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Abstract 

This monograph is concerned with a number of penalty-function tech­
niques for solving a constrained-minimization or nonlinear-program­
ming problem. These techniques are designed to take into account the 
constraints of a minimization problem or, since almost none of the 
problems arising in practice have interior minima, to approach the 
boundary of the constraint set in a specifically controlled manner. The 
monograph starts therefore with a classification of penalty functions 
according to their behaviour in the neighbourhood of that boundary. 
Appropriate convexity and differentiability conditions are imposed on 
the problem under consideration. Furthermore, certain uniqueness con­
ditions involving the Jacobian matrix of the Kuhn-Tucker relations are 
satisfied by assumption. This implies that the problem has a unique mini­
mum x with a unique vector -;;; of associated Lagrangian multipliers. 
Under these conditions the minimizing trajectory generated by a mixed 
penalty-function technique can be expanded in a Taylor series about 
(X,Ü). This provides, as an important numerical application, a basis for 
extrapolation towards (X,ü). The series expansion is always one in terros 
of the cantrolling parameter independently of the behaviour of the 
mixed penalty function at the boundary of the constraint set. Next, there 
is the intriguing question of whether some penalty functions are easier 
or harder to minimize than other ones. Accordingly, the condition 
number of the principal Hessian matrix of a penalty function is studied. 
It comes out that the condition number varies with the inverse of the 
controlling parameter, independently of the behaviour of the mixed 
penalty function at the boundary of the constraint set. The parametrie 
penalty-function techniques just named can be modified into methods 
which do not explicitly operate with a cantrolling parameter. They may 
be considered as penalty-function techniques adjusting the cantrolling 
parameter automatically. It is established how the ra te of convergence 
of these methods depends on the vector u of Lagrangjan multipliers 
associated with x, on the boundary properties of a penalty function, 
on a weight factor p attached to the objective function and on a relaxa­
tion factor(!. The metbod of eentres is a remarkable exception: its rate 
of convergence depends on the number of active constraints at x, and 
on p and IJ· The computational advantages and disadvantages of the 
penalty-function techniques treated in the monograph are discussed. 
There is an appendix presenting an ALGOL 60 procedure for constrained 
minimization via a mixed parametrie first-order penalty function. 
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1. INTRODUCTION 

1.1. Constrained minimization via penalty functions 

The constrained-minimization problem to be considered in this thesis is d~ 
finedas 

minimizef(x) subjec: to the constraints } 
g;(x) 0; l 1, ... , m, 

(1.1.1) 

where J, gl> ... , gm denote real-valued functions of a vector x in the n· 
dimensional vector space En. There is an extensive literature on this problem 
(alternatively referred to as nonlinear-programming problem) and a large 
number of methods for solving it have been proposed in the last two decades. 
We shall here he dealing with methods which reduce the computational process 
to unconstrained minimization of a penalty function combining in a particular 
way the objective function J, the constraint functions g1 , ••• , gm and pos­
sibly one or more controlling parameters. Surveying the literature one can 
distinguish two classes of penalty-function techniques both of which have been 
referred to by expressive names. The interior-point methods operate in the 
interior R.<' of the constraint set 

R ={x Jg;(x) ~ 0; i l, ... , m}. (1.1.2) 

The exterior-point methods, on the other hand, present an approach to a mini­
mum solution of (1.1.1) from outside the constraint set. 

There are three interior-point methods that have attracted considerable 
theoretica! and computational attention. First, there is the logarithmic-pro­
gramming method, originally proposed by Frisch (1955). It was further devel­
oped by Parisot (1961) to solve Iinear-programming problems, and later on the 
present author (1967, 1968a) gave a detailed treatment of the metbod as a tooi 
for solving nonlinear problems. Second, we find the sequentia! unconstrained 
minimization technique (SUMT). It wai originally suggested by Carroll (1961) 
and further developed by Fiacco and McCormick (1964a, 1964b, 1966), 
Fomentale (1965), and Stong (1965). It is tending to he abandoned in favour 
of logarithmic programming, as appears from recent work of Fiacco and 
McCormick (1968). Last, there is an interior-point metbod described by 
Kowalik (1966), Box, Davies and Swann (1969), and Fletcher and McCann 
(1969). 

The exterior-point methods have a somewhat Jonger history. The fust sug­
gestion here was given by Courant (1943). Further · developments came from 
Ablow and Brigham (1955), Camp (1955), Butler and Martin (1962), Pietrzy­
kowski (1962), Fiacco and McCormick (l967a), and Beltrami (1967, 1969a). 
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They were mainly concerned with a penalty function which is here referred to 
as the quadratic loss function. A more general treatment of the exterior-point 
methods was presented by Zangwill (1967) and Roode (1968}. 

lnterior- and exterior-point methods have particular advantages and suffer 
from particular disadvantages that will be explained later on. Accordingly, 
combinations of these methods have been designed. The :first ideas came from 
Fiacco and McCormick (1966) who proposed a penalty function for incor­
porating the inequalities as well as the equality constraints of a problem. Mixed 
penalty functions have independently been studied by Fiacco (1967), by the 
author (1968b), and by Fiacco and McCormick (1968). 

The appearance of controlling parameters in a penalty function poses the 
numerical question of how to choose appropriate values forthem and how to 
use the information gatbered during the computational process. One bas to 
oompromise between the desire for rapid convergence and the necessity to 
avoid minimization of extremely steep-valleyed penalty functions, which may 
cause all kinds of numerical dif:ficulties. Acceleration of the convergence has 
been obtained by extrapolation, which is generally a powerful tooi for approx­
imating the limit of an in:finitesimal process; we may, for instance, refer to 
Laurent (1963), Bulirsch (1964), Bulirsch and Stoer (1964, 1966), and Veltkamp 
(1969). In the field of penalty-function techniques a basis for extrapolation (the 
Taylor series expansion ofthe miniruizing trajectory about a minimum solution) 
was :first derived by Fiacco and McCormick (1966) for SUMT, later on by the 
author (1968a, 15'68b) for logarithmic programming and the mixed penalty­
function techniqu.::s. 

Murray (1967) introduced the question of conditioning of a penalty function 
in order to compare some interior- and exterior-point penalty functions. This 
idea bas recently been generalized by the autbor (1969) to study how rapidly, 
for various methods, a certain condition number varies with the controlling 
parameter. 

An interesting development was initiated by Rosenbrock (1960) and continued 
by Huard (1964) who proposed tbe method of centres. It bas been explored, 
theoretically and computationally, by Faure and Huard (1965, 1966), BuiTrong 
Lieu and Huard (1966), Huard (1967, 1968) and Tremolières (1968). The metbod 
of eentres generates a sequence of points converging to a minimum solution of 
the problem. Each of these points (centres) is obtained by unconstrained maxi­
mization of a distance function: a partienlar combination of the objective func­
tion and the constraint functions. However, some distance functions may also 
be regarcled as penalty functions without controlling paramete.rs. Starting from 
this point of view, Fiacco and McCormick (1967b) presented a parameter-free 
version of SUMT, and Fiacco (1967) demonstrated tbat similar versions can 
he obtained for a large class of interior-point as well as exterior-point methods. 
Slightly earlier, a parameter-free exterior-point metbod was suggested by 
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Kowalik (1966). Computational experience, however, prompted the author 
(1968c) to undertake a theoretica! study of the rate of convergence of these 
methods as compared with the above-mentioned, parametrie techniques. 

The above survey does not include all the penalty functions that have been 
proposed inthelast few years. We have restricted ourselves to methods which 
operate with penalty functions possessing at least continuous fust-order partial 
derivatives in their definition area. Then, the gradient of a penalty function 
vanishes at a minimizing point. This appears to be a particularly useful relation 
for theoretica! investigations. Fiacco and McCormick (1964a) discovered that 
SUMT provides primal-feasible as wellas dual-feasible solutions ofthe problem. 
In so doing, they made a conneetion between penalty-function techniques and 
the duality theory for nonlinear programming developed in the years before by 
Dorn (1960a,b), Wolfe (1961), Huard (1962, 1%3) and Mangasarian (1962). 
The vanishing of the gradient of a penalty function at a minimizing point is 
also the basis for investigation of the minimizing trajectory and its Taylor series 
expansion about a minimum solution of problem (1.1.1). 

Differentiability has even more implications, however. Computational suc­
cesses with penalty-function methods depend critically on the efficiency of un­
constrained-minimization techniques. Among these, some of the gradient tech­
niques, using first-order and possibly secoud-order partial derivatives of the 
function to be minimized have proved to be very successful. The metbod of 
steepest descent (Curry (1944), Goldstein (1962)) is generally insufficient for 
minimizing penalty functions. More effective are the conjugate-gradient methods 
(Hestenes and Stiefel (1952), Fletcher and Reeves (1964), Shah, Buehler and 
Kempthorne (1964), Daniel (1967a, l%7b), Polak and Ribière (1969)). A very 
powerfut technique is Newton's method (Crockett and Chernoff (1955), Gold­
stein and Price (1967), Fiacco and McCormick (1968)), but it has the serious 
disadvantage that explicit evaluation of the secoud-order partial derivatives is 
required. Therefore, one finds an abundant literature on the quasi-Newton or 
variable-metric methods requiring first-order derivatives only, but presenting a 
sophisticated combination of conjugate-gradient techniques and Newton's 
method (Davidon (1959), Fletcher and Powell (1963), Broyden (1965), Rosen 
(1966), Broyden (1967), Stewart (1967), Bard (1968), Davidon (1968), Fiacco 
and McCormick (1968), Myers (1968), Zeleznik (1968), Pearson (1%9), 
Fletcher (1969a, 1969c), Goldfarb (1%9), Powell (1969)). There arealso several 
methods for minimization without ca/culating derivatives (Nelder and Mead 
(1964), Powell (1964), Zangwill (1967c)), but at least to our knowledge, only 
Powell's metbod has been used in conjunction with penalty-function tech­
niques. It is doubtful whether this metbod will be successful if the penalty func­
tion is not differentiable at its minimizing point. 

Survey papers with some comparison of a number of methods have been 
presented by Spang (1%2), Fletcher (1965), Box (1966), Greenstadt (1967), 
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fopkis and Veinott (1967), Box, Davies and Swann (1969), and Beltrami 
(1969b). 

Our interest in efficient methods of constrained minimization was aroused, 
first, by the problems arising in the design of the Philips Stirling engine (see 
Meijer (1969)). Shortly thereafter, our attention was asked for the problem of 
economie dispatching, a description of which may be found in Carpentier (1962) 
and Sassou (1969). The research which is reported in the present thesis was 
carried out since that time, mainly on the grounds of the idea that penalty­
runetion techniques may be useful in solving technological problems. 

1.2. Bebaviour of penalty fnnctions at the bonndary of the constraint set 

In view of the abundance of penalty-function techniques just sketched we 
have been searching for a significant classification. Basically, penalty-function 
techniques are designed to take into account the constraints of a minimization 
problem or, since almost none of the practical problems have interior minima, 
to approach the boundary in a specifically controlled manner. It is therefore 
natural to classify penalty functions according to their behaviour in the neigh­
bourhood of that boundary. This is the point of departure for the present thesis. 

To be specific, let us start with the parametrie interior-point methods. For 
this class of methods we have been concerned with penalty functions of the 
form 

m 

f(x)- r l: p[gt(x)]. (1.2.1) 
1=1 

Here, r denotes a positive controlling parameter. The function q; is a function 
of one variabie rJ, defined and continuously differentiable for positive values 
of rJ, and such that q;(O+) = -oo. Hence, the function (1.2.1) is defined in 
the interior R0 of R, but it has a positive singularity at every boundary point 
of R. Under mild conditions a point x(r) e R0 exists minimizing (1.2.1) over ~ 
for any r > 0. This is due to the second term in (1.2.1) which presentsitself as 
a harrier in order to prevent vialation of the constraints. Following Murray 
(1967) we shall therefore briefly refer to interior-point penalty functions as 
harrier functions. Let {rk} denote a monotonie, decreasing null sequence as 
k- oo. Then any limit point of {x(rk)} is a minimum salution of (1.1.1). 

Formula (1.2.1) shows that there are no differences in the treatment of the 
constraints: they are all subject to the same transformation q;, in our opinion 
a reasanabie approach as long as one does not make any special assumption 
on some of the constraint functions. 

The classification that we have introduced is based on a property of the 
derivative p' of q;: a harrier function is said to be of order À if the function q;' 
is analytic and if it has a pole of order À at rJ 0. The choice of the derivative 
instead of the function itself is not surprising; in the preceding section we have 
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seen that the first-order partial derivatives of penalty functions are of great 
importance. 

lllustrative examples are given by the cases where 

(1.2.2) 

with a positive À. For }, 1 we obtain the logarithmic harrier function on which 
the logarithmic-programming metbod is based. ForA = 2 the function (1.2.1) 
reduces totheinverse harrier function for the sequentia! unconstrained-minimi­
zation technique. Finally, the inverse quadratic harrier function named by 
Kowalik (1966), Box, Davies and Swann (1969), and Fletcher and McCann 
(1969) is obtained for J.. = 3. 

Parametrie exterior-point methods can be classified in a similar manner. Here 
we have been concerned with penalty functions of the form 

m 

(1.2.3) 

where s is a positive controlling parameter, and V' a continuously differentiable 
function of one variabie 17 such that 

VJ('Y/) = 0 for 
VJ(rJ) < 0 for 

'YJ~O, 
TJ<O. 

(1.2.4) 

Tbe secoud term in (1.2.3) gives a (positive) contribution if, and only if, x~ R. 
Constraint violation is progressively weighted as s deercases to 0. Under certain 
conditions a point x(s) exists minimizing (1.2.3) over En for sufficiently small, 
positive values of s. Any limit point of the sequence {x(sk)}, where {sk} is a 
monotonie, decreasing null sequence, is a minimum solution ofproblem (1.1.1). 
Following Fiacco and McCormick (1968) we shall refer to penalty functions 
of the type (1.2.3) as loss functions. 

For classification purposes we have introduced a function w such that 

w('Y/) VJ('Y/) for 'YJ ~ 0. 

Now a loss function is said to he of order# if the derivative w' of w is analytic 
and if it bas a zero of order # at 'YJ = 0. 

Simple examples of loss functions are obtained by using 

w'(TJ) = (-TJ)'J (1.2.5) 

witb positive #· For # = 1 we find the quadratic toss function wbicbbas been 
referred to in the previous section. 

We have tbus far confined ourselves to penalty functions which contain a 
controlling parameter. The above classification can, however, readily he ex­
tended to a class of metbods whicb may he considered as a generalizatîon of 
the metbod of centres. These methods are based on penalty functions without 
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cantrolling parameter. A detailed treatment, however, is postponed until that 
subject is reached in chapter 4. 

In the present thesis, parametrie harrier functions will be represented by 

m 

Br(x) = f(x)- rA I: cp[g;(x)], (1.2.6) 
l=l 

where À denotes the order of the pole of fP' at 'fJ = 0. Raising r to the power 
À yields eertaio advantages when we are dealing with the Taylor series expan­
sion of the minimizing function or "minimizing trajectory" associated with the 
harrier function in question. Similarly, a parametrie loss function is given by 

m 

(1.2.7) 

where !l stands for the order of the loss function (the order of the zero of w' 
at 'fJ = 0). 

1.3. Scope of tbe thesis 

In chapter 2 we present material which is needed in the rest of the thesis: 
necessary conditions (sec. 2.1) and suftleient conditions (sec. 2.2) for constrained 
minima, a characterization of the boundary and the interior of the constraint 
set (sec. 2.3), the definition and some properties of convex sets and convex 
functions (sec. 2.4), and lastly the concept of a convex-programming problem 
and some duality theorems (sec. 2.5). 

In chapter 3 the parametrie penalty functions are studied. Mixed penalty 
functions are introduced in sec. 3.1. In so doing we avoidaseparate treatment 
of barrier-function and loss-function methods. Primal and dual convergence of 
mixed penalty-function methods are established in secs 3.2 and 3.3 respectively. 
In sec. 3.4 the behaviour ofthe minimizing trajectory in a neighbourhood ofthe 
constrained minimum is investigated. The analysis is carried out under the 
so-called Jacobian uniqueness conditions. Lastly, sec. 3.5 deals with the Hessian 
matrix of mixed penalty functions evaluated at a minimizing point, and with 
the behaviour of its eigenvalues as r decreases to 0. 

In chapter 4 generalizations of the metbod of eentres are presented. A rough 
sketch_ of the basic idea (moving truncations of the constraint set) is contained 
in sec. 4.1. The convergence of the moving-truncations barrier-function tech­
niques and their relationship with parametrie barrier-function techniques are 
established in sec. 4.2. In sec. 4.3 the rate of convergence of these methods is 
studied. A similar analysis of the moving-truncations loss-function techniques 
is presented in sec. 4.4. 
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In chapter 5 the results of the preceding chapters are used in order to motivate 
the choice of a mixed parametrie first-order penalty function for computational 
purposes. 

Finally, there is an appendix presenting an ALGOL 60 procedure for con­
strained minimization via the last-named penalty function. 
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2. MATHEMATICAL PRELIMINARIES 

2.1. Necessary conditions for constrained minima 

We begin by introducing the following terminology. 

Definition. Any point x eEn satisfying the constraints of problem (1.1.1) is a 
feasible salution of (1.1.1). 

Definition. The set of all feasible solutions 

R = {x lg1(x) ~ 0; 1, ... , m} (2.1.1) 

is the constraint set of (1.1.1 ). 

Definition. A feasible solution x is a local minimum solution, or briefly a local 
minimum, of (1.1.1) if there is an e-neighbourhood 

N(x,e) {x !x eEn; llx-xll < e} 

of x such thatf(x) ::::::;_f(x) for all x eR n N(x,e). 

Definition. A feasible solution x is a global minimum solution, or briefly a global 
minimum, of (1.1.1) if f(x) ::::::;_f(x) for all x ER. 

Definition. A local (or global) minimum x of problem (1.1.1) is a local (or 
global) unconstrained minimum of /if an s-neighbourhood N(x,s) of x can be 
found such thatf(x) ::::::;_f(x) for all xeN(x,e). 

We shall be assuming that the problem functions /, gt. ... , gm have con­
tinuons fixst-order partial derivatives in En. The gradients of f and g1 will be 
denoted by V f and V g; respectively. 

lt will he convenient to distinguish the constraints which are active at a 
feasible solution x. Therefore we introduce: 

A(x) = {i lg;(x) = 0; i::::::;_ m}. (2.1.2) 

We shall now move on to necessary conditions for local minima of (1.1.1) 
which have been formulated by John (1948) and Kuhn and Tucker (1951). The 
concepts to be used in deriving them are largely due to the work of Arrow, 
Hurwicz and Uzawa (1961). 

Definition. A vector y E En is a feasible direction at x E R if there exists a posi­
tive number fto such that x ft y is a feasible solution of (1.1.1) for all 
0 ft< fto· 

Lemma 2.1.1. If the constraint functions g 1 , ••• , gm have continuons first­
-order partial derivatives in Em then any y E En satisfying the strict inequalities 
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at a feasible salution x is a feasible direction at x. 
Prooj: Let us start with an arbitrary iE A(x) and let us define hl.p) = g 1(x ft y). 
Then h1(0) = 0 and h/(0) = \lg1(xY y > 0. Hence we have, by the continuity 
of h;', that a positive p,1 exists such that hlp) > 0 for any p,, 0 ~ft < flt· 

If i 1= A(x), then g 1(x) > 0 and consequently g1(x + ft y) > 0 for all non­
negative fl smaller than a certain positive p,1• 

Lastly, we choose flo min (,a1 , ••• , flm), which completes the proof. 

An attempt to find necessary conditions for local minima of inequality-con­
strained problems was made by John (1948). His result is based on the theory 
of linear inequalities. A detailed treatment of this theory falls beyond the scope 
of the present thesis. We shall use some theorems, the proof of which can be 
found for instanee in Zoutendijk (1960), sec. 2.2. The result of John's study is 
expressed in: 

Theorem 2.1.1. If the functionsj, g 1 , ••• , gm have continuons first-order par­
tial derivatives in E"' and if x is alocal minimum of (1.1.1), then there exist 
uonnegative multipliers û0 , û1 , ••• , Üm, at least one of which is positive, such 
that 

u, Vf(Xl-;~, ü, \lg,(X) 0, I 
ü1 g1(x) 0; z = 1, ... , m. ~ 

Prooj: It must be true that either the system 

\,7g;(xY y > O; ie A(x) 

is inconsistent or that, by lemma 2.1.1, 

for all y EEn satisfying (2.1.4). Anyhow, the system 

-vf(x)T y > o ~ 

\lgt(x)T y > o; ie A(x) ~ 

(2.1.3) 

(2.1.4) 

is inconsistent. We canthen invoke the following theorem (Zoutendijk (1960), 
p. 9): Let B denote an n-column matrix and y an n vector. The system By > 0 
(the inequality sign expresses a vector inequality such that any component of 
By is positive) is inconsistent if, and only if, the transposed system BT u = 0 
has a nontrivial, nonnegative solution. Thus, the theorem states that the system 
By > 0 is inconsistent if, and only if, one of the rows of Bis a nonpositive linear 
combination of the remaining rows. Applying this we find that nonnegative 
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multipliers ü0 and ü1, ie A(x), exist, at least one of which is positive, such that 

Üo vf(x)- 2::_ Üt vgl(x) 0. 
I<A(x) 

Finally, we define ü1 0 for all i fj A (.X), and this completes the proof. 

Let us discuss this result in more details. Suppose that (2.1.4) happens to be 
consistent. Then the system 

has the trivial solution only, and it must accordingly be true that ü0 =ft 0. 
Similarly, ü0 cannot vanish if the gradients v g1(x), ie A(x), are linearly inde­
pendent. Dividing then the fust relation in (2.1.3) by ü0 we find that vf(x) 
is a nonnegative linear combination of the gradients v g1(x), ie A( x). This is 
precisely aresult we need in the subsequent analysis. We shall therefore con­
cern ourselves with a regularity condition (in this field frequently referred to as 
a constraint qualification) implying ü0 =ft 0 if it is imposed on problem (1.1.1 ). 

The basic idea underlying the proof of John's theorem was that a decrease 
of the objective function cannot be found if one performs a small step from x 
into the constraint set. In proving the theorem, however, one only considers 
the effect of small steps along those feasible directions which satisfy the strict 
inequalities (2.1.4). A natura} extension could probably be obtained by treating 
directions y satisfying 

(2.1.5) 

However, a simpte example is sufficient to show that every y which satisfies 
(2.1.5) is not necessarily a feasible direction at x. Let us therefore first consider 
sets of directions which allow us to perform small steps from x into R along 
curves. 

Definition. A vector y e En is an attainable direction at x e R if there exists an 
n-vector valued function () of a real variabie "' which has the following proper­
ties. 
1. A positive "' exists such that 8("1) is defined for 0 ~'IJ < 'YJ and contained 

in R. 
2. 8(0) =x. 
3. The function 8 has a right-hand-side derivative 8'(0) at 'IJ = 0, and 8'(0) = y. 
The function 8 is said to define a contained path with origin x and original 
direction y. 

The paper by Arrow, Hurwicz, and Uzawa (1961) contains an example which 
shows that the set of attainable directions at x e R is not necessarily closed. 
Therefore we introduce the following: 
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Definition. Any element of the ciosure of the set of attainahle directions at 
x e R is a semi-attainable direction at x. 

Lemma 2.1.2. Ifthe constraint functions gt. ... , gm have continuons first-order 
partial derivatives in En, then any semi-attainahle direction y at x E R satisfies 
the inequalities 

Proof. It is sufficient to prove the validity of these inequalities for an attainahle 
direction y at x. Let 8(rJ) define a contained path with origin x and original 
directiony. Forany iE A(x)we haveg1[8(0)} = Oandg1[8(rJ)]? 0, 0 ~ 17 < rJ, 
whence 

Lemma 2.1.3. If the functions f, g h ••• , gm have continuons fust-order partial 
derivatives in E", and if x is a Iocal minimum of (1.1.1), then 

vf(x)r y? o, 

for any semi-attainahle direction y at x. 
Proof. This lemma can he proved in a similar way as the preceding one. 

Definition. A vector y E En is a locally constrained direction at x E R if 

\lg1(x)r y? 0; iE A(x). 

We may now summarize the ahove results as follows. Any feasihle direction 
at x ER is attainahle; any attainahle direction at x is semi-attainahle; any 
semi-attainable direction at x is locally constrained at x. An example which 
demonstrates that a locally constrained direction at x E R is not necessarily 
semi-attainahle may be found in the paper by Kuhn and Tucker (1951). For 
this reason we introduce the following qualification. 

Definition. A feasible salution x of (1.1.1) is qualified if any locally constrained 
direction at x is semi-attainable at x. 

A discussion of the above qualification will he presented later on. We are 
now in a position to show that the relations (2.1.3) must hold with nonzero i10 

at a qualified minimum solution. This is expressed by the well-known theorem 
of Kuhn and Tucker: 

Theorem 2.1.2. If the functions f, g 1, ••• , gm have continuons first-order par­
tial derivatives in Em and if x is a qualified feasihle salution of (1.1.1), then a 
necessary condition for x to he a loca1 minimum of (1.1.1) is that nonnegative 
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multipliers ü1 , ••• , üm can be found such that 

vf(x) ~ ü; vglx) o, ) 
i= 1 ~ 

ü1 g1(x)=0; i l, ... ,m.~ 
Proof Using lemma 2.1.2 and 2.1.3 we find that 

vf(x)T y o 
for any vector y EEn such that 

\Jg1(x)T y ;;" O; ieA(x). 

(2.1.6) 

We may now restate the well-known theorem of Farkas: Let c and x denote 
veetors in En and let B be an n-column matrix. Then cT x ;;" 0 for any x satis­
fying B:t ;;" 0 if, and only if, cT is a nonnegative linear combination ofthe rows 
of B. Fora proof of Farkas' theorem the reader is referred to Zoutendijk (1960), 
p. 8. Applying Farkas' theorem we find that nonnegative multipliers ü;; iE A(x), 
exist such that 

vf(x)- L: üt \lg;(x) o. 
t•A(x) 

Defining û1 = 0, i e A(x), we can readily complete the proof. 

According to the theorem of Kuhn and Tucker it is necessary for x to be a 
local minimum that v f (x) is a nonnegative linear combination of the gradients 
\jg1(x) of the active constraints at x. This is expressed by the Kuhn-Tucker 
relations (2.1.6). However, in proving (2.1.6) we have imposed an additional 
condition on x in order to guarantee that vf(x)T y ;;" 0 for any locally con­
strained direction at x. Conditions of this kind have become quite familiar in 
nonlinear programming under the name of con.~traint qualification. Kuhn and 
Tucker (1951), for instance, required any locally constrained direction to be 
attainable at any feasible solution. 

Several authors have been dealing with the questîon of how to find simple 
conditions implying a constraint qualification. An extensive treatment of these 
attempts will not be given bere. In the next theorem we only reeall a number of 
results which are due to Arrow, Hurwicz and Uzawa (1961), Mangasarian and 
Promowitz (1967), and Fiacco and McCormick (1968). 

Theorem 2.1.3. Let x be a feasible solution of problem (l.l.l). If (a) the func­
tions g 1 , ••• , gm have continuons first-order partial derivatives in Em and (b) for 
some locally constrained direction y 0 at x a partitioning of A(x) into two dis­
junct subsets A 1(x) and A 2 (x) can be found with the following two properties: 
(i) \jg1(x)T Yo > 0; iE A 1(x), 

(ii) the gradients \jg1(x), iE A 2(x), linearly independent, 
then x is a qualified feasible solution of problem n.l.l ). 
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Proof. Let y be a nonzero locally constrained direction at x. lt is sufficient to 
demonstrate that the direction z = y e y 0 is attainable at x for any posi­
tive e. Then y is semi-attainable at x. We can easily obtain 

\lg1(x)T z > 0; iE A 1(x), 

\lgtCxY z ~ 0; iE A 2(x). 
Let Az(x,z) {i ii E A2(x); \lg1(x)T z = 0}. 

