penalty-function techniques just named can be modified into methods
which do not explicitly operate with a controlling parameter. They may
be considered as penalty-function techniques adjusting the controlling
parameter automaticaily. It is established how the rate of convergence
of these methods depends on the vector u of Lagrangian multipliers
associated with X, on the boundary properties of a penalty function,
on a weight factor p attached to the objective function and on a relaxa-
tion factor p. The method of centres is a remarkable exception: its rate
of convergence depends on the number of active constraints at x, and
on p and g. The computational advantages and disadvantages of the
penalty-function techniques treated in the monograph are discussed.
There is an appendix presenting an ALGOL 60 procedure for constrained
minimization via a mixed parametric first-order penalty function.
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1. INTRODUCTION

1.1. Constrained minimization via penalty functions

The constrained-minimization problem to be considered in this thesis is de-
fined as

minimize f (x) subject to the constraints } (L1.1)

g{xy=0i=1,...,m,

where f, g4, ..., 2 denote real-valued functions of a vector x in the »-
dimensional vector space E,. There is an extensive literature on this problem
(alternatively referred to as nonlinear-programming problem) and a large
number of methods for solving it have been proposed in the last two decades.
We shall here be dealing with methods which reduce the computational process
to unconstrained minimization of a penalty function combining in a particular
way the objective function f, the constraint functions g,, ..., g, and pos-
sibly one or more controlling parameters. Surveying the literature one can
distinguish two classes of penalty-function techniques both of which have been
referred to by expressive names. The interior-point methods operate in the
interior R°® of the constraint set

R={xlg(x)=0;i=1,..., m} (1.1.2)

The exterior-point methods, on the other hand, present an approach to a mini-
mum solution of (1.1.1) from outside the constraint set.

There are three interior-point methods that have attracted considerable
theoretical and computational attention. First, there is the logarithmic-pro-
gramming method, originally proposed by Frisch (1955). It was further devel-
oped by Parisot (1961) to solve linear-programming problems, and later on the
present author (1967, 1968a) gave a detailed treatment of the method as a tool
for solving nonlinear problems. Second, we find the sequential unconstrained
minimization technique (SUMT), It was originally suggested by Carroll (1961)
and further developed by Fiacco and McCormick (1964a, 1964b, 1966),
Pomentale (1965), and Stong (1965). It is tending to be abandoned in favour
of logarithmic programming, as appears from recent work of Fiacco and
McCormick (1968). Last, there is an interior-point method described by
Kowalik (1966), Box, Davies and Swann (1969), and Fletcher and McCann
(1969).

The exterior-point methods have a somewhat longer history. The first sug-
gestion here was given by Courant (1943). Further developments came from
Ablow and Brigham (1955), Camp (1955), Butler and Martin (1962), Pietrzy-
kowski (1962), Fiacco and McCormick (1967a), and Beltrami (1967, 1969a).
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They were mainly concerned with a penalty function which is here referred to
as the quadratic loss function. A more general treatment of the exterior-point
methods was presented by Zangwill (1967) and Roode (1968).

Interior- and exterior-point methods have particular advantages and suffer
from particular disadvantages that will be explained later on. Accordingly,
combinations of these methods have been designed. The first ideas came from
Fiacco and McCormick (1966) who proposed a penalty function for incor-

porating the inequalities as well as the equality constraints of a problem. Mixed
~ penalty functions have independently been studied by Fiacco (1967), by the
author (1968b), and by Fiacco and McCormick (1968).

The appearance of controlling parameters in a penalty function poses the
numerical question of how to choose appropriate values for them and how to
use the information gathered during the computational process. One has to
compromise between the desire for rapid convergence and the necessity to
avoid minimization of extremely steep-valleyed penalty functions, which may
cause all kinds of numerical difficulties. Acceleration of the convergence has
been obtained by extrapolation, which is generally a powerful tool for approx-
imating the limit of an infinitesimal process; we may, for instance, refer to
Laurent (1963), Bulirsch (1964), Bulirsch and Stoer (1964, 1966), and Veltkamp
(1969). In the field of penalty-function techniques a basis for extrapolation (the
Taylor series expansion of the minimizing trajectory about a minimum solution)
was first derived by Fiacco and McCormick (1966) for SUMT, later on by the
author (1968a, 1268b) for logarithmic programming and the mixed penalty-
function techniquss.

Murray (1967) introduced the question of conditioning of a penalty function
in order to compare some interior- and exterior-point penalty functions. This
idea has recently been generalized by the author (1969) to study how rapidly,
for various methods, a certain condition number varies with the controlling
parameter.

An interesting development was initiated by Rosenbrock (1960) and continued
by Huard (1964) who proposed the merthod of centres. It has been explored,
theoretically and computationally, by Faure and Huard (1963, 1966), Bui Trong
Lieu and Huard (1966), Huard (1967, 1968) and Tremoliéres (1968). The method
of centres generates a sequence of points converging to a minimum solution of
the problem. Each of these points (centres) is obtained by unconstrained maxi-
mization of a distance function: a particular combination of the objective func-
tion and the constraint functions. However, some distance functions may also
be regarded as penalty functions without controlling parameters. Starting from
this point of view, Fiacco and McCormick (1967b) presenied a parameter-free
version of SUMT, and Fiacco (1967) demonstrated that similar versions can
be obtained for a large class of interior-point as well as exterior-point methods.
Slightly earlier, a parameter-free exterior-point method was suggested by
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Kowalik (1966). Computational experience, however, prompted the author
(1968¢) to undertake a theoretical study of the rate of convergence of these
methods as compared with the above-mentioned, parametric technigues,

The above survey does not include all the penalty functions that have been
proposed in the last few years. We have restricted ourselves to methods which
operate with penalty functions possessing at least continuous first~order partial
derivatives in their definition area. Then, the gradient of a penalty function
vanishes at a minimizing point. This appears to be a particularly useful relation
for theoretical investigations. Fiacco and McCormick (1964a) discovered that
SUMT provides primal-feasible as well as dual-feasible solutions of the problem.
In so doing, they made a connection between penalty-function techniques and
the duality theory for nonlinear programming developed in the years before by
Dorn (1960a,b), Wolfe {1961}, Huard (1962, 1963) and Mangasarian (1962).
The vanishing of the gradient of a penalty function at a minimizing point is
also the basis for investigation of the minimizing trajectory and its Taylor serics
expansion about a minimum solution of problem (1.1.1).

Differentiability has even more implications, however., Computational suc-
cesses with penalty-function methods depend critically on the efficiency of un-
constrained-minimization techniques. Among these, some of the gradient tech-
niques, using first-order and possibly second-order partial derivatives of the
function to be minimized have proved to be very successful. The method of
steepest descent (Curry (1944), Goldstein (1962)) is generally insufficient for
minimizing penalty functions. More effective are the conjugate-gradient methods
(Hestenes and Stiefel (1952), Fletcher and Reeves (1964), Shah, Buehler and
Kempthorne (1964), Daniel (1967a, 1967b), Polak and Ribiére (1969)). A very
powerful technique is Newron’s method (Crockett and Chernoff (1955), Gold-
stein and Price (1967), Fiacco and McCormick (1968)), but it has the serious
disadvantage that explicit evaluation of the second-order partial derivatives is
required. Therefore, one finds an abundant literature on the guasi-Newton or
variable-metric methods requiring first-order derivatives only, but presenting a
sophisticated combination of conjugate-gradient techniques and Newton’s
method (Davidon (1959), Fletcher and Powell (1963), Broyden (1965), Rosen
(1966), Broyden (1967), Stewart (1967), Bard (1968), Davidon (1968}, Fiacco
and McCormick (1968), Myers (1968), Zeleznik (1968), Pearson (1969),
Fletcher (1969a, 1969¢), Goldfarb (1969), Powell (1969)). There are also several
methods for minimization without calculating derivatives (Nelder and Mead
(1964), Powell (1964), Zangwill (1967c¢)), but at least to our knowledge, only
Powell’s method has been used in conjunction with penalty-function tech-
niques. It is doubtful whether this method will be successful if the penality func-
tion is not differentiable at its minimizing point.

Survey papers with some comparison of a number of methods have been
presented by Spang (1962), Fletcher (1965), Box (1966), Greenstadt (1967),
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Topkis and Veinott (1967), Box, Davies and Swann (1969), and Beltrami
(19690).

Our interest in efficient methods of constrained minimization was aroused,
first, by the problems arising in the design of the Philips Stirling engine (see
Meijer (1969)). Shortly thereafter, our attention was asked for the problem of
economic dispatching, a description of which may be found in Carpentier (1962)
and Sasson (1969). The research which is reported in the present thesis was
carried out since that time, mainly on the grounds of the idea that penalty-
function techniques may be useful in solving technological problems.

1.2. Behaviour of penalty functions at the boundary of the constraint set

In view of the abundance of penalty-function techniques just sketched we
have been searching for a significant classification. Basically, penalty-function
techniques are designed to take into account the constraints of a minimization
problem or, since almost none of the practical problems have interior minima,
to approach the boundary in a specifically controlled manner. It is therefore
natural to classify penalty functions according to their behaviour in the neigh-
bourhood of that boundary. This is the point of departure for the present thesis.

To be specific, let us start with the parametric interior-point methods. For
this class of methods we have been concerned with penalty functions of the
form

) —r Z plgx)] 1.2.1)

Here, r denotes a positive controlling parameter. The function ¢ is a function
of one variable 7, defined and continuously differentiable for positive values
of , and such that ¢(0-+) = —co. Hence, the function (1.2.1) is defined in
the interior R® of R, but it has a positive singularity at every boundary point
of R. Under mild conditions a point x(r) € R® exists minimizing (1.2.1) over R°
for any » > 0. This is due to the second term in (1.2.1) which presents itself as
a barrier in order to prevent violation of the constraints. Following Murray
(1967) we shall therefore briefly refer to interior-point penalty functions as
barrier functions. Let {r,} denote a monotonic, decreasing null sequence as
k — co. Then any limit point of {x(r,)} is a minimum solution of (1.1.1).

Formula (1.2.1) shows that there are no differences in the treatment of the
constraints: they are all subject to the same transformation ¢, in our opinion
a reasonable approach as long as one does not make any special assumption
on some of the constraint functions.

The classification that we have introduced is based on a property of the
derivative ¢ of ¢: a barrier function is said to be of order 2 if the function ¢’
is analytic and if it has a pole of order 2 at n = 0. The choice of the derivative
instead of the function itself is not surprising; in the preceding section we have
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seen that the first-order partial derivatives of penalty functions are of great
importance.
llustrative examples are given by the cases where

g’ =n"% (1.2.2)

with a positive A. For / == 1 we obtain the logarithmic barrier function on which
the logarithmic-programming method is based. For 1 = 2 the function (1.2.1)
reduces to the inverse barrier function for the sequential unconstrained-minimi-
zation technique. Finally, the inverse quadratic barrier function named by
Kowalik (1966), Box, Davies and Swann (1969), and Fletcher and McCann
(1969) is obtained for 4 = 3. ,

Parametric exterior-point methods can be classified in a similar manner. Here
we have been concerned with penalty functions of the form

£ =571 2 plz(9) (123)

where s is a positive controlling parameter, and y a continuously dxﬁ‘erentlab]e
function of one vartable # such that

) =0 for #=>0,

v <0 for #<O. (1.2.4)

The second term in (1.2.3) gives a (positive) contribution if, and only if, x ¢ R.
Constraint violation is progressively weighted as s decreases to 0. Under certain
conditions a point x{(s) exists minimizing (1.2.3) over E, for sufficiently small,
positive values of s. Any limit point of the sequence {x(s,)}, where {s,} is a
monotonic, decreasing null sequence, is a minimum solution of problem (1.1.1).
Following Fiacco and McCormick (1968) we shall refer to penalty functions
of the type (1.2.3) as loss functions.
For classification purposes we have introduced a function w such that

w(n) =y(y) for 75 <0

Now a loss function is said to be of order u if the derivative o’ of w is analytic
and if it has a zero of order p at 5 = 0.
Simple examples of loss functions are obtained by using

@' () = (=) (1.2.5)

with positive g. For g = 1 we find the guadratic loss function which has been
referred to in the previous section.

We have thus far confined ourselves to penalty functions which contain a
controlling parameter. The above classification can, however, readily be ex-
tended to a class of methods which may be considered as a generalization of
the method of centres. These methods are based on penalty functions without
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controlling parameter. A detailed treatment, however, is postponed until that
subject is reached in chapter 4.
In the present thesis, parametric barrier functions will be represented by

B(x) = f(x) —r? :§1 plgix)], (1.2.6)

where A4 denotes the order of the pole of ¢’ at n == 0. Raising r to the power
A yields certain advantages when we are dealing with the Taylor series expan-
sion of the minimizing function or “minimizing trajectory” associated with the
barrier function in question. Similarly, a parametric loss function is given by

L) =F () —s57" Z plg)) (1:2.7)

where u stands for the order of the loss function (the order of the zero of o’
at 5 = 0).

1.3. Scope of the thesis

In chapter 2 we present material which is needed in the rest of the thesis:
necessary conditions (sec. 2.1) and sufficient conditions (sec. 2.2) for constrained
minima, a characterization of the boundary and the interior of the constraint
set (sec. 2.3), the definition and some properties of convex sets and convex
functions (sec. 2.4), and lastly the concept of a convex-programming problem
and some duality theorems (sec. 2.5).

In chapter 3 the parametric penalty functions are studied. Mixed penalty
functions are introduced in sec. 3.1. In so doing we avoid a separate treatment
of barrier-function and loss-function methods. Primal and dual convergence of
mixed penalty-function methods are established in secs 3.2 and 3.3 respectively.
In sec. 3.4 the behaviour of the minimizing trajectory in a neighbourhood of the
constrained minimum is investigated. The analysis is carried out under the
so-called Jacobian uniqueness conditions. Lastly, sec. 3.5 deals with the Hessian
matrix of mixed penalty functions evaluated at a minimizing point, and with
the behaviour of its eigenvalues as r decreases to 0.

In chapter 4 generalizations of the method of centres are presented. A rough
sketch of the basic idea (moving truncations of the constraint set) is contained
in sec. 4.1. The convergence of the moving-truncations barrier-function tech-
niques and their relationship with parametric barrier-function techniques are
established in sec. 4.2. In sec. 4.3 the rate of convergence of these methods is
studied. A similar analysis of the moving-truncations loss-function techniques
is presented in sec. 4.4.
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In chapter 5 the results of the preceding chapters are used in order to motivate
the choice of a mixed parametric first-order penalty function for computational
purposes.

Finally, there is an appendix presenting an ALGOL 60 procedure for con~
strained minimization via the last-named penalty function.
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2. MATHEMATICAL PRELIMINARIES

2.1. Necessary conditions for constrained minima

We begin by introducing the following terminology.

Definition. Any point x € E, satisfying the constraints of problem (1.1.1) is a
Seasible solution of (1.1.1).

Definition. The set of all feasible solutions )
R=Ixlg(x)>=0; i=1,..., m} (2.1.1)
is the constraint set of (1.1.1).
Definition. A feasible solution ¥ is a local minimum solution, or briefly a local
mininwum, of (1.1.1) if there is an s-neighbourhood
NEFe) = {x|xeE,; Ilx—x| <e}
of X such that f(¥) < f(x) for all xe RN N(Z,2).

Definition. A feasible solution X is a global minimum solution, or briefly a global
minimum, of (1.1.1} if f(X) < f(x) for all xe R.

Definition. A local (or global) minimum % of problem (1.1.1) is a local (or
global) unconstrained minimum of f if an e-neighbourhood N(X,¢) of ¥ can be
found such that f(X) < f(x) for all x € N(X,¢).

We shall be assuming that the problem functions f, gy, . .., &. have con-
tinuous first-order partial derivatives in E,. The gradients of f and g, will be
denoted by v/ f and Vg; respectively.

It will be convenient to distinguish the constraints which are active at a
feasible solution x. Therefore we introduce:

Ay ={ilg(x)=0; 1<i<m} 2.1.2)

We shall now move on to necessary conditions for local minima of (1.1.1)
which have been formulated by John (1948) and Kuhn and Tucker (1951). The
concepts to be used in deriving them are largely due to the work of Arrow,
Hurwicz and Uzawa (1961).

Definition. A vector y € E, is a feasible direction at x € R if there exists a posi-
tive number s, such that x -~ x v is a feasible solution of (1.1.1) for all
0 < 1 << Ho.

Lemma 2.1.1. If the constraint functions g,, ..., g. have continuous first-
-order partial derivatives in E,, then any y € E, satisfying the strict inequalities
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T&x)Ty > 0; ie A(x)

at a feasible solution x is a feasible direction at x.
Proof. Let us start with an arbitrary i € A(x) and let us define A,(u) = gx + p ¥).
Then A{0) = 0 and #,/(0) = Vg{x)T y > 0. Hence we have, by the continuity
of &/, that a positive g, exists such that (1) > 0 for any u, 0 < g < u,.
If i ¢ A(x), then g(x) > 0 and consequently g(x + u») > 0 for all non-
negative x smaller than a certain positive u,.
Lastly, we choose ug = min (14, ..., f,), which completes the proof.

An attempt to find necessary conditions for local minima of inequality-con-
strained problems was made by John (1948). His result is based on the theory
of linear inequalities. A detailed treatment of this theory falls beyond the scope
of the present thesis. We shall use some theorems, the proof of which can be
found for instance in Zoutendijk (1960), sec. 2.2. The result of John's study is
expressed in: ‘

Theorem 2.1.1. 1If the functions f, gy, . . ., g have continuous first-order par-
tial derivatives in E,, and if ¥ is a local minimum of (1.1.1), then there exist
nonnegative multipliers #,, #,, . .., i,, at least one of which is positive, such
that

iy V1(X) "“;E i Vg% =0,

.1.3)
(X =0, i=1,...,m
Proof. 1t must be true that either the system
VgX)Ty > 0; ieAX®) (2.1.4)

is inconsistent or that, by lemma 2.1.1,
Tf®Ty =0
for all v e E, satisfying (2.1.4). Anyhow, the system
—V/@®Ty>0 )
VEETy > 0; ieA®) )

is inconsistent. We can then invoke the following theorem (Zoutendijk (i960),
p. 9): Let B denote an n-column matrix and y an n vector. The system By > 0
(the inequality sign expresses a vector inequality such that any component of
By is positive) is inconsistent if, and only if, the transposed system BY 4 = 0
has a nontrivial, nonnegative solution. Thus, the theorem states that the system
By > Qis inconsistent if, and only if, one of the rows of B is a nonpositive linear
combination of the remaining rows. Applying this we find that nonnegative
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multipliers %, and 4, i € A(%), exist, at least one of which is positive, such that

iy V() — X i1 Vg(®) = 0.

ted(x)
Finally, we define 4, = 0 for all i ¢ A(X), and this completes the proof.

Let us discuss this result in more details. Suppose that (2.1.4) happens to be
consistent. Then the system

2_1; 7gdx) =0
fed(x)

has the trivial solution only, and it must accordingly be true that %, # 0.
Similarly, #; cannot vanish if the gradients ¥/ g,(%), i € A(X), are linearly inde-
pendent. Dividing then the first relation in (2.1.3) by #, we find that 7f (%)
is a nonnegative linear combination of the gradients 7 g(%), i € A(X). This is
precisely a result we need in the subsequent analysis. We shall therefore con-
cern ourselves with a regularity condition (in this field frequently referred to as
a constraint gualification) implying #, = 0 if it is imposed on problem (1.1.1).

The basic idea underlying the proof of John’s theorem was that a decrease
of the objective function cannot be found if one performs a small step from ¥
into the constraint set. In proving the theorem, however, one only considers
the effect of small steps along those feasible directions which satisfy the strict
inequalities (2.1.4). A natural extension could probably be obtained by treating
directions y satisfying

VeX)Ty =0; ieAR). (2.1.5)

However, a simple example is sufficient to show that every y which satisfies
(2.1.5) is not necessarily a feasible direction at X. Let us therefore first consider
sets of directions which allow us to perform small steps from ¥ into R along
curves.

Definition. A vector y € E, is an attainable direction at x € R if there exists an

n-vector valued function 6 of a real variable % which has the following proper-

ties.

1. A positive 7 exists such that 8(x) is defined for 0 < % < % and contained
in R.

2. 600y = x.

3. The function 8 has a right-hand-side derivative 8'(0) at y = 0, and 8'(0) = ».

The function @ is said to define a contained path with origin x and original

direction y.

The paper by Arrow, Hurwicz, and Uzawa (1961) contains an example which
shows that the set of attainable directions at x € R is not necessarily closed.
Therefore we introduce the following:



Definition. Any element of the closure of the set of attainable directions at
x € R is a semi-attainable direction at x.

Lemma 2.1.2. If the constraint functions g4, . . . , £ have continuous first-order
partial derivatives in E,, then any semi-attainable direction y at x € R satisfies
the inequalities

’ Ve(x)Ty = 0; ieAx).

Proof. Tt is sufficient to prove the validity of these inequalities for an attainable
direction y at x. Let &(y) define a contained path with origin x and original
direction y. For any i € A(x) we have g,[6(0)] = Oand g,[6()] = 0,0 < n < %,
whence
_ gil6en)] — &i[00)]
lim
L0 7

= Vegdx)Ty =0.

Lemma 2.1.3. If the functions f, g4, . . . , g, have continuous first-order partial
derivatives in E,, and if ¥ is a Iocal minimum of (1.1.1), then

VfE®Ty =0,

for any semi-attainable direction y at X.
Proof. This lemma can be proved in a similar way as the preceding one.

Definition. A vector y € E, is a locally constrained direction at x € R if

Vex)Ty = 0; ieA(x).

We may now summarize the above results as follows. Any feasible direction
at x e R is attainable; any attainable direction at x is semi-attainable; any
semi-attainable direction at x is locally constrained at x. An example which
demonstrates that a locally constrained direction at x € R is not necessarily
semi-attainable may be found in the paper by Kuhn and Tucker (1951). For
this reason we introduce the following qualification.

Definition. A feasible solution x of (1.1.1) is qualified if any locally constrained
direction at x is semi-attainable at x.

A discussion of the above qualification will be presented later on. We are
now in a position to show that the relations (2.1.3) must hold with nonzero i,
at a qualified minimum solution. This is expressed by the well-known theorem
of Kuhn and Tucker:

Theorem 2.1.2. If the functions f, g4, . . ., g, have continuous first-order par-
tial derivatives in E,, and if X is a qualified feasible solution of (1.1.1), then a
necessary condition for ¥ to be a local minimum of (1.1.1) is that nonnegative
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multipliers #,, . .., i, can be found such that

AN

VI =T i VedR) =0,

2.1.6
;8(%) =0, le,...,m.s ( )
Proof. Using lemma 2.1.2 and 2.1.3 we find that

VfE®Ty =0
for any vector y € E, such that
Ve®Ty 2 0; ieAX).
We may now restate the well-known théorem of Farkas: Let ¢ and x denote
vectors in E, and let B be an n-column matrix. Then ¢7 x > 0 for any x satis-
fying Bx = 0 if, and only if, ¢T is a nonnegative linear combination of the rows
of B. For a proof of Farkas’ theorem the reader is referred to Zoutendijk (1960),
p- 8. Applying Farkas’ theorem we find that nonnegative multipliers @, { € A(X),

exist such that
V@ — gﬁ i Vg% = 0.

Defining 4, = 0, { € A(X), we can readily complete the proof.

According to the theorem of Kuhn and Tucker it is necessary for ¥ to be a
local minimum that 7/ (%) is a nonnegative linear combination of the gradients
V(%) of the active constraints at X. This is expressed by the Kuhn-Tucker
relations (2.1.6). However, in proving (2.1.6) we have imposed an additional
condition on X in order to guarantee that 7/ (%)T y = 0 for any locally con-
strained direction at X. Conditions of this kind have become quite familiar in
nonlinear programming under the name of constraint qualification. Kuhn and
Tucker (1951), for instance, required any locally constrained direction to be
attainable at any feasible solution,

Several authors have been dealing with the question of how to find simple
conditions implying a constraint qualification. An extensive treatment of these
attempts will not be given here. In the next theorem we only recall a number of
results which are due to Arrow, Hurwicz and Uzawa (1961), Mangasarian and
Fromowitz (1967), and Fiacco and McCormick (1968).

Theorem 2.1.3. Let x be a feasible solution of problem (1.1.1). If (a) the func-
tions g4, - . . , &, have continuous first-order partial derivatives in E,, and (b) for
some locally constrained direction y, at x a partitioning of 4(x) into two dis-
junct subsets 4,{x) and 4,(x) can be found with the following two properties:
) V&{x) yo > 0; i€ A(x),

(ii) the gradients 7g{x), i € 4,(x), linearly independent,

then x is a qualified feasible solution of problem (1.1.1).
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Proof. Let y be a nonzero locally constrained direction at x. It is sufficient to
demonstrate that the direction z = y -+ ¢ y, is attainable at x for any posi-
tive &. Then y is semi-attainable at x. We can easily obtain

Vedx)Tz > 0; ie 4,(x),
V&) z 2 0; ieAdy(x).
Let Ayxz) = {ilie A:(x); Vgdo)T z =0},

We try to construct a contained path 0(z) with origin x and original direction z.
Let G(n) denote the matrix with columns g,[6(n)], i € A5(x,z). We define
#(0) = x and 0'(y) as the projection of z on the linear subspace of E, which
is orthogonal to the columns of G(%). Then

#'(n) = [I, — GO {G)T G}~ G(n)T] =.

The choice is possible since the columns of G(0) are, by assumption, linearly
independent. This implies that the inverse of G(0)* G(0) exists. Similarly, the
inverse of G(n)T G(x) exists by thé continuity of the gradients, implying that
the columns of G(n) are linearly independent for sufficiently small, positive #.
Obviously, #(0) = z.

It remains to show that we have constructed a path which is contaired in R.
For any i € A,(x) and any i e 4,(x) — A,(x,z) we have g;[6(0)] = 0 and

V&l[0(0)] 8(0) = Vg0 z > 0,

so that g,{6(n)] > O for sufficiently small, positive #. Let us finally consider
an i € A,(x,z). The mean-value theorem leads to

&l0m)] = &[] + 7 V&.[6(0)] 8'(D),

with 0 < < n. The right-hand side vanishes since, by construction, #'({) is
orthogonal to g;[6(0)] for any i e A,(x,z).

Combining the results we find that z is an attainable direction at x, and
consequently y is semi-attainable at x. This proves the theorem.

It is worthwhile to note that either 4,(x) or 4,(x) may be empty. Hence,
the above theorem provides two sufficient conditions for a feasible solution
to be qualified, namely existence of a direction y, such that

vgi(x)r Yo = 0: ie A(x)a

or linear independence of the gradients 7g,(x), i€ A(x). These conditions
have also been discussed at the end of theorem 2.1.1. V

Every feasible solution of a finearly constrained problem is qualified: then,
namely, any locally constrained direction at a feasible solution x is a feasible
direction at x. The Kuhn-Tucker relations (2.1.6) are thus satisfied at any local
minimum, without additional conditions.
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If none of the constraints is active at a local minimum X, theorem 2.1.2
states merely that 7f(X) = 0, a well-known result from classical analysis.
We conclude this section by introducing some terminology.

Definition. A pair (X,i) € E, X E,, is a Kulm-Tucker point of problem (1.1.1) if
the requirements of {2.1.7) to (2.1.10) are satisfied:

g(®H=0; i=1...,m, 2.1.7)
2,20, i=1,...,m, 2.1.8)
Gg(X) =0, i=1...,m, (2.1.9)
V(%) -—E #; Vgi(x) = 0. (2.1.10)

The constraints and the multipliers #; are, as it is shown by (2.1.9), comple-
mentary: the multiplier #, can only be positive if the ith constraint is active.
We shall say that the ith constraint is stromgly active if 4; > 0, and weakly
active if it is active but if 4, = 0. A Kuhn-Tucker point (X,i) is strict com-
plementary if 4, > 0 for any i e A(X).

The results of theorem 2.1.2 may now be summarized as follows: if X is a
qualified, local minimum of problem (1.1.1), then a vector iZ¢ E,, can be
found such that (x,i) is a Kuhn-Tucker point of (1.1.1).

2.2. Sufficient conditions for constrained minima

A sufficient condition for a point X to be a local unconstrained minimum of
a function f can, it is known, be formulated with the help of the second-order
derivatives of fat ¥. This idea can readily be extended to the case of constrained
minima. We shall henceforth assume that the problem functions f, g1, . . - 5 &m
have continuous second-order partial derivatives in E,, and we introduce the
following notation. The matrix of second-order derivatives of f evaluated at x,
usually referred to as the Hessian matrix of fat x, will be represented by 72/ (x).
A similar notation will be employed for the Hessian matrices of g4, ..., &m
Lastly, we introduce

D(x,u) = V2 f(x)— 2 u; V%8 (%) 2.1
f==1
Theorem 2.2.1. If (a) the functions f, g4, . . - , £, have continuous second-order
partial derivatives in E,, (b) a Kuhn-Tucker point (X,%) of problem (1.1.1)
exists, and (c¢) an g-neighbourhood N(X,¢) of X can be found such that D(x,#)
is positive semi-definite for any x € R N N(X,¢), then % is a local minimum of
(1.L.1D.

Proof. Let us assume the contrary, that £ is not a local minimum. Then a



sequence {x;} of feasible solutions can be found, converging to ¥ and such
that f(x;) < f(X). Writing x, = X + y, and using a Taylor series expansion
about ¥ we find that

f(&x+ yk)_iglﬁi gE+w) =

= f(X) —E:I i, g(%) + IV (® “‘]E:l a4 V(D] v + % ykT D&, @) yi,

where &, ==X + 4, y, for some 0 <4, < 1. Using (2.1.7) to (2.1.10) we
obtain
SE+y)—f(X) = 137 D(&4, 1) yi,
whence
30" D(&, ) yi < 0.

For k sufficiently large, however, it must be true that &, € R N N(X,¢). This
leads to a contradiction and proves the theorem.

Definition. A local minimum X of problem (1.1.1) is isolated, or locally unigue,
if an e-neighbourhood N(X,e) of ¥ exists such that f(¥) < f(x) for any
x € R N(Z&).

One may expect that ¥ will be an isolated local minimum of (1.1.1) if D(X,4)
is positive definite. The next theorem shows that we can find a weaker condition
implying local uniqueness of X. We only have to require that D(,#) be positive
definite with respect to some locally constrained directions at X,

Theorem 2.2.2. If (a) the functions f, g4, . . . , g, have continuous second-order
derivatives in E,, (b) a Kuhn-Tucker point (£,%) of problem (1.1.1) exists, and
(c) it is true that

yIDxmy >0

for any y € E,, y + 0, satisfying

Xy =0 forany ic A(X) suchthat # =0,
Veg(®)Ty =0 forany ieA(X) suchthat & > 0,

then ¥ is an isolated local minimum of (1.1.1).

Proof. Let us assume the contrary. Then a sequence {x,} of feasible solutions
can be found, converging to ¥ and such that f(x) < f(X). We can write
X, =X 4 0, y, with ||y]] = 1 and 6, > 0. Then a limit point (0,7) of the
sequence {(d, ¥,)} exists, and ||F|| = 1. We can now obtain

. SE+ &) (R
lim

koo ak

=V/®"7 <0,
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and for any i € 4(X) we have

. 88X+ B y)—gdH)
lim

K 00 ék

=vVaXT'y=0.

Application of the Kuhn-Tucker relations leads to
0= VfOTy =2 Ved®' 7 > 0.
Hence
4 VgD 7 =0, ieAX),
and we can write, according to condition (¢) of the theorem,

77 D(%,1) § > 0. (2.2.2)

Using a Taylor series expansion about ¥ we obtain
SE&E A+ 3&)’3)—5117: glE + S ) =
= f(X) ‘—ig #; (%) + 0, [\—ff(i)—izll # V&)1 »e +

+ 162 0T [V (&)— Eiﬁz V22:(&)] v

which can, by (2.1.7) to (2.1.10), be reduced to the inequality
Vil D(&y,it) yi < 0.

Here, £, represents a point on the line segment connecting X and ¥ -+ &; yy.
Taking the limit as & — oo we find that

FTD(xm) y <0,
which contradicts (2.2.2) so that the proof of the theorem is completed.

If there are no active constraints at ¥ the above theorem reduces to the
following well-known result: if /f(X) = 0 and VV*/(¥) is positive definite,
then X is an isolated local unconstrained minimum of f. ‘

In the next chapter we shall frequently make an appeal to a theorem which
supplies a set of conditions implying, amongst other things, local uniqueness
of a Kuhn-Tucker point of (1.1.1). The theorem is based on the idea that a
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Kuhn-Tucker point (%,@) solves the system

V) —;51 u; Vgix) =0, 223

wgx)=0; i=1,...,m,

consisting of m - n nonlinear equations and involving m - n variables. Let
J denote the Jacobian matrix of (2.2.3), evaluated at (%,#). If J is nonsingular,
it must be true by the inverse-function theorem (De la Vallée Poussin (1946))
that a neighbourhood of (%,i) exists where (%,#) is the unique solution of (2.2.3).

Definition. A Kuhn-Tucker point (%,#) of problem (1.1.1) satisfies the Jacobian
uniqueness conditions, if the following three conditions are simultaneocusly satis-
fied.

Condition 2.1. The multipliers #;, i € A(X), are positive.
Condition 2.2. The gradients 7/ g(%), i € A(X), are linearly independent.
Condition 2.3. For any ye E,, y = 0, such that
Vedx) 'y =0, ieA),
it must be true that

yIDEE y > 0.

Theorem 2.2.3. If (a) the functions £, g;, . . . , g, have continuous second-order
partial derivatives in E,, and (b} a Kuhn-Tucker point (X,%) of problem (1.1.1)
exists which satisfies the Jacobian uniqueness conditions 2.1 to 2.3, then the
Jacobian matrix J of the Kuhn-Tucker relations (2.2.3) evaluated at (%) is
nonsingular. This implies that the point X is an isolated local minimum of (1.1.1)
and that the vector # of associated multipliers is uniquely determined.

Proof. To start with we introduce some additional notation. We think of the
constraints as arranged in such a way that

g(x)=0, #4,>0; i=1,...,0
g(® >0, 4,=0;, i=oa-+1,...,m,

and we employ U to denote a diagonal matrix of order « with the positive
diagonal elements #,, i = 1, ..., « The matrix G will represent a diagonal
matrix of order m — o with the positive diagonal elements g,(X), i = a + 1,
..., m. Let H; denote the matrix with the linearly independent columns V7 g,(x),
i=1,..., 0, and H, the matrix with the columns Vg,(x}, i =a -+ 1,..., m.
Finally, the symbol D will be used to denote briefly the matrix D(X,i). With



these arrangements and notations J can be put into the form

D '—‘H1 ‘“—Hz
J=|0OHT" 0 o I 2.2.4)
0 0 G

Clearly, we have to guarantee that the submatrix

D —Hy
UH" 0O

is nonsingular. We shall demonstrate that the system

Dy — Hw =0 (2.2.5)
UH,Ty =0 (2.2.6)

has the trivial solution only. Condition 2.1 implies that U is nonsingular. It
follows then from (2.2.6) that H,” y = 0. Premultiplying (2.2.5) by 7 we
obtain
y' Dy —y" Hyv =0,
whence
yT Dy = Q.

Using condition 2.3 we can write y = 0, Now H,v = 0, and it follows from
condition 2.2 that v = 0. Hence J is nonsingular, and accordingly a neigh-
bourhood of (%) can be found where (X,%) is the unique solution of the
Kuhn-Tucker relations.

Using theorem 2.2.2 we may conclude, on the basis of conditions 2.1 and
2.3, that X is an isolated local minimum of (1.1.1). The uniqueness of # is implied
by condition 2.2.

The above theorem can also be applied if the problem under consideration
is one of linear programming. Then D(X,ii) = 0, but if there are exactly n
active constraints at X satisfying conditions 2.1 and 2.2, then the set of all
ye E,, y+# 0, such that

Ve®)Ty =0; ieAx),
is empty. Hence, condition 2.3 of the theorem is also satisfied although
D(x,i1) == 0.
2.3.. The boundary and the interior of the constraint set

In this section we are concerned with the interior R°® of the constraint set R
defined by (1.1.2), and with the set -

PR) = {xlg{x)>0; i=1,...,m}



It 1s important for interior-point methods that R can be characterized as the
closure of P(R). Then, namely, any point x € R can be attained via a sequence
{x,} of points each of which satisfies the constraints of the problem with strict
inequality sign.

It will be convenient to define a function § by

§(x) = min [g,(x), . . . , gu(x)]- (2.3.1)
Then
R = {x|§(x) = 0},

and

P(R) = {x |§(x) > 0}. (2.3.2)
Lastly, we introduce the set Z(R) by defining

Z(R) = {x|§(x) = 0}. (2.3.3)
If we assume continuity of the constraint functions g,, ..., g, then § is con-

tinuous in E,, the set R is a closed subset of E,, and P(R) is contained in R°.

The results to follow, which are closely connected with local minima and
maxima of §, are largely due to Bui Trong Lieu and Huard (1966), and Tre-
moliéres {1968). They presented a necessary and sufficient condition for Z(R)
to be the boundary of R (implying that P(R) is the interior of R), as well as a
necessary and sufficient condition for R to be the closure of P(R).

Theorem 2.3.1. Let the constraint functions g,, ..., g. be continuous in E,.
Then the set Z(R) is the boundary of R if, and only if, no local, unconstrained
minimum of § belongs to Z(R). '

Proof. Let us start by proving the if-part of the theorem. First, we show that
Z(R) is contained in the boundary of R. Let x, € Z(R) and let N(x,,&} denote
an e-neighbourhood of xy. The set N(x,,&) M Ris nonempty since x, is con-
tained in it. On the other hand, a point x, € N{x,,¢) can be found such that
F{x1) < G(xo) since x4 is not a local, unconstrained minimum of §. The set
N(xy,£) contains an element of R as well as a point which does not belong to
R for arbitrary, positive values of &. Hence, x, is a boundary point of R.
Second, we consider a boundary point x, of R and we suppose that §(x;) = 0.
If §(x,) > 0, then x, is an interior point of R. If §(x,) << 0, then x, is an inte-
rior point of the complement of R. In both cases we have a contradiction, and
it must be true that §(x,) = 0. Combination of the results leads to the con-
clusion that Z(R) is the boundary of R.

To show the reverse, we start from the assumption that Z(R) is the boundary
of R. Consider an arbitrary x, € Z(R) and an e-neighbourhood N(x,,&) of x,.
Then a point x; € N(x,,¢) can be found such that g(x,) < §(x,). Hence, xq
cannot be a local unconstrained minimum of §, which completes the proof.
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Corollary. The set P(R) defined by (2.3.2) is the interior R° of R if, and only
if, no local unconstrained minimum of § belongs to Z(R).

/a b c\

Fig. 2.1.

Figure 2.1 shows a situation which is ruled out if no local minimum of §
belongs to Z(R). Here, the interior R° of the constraint set R is given by the
open interval (a,c). The point & € R°® belongs to Z(R).

Lastly, we find a condition which ensures that R is the closure of P(R).

Theorem 2.3.2. Let the constraint functions g, ..., g, be continuous in E,
and suppose that P(R) is nonempty. Then R is the closure of P(R) if, and
only if, no local, unconstrained maximum of § belongs to Z(R).

Proof. We start by proving the if-part of the theorem. It is sufficient to consider
a point x, € Z(R). Suppose that a positive d can be found such that N(x,,0)
does not contain any point of P(R). Then §(x) < §(x,) for any x € N(x,,6),
which implies that x, is a local, unconstrained maximum of §.

Conversely, if R is the closure of P(R), we suppose that a local, unconstrained
maximum x; of § belongs to Z(R). We can then find a neighbourhood N(x,,6)
of x, such that §(x) < §(x,) =0 for any x € N(x,,d), contradicting that an
element of P(R) can be found in any neighbourhood of x,.

Figure 2.2 is given in order to illustrate theorem 2.3.2. Here, the set R is the
union of the closed interval [a,b] and the point ¢. The interior R° of R is given
by (a,b); the closure of R° consists of [a,b] only.

2.4. Convex sets and convex functions

In this section we shall briefly sum up the properties of convex sets and
convex functions that we need in subsequent chapters. The proofs will be omitted.
They can be found in many textbooks such as, for example, Berge (1951) or
Berge and Ghouila-Houri (1962).
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Definition. A set C C E, is convex if Ax, -+ (1 — 1) x, € C for every two
points x; e Cand x,e Cand every 4, 0 <A < L.

Theorem 2.4.1. The intersection of two convex sets is a convex set.
Definition. Let C be a convex set and f a function defined in C. Then fis convex
in Cif

Shxi + 0 =D x] <Af(x) + (A — 1) f(x2) (24.1)
for every two points x; € C and x, € C and every 4, 0 << 4 <C 1. The function f
is strictly convex in C if strict inequality holds in (2.4.1) when 0 << 4 << 1 and
x; 5% X,. If f is (strictly) convex in E,, it will briefly be referred to as a (strictly)
convex function.

In the remainder of this section the symbols C and C° will invariably be used
to denote, respectively, a convex set in E, and its interior,

Theorem 24.2. If f,, . . ., f, are convex functions in C, then any nonnegative
linear combination of these functions is convex in C. The function f defined by

f(x) == max [fl(x)’ s )fp (x)]

is also convex in C.

Theorem 2.4.3. If f is a convex function in C, then the set
xIfG)<a xeC)

is convex (possibly empty) for any a.

Theorem 2.4.4. If £ is a convex function in C, and if 4 is a nondecreasing, convex
function in E;, then A(f) is convex in C.

Theorem 2.4.5. If f is a convex function in C, then f is continuous in the interior
C°of C.

Theorem 2.4.6. If f has continuous first-order partial derivatives in C, then fis
convex in C if, and only if,

F ) —f(x1) S V()T (o2 — x1) (24.2)
for every two points x, € C and x, € C.
Theorem 2.4.7. If f has continuous second-order partial derivatives in C, then
fis convex in C if, and only if, 72/ (x) is positive semi-definite in C. If 7%/ (x)
is positive definite for any x € C, then fis strictly convex in C. (The reverse of
the last statement is not necessarily true.)

Theorem 2.4.8. If f is a convex function in C, then any local minimum of f
in Cis a global minimum of fin C. If fis strictly convex in C, then a minimum
of fin C is unique.
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Theorem 2.4.9. If f is convex in C and if it possesses continuous first-order
partial derivatives in C, then a point X € C° is 2 minimum of fin C if, and
only if, 7f(x) = 0.

Definition. A function g defined in C is concave in C if --g is convex in C.

1t will be convenient to sum up a number of properties of concave functions
which follow from the above theorems.

Theorem 2.4.10. Every nonnegative linear combination of functions g, .. ., g
which are concave in C is concave in C. The function § defined by

g(x) = min [g;(x), ..., gn(x)]
is also concave in C.

Theorem 2.4.11. If g is a concave function in C, then the set
{xlglx) = a, xeC}
is convex (possibly empty) for any a.

Theorem 2.4.12. If g is concave in C, and if /1 is a nondecreasing, concave func-
tion in E,, then A(g) is concave in C.

Theorem 2.4.13. If g has continuous first-order partial derivatives in C, then g
is concave in C if, and only if,

g(x2) —g(xy) = Vgxa)" (x; — xy) (2.4.3)
for every two points x; € C and x, € C.

The counterparts of the theorems 2.4.8 and 2.4.9 can readily be obtained if
one replaces the concepts “convex function” and “minimum” by “concave
function” and “maximum?”, Lastly, we have:

Theorem 2.4.14. If a local minimum X of a concave function g in C belongs to
C°, then X is also a maximum of g.

Proof. There is an e-neighbourhood N(X,e) C C, such that g(x) = g(%) for any
x € N(%,¢). Select two points x; and x, € N(X,¢) such that X = 4(x; -+ x,).
Then, by the concavity of g,

g(%) = 1 g(x1) + 4 g(x,) = g(%).

It follows that g(x) = g(%) for any x € N(X,¢). Hence, X is a local maximum
and accordingly a global maximum of g in C.

2.5. Convex programming

The original problem (1.1.1) is said to be one of convex programming if the
objective function f is convex, and if the constraint functions g;, ..., g, are
concave in E,.
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Theorem 2.5.1. The constraint set R of the convex-programming problem (1.1.1)
is convex.
Proof. This follows directly from the theorems 2.4.11 and 2.4.1.

Theorem 2.5.2. Any local minimum of the convex-programming problem (1.1.1)
is a global minimum.
Proof. See theorem 2.5.1 and use theorem 2.4.8 with C = R,

Theorem 2.5.3. If the constraint functions gy, ..., g. of problem (1.1.1) are
concave, and if a point x, exists which satisfies the constraints with strict
inequality sign, then

(a) the interior R® of R is given by the set

PR) = {x |gx) >0, i=1,...,m};
(b) the boundary of R is given by the set
Z(R) = R— P(R);

(c) the set R is the closure of its interior.
Proof. Let § be defined by (2.3.1). Then, by theorem 2.4.10, § is concave in E,.
Moreover, by theorem 2.4.5, § is continuous in E,.
We note, firstly, that a local, unconstrained maximum of § cannot belong
to the set Z(R) = {x |[§(x) == 0}, since a point x, exists such that §{x,) > 0.
Using theorem 2.4.14 with g =g and C = E, we find that a local, un-
constrained minimum of § cannot belong to Z(R) either. Now, the theorem
follows immediately from theorems 2.3.1 and 2.3.2. ‘
The proof that R is the closure of P(R) can also be given in a more direct
way. Consider an arbitrary x € R and the line segment connecting x and x,.
Let

XAy =l — R x+ Axy O0<<A<L
By concavity of § we obtain
JxN] =2 (A — A gx) + 1§(x0), 0<A <,

so that F[x(4)] > O for any 0 << 4 < 1. Hence, x(A) e P(R) for any 0 < 4 < 1,
which completes the proof.

Theorem 2.5.4. If the constraint functions g4, ..., g, are concave and if R is
nonempty and compact, then the set

Rp) ={xlgx) = —b;; i=1,...,m}

is compact (possibly empty) for any perturbation b = (by, ..., b,)* of the
constraints.
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Proof. Theorem 2.4.5 implies that R(b) is closed for any perturbation b € E,,.
It is sufficient to show that R(b) is bounded for b =b = (5,,0, ..., 0),
b, > 0. Let us assume the contrary, that R(b) is unbounded, and let us choose
a point x, € R. A straight line emanating from x, can then be found which
intersects the boundary of R but not the boundary of R(b). Let x, be a point
on that line such that

g1(x2) = —06 <0,
gix)=0; i=2,...,m

Lastly, we consider a point w on that line such that x, is a convex combination
of w and x;:
X =Aw+({1—Nx, 0<iL

By the concavity of g, we have

g:1(x2) = A g (w) + (1 —2) g1(x1) = 1 g, (w),
whence

g:(w) <T-

The point w belongs to R(b) for any 4, 0 < 2 < 1. However, by choosing 1
sufficiently small, we can- obtain the contradictory result

g1(w) < —b,.
Hence, R(b) is compact for any perturbation .
Having established some desirable topological properties of R, we shall now

move on to necessary and sufficient conditions for constrained minima of a
convex-programming problem.

Theorem 2.5.5. If (a) problem (1.1.1) is a convex-programming problem, and
(b) the problem functions f, g;, ..., g. have continuous first-order partial
derivatives in E,, then a sufficient condition for X to be a minimum solution
of (1.1.1) is that a vector # € E,, can be found such that (X,%) is a Kuhn—Tucker
point.

Proof. 1t follows from (2.1.8), (2.1.10) and theorems 2.4.10 and 2.4.9 that X is
a point minimizing the convex function

Fx)— '=21 i; g4(x)
over E,. Using (2.1.9) we can obtain

fx) _'—§1 #; gx) = f(x) forany xekE,
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which implies
fx)=f(x) forany xeR.

This completes the proof of the theorem.

A convex-programming problem admits of an easy criterion for deciding
whether a feasible solution is qualified. This is expressed by the next theorem:

Theorem 2.5.6. If the constraint functions g4, ..., g, are concave and if the
interior R® of the constraint set is nonempty, then any feasible solution is
qualified.

Proof. Let x, € R°. Then, by theorem 2.5.3, it must be true that g;(x,) > 0,
i==1, ..., m Consider an arbitrary x € R and define 5, = x, — x. For any
i € A(x) we have, by theorem 2.4.13,

V&dx)T 50 = gi(x0) — £i(x) = gi(x0) > 0.
Application of theorem 2.1.3 completes the proof.

Theorem 2.5.7. If (a) problem (1.1.1) is a convex-programming problem, (b) the
problem functions f, gy, . . . , & have continuous first-order partial derivatives
in E,, and (c) the interior of the constraint set R is nonempty, then a feasible
solution ¥ is a minimum solution of (1.1.1) if, and only if, a vector #ie E,
exists such that (X,7) is a Kuhn—~Tucker point.

Proof. The theorem foliows easily from a combination of theorems 2.5.5, 2.5.6,
and 2.1.2.

For a convex-programming problem the Kuhn~Tucker points can be charac-
terized in a different way. First of all we introduce:

Definition. The Lagrangian function associated with problem (1.1.1) is given by

L) =7 () — 2 w0, @5.1)

Definition. E," = {ujuekE,, uz0%L

Definition. A point (%,i)e E, X E,* is a saddle point of L in E,xE,* if
Lx,u) < Lx,0) < Lxm) 2.5.2)

for any x€ E, and any ue E,*.

Theorem 2.5.8. If (a) problem (1.1.1) is a convex-programming problem, and
(b) the problem functions f, g;, ..., & have continuous first-order partial
derivatives in E,, then (%,&) is a Kubhn-Tucker point of the problem if, and only
if, it is a saddle point of the associated Lagrangian function in E, X E,*.

Proof. Let us, first, prove the if-part, If (X,#) is a saddle point of the Lagrangian
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in E, X E,*, then (2.1.8) must hold and (2.1.10) follows easily from the inequal-
ity L(%,#) < L(x,%). The left-hand inequality L(X,x) < L(%,i%) implies

i, %)

Tbgs

;1 u; gi(%) =

for any we E,*. This can only be true if (2.1.7) and (2.1.9) are satisfied.

Second, we consider the case that (%) is a Kuhn-Tucker point. Then
# >0, and L(x,i) is a convex function of x the gradient of which vanishes
at ¥. Hence we obtain L(X,4) < L(x,i) for any x e E,. The relations (2.1.7)
and (2.1.9) imply that L(¥,u) < L(%a) for any ue E,".

The last subject to be treated here is a dual (programming) problem of (1.1.1).
Duyality in nonlinear programming is a relationship between two problems
— one of which, the primal, is a constrained-minimization problem and the
other, the dual, is a constrained-maximization problem — with the following
properties.

1. The primal problem has a minimum solution if, and only if, the dual has a
maximum solution, and the extreme values are equal.

2. If the constraints of the primal (dual) problem are consistent and those of
the dual (primal) are not, then the primal (dual) problem has no finite
minimum (maximum).

For convex-programming problems many results in the above sense have been
obtained in the last decade. Here the Lagrangian function plays a prominent
part.

A dual problem of (1.1.1) is given by
maximize L(x,u) subject to
7. l(x,u) =0 and (2.5.3)
u=0,

where V/,L symbolizes the gradient of L with respect to x. Any point (x,u)
satisfying the constraints of (2.5.3) is a dual-feasible solution. The feasible solu-
tions of the original problem (1.1.1) are referred to as primal-feasible solutions.
We shall here confine ourselves to the proof of the following two theorems.