We try to construct a contained path 8(rJ) with origin x and original direction z. 
Let G(rJ) denote the matrix with columns \lg1[B(rJ)], iE A2(x,z). We define 
8(0) =x and B'(rJ) as the projection of z on the Iinear subspace of En which 
is orthogonal to the columns of G(rJ). Then 

IJ'(rJ) = [ln G(rJ) {G(rJ)T G(rJ)}- 1 G(rJ)T] z. 

The choice is possible since the columns of G(O) are, by assumption, linearly 
independent. This implies that the inverse of G(O)T G(O) exists. Similarly, the 
inverse of G(rJ)T G(rJ) exists by thè continuity of the gradients, implying that 
the columns of G(rJ) are linearly independent for sufficiently small, positive 'Y/· 
Obviously, 8'(0) = z. 

lt remains to show that we have constructed a path which is contained in R. 
For any iE A 1(x) and any iE A 2(x)- Aix,z) we have g1[8(0)] 0 and 

\7g;(8(0)] 8'(0) = \lgb)T Z > 0, 

so that g1[B(rJ)] > 0 for sufficiently small, positive rJ. Let us finally consider 
an iE À 2(x,z). The mean-value theorem leads to 

with 0 ~ t; ~ "'· The right-hand side vanishes since, by construction, tJ'(l;) is 
orthogonal to \7g1[1:1(t;)] for any iE A2(x,z). 

Combining the results we find that z is an attainable direction at x, and 
consequently y is semi-attainable at x. This proves the theorem. 

lt is worthwhile to note that either A 1(x) or Aix) may be empty. Hence, 
the above theorem provides two sufficient conditions for a feasible solution 
to be qualified, namely existence of a direction y 0 such that 

\lg1(x)T Yo > 0, iE A(x), 

or linear independenee of the gradients \lg1(x), iE A(x). These conditions 
have also been discussed at the end of theorem 2.1.1. 

Every feasible solution of a linearly constrained problem is qualified: then, 
namely, any locally constrained direction at a feasible solution x is a feasible 
direction at x. The Kuhn-Tucker relations (2.1.6) are thus satisfied at any local 
minimum, without additional conditions. 
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If none of the constraints is active at a local minimum x, theorem 2.1.2 
states merely that vf(x) = 0, a well-known result from classical analysis. 

We conclude this section by introducing some terminology. 

Definition. A pair (x,ü) eEn XEm is a Kuhn-Tucker point of problem (1.1.1) if 
the requirements of (2.1. 7) to (2.1.1 0) are satisfied: 

gt(x) ~ o; 1, ... , m, (2.1.7) 

Ü; ~ 0; i= 1, ... , m, (2.1.8) 

ütgt(x) O· 
' 

i= 1, ... , m, (2.1.9) 
m 

vf(x)- ~ ü; vg,(x) = o. (2J.l0) 
i= 1 

The constraints and the multipliers ü1 are, as it is shown by (2.1.9), comple­
mentary: the multiplier ü1 can only be positive if the ith constraint is active. 
We shall say that the ith eenstraint is strongly active if ü1 > 0, and weakly 
active if it is active but if ü1 = 0. A Kuhn-Tucker point (x,ü) is strict com­
p/ementary if ü1 > 0 for any ie A(x). 

The results of theorem 2.1.2 may now be summarized as follows: if x is a 
qualified, local minimum of problem (1.1.1), then a vector ü e Em can be 
found such that (x,ü) is a Kuhn-Tucker point of (1.1.1). 

2.2. Sufficient conditions for constrained minima 

A sufficient condition for a point x to be a local unconstrained minimum of 
a function f can, it is known, be formulated with the help of the second-order 
derivatives of fat x. This idea can readily be extended to the case of constrained 
minima. We shall henceforth assume that the problem functionsf, gl> ... , gm 
have continuous second-order partial derivatives in Em and we introduce the 
following notation. The matrix of second-order derivatives of f evaluated at x, 
usually referred to as the Hessian matrix of jat x, will be represented by v 2f(x). 
A similar notation will be employed for the Hessian matrices of g 1, _ ••• , gm. 
Lastly, we introduce 

m 

D(x, u)= V 2f(x)- ~ Ut v 2gt (x). (2.2.1) 
1=1 

Theorem 2.2.1. If (a) the functions f, gt> ... , gm have continuous second-order 
partial derivatives in Em (b) a Kuhn-Tucker point (x,ü) of problem (1.1.1) 
exists, and (c) an e-neighbourhood N(x,e) of x can be found such that D(x,ü) 
is positive semi-definite for any x eR n N(x,s), then x is a local minimum of 
(1.1.1 ). 
Proof Let us assume the contrary, that x is not a local minimum. Then a 
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sequence {xd of feasihle solutions can he found, converging to x and such 
thatf(xk) <f(x). Writing xk x+ Yk and using a Taylor series expansion 
ahout x we find that 

m 

m m 

where Çk x+ ÀkYk for some 0 Àk 1. Using (2.1.7) to (2.1.10) we 
ohtain 

whence 
-! YkT D(gk>ü) Yk < 0. 

Por k sufficiently large, however, it must he true that Çk ER n N(x,e). This 
leads to a contradiction and proves the theorem. 

Definition. Alocal minimum x of prohlem (1.1.1) is isolated, or locally unique, 

if an e-neighhourhood N(x,e) of x exists such that f(x) < f(x) for any 
x ER n N(x,e). 

One may expect that x will he an isolated local minimum of (1.1.1) if D(x,ü) 
is positive definite. The next theorem shows tb at we can find a weaker condition 
implying local uniqueness of x. We only have to require that D(x,ü) he positive 
definite with respect to some locally constrained directions at x. 
Theorem 2.2.2. If (a) the functions j, g 1> ••• , gm have continuons second-order 
derivatives in Em (h) a Kuhn-Tucker point (x,ü) of prohlem (1.1.1) exists, and 
( c) it is true that 

yT D(x,ü) y > o 
for any y e E11 , y "i= 0, satisfying 

\]g1(x)T y ~ 0 for any ie A(x) such that ü1 = 0, 
v g1(x)T y = 0 for any ie A(x) such that ü1 > 0, 

then x is an isolated local minimum of (1.1.1). 
Proof. Let us assume the contrary. Then a sequence {xk} of feasihle solutions 
can he found, converging to x and such that f(xk) f(x). We can write 
xk = x dk Yk with IIYkll = 1 and dk > 0. Then a limit point (O,y) of the 
sequence {(dk, yk)} exists, and li.YII = 1. We can now ohtain 

. f(x + ok Yk)- f(x) 
hm------- vf<xY .Y ~ o, 
k-+oo ~k 
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and for any iE A( x) we have 

Application of the Kuhn-Tucker relations leads to 

m 

Hence 
a, v glx)T .Y = o, iE A(x), 

and we cao write, according to condition (c) of the theorem, 

_;;T D(x,ü) .Y > o. 

Using a Taylor series expansion about x we obtain 

m 

f(x + lik Yk)- ~ ü1 g;(x + ok Yk) 
t= 1 

m m 

m 

which can, by (2.1.7) to (2.l.IO), be reduced to the inequality 

YkT D(~k,Ü)Yk ~ 0. 

(2.2.2) 

Here, ~k represents a point on the line segment connecting x and x + ok Y«· 
Taking the limit as k---+- oo we find that 

yT D(x,ü) .Y ~ o, 
which contradiets (2.2.2) so that the proof of the theorem is completed. 

If there are no active constraints at x the above theorem reduces to the 
following well-known result: if v f(x) = 0 and v 2f(x) is positive definite, 
then x is an isolated local unconstrained minimum of f. 

In the next chapter we shall frequently make an appeal to a theorem which 
supplies a set of conditions implying, amongst other things, local uniqueness 
of a Kuhn-Tucker point of (1.1.1 ). The theorem is based on the idea that a 
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Kuhn-Tucker point (x,ii) solves the system 

i u1 vg1(x) = 0, l' 
1=1 

u1g1(x)=0; i=l, ... ,m, 

Vf(x) 
(2.2.3) 

consisting of m + n nonlinear equations and involving m + n variables. Let 
J denote the Jacobian matrix of (2.2.3), evaluated at (x,ü). If J is nonsingular, 
it must he true by the inverse.function theorem (De la Vallée Ponssin (1946)) 
that a neighbourhood of (.X,ii) exists where (.X,ii) is the unique solution of (2.2.3). 

Definition. A Kuhn-Tucker point (.X,ü) of problem (1.1.1) satis:fi.es the Jacobian 
uniqueness conditions, if the following three conditions are simultaneously satis­
fied. 

Condition 2.1. The multipliers ii1, iE A(.X), are positive. 

Condition 2.2. The gradients v gtCx), iE A(x), are linearly independent. 

Condition 2.3. For any y E Em y =F 0, such that 

vglx)T y = o, ie A(x), 

it must be true that 

yT D(x,ü) y > o. 

Theorem 2.2.3. lf(a) the functionsf, g 11 ••• , gm have continuous second-order 
partial derivatives in Em and (b) a Kuhn-Tucker point (.X,ii) of problem (1.1.1) 
exists which satisfies the Jacobian uniqueness conditions 2.1 to 2.3, then the 
Jacobian matrix J of the Kuhn-Tucker relations (2.2.3) evaluated at (.X,ü) is 
nonsingular. This implies that the point x is an isolated local minimum of (1.1.1) 
and that the vector ii of associated multipliers is uniquely determined. 
Proof. To start with we introduce some additional notation. We think of the 
constraints as arranged in such a way that 

gt(x) 0, ii1 >0; i=I, ... ,rx, 

g1(.X) > 0, ii1 = 0; i = rx + 1, ... , m, 

and we employ Ü to denote a diagonal matrix of order rx with the positive 

diagonal elements ü1, i 1, ... , rx. The matrix G will represent a diagonal 
matrix of order m-IX with the positive diagonal elements g1(.X), i rx + 1, 

... , m. Let H 1 denote the matrix with the linearly independent columns v g1(x), 
i= 1, ... , IX, and H2 the matrix with the columns vg1{.X), i= IX 1, ... , m. 
Finally, the symbol D will he used to denote briefly the matrix D(.X,ü). With 
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these arrangements and notations J can be put into the form 

0 
0 

Clearly, we have to guarantee that the submatrix 

is nonsingular. We shall demonstrate that the system 

l!..Y H 1v = 0} 
UHlTY 0 

(2.2.4) 

(2.2.5) 
(2.2.6) 

bas the trivia! solution only. Condition 2.1 implies that ü is nonsingular. lt 
follows then from (2.2.6) that H 1 T y 0. Premultiplying (2.2.5) by yT we 
obtain 

whence 
yT Dy 0. 

Using condition 2.3 we can write y 0. Now H 1v 0, and it follows from 
condition 2.2 that v = 0. Hence J is nonsingular, and accordingly a neigh­
bourhood of (x,ü) can be found where (x,ü) is the unique salution of the 
Kuhn-Tucker relations. 

Using theorem 2.2.2 we may conclude, on the basis of conditions 2.1 and 
2.3, that x is an isolated local minimum of (1.1.1 ). The uniqueness of ü is implied 
by condition 2.2. 

The above theorem can also be applied if the problem under consideration 
is one of linear programming. Then D(x,ü) 0, but if there are exactly n 
active constraints at x satisfying conditions 2.1 and 2.2, then the set of all 
y e Em y =j.: 0, such that 

is empty. Hence, condition 2.3 of the theorem is also satisfied although 
D(x,ü) o. 

2.3 •. The boundary and the interlor of the constraint set 

In this section we are concerned with the interior R0 of the constraint set R 
defined by (1.1.2), and with the set 

P(R) {x lgt(x) > 0; 1, ..• , m }. 
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It is important for interior-point methods that R can he characterized as the 
ciosure of P(R). Then, namely, any point x ER can he attained via a sequence 
{xd of points each of which satisfies the constraints of the problem with strict 
inequality sign. 

It will he convenient to define a function g by 

g(x) =min [g1(x), ... , gm(x)]. (2.3.1) 

Th en 
R ={x liJ(x) ~ 0}, 

and 
P(R) {x liJ(x) > 0}. (2.3.2) 

Lastly, we introduce the set Z(R) by defining 

Z(R) ={x liJ(x) = 0}. (2.3.3) 

If we assume continuity of the constraint functions g1 , ••• , gm, then g is con­
tinuous in En, the set R is a closed subset of En, and P(R) is contained in R0

• 

The results to follow, which are closely connected with local minima and 
maxima of g, are largely due toBuiTrong Lieu and Huard (1966), and Tre­
molières (1968). They presenled a necessary and sufficient condition for Z(R) 
to he the boundary of R (implying that P(R) is the interior of R), as wen as a 
necessary and sufficient condition for R to be the ciosure of P(R). 

Theorem 2.3.1. Let the constraint functions g 1 , ••• , gm he continuous in En. 
Then the set Z(R) is the boundary of R if, and only if, no local, unconstrained 
minimum of g belongs to Z(R). 
Proof. Let us start by proving the if-part of the theorem. First, we show that 
Z(R) is contained in the boundary of R. Let x0 E Z(R) and let N(x0 ,e) denote 
an e-neighbourhood of x 0 • The set N(x0 ,e) n Ris nonempty since x0 is con­
tained in it. On the other hand, a point x 1 E N(x0 ,e) can he found such that 
g(x1 ) < g(x0 ) since x 0 is not a local, unconstrained minimum of g. The set 
N(x0 ,e) contains an element of R as well as a point which does not belong to 
R for arbitrary, positive values of e. Hence, x0 is a boundary point of R. 
Second, we consider a boundary point x2 of Rand we suppose thatg(x2 ) =1= 0. 
If g(x2 ) > 0, then x 2 is an interior point of R. If g(x2 ) < 0, then x 2 is an inte­
rior point of the complement of R. In both cases we have a contradiction, and 
it must he true that g(x2) = 0. Combination of the results leads to the con­
dusion that Z(R) is the boundary of R. 

To show the reverse, we start from the assumption that Z(R) is the boundary 
of R. Consider an arbitrary x0 E Z(R) and an e-neighbourhood N(x0 ,e) of x0 • 

Then a point x 1 E N(x0 ,e) can he found such that g(x1) < g(x0 ). Hence, x0 

cannot he a local unconstrained minimum of g, which completes the proof. 



-20-

Corollary. The set P(R) defined hy (2.3.2) is the interior R 0 of R if, and only 
if, no local unconstrained minimum of g helongs to Z(R). 

~b c\ 
Fig. 2.1. 

Figure 2.1 shows a situation which is ruled out if no local minimum of g 
helongs to Z(R). Here, the interior R0 of the constraint set R is given hy the 
open interval (a,c). The point b E R0 helongs to Z(R). 

Lastly, we find a condition which ensures that R is the ciosure of P(R). 

Theorem 2.3.2. Let the constraint functions gt. ... , gm he continuons in En 
and suppose that P(R) is nonempty. Then R is the ciosure of P(R) if, and 
only if, no local, unconstrained maximum of g helongs to Z(R). 
Proof We start hy proving the if-part ofthe theorem. It is sufficient to consider 
a point x 0 E Z(R). Suppose that a positive IJ can he found such that N(x0 ,1J) 
does not contain any point of P(R). Then g(x) ~ g(x0 ) for any x E N(x0 ,1J), 
which implies that x 0 is a local, unconstrained maximum of g. 

Conversely, if Ris the ciosure of P(R), we suppose that a local, unconstrained 
maximum x 1 of g helongs to Z(R). We canthen find a neighhourhood N(x1 ,1J) 
of x1 such that g(x) ~ g(x1 ) = 0 for any x E N(xt.IJ), contradicting that an 
element of P(R) can he found in any neighhourhood of x 1 • 

/""{ c 

läb\.____/7 """' 
Fig. 2.2. 

Figure 2.2 is given in order to illustrate theorem 2.3.2. Here, the set R is the 
union of the ciosed interval [a,b] and the point c. The interior R0 of Ris given 
hy (a,b); the ciosure of R 0 consistsof [a,b] only. 

2.4. Convex sets and convex functions 

In this section we shall hriefly sum up the properties of convex sets and 
convex functions that weneed in suhsequent chapters. The proofs will he omitted. 
They can he found in many texthooks such as, for example, Berge (1951) or 
Berge and Ghouila-Houri (1962). 
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Definition. A set CC En is convex if A. x 1 + (1- À) x 2 E C for every two 
points x 1 E C and x 2 E C and every À, 0 ~A. 1. 

Theorem 2.4.1. The intersection of two convex sets is a convex set. 

Definition. Let C be a convex set andfa function defined in C. Thenfis convex 
in C if 

(2.4.1) 

for every two points x 1 e C and x 2 e C and every À, 0 ~A. 1. The functionf 
is strictly convex in C if strict inequality holds in (2.4.1) when 0 < A. < 1 and 
x1 =P x 2 • lfj is (strictly) convex in Em itwill briefly be referred to as a (strictly) 
convex function. 

In the remainder of this section the symbols C and co will invariably be used 
to denote, respectively, a convex set in En and its interior. 

Theorem 2.4.2. lf / 1 , ••• , fP are convex functions in C, then any nonnegative 
linear combination of these functions is convex in C. The functionf defined by 

J (x) max [/1 (x), ... , lP (x)] 
is also convex in C. 

Theorem 2.4.3. If fis a convex function in C, then the set 

{xlf(x)~a, xeC} 

is convex (possibly empty) for any a. 

Theorem 2.4.4. Ifj is a convex function in C, and if h is a nondecreasing, convex 
function in EI> then h(f) is convex in C. 

Theorem 2.4.5. If/ is a convex function in C, thenf is continuous in the interior 
C" ofC. 

Theorem 2.4.6. If fhas continuous first-order partial derivatives in C, thenjis 
convex in C if, and only if, 

(2.4.2) 

for every two points x1 E C and x2 E C. 

Theorem 2.4. 7. If f has continuous second-order partial derivatives in C, then 
fis convex in C if, and only if, \7 2/(x) is positive semi-definite in C. lf v 2/(x) 
is positive definite for any x e C, then fis strictly convex in C. (The reverse of 
the last statement is not necessarily true.) 

Theorem 2.4.8. lf fis a convex function in C, then any Iocal minimum of f 
in Cis a global minimum of jin C. If/is strictly convex in C, then a minimum 
of fin C is unique. 
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Theorem 2.4.9. If fis convex in C and if it possesses continuous first-order 
partial derivatives in C, then a point x e C" is a minimum of fin C if, and 
only if, v f(x) = 0. 

Definition. A function g defined in C is concave in C if --g is convex in C. 

It will he convenient to sum up a number of properties of concave functions 
which follow from the above theorems. 

Theorem 2.4.10. Every nonnegative linear combination offunctions g1 , ••• , gm 
which are concave in C is concave in C. The function g defined by 

g(x) =min [g1(x), ... , .g ... (x)] 
is also concave in C. 

Theorem 2.4.11. If g is a concave function in C, then the set 

{x !g(x) a, x e C} 

is convex (possibly empty) for any a. 

Theorem 2.4.12. If g is concave in C, and if h is a nondecreasing, concave runc­
tion in Et. then h(g) is concave in C. 

Theorem 2.4.13. If g has continuous tirst-order partial derivatives in C, then g 

is concave in C if, and only if, 

(2.4.3) 

for every two points x 1 E C and x2 e C. 

The counterparts of the theorems 2.4.8 and 2.4.9 can readily he obtained if 
one replaces the concepts "convex function" and "minimum" by "concave 
function" and "maximum". Lastly, we have: 

Theorem 2.4.14. lf a local minimum x of a concave function g in C belongs to 
C", then x is also a maximum of g. 
Proof. There is an e-neighbourhood N(x,e) C C, such that g(x) ~ g(x) for any 
x e N(x,e). Select two points x 1 and x2 e N(x,e) such that x -!(x 1 x2). 

Then, by the concavity of g, 

g(x) ~-! g(x1) + t g(xz) g(x). 

It follows that g(x) = g(x) for any x e N(x,e). Hence, x is a local maximum 
and accordingly a global maximum of g in C. 

2.5. Convex programming 

The original problem (1.1.1) is said to he one of convex programmingif the 
objective function fis convex, and if the constraint functions g 1> ••• , gm are 
concave in En. 
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Theorem 2.5.1. The constraint set R ofthe convex-programming problem (1.1.1) 
is convex. 
Proof. This follows directly from the theorems 2.4.11 and 2.4.1. 

Theorem 2.5.2. Any Iocal minimum of the convex-programming problem (1.1.1) 
is a global minimum. 
Proof. See theorem 2.5.1 and use theorem 2.4.8 with C = R. 

Theorem 2.5.3. If the constraint functions g1 , ••• , gm of problem (l.I. I) are 
concave, and if a point x0 exists which satisfies the constraints with strict 
inequality sign, then 
(a) the interior R0 of R is given by the set 

P(R) {x lgt(x) > 0; i= 1, ... , m}; 

(b) the boundary of R is given by the set 

Z(R) R P(R); 

(c) the set R is the ciosure of its interior. 
Proof. Let g be defined by (2.3.1). Then, by theorem 2.4.10, ij is concave in E,.. 
Moreover, by theorem 2.4.5, ij is continuous in En. 

We note, firstly, that a local, unconstrained maximum of ij cannot belong 
to the set Z(R) {x lij(x) 0}, since a point x 0 exists such that ij(x0 ) > 0. 

Using theorem 2.4.14 with g ij and C =En we find that a local, un­
constrained minimum of ij cannot belong to Z(R) either. Now, the theorem 
follows immediately from theorems 2.3.1 and 2.3.2. ' 

The proof that R is the ciosure of P(R) can also be given in a more direct 
way. Consider an arbitrary x E R and the line segment connecting x and x 0 • 

Let 

x( A) (l -A) x A x0 , 0 ::;; A ::;; 1. 

By concavity of iJ we obtain 

ij[x(A)] (1 A)ij{x)+Aij(x0 ), O~A~l, 

so that ij [x( A)] > 0 for any 0 < A. ::;; 1. Hence, x( A.) E P(R) for any 0 < A 1, 
which completes the proof. 

Theorem 2.5.4. If the constraint functions gh ... , gm are concave and if Ris 
nonempty and compact, then the set 

R(b) {xlgt(x) -b1; i=l, ... ,m} 

is compact (possibly empty) for any perturbation b = (b1, ••• , bm)T of the 
constraints. 
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Proof Theorem 2.4.5 implies that R(b) is closed for any perturbation b E Em. 
lt is sufficient to show that R(b) is bounded for b = h = (h1 , 0, ... , 0), 
h1 > 0. Let us assume the contrary, that R(h) is unbounded, and let us choose 
a point x 1 ER. A straight line emanating from x 1 can then be found which 
intersects the boundary of R but not the boundary of R(h). Let x 2 be a point 
on that line such that 

g1(x2) = -:-<5 < 0, } 
gi(x2) ?= 0; i= 2, ... , m. 

Lastly, we consider a point w on that line such that x 2 is a convex combination 
of wand x 1 : 

By the concavity of g 1 we have 

whence 

-<5 
g1(w) ~-. 

A 

The point w belongs to R(h) for any A, 0 < A ~ 1. However, by choosing A 
sufficiently small, we can obtain the contradictory result 

g1(w) < -h1. 

Hence, R(b) is compact for any perturbation b. 

Having established some desirabie topological properties of R, we shall now 
move on to necessary and sufficient conditions for constrained minima of a 
convex-programming problem. 

Theorem 2.5.5. If (a) problem (1.1.1) is a convex-programming problem, and 
(b) the problem functions f, gt. ... , gm have continuous first-order partial 
derivatives in Em then a sufficient condition for x to be a minimum solution 
of (1.1.1) is that a vector ii E Em can be found such that (x,ii) is a Kuhn-Tucker 
point. 
Proof lt follows from (2.1.8), (2.1.10) and theorems 2.4.10 and 2.4.9 that x is 
a point minimizing the convex function 

m 

over En. Using (2.1.9) we can obtain 

m 
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which implies 
f(x) ~ f(x) for any x ER. 

This completes the proof of the theorem. 

A convex-programming problem admits of an easy criterion for deciding 
whether a feasible salution is qualified. This is expressed by the next theorem: 

Theorem 2.5.6. If the constraint functions g1 , ••. , gm are concave and if the 
interior R0 of the constraint set is nonempty, then any feasible salution is 
qualîfied. 
Proof Let x0 E ~. Then, by theorem 2.5.3, it must be true that g1(x0 ) > 0, 
i 1, ... , m. Consider an arbitrary x ER and define s0 = x 0 - x. For any 
iE A(x) we have, by theorem 2.4.13, 

Application of theorem 2.1.3 completes the proof. 

Theorem 2.5.7. If (a) problem (1.1.1) is a convex-programmîng problem, (b) the 
problem functîonsf, g 1 , ••• , gm have continuons first-order partial derivatives 
in Em and (c) the interior of the constraint setRis nonempty, then a feasible 
solution x is a minimum salution of (1.1.1) if, and only if, a vector ü E Em 
exists such that (x,ü) is a Kuhn-Tucker point. 
Proof The theorem follows easily from a combination of theorems 2.5.5, 2.5. 6, 
and 2.1.2. 

Fora convex-programming problem the Kuhn-Tucker points can be charac­
terized in a different way. First of all we introduce: 

De.finition. The Lagrangianfunction associated with problem (1.1.1) is given by 

m 

L(x,u) f(x)- 2:: u1 g 1(x). (2.5.1) 
1=1 

De.finition. E+ m {u i U E Em, u 0}. 

De.finition. A point (x,ü) EEn X Em + is a saddle point of L in En x Em + if 

L(x,u) "( L(x,ü) "( L(x,ü) (2.5.2) 

for any x EEn and any u E Em +. 

Theorem 2.5.8. If (a) problem (1.1.1) is a convex-programming problem, and 
(b) the problem functions f, g 1.' ••• , gm have continuons fust-order partial 
derivatives in Em then (x,ü) is a Kuhn-Tucker point of the problem if, and only 
if, it is a saddle point of the associated Lagrangian function in En X Em +. 
Proof Let us, first, prove the if-part. If (x,ü) is a saddle point of the Lagrangjan 
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in En x Em +, then (2.1.8) must hold and (2.1.1 0) follows easily from the inequal­
ity L(x,ü) ~ L(x,ü). The left-hand inequality L(x,u) ~ L(x,ü) implies 

m m 

for any u E Em +. This can only be true if (2.1. 7) and (2.1.9) are satisfied. 
Second, we consider the case that (x,ü) is a Kuhn-Tucker point. Then 

ü ~ 0, and L(x,ü) is a convex function of x the gradient of which vanishes 
at x. Hence we obtain L(x,ü) ~ L(x,ü) for any x EEn. The relations (2.1.7) 
and (2.1.9) imply that L(x,u) L(x,ü) for any u E Em +. 

The last subject to be treated here is a dual (programming) problem of (1.1.1 ). 
Duality in nonlinear programming is a relationship between two probieros 
- one of which, the prima!, is a constrained-minimization problem and the 
other, the dual, is a constrained-maximization problem - with the following 
properties. 

1. The primal problem has a minimum salution if, and only if, the dual has a 
maximum solution, and the extreme values are equal. 

2. If the constraints of the prima! (dual) problem are consistentand those of 
the dual (prima!) are not, then the prima! (dual) problem has no finite 
minimum (maximum). 

For convex-programming problems many results in the above sense have been 
obtained in the last decade. Here the Lagrangian function plays a prominent 
part. 

A dual problem of (l.l.l) is given by 

maximize L(x,u) subject to ! 
v ).(x,u) = 0 and 

u;;?O, 

(2.5.3) 

where v xL symbolizes the gradient of L with respect to x. Any point (x,u) 
satisfying the constraints of (2.5.3) is a dual-feasible solution. The feasible solu­
tions of the original problem (1.1.1) are referred to as primal-feasible solutions. 
We shall hereconfine ourselves to the proof of the following two theorems. 

Theorem 2.5.9. If (a) problem (l.l.l) is a convex-programming problem, and 
(b) the problem functions have continuous first-order partial derivatives in Em 
then 

"""" L(x,u) ~f(x) (2.5.4) 

for any primal-feasible solution x and any dual-feasible solution (~, ~). 
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Proof. Using theorems 2.4.6 and 2.4.13 we obtain 
m 

J(;) 2: ;;, g,(;) 
1=1 

,." "" 
~f(x) + (X- X)T \JJ(x) 

Theorem 2.5.10. If (a) problem (1.1.1) is a convex-programming problem, (b) the 
problem functions have continuous tirst-order partial derivatives in Em and 
(c) x is a qualified minimum solution of (1.1.1), then the dual problem (2.5.3) 
has a maximum solution and the extreme values are equal. 
Proof. There is a vector ü e Em such that (x,u) is a Kuhn-Tucker point. Then 
(x,u) is a dual-feasible solution. The complementary slack relations (2.1.9) imply 

f (x) L(x,ü). 

Application of the preceding theorem completes the proof. 

We shall proceed no further into the duality theory. All the material weneed 
is contained in the last two theorems. We have, in fact, the asymmetrie result 
that a maximum of the dual problem exists if the primal has a minimum. For 
more details on the symmetry of a pair of dual problems reference may be 
made to Dantzig, Eisenberg and Cottle (1965). 

In what follows, the components of the vector ü appearing in the Kuhn-Tucker 
relations will be called Lagrangian multipliers. There is a well-known, interesting 
interpretation: the ith multiplier û1 expresses the effect of relaxing the ith con­
straint on the minimum value of the objective function. More details may be 
found in Hadley (1964), and Fiacco and McCormick (1968). 
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3. PARAMETRie PENALTY-FUNCTION TECHNIQUES 

3.1. Mixed parametrie penalty fnnctions 

A rough sketch of barrier-function techniques and loss-function techniques 
for solving problem (1.1.1) is contained in sec. 2.1. A detailed analysis will be 
presented in this chapter. 

It is convenient to consider bere a mixed penalty function so that many 
properties can be established simultaneously for both classes of techniques. 
We shall think of the set I = { 1, ... , m} of constraint indices as partitioned 
into two disjunct subsets 11 and / 2 • Tbe partitioning is arbitrary and either / 1 

or 12 may be empty. Furthermore, we introduce 

Rk = {x lg;(x) ;;?: 0; iE Id, k = 1, 2, (3.1.1) 

so that R = R1 n R 2 • We shall use R 1"' to denote the interior of R 1 • With 
these notations we formulate: 

Condition 3.1. Problem (1.1.1) is a convex-programming prob1em. The con­
straint set R is compact. The set R1 o n R 2 is nonempty. 

Under tbis condition problem (1.1.1) bas a minimum salution x with mini­
mum value v = f(x), since fis continuons over the nonempty, compact set R. 
By theorem 2.5.3 we have 

R1"' = {x lg1(x) > 0; ie II}. (3.1.2) 

The set R is the ciosure of R 1 o n R 2 • This can easily be demonstrated if we 
consider the line segment connecting an arbitrary point x eR with a point 
x0 e R1° n R2 : then any point, different from x, in the line segment is an 
element of R 1° n R 2 • 

The mixed penalty function to be considered is given by 

M,.(x) = f(x) + r;. b(x) + s-u l(x), (3.1.3) 

which contains a harrier term defined by 

(3.1.4) 

and a loss term defined by 

l(x) (3.1.5) 

Here, r and s are positive cantrolling parameters; À and fh denote positive 
numbers the choice of which will be discussed in sec. 3.4. The functions <p 

and 1p appearing in (3.1.4) and (3.1.5) respectively are functions of one variable, 
say TJ· We impose the following conditions: 



-29-

Condition 3.2. The function rp is concave and nondecreasing in the interval 
(O,oo), and rp(O+) =-oo. 

Condition 3.3. The function "P is concave and nondecreasing in the interval 
(-oo,oo); VJ('Y/) 0 for 'fJ 0 and VJ('f/) < 0 for 'f/ < 0. 

A partial explanation of these conditions may be found in sec. 1.2. We have 
imposed them in order to ensure that the mixed penalty function of (3.1.3) has 
the following, desirabie properties. 
(a) Preservation of convexity. By theorem 2.4.12, the function M,. is convex 

in R 1° for any r > 0 and s > 0. 
(b) Generation of a harrier. If {xk} denotes a sequence of points in R 1° con-

verging to a point in R1 R1°, then 

lim b(xk) = + oo. 
k-HIJ 

(c) Penalization of constraint violation. For the loss term we have 

/(x) = 0, for all x E R 2 , ( 

I( x) > 0, for all x lfo R2. \ 
I 

(3.1.6) 

(3.1.7) 

It will immediately be clear that M,. reduces to the harrier function B, of (1.2.6) 
if / 2 is empty, and to the loss function Ls of (1.2.7) if / 1 is empty. In the next 
sections we consider the convergence of mixed-penalty-function techniques. 
The results so obtained fall apart into similar results for harrier- and loss-func­
tion techniques. The introduetion of mixed penalty functions might therefore 
seem to be a purely theoretica} trick in order to avoid a separate treatment of 
harrier and loss functions. In addition to that, however, a mixed penalty runc­
tion also presents some computational advantages that will be discussed in 
chapter 5. 

3.2. Primal convergence 

This section is concerned with the existence and the convergence of points 
x(r,s) minimizing M,5 over R 1 o for positive values ofthe controlling parameters r 
and s. It will intuitively be clear that the existence of such a point x(r,s) is rather 
easy to show if R 1 is compact. This is due to the harrier at the boundary of R1o 
generated by the mixed penalty function M,5 • Generally, however, R 1 is not 
compact. We begin by proving the existence of a point minimizing M,. over a 
truncation R 1 ° n S such that R 1 n S is compact. This is carried out in the 
following lemma. 

Lemma 3.2.1. If (a) the sets R 1 and S are closed subsets of En such that R 1 ° n S 
is nonempty and R 1 n S compact, (b) the function h(x) is continuous in 
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R1° n S, and (c) for every sequence {xk} in R 1° n S convergingtoa point in 
(R1 R 1°) n S it is true that 

lim h(xk) = oo, 
;. ..... oo 

then there exists a point x* in R 1° n S miniruizing h over R 1° n S. 
Proof. Consider an arbitrary w0 E R 1 o n S and the set 

Wo= {x I h(x) ::;;;: h(wo); x E R1° n s }. 
This is a bounded set since it is contained in the compact set R 1 n S. lt is 
nonempty since w0 E W0 • In order to show that W0 is compact we consider · 
a sequence {wk} of points in W0 converging to a point we R 1 n S. Suppose 
that w E (R1 - R 1 °) n S. Then 

lim h(wk) = +oo. 
k ..... oo 

On the other hand, h(wk)::;;;: h(w0 ), whereas h is continuous on R 1° n S. Hence, 
we R 1 o n S and, moreover, h(W) ::;;;: h(w0 ) so that we W0 • Consequently, W0 

is compact and a point x* E W0 exists which miniruizes h over W0 • From the 
construction of W0 , however, it follows that x* is a point miniruizing h over 
R 1° n S. 

Theorem 3.2.1. Let {rk} and {sk} denote monotonie, decreasing null sequences 
as k--+- oo. Under the conditions 3.1 to 3.3 a point x(rkh) miniruizing M,k•k 
over R 1 o can be found for k large enough. Any limit point of the sequence 
{x(rk,sk)} is a minimum salution of problem (1.1.1). 
Proof. To prove this theorem we introduce a perturbation S2 of R 2 by taking 

(3.2.1) 

where a denotes a positive number. By theorem 2.5.4 the set R 1 n S2 is com­
pact since R is compact. Invoking lemma 3.2.1 we find that a point z(r,s) 
minimizing M,. over R1 o n S2 exists for any r > 0 and s > 0. It is clear that 
z(r,s) may be a boundary point of s2. 

Now we praeeed as follows. We demonstrate that any limit point of the 
sequence {z(rk,sk)} is a minimum salution of(l.l.l). This implies that the points 
z(rk>sk) do not belang to the boundary of S2 , but to R 1° n S2°, for k large 
enough. From the construction of S2 and the convexity of M,s and R 1° it 
follows that z(rk>sk) miniruizes M,~<•k over R 1 o for k large enough. 

Thus, defining zk = z(rk>sk) we concern ourselves with the convergence of 
the sequence {zk}. A limit point i of {zk} exists by the compactnessof R1 n Sz, 
and there is a subsequence of {zk} converging to i. For convenience we also 
take {zk} to denote this subsequence. Let 
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and suppose that z f/: R 2 • Then l(z) > 0, and we can accordingly write 

lim Mk(zk) oo, 
k-+00 

since {f(zk)} and {r1/·b(zk)} are bounded below in R 1 ° n S2. On the other 
hand, there is a point x0 E R1 ° n R2 and we obtain 

lim Mk(x0 ) = f(x0 ) < oo. 
k-+oo 

This contradiets the statement that zk minimizes Mk for any k, and hence 
zE R 2 • Let us now assume that f (z) is greater than the minimum value v of 
problem (1.1.1 ). The set R is the ciosure of R 1 ° n R 2 , and hence there is a 
point x E R 1 on R 2 such that 

f(z) > f(x) > v. 
We obtain straightaway 

Iim Mk(zk) ?::-f(z) > f(x) lim M"(x). 
~00 ~00 

And bere we are again ledtoa contradiction for k large enough. Thusf(z) = v. 
The sequence {z~<} converges toa minimum solution of (1.1.1). This implies 

that zk E R 1° n S2° for k large enough. Then zk is an unconstrained minimum 
of Mk or, and this is exactly what we want to show, z" is a point minimizing 
Mk over R 1 °. Taking x(rk,sg) zk for k large enough we can complete the proof 
of the theorem. 

Theorem 3.2.2. Let v denote the minimum value of problem (1.1.1). Under the 
conditions of theorem 3.2.1 

lim f [x(rk,sg)] -=v, (3.2.2) 
k->oo 

lim r/· b[x(rk,sk)] = 0, (3.2.3) 
k-+oo 

lim sk -~t l[x(rk,sk)] = 0. (3.2.4) 
k->oo 

Proof. The first formula follows directly from the preceding theorem. In order 
to show the remaining ones, we shall also be working in the compact set 
R 1 n S2 • Here the harrier term is bounded below by a value which we may 
denote by b0 • Let xk = x(rk,sg). Choose a tJ > 0 and a point x E R 1 ° n R2 

such that 

f(x) <v + b. 

Using the property that xk minimizes Mk over R 1 ° for k large enough we 
obtain 
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w hich leads to 

Hence 

rk;, bo ~ rl b(xk) ~f(x)- f(x") + rk;, b(x), 

which proves (3.2.3) since I f (x) vl < b and I f (xk)- vi < b for k large 
enough. Moreover, 

0 ~ sk -"'l(xk) ~f(x) + r/ b(x)- f(xk)- rl b(xk), 

which can be used to prove (3.2.4). 

If the conditions of theorem 3.2.1 are satisfied and if the set R 1 is compact, 
then a point minimizing M,. over R1" exists for any positive r and s. Computa­
tionally, this is a more pleasant situation; it is difficult fora minimization proce­
dure to decide whether a minimum exists or not. We pref er to minimize a penalty 
function which is a priori known to possess an unconstrained minimum in R 1 ". 

It is therefore interesting to note that the existence of x(r,s) for any r > 0 
and s > 0 can also be shown if the loss term increases rapidly enough outside 
the constraint set. This is expressed in the following additional condition. 

Condition 3.4. There are positive numbers Pand p such that 1/l(YJ) < -P lnii+P 
for any 'IJ< 0. 

Theorem 3.2.3. Under the conditions 3.1 to 3.4 a point x(r,s) e R 1 ° minimizing 
M,s over R 1 ° exists for any r > 0 and s > 0. 
Proof It is sufficient to show that the set 

T0 {x IM,.(x) ~ M,s(w0 ); x e R 1"} 

is compact for an arbitrarily chosen w0 e R 1 °. The proof will he given by 
contradiction. Assume that T0 is unhounded. Then a sequence {w1c} of points 
in T0 can he found such that 11 wk! I --->- oo as k- oo. This can only he true if 
an ie 12 exists such that 

lim g1(wk) = -oo, 
k-+oo 

since, hy theorem 2.5.4, the set 

{x ig1(x) ~-a;, ie / 2, x E Rt} 

is hounded for any choice of a1, iE / 2 • Defining F hy 

F(x) = f(x) + r;, b(x) 

we ohtain 

(3.2.5) 
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This yields 

lim F(wk) = -oo, 
k-HO 

since, by (3.2.5), 

lim l(wk) = + oo. 
k-> 00 

By lemma 3.2.1, there is a point v0 E R 1" n R2 minimizing F over R 1" n R 2 • 

Now we introduce a perturbation S2 of R 2 defined by 

where a denotes a positive number, and we consider the points wk such that 

Let wk denote the point where the line segment connecting wk and v0 inter­
sects the boundary of R1 n S2 • There is an ik E / 2 such that 

Lastly, we introduce a point va minimizing F over R1 " n S2 • Such a point 
exists by theorem 2.5.4 and lemma 3.2.1. Then 

Now, we can write 

(3.2.6) 

By convexity, 

whence F(wk) Àk- 1 [F(wk)-(1-Àk)F(vo)]?;: 

J.k -i [F( v.,) (1 ).k) F( vo)] 

= F(v0 ) À.k-l [F(vo) F(va)]. (3.2.7) 

Moreover, 

since v0 is feasible. This leads to 
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By condition 3.4, we have 

Combination of (3.2. 7) and (3.2.8) yields 

F(vo)- F(va) 
F(v0)----. -­

Ak 

It follows from the behaviour of {wk} and from (3.2.6) that 

lim Ak = 0, 
k-+00 

so that lim M,.(w,.) + oo. 
k-+00 

(3.2.8) 

This, however, contradiets the statement that the points wk belong to T0 for 
any k. Hence, T0 is bounded, and the proof of theorem 3.2.3 can be completed. 

For the case that / 2 is empty we have the following theorem concerning the 
convergence of barrier-function techniques. 

Theorem 3.2.4. Let problem (1.1.1) be a convex-programming problem, let the 
constraint set R be compact and let the interior R" of R be nonempty. Under 
condition 3.2 a point x(r) minimizing the harrier function (1.2.6) over R0 exists for 
any r > 0. Any limit point of the sequence {x(r") }, where {rk} denotes a mono­
tonic, decreasing null sequence, is a minimum solution of (l.l.l). The sequences 
{f[x(rk)]} and {b [x(rk)]} are monotonic nonincreasing and nondecreasing 
respectively. 
Proof. We only need to showthelast statement. Letfk denotef[x(rk)] and let 
bk b[x(rk)]. Then 

Adding the first inequality to the second, we obtain 

(r/·- rk+/) (bk- bk+ 1) 0, 
whence 

The inequality 

is obtained in a similar way. 

If / 1 is empty, theorem 3.2.1 and 3.2.3 yield the following theorem concerning 
the pure loss-function techniques. 
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Theorem 3.2.5. Let problem (1.1.1) be a convex-programming problem and let 
the constraint set R be nonempty and compact. Under conditions 3.3 and 3.4 
a point x(s) minimizing the loss function (1.2.7) over E11 exists for any s > 0. 
Any limit point of the sequence {x(sk)} where {sk} denotes a monotonie, de­
creasing null sequence, is a minimum solution of (1.1.1). The sequences 
{f[x(sk)]} and {/ [x(s&)]} are monotonic nondecreasing and nonincreasing, 
respectively. 

A proof oftheorem 3.2.5 will be omitted; the monotonicity can be established 
in a similar way as in theorem 3.2.4. 

3.3. Dnal convergence 

If the mixed penalty function (3.1.3) bas continuous first-order partial deriv­
atives in Em a solution of tbe dual problem (2.5.3) can easily be constructed, 
as we shall demonstrate in the present section. We shall, first, impose the fol­
lowing conditions on the functions <p and "P· 

Condition 3.5. The function <p bas a continuous first-order derivative <p' in the 
interval (0, oo ). 

Condition 3.6. The function 1p bas a continuous first-order derivative 1p' in the 
interval (-oo, oo ). 

Theorem 3.3.1. If (a) the conditions 3.1 to 3.6 are satisfied, and (b) the problem 
functions have continuous first-order partial derivatives in En, then a feasible 
solution of the dual problem of (1.1.1) is given by [x(r,s), u(r,s)], where x(r,s) 
is a point minimizing M,. over R 1° for positive rand s, and u(r,s) is taken to 
be the m vector with components 

u1(r,s) r;. <p' {g1 [x(r,s)]}, ie /1> 

u1(r,s) s-u 1p' {g1 [x(r,s)]}, ie / 2 • 

(3.3.1) 

(3.3.2) 

Proof. By conditions 3.2, 3.3, 3.5 and 3.6 the functions <p' and 1p' are nonnegative 
in their respective definition areas. The mixed penalty function M,s possesses 
continuous first-order partial derivatives in R 1°. Then the gradient of M,s 
vanishes at a mînimizing point x(r,s), which exists by theorem 3.2.3. Hence 

m 

vf[x(r,s)] L U;(r,s) \lgt[x(r,s)] 0. (3.3.3) 
1=1 

Moreover, 
u1(r,s) 0; i = 1, ... , m, (3.3.4) 

which completes the proof of the theorem. 
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The next theorem is concerned with values of the dual objective function L 
(the Lagrangian function defined by (2.5.1)) and their convergence to the mini­
mum value v of problem (1.1.1). 

Theorem 3.3.2. Let the conditions 3.1 to 3.6 be satisfied and suppose that the 
problem functions admit of continuous tirst-order partial derivatives in En. 
Under the additional condition that the ratio 

has a finite limit as r; -.} 0, it must be true that 

lim L[x(rkh), u(rkh)] = v, 
k-+00 

for monotonie, decreasing null sequences {rk} and {s1.}. 

Proof Defining xk = x(rk>sk) we can use (3.2.3) to obtain 

It can then be shown that 

lim :L u1(rkh) g1(xk) = 
k->00 1<11 

Conditions 3.3 and 3.6 imply 

u1(r,s)g1[x(r,s)] ,:s;_: 0; iE / 2. 

By theorem 2.5.9 and the above results we find that 

v ~ L[xk> u(rk,sk)] ~f(xk)- :L u;(rkh)g;(Xk). 
i•lt 

Using (3.2.2) one can now complete the proof of the theorem. 

(3.3.5) 

Interesting results from these duality considerations follow for the barrier­
function techniques, which operate in the interior of the constraint set. Any 
point x(r) minimizing the harrier function Br over J?O is primal-feasible. A dual­
feasible solution is given by [x(r ), u(r) ], where u(r) denotes the m vector with 
components 

u1(r) = r). fP'{g1[x(r)]}; i= 1, ... , m. 
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On the basis of (2.5.4) and keeping in mind that x(r) is primal-feasible we can 
write the inequalities 

f [x(r)] E[r,x(r)] ~ v ~~ [x(r)], (3.3.6) 

where 
m m 

(3.3.7) 

The expression (3.3.7) may be regarded as an error term. It is positive for any 
r > 0. Obviously, it is desirabie that the error term should be as smallas pos­
sible, independently of x(r ), so that the error in the approximation of v can be 
estimated a priori. Let us try to choose the function qJ in such a way that the 
error term is equal to or smaller than an arbitrary, positive ~. As a matter of 
course this function has to meet the additional requirements of conditions 3.2 
and 3.5. Keeping in mind that (3.3.7) is a sum of nonnegative terms one could 
also impose the requirement 

r-;. ~ 
cp' {g1[x(r)]} g1 [x(r)] ~ -- ; i 1, ... , m. 

m 

A simple function fJJ satisfying the above inequality is given by 

r-À ~ 
f/J('YJ) =--In 'YJ, 

m 

which yields, after substitution into (3.3.7), 

E[r,x(r)] = ~. 

Similarly, substitution of 
r-;. {J ( 'YJ ) 
--In--

m n+ 1 

into (3.3.7) leads to 
m 

E[r,x(r)] b L 1 -----<b. 
m g1[x(r)] + 1 

Î-' 1 

In what follows we shall frequently refer to the logarithmic harrier function 

m 

f(x)- r ~ In g1(x), (3.3.8) 
1=1 

which is obtained by substituting f!J('YJ) =In 'YJ and Ä. 1 into (1.2.6). Then 
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(3.3.6) and (3.3.7) reduce to 

0 ~f[x(r)] v ~mr. (3.3.9) 

Thus, the numerical problem of how to choose the parameter r is facilitated 
considerably; it can be given such a value that v is approximated with a pre­
scribed accuracy. This is a partienlar feature of some harrier functions. For more 
details one is referred to the next section. There we shall discuss a fust-order 
approximation to f [x(r,s)] - v for the more general case that the mixed 
penalty function Mrs is employed. 

We conclude this section by a theorem concerning the dual convergence if 
the problem admits of a unique minimum .i with a uniquely determined 
vector ü of assocîated Lagrangian multipliers. 

Theorem 3.3.3. If (a) the problem functions J, g I> ••• , gm of (1.1.1) have con­
tinuons secoud-order partial derivatives in Em (b) a Kuhn-Tucker point (.i,ü) 
of (1.1.1) exists which satisfies the Jacobian uniqueness conditions 2.1 to 2.3, 
and (c) the conditions 3.1 to 3.6 are satisfied, then 

lim [x(r",s"), u(rk>sk)] = (.i,ü), (3.3.10) 
k->00 

for monotonie, decreasing null sequences {r"} and {s,.}. 

Proof. By theorem 2.2.3, .i is the unique minimum solution of (1.1.1), so that 

lim x(r"'s") =.i. 
k-+00 

Let us define 
m 

and let us assume that 

lim d" = oo. 
k-+<0 

With the additional definition 

so that 
m 

~ w1(r",s") = 1, (3.3.11) 
1=1 

and taking w(r"h) to denote the m vector with components w1(rk,sl<), i= 1, 
... , m, we find that a limit point w of the sequence {w(r",s")} exists. Let us 
take {w(r",s")} to denote a subsequence converging to w. Using (3.3.3) and 
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dividing by dk we obtain 
m 

Taking the limit as k---+- oo yields 
m 

.L w1 \lg1(x) = o. (3.3.12) 
1=1 

It is clear that 

lim u1(rk>s") = 0, i~ A(x), 
k-+ro 

which implies wi = o, ie A(x). 

Now, (3.3.12) reduces to 

.L w, \7g1(x) = o, 
feA(i) 

so that, by condition 2.2, we must have 

w1 = 0, iE A(x), 

contradicting (3.3.11). Hence, it must be true that the dk are bounded, and 
accordingly the sequence {u(rk,sk)} has a limit point îi. Using (3.3.3) and taking 
the limit as k ---+- oo we obtain 

vf(x)- .L ai \lgt(x) = o. 
ieA(X) 

From {2.1.1 0) and condition 2.2 it follows that 

whereas 
îit = o = ü1, i 1= A(x), 

which completes the proof of theorem 3.3.3. 

3.4. Series exp~ion of the minimizing function 

Let us now turn to the question of how the pair 

[x{r,s), u(r,s)] (3.4.1) 

behaves as a function of randsin a neighbourhood of (r,s) = (0,0). We shall 
be operating under conditions which, ifsatisfied, guarantee that problem (1.1.1) 
has a unique Kuhn-Tucker point (x,ü). Furthermore, we assume that the 
problem functions admit of continuons (k + 1 )th-order partial derivatives 
(k ~ 1) in En. It is a matter of course that the conditions 3.1 to 3.6 are satis-
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fied by assumption. 
Por numerical purposes (extrapolation towards the minimum solution) it is 

desirabie that (3.4.1) should be differentiable in a neighbourhood of(r,s) = (0,0), 
preferably as many times as the problem functions admit. These requirements 
lead to additional conditions to be imposed on the functions rp and tp; for 
reasous of convenience, however, we formulate conditions involving the fust­
order derivatives of rp and tp. The analysis of the present section will eventually 
lead to an appropriate choice ofthe parameters À and p, appearing in (3.1.3). 

Prom (3.3.1) to (3.3.3) we can infer that (3.4.1) solves the system 

vf(x) 0, 

u1 - r;. rp' {g1(x)} = 0, iE / 1 , 

s~' U1 tp' {g1(x)} = 0, iE /2, 

(3.4.2) 

for any r > 0 and s > 0. We shall, first, show that we only have to deal with 
the behaviour of tp for nonpositive values of its argument. By (3.3.10) we have 

lim u1(rk>sk) = ü1; i= 1, ... , m. 
k-+ro 

Then there exist positive numbers eo and a0 such that u1(r,s) > 0, iE A( x), 
for all 0 < r < eo and 0 < s < a0 • It follows then from condition 3.3 and 
from (3.3.2) that g1[x(r,s)] < 0, iE A2(x), for all 0 < r < eo and 0 < s < a0. 
On the other hand, it must be true that g1rx(r,s)] > 0, i f/: A(x), for sufficiently 
small, positive values of rand s, whence u1(r,s) 0, iE / 2 - Aix). Summariz­
ing the results we find that a positive e and a exist such that for all 0 < r < e 
and 0 < s <a 

u1(r,s) > 0 } . A (-) 
gt[x(r,s)] < 0 zE z x' 

g1[x(r,s)] > 0 } . 1 A (-) 
( ) 0 

IE z- zX. 
u1 r,s = 

(3.4.3) 

(3.4.4) 

It is now sufficient to confine our attention to the constraints with indices in 
11 n Aix), since the behaviour of u1(r,s), iE 12 A2(x) is known. Then we 
are only concerned with the behaviour of tp for nonpositive values of its argu­
ment. We shall accordingly introduce a function w which bas the property 

w(17) tp(1]) for 17 0. (3.4.5) 

Por numerical purposes we want to establish differentiability of (3.4.1 ), as many 
times as the problem functions admit. To that end we shall be using the system 
(3.4.2), where the derivatives rp' and tp' (or, in point of fact, the derivatives rp' 
and w' if we omit some equations) appear. Hence, we shall impose the addi­
tional requirements that rp' and w' be analytic functions. With these intro-
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ductory remarks we formulate the following conditions. 

Condition 3.7. There is a positive number cp0 such that cp' is analytic in the 
interval (-cp0 , oo ), except at r; 0; it has a pole of order A. at r; = 0. 

Condition 3.8. There is a positive number w0 such that w' is analytic in the 
interval (-oo,w0); it has a zero of order p, at r; = 0. 

If these conditions are satisfied we shall say, in what follows, that the harrier 
term b(x) of(3.l.4) has order A., and that the loss term !(x) of(3.1.5) has order p,. 

Lemma 3.4.1. Conditions 3.2 and 3.7 imply 

cp'(r;) > 0 for any r; > 0. 

Conditions 3.3 and 3.8 imply 

w'(r;) > 0 for any r; < 0. 

Proof lt must he true that <p'(r;) ~ 0 for any r; > 0. Suppose that a positive 
r;0 exists such that cp'(r;0 ) = 0. Then, by concavity, 

cp(r;0 ) ~ cp(r;) for any r; > 0. 