Theorem 2.5.9. If (a) problem (1.1.1) is a convex-programming problem, and
(b) the problem functions have continuous first-order partial derivatives in E,,
then

L(x,u) <f(®) 2.5.4)

for any primal-feasible solution ¥ and any dual-feasible solution (?é,;).
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Proof. Using theorems 2.4.6 and 2.4.13 we obtain

S®—Zug) <
AR+ G—T V@D~ Zua®— T G- Ve =

=/ ()~ Z mal® </ ®.

Theorem 2.5.10. If (a) problem (1.1.1) is a convex-programming problem, (b) the
problem functions have continuous first-order partial derivatives in E,, and
(c) x is a qualified minimum solution of (1.1.1), then the dual problem (2.5.3)
has a maximum solution and the extreme values are equal.

Proof. There is a vector i € E,, such that (%,%) is a Kuhn-Tucker point. Then
(x,i) is a dual-feasible solution. The complementary slack relations (2.1.9) imply

F %) = L(xa).
Application of the preceding theorem completes the proof.

We shall proceed no further into the duality theory. All the material we need
is contained in the last two theorems. We have, in fact, the asymmetric result
that a maximum of the dual problem exists if the primal has a minimum. For
more details on the symmetry of a pair of dual problems reference may be
made to Dantzig, Fisenberg and Cottle (1965).

Inwhat follows, the components of the vector @ appearing in the Kuhn-Tucker
relations will be called Lagrangian multipliers. There is a well-known, interesting
interpretation: the ith multiplier #; expresses the effect of relaxing the ith con-
straint on the minimum value of the objective function. More details may be
found in Hadley (1964), and Fiacco and McCormick (1968).
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3. PARAMETRIC PENALTY-FUNCTION TECHNIQUES

3.1. Mixed parametric penalty functions

A rough sketch of barrier-function techniques and loss-function techniques
for solving problem (1.1.1) is contained in sec. 2.1. A detailed analysis will be
presented in this chapter.

It is convenient to consider here a mixed penalty function so that many
properties can be established simultaneously for both classes of techniques.
We shall think of the set 7 = {1, ..., m} of constraint indices as partitioned
into two disjunct subsets I, and I,. The partitioning is arbitrary and either 7,
or I, may be empty. Furthermore, we introduce

Rk = {x lgl(x) />’ 0; ielk}’ k= 19 29 (3‘1'1)

so that R = R, N R,. We shall use R,° to denote the interior of R,. With
these notations we formulate:

Condition 3.1. Problem (1.1.1) is a convex-programming problem. The con-
straint set R is compact. The set R,® N R, is nonempty.

Under this condition problem (1.1.1} has a minimum solution ¥ with mini-
mum value v = f (%), since f is continuous over the nonempty, compact set R,
By theorem 2.5.3 we have

R = {x|g{x)>0; iel}. (3.1.2)

The set R is the closure of R,° ™ R,. This can easily be demonstrated if we
consider the line segment connecting an arbitrary point x € R with a point
xo € R,° M R,: then any point, different from x, in the line segment is an
element of R,° N R,.

The mixed penalty function to be considered is given by

My(6) =f @) + r* b) + 57 I(x), (3.1.3)

which contains a barrier term defined by
b(x) = — X plgi)}, (3.1.4)

el y

and a Joss term defined by
I(x) = —53 plgx)]. (3.1.5)
el

Here, r and 5 are positive controlling parameters; A and u denote positive
numbers the choice of which will be discussed in sec. 3.4. The functions ¢
and y appearing in (3.1.4) and (3.1.5) respectively are functions of one variable,
say n. We impose the following conditions:



Condition 3.2. The function ¢ is concave and nondecreasing in the interval
(0,c0), and @(0-+) = ~—c0.

Condition 3.3. The function y is concave and nondecreasing in the interval
(—o0,00); w(n) =0 for v 2= 0 and y(n) < 0 for n < 0.

A partial explanation of these conditions may be found in sec. 1.2. We have
imposed them in order to ensure that the mixed penalty function of (3.1.3) has
the following, desirable properties.

(a) Preservation of convexity. By theorem 2.4.12, the function M, is convex
in R® forany r >0 and 5 > 0.
(b) Generation of a barrier. If {x,} denotes a sequence of points in R,° con-
verging to a point in R, — R,°, then
lim b(x)) = 0. (3.1.6)

ko
(c) Penalization of constraint violation. For the loss term we have
I(x) =0, forall xeR,, E

G.1.7)
I(x) >0, forall x¢R,.

It will immediately be clear that A4, reduces to the barrier function B, of (1.2.6)
if I, is empty, and to the loss function L, of (1.2.7) if I, is empty. In the next
sections we consider the convergence of mixed-penalty-function techniques.
The results so obtained fall apart into similar results for barrier- and loss-func-
tion techniques. The introduction of mixed penalty functions might therefore
seem to be a purely theoretical trick in order to avoid a separate treatment of
barrier and loss functions. In addition to that, however, a mixed penalty func-
tion also presents some computational advantages that will be discussed in
chapter 5.

3.2. Primal convergence

This section is concerned with the existence and the convergence of points
x(r,s) minimizing M, over R,°for positive values of the controlling parameters »
and s. It will intuitively be clear that the existence of such a point x(r,s) is rather
easy to show if R, is compact. This is due to the barrier at the boundary of R,
generated by the mixed penalty function M,,. Generally, however, R, is not
compact. We begin by proving the existence of a point minimizing M,, over a
truncation R:° "\ § such that R, N § is compact. This is carried out in the
following lemma.

Lemma 3.2.1. If (a} the sets R, and S are closed subsets of E, such that R,° " S
is nonempty and R, NS compact, (b) the function A(x) is continuous in
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R,° N S, and (¢) for every sequence {x,} in R;° N S converging to a point in
(R, — R,°) N § it is true that

lim A(x,) = +co,

ks ot

then there exists a point x* in R,° N § minimizing %2 over R,° N S.
Proof. Consider an arbitrary wy € R;° N S and the set

Wo={x|h{x) < hlwp);xeR° NS}

This is a bounded set since it is contained in the compact set R, N S. 1t is
nonempty since wg € Wy, In order to show that W, is compact we consider
a sequence {w,} of points in W, converging to a point w € R; N S. Suppose
that we (R, — R;°) 1 S. Then

lim A(w,) = + 0.
koo

On the other hand, A{w,) <C h(w,), whereas 4 is continuous on R,* N S. Hence,
we R;° " S and, moreover, A(w) < h(w,) so that w e W,. Consequently, W,
is compact and a point x* € W, exists which minimizes » over W,. From the
construction of Wy, however, it follows that x* is a point minimizing 4 over
RenS.

Theorem 3.2.1. Let {r,} and {s,} denote monotonic, decreasing null sequences
as k — oo, Under the conditions 3.1 to 3.3 a point x(ry,s,) minimizing M,
over R,° can be found for k large enough. Any limit point of the sequence
{x(r,5) } is a minimum solution of problem (1.1.1).

Proof. To prove this theorem we introduce a perturbation S, of R, by taking
Sz == {x ‘gi(x) > -“a; iE Iz}, (3.2.1}

where a denotes a positive number. By theorem 2.5.4 the set R, N S, is com-
pact since R is compact. Invoking lemma 3.2.1 we find that a point z(r,s)
minimizing M,, over R,° N §, exists for any r > 0 and s > 0. It is clear that
z(r,s) may be a boundary point of §,.

Now we proceed as follows. We demonstrate that any limit point of the
sequence {z(r,,s,) } is a minimum solution of (1.1.1). This implies that the points
z(r,s;) do not belong to the boundary of §,, but to R,° N §,° for k large
enough. From the construction of S, and the convexity of M,, and R,° it
follows that z(r,s,) minimizes M, over R,° for k large enough.

Thus, defining z, = z(r,,s;) we concern ourselves with the convergence of
the sequence {z,}. A limit point Z of {z;} exists by the compactness of R, N S5,
and there is a subsequence of {z,} converging to Z. For convenience we also
take {z,} to denote this subsequence. Let

54& = Ad;

kSk?



and suppose that Z ¢ R,. Then /(Z) > 0, and we can accordingly write

]im Mk(zk) — OO,
k-

since {f(z,)} and {r,*b(z,)} are bounded below in R;° N S,. On the other
hand, there is a point x, € R;° N R, and we obtain

iim M(x0) = f(xo) < 0.

This contradicts the statement that z, minimizes M, for any %, and hence
7€ R,. Let us now assume that f(2) is greater than the minimum value v of
problem (1.1.1). The set R is the closure of R,° N R,, and hence there is a
point X € R,° N R, such that

f@>fE >
We obtain straightaway

lim Mif(zy) = /() > /(%) = lim My(X).

And here we are again led to a contradiction for & large enough. Thus f(£) = v.

The sequence {z,} converges to a minimum solution of (1.1.1). This implies
that z, € R,° N S,° for k large enough. Then z, is an unconstrained minimum
of M, or, and this is exactly what we want to show, z, is a point minimizing

M, over R,°. Taking x{(r;,s;) = z, for k large enough we can complete the proof
of the theorem.

Theorem 3.2.2. Let v denote the minimum value of problem (1.1.1). Under the
conditions of theorem 3.2.1

lim f[¥(ris)]  =o, (3.2.2)
oy 00
Ilm rk}' b[.x(rk,sk)] = 0, (3.2.3)
k> o0
lim s, [[x(res0)] = O. (3.2.4)
Fr 00

Proof. The first formula follows directly from the preceding theorem. In order
to show the remaining ones, we shall also be working in the compact set
R; N §,. Here the barrier term is bounded below by a value which we may

denote by b,. Let x, = x(r4,5;). Choose a 0 >0 and a point X R;* " R,
such that

F(F) <7+ 0.

Using the property that x, minimizes M, over R,° for k large enough we
obtain

Fx) + 1 b + 577 1) <SR + nd BE) + 574 1(%),
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which leads to
S + vt b(x) <fR) + rd bR).

Hence
rt by <t b(x) <f(X) — () + 1t BX),
which proves (3.2.3) since | f(X¥) —v| < & and |f(x,) —v| < & for k large
enough. Moreover,
0 < 5,7 100) <SG) + r B — 1 () — 1 B(xy),
which can be used to prove (3.2.4).

If the conditions of theorem 3.2.1 are satisfied and if the set R, is compact,
then a point minimizing M, over R,® exists for any positive r and 5. Computa-
tionally, this is a more pleasant situation; it is difficult for a minimization proce-
dure to decide whether a minimum exists or not. We prefer to minimize a penalty
function which is a priori known to possess an unconstrained minimum in R,°.

It is therefore interesting to note that the existence of x(r,s) for any r > 0
and s > 0 can also be shown if the loss term increases rapidly enough outside
the constraint set. This is expressed in the following additional condition.

Condition 3.4, There are positive numbers P and p such that p(n) << —P {y{**?
for any n < 0.

Theorem 3.2.3. Under the conditions 3.1 to 3.4 a point x(r,s) € R,° minimizing
M, over R,® exists for any r > 0 and 5 > 0.
Proof. 1t is sufficient to show that the set

Ty = {x |Mrs(x) < M, (wo); xeRl"}

is compact for an arbitrarily chosen wy € R,°. The proof will be given by
contradiction. Assume that 7 is unbounded. Then a sequence {w,} of points
in T, can be found such that ||w,l| — o as k& — 0. This can only be true if
an i € I, exists such that

iifg &(wy) = —o, (3.2.5)

since, by theorem 2.5.4, the set
{xg(x) > —a, iel,, xeR}
is bounded for any choice of a;, i € I,. Defining F by
Fx) = f(x) + r* b(x)
we obtain

F(wk) + 5T l(wk) = Mrs(wk) \<~ Mrs(wo)'
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This yields

lim F(w,) = —c0,

k-0
since, by (3.2.5),

lim I(wy) = 4 c0.

kw0
By lemma 3.2.1, there is a point v4 € R,° N R, minimizing F over R,° N\ R,.
Now we introduce a perturbation S, of R, defined by

S, = {xlgdx) = —a; iel},
where a denotes a positive number, and we consider the points w; such that
wy ¢ S5,
Fwi) < Fvo).

Let W, denote the point where the line segment connecting w, and v, inter-
sects the boundary of R, N S,. There is an i, € I, such that

gik(wk) ==,

Lastly, we introduce a point v, minimizing F over R;* " S;. Such a point
exists by theorem 2.5.4 and lemma 3.2.1. Then

F(vo) = F(v,).

Now, we can write

Wi = A we + (1 — Adve, 0 < Ay < 1. (3.2.6)
By convexity, F(W,) < A Fowd) + (1 — &) F(v),
whence Flwg) = 4,1 [FW) — (1 — A) F(vg)] >
= A7t [F(v)) — (1 — 4) F(vg)] =
= F(vo) — A~ [F(vo) — F(v,)]. (3.2.7)

Moreover,
0> —a =g, (W) = A gy, (W) + (1 — A 8ilvo) = A gu (Wi,

since v, is feasible. This leads to

—
g (W) < —.
A
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By condition 3.4, we have

wy) = _k?z yledwdl = P(;) . (3.2.8)

k

Combination of (3.2.7) and (3.2.8) yields
~Mrs(wk) = F(wk) + s "(Wk) />/

vo) — F(v, 1+p
> Flog) — L)~ Fv) H-uPG) ,

k Ak
1t follows from the behaviour of {w,} and from (3.2.6) that

lim lk = 0,
k=
so that lim M, (w,) = - o0.
k-

This, however, contradicts the statement that the points w, belong to T, for
any k. Hence, T, is bounded, and the proof of theorem 3.2.3 can be completed.

For the case that I, is empty we have the following theorem concerning the
convergence of barrier-function technigues.

Theorem 3.2.4. Let problem (1.1.1) be a convex-programming problem, let the
constraint set R be compact and let the interior R° of R be nonempty. Under
condition 3.2 a point x(r) minimizing the barrier function (1.2.6) over R®exists for
any r > 0. Any limit point of the sequence {x(r;)}, where {r;} denotes a mono-
tonic, decreasing null sequence, is a minimum solution of (1.1.1). The sequences
{fIx(rD1} and {b [x(r,)]} are monotonic nonincreasing and nondecreasing
respectively. ’

Proof. We only need to show the last statement. Let £, denote f [x(r,)] and let
by, == blx(ry)]. Then

o+t by <fuiy + 1 bryys

Sirr F e t? brsy S + 1oy by

Adding the first inequality to the second, we obtain

(r* — rier® (b —byyy) <0,
whence
by < by s
The inequality

f k /:2 f k+1
is obtained in a similar way.

If 1, is empty, theorem 3.2.1 and 3.2.3 yield the following theorem concerning
the pure loss-function techniques.
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Theorem 3.2.5. Let problem (1.1.1) be a convex-programming problem and let
the constraint set R be nonempty and compact. Under conditions 3.3 and 3.4
a point x(s) minimizing the loss function (1.2.7) over E, exists for any s > 0.
Any limit point of the sequence {x(s,)} where {s,} denotes a monotonic, de-
creasing null sequence, is a minimum solution of (1.1.1). The sequences
{f[x(s)1} and {/ [x(s;)]} are monotonic nondecreasing and nonincreasing,
respectively.

A proof of theorem 3.2.5 will be omitted; the monotonicity can be established
in a similar way as in theorem 3.2.4.

3.3. Dual convergence

If the mixed penalty function (3.1.3) has continuous first-order partial deriv-
atives in E,, a solution of the dual problem (2.5.3) can easily be constructed,
as we shall demonstrate in the present section. We shall, first, impose the fol-
lowing conditions on the functions ¢ and .

Condition 3.5. The function ¢ has a continuous first-order derivative ¢’ in the
interval (0,00).

Condition 3.6. The function o has a continuous first-order derivative 9’ in the
interval (—o0,0).

Theorem 3.3.1. If (a) the conditions 3.1 to 3.6 are satisfied, and (b) the problem
functions have continuous first-order partial derivatives in E,, then a feasible
solution of the dual problem of (1.1.1) is given by [x(r,s), u(r,s)], where x(r,s)
is a point minimizing M,, over R,° for positive r and s, and u(r,s) is taken to
be the m vector with components

ui(r"s) = rA ‘p[{gi [X(F,S)]}, ie Ila (331)
ulr,s) =s=* ' {gx(rs)]}, iel. (3.3.2)

Proof. By conditions 3.2, 3.3, 3.5 and 3.6 the functions ¢’ and %" are nonnegative
in their respective definition areas. The mixed penalty function M, possesses
continuous first-order partial derivatives in R,°. Then the gradient of M,
vanishes at a minimizing point x(r,s), which exists by theorem 3.2.3. Hence

VI 9] — L w(rs) Velx(rs)] = 0. (3.3.3)
Moreover,
wl(r,s)=0; i=1,...,m, (3.3.4)

which completes the proof of the theorem.
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The next theorem is concerned with values of the dual objective function L
(the Lagrangian function defined by (2.5.1)) and their convergence to the mini-

mum value v of problem (1.1.1).

Theorem 3.3.2. Let the conditions 3.1 to 3.6 be satisfied and suppose that the
problem functions admit of continuous first-order partial derivatives in E,.

Under the additional condition that the ratio

y(m) =1 ¢ e(n)
has a finite limit as % | 0, it must be true that

lim L[x(ry,s0), u(resi)] = v,
F-+ 001

for monotonic, decreasing nuil sequences {r,} and {s;}.
Proof. Defining x, = x(r,,s;) we can use (3.2.3) to obtain

lim r,* 2 @{g{x)} =0.
k= tedy ,

It can then be shown that

lim 2 uy(ry,s) gilxy) =

k—rco jefy .

lim r 2 ¢ {gi(x)} gxi) =
k> iely
lim r* 20 @{gi(x0)} y{gxa)} = 0.
ks iedy
Conditions 3.3 and 3.6 imply

ur,8)g:[x(r,$)] < 0; iel,.

By theorem 2.5.9 and the above results we find that

v L[xka (sl = f(x) — 151 Uy (risk) (%)

Using (3.2.2) one can now complete the proof of the theorem.

(3.3.5)

Interesting results from these duality considerations follow for the barrier-
function techniques, which operate in the interior of the constraint set. Any
point x(r) minimizing the barrier function B, over R° is primal-feasible. A dual-
Jfeasible solution is given by [x(r), u(r)], where u(r) denotes the m vector with

components

ur) =r* ¢ {gbx(N1}; i=1,...,m
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On the basis of (2.5.4) and keeping in mind that x({r) is primal-feasible we can
write the inequalities

S X1 = Elrx(n] < v < f [x()], (3.3.6)

where

Elrx(n)] = Zud) lx®] = r* E ¢/ g1} i) (337

The expression (3.3.7) may be regarded as an error term. It is positive for any
r > 0. Obviously, it is desirable that the error term should be as small as pos-
sible, independently of x(r), so that the error in the approximation of v can be
estimated a priori. Let us try to choose the function ¢ in such a way that the
error term is equal to or smaller than an arbitrary, positive 8. As a matter of
course this function has to meet the additional requirements of conditions 3.2
and 3.5. Keeping in mind that (3.3.7) is a sum of nonnegative terms one could
also impose the requirement

—A
o i=1,...,m

¢ {alx()]} &lx()] <

A simple function ¢ satisfying the above inequality is given by

r—A.

() = In %,

which yields, after substitution into (3.3.7),

Elr,x(r)] = 4.

Similarly, substitution of

o) "—151( 1 )
- n
A m n+1

m

d 1
Elr+0)] “‘“;;Zm‘ ’

i=1

into (3.3.7) leads to

In what follows we shall frequently refer to the logarithmic barrier function

Sx)— ré In g,(x), (3.3.8)

which is obtained by substituting ¢(n) =In% and 4 = 1 into (1.2.6). Then
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(3.3.6) and (3.3.7) reduce to
0<Fflx(M]—v <mr. 3.3.9

Thus, the numerical problem of how to choose the parameter r is facilitated
considerably; it can be given such a value that v is approximated with a pre-
scribed accuracy. Thisis a particular feature of some barrier functions. For more
details one is referred to the next section. There we shall discuss a first-order
approximation to f [x(r,s)] —v for the more general case that the mixed
penalty function M,, is employed.

We conclude this section by a theorem concerning the dual convergence if
the problem admits of a unique minimum X with a uniquely determined
vector #i of associated Lagrangian multipliers.

Theorem 3.3.3. If (a) the problem functions £, g,, ..., g, of (1.1.1) have con-
tinuous second-order partial derivatives in E,, (b) a Kuhn-Tucker point (X,7)
of (1.1.1) exists which satisfies the Jacobian uniqueness conditions 2.1 to 2.3,
and (c) the conditions 3.1 to 3.6 are satisfied, then

l}im [x(ri,s0), (riose)] = (X,4), (3.3.10)

for monotonic, decreasing null sequences {r;} and {s;}.

Proof. By theorem 2.2.3, X is the unique minimum solution of (1.1.1), so that
im x(ry,s,) = X.
k-
Let us define
d =2 ulri,si) = 0,
i=1

and let ys assume that

lim dx == 0.
k—w

With the additional definition
wiltise) = wrsd ds i=1,...,m,

so that

2 W!(rkask) == 13 (3.3.11)

=1

-

and taking w(r,,s;) to denote the m vector with components w{ry,s,), { = 1,
..., m, we find that a limit point w of the sequence {w(r,,s,)} exists. Let us
take {w(r;,s;)} to denote a subsequence converging to w. Using (3.3.3) and
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dividing by d, we obtain
4 Vf [x(ris)] — Em; Wilriesi) V& [x(res)] = 0.
Taking the limit as k¥ — <o yields
é}ﬁi V&%) =0. (3.3.12)

1t is clear that

lim ur,s) =0, i¢ AX),
ka0

which implies w, =0, ieA(X).

Now, (3.3.12) reduces to
2 ;i- ng(x) = 09

ied(x)
so that, by condition 2.2, we must have
w; =0, ieA®),

contradicting (3.3.11). Hence, it must be true that the 4, are bounded, and
accordingly the sequence {u(r,,s,)} has a limit point #. Using (3.3.3) and taking
the limit as k — co we obtain

VfE®)— X @, Vgl =0.

teA(X)
From (2.1.10) and condition 2.2 it follows that

U, =d;, ieA(X),
whereas
gi =0 = ﬁi» ié A(X%

which completes the proof of theorem 3.3.3.

3.4. Series expansion of the minimizing function

Let us now turn to the question of how the pair
[x(r,5), u(r,)] (3.4.1)

behaves as a function of r and s in a neighbourhood of (r,5) = (0,0). We shall
be operating under conditions which, if satisfied, guarantee that problem (1.1.1)
has a unique Kuhn-Tucker point (%,i). Furthermore, we assume that the
problem functions admit of continuous (k -+ 1)th-order partial derivatives
(k = 1) in E,. It is a matter of course that the conditions 3.1 to 3.6 are satis-
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fied by assumption.

For numerical purposes (extrapolation towards the minimium solution) it is
desirable that (3.4.1) should be differentiable in a neighbourhood of (r,5) = (0,0),
preferably as many times as the problem functions admit, These requirements
lead to additional conditions to be imposed on the functions ¢ and v; for
reasons of convenience, however, we formulate conditions involving the first-
order derivatives of ¢ and y. The analysis of the present section will eventually
lead to an appropriate choice of the parameters 4 and p appearing in (3.1.3).

From (3.3.1) to (3.3.3) we can infer that (3.4.1) solves the system

Vf{x)— i=21 u; Vgix) =0,
wy—r ' {g(0)} =0, iel, 3.4.2)

shuy—y'{g(x)} =0, iel,

for any r > 0 and s > 0. We shall, first, show that we only have to deal with
the behaviour of v for nonpositive values of its argument. By (3.3.10) we have

lim ?«gi(fk,sk) = ﬁi; i= l, P (A
kw0

Then there exist positive numbers g, and o, such that wu,(r,s) > 0, i € A(%),
for all 0 <r <o and 0 < 5 < 0. It follows then from condition 3.3 and
from (3.3.2) that g,[x(r,s)] << 0, i€ 4,(%), for all 0 < r < o and 0 < 5 << g,
On the other hand, it must be true that g,[x(r,s)] > 0, i ¢ A(F), for sufficiently
small, positive values of r and s, whence u;(r,5) = 0, i € I, — 4,(X). Summariz-
ing the results we find that a positive ¢ and o exist such that forall0 < r < ¢
and 0 <s <o
ufr,s) >0
gi[x(r,s)] <0

8 E:E: g] ~ g } i€l — Ay(®). (3.4.4)

} i € A5(%), (3.4.3)

It is now sufficient to confine our attention to the constraints with indices in
I, N A,(%), since the behaviour of u,(r,s), i € I, — A,(X) is known. Then we
are only concerned with the behaviour of o for nonpositive values of its argu-
ment. We shall accordingly introduce a function o which has the property

o) =p(n) for 75 <0. (3.4.5)

For numerical purposes we want to establish differentiability of (3.4.1), as many
times as the problem functions admit. To that end we shall be using the system
(3.4.2), where the derivatives ¢’ and %’ (or, in point of fact, the derivatives ¢’
and o’ if we omit some equations) appear. Hence, we shall impose the addi-
tional requirements that ¢’ and «’ be analytic functions, With these intro-
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ductory remarks we formulate the following conditions.

Condition 3.7. There is a positive number ¢, such that ¢’ is analytic in the
interval {(—qq,00), except at 1 = 0; it has a pole of order 4 at n = 0.

Condition 3.8. There is a positive number w, such that o' is analytic in the
interval (—o0,m4); it has a zero of order p at n =0,

If these conditions are satisfied we shall say, in what follows, that the barrier
term 5(x) of (3.1.4) has order 4, and that the loss term I(x) of (3.1.5) has order u.