On the other hand, cp: s a monotonie, nondecreasing function whence 

Then, cp IS a constant in the interval [r;0 ,oo), contradicting the statement that 
it is an analytic function in the interval (0, oo) with cp(O+) = -oo. 

The proof of the second statement proceeds along the same lines, so that it 
can be omitted. 

On the basis of the conditions 3.7 and 3.8 we can write 

cp'(r;) = 'fj-). Ç(r;), 

w'(r;) (-'f})fj 8(r;), 

(3.4.6) 

(3.4.7) 

where Ç is analytic in the interval ( -cp0 , oo ), Ç(O) =!= 0, and 8 is analytic in the 
interval (-oo,w0 ), 8(0) 0. Invoking lemma 3.4.1 we find that 

Ç(rJ) > 0 for 'fJ 0, 

B(r;) > 0 for r; ~ 0. 

Theorem 3.4.1. If (a) the problem functions f, gl> ... , g", have continuous 
(k + l)th-order partial derivatives (k ~ I) in Em (b) a Kuhn-Tucker point 
(x,ü) of problem (1.1.1) exists which satisfies the Jacobian uniqueness condi­
tions 2.1 to 2.3, and {c) the conditions 3.1 to 3.8 are satisfied, then the pair 
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[x(r,s), u(r,s)] is unique with continuous kth-order partlal derivatives in a 
neighbourhood of (r,s) (0,0). 
Proof We arrange the constraints in such a way that we obtain 

A(x) {I, ... , a}, 

as we have done in the proof of theorem 2.2.3. We take A 1 and A 2 to denote 
A1(x) and A2(x) respectively. Fînally, we think of the constraints which are 
inactive at x as arranged in such a way that 

ie / 1 for all 
ie / 2 for all 

a+ I i~ {3, 
f3 + 1 ~i~ m. 

We have pointed out that the constraints numbered from f3 + 1 to m can be 
dropped from consideration. These are precisely the constraints in / 2 A2(x). 
Employing these notations we reptace the system (3.4.2) by the slightly reduced 
system 

IJ 

vf(x)- :Lu, \lg1(x) o, 
1=1 

u1 g1.a(x)- ,.a Hg1(x)} = 0, ie /1, 

s" u1 - {-g1(x) }" 9{g1(x)} = 0, ie A2 , 

a solution of which is given by 

[x(r,s), u1 (r,s ), ... , u6(r,s)] 

(3.4.8) 

(3.4.9) 

for all 0 < r < (! and 0 < s < a. Furthermore, it can be verified that (x, ü1, 

••• , üp) solves (3.4.8) for r = 0 and s 0 so that, if we take 

x(O,O) x, 
u(O,O) = ü, 

we obtain straightaway that (3.4.9) is a solution of (3.4.8) for any 0 ~ r < e 
and 0 ~ s < a. With the additional definitions 

y 1 = u/1.a, ie /1> 
y, u/1", ie A2, 

and with similar definitions of ji1 and y1(r,s) for ie / 1 v A 2 , the system (3.4.8) 
can be rewritten as 

vf(x)- L y/· \lg,(x)- L Yl' \7g;(x) = 0, ~ 
ld1 i<A2, 

Yt g,(x) r [.;:{g,(x)} ]11" = 0, ie /1, 

s y 1 gt(x) [O{g1(x)} ]11" 0, ie A 2 • 

(3.4.10) 

For any 0 ~ r < e and 0 ~ s < a a solution of (3.4.10) is obviously given by 

[x(r,s), y(r,s)], (3.4.11) 
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where y(r,s) denotes the vector with components y;(r,s), i I, ... , {3. Simi­
Iarly, we take y and ji to denote veetors with components Y1> •.• , y6 and 
ji1 , ••• , ji6 respectively. The system (3.4.10) represents a system of n + f3 
nonlinear equations in volving n + f3 + 2 variables: the components of x and 
y, and the controlling parameters r and s. 

The functions appearing in (3.4.1 0) have continuons kth-order partial deriv­
atives in a neighbourhood of the point (x, y, r, s) (x, ji, 0, 0). Let J denote 
the Jacobian matrix of (3.4.10) with respect to x and y evaluated at (x, ji, 0, 0). 
We shall verify that J is nonsingular under the uniqueness conditions 2.1 to 
2.3. In order to do this we introduce a convenient notation. 

Let H 1 denote the matrix with the linearly independent columns \lg;(x), 
i l, ... , a, and H 2 the matrix with the columns \lg;(x), i= a+ I, ... , {J. 
The matrix G represents a diagonal matrix with positive elements g;(x), i = 

a 1, ... , {J. The symbol D denotes the matrix D(x,ü) of (2.2.1). Thematrices 
Y1 and Y3 are taken to be diagonal matrices. The diagonal elements of Y1 are 
given by 

Ä. .Yt'~.- I, 
# ji;"-1, 

The diagonal elements of Y3 are 

if iEAt, 
if iE A 2• 

if iE Al> 
if iE A 2• 

Lastly, the matrix Y2 is the unit matrix if A. = 1, and the null matrix if A. > I. 
With these notations and arrangements the matrix J can be written as 

(3.4.12) 

Comparison of (3.4.12) and (2.2.4) leads to the condusion that J must be non­
singular. 

By the implicit-function theorem (De la Vallée Ponssin (1946)) there is a 
neighbourhood of (r,s) = (0,0) such that x and y can be solved uniquely from 
the system (3.4.10) in terms of the remaining variables r and s. The solution 
so obtained has continuons kth-order partial derivatives at (r,s) = (0,0). We 
have already constructed the solution (3.4.11) of the system under consider­
ation, for 0 ~ r < e and 0 s < a. Hence, there is a neighbourhood of 
(r,s) (0,0) such that (3.4.11) is the unique solution of (3.4.10) with con­
tinuons kth-order partial derivatives at (r,s) = (0,0). Moreover, these deriva­
tives exist and are continuons in a neighbourhood of (r,s) = (0,0) since the 
functions appearing in the system (3.4.10) have continuons kth-order partial 
derivatives around the point (x, ji, 0, 0). The observation that 
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( [y1(r,s)]", 
u1(r,s) = ) [y.(r,s)]l', 

\ 0, iE [ 2 

in a sufficiently small neighbourhood of (r,s) = (0,0) completes the proof of 
theorem 3.4.1. 

In what follows we shall refer to the vector function [x(r,s), u(r,s)] of(3.4.1) 
as the minimizing function associated with the mixed penalty function M,. of 
(3.1.3). It is worth noting that this function is defined in a jul! neighbourhood 
of the origin; only for sufficiently small, positive values of r and s can it be 
thought of as related to the mixed penalty function Mrs· 

Let us now discuss a number of examples in order to illustrate the results of 
theorem 3.4.1. We shall be dealing with the problem 

minimize 
subject to 

and we start off with the mixed penalty function 

4x1 + X 2 - rl lp(X1 1) s-~' VJ(Xz- 2). 

We take lp and tp such that 

lp'(rj) 'YJ-l, 
w'('Y/) (-ry)~'. 

A point x(r,s) minimizing (3.4.13) canthen be obtained by solving 

4- r;. (x 1 1)-;. 0, x1 ;? I, 
1-s-JL (-x2 + 2)~' 0, x 2 ~ 2, 

which leads to 
x 1(r,s) 1 +4-wr, 
x 2(r,s) = 2 s. 

(3.4.13) 

Here, we have a minimizing function which is clearly differentiable in a neigh~ 
bourhood of (r,s) (0,0). The above example can also he used to demonstrate 
the convenience of raising r and s to the powers A and p, respectively. Let us, 
instead of (3.4.13), apply the mixed penalty function 

(3.4.14) 

where lp and tp are taken as before, and p and q denote positive numbers. 
Then x(r,s) can be solved from 

4 -rP (x1 -1)-;. = 0, x 1 ;? 1, 
l-s-q (-x2 + 2}u 0, x 2 ~ 2, 
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yielding xl(r,s) 4-1/J. rPI\ 
x2(r,s) 2 s'~1~t. 

In this example the minimizing function is only differentiable at (r,s) (0,0) 
if p }. and q ~ p. The choice p A. and q = p is a convenient one, since 
it leads to an order of differentiability for the minimizing function which is 
as high as the problem functions admit. 

Let us, finally, employ the mixed penalty function (3.4.14) with q; and 'IJ' 
chosen in such a way that 

q;'('Y/) w'('YJ) exp (~} 
Then <p and 'IJ' satisfy the requirement of conditions 3.2, 3.3, 3.5 and 3.6, but 
not of 3.7 and 3.8. We solve x(r,s) from the system 

4 rP exp (-
1
-) = 0, x1 ~ 1, 

x 1 1 

1 s-q exp (-
1
-) = 0, x 2 ~2. 

x 2 -2 

In so doing, we obtain 

1 
x 1(r,s) = 1 + , 

In 4-p In r 

1 
2+--. 

q Ins 

Here, the minimizing function is not differentiable at (r,s) (0,0), for any 
positive value of p and q. 

We conclude this section by discussing a first-order approximation to the 
expression 

f [x(r,s)]- f(x). 

Observing that the minimizing function solves (3.4.8) we obtain 

gt[x(r,s)] = (;{g1fx(r,s)]}) 1
'", 

iE / 1 , 
r u1(r,s) 

-g1[x(r,s)] __ ( u1(r,s) )l/~t, 

s 8{g1(x(r,s)]} 
iE A2. 

We can now obtain 

. g 1[x(r,O)]- g1(x) ( ~(0) ) 1
'"' 

hm = -- , 
qo r Üt 
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Similarly, 
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. _ T ox(O,O) ( ;(O) ) 1
';. 

'Vgt(x) -- = - , . or Üt 

ox(O,O) 
VgJ(.xY -- 0, iE Az, 

or 

_ T bx(O,O) _ ( ü1 )
1111 

'Vgt(x) bs -- (J(O) , iE A 2 • 

With the above formulas and the Kuhn-Tucker relations we can write 

f[x{r,s)]-f(x) ~ Vf(xY r--+s--[ 
ox(O,O) bx(O,O)J 

br bs 

s bx(O,O)J 

bs 

(3.4.15) 

It is interesting to consider the logarithmic harrier function (3.3.8). Then A 2 

is empty, À 1, and ;('fJ) 1 for all "l· Hence, if x(r) denotes the minimizing 
function associated with (3.3.8), then (3.4.15) reduces to 

f [x(r)] -f(x) ~ ct. r, 

where ct. stands for the number of active constraints at x. One may compare 
this approximation with (3.3.9). The property that the minimum value of (1.1.1) 
can he approximated with a prescribed accuracy is apparently a particular 
property of fust-order barrier-function techniques (where A2 is empty and 
À 1). For the remaining methods the fust-order approximation (3.4.15) de­
pends on the Lagrangian multipliers, which are generally unknown before the 
problem is solved. 

In view of the results obtain;d so far, there is virtually no need for using 
two separate cantrolling parameters. In the considerations to follow we shall 
accordingly he dealing with the mixed penalty function 

M,(x) = f(x) r'- b(x) r- 11 /(x), (3.4.16) 

where b(x) and /(x) denote the harrier term (3.1.4) and the loss term (3.1.5) 
respectively. We take x(r) to denote a pointminimizingM,over R1°. Themini-
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mizing function associated with (3.4.16) will be represented by [x(r), u(r)J, 
where u(r) is the m vector with components 

u{r) = { r'- <p' {g1[x(r)J}, iE / 1 , 

' r-u tp' {g1[x(r)J}, iE lz. 
(3.4.17) 

In what follows we shall refer to the vector function [x(r), u(r)] as the mini­
mizing trajectory. 

Now, a consequence of theorem 3.4.1 is that the minimizing trajectory can 
be expanded in a Taylor series about r 0. This provides, as an important 
numerical application, a basis for extrapolation towards (x,ü). For more de­
tails we may, for instance, refer to Bulirsch (1964), Bulirsch and Stoer (1964, 
1966) and Veltkamp (1969). 

The results of this section suggest that first-order barrier and loss terms in 
the mixed penalty function (3.4.16) are preferabie to higher-order terms, since 
they provide a more rapid convergence. The approximation (3.4.15), namely, 
reduces to 

[ ( 
~(0) )1/À 

f[x(r)]-f(x)~r .~ü1 -
1<A1 Ü; ( - )1/u] U; 

~ü --
ieAz 

1 8(0) · 

Thus, it varies with r for small values of r, whereas the centrolling parameter 
in (3.4.16) is raised to the powers Ä. and ft respectively. The situation is more 
complicated, however. The next section is concerned with the question of 
whether the orders Ä. and ft affect the degree of difficulty in minimizing the 
penalty function (3.4.16). A discussion of the choice of a penalty function for 
computational purposes is postponed until that subject is reached in chapter 5. 

In order to simplify matters we restriet ourselves henceforth to functions <p 

and tp such that 
<p'(n) = n-". 

w'(n) (-tj)~'. 

(3.4.18) 

(3.4.19) 

The results of the sections to follow can, however, be generalized and applied 
to the cases where (3.4.6) and (3.4.7) are used. 

3.5. Eigenvalnes of the principal Hessian matrix 

Numerically, problem (1.1.1) can be solved by unconstrained minimization 
of a penalty function for a sequence of positive, decreasing values of the cen­
trolling parameter. lt is obvious that computational success depends critically 
on the power of unconstrained-minimization techniques. This, however, intro­
duces the question of whether we can facilitate the computational process by 
an appropriate choice of the orders lt and p, of the barrier and the loss term 
respectively. 
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In this section our concern will acordingly be the Hessian matrix of a penalty 
function, and particularly its eigenvalues, in the limiting case where r decreases 
to 0. The motivation for the study is the idea that failures of unconstrained­
minimization techniques may be due to ill-conditioning (for symmetrie, positive 
definite matrices an excessive ratio of the greatest to the smallest eigenvalue) 
of the Hessian matrix at some iteration points. The idea is quite plausible for 
the Newton-Raphson technique: bere, the Hessian matrix is evaluated at the 
current iteration point; thereafter a system of linear equations, with the Hessian 
matrix as coefficient matrix, is solved in order to obtain the direction to the 
next iteration point. The successful Oavidon-Fletcher-Powell algorithm 
(Davidon (1959), Fletcher and Powell (1963)) and the related quasi-Newton or 
variable-metric methods (Broyden (1967), Fiacco and McCormick (1968), 
Pearson (1969)) may also he affected by ill-conditioning (Murray (1969)). In 
these methods the Hessian matrix is not explicitly evaluated. In every iteration 
a so-called direction matrix is updated on the ground of information which is 
due to the difference oftwo successive iteration points (change in position) and 
the difference of the corresponding gradients of the function to he minimized. 
The updating is such that, if a quadratic function of n variables is minimized, 
the direction matrix equals the inverse Hessian matrix after n iterations. Ill­
conditioning was discussed by Bard (1968) who investigated a numerical 
instability arising if the difference of two successive iteration points is very 
large or very smal/ with respect to the difference of the corresponding gradients. 
A successful attempt, ho wever, to analyze the effect of ill-conditioning on the 
iterative course of the above methods (these are probably the most efficient 
ones) has never been made, at least to our knowledge. It is nevertheless interest­
ing to deal with the question of conditioning of penalty functions: we shall 
presently demonstra te that a certain condition number varies with r -l, for 
small values of r, independently of the behaviour of a mixed penalty function 
at the boundary of the constraint set. It is therefore unlikely that some penalty 
functions would generally he easier or harder to minimize than other ones. 

We shall he assuming that the functions in problem (1.1.1) possess continuons 
third-order partial derivatives in Em and that a Kuhn-Tucker point (.X,ü) exists 
satisfying the Jacobian uniqueness conditions 2.1 to 2.3. Furthermore, the con­
ditions 3.1 to 3.8 are satisfied by assumption. 

We shall primarily be concerned with the Hessian matrix H(r) of the mixed 
penalty function M, of (3.4.16), evaluated at the point x(r) which minimizes 
M, over R1°; for small values of r, the point x(r) is unique by theorem 3.4.1. 
In what follows we shall refer to H(r) as the principal Hessian matrix of M,. 
Since any metbod for minimizing Mr approaches x(r) it is reasanabie to assume 
that unconstrained minimization may he obstructed by ill-conditioning of H(r). 

Conditioning of a matrix is measured by the condition number: for symmetrie, 
positive definite matrices defined as the ratio of the greatest to the smallest 
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eigenvalue. We are particularly interested in variations ofthe condition number 
x(r) of H(r) in the case where r decreases to 0. 

Let us now proceed to the analysis of H(r). We reeall from (3.4.3) and (3.4.4) 
that a positive number e exists such that for 0 ~ r < e: 

u;(r) > 0 } . 
g;[x(r)] < 0 1 E A 2 , 

g1[x(r)] > 0 } . I A 
() 

_ O l E 2- 2· 
u1 r -

Furthermore, we introduce the rank-one matrices 

(3.5.1) 

(3.5.2) 

(3.5.3) 

For any r, 0 < r < (!, the principal Hessian matrix H(r) of M, can now be 
written as 

H(r) = D[x(r), u(r)]- r;. ~ q/' {g1[x(r)]} N 1[x(r)] + 
i€11 

-r-Il~ w"{g1[x(r)]} N 1 [x(r)], (3.5.4) 
i~:A2 

where Dis the matrix defined by (2.2.1) and q/' and w" represent the second­
order derivatives of rp and w respectively. We can infer from (3.4.18) and 
(3.4.19) that 

H(r) = D[x(r), u(r)] + r- 1 G[x(r), u(r)] (3.5.5) 
with 

G(x,u) =À ~ u/+ 11;. N 1(x) + fk ~ u/- 11
/1 N 1(x). (3.5.6) 

iEl! iEAz 

Using the assumption that the functions in problem (1.1.1) admit of continuous 
third-order partial derivatives, we can expand the elements of D[x(r), u(r)] 
and G[x(r), u(r)] in a Taylor series about r = 0. Hence 

D[x(r), u(r)] = D(x,ü) + r D 1(r), 

G[x(r), u(r)] = G(x,ü) + r G1(0) + 1- r 2 Gz(r). 

(3.5.7) 

(3.5.8) 

In the above expressions D 1(r) and Gz(r) denote matrices with elements which 
are due to truncation of the Taylor series expansions; furthermore, G1(r) is 
defined by 

d 
G1(r) =- G[x(r), u(r)]. 

dr 
(3.5.9) 

If we take [x'(r), u'(r)] to denote the first-order derivative of the minimizing 
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trajectory, then 

G1(r) (À+ 1) ~ [uü)Jl'A u;'(r) N 1[x(r)] + 

where 

i<ll 

+ (p 1) ~ [u1(r)]- 11~' u/(r) N 1[x(r)] + 
IEA2 

d 
- N1[x(r)] = \7 2g1[x(r)] x'(r) \7g1[x(r)]T + 
dr 

+ \7gt[x(r)]x'(r)T \7 2g1[ x(r)]. 

(3.5.10) 

(3.5.11) 

For convenience, we shall henceforth employ the symbol F to denote briefly 
the matrix G1(0). Furthermore, wedefine a matrix K(r) by 

(3.5.12) 

The matrix K(r) has a fini te limiting matrix as r {. 0. Substituting (3.5. 7), (3.5.8) 
and (3.5.12) into (3.5.5) we obtain straightaway 

H(r) D(x,ü) + G1(0) + ,- 1 G(x,ü) r [D1(r) +-! G2(r)] = 

= D(x,ü) + F + r- 1 G(x,ü) r K(r). (3.5.13) 

Thematrices in (3.5.13) are real, symmetrie matrices so that their eigenvalues 
are real. Furthermore, one can verify that 

yr D(x,ü) y > o, 
yT Fy 0, 

G(x,ü)y = o, 
for any vector y e En satisfying 

yr v gt(x) = o, ie A( x). 

(3.5.14) 

(3.5.15) 

(3.5.16) 

This is due to condition 2.3 (satisfied by assumption) and to the particular form 
of F G1(0) and G(x,ü), invalving only the (linearly independent) gradients 
of the constraints which are active at x. Lastly, G(x,ü) is a matrix with rank a. 

The eigenvalues of a matrix are not affected by a coordinate transformation. 
We use this property in order to transform thematrices H(r), D(x,ü), F = G1(0), 
G(x,ü) and K(r) into matrices H*(r), D*, F*, G* andK*(r) respectively, in such 
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a way that G* is a diagonal matrix. The new coordinate system can be charac­
terized as follows. We take W to denote the subspace of En spanned by the 
gradients vg1(.x), i 1, ... , cx. The symbol Z represents the orthogonal com­
plement of Win E ... Let w1 , ••• , w .. denote normalized, orthogonal eigen­
veetors corresponding to the positive eigenvalnes of G(x,ü). These eigenveetors 
span the subspace W. Finally, we take z,.+ 1, ••• , z" to represent a set of 
normalized, orthogonal veetors spanning the subspace Z. With the veetors 
wl> ... , w~, z.,+ 1 , ••• , Zn as a new coordinate system, we find that H*(r) can 
be written as 

(G * 0) r- 1 g 
0 

+ r K*(r). (3.5.17) 

Here, G 11 * is a diagonal matrix with cx rows and cx columns, and positive diag­
onat elements g 11*, i= 1, ... , cx. The partitioning of D* and F* is similar 
to that of G* so that D 11 * has cx rows and cx columns, etc. The vanishing of 
F22* needs some explanation. By (3.5.15), F22* is antisymmetric, but we have 
seen that F, and consequently F*, is symmetrie; from these arguments F 22 * 0. 
We still have some degree of freedom in the choice of the coordinate axes 
z.,+ 1> ••• , Zm and we shall take them to be normalized, orthogonal eigen­
veetors of D22*. Then D22* is a diagonal matrix with diagonal elements d11*, 

cx + 1, ... , n. By (3.5.14), these elements must be positive. 
We are now in a position to apply Gerschgorin's theorem (Wilkinson (1965)) 

which states that any eigenvalue of a real or complex matrix A is contained in 
one of the circular disks with centre a11 and radius !: lau I; if s of these disks 

'*1 
form a connected set isolated from the remaining disks, then there are exactly 
s eigenvalnes of A within this connected domain. The disks in question are 
commonly referred to as "Gerschgorin disks". We are, however, concerned 
with real, symmetrie matrices so that we can restriet ourselves to "Gerschgorin 
intervals ". 

A second, useful device is obtained from the following observation: if the 
ith column of a matrix A is multiplied by some number p =1= 0, and the ith 
row by p- 1 , then the eigenvalnes of A remain unchanged. 

We shall now demonstrate that the eigenvalnes of H*(r), and consequently 
the eigenvalnes of H(r), are given by 

,-1 gil* e1(r), i = 1, ... ' cx, } (3.5.18) 
du* e1(r), i = ex + 1, ... , n, 

where lim r e1(r) 0, i = 1, ... ' cx, 
qo 

lim e1(r) = 0, i = cx + 1, ... , n. 
rto 
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To start with, we infer from (3.5.17) that the diagonal elementsof H*(r) can 
he written as 

h11*(r) { 
du* / 11* + r- 1 gu* + r k11*(r), i = 1, ... , IX, 

d11* + r k 11*(r), i = IX + 1, ... , n. 

Next, we try to ohtain Gerschgorin intervals with radii which are small with 
respect to the eentres h11*(r), i = 1, ... , n. If we multiply the rows ct. + I 
ton of H*(r) hy r 112 and the columns ct.+ 1 ton hy r- 112, then H*(r)isreduced 
toa matrix possessing Gerschgorin intervals F 1(r) witheentres hu*(r) and radii 
e,(r) given hy 

" n 
etCr) = ~ ld,/ +ft/+ r k,/(r)l + ,-l/2 ~ idij* + k* + r ku*(r)l; 

J=l J=«+l 
j#i 

i=l, ... ,ct., 

" n 

e,(r) = r112 ~ ldlj* + i;/+ r ku*(r)l + ~ Ir klj*(r)l; i= ct.+ I, ... , n. 
J=l J=~~t+l 

}#I 

It is ohvious that 

lim r !!t(r) 0; i 1, ... , IX, 
r.j.O 

lim !!t(r) = 0; i = a 1, . . . , n. 
qo 

Any eigenvalue of H*(r) is contained in at least one of the intervals F 1(r ). If 
the diagonal elements g11*, i 1, ... , a, and d11*, i IX+ 1, ... , n are 
mutually different, then the intervals F 1(r) are disjunct for r small enough, and 
this can readily he used to prove (3.5.18). If two or more of the values just 
named coincide, one only bas to consider a numher of connected domains 
(unions of some intervals F;(r)) in order to estahlish (3.5.18). The mode of 
operation will he clear so that detailed calculations can he omitted. 

Suppose that the diagonal elements of H*(r) are arranged in such a way that 

Por sufficiently small values of r and 1 ~ IX < n the condition numher x(r) 
of H(r) is given hy 

(3.5.19) 
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so that the condition number is proportional to r- 1
, regardless of the orders }. 

and 11 of the harrier and the loss term respectively. Similarly, the determinant 
of H(r ), which can be written as the product of the eigenvalues, varies with 
r-"' where ct stands for the number of active constraints at x. lf a n, then 
x(r) converges to the finite value 

as r deercases to 0; this may happen if, for example, the problem is one of 
linear programming with a nondegenerate minimum solution. 

The behaviour of x(r) is an indication that tirst-order penalty functions are 
not easier or harder to minimize than the higher-order ones, provided that the 
condition number is an appropriate measure of the degree of difficulty. The last 
hypothesis has not been thoroughly investigated and it is beyond the scope of 
the present thesis to do so. We only want to show that, in choosing values of 
À and 11 for computational purposes, one does not run up against difficulties 
which may be due to an excessive rate of ill-conditioning: we have obtained 
that conditioning varies with r- 1 for any choice of À and fl, and for any par­
titioning of the set of constraint indices into subsets / 1 and / 2 • We have in 
fact the even stronger result that rx eigenvalnes vary with r - 1 and that the 
remaining eigenvalnes converge to finite, positive values as r decreases to 0, 
independently of À, fl, 11 and 12 • 

For similar, speculative reasous it is interesting to analyze the "coefficient" 
G(x,ü) of r- 1 in formula (3.5.13), and its positive eigenvalnes g 11*, i I, ... , a. 
A penalty function, namely, is designed to identify the active constraints and 
to solve them. Presnmably, solution of the active constraints is easier if the 
eigenvalnes gil*, i I, ... , rx, are of the same order of magnitude. We con­
cern ourselves with the manner in which these eigenvalnes are affected by the 
choice of À and fl· The matrix G(x,ü) can, by (3.5.6), be written as 

G(x,ü) À L (ü1)
1+w N 1(x) + 11 L (ü1)

1
- 11ll N 1(x). 

i<A1 i<Az 

We focus our attention on the case where the gradients \7g1(x), i l, ... , IX, 

are orthogonal. This is not the general case, but the orthogonality hypothesis 
leads to an interesting interpretation. lt follows that the positive eigenvalnes 
of G(x,ü) are then given by 

À (ül)l+l/A IIV'gt(X)il 2, iE A,, } 
fl(Üt) 1

- 11
tt llvg;(.X)II2 , iEAz. 

(3.5.20) 

Using the Kuhn-Tucker relations (2.1.10) and the orthogonality relations one 
can show that 

_ Pt llvf(x)ll 
u,=--·---, 

llvgt{x)ll 
1, ... , rx, 
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where {31 stands for the eosine of the angle between Vf(x) and Vg1(x). The 
positive eigenvalues g;;* of G(x,ü) can then be reduced to 

À. ({3; llvf(x)l!)1+ 11" ll\7g;(X.)II 1- 10·, iEA1,} 

ft (f3t llvf(x)ll)1- 11.u 11Vgt(x)ll1+ 11.u, ie A2. 
(3.5.21) 

General remarkscan hardly be made, but we restriet ourselves to the first-order 
case where À. ft = I. Then the eigenvalues are 

{3/ IIVf(x)W, ie A1, } 

ll\7g;(X.)II 2
, iE Az. 

(3.5.22) 

This demonstrates that the eigenvalues corresponding to constraints which are 
incorporated in a first-order harrier term depend on angles between gradients 
only. Eigenvalues corresponding to constraints in a first-order loss term are 
determined by lengths of gradients. Such a complete separation is apparently 
nota feature of higher-order penalty functions. For increasing values of À. and 
ft they only show the tendency of attaching similar weights to angles and lengtbs 
of the gradients involved. 

We are thus brought back to the question of whether a harrier function is 
harder to minimize than a loss function. This point has also been discussed by 
Murray (1967), and Fiacco and McCormick (1%8). They have some preferenee 
for (first-order) harrier functions. In view ofthe results in this section, however, 
we cannot give an answer which is favourable to either first-order harrier func­
tions or loss functions. We have been dealing with a phenomenon which we 
may call constraint balance: any of the active constraints is associated with 
precisely one of the positive eigenvalnes of G(x,ü) which we want to equilibrate. 
Apparently, a partienlar problem may be highly unbalanced with respect to a 
first-order harrier function, but conveniently balanced with respect to a tirst­
order loss function, and vice versa. 

These results are obtained, it is true, on the assumption that the gradients 
Vg;(x), i= l, ... , a., are orthogonal. The continuity of the eigenvalues, 
however, ensures that small perturbations of the orthogonality will only lead 
to small deviations of the eigenvalnes from (3.5.21) and (3.5.22), so that the 
results just sketched have a slightly wider validity. 
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4. PENALTY-FUNCTION TECHNIQUES WITH MOVING 
TRUNCATIONS 

4.1. Basic concepts 

The preceding chapter was concerned with penalty functions containing one 
or two parameters which control the convergence of a computational process 
toa minimum solution of problem (l.l.l). Recently, however, several authors 
(see sec. 1.1) have observed that parametrie barrier-function and loss-function 
techniques can be modified into methods which do not (explicitly) operate with 
controlling parameters, but with moving truncations of the constroint set. We 
shall not refer to these methods by the usual name of "parameter-free" ver­
sions. In our opinion this name is misleading. Convergence to a minimum solu­
tion of (1.1.1) is here controlled by a sequence {t1.} of truncotion levels converg­
ing to the unknown minimum value v of the problem. In using a parametrie 
technique, however, one employs a null sequence {rk} ofvalues assigned to the 
controlling parameter. 

We shall presently see that the methods of this chapter have a close relation­
ship with Huard's metbod of centres: it provides the moving-truncations coun­
terpart of the logarithmic barrier-function technique. 

We begin by imposing a number of requirements which are summarized in: 

Condition 4.1. Problem (1.1.1) is a convex-programrning problem. The con­
straint setRis compact and its interior R0 is nonempty. 

Throughout this chapter we shall be dealing with harrier functions and loss 
functions separately. We did notsneeeed in finding a moving-truncations version 
of the mixed-penalty-function technique treated in the previous chapter. 

Let us first introducesome terminology and sketch the basic ideas. We shall 
be operating in intersections of the constraint set R and the truncations 

F(t) ={x lf(x):;:;:; t; x E E"} 

for values of the truncation level t which are not less than the minimum value v 
of problem (1.1.1). Then the truncoted constroint set 

T(t) = R n F(t) ={x lf(x) t; x ER} (4.1.1) 

is nonempty. Wedefine a moving-truncations borrier function by 
m 

Bt*(x) =p tp[t-f(x)] + L tp[g1(x)], (4.1.2) 
1=1 

where tp is a function of one variabie satisfying condition 3.2 and possibly 3.7. 
Furthermore, a positive weight factor p is attached to the term which contains 
the objective function, for reasons that will become clear at the end of sec. 4.3. 
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If t > v, the interior J'O(t) of T(t) is nonempty, and the function B1 *is appar­
ently concave in T"(t). Moreover, if {y1} denotes a sequence of points in T 0(t) 
converging to a boundary point of T(t), then 

lim B,*(y1) -oo. 
j-+ 00 

Under these conditions a point c(t) exists which maximizes B1* over P(t). The 
proof will presently be given. Let {td denotc a sequence of monotonie, de­
creasing truncation levels converging to v as k ~,. oo. It will intuitively be clear 
that any limit point of the sequence {c(tk)} is then a minimum solution of 
problem (1.1.1 ). 

There are several algorithms which opera te along these I i nes: the method of 
eentres (Huard (1964, 1967)), some variauts of it with relaxation facilities 
(Tremolières (1968)), and SUMT without parameters (Fiacco and McCormick 
(1967b)). Generally, a sequence {tk} as mentioned above is obtained as follows. 
The first step starts with a truncation level t 1 f(x 0 ), where x 0 is some 
feasible solution of (1.1.1). Hence t 1 v. At the beginning of the kthstep the 
truncation level t~c_ 1 of the previous step and the iteration point c(tk_ 1) are 
available whereas, by construction, 

(4.1.3) 

The truncation level tk is then taken to be 

tk = tk-1 (! {tk-1 (4.1.4) 

Here, e stands for a relaxation factor such that 0 < e ~ 1, in order to eosure 
that t~c_ 1 > t~c ~ v. The reason for introducing this factor will be explained 
at the end of sec. 4.3. The proof that the sequence {tk} converges to vis post­
poned until the next section. 

An interesting example of these techniques is obtained by substituting 
({l('f/) =In 17 intd (4.1.2). A point maximizing 

m 

pIn [t- f(x)] + ~ In g 1(x) 
1=1 

over J'O(t) can also be found by the maximizing over T(t) of the function 
m 

d,(x) = [t- f(x)]P TI g1(x). 
i= 1 

This function is an example of the general distance function appearing in the 
method of eentres: one of the properties of a distance function is that it vanishes 
on the boundary of a truncated constraint set; another is that it is positive in 
every interior point of the truncated constraint set under consideration. A point 
maxiruizing dt over T(t) was referred to as a centre of T(t). In what follows 
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we shall be using the name "centre" for the points c(t) in the more general 
case where the function B1 * of ( 4.1.2) is employed. 

4.2. Barrier-function techniques with moving truncations 

In this section we shall variously use the symbols ck> f" and T" to denote 
c(t"),f [c(t")] and T(t") respectively. We can now establish: 

Theorem 4.2.1. If (a) problem (1.1.1) satisfies condition 4.1, and (b) the func­
tion fP appearing in the moving-truncations harrier function ( 4.1.2) satisfies 
condition 3.2, then the truncation levels t" generated in accordance with (4.1.4), 
and the truncated constraint sets T", k 1, 2, ... , have the following properties. 
(l) If T"o is empty forsome k, then c"_ 1 is an unconstrained minimum of f. 
(2) If T"o is nonempty forsome k, there is a point c" maximizing Brk *over Tko· 
(3) If T"0 is nonempty for every k = 1, 2, ... , then 

lim t" = ïi. 
k-+OC! 

Property (3) implies that every limit point of the sequence {c"} is a minimum 
solution of (1.1.1). 
Proof(l). If Tko happens to be empty, thenf(x) tk for any x e Ro, whereas 
t" ~ v. Hence, t" v, and from (4.1.4) we can now infer that 

tk-1- v e [tk-1-1~<-d tk-1-fk-1> 

which impliesfk-t ::;;; v. On the other hand, c"_ 1 is feasible. It must accordingly 
be true that Ik- 1 = v, and this proves the first part. 

(2) The set T" is obviously compact. If its interior is nonempty, then lemma 
3.2.1 can be invoked (with R 1 = S T~c and h = -Btk*) in order to establish 
the existence of a point c" maximizing B1~~ over Tko· This proves the second 
part of the theorem. 

(3) Lastly, we consider the infinite sequences {t1J and {ft}. By (4.1.3) and 
( 4.1.4) we have 

(4.2.1) 

Thus, the sequence {tt<} is monotonie, decreasing and bounded below. We can 
accordingly write 

Assume f > ïi. There is a point y0 e ~ such that 

v <f(yo) < f, 

and one can verify that y 0 e T"0 for any k = 1, 2, .... Furthermore, substi-
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tuting y 0 into (4.1.2) one obtains 

"' 

It follows from the eonvergence of the sequenee {t"} that 

lim (tk-1 - t") = 0. 
k-+CO 

From ( 4.1.4) we eau infer 

so that 

lim (tk- !I,) = 0, 
k-+CO 

and hence 

Iim rp(tk-/") = -oo. 
" ... "" 

Then it follows from inspeetion of (4.1.2) tbat 
m 

Thus, for k sufficiently large, 

B1,. *(c~c) < Btk *(yo). 

(4.2.2) 

This contradiets the statement that c" maximizes B1/" over T"0 for any k = 1, 
2, .... Thus, f v, and one eau infer from (4.2.1) that 

-v. 

This completes the proof of theorem 4.2.1. 

The precise relationship between parametrie barrier-funetion techniques and 
barrier-funetion techniques with moving truneations is expressed by: 

Theorem 4.2.2. lf (a) problem (1.1.1) satisfies condition 4.1, (b) the problem 
funetions have eontinuous tirst-order partial derivatives in Em and (c) tbe fune­
tion cp appearing in (4.1.2) satisfies condition 3.2 and 3.7, tben a centre c" 
minimizes the parametrie harrier function 

m 

Br(x) = f(x) r;. ~ cp[g1(x)] (4.2.3) 
1=1 

over Ro for r equal to 
(4.2.4) 
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The sequence {rd generated in this manner is a monotonie, nonincreasing 
null sequence. 
Prooj. The gradient of Btk * vanishes at a centre ck whence 

m 

I= 1 

Obviously, the point ck solves the equation 
m 

for r equal to the value rk of (4.2.4). We may note that rk is positive since 
tk >I" and <p'(TJ) > 0 for any 1J > p by lemma 3.4.1. Hence, B,k is convex in 
R", and ck minimizes this function over R0 since its gradient vanishes at ck. 

The monotonic behaviour of {rd is shown as follows. Writing 
m 

and keeping in mind that êk minimizes B,k over ~ we have 

1,. + rk;, b,. ~~k-1 + r1/ bk-h 

whence 

Thus rk-l;;:::, r" sincel" <lk- 1• Finally, (4.2.2), (4.2.4), and the behaviour of 
<p' as its argument decreases to 0 lead to 

lim rk = 0, 
k->00 

which completes the proof of theorem 4.2.2. 

The relationship between the two classes of methods eau also be ciarifled if 
we continue the introductory sketch presented in sec. 4.1. 

We have to construct a sequence of truncation levels converging to the mini­
mum value v of(l.l.l). Thus, we are facing the problem of minimizing some 
variabie t subject to the constraints 

t-l(x))<O, } 
g1(x) 0, i = 1, ... , m. 

In order to solve this "extended" problem one may introduce the parametrie 
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harrier function 
m 

B,(t,x) = t- r). {p q;[t-f(x)] + ~ q;[g1(x)]}, (4.2.5) 
1=1 

wbicb differs from tbe ordinary harrier functions in tbe sense tbat one of tbe 
constraints is weigbted hy a positive factor p. It will immediately he clear tbat 

B,(t,x) (4.2.6) 

Let [t(r ), x(r)] denote a point minimizing ( 4.2.5) over tbe interior of tbe con­
straint set of tbe extended prohlem for r > 0. Tben 

B,[t(r), x(r)] ~ Br[t(r), x] 

for any x E R0
• Employing tbis result in (4.2.6) one will ohserve tbat x(r) is a 

centre of tbe truncated constraint set T[t(r)J. 
The results of tbeorem 4.2.2 may be summarized as follows: a moving-trun­

cations harrier-function tecbnique is equivalent to a parametrie harrier-function 
tecbnique adjusting the cantrolling parameter automatically. At first sight tbis 
is a particularly welcome feature, not only from a tbeoretical standpoint For, 
under certain conditions tbe parametrie technique based on the harrier func­
tion B, of (4.2.3) admits of a minimizing trajectory [x(r), u(r)] wbicb can he 
expanded in a Taylor series a bout r = 0. Tbe eentres ck generated by tbe moving­
truncations metbod treated bere can be written as 

(4.2.7) 

witb rk given by (4.2.4). Thus, we obtain a sequence [x(rk), u(rk)] on tbe 
minimizing trajectory. This sequence is clearly amenahle to extrapo/ation 
towards a minimum solution x of tbe prohlem. Tbe crucial point, bowever, is 
tbe rate of convergence, and we sball accordingly he dealing witb tbat subject 
in tbe next section. 

4.3. Rate of convergence 

On tbe ground of tbe Taylor series expansion of f [x(r)] in terms of r we 
can write 

f(ck)-f(x) 

f(c"_1)- f(x) 

f[x(r&:)]- f(x) 

f [x(rk-1) J- f(x) 
~ 

for small valnes r~c_ 1 and '"· Particularly tbe quantity 

'" lim --
""""'"' 'k-1 

is an appropriate measure of tbe ultimate ra te of convergence of a metbod with 
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moving truncations. A value rk generated by such a method, in accordance with 
(4.2.4), will henceforth be termed an equivalent r-value. 

Another appropriate measure of the rate of convergence could of course be 
the quantity 

tk- V 
lim ----
k->ro tk-1- V 

which refers immediately to the truncations levels. The next theorem, however, 
shows that these two measures of efficiency are equivalent. 

Theorem 4.3.1. lf (a) problem (l.l.l) satisfies condition 4.1, (b) the problem 
functions have continuous second-order partial derivatives in Em (c) a Kuhn­
Tucker point (x,ü) of (1.1.1) exists satisfying the Jacobian uniqueness conditions 
2.1 to 2.3, ( d) the point x is a boundary point of the constraint set R, ( e) the 
sequence {rk} denotes a sequence of equivalent r-values generated by the 
moving-truncations method basedon (4.1.2), and (f) the function qJ appearing 
in (4.1.2) satisfies the conditions 3.2 and 3.7, then 

-
tk v • rk e 

lim ---- = hm -- = 1--_-- (4.3.1) 
v k->oork-t fJ+1 

with 
·a. 

fJ p-1;;. ~ (üy-w. (4.3.2) 
I= 1 

Proof Without loss of generality we confine ourselves to the case where 
qJ'('fJ) = 'f}-\ so that, by (4.2.4), 

(4.3.3) 

The parametrie technique basedon (4.2.3) has, by theorem 3.4.1, a minimizing 
function [x(r), u(r)] with a continuous first-order derivative [x'(r), u'(r)] in a 
neighbourhood of r 0. The vector u(r) is, of course, the m vector with com­
ponents 

r;. 
i= 1, ... , m. 

Hence, 

g1[x(r)] = r[u1(r)]- 11;., i= 1, ... , m, 

and, using (4.3.3) and the relation ck = x(rk), we obtain 

gt(ck) = (tk- fk) [p u;(rk)]- 11;.. (4.3.4) 

A second relation to be used here is obtained by application of the Kuhn-
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:2: u1 g1 [x(r)] 
1=1 

lim----­
·~0 f[x(r)]-f(x) 

" 
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"' 
,- 1 :2: u,gt[x(r)] 

1=1 

lim --------
rj,O ,-1 {f[x(r)]-f(x)} 

:2: u1 \lg1(x)T x'(O) 
1=1 

1. 
vf(xY x'(O) 

(4.3.5) 

lt should be noticed that the assumption of x being a boundary point of R is 
essential. Then IX 1, and for any i = 1, ... , a one has 

( -)T '(0) -1' g,[x(r)] vg1 x x - Im---
r.f.o r 

The result of (4.3.5) is accordingly obtained by dividing two nonzero quantities. 
lf x is an interior minimum (an exceptional case in practical circumstances), 
it may happen that ck = x for some k; then the process terminates after a 
finite number of steps. 

One can infer from (4.3.5) that 

with 

" :2: u1 g1[x(r)] = {! [x(r)]- f(x)} (1 + e,), 
i= 1 

lim e, = 0. 
'+o 

Keeping in mind that ck = x(r~<), we can immediately write 

" :2: Ut g;(ck) = Uk v) (1 + ek), 
1=1 

with 

lim ek = 0. 
k-HJ() 

Lastly, we define 

"' 

(4.3.6) 
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Combination of (4.3.4) and (4.3.6) yields 

(t"- !") f3" U"- v) o s~c), 

and we can now readily establish 

(t" V) f3~c = U" v) ((3" + I + s"). (4.3.7) 

Using (4.1.3) we can write 

(t"- ti)= (1 e) (tk-1- ti)+ e <fk-1- v). (4.3.8) 

We are now in a position to derive (4.3.1) and (4.3.2). Let us fust employ (4.3.7) 
and ( 4.3.8) in order to eliminate the factors (f~<-r - v) and ( f~<- v). Then 

e(tk-1-'V)fJ"-1 =eUk-1-v)(fJk-1 + 1 +sk-1) = 

= [(t"- v) (t - e) (tk-1 v) J (f3k-1 1 sk-1). 

This yields 

(tk v) (Pk-1 + 1 Ek-l) = (tk-1 v) [(Jk-1 + (l- e) (1 + sk-1)], 

whence 
-

tk- V 
lim--- 1 

e 
P+1 

This is a measure of the rate of convergence of the truncation levels. We can 
now obtain 

'"-1 Uk-l V) (1 + ek-1) f3" 

(t" v) (1 + s") Wk-1 1 + sk-1) 

(tk-1 - v) (1 + sk-1) ((Jk + 1 + sk) 

Taking the limit as k --+ oo completes the proof of theorem 4.3.1. 

We can now explain the purposes of introducing a relaxation factor e and 
a weight factor p in the harrier function of ( 4. 1.2). In choosing e 1 we obtain 

t" = f(c"_ 1), k 1, 2, .... 

Hence, maximization of Btk * cannot start from c"_ 1 since it is a point on the 
boundary of T" where Br" * is undefined. 1t is therefore easier to use a relaxa­
tion e < 1. Then t" > f(c"_ 1), and the search for c" can immediately depart 
from the previous centre c"_ 1 • The computational processis slowed down to 
an extent displayed by (4.3.1) and (4.3.2). An increase of p speeds up the con­
vergence, and this can be made plausible by inspeetion of the harrier function 
Bt *. Any point maximizing the second term 
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m 

is a centre of R0
• It is the first term which forces convergence to a minimum 

solution of (1.1.1). Accordingly as the weight of the first term is increased, the 
rate of convergence is improved. The influence of p is precisely expressed by 
(4.3.1) and (4.3.2). 

There is a remarkable difference between the metbod of eentres (a first-order 
technique) and the higher-order moving-truncations barrier-function tech­
niques. In the first-named case we obtain, by substituting À = 1 into (4.3.2), 

p = p-1 rx. 
Th en 

-
tk V 

lim--- r" lim -- = 1 
k .... oo tk-1 

-
V k-+co rk-1 

This implies that one can predict the rate of convergence, or at least its order 
of magnitude, since rx and the number n of variables are of the same order of 
magnitude: the number of active constraints with linearly independent gradients 
at x cannot exceed n. Por the higher-order techniques, however, the rate of 
convergence is unpredictable since the Lagrangian multipliers appearing in 
(4.3.2) are unknown at the beginning of the computations. lt is worth noting 
that a similar phenomenon was found in studying the parametrie barrier-func­
tion techniques (sec. 3.4): the first-order approximation of f [x(r)] v de­
pends in general on the Lagrangjan multipliers; if À = 1, however, this approx­
imation depends only on a. 

It is obvious from the above arguments that a reasonable choice for the weight 
factor p can only be made if the metbod of eentres is employed. By taking p 
equal to n, for example, and e 1 one ensures that the rate of convergence 
is less than or equal to t. 

The formulas (4.3.1) and (4.3.2) suggest the possibility of speeding up the 
convergence by choosing e > 1 so that there is some overrelaxation. One bas 
to be sure, of course, that none of the truncation levels so obtained is less 
than ti. This can be achieved by adjusting tbe relaxation factor in every step 
of the process. In the kth step, for instance, one may explore the direction 
-v f (c"_ 1) emanating from the centre C~c- 1 in order to find some feasible 

point ~~c- 1 such that 

An overrelaxed truncation level is then obtained by setting 
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The relaxation factor !h for the kth step, which can be calculated from 

f(~k-1) = tk-1- (!k (tk-1 1), 

is then greater than unity. 
We shall not go into further details. We only want to demonstrate that auto­

matic adjustment of the controlling parameter, as it is performed by harrier­
runetion techniques with moving truncations, provides a doubtful advantage 
over the corresponding parametrie techniques, particu1arly if the order is 
greater than 1. Then the rate of convergence depends critically on the Lagran­
gian multipliers ül> ... , Üm which are unknown at the start of the computa­
tional process for solving (1.1.1 ). Hence, it is difficult to find an appropriate 
value for the weight factor p in order to improve the convergence. 

To do justice to the moving-truncations techniques one has to consider the 
principal Hessian matrix of (4.1.2), and its behaviour in the limiting case as 
the truncation levels tk decrease to v, and the equivalent r-values '" decrease 
to 0. It can be shown that this matrix bas a condition number which varies 
with rk -l for k large enough, just as in the parametrie case. It is therefore 
unlikely that maximization of the harrier function B1~ * would be easier than 
minimization of the parametrie harrier function B.k, for large values of k. 

4.4. Loss-function tecbniques with moving truncations 

The developmel)t of loss-function techniques with moving truncations pro­
ceeds in analogy with the mode of operation in the previous sections. There are 
some minor differences: we have to deal with a monotonie, increasing sequence 
of truncation levels converging to v from below, in contrast to the convergence 
from above provided by the barrier-function techniques with moving trun­
cations. 

Condition 4.1 can be weakened. The requirement that the interior of the con­
straint set R be nonempty is essential for harrier-tunetion techniques, but it 
can be dropped if the technique for solving (1.1.1) is concerned with a loss 
function. One may compare, for example, the formulation of theorems 3.2.4 
and 3.2.5. In this section we shall accordingly be working under: 

Condition 4.2. Problem (1.1.1) is a convex-programming problem with a non­
empty, compact constraint set. 

Let us now, first, describe the basic concepts and the iterative procedure. We 
begin by introducing the moving-truncations loss function 

m 

Lt *(x) = p tp[t-f (x)] + L tp [g,(x) ], (4.4.1) 
i=1 



66-

where "P is a function of one variabie satisfying the conditions 3.3, 3.4 and 
possibly 3.8. We have again attached a positive weight factor p to tbe first term 
in the right-hand side of (4.4.1). From these arguments Lt* is a concave func­
tion in En for any value of the truncation level t. The truncation F(t) and the 
truncated constraint set T(t) to be considered in this sectionare again defined by 

F(t) ={x lf(x) ~ t; XE En}, 
T(t) R n F(t). 

(4.4.2) 

Using the properties that 

1p[t-j(x)] { < ~ for all x E F(t), 
for all x~ F(t), 

(4.4.3) 

1~1 1p[gt{x)] { : ~ 
for all XE R, 

for all xrf=R, 
(4.4.4) 

we obtain straightaway 

L/(x) { < ~ for all x E T(t), 
for all x r/= T(t). 

(4.4.5) 

The set T(t) is nonempty if, and only if, the truncation level t ~ v. If t < v, 
it must be true that 

Lt *(x) < 0 for all x E En. 

We shall presently demonstrate that a point c(t) maximizing L1* over En exists 
under certain conditions for any t. One may now distinguish a number of 
cases. 

If t:;;:::: ti, then T(t) is nonempty. By (4.4.5), any point in T(t) is a maximizing 
point. 

If t = v, then T(t) is precisely the set of minimum solutions of (1.1.1); this 
is a welcome feature if v is known at the beginning of the computations for 
solving (1.1.1); generally, however, v is unknown. The two cases share the 
property 

L/[c(t)] = 0. 

If t < v it must be true that 

Lr*[c(t)] < 0, 

and, moreover, we can show that 

t <f [c(t)] ~ v. 
Thus, c(t) ~ F(t). Furthermore, the next theorem shows that c(t) ~ R in the 
(usual) case thatf doesnothave an unconstrained minimum in R. However, 
we may think of c(t) as the (common) centre ofthe two disjunct setsRand F(t). 
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The basic idea ofthe techniques to he treated here will now he evident: if {t~r.} 
is a monotonie, increasing sequence of truncation levels converging to v, then 
any limit point of the sequence {c(t~r.)} is a minimum solution of (1.1.1). 

In what follows we shall variously employ the symbols C~r., l~r. and T~r. to 
denote c(t~r.), I [c(t~r.)] and T(t~r.) respectively. We consider the following con­
struction of a sequence {t~r.} as mentioned above. In the first step the trun­
cation level t 1 is taken to he a lower estimate of v. At the beginning of the kth 
step the truncation level t" is generated according to 

(4.4.6) 

where e is a relaxation factor such that 0 < e ~ l in order to guarantee that 
t~r.- 1 < t~r. ::::;;; v. This procedure is validated by: 

Theorem 4.4.1. If (a) problem (1.1.1) satisfies condition 4.2, (b) the problem 
functions have continuons first-order partial derivatives in En, and (c) the 
function tp appearing in the moving-truncations loss function (4.4.1) satisfies 
the conditions 3.3, 3.4 and 3.8, then the following properties must hold. 
(1) A point c(t) maximizing Lr* over En exists for any t. 
(2) If t <ti, then t <l[c(t)J::::;;; v. 
(3) If lhas an unconstrained minimum in R, and if t < v, then c(t) is a mini­

mum solution of problem (1.1.1 ). 
( 4) If there is no unconstrained minimum of I in R, so that any minimum 

solution of (1.1.1) must he a boundary point of R, and if t 1 < ti, then the 
sequence {tlr.} generated by (4.4.6) is a monotonie, increasing sequence 
converging to v. Any limit point of the sequence {c~r.} is a minimum solu­
tion of (I. 1.1 ). 

(5) Each point ck minimizes the parametrie loss function 
m 

L.(x) = l(x)- s-p, }:; tp[g1(x)] (4.4.7) 
1=1 

fors equal to the equivalent s-value 

s~r. = [p tp'(t~r.-l~r.W 1p,. (4.4.8) 

The sequence {s~r.} is a monotonie, nonincreasing null sequence. 
Proof. (1) We can invoke theorem 3.2.5 in order to demonstrate the existence 
of a maximizing point c(t). The function -Lt * is precisely the parametrie loss 
function for solving the problem 

minimize -tp[: -:l(x)] subject to } 
g1(x) ~ 0, 1 - 1, ... , m, 

with the controlling parameters equal top. Then theorem 3.2.5 ensures the 
existence of a point minimizing -Lr* over E,. for any positive p. 
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In proving the remainder of theorem 4.4.1 we shall frequently consider a 
value t0 < v and the centre c0 = c(t0 ). The gradient of Lto * vanishes at c0 

whence 

m 

(4.4.9) 

Moreover, if we take x to denote a minimum solution of (1.1.1), 

m m 

whence 
m 

(4.4.10) 

Let US now move on to the proof of the remaining parts. 
(2) Assume that a value t0 < v exists such that f(c0 ) ~ t0 • Then (4.4.9) 

reduces to 
m 

(4.4.ll) 

Thus, the point c0 maximizes 

m 

over En, which can only he true if c0 e R. This leads to the Contradietory result 
f(c0 ) ~ v. Hence, we can only havef(c0) > t0 • 

Secondly, assume f(c0 ) > v. Then (4.4.10) yields 

m 

since 0 > t0 v > t0 - f(c0), and "P(rJ) strictly increasing for rJ < 0. This 
contradiets (4.4.4) so thatf(c0) ~ v. 