Lemma 3.4.1. Conditions 3.2 and 3.7 imply

@) >0 forany 5 >0.
Conditions 3.3 and 3.8 imply

w' () >0 forany =7 <0

Proof. 1t must be true that ¢'(s) > 0 for any » > 0. Suppose that a positive
7o exists such that ¢'(n,) = 0. Then, by concavity,

@(ne) = @ln) forany 5> 0.
On the other hand, ¢ s a monotonic, nondecreasing function whence
o(n) = @(n,) forany 7 = 7,.

Then, g 1s a constant in the interval [54,0), contradicting the statement that
it is an analytic function in the interval (0,00) with ¢(0+) = —c0.

The proof of the second statement proceeds along the same lines, so that it
can be omitted.

On the basis of the conditions 3.7 and 3.8 we can write

¢'(n) =n~* &), (3.4.6)
w’'(n) = (—n)* 6(n), (3.4.7)

where £ is analytic in the interval (—g,,0), £(0) 5£ 0, and 0 is analytic in the
interval (—o0,m¢), 6(0) 5= 0. Invoking lemma 3.4.1 we find that

3

Ep) >0 for =0
7 < 0.

=
0(ny >0 for <
Theorem 3.4.1. If (a) the problem functions f, gy, ..., £, have continuous
(k -+ 1)th-order partial derivatives (k > 1) in E,, (b) a Kuhn-Tucker point
(%) of problem (1.1.1) exists which satisfies the Jacobian uniqueness condi-
tions 2.1 to 2.3, and (c¢) the conditions 3.1 to 3.8 are satisfied, then the pair
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[x(r,s), u(r,5)] is unique with continuous kth-order partial derivatives in a
neighbourhood of (r,s) = (0,0).
Proof. We arrange the constraints in such a way that we obtain

AX) = {1,..., o},

as we have done in the proof of theorem 2.2.3. We take 4, and 4, to denote
A(X) and A,(X) respectively. Finally, we think of the constraints which are
inactive at ¥ as arranged in such a way that

iel, forall at1<Ki<gy,
iel, forall f+1<<i<m

We have pointed out that the constraints numbered from § + 1 to m can be
dropped from consideration. These are precisely the constraints in I, — 4,(%).
Employing these notations we replace the system (3.4.2) by the slightly reduced
system
]
VI — I Vel =0,

u, g (x) —r* E{g(x)} =0, iel, (3.4.8)

s uy— {—g ()} 0{g(0)} =0, ied,,

a solution of which is given by

[x(r,5), uy(r8), . . ., ug(r,8)] (3.4.9)

for all 0 < r < g and 0 < 5 < . Furthermore, it can be verified that (%, #,,
.., fig) solves (3.4.8) for r = 0 and s = 0 so that, if we take

x(0,0) = %,
w0,0) = 4,

we obtain straightaway that (3.4.9) is a solution of (3.4.8) forany 0 <r < p
and 0 < s < ¢. With the additional definitions

i =ul% iel,
Vi = uiuua iE-A25

and with similar definitions of 7; and y/(r,s) for i € I, U A4,, the system (3.4.8)
can be rewritten as

Vf(x)— ;} yi* Vglx) —‘i§ ¥ Vglx) =0,
ely €As
¥ 8ix) —r [§{gx)}]"* =0, iel, (3.4.10)
sy + gix) [0{gx)}1"* =0, ieA,.
For any 0 < r <C g and 0 < s < ¢ a solution of {3.4.10) is obviously given by
[x(r.s), ¥(r:9)], (3.4.11)
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where y(r,s) denotes the vector with components y(r,s), i =1, ..., f. Simi-
larly, we take y and j to denote vectors with components y,, ..., y; and
Pis «.., Vg respectively. The system (3.4.10) represents a system of n -+ 8

nonlinear equations involving n + § + 2 variables: the components of x and
y, and the controlling parameters r and s.

The functions appearing in (3.4.10) have continuous kth-order partial deriv-
atives in a neighbourhood of the point (x, y, r, §) = (%, §, 0, 0). Let J denote
the Jacobian matrix of (3.4.10) with respect to x and y evaluated at (%, 7, 0, 0).
We shall verify that J is nonsingular under the uniqueness conditions 2.1 to
2.3. In order to do this we introeduce a convenient notation.

Let H, denote the matrix with the linearly independent columns <7g,(X%),
i==1,..., o and H, the matrix with the columns Vg/(&),i=a-+1,..., f.
The matrix G represents a diagonal matrix with positive elements g,(%), i ==
o -+ 1,..., . The symbol D denotes the matrix D(x,i) of (2.2.1). The matrices
Y, and Y5 are taken to be diagonal matrices. The diagonal elements of ¥, are
given by

Api-t, if ied,,
wyEt, if ie d,.

The diagonal elements of ¥ are

}‘) i s if ie Al:

(B, if ieAd,.
Lastly, the matrix ¥, is the unit matrix if 2 = 1, and the null matrix if 1 > 1.
With these notations and arrangements the matrix J can be written as

D  —H Y, —H7Y,
J=| YsHT 0 0 ) (3.4.12)
0 0 G

Comparison of (3.4.12) and (2.2.4) leads to the conclusion that J must be non-
singular.

By the implicit-function theorem (De la Vallée Poussin (1946)) there is a
neighbourhood of (r,s) = (0,0) such that x and y can be solved uniguely from
the system (3.4.10) in terms of the remaining variables » and s. The solution
so obtained has continuous kth-order partial derivatives af (r,s) = (0,0). We
have already constructed the solution (3.4.11) of the system under consider-
ation, for 0 <{r < p and 0 < s < 0. Hence, there is a neighbourhood of
(r,s) = (0,0) such that (3.4.11) is the unique solution of (3.4.10) with con-
tinuous kth-order partial derivatives az (r,s) = (0,0). Moreover, these deriva-
tives exist and are continuous in a neighbourhood of (r,s) == (0,0) since the
functions appearing in the system (3.4.10) have continuous kth-order partial
derivatives around the point (%, 7, 0, 0). The observation that
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S [}»’g{f‘,S}]‘a‘, ie }19
.81, ieAd,,

%i(?‘,S) =
{0 icl, 4,

in a sufficiently small neighbourhood of (r,s) = (0,0) completes the proof of
theorem 3.4.1.

In what follows we shall refer to the vector function [x(r,s), u(r.s)] of (3.4.1)
as the minimizing function associated with the mixed penalty function M, of
(3.1.3). It is worth noting that this function is defined in a full neighbourhood
of the origin; only for sufficiently small, positive values of r and s can it be
thought of as related to the mixed penalty function M,,.

Let us now discuss a number of examples in order to illustrate the results of
theorem 3.4.1. We shall be dealing with the problem

minimize 4x, -+ x,
subject to Xy =1,
x2 :}' 2’

and we start off with the mixed penalty function
dx; + xp —r* plxy — 1) — 57 p(x, — 2). (3.4.13)
We take ¢ and y such that
@'tn) =n~%
@'(m) = (=m*.
A point x(r,s) minimizing (3.4.13) éan then be obtained by solving

4—r*(x; —1)7* =0, Xy 2= 1,
s (—x; + 20 =0, x,<2,

which leads to

xi(r,s) =1 4 4= VAp

x,(r,5) = 2 —s.
Here, we have a minimizing function which is clearly differentiable in a neigh-
bourhood of (r,s} = (0,0). The above example can also be used to demonstrate

the convenience of raising » and s to the powers 4 and u respectively. Let us,
instead of (3.4.13), apply the mixed penalty function

4xy 4 x3 — 1P p{xy — 1) — 5" p(x, — 2), {3.4.14)
where ¢ and ¢ are taken as before, and p and ¢ denote positive numbers.
Then x(r,s) can be solved from ,

4—rP (e —1)r =0, x 21,
1 —s579(=x, -2y =0, x; <2



vielding x,(r,8) == 1 - 4~ VA pp/d,

X3(r,8) = 2 — g¥,
In this example the minimizing function is only differentiable at (r,s) = (0,0)
if p > A and ¢ > p. The choice p = 4 and ¢ = p is a convenient one, since
it leads to an order of differentiability for the minimizing function which is
as high as the problem functions admit.

Let us, finally, employ the mixed penalty function (3.4.14) with ¢ and »
chosen in such a way that

1
@'(n) = w'(yn) = exp (;})
Then ¢ and p satisfy the requirement of conditions 3.2, 3.3, 3.5 and 3.6, but
not of 3.7 and 3.8. We solve x(r,s) from the system
I

xy— 1

4—r*’exp( )=0, xy = 1,

1
l—s“lexp( ,)zO, x, < 2.
X, — 2

In so doing, we obtain

x(rs) =1+ —
1(rs) In4d—plnr

xalrs) =2 +

qlns.

Here, the minimizing function is not differentiable at (r,s) = (0,0), for any
positive value of p and 4.

We conclude this section by discussing a first-order approximation to the
expression

S [x(r$)] —f ().

Observing that the minimizing function solves (3.4.8) we obtain

g:[x(r,9)] (S{gi[x(ras)]})m .
= ) lEIla

r uy(r,8)
&)l ( ui(r,8) )” "
s blglxeoy) T

We can now obtain

. A% 1/4
sl 8 z(s«)}) Ciea

r{,() r

U8
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or, equivalently,

1/4
VgdH"” 200 _ ( §(O)> , ied,.

or 72;
Similarly,

2x(0,0
©.0) =0, ied,

Ve i(}—c)r

2x(0,0)

vex)" =0, ied,,

o 2x(0,0) (u )lm -
VElx s = 6(0) » L& Aj.

With the above formulas and the Kuhn-Tucker relations we can write
0x(0,0 0x(0,0

©0)  ox )} _

or o8
0x(0,0 0x(0,0

©0) , o )] _

or

F )] —f @ ~ vfET [,

i

o5

O 1/4 yd u
=r 2 i ( E(_ )) —5 2 i (-ff—) . (3.4.15)
iedy ; icdo 9(0)

t§1 4 Vg%’ l:"

It is interesting to consider the logarithmic barrier function (3.3.8). Then 4,
is empty, A = 1, and &(y)} = 1 for all . Hence, if x(r) denotes the minimizing
function associated with (3.3.8), then (3.4.15) reduces to

FIx@)]—fx) =ar,

where o stands for the number of active constraints at ¥. One may compare
this approximation with (3.3.9). The property that the minimum value of (1.1.1)
can be approximated with a prescribed accuracy is apparently a particular
property of first-order barrier-function techniques (where A, is empty and
A == 1). For the remaining methods the first-order approximation (3.4.15) de-
pends on the Lagrangian multipliers, which are generally unknown before the
problem is solved.

In view of the results obtainzd so far, there is virtually no need for using
two separate controlling parameters. In the considerations to follow we shall
accordingly be dealing with the mixed penalty function

MAx) = f(x) + r* B{x) -+ r* l{x), (3.4.16)

where b(x) and /(x) denote the barrier term (3.1.4) and the loss term (3.1.5)
respectively. We take x(r) to denote a point minimizing M, over R;°. The mini-
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mizing function associated with (3.4.16) will be represented by [x(r), u(r)],
where u(r) is the m vector with components

_ [P lalx0, el
W0 =L i, vets G417

In what follows we shall refer to the vector function [x(r), u(r)] as the mini-
mizing trajectory.

Now, a consequence of theorem 3.4.1 is that the minimizing trajectory can
be expanded in a Taylor series about r == (. This provides, as an important
numerical application, a basis for extrapolation towards (X,%). For more de-
tails we may, for instance, refer to Bulirsch (1964), Bulirsch and Stoer (1964,
1966} and Veltkamp (1969).

The results of this section suggest that first-order barrier and loss terms in
the mixed penalty function (3.4.16) are preferable to higher-order terms, since
they provide a more rapid convergence. The approximation (3.4.15), namely,
reduces to

] _EO N\ AR S
f{x(r)l—f<x>—’[.-§1“"( u) Tt (@) }

Thus, it varies with r for small values of r, whereas the controlling parameter
in (3.4.16) is raised to the powers 2 and u respectively. The situation is more
complicated, however. The next section is concerned with the question of
whether the orders 4 and p affect the degree of difficulty in minimizing the
penalty function (3.4.16). A discussion of the choice of a penalty function for
computational purposes is postponed until that subject is reached in chapter 5.

In order to simplify matters we restrict ourselves henceforth to functions ¢
and p such that

') =n7% (3.4.18)
w'(n) = (—n*. . (3.4.19)

The results of the sections to follow can, however, be generalized and applied
to the cases where (3.4.6) and (3.4.7) are used.

3.5. Eigenvalues of the principal Hessian matrix

Numerically, problem (1.1.1) can be solved by unconstrained minimization
of a penalty function for a sequence of positive, decreasing values of the con-
trolling parameter. 1t is obvious that computational success depends critically
on the power of unconstrained-minimization techniques. This, however, intro-
duces the question of whether we can facilitate the computational process by
an appropriate choice of the orders 4 and g of the barrier and the loss term
respectively.
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In this section our concern will acordingly be the Hessian matrix of a penalty
function, and particularly its eigenvalues, in the limiting case where r decreases
to 0. The motivation for the study is the idea that failures of unconstrained-
minimization techniques may be due to ill-conditioning (for symmetric, positive
definite matrices an excessive ratio of the greatest to the smallest eigenvalue)
of the Hessian matrix at some iteration points. The idea is quite plausible for
the Newton-Raphson technique: here, the Hessian matrix is evaluated at the
current iteration point; thereafter a system of linear equations, with the Hessian
matrix as coefficient matrix, is solved in order to obtain the direction to the
next iteration peint. The successful Davidon-Fletcher-Powell algorithm
(Davidon (1959), Fletcher and Powell (1963)) and the related quasi-Newton or
variable-metric methods (Broyden (1967), Fiacco and McCormick (1968),
Pearson (1969)) may also be affected by ill-conditioning (Murray (1969)). In
these methods the Hessian matrix is not explicitly evaluated. In every iteration
a so-called direction matrix is updated on the ground of information which is
due to the difference of two successive iteration points (change in position) and
the difference of the corresponding gradients of the function to be minimized.
The updating is such that, if a quadratic function of n variables is minimized,
the direction matrix equals the inverse Hessian matrix after » iterations. Ill-
conditioning was discussed by Bard (1968) who investigated a numerical
instability arising if the difference of two successive iteration points is very
large or very small with respect to the difference of the corresponding gradients.
A successful attempt, however, to analyze the effect of ill-conditioning on the
iterative course of the above methods (these are probably the most efficient
ones) has never been made, at least to our knowledge. It is nevertheless interest-
ing to deal with the question of conditioning of penalty functions: we shall
presently demonstrate that a certain condition number varies with »~?1, for
small values of r, independently of the behaviour of a mixed penalty function
at the boundary of the constraint set. It is therefore unlikely that some penalty
functions would generally be easier or harder to minimize than other ones.

We shall be assuming that the functions in problem (1.1.1) possess continuous
third-order partial derivatives in E,, and that a Kuhn-Tucker point (X,#) exists
satisfying the Jacobian uniqueness conditions 2.1 to 2.3. Furthermore, the con-
ditions 3.1 to 3.8 are satisfied by assumption.

We shall primarily be concerned with the Hessian matrix H(r) of the mixed
penalty function M, of (3.4.16), evaluated at the point x(r) which minimizes
M, over R,°; for small values of r, the point x(r) is unique by theorem 3.4.1.
In what follows we shall refer to H(r) as the principal Hessian matrix of M,.
Since any method for minimizing M, approaches x(r) it is reasonable to assume
that unconstrained minimization may be obstructed by ill-conditioning of H{r).

Conditioning of a matrix is measured by the condition number: for symmetric,
positive definite matrices defined as the ratio of the greatest to the smallest
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eigenvalue. We are particularly interested in variations of the condition number
x(r) of H(r) in the case where r decreases to 0.

Let us now proceed to the analysis of H(r). We recall from (3.4.3) and (3.4.4)
that a positive number g exists such that for 0 <r < g:

u(r)y>017] .
2,15 < 0 } icA,, (3.5.1)
&ilx(r)1 >0 .

u(r) =0 } iel,— A,. (3.5.2)

Furthermore, we introduce the rank-one matrices
Ni(x) = Vgdx) Vex)*, iel (3.5.3)

For any r, 0 < r < g, the principal Hessian matrix H(r) of M, can now be
written as

H(r) = D[x(r), u(r)] — rlidz‘; ¢ {&x(N]} Nilx(r)] +

—r7* B o {glxn)1} Nilx()], (3.5.4)

where D is the matrix defined by (2.2.1) and ¢"" and "’ represent the second-
order derivatives of ¢ and w respectively. We can infer from (3.4.18) and
(3.4.19) that

H(r) = D[x(r), u(r)] + r=* G[x(r), u(r)] (3.5.5)
with
G(xu) = 2 % Ut VA Ny(x) + p _ZA ul = N(x). (3.5.6)

Using the assumption that the functions in problem (1.1.1) admit of continuous
third-order partial derivatives, we can expand the elements of D[x(r), u(r)]
and G[x(r), u(r)] in a Taylor series about » = 0. Hence

D[x(r), u(r)] = D(x,4) + r Dy(r), ‘ (3.5.7)
Gx(r), u(r)] = G(x,a) + r G(0) + L r? G,(r). (3.5.8)

In the above expressions D,(r) and G,(r) denote matrices with elements which
are due to truncation of the Taylor series expansions; furthermore, G,(r) is
defined by

d
G,(r) = — Gx(r), w(r)). 3.5.9)
dr

If we take [x'(r), #'(r)] to denote the first-order derivative of the minimizing
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trajectory, then
G(r)=@A+1) EIJ ) P72 0/ (r) N [x(r)] +

d
+ 22 OP = M) +

r

+ (=1 Z )0 Ni[x0)] +

+ o D ()] 4 N, [x(")], (3.5.10)

. iedy d r
where

d
- Nilx(r)] = V2&[x()] x'(r) V& x)I" +
+ Valx(r)lx' ()" 728 x(r)]). (3.5.11)

For convenience, we shall henceforth employ the symbol F to denote briefly
the matrix G,(0). Furthermore, we define a matrix K(r) by

K(r) = Dy(r) + § Gaofr). (3.5.12)

The matrix K(r) has a finite limiting matrix as r |, 0. Substituting (3.5.7), (3.5.8)
and (3.5.12) into (3.5.5) we obtain straightaway

H(r) = D(%,3) + G1(0) + r~' G(X,d) + r [Dy(r) + 3 G2(1)] =
— D(%,d) + F + r=* G(&%,a) + r K(r). (3513

The matrices in (3.5.13) are real, symmetric matrices so that their eigenvalues
are real. Furthermore, one can verify that

yT DE@)y >0, (3.5.14)
YIFy=0, (3.5.15)
GEa)y =0, (3.5.16)

for any vector y € E, satisfying

Y Vg% =0, ie A(X).

This is due to condition 2.3 (satisfied by assumption) and to the particular form
of F == G(0) and G(%,4), involving only the (linearly independent) gradients
of the constraints which are active at X. Lastly, G(X,%) is a matrix with rank a.

The eigenvalues of a matrix are not affected by a coordinate transformation.
We use this property in order to transform the matrices H(r), D{X,i7), F = G,(0),
G(x,4) and K{r)into matrices H*(r), D*, F*, G* and K*(r) respectively, in such
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a way that G* is a diagonal matrix. The new coordinate system can be charac-
terized as follows. We take W to denote the subspace of E, spanned by the
gradients Vg(X), i = 1, ..., a. The symbol Z represents the orthogonal com-
plement of ¥ in E,. Let w,, ..., w, denote normalized, orthogonal eigen-
vectors corresponding to the positive eigenvalues of G(X,#). These eigenvectors
span the subspace W. Finally, we take z,.,, ..., z, to represent a set of
normalized, orthogonal vectors spanning the subspace Z. With the vectors
Wis e e vy Wy Zas1s - - - » Zp @5 @ Nnew coordinate system, we find that H*(r) can
be written as '

Dy,* Dyo* F,.* F,,* G * 0

o R oy BTG ROt
Here, G,* is a diagonal matrix with « rows and « columns, and positive diag-
onal elements g,;*, i =1, ..., o The partitioning of D* and F* is similar
to that of G* so that D,,* has o rows and a columns, etc. The vanishing of
F,,* needs some explanation. By (3.5.15), F,,* is antisymmetric, but we have
seen that F, and consequently F¥, is symmetric; from these arguments F,,* = 0,
We still have some degree of freedom in the choice of the coordinate axes
Zas1s + -5 2y and we shall take them to be normalized, orthogonal eigen-
vectors of D,,*. Then D,,* is a diagonal matrix with diagonal elements 4,;*,

fe==o-+1,...,n By (3.5.14), these elements must be positive.
We are now in a position to apply Gerschgorin’s theorem (Wilkinson (1965))
which states that any eigenvalue of a real or complex matrix A4 is contained in
one of the circular disks with centre a;; and radius i§j|a,.j|; if s of these disks

form a connected set isolated from the remaining disks, then there are exactly
s eigenvalues of 4 within this connected domain. The disks in question are
commonly referred to as “Gerschgorin disks”. We are, however, concerned
with real, symmetric matrices so that we can restrict ourselves to “Gerschgorin
intervals™.

A second, useful device is obtained from the following observation: if the
ith column of a matrix 4 is multiplied by some number p £ 0, and the ith
row by p~1, then the eigenvalues of 4 remain unchanged.

We shall now demonstrate that the cigenvalues of H*(r), and consequently
the eigenvalues of H(r), are given by '

rrigd (), i=1,...,q
dy* +efr), i=a+1,...,mn (3.5.18)
Where ]_im r 8,(]”) = 0, i = 1’ ey Oy
r¢0

lim &@)=0, i=a-+1,...,n
ry0



To start with, we infer from (3.5.17) that the diagonal elements of H*(r) can
be written as

h*(r) = &t e gt rky¥r), i=1,...,4q
it di* +rkr), i=a-+1,...,n

Next, we try to obtain Gerschgorin intervals with radii which are small with
respect to the centres A,*(r), i = 1, ..., n. If we multiply the rows « + 1
to n of H*(r) by r*/? and the columns « -+ 1 to n by r ~ /2, then H*(r)is reduced
to a matrix possessing Gerschgorin intervals I'y(r) with centres 4,,*(r) and radii

o{r) given by

edr) =J§1 |d,* -+ fi* + rk ()l +r‘”": 2-1»1 ldi* + fii® -+ rk )l
J#i
i=1,...,0

@

odr) = "Uzjzlldu* + %+ r kA + z 11" k*¥); i=a+1,...,n
= J=dt
il

It is obvious that

limrofr)=0; i=1,...,q
mo

lim o(r)=0; i=a+1,...,n
rJ,O

Any eigenvalue of H*(r) is contained in at least one of the intervals I')(r). If
the diagonal elements g,,*, i=1, ..., o, and dy*, i =a-+ 1, ..., n are
mutually different, then the intervals I')(r) are disjunct for r small enough, and
this can readily be used to prove (3.5.18). If two or more of the values just
named coincide, one only has to consider a number of connected domains
(unions of some intervals I (r)} in order to establish (3.5.18). The mode of
operation will be clear so that detailed calculations can be omitted.

Suppose that the diagonal elements of H*(r) are arranged in such a way that

g 280 = . 2 gl
da:-i-l,a-i-l* «:2 .. />’ dmt*'

For sufficiently small values of r and 1 <{ « < n the condition number #(r)
of H(r) is given by

rrlgn® + e * e *
() = 811 & (. )zr_lgm &,(r) g’,‘_1811 . (35.19)
dun™ + ealr) Aun® + &(r) Apn*
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so that the condition number is proportional to r ™, regardless of the orders 1
and p of the barrier and the loss term respectively. Similarly, the determinant
of H{(r), which can be written as the product of the eigenvalues, varies with
7% where o stands for the number of active constraints at . If a = n, then
x(r) converges to the finite value

g1 "

E
gnn

as r decreases to O; this may happen if, for example, the problem is one of
linear programming with a nondegenerate minimum solution.

The behaviour of y(r) is an indication that first-order penalty functions are
not easier or harder to mimimize than the higher-order ones, provided that the
condition number is an appropriate measure of the degree of difficulty. The last
hypothesis has not been thoroughly investigated and it is beyond the scope of
the present thesis to do so. We only want to show that, in choosing values of
A and x for computational purposes, one does not run up against difficulties
which may be due to an excessive rate of ill-conditioning: we have obtained
that conditioning varies with r~! for any choice of 4 and u, and for any par-
titioning of the set of constraint indices into subsets /; and I,. We have in
fact the even stronger result that « eigenvalues vary with r~! and that the
remaining eigenvalues converge to finite, positive values as r decreases to 0,
independently of A, u, I, and I,.

For similar, speculative reasons it is interesting to analyze the “coefficient”
G(%,i) of r~1 in formula (3.5.13), and its positive eigenvalues g;,*, i =1, ..., o.
A penalty function, namely, is designed to identify the active constraints and
to solve them. Presumably, solution of the active constraints is easier if the
eigenvalues g;,*, i == 1, ..., a, are of the same order of magnitude. We con-
cern ourselves with the manner in which these eigenvalues are affected by the
choice of 4 and u. The matrix G(X,%) can, by (3.5.6), be written as

G(x,a) = ;*lé: (@) NY(®) + H-i% (@)1 Ny(®).

We focus our attention on the case where the gradients Vg(X), i =1,..., o,
are orthogonal. This is not the general case, but the orthogonality hypothesis
leads to an interesting interpretation. It follows that the positive eigenvalues
of G(%,i) are then given by

A T8RP, e Ay,
p @YV E®INE i€ 4, } (3.5.20)

Using the Kuhn-Tucker relations (2.1.10) and the orthogonality relations one
can show that

BUIVI R

= e ==, 0L, A,

VeIl
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where §; stands for the cosine of the angle between f (%) and Vg,(X). The
positive eigenvalues g,;/* of G(X,%) can then be reduced to

ABAIVSEIDT [T, ied,, }
p B ATL @DV [T g @Y%, ie A,

General remarks can hardly be made, but we restrict ourselves to the first-order
case where A = u = 1. Then the eigenvalues are

BAIVI®@I?, ied,, }
Vg%, ied,.