(3) Let us again consider a value t0 < v. The assumption thatfhas an un­
constrained minimum in R impliesf(x) v for any x E Em whencef(c0 ) = v. 
Using (4.4.10) and (4.4.4) we can easily see that c0 must be feasible. This 
proves that c0 is a minimum solution of (1.1.1). 

(4) Let t0 < v and suppose thatf(c0 ) v. We canthen infer from (4.4.10) 
that c0 must be feasible. By (4.4.4), formula (4.4.9) reduces to 

p "P'(to- v) vf(co) 0, 



69-

so that \lf(c0 ) 0. Thus, if there is no unconstrained minimum of fin R, 
it must be true that f(c0 ) < v. Moreover, starting with a truncation level 
t 1 < v and generating the sequence {tk} according to (4.4.6) we obtain straight­
away 

The sequence {tk} has apparently a finite limit f v. Assume i< v. Then 

i <f[c(f)] < v. (4.4.13) 

From (4.4.6) we can infer 

lim f,. f, 
k-+00 

so that, by continuity,J [c(i)] i, contradicting (4.4.13). Hence, we must have 
i= ïi and 

Iimf~c 
k-+00 

(4.4.14) 

Finally, by (4.4.10), 
m 

teading to 
m 

lim ~ fjl[g1(c~<)] = 0. (4.4.15) 
lc-+CO t= 1 

By theorem 2.5.4, the set 

R. {x lg1(x) ~ -e; ... 'm} 

is a compact (possibly empty) subset of E., for any e. Let e be positive. Then, by 
(4.4.15), there is a number K such that ck eR. for all k K. Consequently, 
the sequence {c"} has a limit point ë. Combination of (4.4.14) and (4.4.15) 
leads to the result that ë is a minimum solution of (1.1.1 ). 

(5) The proof that ck minimizes the parametrie loss function Ls of (4.4.7) for 
s equal to the value sk of (4.4.8) rests on the observation that the gradient of 
Ltk * vanishes at C~c. Reasoning along the same lines as in theorem 4.2.2 one can 
readily establish the monotonic behaviour of the sequence {si<}· 

The last part of this theorem shows the relationship between Ioss-function 
techniques with moving truncations and the parametrie techniques of the 
previous chapter. Here, we have a toss-junetion technique adjusting the con­
trolling parameter automatically. The question of whether it is a workable 
metbod depends critically on the rate of convergence, which is treated in the 
next theorem. 
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Theorem 4.4.2. If (a) problem (1.1.1) satisfies condition 4.2, (b) the problem 
functions have continuous second-order partial derivatives in E"' (c) a Kuhn­
Tucker point (x,ü) of (1.1.1) exists satisfying the Jacobian uniqueness condi­
tions 2.1 to 2.3, (d) the point x is a boundary point of the constraint set R, 
(e) the sequence {sd denotes a sequence of equivalent s-values generated by 
the moving-truncations loss-function technique based on (4.4.1), and (f) the 
function "P appearing in (4.4.1) satisfies the conditions 3.3, 3.4 and 3.8, then 

tk- V . Sk (! 
lim = hm -- = 1---, (4.4.16) 
k->ootk_ 1-V k->ooSk-1 y+1 

with 

" y = plfp. ~ (ü;)l+ liP.. (4.4.17) 
1=1 

Proof Without loss of generality we confine ourselves to a function "P such that 

By (4.4.8) and (4.4.12) we can immediately write 

sk = P 11
P. (fk- tk). (4.4.18) 

Taking [x(s), u(s)] to denote the minimizing trajectory of the loss-function 
technique based on the function L. of (4.4.7), we have 

As we have seen in sec. 3.4, there is a positive number K such that 

g1[x(sk)] < 0, } 
u;(sk) > O, i = 1, ... , oe, 

g; [x(sk)] > 0, } 
( ) 0 

i = oe + 1, ... , n, 
u1 sk = , 

for all k > K. Then (4.4.19) may be used to obtain 

u1(sk) = sk-p. w'{g1[x(sk)]}, i= 1, ... , oe, 

for k > K, whence 

sk = -[u1(sk)]- 111Lg1[x(sk)], i= 1, ... , oe. 

Substituting this result into (4.4.18) and writing ck = x(sk) we obtain 

(4.4.19) 

(4.4.20) 

(4.4.21) 
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Moreover, 

(4.4.22) 

with 

The last relation can be derived by application of the Kuhn-Tucker relations, 
just as in theorem 4.3.1. Lastly, we define 

"' 
Yk = I; Üt [p Ut(s~~;)]llll. 

l=l 

Combination of (4.4.21) and (4.4.22) leads then to 

(t~~;- fk) Yk = (fk v) (1 + ek), 

which can be rewritten as 

(4.4.23) 

This result is similar to that of (4.3.7) so that the proof of theorem 4.4.2 can 
be completed in the same way. 

Let us finally discuss the results of theorem 4.4.2. It will be clear that relaxa­
tion does not provide any advantage. It is not even necessary to apply some 
relaxation in order to obtain a starting point for the next step in the iterative 
procedure: the moving-truncations loss function Lt * is defined for any x e En 
so that the kth step can immediately start from c(t~~;_ 1 ). Overrelaxation is dif­
ficult to apply. One does not have a workable criterion for deciding whether v 
is overshot Such a criterion (feasibility) exists if one employs a barrier-function 
technique. 

The rate of convergence depends clearly on the Lagrangian multipliers ül> 
••• , Üm for any order p, of the loss function. lt is evident from ( 4.4.17) that a 
decrease of the weight factor p will speed up the convergence. This accelera­
tion can be made plausible from inspeetion of the loss function Lt *. Any point 
maximizing the second term 

m 

will be feasible. It is the first term in (4.4.1) which causes infeasibility of the 
next centre c(t). A smaller weight of this term will apparently lead to an accel­
erated reduction of the constraint violation. 

Some numerical experiences with a moving-truncations loss-function tech­
nique are reported by the author in a previous paper (1968c). They show how 
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sensitive the computational process is to changes in the weight factor p. lt is 
evident that an appropriate choice of p cannot he made at tbe beginning of the 
computations for solving (1.1.1), since the Lagrangian multipliers are then un­
known. This is, at least in our opinion, a serious disadvantage of the loss­
function techniques with moving truncations. 
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5. EVALUATION AND CONCLUSIONS 

5.1. Choice of a penalty function 

In this ehapter we shall finally he dealing with the choice of a penalty func­
tion for computational purposes. The preeeding ehapters provide more material 
for supporting a partienlar ehoice than the arguments brought forward by 
Fiaeeo and MeCormiek (1968), who have almost exclusively been dealing with 
parametrie penalty functions. They motivate their preferenee for jirst-order 
penalty funetions (logarithmic harrier function, quadratic loss function, and 
the mixed penalty function which combinestheir properties) with the argument 
that first-order penalty functions are easier to differentiate than the higher-order 
ones. The argument is obviously true, but is it sufficient to base such a decision 
on these grounds only? 

Zangwill (1967a) and Roode (1968) have only been eoneerned with para­
metrie toss functions. They did not deal with the aetual problem of ehoosing 
a eomputationally workable loss function. 

It is still an open question whether harrier funetions are easier to minimize 
than loss functions. The question was raised by Murray (1967) and has been 
left unanswered since that time. 

The relationship between parametrie penalty-function techniques and the 
corresponding versions with moving truncations has been studied by Fiacco 
and MeCormick (1967b) and Fiacco (1967). They have indeed pointed to the 
automatic adjustment of the controlling parameter as a striking feature of 
methods with moving truncations. What they did not consider, however, is the 
rate of convergence (the efficiency of the adjustment). 

The studies of Faure and Huard (1965, 1966), Bui Trong Lieu and Huard 
(1966), Huard (1964, 1967, 1968) and Tremolières (1968), on the other hand, 
are entirely devoted to the metbod of eentres and not to the relationship with 
parametrie techniques. 

In the light of the results obtained in the previous chapters we may draw the 
following conclusions for convex-programming problems. 

5.2. Cboice of tbe order 

There is no obvious reason for not using first-order techniques. Let us con­
sider the parametrie and the moving-truneations techniques separately in order 
to give a motivation. 

Parametrie penalty-Junetion teehniques. The computational process is the 
same for all methods under eonsideration: a sequence of minimizing points 
x(rk) is generated for monotonie, decreasing, positive values rk of the eon­
trolling parameter r. These points are employed as grid points for extrapolation 
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towards x. The basis for extrapolation is the Taylor series expansion of the 
vector function x(r) about r = 0. Under certain conditions this is a series ex­
pansion in terms of r, regardless of the order A. of the harrier termand the .order f-l 
of the loss term. The condition number of the Hessian matrix, on the other 
hand, varies with r- 1 independently of A. and ,u. This may be an indication that 
fust-order penalty functions are not easier or harder to minimize than the 
higher-order ones. The fi.rst-order (logarithmic) barrier function, however, 
offers the additional advantage that the minimum value of problem (1.1.1) is 
approximated with an a priori given accuracy. 

Penalty-Junetion techniques with moving truncations. Within this class of 
methods the computational processes are also mutually the same: find a series 
{ck} of eentres convergingtoa minimum solution x of (1.1.1) by constructing 
a sequence of truncation levels decreasing (barrier functions) or increasing (loss 
functions) monotonically and converging to the minimum value v of (1.1.1). 
The crucial point, however, is the rate of convergence. For the first-order 
barrier-function technique (method of centres) the rate of convergence is 
roughly predictabie since it depends on the number of active constraints at the 
minimum solution x. For the remairring techniques (higher-order barrier­
function techniqnes and all the loss-function techniques) the ra te of convergence 
depends on the unknown Lagrangian multipliers associated with x, so that it 
is unpredictable. Thus, higher-order barrier-function techniques do not pro­
vide any significant advantage over the first-order ones. A similar, somewhat 
weaker verdict can be given upon loss-function techniques. 

A disadvantage of higher-order techniques is the increasing effort necessary 
for evaluating the penalty function and its derivatives. 

5.3. Controlling parameter or moving trnncations? 

The relation between methods operating with moving truncations and para­
metrie methods was given by the observation that any centre ck is a point on 
the trajectory {x(r)ir > 0} originating from a corresponding parametrie 
method. We can write ck = x(rk) where rk denotes the equivalent r-value which 
can be calculated as soon as ck is obtained. 

Computational success with moving-truncations techniques depends critically 
on the rate of convergence or, as we have mentioned in the previous section, 
on the Lagrangian multipliers associated with the minimum solution of (1.1.1 ). 
For a parametrie technique, however, the rate of convergence (the rate of two 
successive values of the cantrolling parameter) can freely be chosen. 

The rate of convergence of a moving-truncations metbod can, it is true, be 
affected by a weight factor attached to the objective function. The present author 
(1968c) has given a numerical example which demonstratestheeffect of weight-
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ing. Generally, however, the choice of an appropriate weight factor can readily 
be made for the metbod of eentres only. 

We are accordingly led to parametrie first-order penalty functions as the most 
desirabie ones for computational purposes. The discussion of the methods 
involved has so many aspects that we devote a special section to it. 

5.4. Parametrie tirst-order penalty fnnctions 

This group of methods camprises a pure barrier-function technique based on 
the logarithmic harrier function 

m 

f(x) r ~ lng1(x), 
1=1 

a pure loss-function technique based on the quadratic toss function 
m 

f(x) + r 1 ~ {min [0, g1(x)]}2 , 
I= 1 

and a technique operating with the mixed penalty function 

f(x)-r ~ lng1(x) + r- 1 L {min [O,g1(x)]}2 • 
l<I1 ie/2 

(5.4.1) 

(5.4.2) 

(5.4.3) 

The pure techniques have partienlar advantages and disadvantages, and they 
present an entirely different approach to a minimum salution of the problem. 
Therefore, we start by summarizing the differences between bothof them. 

1. Gonstraint satisfaction. A harrier is impenetrable so that the imposed con­
straints remain satisfied tbraughout the computational process if (5.4.1) is 
employed. A technique based on (5.4.2), however, will invariably lead out of 
the constraint set (unless the objective function has an unconstrained minimum 
in it). 

2. Evaluation of constraint functions. The harrier function (5.4.1) requires 
evaluation of all the constraints appearing in the harrier term. Employing the 
loss function (5.4.2) one has the following computational advantage: in differen­
tiating it one only has to evaluate the derivatives of the constraints which are 
violated at the current point. 

3. The interior of the constraint set. A loss-function technique does not 
require that the interior of the constraint set be nonempty. Hence, it can also 
be used to handle equality constraints. We shall be dealing with that subject 
in a following section. It is obvious that barrier-function techniques which 
operate in the interior of the constraint set are not appropriate for handling 
equalities. 

4. Starting facilities. Unconstrained minimization of (5.4.2) can start from 
any point, feasible or not. For a technique using (5.4.1), however, special 
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starting procedures have to be developed which can he applied if an interior 
starting point is not available. 

5. Conditioning of the principal Hessian matrix. We have assumed that the 
condition number of the principal Hessian matrix of a penalty function, and 
particularly its rate of change as r decreases to 0, is an appropriate measure of 
the degree of difficulty in miniruizing lhe penalty function concerned. On the 
ground of this assumption there is no obvious reason that (5.4.1) should he 
easier or harder to minimize than (5.4.2). 

There are clearly more arguments (2, 3, 4) in favour ofthe loss-function tech­
nique. Nevertheless, we have strong reasous to believe· that the advantage of 
constraint satisfaction (1) offered by the barrier-function technique is most 
important as soon as one departs from the convexity assumptions. This subject 
will presently he discussed. 

A natural way out of the dilemma seems to he a combination of these methods 
by using the mixed penalty function (5.4.3). There are many ways ofpartitioning 
the index set I { 1, ... , m} into two disjunct sets 11 and 12 • Ho wever, it is 
reasonable that the starting point x0 of the computational process should 
indicate whether a constraint is to he incorporated in the harrier term or in the 
toss term. One could think of the constraints as partitioned in such a way that 

l1 = {ilgt(Xo) > 0; 
12 = {i1g1(x0 ) ::( 0; 

i:::;;; m}, 
i:::;;; m}. 

The mixed penalty-function technique based on (5.4.3) preserves then the easy 
starting facilities of a loss-function technique. Furthermore, it guarantees that 
any constraint which is strictly satisfied in the starting point remains satisfied 
throughout the computations for solving (l.l.l). The mixed technique can also 
be used for handling equality constraints. Finally, the principal Hessian matrix 
of (5.4.3) has a condition number which varies with rl, just as well as the 
principal Hessian matrix of a pure harrier or loss function. Thus, we do not 
expect more difficulties in miniruizing the mixed function of (5.4.3) than in 
miniruizing the pure penalty functions (5.4.1) and (5.4.2). 

5.5. Tbe convexity assumptions 

In this study the objective functionfand the constraint functions g1 , ••• , 

gm are supposed to he continuously differentiable, as many times as it was 
desirabie in the given circumstances. This is not a serious restriction: many 
constrained-minimization problems arising in practice have these properties; 
as important as anything else is that these properties can easily he verified. 

Furthermore, we have required boundedness of the constraint set. This seems 
to he equally acceptable. The minimum solution of a practical problem can 
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frequently be enclosed by a number of constraints imposed on the ground of a 
priori knowledge of the problem underlying the mathematica! formulation. 

The situation is entirely different as soon as we turn to the convexity assump­
tions. These are generally not easy to verify. On the rather scarce occasions that 
some verification is possible one may come to the condusion that the objective 
function and/or some of the constraint functions violate the convexity condi­
tions. Nevertheless, convexity plays an important role at several places in the 
preceding analysis. We may briefly summarize the critica! points in the proof 
of the existence and the convergence of penalty-function minima. 

1. Characterization of the interior and the boundary of the constraint set R. 
Concavity of the constraint functions implies that the interior of R is given by 
the set of points satisfying the constraints with strict inequality sign. Further­
more, R is the ciosure of its interior. These results are important for the con­
vergence of techniques with pure harrier functions or mixed penalty functions 
(theorems 3.2.1, 3.2.4 and 4.2.1). 

2. Compactness ofperturbations ofthe compact constraint set. This property 
has extensively been used (in theorems 3.2.3, 3.2.5 and 4.4.1) in order to show 
the existence of penalty-function minimafor any positive value of the controlling 
parameters. 

3. Global convergence. Convexity implies that any local minimum solution 
of the constrained problem is a global minimum solution. Any limit point of a 
sequence of penalty-function minima is a global minimum solution. 

Abandoning the convexity assumptions one might adopt the mode of opera­
tion of Fiacco and McCormick (1968). They considered the nonconvex case 
and established a number of results which are of course of a local nature: 
existence of penalty-function minima for sufficiently small, positive values of 
the controlling parameter(s), and convergence to local minima of problem 
(1.1.1). Insteadof the above-named characterization of the interior of R, one 
needs an additional hypothesis on the sets of local minima. 

These results imply that, in the nonconvex case, a constrained-minimization 
procedure can only be used for some exploration in the vicinity of the starting 
point (where the problem functions may have the desired convexity properties). 
It is a sound strategy to supply then a number of constraints which enclose a 
minimum solution; the starting point has to be a good guess of a minimum 
solution. If this starting point satisfies the imposed constraints with strict 
inequality sign, the partienlar choice (see sec. 5.3) ofthe mixed penalty function 
guarantees that minimization is carried out within the enclosed area. With these 
precantions a penalty-function techniqne may be an effective tool for improving 
the guess. 

The convexity assnmptions seem to be a suitable hypothesis for ensnring that 
a problem is well-behaved: then, penalty-function minima exist for any positive 
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value of the cantrolling parameter and they converge to a desired global mini­
mum of the problem under consideration. 

5.6. Equality constraints 

The results obtained so far cao be extended to the case where one comes 
across inequality as well as equality constraints. Let us turn to the problem 

minimize f(x) subject to ~ 
g 1(x) 0; i 1, ... , m, ( 
hix) = 0; j = 1, ... , p. } 

(5.6.1) 

This problem cao equivalently be written as 

minimize f(x) subject to ) 
g 1(x) 0; i I, ... , m, \ 
hlx) ~ 0; ! _ I, ... , p, \. 

-hix)~O; J-I, ... ,p.) 

It is obvious that a point satisfying the constraints with strict inequality sign 
does oot exist, but we can readily employ a mixed penalty function in order to 
solve the problem. We incorporate the inequalities hix) 0 and -hlx) ~ 0, 
j = l, ... , p, in the Ioss term. A penalty function for solving (5.6.1) is then 
given by 

p 

P,(x) = f(x)- r ~ ln g 1(x) - 1 ~ {min [0, g 1(x)]}l + r- 1 ~ h/(x). (5.6.2) 
lElt i<lz i=1 

Now let x(r) be a minimizing point of (5.6.2), and let u(r) and w(r) denote 
veetors with components 

and 

( __ '--, ielh 
u1(r) = 'g1[x(r)] 

(_2,- 1 min {O,g1[x(r)]}, 

wJCr) 2 r- 1 hi[x(r)], j =I, ... , p, 

· respectively. The behaviour of the minimizing trajectory [x(r), u(r), w(r)] bas 
been thoroughly studied by Fiacco and McCorrnick (1968), so that we do oot 
need to go into details. If the functions h1, j = l, ... , p, are linear, theorem 
3.2.3 can be invoked in order to show that a minimizing point x(r) exists for 
any r > 0. If {rk} is a monotonie, decreasing null sequence, any limit point 
of the sequence {x(rk)} is a minimum solution of problem (5.6.1). Finally, 
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theorem 3.4.1 can he extended in order to establish the existence of continuons 
first-order and possibly higher-order derivatives of the vector function 
[x(r), u(r), w(r)]. 

The appendix to this thesis contains an ALGOL 60 procedure designed f or sol­
ving problem (5.6.1) with a technique basedon the mixed penalty function of 
(5.6.2). 

5.7. Other developments 

The basic idea of solving problem (1.1.1) by sequentia! unconstrained mini­
mization of a combination of the problem functions has been a fruitfut one. 
Particularly the penalty-function approach has led to many techniques and to 
a large number of computational experiments. It is our purpose to present here 
a brief survey of methods and refinements which are also based on the above­
named idea but fall beyond the scope of this thesis. 

First, there is an intriguing loss function, proposed by Zangwill (1967a), 
which has the form 

"' 
f(x) r- 1 ~min [0, g1(x)]. (5.7.1) 

i= 1 

It has the following, remarkable property (see also Roode (1968)). If x(r) 
denotes a point minimizing (5.7.1) over E,. for r > 0, then a positive eo can 
he found such that x(r) is a minimum salution of the origina1 problem (1.1.1) 
for any 0 < r < f!o· Thus the computational process for solving (l.l.l) with 
a method based on (5.7.1) would he as follows. Generate a sequence x(r1), 

x(r2 ), ••• of r-minima for a positive decreasing null sequence r~> r2 , ••• , 

until a point x(rk) is found which satisfies the constraints of (1.1.1). Such a 
number k exists, and x(rk) must he a required minimum. A serious drawback 
of (5.7.1) is that its first-order derivatives do not exist at the boundary of the 
constraint set. Hence, it is doubtful whether the gradient methods for uncon­
strained minimization can he used to minimize (5.7.1). Recently, Pietrzykowski 
(1969) sketched a new algorithm for finding the r-minima. He does not report 
any computational experience, however. 

In the preceding chapters we have only been dealing with methods incor­
porating all the constraints in a penalty function, regardless of whether they 
are linear or not. It might of course be attractive to treat the linear constraints 
separately. If only the nonlinear constraints are included in a penalty function, 
the computational method for solving (1.1.1) reduces to one of sequentia! 
linearly constrained minimization. There are several algorithms which can he 
used for minimization onder linear constraints. We may for instanee refer to 
the methods of feasible directions proposed by Zoutendijk (1960), the gradient­
projection method of Rosen (1961), the reduced-gradient method of Faure and 
Huard (1965), and a modification of the Davidon-Fletcher-Powell algorithm 
proposed by Goldfarb (1969). Computational experiences with penalty-function 
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techniques using Goldfarb's method are reported by Davies (1968). These 
experiences are not encouraging, however. It is true that Goldfarb's method 
leads to an improverneut if there are only linear constraints in problem (1.1.1 ). 
When nonlinear constraints are present, one has to enter a sequentiallinearly 
constrained minimization process. Then Goldfarb's method does not give any 
substantial improverneut over the original technique (unconstrained minimiza­
tion of a penalty function which also includes the linear constraints). 

Several authors have proposed a method for solving (1.1.1) by sequentia! 
unconstrained minimization of the Lagrangian function associated with the 
problem. The basic idea may be described as follows. Let xk denote a point 
minimizing the function 

m 

(x) 1: ut<kl g1(x) 
I= 1 

over En. lf the sequence {u<kl} of multipliers is adjusted in an appropriate way 
the sequence {xk} converges to a minimum solution of (1.1.1). Under certain 
uniqueness conditions the sequence {u(l<l} converges to the vector ü of Lagran­
gian multipliers associated with the minimum salution x of (1.1.1 ). An algorithm 
of this kind was first proposed by Benders (1960), later on by Everett (1963) 
and Falk (1967a). Roode (1968) introduced the concept of a generalized 
Lagrangian function in order to find a unifying approach to these methods and 
the loss-function techniques. Recently, Fletcher (1969b) has proposed a metbod 
which is also based on the Lagrangian function. His method is not one of 
sequentia! minimization, however. It operates with a continuously varying 
approximation to the Lagrangian multipliers. Unfortunately, whereas theoretica! 
work has been extensive, all these Lagrangian methods suffer from a serious 
lack of computational experience. 

The idea of sequentia/ minimization was also dropped in the modified interior­
point method of Zoutendijk (1966). This is a variant of the barrier-function 
techniques, but it does not approach a constrained minimum via a sequence 
of unconstrained r-minima. It presents a more direct approach: one has to 
perform a sequence of univariate searches each of which starts with a smaller 
value of the cantrolling parameter than the previous one. A similar metbod 
based on loss functions was proposed by Butz (1967). As far as we know, 
however, these methods have not been tested on practical usefulness. Even the 
authors did not mention any computational experience. 

This concludes our survey. It is clear that there are still many promising 
directions for future research, particularly if one is concerned with the compu­
tational efficiency of these methods. 
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List of conditions 

Condition 2.1. The multipliers ü1, iE A(x), are positive. 
Condition 2.2. The gradients v gg(.:X'), iE A(x), are linearly independent. 
Condition 2.3. For any y E Em y of 0, such that v g1(x)T y 0, iE A(x), it must 
be true that yT D(x,ü) y > 0. 
Condition 3.1. Problem (1.1.1) is a convex-programming problem. The een­
straint set R is compact. The set R1" n R 2 is nonempty. 
Condition 3.2. The function t:p is concave and nondecreasing in the interval 
(O,oo), and t:p(O+) = -oo. 
Condition 3.3. The function 1p is concave and nondecreasing in the interval 
(-oo,oo); tp('YJ) 0 for 'YJ ~ 0 and tp('YJ) < 0 for 'YJ < 0. 
Condition 3.4. There are positive numbers Pand p such that "P('YJ) < -PI'YJI 1 +P 

for any 'YJ < 0. 
Condition 3.5. The function t:p has a continuons fust-order derivative t:p' in the 
interval (0, oo ). 
Condition 3.6. The function 1p has a continuons first-order derivative tp' in the 
interval (-oo,oo). 
Condition 3.7. There is a positive number fj)o such that qJ' is analytic in the 
interval (-qJ0 ,oo), except at 'YJ = 0; it has a pole of order A at 'YJ 0. 
Condition 3.8. There is a positive number w0 such that w' is analytic in the 
interval ( -oo,w0); it has a zero of order ft at 'YJ = 0. 
Condition 4.1. Problem (1.1.1) is a convex-programming problem. The een­
straint set R is compact and its interior R" is nonempty. 
Condition 4.2. Problem (l.l.l) is a convex-programming problem with a non­
empty, compact eenstraint set R. 
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Appendix 

An ALGOL 60 procedure for constrained minimization via a mixed parametrie 
firstorder penalty function 

The procedure "minimize" is an ALGOL 60 procedure designed for solving 
the constrained-minimization problem 

minimize f(x) subj~ct :o l 
g1(x)~O, z 1, ... ,m, 
hix) = 0; j 1, ... , p, 

(1) 

where x denotes a vector in the n-dimensional vector space En. It can also be 
used for unconstrained minimization, in which case the problem reads 

minimize /(x). (2) 

In addition to this, "minimize" can be used merely to find a solution of the 
system of (in)equalities 

The penalty function 

g1(x) 0; 
hix) = 0; j 

I, ... , m, ~ 
1, ... 'p. ~ 

In solving problem (1) the procedure deals with the penalty function 

Pr(x) =f(x) + r b(x) + r- 1 [/(x)+ e(x)] 

containing the logarithmic harrier term 

b(x) - ~In g1(x), 
1<11 

and the quadratic loss terms 

/(x) = ~ {min (0, g1(x)])l 
i<Iz 

and 
p 

e(x) = .~ h/(x). 
J=l 

The index sets / 1 and / 2 are defined by 

/ 1 {i !g1(x0) > 0; 1 ~i <m}, 
12 {i !g1(x0) ~ 0; 1 ~i< m}, 

(3) 

(4) 

where x 0 denotes the (user-supplied) starting point of the computational proc­
ess for solving problem (l). The parameter r appearing in (4) controts the 
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convergence to a minimum solution x of problem (1). Let x(rk) be a point 
minimizing ( 4) over the set 

R1" ={x lgt(x) > 0; iE Jd 
for a fixed, positive value rk of r. Under mild conditions one has 

lim f [x(rk)] = f(x) 
k-+CO 

and 

provided that {r~<} is a monotonie, decreasing null sequence for k--+ oo. Hence, 
any limit point of the sequence {x(rk)} is a minimum solution of (1). This 
provides the framework of the algorithm. 

If certain uniqueness conditions are satisfied at a minimum solution x, and 
if the problem functions J, gl> ... , gm, h1 , ••• , hP have continuons secoud­
order partial derivatives in Eno then the trajectory x(r) of points minimizing (4) 
is a continuously differentiable vector function of r in a neighbourhood of r 0. 
The kth-order derivative of x(r) exists accordingly as the problem functions 
admit of (k + 1)th-order partial derivatives (k ~ 1). Then x(r) can be ex­
panded in a Taylor series about x. This provides the basis for an extrapolation 
device in order to obtain a more accurate approximation of x. 

The controlling parameter ris initially given the value r 0 defined by 

r 0 max 10- 2 -( 
Jv*l) 

' 100 ' 
(5) 

where v* denotes an estimate of the minimum value of problem (1 ). Successive 
valnes r1 , r2 , ••• assigned to rare generated in accordance with the rule 

'~<-1 
r = 

k IQ113 • 

"Minimize" does not go beyoud sixth-order extrapolation. Let x<~<,t> denote 
the approximation of x basedon x(rk_ 1), ... , x(rk)· The computations will he 
stopped as soon as two successive approximations differ in each component 
by less than a relative accuracy 8 1 and an absolute accuracy 8 2 , i.e. 

IXP·n xp-l.t-l)l < 81IX}k·0 l + 8z; j = 1, ... , n, 

whereafter x<~<.l> is delivered as an approximation of the minimum solution x. 
The accuracies 8 1 and 8 2 are to he supplied by the user. 

The algorithm just sketched is clearly one whereby solving a constrained­
minimization problem is reduced to (sequentia!) unconstrained minimization 
of a penalty function. lt is convenient to extend the concept of a penalty func-



84-

tion to the cases where problems (2) or (3) are involved. Ifunconstrained mini­
mization of one single function fis required the penalty function reduces tof. 
If "minimize" is used to find a solution of the system (3) the penalty function 
is given by 

m p 

P(x) = 'L {min [0, g1(x)]}2 'L h/(x). 
1=1 1 

Unconstrained minimization 

Unconstrained minimization is largely carried out in accordance with the 
algorithm ofDavidon (1959) as amended and described by Fletcher and Powell 
(1963). Only two (minor) modifications have been introduced. 
(1) The direction matrix H 1 is reset to the unit matrix if the iteration number i 

is a multiple of 2n and if the length of the gradient of the penalty function 
at the corresponding iteration point happens to be greater than 1. A similar 
(although more frequent) resetting strategy was recommended by Pearson 
(1969). We are more reluctant, however, to reset the direction matrix. 

(2) The line search uses penalty-function values only. The gradient of the 
penalty function is not evaluated at the trial points along the direction of 
search. 

As soon as during n iterations two successive iteration points differ in each 
component by less than the relative accuracy e1 and the absolute accuracy e2 , 

the process terminates. The last iteration point is then delivered as an approx­
imation of a (local) unconstrained minimum. 

Line searches 

A minimum along a line is obtained by repeated application of quadratic 
interpolation. T o start with, a step is taken in the direction of search and the 
penalty function is recalculated. If this value is less than or equal to the initia} 
value at the current iteration point, the step length is multiplied by 2 and a 
further move is made in the direction of search. This process is repeated until 
a step is performed resulting in an increase of the penalty function, indicating 

a c -si 
Fig. A.l. 
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that a line minimum has been overshot. A typical situation is illustrated in 
fig. A.I. Here one has three "line coordinates" a, b and c with the corresponding 
penalty-function values Pa, P9 and Pc. The value P0 , for instance, is given by 

Pa = P(x1 + a s1), 

where x1 denotes the current iteration point, s1 the direction of search from x" 
and P the penalty function. Let d he the coordinate of the point which minimizes 
the interpolating quadratic. One of the two extremes a and c is then removed 
according to a rule which guarantees that the remaining coordinates embracket 
a minimum. After this rearrangement quadratic interpolation is repeated until 
two line coordinates b and d are obtained such that the corresponding points 
x 1 + b s1 and x 1 d s1 differ in each component by less than the relative 
accuracy e1 and the absolute accuracy e2 • Then the point with the smallest 
penalty-function value is delivered as an approximation of a line minimum. 

lf the first step in the search direction yields a point c with a penalty-function 
value Pc P(x1 + c s1) greater than the initial value P0 P(x1), quadratic 
interpolation starts at once. The information being used consists ofthe function 
values P0 and Pc, and the slope of the penalty function at x 1 (the inner product 
of the gradient of P at x 1 and the search direction s1). 

Directions for use 

When "minimize" is called the actual parameters, which, for convenience, 
are denoted by the corresponding formal parameters, have the following 
meaning: 
x 

functions 

real array with elements x[l], ... , x[n]; before calling "mini­
mize" the starting point of the computations must he stored in 
x; on return x contains the solution produced by "minimize"; 
procedure with two parameters x and gx; by a call the elements 
ofthe real array gx[l : m] are evaluated for the current value of 
the elementsof the real array x[1 : n]; via this procedure the 
user supplies the problem functions gx[l], ... , gx[m] as func-
tions ofthe independent variables x[l], ... , x[n]; the declara· 
tion reads 

procedurefunctions (x,gx); 
real array x, gx; (body); 

x type integer array with elements xty pe [1 ], ... , x type [n]; before 
calling "minimize" xtypeU] must he assigned the value 0, 1 
or 2; if xtypeU] = 0 then xU] remains unchanged during the 
computations and the derivative of the penalty function with 
respect to xU] is set to 0; if xtypeU] = 1 then xU] is a free 
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86-

variable; if xtype[j] = 2 then x[j] is required to be nonne­
gative; 
integer array with ,elements gtype [1 ], ... , gtype [m]; before 
calling "minimize" these elements must be assigned the values 
0, 1, 2 or 3; if gtype[i] = 0 then gx(i] will be dropped from 
the problem; if gtype[i] 1 then gx[i] is taken to be the 
objective function; if gtype(i] = 2 then the constraint gx[i] ;;;:: 0 
is imposed; if gtype[iJ 3 then the constraint gx[i] 0 is 
imposed; 
boolean expression; if analytic is true it is assumed that the 
first-order derivatives of the problem functions are supplied by 
the user; if it is false "minimize" will compute the first-order 
derivatives by differencing; 
procedure with two parameters x and dgdx; by a call the ele­
ments of the real array dgdx[l : m, 1 : n] are evaluated for 
the current value ofthe elements ofthe real array x[l : n]; it is 
assumed that dgdx [i,j] is the first-order partial derivative of 
gx [i] with respect to x UJ; only non-zero derivatives need be 
supplied; the declaration reads 

procedure derivatives (x,dgdx); 
real array x, dgdx; (body); 

integer expression; dimension of the arrays x [1 : n J and x type 
[1 : n]; 
integer expression; dirneusion of the array gtype [1 : m]; 
boolean expression; if two is true numerical differentiation takes 
two function values per derivative; otherwise it will take four 
function values; 
real expression; relative accuracy of the solution to be produced; 
a value of w-s is suggested; 
real expression; absolute accuracy of the solution to be produc­
ed; a value of w- 5 is suggested; 
real expression; an estimate of the value of the objective 
function at a minimum solution; it is only used in constrained 
minimization in order to find the value r0 of formula (5); 
boolean variabie; converged is set to true by "minimize" if the 
above-named convergence criteria are satisfied; otherwise con­
verged is set to false; this may occur, for instance, if the process 
would take more than the maximum number of iterations per­
mitted by the user or if constrained minimization would involve 
more than 10 unconstrained-minimization cycles; 
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coc integer expression; conditionat output-control parameter; if 
coc = 0 then no output will be given; if coc = 1 then "mini­
mize" produces short output in every iteration, and x-output 
and g-output in the first and the last iteration of an unconstrain­
ed-minimization cycle; in addition to this, x-output appears in 
every iteration if coc = 2; an explanation of the output will be 
given below; 

imax integer expression; the maximum number of iterations permitted 
by the user; if imax = 0 then no restrietion is imposed on the 
number of iterations. 

Output 

"Minimize" uses some output procedures of the ALGOL 60 system design­
ed in the Mathematica) Centrein Amsterdam for the Electrologica X8 computer. 
They can readily he removed from "minimize" or replaced by the output pro­
cedures of other systems. 

Short output is a single-line summary of the current iteration presenting the 
iteration number, the value of the penalty function and the length of the gra­
dient of the penalty function both evaluated at the current iteration point, and 
the distance between the current and the preceding iteration point. 

X-output is a print of the current iteration point (solution vector) and the 
gradient of the penalty function evaluated at this point. If analytic is true the 
gradient is obtained by evaluating the user-supplied first-order derivatives of 
the problem functions; otherwise the gradient is approximated by differences 
of function values. In iteration 0, if analytic is true, this approximation is also 
computed and printed in order that users derivatives can he checked. 

G-output is a print of the values of the problem functions at the current i tera­
tion point. If the problem is one of constrained minimization, it also comprises 
the current approximation of the Lagrangian multipliers. 

The output procedures being used are the following ones: 
ABSFIXT(n,m,x) when this procedure is called the absolute value of x 

will be printed in fixed-point representation: one space, 
n decimal digits (leading zeroes being replaced by 
spaces), decimal point, m decimal digits, one space; if 
m 0 the decimal point is not printed; 

CARRIAGE(n) causes the printer to advance the paper n lines and to 
take the print position at the beginning of the line; 

FLOT(n,m,x) when this procedure is called the value of x will he 
printed in floating-point representation: sîgn, decimal 
point, n decimal digits, the symbol 10, sign, m decimal 
digits (leading zeroes being replaced by spaces), one 
space; 
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New Line Carriage Return; 
when this procedure is called the strings will be printed 
without the outermost quotes; 
causes the printer to move over n spaces on the current 
line. 
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comment p;~.ge 1 of minimi:z.e; 

~Qcedure minirnize{x,functions,xtype,gtype,analytic,derivatives, 
n,m,two,raxmin,aaxrnin,estimate,converged,coc,imax); 
~~ n,m,raxmin,aaxmin,estimate,coc,imax; ~ n,m,coc,imax; 
IS!1 ~1n,aaxmin,estimate; b2o1san analytic,two,converged; 
IW ~::t x; ill~ m xtype,gtype; 
~~ functions,derivatives; 
~ ISil initr,factor; 
1_~ i,j,k,nv,ieff,cycle,maxcycle,ncl,nc2,nc3,nsearch,nrp; 
~221~D objective,constraints,nlp,heading,nonneg; 
~w m xrmin,xrnin[l :n],urmin,um1n[1 :m], 
xtable[1:n,0:6],utable[1:m,0:6]; 
QQ.Qlea.n m logp[ 1 :m+n]; 

~c;d~ rcycle(r,xr,ur,raxr,aaxr); ~ r; 
ISil r,raxr,aaxr; ISil !!:~ xr,ur; 
~ unconstrained-minimi:z.ation cycle for computing an r-minimum 
xr[1:n] and the associated dual multipliers ur[t:m] with relative 
and absolute accuracy raxr and aaxr respectively; 
~~ ~I it~rcnt,counter,reset; ISil prxr,gradl,distance; 

ISil ~r~~ grad,dgrad,dir,s1gma,yvec[1:n],h[1:n,1 :n],gxr[1:m]; 

ISil ~~ penalty(p,t,q,gt,reject); 
~ reject; ISil t; ISil array p,q,gt; 
.li.$l..lll!i1W computes the problem functions gt[ 1 :m] and the penalty · 
tunetion at the point p[1:n] + t x q[1:n]-- reject indicates 
whether this point is feasible or not: it is the index of the 
first encountered, violated constraint; 
~~ IW ba~ier,loss,pen; ISil m xt[1:n]; 

penalty := pen := loss := 0; reject := 0; barrier := 1; 
!2! j := 1 ~ 1 ~ n ~ xt[j] := p[j] + t x q[j]; 
1J: nonneg 1b.ml 
~!si j := 1 .!W:l? 1 ~ n ~ 1J: xtype[j] = 2 1b.ml 
~ .1! logp[m + j] 1b.ml 
!l~ 1! xt[j] > r-10 :1blm barrier := ba.rrier x xt[j] ~ 
~ reject := m + j; nrp := nrp + 1; ~fin~ 
~ of logarithmic transformation 
~ 1! xt[j] < 0 ~~ loss := loss + xt[j]~ 

~g of j loop 
~ of handling nonnegative variables; 
functions(xt,gt); nc2 := nc2 + 1; 
l:2I 1 := 1 ~ 1 ~ m ~ 
~ U gtype[ i] "' 1 1b.ml pen := pen + gt[ 1] ~§S 
~u gtype[1] = 2 1b.ml 

!les~n U logp[ 1] 1b.ml 
~ 1! gt[i] > r-10 :!;l:)~D barrier := ba.rrier x gt[i] ~ 
~ reject := 1; nrp := nrp + 1; ~fin~ 
~ of logarithmic transformation 
~~ 1! gt[i] < 0 s~ loss := loss + gt[i]~ 

§US of r~dling inequality constraints 
s1§S 1! gtype[i] = 3 s~ loss := loss + gt[i]~ 

.§US of transforming constraints 
§Dg of 1 loop for generating ba.rrier and loss term; 
penalty := pen - r x ln(ba.rrier) + lossfr; 

fin: 
~ of penalty for computing the problem ~wnctions 
and the mixed penalty tunction; 
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~!Ui p!l.ge 2. of minimize- continuatien 1 of rcycle; 

prgsedurs gra.d.ient (xt, gt, d:ptdx, a.nalytic ) ; 
I!!!:J, ~ xt,gt,dptdxj ~ ana.lytic; 
~ computes the gra.dient dptdx[ 1 :n] of the penalty 
tunetion at the point xt[ 1 :n] - befare calling the procedure 

. grad.ient the array gt[ 1 :m] must contain the .values of the 
problem funct1ons at this point -- analytic indicates whether 
use:i--supplied derivatives are available or not; 
~ral hj,dJ,xtj,dpj; J.mw.t upper; 
ral~ gdelta,dgdxj[l:m],diff[1:m,1:2],dgd.x[l:m,1 :n]; 
upper := 1! two ~!t 1 ~ 2; 
1! analytic ~ 
~ t2r j := 1 mJi 1 Jm!ill n sl5il 

t2r i := 1 step 1 lm!ïll m Sl:l dgdx[ i,j] := 0; 
derivatives(xt,dgdx); nc3 := nc3 + 1 

~of computing users derivatives at xt[1:n]; 
12r J := 1 ~ 1 lm!ïll n gg 
1! xtype[ j] = 0 tb.en dptdx[ j] :-= 0 eJ.w; 
~ xtj := xt[j]; 

1! analyt1c ~ 
~s1.!,} 12r i : = 1 ~ 1 lm!ïll m sl5il 

dgdxj[i] := dgdx[i,j] 
~ of storing derivatives w1th respect to xtj ~ 
~SiD ~ compute derivatives w1th respect to xtj; 

hj := rr2 x abs(xtj) + .-5; 
12r k := 1 Ü!U/1 ll!l!JJ. upper gg 
~ dJ := hjfk; nel := nel + 2; 

xt[j] := xtj + dJJ f'unctions(xt,gdelta); 
12r 1 := 1 ~ 1 Jm!iU m gg d.i:f:f[i,k] := gdelta[i]; 
xt[j] := xtj -dJ; funct1ons(xt,gdelta); 
12r i := 1 $I' 1 ll!l!JJ. m gg 
diff[i,k] := (diff[1 1k]- gdelta[i])/(2 x QJ) 

~of k loop; xt[j] := xtj; 
t2r i :a 1 WR 1 lm!ïll m sl5il dgdxj [i] := 
1! two ~ diff[i,t] ~: (4 x diff[i,2]- diff[i,l])/3 
~ of generating dgijdxJ; 
dpj 0; 
t2r : = 1 mJi 1 JmUJ, m sl5il 
~i! gtype[i] = .1 ~ dpj := dpj + dgdxj[i] '!1§: 
~ 1! gtype[i] = 2 -!t 

begin;!! logp[i] ~ dpJ := dpj- r x dgdxj[i]/gt[i] ::!&: 
1! gt[i) < 0 then dpj := dpj + 2 X dgdxj[i] x gt[i]/r 
~ of handling inequali ty constra.ints w: u gtype[i] = 3 :th!m dpj := dpj + 2 x dgdxj[i] x gt[i]/.r 
~ of handling constra.int derivatives 

:mJ.: of 1 loop; 
1! xtype[ j] = 2 'th!ID 
~I:Wl.U:logp[m + j] ~ dpj := dpj - rjxtj ~~ 

1! xtj < O!b~ dpj := dpJ + 2 x xtjfr 
Sîll of handling variable constrained tononnegative values; 
dptdx[j] := dpj 
~ of j loop for computing j-th component of grá.dient 

:Dä of gradient for computing the first-order derivatives 
of the penalty function; 
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comme~ page 3 of minimize -- continuatien 2 of rcycle; 

~edure linemin(point,prpoint,gpoint,gradpr,s,diffp,diffg, 
racc,aacc); ~ racc,aacc; ~ prpoint,racc,aacc; 
~ array point,gpoint,gradpr,s,diffp,tliffg; 
camment procedure for searching a minimum with relative and 
absolute accuracy race and aacc respectively along the direction 
s[l:n] emanating from point[l:n]-- prpoint and gpoint[l:m] must 
contain the values of the penalty fUnction and the problem 
functions at point[l:n]-- gradpr[l:n] is the gradient of the 
penalty function at point[ 1 :n] "-- on return from linemin the line 
minimum is contained in point[ 1 : n], and prpoint 1 gpoint[ 1 :m] and 
gradpr[l:n] contain the corresponding data-- the difference 
between the line minimum and the starting point of the search is 
stored in diffp[l:n]-- the difference of the corresponding 
gradients is contained in diffg[l:n]; 
~~I nsteps,idle; 

ISY, la.mbda.,pra,prb,pre,prd,a,b,c,d,e,multiplier,descent,pa,pc; 
ISY. ~y sa,gb,gc,gd[l:m]; 

~~ prgcsdutt ready(new,old); ~ new,old; 
~ .tS!I!:J. sj,r1,a1; 

ready := ~ ; rl := raccjabs(old- new); al :: aaccjabs(old- new); 
W j 1 ~ 1 1p,1t1J, n ~ xtype[j] ~ 0 then 
~ sj := s[j]; 1f abs(sJ) > X abs(point[j] + new x sj) +al l~ 
~.0 ready := ~ ; j := n .!mi! 

.!mi! of j loop 
~~ of ready for cernparing two successive approximations 
of a minimum along the direction s[l:n]; 

procedure shift 1 (y ,z, pry",prz, gy ,gz ); 
.tS!I!:J. y,z,pry,prz; ~ ~Y gy,gz; 
!2~étl.!l y := z; pry := prz; 

;(QJ; i := 1 1~ 1 lJ.D!:U m ~ gy[i] := gz[i] 
~.of shiftl; 

nsearch := nsearch + 1; 
descent := vecvec(1,n,O,gradpr,s); 
multiplier :"' 2; 
la.mbda := abs(1/descent); 
,1! lambda. > 1 then lambda. := 1; 
a := b := c := 0; pra := prb := pre := prpoint; 
!Q.t i := 1 ~ 1 J.!D!.ll. m ~ 
ga[i] := gb[i] := gc[i] := gpoint[i]; 

forward: W nsteps := 1 ~ 1 !m:!iU 50 ~ 
~!Wt c := b + la.mbda.J 

pre := penalty(point,c,s,gc,idle); H idle > 0 :!ll.!:!l 
]2~ lambda := lambda./2; 

multiplier := 0.5 
.!mi! of backward step 
w.; 
~ H pre$ prb 
~!l la.mbda. := x lambda.; 

shiftl(a,b,pra,prb,ga,gb); 
shiftl(b,c,prb,prc,gb,gc); 

s~ of forward step 
.slli!S 1>!2~ 1nter1 

~!l~ of testing the feasible trial point c 
.!mi! of nsteps loop for moving in search direction; 
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~ pl.ge 4 of minimize - cont. 3 of . rcycle - cont. 1 of linemin; 

interl : lî a. & 0 A b • 0 A c > 0 A descent < 0 A prb < pre ~ 
~ ~ quadratic inte~la.tion using descent of 

penalty tunetion in the atarting point of the sea.rch; 
!.!:lz.: nsteps := 1 ~ 1 um1J. 50 se 
~ ~ d miniruizes interpola.ting quacl.ratic; 

d := -(0.5 x descent x ~)/(pre ~ prb- descent x c); 
prd := penalty(point,d,s,gd,idle); .U: idle > 0 ~D 
~ lambda := d/2J multiplier :• 0.5; ~ :forward~ ; 
.U: prd > prb 1ll.!m 
~ .U: rea.dy(c,O) 1ll.!m ~ last; 

shift1{c,d,pre,prd,gc 1 gd) 
~ of reducing sea.rch interval (o,c) 
ÜG 
~ shiftl (b,d,prb,prd,gb,gd); ~ inter2 s:!!­
~ of nsteps loop :for sequentia.l interpola.tion 
~ of quadratic interpola.tion using descent of penf; 

inter2 : .U: a. < b A b < c A pra. ::; prb A ;prb ::; pre 1ll.!m 
~ commçnt quadratic interpcla.tion on three points a.,b,c; 
~ nsteps := 1 è~ 1 l!D.ll:l. 50 ~ 
~ :02..~ d minimizes interpola.ting qua.cl.ratic; 

pc :• (a.- b) x (pre- prb); 
.u: pc o llw! d := (b + c )/2 i:m 
~ pa := (b- c) x (pra.- prb); 

d := 0.5 x ((a.+ b) x pc + (b + c) x pa.)j{pa. + pc) 
~ of computing d; 
e :• bJ SQ~ save best a.pproxima.tion so fa.r; 
prd. := pena.lty(point,d,s,gd,idle); 1! idle > 0 lhen 
~1!d>b~lambda. :• (d-b)/2~ 
~ lambda. :• (d- a.)/2J 

shift1(b,a.,prb,pra.,gb,ga.); 
shiftl(a.,o,pra.,prpcint,ga.,gpoint) 

~DS of shifting towa.rds a.; 
multiplier := 0.5; ~ forward 

~.of backwa.rd step due to constra.int viola. ti on; 
1! d < b then 
~ 1! prd < prb then 
~ shiftl(c,b,prc,prb,gc,gb); 

shift1(b,d,prb,prd,gb,gd) 
~DS ~ shiftl (a,d,pra.,prd,ga.,gd) 
~w~ 
~ 1! prd < prb ~ 

:2WD shift1 (a., b, pra., prb,ga.,gb ); 
sh1ft1(b,d1 prb,prd,gb,gd) 
~ ~m shift1(c,d,pre,ptd,gc,gd) 

Jm!i of rea.rra.nging a., b,a.nd· c; 
1! rea.dy(b,e) ~ goto lalt 
~ of nsteps loop for sequentia.l interpola.tion 

~of quadratic interpola.tion on three pcints a.,b,c; 
last: prpoint :=<. prb; 
~ j :• 1 stel( 1 JmliJ, n ~ 
~ diffp[j] := b x s[j]; diffg[J] := gra.dpr[j]; 

point[j] := point[j] + diffp[j] 
~ of moving itera.tion point; 
.f.gz.: i := 1 ~ 1 lall!lli m ~ gpcint[i] := gb[il; 
gradient(point,gpoint,gra.dpr,a.na.lytic); 
.f.gz.: j :• 1 .i'o!W 1 Wil n ~ diffg[j] := gra.dpr[j] - diffg[j] 
~ of linemin for one-dimensiona.l minimiza.tion; 
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~ ~e 5 of m1n1mi~e -- continuatien 4 of rcycle; 

proeftdure outJUtt(cycle,r,itercnt,ieff,analytic,converged,nlp, 
heading, prxr 1 gra.dl., di stance ,xr 1 gra.d, dgre.d1 gxr 1 ur 1 n 1 m, coc ) ; 
~ r,prxr,gra.dl,dista.nce; 
~ cycle,itercnt,ieff,n,m,coc; 
~ analytic,converged,nlp,heading; 
ral~ xr,gre.d,dgre.d,gxr1ur; 
la!iWt ~ 1,j; 

U i terent = 0 A nlp .~ 
~ CARRIAGE(2); . 