This demonstrates that the eigenvalues corresponding to constraints which are
incorporated in a first-order barrier term depend on angles between gradients
only. Eigenvalues corresponding to constraints in a first-order loss term are
determined by lengths of gradients. Such a complete separation is apparently
not a feature of higher-order penalty functions. For increasing values of 4 and
4 they only show the tendency of attaching similar weights to angles and lengths
of the gradients involved.

We are thus brought back to the question of whether a barrier function is
harder to minimize than a loss function. This point has also been discussed by
Murray (1967), and Fiacco and McCormick (1968). They have some preference
for (first-order) barrier functions. In view of the results in this section, however,
we cannot give an answer which is favourable to either first-order barrier func-
tions or loss functions. We have been dealing with a phenomenon which we
may call constraint balance: any of the active constraints is associated with
precisely one of the positive eigenvalues of G(¥,i) which we want to equilibrate.
Apparently, a particular problem may be highly unbalanced with respect to a
first-order barrier function, but conveniently balanced with respect to a first-
order loss function, and vice versa.

These results are obtained, it is true, on the assumption that the gradients
Jg®), i =1, ..., o, are orthogonal. The continuity of the eigenvalues,
however, ensures that small perturbations of the orthogonality will only lead
to small deviations of the eigenvalues from (3.5.21) and (3.5.22), so that the
results just sketched have a slightly wider validity.

(3.5.21)

(3.5.22)



— 55 —

4. PENALTY-FUNCTION TECHNIQUES WITH MOVING
TRUNCATIONS

4.1, Basic concepts

The preceding chapter was concerned with penalty functions containing one
or two parameters which control the convergence of a computational process
to a minimum solution of problem (1.1.1). Recently, however, several authors
(see sec. 1.1) have observed that parametric barrier-function and loss-function
techniques can be modified into methods which do not (explicitly) operate with
controlling parameters, but with moving truncations of the constraint set. We
shall not refer to these methods by the usual name of “parameter-free” ver-
sions. In our opinion this name is misleading. Convergence to a minimum solu-
tion of (1.1.1) is here controlled by a sequence {#,} of truncation levels converg-
ing to the unknown minimum value v of the problem. In using a parametric
technique, however, one employs a null sequence {r,} of values assigned to the
controlling parameter.

We shall presently see that the methods of this chapter have a close relation-
ship with Huard’s method of centres: it provides the moving-truncations coun-
terpart of the logarithmic barrier-function technique.

We begin by imposing a number of requirements which are summarized in:

Condition 4.1. Problem (1.1.1) is a convex-programming problem. The con-
straint set R is compact and its interior R® is nonempty.

Throughout this chapter we shall be dealing with barrier functions and loss
functions separately. We did not succeed in finding a moving-truncations version
of the mixed-penalty-function technique treated in the previous chapter.

Let us first introduce some terminology and sketch the basic ideas. We shall
be operating in intersections of the constraint set R and the fruncations

F(f)z {X|f(X) SO ern}

for values of the truncation level t which are not less than the minimum value v
of problem (1.1.1). Then the truncated constraint set

T(t) = RN F(t) = {x | f(x) <t; x€R} (4.1.1)

is nonempty. We define a mioving-truncations barrier function by

B*(x) = p @[t —f(x)] +i§1 plgdx)], 4.1.2)

where ¢ is a function of one variable satisfying condition 3.2 and possibly 3.7.
Furthermore, a positive weight factor p is attached to the term which contains
the objective function, for reasons that will become clear at the end of sec. 4.3.
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If ¢ > v, the interior T°(t) of T(¢) is nonempty, and the function B,* is appar-
ently concave in 7°(¢). Moreover, if {y;} denotes a sequencz of points in 7°(7)
converging to a boundary point of 7(¢), then

lim B*(y,) = —o.
Foe

Under these conditions a point ¢(¢) exists which maximizes B,* over T%(¢). The
proof will presently be given. Let {#,} denotc a sequence of monotonic, de-
creasing truncation levels converging to v as k — co. It will intuitively be clear
that any limit point of the sequence {c(r,)} is then a minimum solution of
problem (1.1.1).

There are several algorithms which operate along these lines: the method of
centres (Huard (1964, 1967)), some variants of it with relaxation facilities
(Tremolieres (1968)), and SUMT without parameters (Fiacco and McCormick
(1967b)). Generally, a sequence {t,} as mentioned above is obtained as follows.
The first step starts with a truncation level 7, = f(x,), where x, is some
feasible solution of (1.1.1). Hence #; >> v. At the beginning of the kth step the
truncation level z,_, of the previous step and the iteration point c{f,.,) are
available whereas, by construction,

ey > fle(to )] 4.1.3)
The truncation level ¢, is then taken to be
ty =ty — 0 {tiey —f [elti- )1} ' (4.1.4)

Here, p stands for a relaxation factor such that 0 << ¢ < 1, in order to ensure
that #,_, > t, > v. The reason for introducing this factor will be explained
at the end of sec. 4.3. The proof that the sequence {f,} converges to v is post-
poned until the next section.

An interesting example of these techniques is obtained by substituting
@(n) = In 7 intd (4.1.2). A point maximizing

pin[1—/ (9] + Z Ingix)
over T°(¢) can also be found by the maximizing over T(¢) of the function

d(x) = [t —f P I g(x).

This function is an example of the general distance function appearing in the
method of centres: one of the properties of a distance function is that it vanishes
on the boundary of a truncated constraint set; another is that it is positive in
every interior point of the truncated constraint set under consideration. A point
maximizing d, over T(t) was referred to as a centre of T(t). In what follows
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we shall be using the name “centre” for the points ¢(¢) in the more general
case where the function B,* of (4.1.2) is employed.

4.2. Barrier-function techniques with moving truncations

In this section we shall variously use the symbols ¢, f; and T} to denote
c(ty), f le(t)] and T(z,) respectively. We can now establish:

Theorem 4.2.1. 1f (a) problem (1.1.1) satisfies condition 4.1, and (b) the func-
tion ¢ appearing in the moving-truncations barrier function (4.1.2) satisfies
condition 3.2, then the truncation levels 7, generated in accordance with (4.1.4),
and the truncated constraint sets T, k =1, 2,.. ., have the following properties.
(1) If T,° is empty for some k, then ¢, is an unconstrained minimum of f.
(2) If T° is nonempty for some k, there is a point ¢, maximizing B, * over T;°.
(3) If T} is nonempty for every k =1, 2, ..., then

lim 1, =7

k-
Property (3) implies that every limit point of the sequence {c,} is a minimum
solution of (1.1.1).
Proof (1). If T}° happens to be empty, then f(x) == ¢, for any x € R°, whereas
t, = v. Hence, ¢, = v, and from (4.1.4) we can now infer that

ey — 0 =0 [teey —fic1] S s — fimrs

which implies f;_; <C v. On the other hand, ¢,_, is feasible. It must accordingly
be true that f,_, = v, and this proves the first part.

(2) The set T, is obviously compact. If its interior is nonempty, then lemma
3.2.1 can be invoked (with Ry = § = T and h = —B, *) in order to establish
the existence of a point ¢, maximizing B,k’“ over T,° This proves the second
part of the theorem.

(3) Lastly, we consider the infinite sequences {¢,} and { f;}. By (4.1.3) and
(4.1.4) we have

> h>fuoze, k=12,.... 4.2.1)

Thus, the sequence {¢,} is monotonic, decreasmg and bounded below. We can
accordingly write

lim tk=f>-1;-

Assume ¢ > v. There is a point y, € R° such that
; < f (yo) < {’

and one can verify that y, e T3° for any k = 1, 2, ... . Furthermore, substi-
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tuting y, into (4.1.2) one obtains

lim B,*()) = lim {p ¢lts =/ 00)] + T plziro)]} > 0.

It follows from the convergence of the sequence {¢;} that

llm (gk—l — Zk) = 0.
ko

From (4.1.4) we can infer
ey —ficr =07 (o — 1),
so that
:}E?c (te—fi) =0, 4.2.2)

and hence

lim tp(tk _fk) = - Q0,
K~ Q0
Then it follows from inspection of (4.1.2) that

Ein; B, *(cy) = 115130 {p ot —fo ‘f“l:El plgde)]} = —oo.
Thus, for & sufficiently large,

Blk*(cft) < Btk*(yi]}

This contradicts the statement that ¢, maximizes B, * over T}, for any k = 1,
2, ....Thus, f =, and one can infer from (4.2.1) that

Jr 0
This completes the proof of theorem 4.2.1.

The precise relationship between parametric barrier-function techniques and
barrier-function techniques with moving truncations is expressed by:

Theorem 4.2.2. If (a) problem (1.1.1) satisfies condition 4.1, (b) the problem
functions have continuous first-order partial derivatives in E,, and (¢) the func-
tion @ appearing in (4.1.2) satisfies condition 3.2 and 3.7, then a centre ¢,
minimizes the parametric barrier function

B(x) =f(x)— ?“E»l ple)] (4.2.3)

over R° for r equal to
re=[p @'t —f1" VA (4.24)
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The sequence {r,} generated in this manner is a monotonic, nonincreasing
null sequence.
Proof. The gradient of B, * vanishes at a centre ¢, whence

' z : ¢’ {gc)} )
o) — . — = 0.
Ve (P prPR—S V&icr)

Obviously, the point ¢, solves the equation

V) —-I“"i:% ¢ {g(x)} Va(x) =0

for r equal to the value r, of (4.2.4). We may note that r, is positive since

t, > fr and ¢’(n) > O for any % > 0 by lemma 3.4.1. Hence, B, is convex in

Re, and ¢, minimizes this function over R° since its gradient vanishes at ¢;.
The monotonic behaviour of {r,} is shown as follows. Writing

by = —E:l p{glca)}

and keeping in mind that ¢, minimizes B, over R° we have

So +rd by < fuor F it by,

Jeer F e P by S fi v by,
whence
re- P —r) (fi —fi-1) <0,

Thus r,_; > ry since fi << fi—y. Finally, (4.2.2), (4.2.4), and the behaviour of
@ as its argument decreases to O lead to

lim Fp = O,
ks

which completes the proof of theorem 4.2.2.

The relationship between the two classes of methods can also be clarified if
we continue the introductory sketch presented in sec. 4.1.

We have to construct a sequence of truncation levels converging to the mini-
mum value v of .(1.1.1). Thus, we are facing the problem of minimizing some
variable ¢ subject to the constraints

t—f(x) =0,
gg(X),>,"0, f=1,...,m.

In order to solve this “extended” problem one may introduce the parametric
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barrier function

B(t,x) =t —r*{p ¢lt —f ()] +§=21 plgi ()1}, (4.2.5)

which differs from the ordinary barrier functions in the sense that one of the
constraints is weighted by a positive factor p. It will immediately be clear that

B(t,x) =t —r* B*(x). 4.2.6)

Let [#(r), x(r)] denote a point minimizing (4.2.5) over the interior of the con-
straint set of the extended problem for » > 0. Then

B,[(r), x(r)] < B,It(r), x]

for any x € R°. Employing this result in (4.2.6) one will observe that x(r) is a
centre of the truncated constraint set T[#(r)].

The results of theorem 4.2.2 may be summarized as follows: a moving-trun-
cations barrier-function technique is equivalent to a parametric barrier-function
technique adjusting the controlling parameter automatically. At first sight this
is a particularly welcome feature, not only from a theoretical standpoint. For,
under certain conditions the parametric technique based on the barrier func-
tion B, of (4.2.3) admits of a minimizing trajectory [x(r), u(r}] which can be
expanded in a Taylor series about » = 0. The centres ¢, generated by the moving-
truncations method treated here can be written as

c=x(r), k=12 ..., @427

with r, given by (4.2.4). Thus, we obtain a sequence [x(r.), u(r,)] on the
minimizing trajectory. This sequence is clearly amenable to extrapolation
towards a minimum solution X of the problem. The crucial point, however, is
the rate of convergence, and we shall accordingly be dealing with that subject
in the next section.

4.3, Rate of convergence

On the ground of the Taylor series expansion of f [x(r)] in terms of r we
can write

Sled —f (%) _ SIxd]—f(®) L
Sl —f ()  fIre-)]—f()  re-a

for small values r,_, and r,. Particularly the quantity

. ry
m

K> o0

FPr—1
is an appropriate measure of the ultimate rate of convergence of a method with
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moving truncations. A value r, generated by such a method, in accordance with
(4.2.4), will henceforth be termed an equivalent r-value.
Another appropriate measure of the rate of convergence could of course be

the quantity

m tk—v ,

koo 1 —
which refers immediately to the truncations levels. The next theorem, however,
shows that these two measures of efficiency are equivalent.

Theorem 4.3.1. If (a) problem (1.1.1) satisfies condition 4.1, (b) the problem
functions have continuous second-order partial derivatives in E,, (¢) a Kuhn-
Tucker point (%,%) of (1.1.1) exists satisfying the Jacobian uniqueness conditions
2.1 to 2.3, (d) the point % is a boundary point of the constraint set R, (¢) the
sequence {r.} denotes a sequence of equivalent r-values generated by the
moving-truncations method based on (4.1.2), and (f) the function ¢ appearing
in (4.1.2) satisfies the conditions 3.2 and 3.7, then

t, — v ¥
fim — —fim =12 @4.3.1)
Kb 0O tk-l — k> 00 Fr-1 ﬂ_{_ 1
with
B =p~1* T @)1 (4.3.2)
i=1

Proof. Without loss of generality we confine ourselves to the case where
@'(n) = n~*, so that, by (4.2.4),

re =p~ YAt — fi). (4.3.3)

The parametric technique based on (4.2.3) has, by theorem 3.4.1, a minimizing
function [x(r), u(r)] with a continuous first-order derivative [x'(r), ¥'(r}] in a
neighbourhood of » = 0. The vector u(r) is, of course, the m vector with com-
ponents

rﬂ,

u(r) =gi"[x(r)] , i=1,...,m.

Hence,
galx(M)] = rlu@1"Y4 i=1,...,m,
and, using (4.3.3) and the relation ¢, = x{r;), we obtain

gler) = (e —fi) [p ur)]~ VA (4.3.4)

A second relation to be used here is obtained by application of the Kuhn-
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Tucker relations (2.1.10). Then

T4

z i, g:[x(r)] f"li;l i g,[x(r)]

lim = lim

N FIMI—f® 0 {0 —fD)

2 ; Vgdx)T x'(0)
i=1

= = 1. (4.3.5)
VT x'(0)

It should be noticed that the assumption of ¥ being a boundary point of R is
essential, Then « >> 1, and forany i = 1, ..., « one has

&[x(n)]

r

= (@)Y > 0.

Ve(X)" x'(0) = lim
r,o

The result of (4.3.5) is accordingly obtained by dividing two nonzere quantities.
If ¥ is an interior minimum (an exceptional case in practical circumstances),
it may happen that ¢, = X for some k; then the process terminates after a
finite number of steps.

One can infer from (4.3.5) that

331 i gi[x(r)] = {fx(N]—F (B} U + &),
with
lime, =0.

rio

Keeping in mind that ¢, = x{r,), we can immediately write

El i gic) = (fx —5) (I + &), (4.3.6)
with
lim ¢, = 0.

k=

Lastly, we define

B = i§1 i; [pu(ri)]™ 2,



Combination of (4.3.4) and (4.3.6) yields
e —S) B = (fu—v) (1 + &),

and we can now readily establish

(=) e = (i —2) B + 1 + &) 4.3.7)
Using (4.1.3) we can write
te—v)=(1—0)(ti.; —v) + 0 (foe1 — D). (4.3.8)

We are now in a position to derive (4.3.1) and (4.3.2). Let us first employ (4.3.7)
and (4.3.8) in order to eliminate the factors (fy_; — v) and ( fy — v). Then

0(tees— D) fer =0 (fis = D) Bar + 1+ 80)) =
= [t — ) — (1 — @) (tyey — V) Biey + 1+ &5 1)
This yields
(te—0) Bros + 1+ &1) = (1 — ) [Bies + (L — ) (1 + & 1)),
whence

_ h—v Bt 1l—p e
lim — = = ] o —
k2% fee1— 0 g+1 g+1
This is a measure of the rate of convergence of the truncation levels. We can

now obtain

Fy te—Jx (fi—o) (1 + &) By

P L —(ﬂc—l“ﬁj(l“}“@k—l)ﬁk_
_ t—) (1 + &) Br-r + 14 &6-1)
(o1 — )+ - ) B+ 1+ &)

Taking the limit as & — oo completes the proof of theorem 4.3.1.

We can now explain the purposes of introducing a relaxation factor ¢ and
a weight factor p in the barrier function of (4.1.2). In choosing ¢ == 1 we obtain

e =f(c-1)y k=12,....

Hence, maximization of B, * cannot start from ¢,_, since it is a point on the
boundary of T, where B, * is undefined. It is therefore easier to use a relaxa-
tion ¢ < 1. Then #; > f(c¢;..1), and the search for ¢; can immediately depart
from the previous centre ¢,_,. The computational process is slowed down to
an extent displayed by (4.3.1) and (4.3.2). An increase of p speeds up the con-
vergence, and this can be made plausible by inspection of the barrier function
B,*. Any point maximizing the second term
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T ¢leo)]

=1

g

is a centre of R° It is the first term which forces convergence to a minimum
solution of (1.1.1). Accordingly as the weight of the first term is increased, the
rate of convergence is improved. The influence of p is precisely expressed by
(4.3.1) and (4.3.2).

There is a remarkable difference between the method of centres (a first-order
technique) and the higher-order moving-truncations barrier-function tech-
niques. In the first-named case we obtain, by substituting 4 = 1 into (4.3.2),

Ezp'l o
Then
[p— r
lim—k——_zlim SR L
0ty —v Ry a+p

This implies that one can predict the rate of convergence, or at least its order
of magnitude, since o and the number »n of variables are of the same order of
magnitude: the number of active constraints with linearly independent gradients
at ¥ cannot exceed s, For the higher-order techniques, however, the rate of
convergence is unpredictable since the Lagrangian multipliers appearing in
(4.3.2) are unknown at the beginning of the computations. It is worth noting
that a similar phenomenon was found in studying the parametric barrier-func-
tion techniques (sec. 3.4): the first-order approximation of f [x(r)]—v de-
pends in general on the Lagrangian multipliers; if 2 = 1, however, this approx-
imation depends only on a.

It is obvious from the above arguments that a reasonable choice for the weight
factor p can only be made if the method of centres is employed. By taking p
equal to n, for example, and ¢ == 1 one ensures that the rate of convergence
is less than or equal to 4.

The formulas (4.3.1) and (4.3.2) suggest the possibility of speeding up the
convergence by choosing ¢ > 1 so that there is some overrelaxation. One has
to be sure, of course, that none of the truncation levels so obtained is less
than ». This can be achieved by adjusting the relaxation factor in every step
of the process. In the kth step, for instance, one may explore the direction
—%7f(€r.1) emanating from the centre ¢;., in order to find some feasible
point &,_, such that

SEem) <flex1).
An overrelaxed truncation level is then obtained by setting

te = f (Ee-1)-



The relaxation factor g, for the kth step, which can be calculated from

f(fkc1) = tyet1 — Ok (tee 1 — Si= 1)

is then greater than unity.

We shall not go into further details. We only want to demonstrate that auto-
matic adjustment of the controlling parameter, as it is performed by barrier-
function techniques with moving truncations, provides a doubtful advantage
over the corresponding parametric techniques, particularly if the order is
greater than 1. Then the rate of convergence depends critically on the Lagran-
gian multipliers 4, ..., %, which are unknown at the start of the computa-
tional process for solving (1.1.1). Hence, it is difficult to find an appropriate
value for the weight factor p in order to improve the convergence.

To do justice to the moving-truncations techniques one has to consider the
principal Hessian matrix of (4.1.2), and its behaviour in the limiting case as
the truncation levels 7, decrease to v, and the equivalent r-values r, decrease
to 0. It can be shown that this matrix has a condition number which varies
with r,~? for k large enough, just as in the parametric case. It is therefore
unlikely that maximization of the barrier function B, * would be easier than
minimization of the parametric barrier function B,,, for large values of k.

4.4, Loss-function techniques with moving truncations

The development of loss-function techniques with moving truncations pro-
ceeds in analogy with the mode of operation in the previous sections. There are
some minor differences: we have to deal with a monotonic, increasing sequence
of truncation levels converging to v from below, in contrast to the convergence
from above provided by the barrier-function techniques with moving trun-
cations.

Condition 4.1 can be weakened. The requirement that the interior of the con-
straint set R be nonempty is essential for barrier-function techniques, but it
can be dropped if the technique for solving (1.1.1) is concerned with a loss
function. One may compare, for example, the formulation of theorems 3.2.4
and 3.2.5. In this section we shall accordingly be working under:

Condition 4.2. Problem (1.1.1) is a convex-programming problem with a non-
empty, compact constraint set.

Let us now, first, describe the basic concepts and the iterative procedure. We
begin by introducing the moving-truncations loss function

L*(x) =pylr—f(®)] + El p[g0)] 44.1)




where p is a function of one variable satisfying the conditions 3.3, 3.4 and
possibly 3.8. We have again attached a positive weight factor p to the first term
in the right-hand side of (4.4.1). From these arguments L,* is a concave func-
tion in E, for any value of the truncation level ¢. The truncation F(¢) and the
truncated constraint set T(¢) to be considered in this section are again defined by

Fy={x|f(x) <t; xekE}

T(t) = RN F(1). (4.4.2)
Using the properties that
e B T
5, plgix)] { =0 forall xek, (4.4.4)
i=1 <0 forall x¢R,
we obtain straightaway
=0 forall xeT(), 4.4.5)

LX) { <0 forall x¢T().

The set 7(¢) is nonempty if, and only if, the truncation level 1 > ». Ift < 7,
it must be true that

L¥x)y<0 forall xeE,.

We shall presently demonstrate that a point ¢(f) maximizing L,* over E, exists
under certain conditions for any 7. One may now distinguish a number of
cases.

If ¢t > v, then T(¢) is nonempty. By (4.4.5), any point in 7(¢) is a maximizing
point,

If ¢t == v, then T(¢) is precisely the set of minimum solutions of (1.1.1); this
is a welcome feature if v is known at the beginning of the computations for
solving (1.1.1); generally, however, v is unknown. The two cases share the
property

L*[e()] = 0.

If t < v it must be true that
L*c()] < 0,
and, moreover, we can show that
t<fle® <v.

Thus, ¢(t) ¢ F(t). Furthermore, the next theorem shows that ¢{)¢ R in the
(usual) case that f does not have an unconstrained minimum in R. However,
we may think of ¢(¢) as the (common) centre of the two disjunct sets R and F(r).




The basic idea of the techniques to be treated here will now be evident: if {¢,}
is a monotonic, increasing sequence of truncation levels converging to v, then
any limit point of the sequence {c(,)} is a minimum solution of (1.1.1).

In what follows we shall variously employ the symbols ¢, f; and T} to
denote c(zy), f [c(t;)] and T(z,) respectively. We consider the following con-
struction of a sequence {r,} as mentioned above. In the first step the trun-
cation level ¢, is taken to be a lower estimate of v. At the beginning of the kth
step the truncation level f, is generated according to

te =ty + o {fle(t-)]—tica}s (4.4.6)

where p is a relaxation factor such that 0 < ¢ < 1 in order to guarantee that
ti—1 <<ty < v. This procedure is validated by:

Theorem 4.4.1. If (a) problem (1.1.1) satisfies condition 4.2, (b) the problem

- functions have continuous first-order partial derivatives in E,, and (c) the
function vy appearing in the moving-truncations loss function (4.4.1) satisfies
the conditions 3.3, 3.4 and 3.8, then the following properties must hold.

(1) A point ¢(f) maximizing L,* over E, exists for any f.

(2 If t < v, then ¢ < f[e(1)] < v.

(3) If f has an unconstrained minimum in R, and if # < v, then c¢(¢) is a mini-
mum solution of problem (1.1.1).

(4) If there is no unconstrained minimum of f in R, so that any minimum
solution of (1.1.1) must be a boundary point of R, and if ¢, < v, then the
sequence {f,} generated by (4.4.6) is a2 monotonic, increasing sequence
converging to v. Any limit point of the sequence {c;} is a minimum solu-
tion of (1.1.1).

(5) Each point ¢, minimizes the parametric loss function

Lx) =f(x)— ”E p[g(x)] 4.4.7)
for s equal to the equivalent s-value
s = [py'(t—SfIIV™ (4.4.8)

The sequence {s,} is a monotonic, nonincreasing null sequence.
Proof. (1) We can invoke theorem 3.2.5 in order to demonstrate the existence
of a maximizing point ¢(¢). The function —L,* is precisely the parametric loss
function for solving the problem

minimize —yp[t — f(x)] subject to
gi(x)>09 i=1:°-'am3

with the controlling parameter s equal to p. Then theorem 3.2.5 ensures the
existence of a point minimizing —L,* over E, for any positive p.




In proving the remainder of theorem 4.4.1 we shall frequently consider a
value 7, < v and the centre ¢, = c(t;). The gradient of L,,* vanishes at ¢,
whence

P y'lto —f(co)] VS (co) _z§1 ¥'[gdco)] Vgi(co) = 0. (4.4.9)

Moreover, if we take X to denote a minimum solution of (1.1.1),

m

P ¥lto—f ()] + Z yleco)] = pylto—f D] + Z pleD] = p vlto — ),

whence
r? El plgico)] = plto — v) — ylto — f(co)]. (4.4.10)
Let us now move on to the proof of the remaining parts.
(2) Assume that a value ¢, < v exists such that f{c,) < f,. Then (4.4.9)
reduces to

= y/lgc0)] Veileo) = 0. @410

Thus, the point ¢, maximizes

2 yls0]

over E,, which can only be true if ¢, € R. This leads to the contradictory result
flco) == v. Hence, we can only have f(co) > fo.
Secondly, assume f(c) > v. Then (4.4.10) yields

M=

ylgilco)] > 0,

i

]

1

since 0 > 1, — v > to—f(¢o), and w(n) strictly increasing for n << 0. This
contradicts (4.4.4) so that f(cy) < v.

(3) Let us again consider a value #, < v. The assumption that f has an un-
constrained minimum in R implies £ (x) >> » for any x € E,, whence f(c,) = .
Using (4.4.10) and (4.4.4) we can easily see that ¢, must be feasible. This
proves that ¢, is a minimum solution of (1.1.1).

(4) Let t, < v and suppose that £ (co) = v. We can then infer from (4.4.10)
that ¢, must be feasible. By (4.4.4), formula (4.4.9) reduces to

Py (to—v) Vf(co) =0,
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so that $/f{(¢e) = 0. Thus, if there is no unconstrained minimum of fin R,
it must be true that f(c,) < v. Moreover, starting with a truncation level
t; < v and generating the sequence {t,} according to (4.4.6) we obtain straight-
away

foey <t < fr <. 4.4.12)

The sequence {z,} has apparently a finite limit 7 <{ v. Assume 7 < ». Then

£ < fle®] <. (4.4.13)
From (4.4.6) we can infer
lim fk == f,
ko0

so that, by continuity, f [¢(f)] = 7, contradicting (4.4.13). Hence, we must have
f=vand
lim f, =", (4.4.14)

k- 00

Finally, by (4.4.10),
pt izm'.l plgiled] = vt — v) — vt — 1),
leading to
51_'1130 z=§1 plgie)] = 0. 4.4.15)

By theorem 2.5.4, the set
R o= {xlg) =—e i=1,...,m}

is a compact (possibly empty) subset of E, for any &. Let £ be positive. Then, by
(4.4.15), there is a number K such that ¢, € R, for all k.= K. Consequently,
the sequence {c¢,} has a limit point ¢. Combination of (4.4.14) and (4.4.15)
leads to the result that ¢ is a minimum solution of (1.1.1).

(5) The proof that ¢, minimizes the parametric loss function L, of (4.4.7) for
s equal to the value s, of (4.4.8) rests on the observation that the gradient of
L, * vanishes at ¢;. Reasoning along the same lines as in theorem 4.2.2 one can
readily establish the monotonic behaviour of the sequence {s;}.

The last part of this theorem shows the relationship between loss-function
techniques with moving truncations and the parametric techniques of the
previous chapter. Here, we have a loss-function technique adjusting the con-
trolling parameter automatically. The question of whether it is a workable
method depends critically on the rate of convergence, which is treated in the
next theorem,
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Theorem 4.4.2. If (a) problem (1.1.1) satisfies condition 4.2, (b) the problem
functions have continuous second-order partial derivatives in E,, (c) a Kuhn-
Tucker point (¥,%) of (1.1.1) exists satisfying the Jacobian uniqueness condi-
tions 2.1 to 2.3, (d) the point X is a boundary point of the constraint set R,
(e) the sequence {s,} denotes a sequence of equivalent s-values generated by
the moving-truncations loss-function technique based on (4.4.1), and (f) the
function v appearing in (4.4.1) satisfies the conditions 3.3, 3.4 and 3.8, then

,—v S
lim — " jim 12 (4.4.16)
koo fy_{— UV koo S, y+1
with
= piin S @)+ m, (4.4.17)
i=1

Proof. Without loss of generality we confine ourselves to a function y such that
w'(m) = (—n*.
By (4.4.8) and (4.4.12) we can immediately write
S =pYE(fi — 1) (4.4.18)

Taking [x(s), u(s)] to denote the minimizing trajectory of the loss-function
technique based on the function L, of (4.4.7), we have

w(s) =s ' {gx@®]}, i=1,...,m. 4.4.19)
As we have seen in sec. 3.4, there is a positive number K such that

&ilx(s)] <0, | . _
, uls) >0, i=1,...,a

gilx(s1)] > 0,
ui(sk) = 09

for-all k > K. Then (4.4.19) may be used to obtain

} i=a+1,...,n,

ui(sk) - sk—u w’{gi[x(sk)]}9 i = 1’ oeay O
for k > K, whence
s = —[us)]™ Veglx(s)]l, i=1,..., (4.4.20)

Substituting this result into (4.4.18) and writing ¢, = x(s,) we obtain

gi(ck) = (tk _'fk) [p ui(Sk)]llu’ l = 19 ey O (4421)



R § -

Moreover,
Z i g(e) = (h—0) (1 + &), (4.4.22)
with
lim ¢, == 0.
k-0

The last relation can be derived by application of the Kuhn-Tucker relations,
just as in theorem 4.3.1. Lastly, we define

Ve = ._21 i, [p usd]'™

Combination of {4.4.21) and (4.4.22) leads then to
=S 7= (i —v) (1 + &),
which can be rewritten as
(=) yi = (i —0) (i + 1 + ). (4.4.23)

This result is similar to that of (4.3.7) so that the proof of theorem 4.4.2 can
be completed in the same way.

Let us finally discuss the results of theorem 4.4.2. It will be clear that relaxa-
tion does not provide any advantage. It is not even necessary to apply some
relaxation in order to obtain a starting point for the next step in the iterative
procedure: the moving-truncations loss function L,* is defined for any x € E,
so that the kth step can immediately start from ¢(#,_ ). Overrelaxation is dif-
ficult to apply. One does not have a workable criterion for deciding whether »
is overshot. Such a criterion (feasibility) exists if one employs a barrier-function
technique.

The rate of convergence depends clearly on the Lagrangian multipliers ,,

., i, for any order u of the loss function. It is evident from (4.4.17) that a
decrease of the weight factor p will speed up the convergence. This accelera-
tion can be made plausible from inspection of the loss function L,*. Any point
maximizing the second term

Z vlei)]

will be feasible. 1t is the first term in (4.4.1) which causes infeasibility of the
next centre c(f). A smaller weight of this term will apparently lead to an accel-
erated reduction of the constraint violation.

Some numerical experiences with a moving-truncations loss-function tech-
nique are reported by the author in a previous paper (1968c). They show how
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sensitive the computational process is to changes in the weight factor p. It is
evident that an appropriate choice of p cannot be made at the beginning of the
computations for solving (1.1.1), since the Lagrangian multipliers are then un-
known. This is, at least in our opinion, a serious disadvantage of the loss-
function techniques with moving truncations.



5. EVALUATION AND CONCLUSIONS

5.1. Choice of a penalty function

In this chapter we shall finally be dealing with the choice of a penalty func-
tion for computational purposes. The preceding chapters provide more material
for supporting a particular choice than the arguments brought forward by
Fiacco and McCormick (1968), who have almost exclusively been dealing with
parametric penalty functions. They motivate their preference for first-order
penalty functions (logarithmic barrier function, quadratic loss function, and
the mixed penalty function which combines their properties) with the argument
that first~order penalty functions are easier to differentiate than the higher-order
ones. The argument is obviously true, but is it sufficient to base such a decision
on these grounds only?

Zangwill (1967a) and Roode (1968) have only been concerned with para-
metric loss functions. They did not deal with the actual problem of choosing
a computationally workable loss function.

It is still an open question whether barrier functions are easier to minimize
than loss functions. The question was raised by Murray (1967) and has been
left unanswered since that time.

The relationship between parametric penalty-function techniques and the
corresponding versions with moving truncations has been studied by Fiacco
and McCormick (1967b) and Fiacco (1967). They have indeed pointed to the
automatic adjustment of the controlling parameter as a striking feature of
methods with moving truncations. What they did not consider, however, is the
rate of convergence (the efficiency of the adjustment).

The studies of Faure and Huard (1965, 1966), Bui Trong Lieu and Huard
(1966), Huard (1964, 1967, 1968) and Tremoliéres (1968), on the other hand,
are entirely devoted to the method of centres and not to the relationship with
parametric techniques.

In the light of the results obtained in the previous chapters we may draw the
following conclusions for convex-programming problems.

5.2. Choice of the order

There is no obvious reason for not using first-order techniques. Let us con-
sider the parametric and the moving-truncations techniques separately in order
to give a motivation.

Parametric penalty-function techmnigues. The computational process is the
same for all methods under consideration: a sequence of minimizing points
x(r,) is generated for monotonic, decreasing, positive values r; of the con-
trolling parameter r. These points are employed as grid points for extrapolation
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towards X¥. The basis for extrapolation is the Taylor series expansion of the
vector funection x(r) about r = 0. Under certain conditions this is a series ex~
pansion in terms of r, regardless of the order A of the barrier term and the order p
of the loss term. The condition number of the Hessian matrix, on the other
hand, varies with r~* independently of A and . This may be an indication that
first-order penalty functions are not easier or harder to minimize than the
higher-order ones. The first-order (logarithmic) barrier function, however,
offers the additional advantage that the minimum value of problem (1.1.1) is
approximated with an a priori given accuracy.

Penalty-function technigues with moving truncations. Within this class of
methods the computational processes are also mutually the same: find a series
{e;} of centres converging to a minimum solution X of (1.1.1) by constructing
a sequence of truncation levels decreasing (barrier functions) or increasing (loss
functions) monotonically and converging to the minimum value v of (1.1.1).
The crucial point, however, is the rate of convergence. For the first-order
barrier-function technique (method of centres) the rate of convergence is
roughly predictable since it depends on the number of active constraints at the
minimum solution X. For the remaining techniques (higher-order barrier-
function techniques and all the loss-function techniques) the rate of convergence
depends on the unknown Lagrangian multipliers associated with X, so that it
is unpredictable. Thus, higher-order barrier-function techniques do not pro-
vide any significant advantage over the first-order ones. A similar, somewhat
weaker verdict can be given upon loss-function techniques.

A disadvantage of higher-order techniques is the increasing effort necessary
for evaluating the penalty function and its derivatives.

5.3. Controlling parameter or moving truncations?

The relation between methods operating with moving truncations and para-
metric methods was given by the observation that any centre ¢, is a point on
the trajectory {x(r)lr > 0} originating from a corresponding parametric
method. We can write ¢, = x(r,) where r, denotes the equivalent r-value which
can be calculated as soon as ¢, is obtained.

Computational success with moving-truncations techniques depends critically
on the rate of convergence or, as we have mentioned in the previous section,
on the Lagrangian multipliers associated with the minimum solution of (1.1.1).
For a parametric technique, however, the rate of convergence (the rate of two
successive values of the controlling parameter) can fieely be chosen.

The rate of convergence of a moving-truncations method can, it is true, be
affected by a weight factor attached to the objective function. The present author
(1968c¢) has given a numerical example which demonstrates the effect of weight-



ing. Generally, however, the choice of an appropriate weight factor can readily
~ be made for the method of centres only.

We are accordingly led to parametric first-order penalty functions as the most
desirable ones for computational purposes. The discussion of the methods
invelved has so many aspects that we devote a special section to it.

5.4. Parametric first-order penalty functions

This group of methods comprises a pure barrier-function technique based on
the logarithmic barrier function

S &) —r X Ingy(x), (5.4.1)
i=1
a pure loss-function technique based on the quadratic loss function
fE)+r7t T {min [0, 501}, (54.2)

and a technique operating with the mixed penalty function
F@—r Singx) +r~t T {min [0, g1 (5.4.3)
(2253 iely

The pure techniques have particular advantages and disadvantages, and they
present an entirely different approach to a minimum selution of the problem.
Therefore, we start by summarizing the differences between both of them.

1. Constraint satisfaction. A barrier is impenetrable so that the imposed con-
straints remain satisfied throughout the computational process if (5.4.1) is
employed. A technique based on (5.4.2), however, will invariably lead out of
the constraint set (unless the objective function has an unconstrained minimum
in it).

2. Evaluation of constraint functions. The barrier function (5.4.1) requires
evaluation of all the constraints appearing in the barrier term. Employing the
loss function (5.4.2) one has the following computational advantage: in differen-
tiating it one only has to evaluate the derivatives of the constraints which are
violated at the current point.

3. The interior of the constraint set. A loss-function technique does not
require that the interior of the constraint set be nonempty. Hence, it can also
be used to handle equality constraints. We shall be dealing with that subject
in a following section. It is obvious that barrier-function techniques which
operate in the inferior of the constraint set are not appropriate for handling
equalities.

4. Starting facilities. Unconstrained minimization of (5.4.2) can start from
any point, feasible or not. For a technique using (5.4.1), however, special
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starting procedures have to be developed which can be applied if an interior
starting point is not available. '

5. Conditioning of the principal Hessian matrix. We have assumed that the
condition number of the principal Hessian matrix of a penalty function, and
particularly its rate of change as r decreases to 0, is an appropriate measure of
the degree of difficulty in minimizing the penalty function concerned. On the
ground of this assumption there is no obvious reason that (5.4.1) should be
casier or harder to minimize than (5.4.2).

There are clearly more arguments (2, 3, 4) in favour of the loss-function tech-
nique. Nevertheless, we have strong reasons to believe that the advantage of
constraint satisfaction (1) offered by the barrier-function technique is most
important as soon as one departs from the convexity assumptions. This subject
will presently be discussed.

A natural way out of the dilemma seems to be a combination of these methods
by using the mixed penalty function (5.4.3). There are many ways of partitioning
the index set 7 == {1, ..., m} into two disjunct sets I; and I,. However, it is
reasonable that the starting point x, of the computational process should
indicate whether a constraint is to be incorporated in the barrier term or in the
loss term. One could think of the constraints as partitioned in such a way that

I = {ilgxe) > 0; 1<i<<my,
I, = {ilgixe) <0; 1<i<<m}

The mixed penalty-function technique based on (5.4.3) preserves then the easy
starting facilities of a loss-function technique. Furthermore, it guarantees that
any constraint which is strictly satisfied in the starting point remains satisfied
throughout the computations for solving (1.1.1). The mixed technique can also
be used for handling equality constraints. Finally, the principal Hessian matrix
of (5.4.3) has a condition number which varies with r—*, just as well as the
principal Hessian matrix of a pure barrier or loss function. Thus, we do not
expect more difficulties in minimizing the mixed function of (5.4.3) than in
minimizing the pure penalty functions (5.4.1) and (5.4.2).

5.5. The convexity assumptions

In this study the objective function f and the constraint functions g4, ...,
g, are supposed to be continuously differentiable, as many times as it was
desirable in the given circumstances. This is not a serious restriction: many
constrained-minimization problems arising in practice have these properties;
as important as anything else is that these properties can easily be verified.

Furthermore, we have required boundedness of the constraint set. This seems
to be equally acceptable. The minimum solution of a practical problem can
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frequently be enclosed by a number of constraints imposed on the ground of a
priori knowledge of the problem underlying the mathematical formulation.

The situation is entirely different as soon as we turn to the convexity assump-
tions. These are generally not easy to verify. On the rather scarce occasions that
some verification is possible one may come to the conclusion that the objective
function and/or some of the constraint functions violate the convexity condi-
tions. Nevertheless, convexity plays an important role at several places in the
preceding analysis. We may briefly summarize the critical points in the proof
of the existence and the convergence of penalty-function minima.

1. Characterization of the interior and the boundary of the constraint set R.
Concavity of the constraint functions implies that the interior of R is given by
the set of points satisfying the constraints with strict inequality sign. Further-
more, R is the closure of its interior. These results are important for the con-
vergence of techniques with pure barrier functions or mixed penalty functions
(theorems 3.2.1, 3.2.4 and 4.2.1}.

2. Compactness of perturbations of the compact constraint set. This property
has extensively been used (in theorems 3.2.3, 3.2.5 and 4.4.1) in order to show
the existence of penalty-function minima for any positive value of the controlling
parameters.

3. Global convergence. Convexity implies that any local minimum solution
of the constrained problem is a global minimum solution. Any limit point of a
sequence of penalty-function minima is a global minimum solution.

Abandoning the convexity assumptions one might adopt the mode of opera-
tion of Fiacco and McCormick (1968). They considered the nonconvex case
and established a number of results which are of course of a local nature:
existence of penalty-function minima for sufficiently small, positive values of
the controlling parameter(s), and convergence to local minima of problem
(1.1.1). Instead of the above-named characterization of the interior of R, one
needs an additional hypothesis on the sets of local minima.

These results imply that, in the nonconvex case, a constrained-minimization
procedure can only be used for some exploration in the vicinity of the starting
point (where the problem functions may have the desired convexity properties).
It is a sound strategy to supply then a number of constraints which enclose a
minpimum solution; the starting point has to be a good guess of a minimum
solution. If this starting point satisfies the imposed constraints with strict
inequality sign, the particular choice (see sec. 5.3) of the mixed penalty function
guarantees that minimization is carried out within the enclosed area. With these
precautions a penalty-function technique may be an effective tool for improving
the guess.

The convexity assumptions seem to be a suitable hypothesis for ensuring that
a problem is well-behaved: then, penalty-function minima exist for any positive



value of the controlling parameter and they converge to a desired global mini-
mum of the problem under consideration.

5.6. Equality constraints

The results obtained so far can be extended to the case where one comes
across inequality as well as equality constraints. Let us turn to the problem

minimize f(x) subject to
g(x)=20; i=1,...,m, (5.6.1)
h{x) =0; j=1,...,p S

This problem can equivalently be written as

A

minimize f(x) subject to
gx) = 0; izl,...,m,(
;?J(X):}O; j=l,...,p,\
—h{x}=0; j=1,...,p.

It is obvious that a point satisfying the constraints with strict inequality sign
does not exist, but we can readily employ a mixed penalty function in order to
solve the problem. We incorporate the inequalities £{x) > 0 and —A;(x) == 0,
Jj=1,...,p, in the loss term. A penalty function for solving (5.6.1) is then
given by

P(x) = f(x)— rf-,] In gy(x) +r~* ; {min [0, g,(x)]}* + r~* é hi?(x). (5.6.2)

Now let x(r) be a minimizing point of (5.6.2), and let u(r) and w(r) denote
vectors with components

S ’ 3 611’
ulr) = ¢ &x(r)]

emz r~* min {0, g[x(r)]}, iels,
and
wir) =2r""Rix()], j=1,...,p,

- respectively. The behaviour of the minimizing trajectory [x(r), u(r), w(r)] has
been thoroughly studied by Fiacco and McCormick (1968), so that we do not
need to go into details. If the functions A, j = 1, ..., p, are linear, theorem
3.2.3 can be invoked in order to show that a minimizing point x(r) exists for
any r > 0. If {r,} is a monotonic, decreasing null sequence, any limit point
of the sequence {x(r,)} is a minimum solution of problem (5.6.1). Finally,
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theorem 3.4.1 can be extended in order to establish the existence of continuous
first-order and pbssibly higher-order derivatives of the vector function
[x(r), u(r), w{r)].

The appendix to this thesis contains an ALGOL 60 procedure designed for sol-
ving problem (5.6.1) with a technique based on the mixed penalty function of
(5.6.2).

5.7. Other developments

The basic idea of solving problem (1.1.1) by sequential unconstrained mini-
mization of a combination of the problem functions has been a fruitful one.
Particularly the penalty-function approach has led to many techniques and to
a large number of computational experiments. It is our purpose to present here
a brief survey of methods and refinements which are also based on the above-
named idea but fall beyond the scope of this thesis.

First, there is an intriguing loss function, proposed by Zangwill (1967a),
which has the form

f{x)— r‘l_:%; min [0, g,(x)]. (5.7.1)

It has the following, remarkable property (see also Roode (1968)). If x(r)
denotes a point minimizing (5.7.1) over E, for r > 0, then a positive g, can
be found such that x{r) is a minimum solution of the original problem (1.1.1)
for any 0 << r << go. Thus the computational process for solving (1.1.1) with
a method based on (5.7.1) would be as follows. Generate a sequence x(r,),
x(r;), ... of r-minima for a positive decreasing null sequence ry, 7,5, ...,
until a point x(r,) is found which satisfies the constraints of (1.1.1). Such a
number k exists, and x(r,) must be a required minimum. A serious drawback
of (5.7.1) is that its first-order derivatives do not exist at the boundary of the
constraint set. Hence, it is doubtful whether the gradient methods for uncon-
strained minimization can be used to minimize (5.7.1). Recently, Pietrzykowski
(1969) sketched a new algorithm for finding the r-minima. He does not report
any computational experience, however.

In the preceding chapters we have only been dealing with methods incor-
porating all the constraints in a penalty function, regardless of whether they
are linear or not. It might of course be attractive to treat the linear constraints
separately. If only the nonlinear constraints are included in a penalty function,
the computational method for solving (1.1.1) reduces to one of sequential
linearly constrained minimization. There are several algorithms which can be
used for minimization under linear constraints. We may for instance refer to
the methods of feasible directions proposed by Zoutendijk (1960), the gradient-
projection method of Rosen (1961), the reduced-gradient method of Faure and
Huard (1965), and a modification of the Davidon-Fletcher-Powell algorithm
proposed by Goldfarb (1969). Computational experiences with penalty-function



techniques using Goldfarb’s method are reported by Davies (1968). These
experiences are not encouraging, however. It is true that Goldfarb’s method
leads to an improvement if there are only linear constraints in problem (1.1.1).
When nonlinear constraints are present, one has to enter a sequential linearly
constrained minimization process, Then Goldfarb’s method does not give any
substantial improvement over the original technique (unconstrained minimiza-
tion of a penalty function which also includes the linear constraints).

Several authors have proposed a method for solving (1.1.1) by sequential
unconstrained minimization of the Lagrangian function associated with the
problem. The basic idea may be described as follows. Let x, denote a point
minimizing the function

x) ‘”‘i§1 u;® gy(x)

over E,. If the sequence {#®} of multipliers is adjusted in an appropriate way
the sequence {x,} converges to a minimum solution of (1.1.1). Under certain
uniqueness conditions the sequence {#®} converges to the vector i of Lagran-
gian multipliers associated with the minimum solution ¥ of (1.1.1}. An algorithm
of this kind was first proposed by Benders (1960), later on by Everett (1963)
and Falk (1967a). Roode (1968) introduced the concept of a generalized
Lagrangian function in order to find a unifying approach to these methods and
the loss-function techniques. Recently, Fletcher (1969b) has proposed a method
which is also based on the Lagrangian function. His method is not one of
sequential minimization, however. It operates with a continuously varying
approximation to the Lagrangian multipliers. Unfortunately, whereas theoretical
work has been extensive, all these Lagrangian methods suffer from a serious
lack of computational experience.

The idea of sequential minimization was also dropped in the modified interior-
point method of Zoutendijk {1966). This is a variant of the barrier-function
techniques, but it does not approach a constrained minimum via a sequence
of unconstrained r-minima. It presents a more direct approach: one has to
perform a sequence of univariate searches each of which starts with a smaller
value of the controlling parameter than the previous one. A similar method
based on loss functions was proposed by Butz (1967). As far as we know,
however, these methods have not been tested on practical usefulness. Even the
authors did not mention any computational experience.

This concludes our survey. It is clear that there are still many promising
directions for future research, particularly if one is concerned with the compu-
tational efficiency of these methods.
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List of conditions

Condition 2.1. The multipliers 4,, i € A(X), are positive.

Condition 2.2. The gradients 5/ g,(%), i € A(X), are linearly independent.
Condition 2.3. For any y € E,, y 5 0, such that g ()T y = 0, i € A(X), it must
be true that T D(%,i)y > 0.

Condition 3.1. Problem (1.1.1) is a convex-programming problem. The con-
straint set R is compact. The set R,®* N R, is nonempty.

Condition 3.2. The function ¢ is concave and nondecreasing in the interval
{0,0), and ¢(0+) = —co,

Condition 3.3. The function v is concave and nondecreasing in the interval
{—o0,00); w(n) =0 for 22 0 and () < 0 for n < O.

Condition 3.4. There are positive numbers P and p such that y(n) < —Ply/t*?
for any n < 0.

Condition 3.5. The function ¢ has a continuous first-order derivative ¢’ in the
interval (0,<0).

Condition 3.6. The function g has a continuous first-order derivative v’ in the
interval (—o0,c0).

Condition 3.7. There is a positive number @, such that ¢’ is analytic in the
interval (g, 20), except at # = 0; it has a pole of order 4 at 5 = 0.
Condition 3.8. There is a positive number w, such that ' is analytic in the
interval (—ow,mwg}; it has a zero of order u at # = 0.

Condition 4.1. Problem (1.1.1) is a convex-programming problem. The con-
straint set R is compact and its interior R° is nonempty.

Condition 4.2. Problem (1.1.1) is a convex-programming problem with a non-
empty, compact constraint set R.
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Appendix

An ALGOL 60 procedure for constrained minimization via a mixed parametric
firstorder penalty function

The procedure “minimize” is an ALGOL 60 procedure designed for solving
the constrained-minimization problem

minimize f(x) subject to
g;(X))O, imla---amp (l)
hi(x) =0; j=1,...,p,

where x denotes a vector in the #-dimensional vector space E,. It can also be
used for unconstrained minimization, in which case the problem reads

minimize f(x). )

In addition to this, “minimize” can be used merely to find a solution of the
system of (injequalities

g(x)=0; i=1,...,m, 3

hx) =0; j=1,...,p.
The penalty function

In solving problem (1) the procedure deals with the penalty function
Px) =f(x) + rb(x) + r~* [(x) + e(x)] C))
containing the logarithmic barrier term
b(x)=— Xln gi(x),
telq

and the quadratic loss terms
1) = I {min [0, £,(x)1}*
el

and
e(x) = j§1 h;2(x).

The index sets 7, and I, are defined by

I = {ilgxo) > 0; 1 <i<<my,

L = {ilgdxo) <0; 1 <i<<my,
where x, denotes the (user-supplied) starting point of the computational proc-
ess for solving problem (1). The parameter r appearing in (4) controls the
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convergence to a minimum solution ¥ of problem (1). Let x(r;) be a point
minimizing (4) over the set

R = {xgx)>0; iel}
for a fixed, positive value r, of r. Under mild conditions one has

lim £ [x(r)] =/ (D

and
;%EI;: {Ilx(r] + e[x(rk)]} =0,

provided that {r.} is a monotonic, decreasing null sequence for k — c0. Hence,
any limit point of the sequence {x{r,)} is a minimum solution of (1), This
provides the framework of the algorithm.

If certain uniqueness conditions are satisfied at a minimum solution X, and
if the problem functions f, g, .. .5 &m #1, .. ., h, have continuous second-
order partial derivatives in E,, then the trajectory x{#) of points minimizing (4)
is a continuously differentiable vector function of ¥ in a neighbourhood of r == 0.
The kth-order derivative of x(r) exists accordingly as the problem functions
admit of (k -+ 1)th-order partial derivatives (k >> 1). Then x(r) can be ex-
panded in a Taylor series about ¥. This provides the basis for an extrapolation
device in order to obtain a more accurate approximation of X.

The controlling parameter r is initially given the value r, defined by

(10 2 Iv*l) &)
Fo = max T X
¢ 100

where v* denotes an estimate of the minimum value of problem (1). Successive
values ry, r,, .. . assigned to r are generated in accordance with the rule

Pr—1
10t

“Minimize” does not go beyond sixth-order extrapolation. Let X*? denote
the approximation of X based on x(ry.,), . . . , x(r,). The computations will be
stopped as soon as two successive approximations differ in each component
by less than a relative accuracy &4 and an absolute accuracy &,, i.e.

Fx

|Xj(k,l)_%(k—1.i-l)| < 81|Xj(k.2)1 _%_ £y; J i 1, U

whereafter X®? is delivered as an approximation of the minimum solution %.
The accuracies ¢, and &, are to be supplied by the user.

The algorithm just sketched is clearly one whereby solving a constrained-
minimization problem is reduced to (sequential) unconstrained minimization
of a penalty function. It is convenient to extend the concept of a penalty func-



tion to the cases where problems (2) or (3) are involved. If unconstrained mini-
mization of one single function f is required the penalty function reduces to f.
If “minimize” is used to find a solution of the system (3) the penalty function
8 given by

P() = 2 {min [0, 29N} + T h().

Unconstrained minimization

Unconstrained minimization is largely carried out in accordance with the
algorithm of Davidon (1959) as amended and described by Fletcher and Powell
(1963). Only two (minor) modifications have been introduced.

{1) The direction matrix H, is reset to the unit matrix if the iteration number /
is a multiple of 2» and if the length of the gradient of the penalty function
at the corresponding iteration point happens to be greater than 1. A similar
(although more frequent) resetting strategy was recommended by Pearson
(1969). We are more reluctant, however, to reset the direction matrix.

{2) The line search uses penalty-function values only. The gradient of the
penalty function is not evaluated at the trial points along the direction of
search. '

As soon as during »n iterations two successive iteration points differ in each

component by less than the relative accuracy &, and the absolute accuracy é,,

the process terminates. The last iteration point is then delivered as an approx-

imation of a (local) unconstrained minimum.

Line searches

A minimum along a line is obtained by repeated application of quadratic
interpolation. To start with, a step is taken in the direction of search and the
penalty function is recalculated. If this value is less than or equal to the initial
value at the current iteration point, the step length is multiplied by 2 and a
further move is made in the direction of search. This process is repeated until
a step is performed resulting in an increase of the penalty function, indicating

\ R, ) e
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that a line minimum has been overshot. A typical situation is illustrated in
fig. A.1. Here one has three “line coordinates” @, b and ¢ with the corresponding
penalty-function values P,, P, and P,. The value P,, for instance, is given by

~Pa :P(xi —{'" asi)s

where x; denotes the current iteration point, s; the direction of search from x;,
and P the penalty function. Let d be the coordinate of the point which minimizes
the interpolating quadratic. One of the two extremes a and ¢ is then removed
according to a rule which guarantees that the remaining coordinates embracket
a minimum. After this rearrangement quadratic interpolation is repeated until
two line coordinates & and d are obtained such that the corresponding points
x; +bs; and x; -+ ds; differ in each component by less than the relative
accuracy &, and the absolute accuracy &,. Then the point with the smallest
penalty-function value is delivered as an approximation of a line minimum.

If the first step in the search direction yields a point ¢ with a penalty-function
value P, = P(x; + cs,) greater than the initial value P, = P(x;), quadratic
interpolation starts at once. The information being used consists of the function
values Py and P,, and the slope of the penalty function at x; (the inner product
of the gradient of P at x, and the search. direction s,).

Directions for use

When “minimize” is called the actual parameters, which, for convenience,
are denoted by the corresponding formal parameters, have the following
meaning:

x real array with elements x[1], . .., x[r]; before calling “mini-
mize” the starting point of the computations must be stored in
x; on return x contains the solution produced by “minimize™;

Junctions procedure with two parameters x and gx; by a call the elements
of the real array gx[1 : m] are evaluated for the current value of
the elements of the real array x[l : n]; via this procedure the
user supplies the problem functions gx[1], ..., gx[m] as func-
tions of the independent variables x[1}, . .., x[n]; the declara-
tion reads

procedure functions (x,gx);
real array x, gx; <{body);

xtype integer array with elements xzype[l], ..., xtype[n]; before
calling “minimize” xtype[j] must be assigned the value 0, 1
or 2; if xtype[j] = O then x[j] remains unchanged during the
computations and the derivative of the penalty function with
respect to x[7] is set to O; if xzype[j] = 1 then x[j] is a free



giype

analytic

derivatives

two

raxmin
aaxmin

estimate

converged
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variable; if xtype[j] =2 then x[j] is required to be nonne-
gative;

integer array with elements gtype[l], ..., grype[m]; before
calling “minimize” these elements must be assigned the values
0, 1, 2 or 3; if gtypeli] = O then gx[i] will be dropped from
the problem; if grypelil] = 1 then gx[i] is taken to be the
objective function; if grype[i] = 2 then the constraint gx[i] > 0
is imposed; if gtype[i] == 3 then the constraint gx[i] == 0 is
imposed;

boolean expression; if analytic is true it is assumed that the
first-order derivatives of the problem functions are supplied by
the user; if it is false “minimize” will compute the first-order
derivatives by differencing;

procedure with two parameters x and dgdx; by a call the ele-
ments of the real array dgdx[l :m, 1 :n] are evaluated for
the current value of the elements of the real array x[1 : n]; it is
assumed that dgdx[i,j] is the first-order partial derivative of
gx[i] with respect to x[j]; only non-zero derivatives need be
supplied; the declaration reads

procedure derivatives (x,dgdx);
real array x, dgdx; {(body>;

integer expression; dimension of the arrays x[1 : n] and xtype
{1:n];

integer expression; dimension of the array gtype{l : m};
boolean expression; if two is true numerical differentiation takes
two function values per derivative; otherwise it will take four
function values;

real expression; relative accuracy of the solution to be produced;
a value of 107% is suggested;

real expression; absolute accuracy of the solution to be produc-
ed; a value of 10~ % is suggested;

real expression; an estimate of the value of the objective
function at a minimum solution; it is only used in constrained
minimization in order to find the value r, of formula (5);
boolean variable; converged is set to true by “minimize” if the
above-named convergence criteria are satisfied; otherwise con-
verged is set to false; this may occur, for instance, if the process
would take more than the maximum number of iterations per-
mitted by the user or if constrained minimization would involve
more than 10 unconstrained-minimization cycles;
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coc integer expression; conditional output-control parameter; if
coc = 0 then no output will be given; if coc = 1 then “mini-
mize” produces short output in every. iteration, and x-output
and g-output in the first and the last iteration of an unconstrain-
ed-minimization cycle; in addition to this, x-output appears in
every iteration if coc = 2; an explanation of the output will be
given below; ,

imax integer expression ; the maximum number of iterations permitted
by the user; if imax = 0 then no restriction is imposed on the
number of iterations.

Output

“Minimize” uses some output procedures of the ALGOL 60 system design-
ed inthe Mathematical Centrein Amsterdam for the Electrologica X8 computer.
They can readily be removed from “minimize” or replaced by the output pro-
cedures of other systems.

Short output is a single-line summary of the current iteration presenting the
iteration number, the value of the penalty function and the length of the gra-
dient of the penalty function both evaluated at the current iteration point, and
the distance between the current and the preceding iteration point.

X-output is a print of the current iteration point (solution vector) and the
gradient of the penalty function evaluated at this point. If analytic is true the
gradient is obtained by evaluating the user-supplied first-order derivatives of
the problem functions; otherwise the gradient is approximated by differences
of function values. In iteration 0, if analytic is true, this approximation is also
computed and printed in order that users derivatives can be checked.

G-oputput is a print of the values of the problem functions at the current itera-
tion point. If the problem is one of constrained minimization, it also comprises
the current approximation of the Lagrangian multipliers.

The output procedures being used are the following ones:
ABSFIXT(n,m,x) when this procedure is called the absolute value of x

will be printed in fixed-point representation: one space,
n decimal digits (leading zeroes being replaced by
spaces), decimal point, m decimal digits, one space; if
m == 0 the decimal point is not printed;

CARRIAGE(®) causes the printer to advance the paper » lines and to
take the print position at the beginning of the line;
FLOT(n,m,x) when this procedure is called the value of x will be

printed in floating-point representation: sign, decimal
point, n decimal digits, the symbol ,,, sign, m decimal
digits (leading zeroes being replaced by spaces), one
space;
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NLRC New Line Carriage Return;

PRINTTEXT(s) when this procedure is called the string s will be printed
without the outermost quotes;

SPACE(n) causes the printer to move over n spaces on the current

line.



comment page 1 of minimize;

procedure minimize{x,functions,xtype,gtype,analytic,derivatives,
n,m, two, raxmin,aaxmin, estimate, converged, coc, imax );
vajue n,m,raxmin,aaxmin,estimate,coc,imx; Integer n,m,coc,imax;
real rexmin,saxmin,estlmate; boolean analytic,two,coriverged;
zsal axray x5 Integer array xtype,gtype;
Irocedure functions,derivatives;
begln real Initr,factor;
integer 1,J,k,nv,ileff,cycle,maxcycle,ncl,nec2,nel, nsearch, nrp;
boolesn objective,constraints,nlyp, heading,nonneg;
real array xrmin,xminl1:n],urmin,uminl1:m],
xtable[ 1:1,0:6],utable 1:m,0:6];
boolean array logpl1:mnl;

progedure reycle{r,xr,ur,raxr,saxr); yalue v
real r,raxr,a8xr; rgal srray Xr,ur;
comuent unconstrained~minimization cycle for computing an r-minimmm
xr[1:n] and the assoclated dual multipliers ur[iim] with relative
and absolute accuracy rexr and saxr respectivelys
begin integer ltercnt,counter,reset; real prxr,gradl,distance;

real srray grad,dgrad,dir,sigm,yvec[1:n],h[1:n,1:n],gxr[ 1:m];

zeal progedure penalty(p,t,q,gt,reject);
integer reject; pesl t; real array p,q,8%
gomment computes the problem functions gt{1:m] and the penalty -
function at the point pl1:n] + + X ¢ft:n] — reject indlcates
whether this point is feasible or not: 1t is the index of the
first encountéred, viclated constraint;
bezin real barrier,loss,pen; real arzay xt[1:nl;
penalty := pen := losgs = 03 reject i= 0; barrier := 1;
for 4 = 1 step 1 until n do xtl 4] = plI] + t x q[3l;
1f nonneg then
besln for J := 1 step ! upbll n do i xtypeld] = 2 then
begin If logp(m + 3] then
pegin if xt{J] > 10 then barrier := barrier x xt[j] else
begin reject :=m + J; nrp = nrp + 1; goio fin end
end of logarithmic transformation
else if xt[J] < O then loss := loss + xt[jIA2
gnd of J loop
end of handling nonnegastive variables;
functiona(xt,gt)s ne2 := ne2 + 13
fox 1 :=1 sfep 1 uptil m go
begin If gtypeli] = 1 then pen
begin if gtyrpe[i] = 2 then
begin 1f logpl1) then ]
begin 1f gt[1] > »~10 then barrier := barrier x gt[i] glse
begin reject := i; nrp := nrp + 1; goto fin end
énd of logarithmic transformation
eglgse 1L gtl1] < 0 thep loss := loss + gt[ila2
end of handling inequality constraints
else if gtypeli] = 3 then loss := loss + gtiila2
end of transforming constraints
end of 1 loop for generating barrier and loss term;
penalty := pen — r X ln{barrier) + loss/r;
fin:
end of penalty for computing the problem funciions
and the mixed penalty function;

= pen + gt(1] glze

.
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comment eze 2. of minimlze ~ contimmation 1 of reycle;

procedure gradient(xt,gt,dptdx,anslytic};
real array xt,gt,dptdx; booleey anslytic;
gomment computes the gradient dptdx[1:nl] of the penalty
function at the point xt[1:n] -~ before calling the procedure
.gradient the array gt[1:m] must contain the values of the
problem functions at this point — analytic indicates whether
user-supplied derivatives are avallable or not;
begln real hJ,4),xty,dpd; .L...-BQE upper;
real array gdelts,dgdxj{1:m],dirf{1:m,1:2],dgdx[ 1:m,1:n];
upper ¢= I1f two then 1 glse 23
if enalytic ghen
begin for J := 1 gtep 1 until ndo
for 1 :=1 step 1unti]l mdg dedx[1,i] :
derivatives(xt,dgdx); nc3 := nc3 + 1
end of computing users derivatives at xt[1l:n];
for J := 1 step ! wntll n do
if xtypel] = O then dptax[j] := O glge
begin xtJ := xt{Jl;
if snalytic then
begin for 1 := 1 gtep 1 uptil mdo
dgaxjl1] := dgaxii,s]
epd of storing derivatives with respect to xtJ glse
begin comment compute derivatives with respect to xtj;
hy = w2 X abs(xtl) + ¢5;
for k := t 1 gntil upper do
___gip,. 43 := hi/k; ncl 1= nel + 23
xt[J] j= x’o.j + d,}; ﬁmctions(xt,gdelta)'
for 1 := 1 gtep 1 until m do Aiffl1,k] := gdeltalil;
x6{ 3] 1= xt] — &J; fxmctions(xt,gdel’ca);
for 1 =1 T untll = do
@ireld,x] := (aiff[i k] - gdelta[1])/(2 x 43)
god of k loop; xt[j] = xtJ;
for 1 := 1 gtep 1 untll m do dgaxi[1] :=
;L; two then Aiff(1,1] else (b x aiee(1,2] - aire(d,11)/3
gnd of generating dgl/dx);
dpd = 03
for'1 := 1 gtep 1 yptil m do
begin if gtypeli] = 1 zllga dpj := dpJ + dgdxj[1] else
pegin if gtypel1] = i)
begln if logpli] __sg} dp 1= dpJ — r x dedxi{1)/at[1] else
if gtl1] < O then dpj := dpl + 2 x dgaxjl1] x gtl1l/r
end of handling inequallty constraints
glse 1f atypeli] = 3 then dpj := dp) + 2 x dadxj{1] x gt{il/r
end of handling constraint derivatives
end of 1 loop;
if xtypeld] = 2 thep
begin 1£ logplm + 3] then dpd := dp§ - r/xty glse
Lf xt§ < O then dpJ = dpl + 2 X xty/r
end of handling variable constrained to nonnegative values;
dptdx{J] := dpy
end of J loop for computing j~th component of gradlent
end of gradient for computing the first—order derivatives
of the penalty function;

!l



gorment page 3 of minimize -~ continuation 2 of rcycle;

procedure linemin(point,prpeint,gpoint,gredpr,s,diffy,diffy,
race,sace); yalue race,mscc; resl prpoint,racc,sace;
real array point,gpoint,gradpr,s,diffp,diffg;
comuent procedure for searching a minimum with relative and
absolute accuracy race and asacc respectively along the direction
s[1:n] emanating from point{1:n] -~ prpoint and gpoint[1:m] must
contalin the values of the penalty function and the problem
functions at point{1:n] ~ gradpr(1:n] 1s the gradient of the
penalty function at point[1:n] +~ on return from linemin the line
minimum is conteined in point{1:nl, and prpoint,gpoint{i:m] and
gradpr] 1:n] contain the corresponding data — the difference
between the line minimum and the starting point of the search is
stored in diffp[1:n] — the difference of the corresponding
gradlents 1s contained in diffgl1:nl;

begin Integer nsteps,idle;

real lembda,pra,prb,pre,prd,a,b,c,d,e,mltiplier,descent, 8, pc;

real array &, 8b,gc,88[ 1:m];

boolean procedure ready(new,cld); peal new,old;
begin real sJ,rl,al;
ready 1= m ; r1 := racc/abs(old — new); al := aacc/abs(old — new);
tey 1 uptil n do if xtype[.j]#()_‘l;l_lg_
pgg;g s,j = 8l E if abs(sj} > r1 % abs{point{J] + new X 8j) + al then
begin reaﬁy := false 3 =1 egnd
end of J loop
end of ready for comparing two successive approximatlons
of a minimm along the direction sf1:n];

procedure shiftl(y,z,pry,prz,gy,8z);
xeal y,z,pry,prz; real arrey &y,&%;
begln y t= 2; pry := prz;
for 1 := 1 gtep 1 uptil m do ay(1] := gali]
end of shiftil;

nsearch := nsearch + 1;
descent := vecvec(l n,0,gradyr,s);
miltiplier :=
laxbda i= abs(l,v’descent),
1if lambda > 1 then lambda = 1;
a8 (= b = ¢ 1= 0; pra := prb :=
Tor 1t 1 ghep 1 umbil m
gal1] = gb[1] := gel1] := gpoint[i];
forward: for nsteps := 1 m_p 1 until 50 do
begip ¢ := b + lambda;
pre := penalty(point,c,s,ge,1dle); If idle > O then
begin lambde := lambda/2;
multiplier := 0.5
end of backward step

pre i= prpoint;

l%

sige
Resln If pre € prb then
begin lambda := multiplier X lambda;
shiftl(a,b, pre, pro,ge, 80 );
shiftl(b,c,prb, pre,gb,ge);
end of forward step
else goto Interl
end of testing the feasible trial point ¢
gnd of nsteps loop for moving in search direction;
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gogment page 4 of minimize — cont. 3 of rcycle — cont, 1 of linemin;

interl: £ a = 0A b =0Ac>0A descent < 0 A prb < prc %hen
begin commeny quadratic Interpolation using descent of

penalty function in the starting point of the search;

for nsteps := 1 giep 1 uptil 50 go

begin d minimizes Interpolsting quadretlc;
4 1= -EO.S X descent X eoA2)/(pre — prb — descent X c¢);
prd := penalty(point,d,s,gd,idle}; if 1dle > O then
begin lambde := 4/2; multiplier := 0.5; goto forward gnd ;
4L prd > prb then
beain 1T ready(c,0) then mgte last;

shifti(e,d, pre,prd, ge,gd

end of reducing search interval (Q,c)

elge
hegin shift1(b,d, prb,prd,eb,sd); goLo inter? end
end of nsteps loop for sequential interpolation
end of quadratic interpolation using descent of penf;
Inter2: 1f a <bA b <cApra > mb A prb £ pre then
begin comment quadratlc interpoletion on three points a,b,c;
for nsteps 1= 1 gtep 1 untll 50 do
beglp compent 4 minimizes Iinterpolating qQuadretics
¢ i= (a ~b) X (prc ~ prb);
if pc = O thep d := (b + ¢)/2 glge
Regin m = (b ~c) x (pra - prdj;
di=05x ({a+b)xpe+ {(b+c)xm)(m+ pe)
end of computing 4;
@ 1= b; gomment save best approximation so far;
prd := penalty{point,d,s,gd,idle}; if idle > O then
begln 1£ 4> b lambda := (d — b)/2 glse
begln lambda := {d — a)/2;
shift1({b,a,prd, pre,gb,q2);
shiftl(s,0, pra, prpoint, ge., gpoint)
end of shifting towards a;
multiplier := 0.5; goto forward
end of backward step due to constralint violation;
if @ < b then
begip 4f prd < prv thep
begln shifti{e,b,pre,prb,gc,gb);
shift1(b,d, prb,prd,gb,gd)
end glsg shiftl (2,4, pre, prd, ga, gd)
end glse
begin if prd < prb then
Degin shifti{a,b,pre,ore,g8,8b);
shift1(b,d,prb,prd,gb,gd)
end glse shiftl (c,’d,prc,;)rd,gc,gd)
gnd of rearranging a,b,and o3
if ready(b,e) then zoio last
end of nsteps loop for sequential interpolation
end of quadratic Interpolation on three points a,b,c;
last: prpoint := prb;
fox J =1 glep 1 ugtil n do
begin a1frp[Jl = b x sl4]; atefgly] = gredpr(yl;
yoint[J] := point[J] + airrplJ]
end of moving iteration point;
for 1 :=1 gtep 1 yuill m do groint[1] := gb{1l;
gradient{point,gpoint,gradpr,analytic);
for J := 1 gtep 1 until n do aifrgll] := gradpr[3} - atreely]
end of linemin for one-dimensionsl minimizstion;
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gomment Yege 5 of minimize ~- continuation 4 of rcyele;

progedure outputl{cycle,r,itercnt,leff,analytic,converged, nly,
heading, prxr,gradl,distance, xr, gred, dgrad, gxr,ur,n,m,coc);
real r,prxr,gradl,dlstance;

Integer cycle,iterent,ieff,n,m,coc;

boolean analytic,converged,nlp, heading;

i iterent = O A nlp then
pegin CARRIAGE(2);
mxmmé«c begin of cycle :»; ABSFIXT(2,0,cycle);

PRINTTEXT(€ for r equal to »); FLOT(3,3,r}

gnd ;

comment short output;

1L heeding then

begly CARRIAGE(2); PRINTTEXT(f lteration »);
PRINTTEXT({ penalty value gradient length »);

SPACE(B); PRINTTEXT{< distance »)
end of printing the heading;
NLCR; ABSFIXT(6,0,1eff); SPACE(6); FLOT(6,3,prxr); SPACE(T):
FLOT(6,3,gvadl); SPACE(T); FLOD(6,3,distance);
heading := false ;
¢oument end of short output; )
if 1eff = O V converged V coc = 2 then
beain ¢ ‘x~output; CARRIAGE(2);
PRINTTEXT(X variable solution vector  »);
PRINYTEXT (%-gradient of penf »); SPACE{L);
1f sanalytic A leff = O then
PRINTTE’XT(( gmd(differénces) b3 H
for J 1= 1 gtep 1 n do
begln NLCR; PRINTTEXT a:x »); ARSFIXT(4,0,3); SPACE(E);
FLOT(6,3,xr[J1); SPACE(T); FLOT(6,3,gvadlJ]); SPACE(T);
if anmlytic A leff = O then FLUI‘(6,3,dgra.d[J])
epd of printing lterstlion point and gradient;
heading := Yrue
end of x~output;
1f ileff = 0 V converged the
kegln comment g~output; CARRIAGE(2);
PRINTTEXT(€ function function values »);
1f nlp A converged then
PRINTTEXT{K dual solution ;p},
for i := 1 glep 1
begin NLCR; PRINTTEXT (gn), ABSFIXT(4,0,1); SPACE(6);
FLOT(6,3,8xr[1]); SPACE(7);
if nlp A convergei ‘then FLON(6,3,ur{1])
gnd of printing function values and dual solution;
heading = true
gud of g-output;
1f nlp A converged then
Degin CARRIAGE(2);
PREN'I'I’EXTE( end of cyele »); ABSFIXT(2,0,cycle);
PRINTTEXT (K for r equal to »); Fzm(’3 3,r)
end
ggg of output] for printing iterdtion data;
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comment pege 6 of minimize ~~ continuation 5 of reycle;

gomment start of main program of reycle;
itercnt := counter := 0; distance := 0; converged := false ;
for § =1 giep 1 until %9
grad[J] := dir{y] := aim 1 1= yvec[}] :
for 1 :-13@1%}::1@9@&[1] 'uurii] '=O;
restart: prxr := penalty(xr,0,xr,gxr,reset);
if reset >0 m begly logplreset] := falme ; goto restart end ;
gradient (xr,gxr,grad;analytic);.
if analytic A ieff = O then egradient(xr,gxr,dgrad,felse )3
gradl := sgrt(vecvec(1,n,0,grad,grad));
for itercnt := O giep 1 untll counter + nv do
gomment unconstrained-minimization cycle;
if (iterent = O)v(itercnt = (iterent ; {2 x nv))
X 2 X nv A gradl > 1) then
begin for 1 := 1 gtep 1 until n do
for k := 1 gtep 1 untdl n do
nl1,k] := 1f { = k then 1 glse O
end of resetting direction matrix else
begin resl si,hi,sigmey,yhy; real srrey hyl1:n];
:.fi'=1§m1w&unﬁe
1] := matvee{l,n,1,h,yvec);
sigmy := vecvec(l,n,0,sigma,yvec);
yhy 1= vecvec(1,n,0,yvec,hy);
for 1 := 1 gtep 1 yntdl n go
begin si := sigm[1]/sigmey; hi := ny[1]l/yhy;
for k = 1 glep? B&ﬁl i dg
h[k,i = h[i k] := hit,k] + s1 x sigma[k] -~ h1 x hy[k]
m a.d.ding covrections
epd of updating direction metrix;
for step 1 untll n do Ar{J] := matvec(l,n, ], h,arad);
if vec
J
O

1= 1
vec(1,n,0,grad,dir) > 0 then
for § =1 gtep 1 untdl o do Air(y] = —Atrly];
1f coe = O then output](cycle,r,itercnt,leff,analytic,converged,
nlp,heading,yrxr,gxadl,dis’cance,xr,grad,dgrad,m,ur,n,m,coc};
ieff := 1eff + 1; if leff = Imex then goto last;
Linemin(xr, prxr, gxr,grad,dir, slgm,yvec, raxr,aaxr);
gradl := sqrt(vecvec(i,n,0,grad,grad));
distence := sqrt{vecvec(?,n,o,sigm,sigzm)};
1f distance = Q 3_33 g_;t;g endpoint;
for J§ i=1 gtep n dg if xtype[d]l + O then
begin if abs(aigm[.j}im > raxr X abs{xr[3]) + saxr then
begin counter := fterent; J :=n end
end of testing the accuracy
gnd  of unconstrained minimizetion;
endpoint: converged := true ; 1f nlp then
for i :=1gtep 1uptll »de
begin if stypel1] =1 Ehsa url1] := 1 else
begiy if etyveli] = 2 they
hegin 1f losp[i] then ur1] := r/exrii] ﬁlg.s
ur{1] = 1f gxr[1] < 0 fhen 2 x exr[1]/r glse O
end of computing mltiplisrs for inequalities
slae 1f atypeli] = 3 thep wrli] := 2 x gxr{il/r
end of computing constraint multipliers
end ' of generating dusl solution;
1f coc -0 then outputl(cycle,r,iterent,ieff analytic,converged,
nlp, heading, prxr,gradl ,distence,xr, grad, dgrad, gxr,ur,n,m,coc );
lasts
gnd of reycle for unconstrained minimization of penalty functlong
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soument pege T of minimize;

procedure extrapol(t,order,dim, new,result,conv);

dnieger order,dim; bogleall convy real t,nev, resulty

begln Intemer k; real vete; resl sxxay eidi1:dim,Ozorder];
conv := falge j

for k :=O§§gp1 order 4o

for J =1 gtep 1 uptdl dim do ald[J, k] := t[J,k];

for J := 1 giep 1 untl] dim go t[J,0] := ncw{d];

for k =1 .1 uptll order do

begln beta := 1/(1 -factormk); conv i= trye ;
£frd = 1.gtep 1 4 dim go
t[J,k] 1= beta X t[J,k ~ 1] + (1 ~ beta) x ald[J,k - 1];
IQ:J

= g%gp dm go 4L xtypeld]l = 0
it abs(t[J,k] « atdalf,k ~ 1]) > mxmin x abs(t[J,k]) +
Mnmahsswconv := falge ; J t= dim gnd
gogd of testing Jj~th order approximation;
1L conv Lhen order := k
end of k loop for table updating and testing;
fox & = 1 gtep 1 until dim do result[j] := t[j,order]
gnd of extrapol for extrapolation ‘towards constrained minimumy

progadure output2({ncl,nc,ne3,nsearch,nrp,nv);
 lnteger nci,ncZ,nc3,nsearch,nrp,nv;
begln CARRIAGE(2 ); ABSFIXT(5,0,nel);
PRINTTEXT(S evaluations of functions for num. &iff. »);
NLCR; ABSFIXT(5,0,nc2);
PRINTTEXT(€ evaluations of functions for line searches >};
NLCR; ABSFIXT(5,0,nc3);
PRINTTEXT(K evaluations of derivatives »};
NLCR; ABSFIXT(5,0,nct + ne2 + ne3 x nv);
FRINTTEXT (€ sequivalent function evalustions »);
NLCR; ABSFIXT(5,0,nc2/nsearch);
PRINTTEXT{€ evaluations of functions per line minimum »);
NLCR; ABSFIXT(5,0,nrp);
PRINTTEXT(X rejected points because of constraint violation »)
end of output2 for printing number of function evaluations;

Irocedure output3(cycle,order,n,m,xmin,unin,functions,heading);

dnteger cjycle,order,n,m; hoolean heading;
Ised erray xmin,umin; procedure functions;
Lezin loteser 1,4; real srrvay swinl1:m]; CARRTAGE(2);
PRINTTEXT(€ extrapolation, eycle »); ABSFIXT(2,0,cycle);
PRINTTEXT(¥ , order »); ABSFIXT(2,0,order);
CARRTAGE(2 ); PRINTTEXT(¥ variable solution vector »);
for 4 t= 1 gtep t n
hegin NLCR; PRINTTEXT(+x
ABSFIXT(4,0,3); SPACE(:S); FLOT(6,3,5xminl 3]}

end of x-output;

CARRIAGE(2 ); PRINTTEXT(€ function function values

PRINTTEXT(¥ dusl solution »); functions{(onin,gmin};

for i 1= 1 glep ! n ; ;

begin NLCR; PRINTTEXT fgx)%? ABSFIXT{4;0,1); SPACE(6);
FLOT(6,3,eminl2]); SPACE(T); FLOD(S6,3, umnm)

end of g-outpat; heading := trye

end of output3 for mrinting extrapolated solutions;




gonment pege 8 of minimize;

zeal mocedyre vecvec(l,u,shift, a,b); yalue 1,u,shift;
intemer 1,u,shift; real axrey a,b;
k; pesl s; s = O3 for k := 1 gtep 1 uptdl u do
8 = alk] X b[shift + k] + 83 veevec :=
end of vecvec for computing the inner product of vectors a and b;

real Iwocedure metvec(l,u,1,e,b): yalue I,u,i;
intemer 1,u,1; real array a,b;
rk; real 85 s 1= 0; for k 3= 1 gtep 1 until u do
8 = a[1,k] x b[k] + 8; mtvec 1= &
gnd of matvec for computing i-th elemefit of matrix a X vector b3

gomment start of main program of minimize;

nv = feff := netl ¢= ne? = nel j= nsearch := nrp := 0;
headlng := true ; mexcycle := 0

objective := constraints := nlp := nonneg i= false ;
initr 1= 13 factor := 10A(~1/3);

£9x1==1§§sn1mmm+ngglogp[1] € ;

for § := 1 step 1 uutil n do xrmin[}] := xmin[ := x[ 413
for J :=um1m;;n§9

begin if xtype[J] < O Vv xtypeld] > 2 then goto terminal;

if xtype[l] # O then nv = nv + 1;
if xtype[d] = 2 then nonneg := constraints := Lrue ;
for k := O step 1 untll 6 do xtable[J,k] :=
end of checking types of variebles;
for 1 :=1 gtep 1 unlll m do
kegln ;.;t gtype[1] < 0 V gtype[1] > 3 then goto terminal;
i1f stypel1] = 1 they objective := true else
if st ype[i] = 2 V gtype[1] = 3 fhepn constraints := true ;
for k =0 gtep 1 until 6 go utable[1,k] =0
of checking constralnt types;
if objective A constraints
begln initr := aba(estimate)/100;
1f inltr < g2 then Inltr 1= 2;
maxcycle i= 95 nlp := Lrue ;
for 1 := 1 gtep 1 yntll m + n do logp{1] := Lrue
gnd of Initlating constrained minimization;
for cycle t= 0 ghep 1 ypfil maxcycle do
bezin comment sequential unconstrained minimization;
orderx,orderu; hpolesan convx,convuj
reycle(inttr X factorAcycle,xrmin,urmin, raxmin,saxmin);
1L 1 converged they
begly 1f cycle = O hey
for J := 1 skep 1 uotll n do xmin[3] := xrmin[Jj];
terminal
end 1f there are toc many iterationss
orderx := orderu := if cycle < 6 ihen cycle elge 6;
extrapol Extable, orderx,n,xrmin,xmin, convx };
extrapol{utable,orderu,m, urmin,umin,convu);
if coc # O ihen output2(nel,nc2,ne3,nsearch,nrp,nv};
if cycle > O-then
begly if coc ¥ O they
ocutput3{cycle, orderx,n,m,xmin,umin, functions, heading};
if convx then zoto terminal glae converged := fglse
end of comparing extrapolated solutions
end of sequential unconstrained minimizaticm;

terminal: for § := 1 ghep 1 yntil n do x{3] := xmin[J]
gnd of minimize;

%



comment en example where minimize Ils called to compute the smallest
distance between the set of points (x[11,x[2],x[3]) such that

z[1In2 + x[2]a2 + x[3]M2 € 5,
and the set of points (x[4],x[5],x[6]) satisfying the constraints

(x[B8] - 32 + x[5102 5
L < x[6] < 8.

— the starting point of the search is chosen to be (1,1,1,3,0,5);

Irocedure smdist(x,ex); resl BXYRY X,8%;
gomment thig procedure is used toc supply the objective funetion
and the congtraint functions ¢f the problem;
pegtn ax[1] t= —~ x[11A2 — x[2)A2 —~ x[3102 + 5;

gxi2] = ~ (x{h] -3 ~z[5Iae + 1;

gx[3] 1= ~ x[6] + &

gx[4] 3= x[6] - 1*'

ex(5] t= (x[1] = x[b]M2 + (x[2] — x[5112 + (x[3] — x[6]1)2
end of smdlst;

rrocedyre smdisti(x,dgdx); real srrey x,dedx;
comment, this procedure Is used to supply the first—order
derivatives of the problem funcilons;
begin for J := 1,2,3 do dgax(1,J] °~-2xxi.31;
t= - 2 X (x[’-P] - 3), dgdx[2,5] = — 2 X x[5];
= =13 dgdx[ 28] =13
for § = 1,2,3 do dgax(5,J] = 2 x (x[34] — x[J + 3]);
2,3 do agax(5,3 + 3] 1= = 2 x (x[3] ~ x[3 + 31)

s

= 1,2,3 do x[J] = 1; x[4] = 3; x[5] = 05 x[6] :=
1= 1 glep 1 untdl 6 do xtypely] := 14

1= 1,2,3,4 do gtypeli] := 2; gtype[5] :=
imize(x,smdist,xtype,gtype, fxye ,smdlstl,

sLxus ;r‘ﬁm—*},S,convergednﬂOO);
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Summary

This thesis is concerned with a number of methods for solving a constrained-
minimization or nonlinear-programming problem. The methods under consid-
eration have the following, common feature: they reduce the computational
process for solving a constrained-minimization problem to sequential uncon-
strained minimization of a penalty function combining in a particular way the
objective function, the constraint functions, and possibly one or more con-
trolling parameters. Well-known examples of such methods are the logarithmic-
potential method of Frisch and Parisot, the sequential unconstrained minimiza-
tion technique of Carroll, Fiacco and McCormick, the exterior-point methods
of Courant, Pietrzykowski and Zangwill, and Huard’s method of centres.

Penalty-function techniques are designed to take into account the constraints
of a minimization problem or, since almost none of the problems arising in
practice have interior minima, to approach the boundary in a specifically con-
trolled manner. The thesis starts therefore by classifying penalty functions
according to their behaviour in the neighbourhood of that boundary.

A separate treatment of interior- and exterior-point methods is avoided by
the study of mixed penalty-function techniques. Appropriate convexity and
differentiability conditions are imposed on the problem under consideration.
Furthermore, certain uniqueness conditions involving the Jacobian matrix of
the Kuhn-Tucker relations are satisfied by assumption. This implies that the
problem has a unique minimum X with a unique vector # of associated Lagran-
gian multipliers.

Under these conditions the minimizing trajectory generated by a mixed
penalty-function technique can be expanded in a Taylor series about (X,a).
This provides, as an important numerical application, a basis for extrapolation
towards (X,#). The series expansion is always one in terms of the controlling
parameter, independently of the behaviour of the mixed penalty function at the
boundary of the constraint set.

Next, there is the intriguing question of whether some penalty functions are
easier or harder to minimize than other ones. Accordingly, the condition number
of the principal Hessian matrix of a penalty function is studied. It comes out
that the condition number varies with the inverse of the controlling parameter,
independently of the behaviour of the mixed penalty function at the boundary
of the constraint set.

The parametric penalty-function techniques just named can be modified into
methods which do not explicitly operate with a controlling parameter. These
parameter-free versions, which are based on moving truncations of the con-
straint set, may be considered as penalty-function techniques adjusting the con-
trolling parameter automatically. The crucial pointis the efficiency of the adjust-
ment. It is established how the rate of convergence depends on the vector #



of Lagrangian multipliers associated with X, on the boundary properties of a
penalty function, on a weight factor p attached to the objective function, and
on a relaxation factor ¢. Huard’s method of centres is a remarkable exception:
its rate of convergence depends on the number of active constraints at %, and
on p and ¢.

The computational advantages and disadvantages of the penalty-function
techniques treated in the thesis are discussed in the last chapter. The parameter-
free methods do not provide a significant advantage with respect to the para-
metric techniques which have a controlling parameter in the penalty function.
Within the class of parametric techniques, there is no obvious reason for not
using a so-called “first-order” method with a logarithmic barrier function, a
quadratic loss function, or a mixture of these penalty functions.

An appendix wh ichpresents an ALGOL 60 procedure for constrained mini-
mization via a mixed parametric first-order penalty function concludes the
thesis.



— 105 —
Samenvatting

In dit proefschrift worden enkele methoden behandeld voor het oplossen van
een niet-lineair programmeringsprobleem. De onderhavige methoden hebben
gemeen dat zij het minimaliseren onder nevenvoorwaarden terugbrengen tot het
oplossen van een reeks minimaliseringsproblemen zonder nevenvoorwaarden.
Hiertoe worden de doelfunctie en de grensfuncties van het probleem en even-
tueel één of meer stuurparameters gecombineerd tot een te minimaliseren
boetefunctie van zodanige vorm dat schending van de nevenvoorwaarden wordt
verhinderd (inwendige methoden) of bestraft (uitwendige methoden). Bekende
voorbeelden van dergelijke methoden zijn de logarithmische potentiaalmethode
van Frisch en Parisot, de inwendige methode van Carroll, Fiacco en McCor-
mick, de vitwendige methoden van Courant, Pietrzykowski en Zangwill, en de
middelpuntsmethode van Huard.

Deze en andere, daarmee verwante methoden waarin een boetefunctie op-
treedt zijn ontwikkeld om de nevenvoorwaarden van een niet-lineair program-
meringsprobleem te behandelen ofwel, omdat bijna geen enkel praktijkpro-
bleem een inwendig minimum heeft, om de rand van het toegelaten gebied op
een speciale manier te naderen. Dit proefschrift begint daarom met een classi-
ficatie van boetefuncties naar hun gedrag bij die rand.

Een afzonderlijke behandeling van inwendige en uitwendige methoden is
overbodig. Het onderzoek richt zich op gemengde boetefuncties; de bereikte
resultaten leiden onmiddellijk tot overeenkomstige resultaten voor inwendige
en uitwendige methoden. Aan het niet-lineair programmeringsprobleem worden
verder bepaalde convexiteits- en differentieerbaarheidsvoorwaarden opgelegd.
Tenslotte is er, volgens een veronderstelling, voldaan aan éénduidigheidsvoor-
waarden, die verband houden met de Jacobi-matrix van de Kuhn-Tucker
relaties. Dit heeft o.a. tot gevolg dat het probleem precies één minimum X heeft
met daarbij een éénduidig bepaalde vector # van Lagrangemultiplicatoren.

Onder deze veronderstellingen kan de minimaliserende weg voortgebracht
door een gemengde boetefunctiemethode worden ontwikkeld in een Taylorreeks
rondom (¥,i7). Voor numerieke doeleinden is dit een belangrijk resultaat; men
heeft hiermee een basis voor extrapolatie naar (%,i). De Taylorreeks is steeds
een reeks in termen van de stuurparameter, hoe de boetefunctie zich ook ge-
draagt bij de rand van het toegelaten gebied.

Dan is er de belangrijke vraag of sommige boetefuncties moeilijker of gemak-
kelijker te minimaliseren zijn dan andere. Daartoe werd onderzocht de matrix
van tweede-orde afgeleiden van een boetefunctie, berekend in het punt waar
de boetefunctie zijn minimum aanneemt; in het bijzonder werd aandacht be-
steed aan het conditiegetal van deze matrix. Het blijkt dat dit conditiegetal
varieert met het omgekeerde van de stuurparameter, hoe de boetefunctie zich
ook gedraagt bij de rand van het toegelaten gebied.
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De hierboven genoemde, parametrische methoden kunnen gewijzigd worden
in methoden waarin een stuurparameter niet expliciet voorkomt. Deze para-
metervrije versies, die gebaseerd zijn op voortschrijdende afknottingen van het
toegelaten gebied, kunnen beschouwd worden als boetefunctiemethoden waarin
de stuurparameter automatisch wordt bijgeregeld. Hoe efficient verloopt dit
proces? Getoond wordt hoe de convergentiesnelheid afhangt van de vector
van Lagrangemultiplicatoren, van het gedrag van een boetefunctie bij de rand
van het toegelaten gebied, van een gewichtsfactor p waarmee de doelfunctie
wordt gewogen, en van een relaxatiefactor p. De middelpuntsmethode van
Huard blijkt een opmerkelijke uitzondering te zijn: de convergentiesnelheid van
deze methode hangt af van het aantal actieve beperkingen in X en van p en p.

De rekentechnische voor- en nadelen van de boetefunctiemethoden die in dit
proefschrift worden behandeld komen ter sprake in het laatste hoofdstuk. De
parametervrije methoden geven geen significante voordelen ten opzichte van de
parametrische methoden met een stuurparameter in de boetefunctie. Er is geen
duidelijke reden om, binnen de klasse van parametrische methoden, andere dan
z.g. “eerste-orde” methoden te gebruiken, met een logarithmische barriere-
functie, een kwadratische verliesfunctie, of een mengsel van deze boetefuncties.

Een appendix met een Algol procedure voor niet-lineaire programmering via
een gemengde parametrische eerste-orde boetefunctie besluit het proefschrift.
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I
Beschouw het programmeringsprobleem
min {f(x) [g(x) =0; i=1,...,m; xeEn}

met kwadratische doelfunctie f, concave en continu differenticerbare grens-
functies g4, ..., & €n compact toegelaten gebied R met niet-leeg inwendige
R°. Laat de matrix H van tweede afgeleiden van f positief definiet zijn en laat
Amin de kleinste eigenwaarde van H voorstellen. Zij X de oplossing van het
probleem. Wanneer x(r) € R° het punt is waar de logarithmische barriére-
functie

fx)—r ié:]lln gi(x)

zijn minimumwaarde over R°® aanneemt, dan is
Aeain [X(r) — Z]T [x(r) —X] <mr

voor elke positieve waarde van r.

II

Laat &(r) voor r > O gedefinieerd zijn als een punt waar een barriérefunctie
van de vorm

£6)+r 2 e

zijn minimumwaarde aanneemt over de verzameling
{xlgx) >0, i=1,...,m}

De bewering van Fletcher en McCann, dat de vectorfunctie &(r) onder de
door hen genoemde omstandigheden in de buurt van r = 0 ontwikkeld kan
worden in een machtreeks in termen van r?/3, is onjuist.

R. Fletcher and A. P. McCann, Acceleration techniques for non-
linear programming, in R. Fletcher (ed.), Optimization. Academic
Press, London, 1969, pp. 203-214.

I

Laat x(r) een punt voorstellen waar, voor positieve r, de geregularisecerde
barriérefunctie

F)—r* 2, plgi) + r]

zijn minimumwaarde aanneemt over de verzameling

S0 = {x |g:(x) +r>0; i=1,...,m},



en laat u(r) een m vector zijn met componenten
u(ry =r* ¢ {g:lx()1+r}; i=1...,m

Onder de voorwaarden van stelling 3.4.1 van dit proefschrift is er een omge-
ving van r = 0 te vinden waar de vectorfunctie [x(r), #(r)] eenduidig bepaald
is en continue k-de afgeleiden bezit.

A. V. Fiacco, A general regularized sequential unconstrained mini-
mization technique, SIAM J. Appl. Math. 17, 1239-1245, 1969.

v

De zwakke en de sterke dualiteitstelling van Dantzig, FEisenberg en Cottle zijn
ook geldig voor het primaire probleem

min [K(x,y) — y* D,K(x,y)]

X,y

onder de voorwaarden
D, K(x,y) <0, x =0,

en het duale probleem
max [K(x,y) — xT Dy K(x,y)]
X,y

onder de voorwaarden

D, K(x,y) = 0, y=0.

Het is dus niet nodig om aan het primaire probleem de voorwaarde y > 0
en aan het duale probleem de voorwaarde x = 0 op te leggen.

G. B. Dantzig, E. Eisenberg and R. W. Cottle, Symmetric dual
nonlinear programs. Pac. J. Math. 15, 809-812, 1965.

F. A. Lootsma, Congruent, half-congruent and acongruent duality
theorems in concave programming. Nat. Lab. report 3979, Philips
Research Laboratories, Eindhoven, The Netherlands, 1965.

\%

Pearson heeft zijn onderzoek van de gevolgen, die herhaald initieren van de
richtingsmatrix heeft voor de algorithme van Davidon, Fletcher en Powell om
een functie van n variabelen te minimaliseren, ten onrechte beperkt tot de
gevolgen van initieren na elk (n 4 1)tal iteraties.

J. D. Pearson, Variable metric methods of minimization. The Com-
puter J. 12, 171-178, 1969.

VI

De door Fletcher voorgestelde methode met variabele metriek, waarbij tijdens



het iteratieproces een lijnminimum in de zoekrichting niet gelocaliseerd be-
hoeft te worden, is voor het minimaliseren van boetefuncties niet aan te bevelen
boven de oorspronkelijke algorithme van Davidon, Fletcher en Powell.

R. Fletcher, A new approach to variable metric algorithms. Technical
paper 383, Atomic Energy Research Establishment, Harwell, 1969.

viI

In een plat vlak is een rechthoekig trefplaatje T gelegen met de ribben even-
wijdig aan de X-as, resp. de Y-as van een coordinatenstelsel in dat viak. De
positie van het plaatje is niet nauwkeurig waar te nemen; het snijpunt (x, y)
van de diagonalen van T is een normaal verdeelde stochastische grootheid
(de waarneemfout) met verwachting (0,0) en momentenmatrix

D2 0
0 D2 )

Het plaatje wordt getroffen door een salvo van n gelijktijdig afgeschoten deeltjes.
Het trefpunt (u,, v;) van het i-de deeltje is een normaal verdeelde stochastische
grootheid met verwachting het mikpunt (&;, ;) en momentenmatrix

o2 O
0 a2 J

De trefpunten (u;, v;), i=1, ..., n, en de waarneemfout (x, y) zijn onaf-
hankelijk verdeeld. Laat P,(&y, 14, - . . » &ns M) de kans zijn dat tenminste één
van de deeltjes in het salvo afgeschoten volgens het patroon {(¢,7,),...,
(&, M)} het trefplaatje raakt. Wanneer o, groot is t.o.v. de halve lengte /,
van het plaatje en/of o, groot t.o.v. de halve breedte /,, wordt het maximum
van P, over alle patronen gegeven door

LL\?
I ()
Gy Oy

(lxl,,n 12
s=2——} .
DxD,,n>

VIII

met

Het verdient aanbeveling om het snijprobleem in een golfkartonfabriek, waar
men rechthoekige platen snijdt uit een voortlopende baan golfkarton, te for-
muleren als een z.g. overdekkingsprobleem met gelijkheidsbeperkingen. In de
formulering treden de complete of gesloten snijpatronen, en eventueel andere
patronen met bijzondere eigenschappen, op als activiteiten die al dan niet uit-
gevoerd moeten worden. Dit kan leiden tot een rekentechnisch aanvaardbare



probleemstelling waarin ook de vaste kosten van een omstelling der messen, de
toleranties op de lengte en breedte van de gevraagde platen golfkarton, en de
gewenste verdeling van het orderpakket over de snij-inrichtingen zijn verdiscon-
teerd.

F. A, Lootsma, An algorithm for the cutting-stock problem in the
corrugated-cardboard factory. Nat. Lab. Technical Note 43/66, Philips
Research Laboratories, Eindhoven, Netherlands.

R.S. Garfinkeland G. L. Nemhauser, The set-partitioning probiem:
set covering with equality constraints. Operations Research 17, 848-856,
1969.

IX

Als model voor een activiteitsduur in planningstechnieken is een gammaver-
deling te verkiezen boven een betaverdeling.

F. A. Lootsma, A gamma distribution as a model of an activity dura-
tion. Méthodes 2 chemin critique. Actes du Congrés Internet I, Vienne,
1967. Dunod, Paris, 1969.

X

Het voorstel van de commissie-Braun tot het instellen van een centraal orgaan
post-academisch onderwijs, met als taak het stimuleren, coordineren en finan-~
cieren van post-academisch onderwijs aan de universiteiten en hogescholen, is
door de Academische Raadten onrechte verworpen.

Rapport post-academisch onderwijs (uitgebracht door de commissie-
Braun van het verbond van Wetenschappelijke Onderzoekers). Weten-
schap en Samenleving, supplemeént op de 18de jaargang, april/mei 1964.

Brief van de Academische Raad aan de Minister van Onderwijs en
Wetenschappen, nr. AR - 1627, 31 december 1966, met bijlagen.

X1

Terugziende op de periode waarin hij lid was van het Air Defence Research
Committee (1935-1939) schrijft Churchill: “Iz is often possible in England for
experienced politicians to reconcile functions of this kind (felle kritick op, en
waar mogelijk loyale medewerking aan het regeringsbeleid, L.) in the same way
as the sharpest political differences are sometimes found not incompatible with
personal friendship. Scientists are however a far more jealous society”. Een der-
gelijke bewering waarmee de loyaliteit en onderlinge communicatie van de be-
oefenaars der exacte wetenschappen ongemotiveerd in twijfel getrokken wor-
den en die ook in onze tijd de verstandhouding tussen politici en wetenschaps-
mensen kan vertroebelen, is verwerpelijk.

W.S. Churchill, The second world war. Vol. I, Cassell & Co., London,
1948, p. 120.