PRINTTEXT(~ begin of cycle >); ABSFIXT(2,0,cycle); 
PRINTTEXT(~ for r equal to >); FLal'(3,3,r) 

SI!~! ; 
sommen:Ji short output; 
1! heading ~ 
~ CARRIAGE(2); PRI~~EXT(~ itera.tion >); 

PRINTTEXT(~ penalty value gra.dient length >); 
SPACE(8); PRINTTEXT(~ distance >) 

SI!~! of printing the beading; 
NLCR; ABSFIXT(6,0,1,ff); SPACE(6); FLOT(6,3,prxr); SPACE(7); 
FLOT(6,3,gra.dl); SPÁCE(7); FLOT(6,3,d1stance); 
heading := !~ ; · 
~end of short output; 
U ieff = 0 V converged V coc = 2 :!i~ 
ll~ ~·x-<:~utput; CARRIAGE(2); 

PRINTTEXT(~ variable salution vector >); 
PRINTTEXT(~·gra.dient of penf >); SPACE(4)j 
1! analytic 1\ ieff 0 J;hen 
PRINTTEXT('t grad(differences) ::t>); 
~ j := 1 step 1 !mt!J. n 2-g 
~ NLCR; PRINTTEXT(~ J>); ABSFIXT(4,0,j)J SPACE(6); 

FLOT(6,3,xr[j]); SPACE(7)J FLOT(6,3,grad[J}); SPACE(7); 
1! analyticA ieff = 0 1~ FLOT(6,3,dgrad[j]) 

SI!~! of :printing itera.tion point and gra.dient; 
heading := !:~ 

SI!~! of x-<:~utput; 
U ieff = 0 V converged !~ 
~ commmt g-<~Utput; CARRIAGE(2); 

PRINTTEXT(~ tunetion tunetion values >); 
U nlp 1\ converged ~ 
PRINTTEXT(~ dual salution >); 
rm; 1 t= 1 ~ 1 JmW m 2-g 
~ NLCR; PRINTTEXT(~); ABSFIXT(4,0,i); SPACE(6); 

FLOT(6,3,gxr[i]);.~PACE(7); 
U nlp 1\ convergeit :!<.h.sn FLDT( 6,3, ur[ i]) 

.;~ of printing Tunetion values and dual solution; 
heading : = .k!1.; 

SI!~! of g-<~Utput; 
1J: nlp 1\ converged :!<.h.sn 
~ CARRIAGE(2); 

PRINTTEXT(~ end of cycle >); ABSFIXT(2,0 1 cycle); 
PRINTTEXT(~ for r equa.l to >); FLDT(3,3,r) 

.;!!!! 
SI!~! of outJUtl :f'or printing itere.tion data; 
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~:page 6 of minimize- continuatien 5 of reycle; 

~ start of I!E.in program of reycle; 
iterent := counter :• 0; dista.nce := OJ converged := ~ ; 
tlili J := 1 AW 1 lmUJ, n ~ 
grad[Jl := dir[.1] := s1g~!a[J] := yvec[j] := o; 
tlili 1 := 1 ml!1 JmUJ, m ~ gxr[1] := ur[i) := 0; 
resta.rt: prxr := penalty(xr,O,xr,gxr,reset)J 
U: reset> 0 :tb.!m ~ logp[reset] :"' ~! i ~ restart ~; 
gradient (xr, gxr ,grs.d;anB.l.ytic h . 
U analytic 1\ ieff = 0 :tllD gra.dient(xr,gxr,dgra.d,~ )J 
graill := sqrt(vecvec(l ,n,O,grs.d,grad) ); 
t2t itercnt := 0 ~ 1 ~ counter + nv ge 
~ ~ unconstre.ined-minimization cycleJ 

U: (iterent = O)V(itercnt (1tercnt l (2 x nv)) 
x 2 x nv 1\ gradl > 1) :th!m 
~ ~ 1 :• 1 ~ 1 Jm1U n ~ m k := 1 AW 1 !m1U n ge 

h[i,k] := u: 1 = k :th!m 1 .s;J.G 0 
~ of resetting direction matrix ~ 
~ ~ s1,h1,s1gnay,yhy; tmJ. !!:.tl.'l!-..il hy[ 1 :n]; 

!:21: i := 1 §!.ti/ 1 ~ n s\2 
hy[i] := matvec(1,n,i,h,yvec); 
sigmay := vecvec(1,n,O,sigma,yvec}; 
yhy := vecvec(1,n,O,yvec,hy)J 
~ 1 := 1 ~ 1 lmUJ, n ~ 
~ si := sigi!E.[:!]jsignayJ h1 := hy[i]/yhy; 

{91: k := 1 AW 1 ~ i ~ 
h[k,i] := h[i,k] I= h[i,k] + si x sigi!E.[k] - hi x by[k] 
~of adding corrections 

.s;n~ of updating direction matrix; 
m J := 1 ~ 1 Jm1U n 00 dir[J] I= llll.tvec(1,n,j,h,gre.d); 
iJ: vecvec(1,n,O,gre.d,4ir) > 0 ~!! 
{91: J := 1 f!W 1 !mlli n 00 dir[J) 1= -dir[j]; 
U coc * 0 lQsll out~t1(cycle,r,itercnt,ieff,analytic,converged, 
nlp,heading,prxr,gre.dl,d1stance,xr,gre.d,dgre.d,gxr,ur,n,m,coc); 
1eff I"' ieff + 1; .U: ieff "' imx !Dm~ ~ last; 
11nemin(xr,prxr,gxr,grs.d,dir,s1gllll.,yvec,re.xr,aaxr); 
gradl := sqrt(vecvec(1,n,O,grad,gre.d)); 
distence := sqrt(vecvec(1,n,O,sigllll.,sigma))i 
U: distance = 0 :tb.!m ~ endpoint; 
{91: J : = 1 liW 1 ~W n oo U xtype[ J 1 * o ~h~ll 
~U: abs(s1gma.[j]) > re.xr X abs(xr[j]) + aaxr ~ 

l!Wn counter := 1terent; J 1= n ~ 
!~ of testing the accure.cy 
~ of unconstrained minimization; 

endpoint1 converged I• ::!i.li:!1s i 1f nlp ;tbm~ 
{91: 1 :"' 1 JiW 1 Jm:!i11 m 00 
l!Wn U gtype[i] = 1 :!i~ ur[i] := 1 W!ll 
!!~ .1! gtype[i] = 2 ~ 
~.U: logp[i] :tbm~ ur[i] 1= rjgxr[i] ~ 

ur[i] I" U: gxr[i] < 0 ~ -2 x gxr[i]/r W! 0 
sn~ of com~ting multipliers for inequalities 
~ .U: gtype[ i] = 3 ~ ur[ i] 1= 2 X gxr[ 1]/r 
~ of com~ting constre.int mul tipHers 
~ · of generating dua.l solution; 
U: coc * 0 :!ib!l.l out~t1(cycle,r,itercnt,ieff,analytic,converged, 
nlp,heading,prxr,gradl,distance,xr,grad,dgrad,gxr,ur,n,m,coc)i 

last: 
~ of rcycle for unconetrained minimization of penalty function; 
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~ pa.se 7 of m1nim1ze; 

"W2~ extre.:pol(t,order,d1m,tiew,resu1t,conv); 
J.mïJ&K order,dimJ ~ conv; D1rJ. ~ t,new,resu1t; 
:ll~ ~ k; I!!J, beta; .tS!:J, ~ aid[hdim,O:orderh 

conv :• ~ J 
~ k := 0 i1llf 1 W1J, order 42 
~ j := 1 !WUI 1 JmW, dim 42 aid[j,k] :• t[j,k]J 
~ .1 :• 1 i1llf 1 J.Wj;1J. dim~·. t[j,O] :• new[j]; 
~ k :• 1 i.W 1 J.WW order ~ 
~ beta := 1/(1 - f'actor.tJt); conv := ~ J 
~ j :• 1 .JW 1 !mllJ. dim ~ 
t[j,k] :• beta x t[j,k- 1] + (1 - beta) x aid[j,k- 1 ]J 
~ .1 :• 1 .ltWI1 ~dim~ U xtype[j] * 0 ~ 
~ 1t abs{t[j,k] - aid[j,k- 1]) > rs.xmin x abs(t[j,k]) + 

as.xmin ~ ~ conv :• talG ; j :• dim -
• of' testing j-th order a;pproxi:aation; 
1t conv ~ order := k 

g of k loop for table u:pdating and testingJ 
~ j :• 1 i.W 1 ~ dim gg result[j] :• t[j,order] 

- of extra:pol for extra:polation tow.rds constre.ined minimum; 

Pt99edure outp.rt2{nc1,nc2,ne3,nsea.rch,nrp,nv); 
~ nc1,nc2,nc3,nsearch1 nrp,nv; 
:ll~ CARRIAGE(2)JABSFIXT(5,0,nc1); 

.PRIN'l'I'EXT(i: evaluations of :f'unctions :f'or nu.m. dif'f'. >h 
J:rr.CRJ ABSFIXT(5,0,nc2)J 
PRIN'l'I'EXT(i: evaluations of' :f'unctions for line searches >); 
NLCRJ ABSFIXT(5,0,nc3)J 
PRINTTEXT(i: evaluations of' derivatives >)J 
NLCRJ ABSFIXT(5,0,nc1 + nc2 + nc3 x mrh 
PRINTTEXT(~ aequivalent tunetion eva.luations >)J 
NLCR; ABSFIXT(5,0,nc2jnsearch); 
PRIN'l'I'EXT(i: evaluations of :f'unctions per line minimum>); 
NLCRJ ABSFIXT(5,01 nrp)J 
PRINTTEXT(i: rejected points because of' eenstraint violatien >) 
~ of output2 f'or printing nu.mber of :f'unction evaluations; 

proce4yre output3(cycle,order,n1 m,xmin,umin,tunctions,head1ng); 
~ cycle,order,n,m; l'IJ;!O..JJ:I!ilia headingJ 
.tmJ, ~ xmin,umin; W'OSledure functions,; 
~ ~ i 1 JJ .tS!:J, ~ gmin[1:m]; CARRIAGE(2); 

PRIN'l'I'EXT(~ ext:ra.polation, cycle >h ABSFIXT(2,0,cycle)J 
PRIN'l'I'EXT(i: 1 order>); ABSFIXT(2,0,arder); 
CARRIAGE(2);PRINTTEXT(~ variable salution vector >); 
~ J := 1 i.W 1 J.W1U n ~ 
~ NLCR; PRIN'I'l'EXT('!:x l>)J 

ABSFIXT(4,0,J)J SPACE(6)J FLOT(6,3,xmin[J]) 
- of x-output; 
CARRIAGE(2);PRINTTEXT(~ tunetion tunetion vs.lues 
PRIN'I'l'EXT(~ dua.l salution >); :f'unctions(xmin,gmin); 
~ i 1• 1 !W 1 J.W1U m ~ 
~ NLCRJ PRINTTEXT(~)J ABSFIXT(4jó,i); SPACE(6); 

FLOT(6,3,gm1n[1]); SPACE(7)J FLOT(6,3,umin[1]) 
,;~ of s-outputJ heading :• ~ 

,;~ of' output3 for printing ext:ra.polated solutions; 
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~ :r;age 8 of minimize; 

~ prgce4uiJ vecvec(l,u,shift1a,b)J ~ l,u,shitt; 
~ l,u,$hift; .lr:SI1 ~ e.,b; 
l!HlD ~ kj .tfaJ. SJ S l• 0; tQl: k l= l .!iW 1 lmUJ, U ~ 

s := a[k] x b[shift + k] + s; veevee := s 
~ of' veevee for com:puting the inner product of veetors a a.nd b; 

~ ~~ ma.tvec(l1u1 i,a.,b)~ ~ l,u,i; 
~I l,u,i; .ttaJ, ~ e.,b; 
l!HlD ~ k; ... SJ s := 0; ~I k :g l lijj~Jt 1 JmUJ. u ~ 

s := a[i,k] x b[k] + s; matvee := s 
~ of matvee for com:puting 1-th element of matrix a x vector b; 

s._~ start of main program of minimize; 
nv := ieff := net := nc2 := nc3 := nsee.rch := nrp := 0; 
hee.ding :• 1!:!u! ; I!EI.Xcycle P• 0; 
objective := constra.ints :• nlp := nonneg := ~ ; 
initr I= 1; fe.cto~ := 1~(-1/3); 
tQt 1 := 1 Jj;~ 1 ~ m + n ~ logp[i] :" ~~S ; 
tm,: .1 := 1 !~P 1 ~ n ~ xrmin[j] := xmin[J] := x[j]J 
m .1 := 1 iiklîl 1 JmUJ. n gQ 
~U xtype[J] < 0 V xty:pe[j] > 2 jj~ ~~ termil'lB.lJ 

U: xtype[J] • 0 jj!lsu nv :z nv + 1; 
U: xty:pe[J] = 2 jjhen nonneg ; .. constra.ints := 1!:!u! ; 
~ k := 0 ~ 1 ~ 6 QQ xtable[j 1 k] := 0 

s of' che<!king ty:pes of va.riB.bles; 
~ i := 1 iiklîl 1 ~ m ~ 
l!HlD U gtype[i] < 0 V gtype[i] > 3 ~ L~ termil'lB.lJ 

U gtype[i] = 1 ~ objective := ~ ~ 
U gty:pe[i] = 2 V gtype[i] = 3 ~ constra.ints := 11:!.1& ; 
tQt k := 0 ~~l1 1 ~ 6 iQ utable[ i,k] := 0 

s of checking eenstraint types; 
U objective A constra.ints ~ 
~ initr := abs(estimate)/100; _ 

U: initr < .,-2 ~ initr := .,-2; 
lliii.Xcycle := 9J nlp := ~ i 
~ 1 := 1 J:alll ~ m + n !l!.Jlogp[i] := ~ 

sgg of initiating constrained minimization; 
tQt cycle ta 0 &:all 1 lmUJ, lliii.XCycle iQ 
~ ~ sequentia! unconstrained minimiza.tion; 
~ orderx,orderu; ~ convx,convu; 
rcycle(initr x facto~cycle,xrmin,urmin,ra.xmin,e.axmin); 
U 1 converged ~.!m 
l!HlD U: cycle = 0 ll!lm 
~ J := 1 ~ 1 JmUJ, n ~ xmin[J] := xrmin[J]; 
~terminal 

s if there are too ma.ny itere.tions; 
orderx := orderu :"U cycle < 6 ~ cycle W! 6; 
extrapol(xtable,orderx,n,xrmin,xmin,convx); 
extra pol( utable1 orderu,m1 urmin, umin, convu ); 
1t coo "' 0 :!àiS!1 outp.tt2(nc1,nc2,nc3,nsee.rch,nrp,nv)J 
U cycle > 0 :!àiS!1 
l!HlD U COC 'I' Û ~ 

outp.tt3(cycle,orderx,n,m,xm1n,umin,funct1ons,heading}; 
U convx ~ ~ termil'lB.l W! converged := ~ 

sgg of comparing· extrapolated solutions 
sgg of sequen,tiaJ. unconstre.ined m1n1m1za.tionJ .. 

tel'l!linal: tm: j :c 1 !i!W 1 !mUJ, n !l!.J x[j] :c xmin[j] 
SUS of minimize; 
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s~ an example where minimize is called to compute the smallest 
distance between thesetof points (x[1],x[2],x[3]) such that 

x[1]Ae + x[2]Ae + x[3]Ae $5, 

and thesetof points (x[4],x[5],x[6]) satisfying the constraints 

(x[4] - 3)Ae + x[5]Ae $ 1, 
4 S x[6] $ 8. 

-- the starting point of the search is chosen to be (1,1,1,3,0,5); 

~~ sllldist(x,gx); ~ !il:n,'S...J: x,gx; 
~ thî~ procedure is used to supply the objective function 
and the con5traint functions of the problem; 
~ gx[l] :=- x[1]Ae- x[2]Ae- x[3]Ae + 5; 

gx[2] :=- (x[4]- 3)Ae- x[5]Ae + 1; 
gx[3] := - x[6] + 6; 
gx[4] := x[6] - 4; 
gx[5] := (x[11-x[4])Ae t- (x[2] -x(5])Ae + (x[3] -x[6])Ae 

Ji!llll: o'f smdist; 

meedure smdist1 (x,dgdx); n!!:l a.rra.y x,dgdx; 
~ this procedure is used to supply the first-order 
derivatives o'f the problem functions; 
~ !!2.Ji: J := 1,2,3 g~ dgdx[1,J] :=- 2 x x[Jh 

dgdx[2,4] :=- 2 x (x[4] ~ 3)J dgdx[2,5] :=- 2 X x[5]; 
dgdx[3,6] := -1; dgdx[4,6] := 1; 
!gr j := 1,2,3 ~ dgdx[5,J] := 2 x (x[j]- x[J + 3]); 
!!2.Ji: j := 1,2,3 ~ dgdx[5 1 j t- 3] :=- 2 X (x[j] - x[j + 3]) 

Jiällil of smdistl; 

!!2.Ji: j := 1,2,3 gg x[j] := 1; x[4] := 3; x[5) := 0; x[6] := 5; 
~ j I"' 1 !lW 1 ~ 6 gg xtype[J] := 1; 
~i := 1,2,3,4 ~ gtype[i] := 2; gtype[5] := 1; 

minimize{x,smdist,xtype,gtype,~ ,smdist1, 
6,5,~ ,.-5,.-),5,sonverged,1,100); 
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Summary 

This thesis is concerned with a number of methods for solving a constrained­
minimization or nonlinear-programming problem. The methods under consid­
eration have the following, common feature: they reduce the computational 
process for solving a constrained-minimization problem to sequentia} uncon­
strained minimization of a penalty function combining in a particular way the 
objective function, the constraint functions, and possibly one or more can­
trolling parameters. Well-known examples of such methods are the logarithmic­
potential method of Frisch and Parisot, the sequentia! unconstrained minimiza­
tion technique of Carroll, Fiacco and McCormick, the exterior-point methods 
of Courant, Pietrzykowski and Zangwill, and Huard's metbod of centres. 

Pena1ty-function techniques are designed to take into account the constraints 
of a minimization prob1em or, since almast none of the problems arising in 
practice have interior minima, to approach the boundary in a specifically con­
trolled manner. The thesis starts therefore by classifying penalty functions 
according to their behaviour in the neighbourhood of that boundary. 

A separate treatment of interior- and exterior-point methods is avoided by 
the study of mixed penalty-function techniques. Appropriate convexity and 
differentiability conditions are imposed on the problem under consideration. 
Furthermore, certain uniqueness conditions invalving the Jacobian matrix of 
the Kuhn-Tucker relations are satisfied by assumption. This implies that the 
problem has a unique minimum x with a unique vector û of associated Lagran­
gian multipliers. 

Under these conditions the minimizing trajectory generated by a mixed 
penalty-function technique can be expanded in a Taylor series about (x,ü). 
This provides, as an important numerical application, a basis for extrapolation 
towards (x,ü). The series expansion is always one in terms of the cantrolling 
parameter, independently ofthe behaviour ofthe mixed penalty function at the 
boundary of the eenstraint set. 

Next, there is the intriguing question of whether some penalty functions are 
easier or harder to minimize than other ones. Accordingly, the condition number 
of the principal Hessian matrix of a penalty function is studied. It comes out 
that the condition number varies with the inverse of the cantrolling parameter, 
independently of the behaviour of the mixed penalty function at the boundary 
of the constraint set. 

The parametrie penalty-function techniques just named can be modified into 
methods which do not explicitly operate with a cantrolling parameter. These 
parameter-free versions, which are based on moving truncations of the een­
straint set, may be considered as penalty-function techniques adjusting the can­
trolling parameter automatically. The crucial point is the efficiency of the adjust­
ment. It is established how the rate of convergence depends on the vector ü 
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of Lagrangian multipliers associated with x, on the boundary properties of a 
penalty function, on a weight factor p attached to the objective function, and 
on a relaxation factor e. Huard's method of eentres is a remarkable exception: 
its rate of convergence depends on the number of active constraints at x, and 
onp and (!. 

The computational advantages and disadvantages of the penalty-function 
techniques treated in the thesis are discussed inthelast chapter. The parameter­
free methods do not provide a significant advantage with respect to the para­
metrie techniques which have a cantrolling parameter in the penalty function. 
Within the class of parametrie techniques, there is no obvious reason for not 
using a so-called "first-order" method with a logarithmic harrier function, a 
quadratic loss function, or a mixture of these penalty functions. 

An appendix wh ichpresents an ALGOL 60 procedure for constrained mini­
mization via a mixed parametrie first-order penalty function conetudes the 
thesis. 
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Samenvatting 

In dit proefschrift worden enkele methoden behandeld voor het oplossen van 
een niet-lineair programmeringsprobleem. De onderhavige methoden hebben 
gemeen dat zij het minimaliseren onder nevenvoorwaarden terugbrengen tot het 
oplossen van een reeks minimaliseringsproblemen zonder nevenvoorwaarden. 
Hiertoe worden de doelfunctie en de grensfuncties van het probleem en even­
tueel één of meer stuurparameters gecombineerd tot een te minimaliseren 
boetefunctie van zodanige vorm dat schending van de nevenvoorwaarden wordt 
verhinderd (inwendige methoden) of bestraft (uitwendige methoden). Bekende 
voorbeelden van dergelijke methoden zijn de logarithmische potentiaalmethode 
van Frisch en Parisot, de inwendige methode van Carroll, Fiacco en McCor­
mick, de uitwendige methoden van Courant, Pietrzykowski en Zangwill, en de 
middelpuntsmethode van Huard. 

Deze en andere, daarmee verwante methoden waarin een boetefunctie op­
treedt zijn ontwikkeld om de nevenvoorwaarden van een niet-lineair program­
meringsprobleem te behandelen ofwel, omdat bijna geen enkel praktijkpro­
bleem een inwendig minimum heeft, om de rand van het toegelaten gebied op 
een speciale manier te naderen. Dit proefschrift begint daarom met een classi­
ficatie van boetefuncties naar hun gedrag bij die rand. 

Een afzonderlijke behandeling van inwendige en uitwendige methoden is 
overbodig. Het onderzoek richt zich op gemengde boetefuncties; de bereikte 
resultaten leiden onmiddellijk tot overeenkomstige resultaten voor inwendige 
en uitwendige methoden. Aan het niet-lineair programmeringsprobleem worden 
verder bepaalde convexiteits- en differentieerbaarheidsvoorwaarden opgelegd. 
Tenslotte is er, volgens een veronderstelling, voldaan aan éénduidigheidsvoor­
waarden, die verband houden met de Jacobi-matrix van de Kuhn-Tucker 
relaties. Dit heeft o.a. tot gevolg dat het probleem precies één minimum x heeft 
met daarbij een éénduidig bepaalde vector ü van Lagrangemultiplicatoren. 

Onder deze veronderstellingen kan de minimaliserende weg voortgebracht 
door een gemengde boetefunctiemethode worden ontwikkeld in een Taylorreeks 
rondom (x,ü). Voor numerieke doeleinden is dit een belangrijk resultaat; men 
heeft hiermee een basis voor extrapolatie naar (x,ü). De Taylorreeks is steeds 
een reeks in termen van de stuurparameter, hoe de boetefunctie zich ook ge­
draagt bij de rand van het toegelaten gebied. 

Dan is er de belangrijke vraag of sommige boetefuncties moeilijker of gemak­
kelijker te minimaliseren zijn dan andere. Daartoe werd onderzocht de matrix 
van tweede-orde afgeleiden van een boetefunctie, berekend in het punt waar 
de boetefunctie zijn minimum aanneemt; in het bijzonder werd aandacht be­
steed aan het conditiegetal van deze matrix. Het blijkt dat dit conditiegetal 
varieert met het omgekeerde van de stuurparameter, hoe de boetefunctie zich 
ook gedraagt bij de rand van het toegelaten gebied. 
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De hierboven genoemde, parametrische methoden kunnen gewijzigd worden 
in methoden waarin een stuurparameter niet expliciet voorkomt. Deze para­
metervrije versies, die gebaseerd zijn op voortschrijdende afknottingen van het 
toegelaten gebied, kunnen beschouwd worden als boetefunctiemethoden waarin 
de stuurparameter automatisch wordt bijgeregeld. Hoe efficient verloopt dit 
proces? Getoond wordt hoe de convergentiesnelheid afhangt van de vector ü 

van Lagrangemultiplicatoren, van het gedrag van een boetefunctie bij de rand 
van het toegelaten gebied, van een gewichtsfactor p waarmee de doelfunctie 
wordt gewogen, en van een relaxatiefactor e. De middelpuntsmethode van 
Huard blijkt een opmerkelijke uitzondering te zijn: de convergentiesnelheid van 
deze methode hangt af van het aantal actieve beperkingen in x en van p en e. 

De rekentechnische voor- en nadelen van de boetefunctiemethoden die in dit 
proefschrift worden behandeld komen ter sprake in het laatste hoofdstuk. De 
parametervrije methoden geven geen significante voordelen ten opzichte van de 
parametrische methoden met een stuurparameter in de boetefunctie. Er is geen 
duidelijke reden om, binnen de klasse van parametrische methoden, andere dan 
z.g. "eerste-orde" methoden te gebruiken, met een logarithmische barriere­
functie, een kwadratische verliesfunctie, of een mengsel van deze boetefuncties. 

Een appendix met een Algol procedure voor niet-lineaire programmering via 
een gemengde parametrische eerste-orde boetefunctie besluit het proefschrift. 
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I 

Beschouw het programmeringsprobleem 

min {f(x) lgb) ~ 0; i= 1, ... , m; x EEn} 

met kwadratische doelfunctie f, concave en continu differentieerbare grens­
functies g1 , ••• , gm, en compact toegelaten gebied R met niet-leeg inwendige 
R0

• Laat de matrix H van tweede afgeleiden van/positief definiet zijn en laat 
Äm1n de kleinste eigenwaarde van H voorstellen. Zij x de oplossing van het 
probleem. Wanneer x(r) E R0 het punt is waar de logarithmische barrière­
functie 

m 

f(x)-r ~ lng1(x) 
1=1 

zijn minimumwaarde over R 0 aanneemt, dan is 

Ämin [x(r)- x]T [x(r)- x] :::;; m r 

voor elke positieve waarde van r. 

11 

Laat ~(r) voor r > 0 gedefinieerd zijn als een punt waar een barrièrefunctie 
van de vorm 

m 

zijn minimumwaarde aanneemt over de verzameling 

i= 1, ... , m}. 

De bewering van Fletcher en McCann, dat de vectorfunctie ~(r) onder de 
door hen genoemde omstandigheden in de buurt van r = 0 ontwikkeld kan 
worden in een machtreeks in termen van r213 , is onjuist. 

R. Fletcher and A. P. McCann, Acceleration techniques for non­
linear programming, in R. Fletcher (ed.), Optimization. Academie 
Press, London, 1969, pp. 203-214. 

111 

Laat x(r) een punt voorstellen waar, voor positieve r, de geregulariseerde 
barrièrefunctie 

m 

zijn minimumwaarde aanneemt over de verzameling 

i= 1, ... , m}, 



en laat u(r) een m vector zijn met componenten 

u;(r) =rA qJ'{g;[x(r)] + r}; i= 1, ... , m. 

Onder de voorwaarden van stelling 3.4.1 van dit proefschrift is er een omge­
ving van r = 0 te vinden waar de vectorfunctie [x(r), u(r)] eenduidig bepaald 
is en continue k-de afgeleiden bezit. 

A. V. Fiacco, A general regularized sequential unconstrained mini­
mization technique, SIAM J. Appl. Math. 17, 1239-1245, 1969. 

IV 

De zwakke en de sterke dualiteitstelling van Dantzig, Eisenberg en Cottle zijn 
ook geldig voor het primaire probleem 

min [K(x,y)- yT DyK(x,y)] 
x,y 

onder de voorwaarden 

Dy K(x,y) ~ 0, x);: 0, 

en het duale probleem 

max [K(x,y)- xT Dx K(x,y)] 
x,y 

onder de voorwaarden 

Dx K(x,y) );: 0, y );: 0. 

Het is dus niet nodig om aan het primaire probleem de voorwaarde y );: 0 
en aan het duale probleem de voorwaarde x );: 0 op te leggen. 

G. B. Dantzig, E. Eisenberg and R. W. Cottle, Symmetrie dual 
nonlinear programs. Pac. J. Math. 15, 809-812, 1965. 

F. A. Lootsma, Congruent, half-congruent and acongruent duality 
theorems in concave programming. Nat. Lab. report 3979, Philips 
Research Laboratories, Eindhoven, The Netherlands, 1965. 

V 

Pearson heeft zijn onderzoek van de gevolgen, die herhaald initieren van de 
richtingsmatrix heeft voor de algorithme van Davidon, Fletcher en Powell om 
e.en functie van n variabelen te minimaliseren, ten onrechte beperkt tot de 
gevolgen van initieren na elk (n + l)tal iteraties. 

J. D. Pearson, Variabie metric methods of minimization. The Com­
puter J. 12, 171-178, 1969. 

VI 

De door Fletcher voorgestelde methode met variabele metriek, waarbij tijdens 



het iteratieproces een lijnminimum in de zoekrichting niet gelocaliseerd be­
hoeft te worden, is voor het minimaliseren van boetefuncties niet aan te bevelen 
boven de oorspronkelijke algorithme van Davidon, Fletcher en Powell. 

R. Fletcher, A new approach to variabie metric algorithms. Technica! 
paper 383, Atomie Ehergy Research Establishment, Harwell, 1969. 

VII 

In een plat vlak is een rechthoekig trefplaatje T gelegen met de ribben even­
wijdig aan de X-as, resp. de Y-as van een coordinatenstelsel in dat vlak. De 
positie van het plaatje is niet nauwkeurig waar te nemen; het snijpunt (x, y) 
van de diagonalen van T is een normaal verdeelde stochastische grootheid 
(de waarneemfout) met verwachting (0,0) en momentenmatrix 

( 
D 

2 
0 ) 

0 x Dy2 . 

Het plaatje wordt getroffen door een salvo van n gelijktijdig afgeschoten deeltjes. 
Het trefpunt (u~> v1) van het i-de deeltje is een normaal verdeelde stochastische 
grootheid met verwachting het mikpunt (~1 , rJ 1) en momentenmatrix 

(

(J2 0) 
0 a/ . 

De trefpunten (u;, v1), i = 1, ... , n, en de waarneemfout (x, y) zijn onaf­
hankelijk verdeeld. Laat Pn(~1 , 'Y/1> ••• , ~m 'YJn) de kans zijn dat tenminste één 
van de deeltjes in het salvo afgeschoten volgens het patroon {(~I> rJ 1), ••• , 

(~no 'Y/n)} het trefplaatje raakt. Wanneer ax groot is t.o.v. de halve lengte lx 
van het plaatje enjof ay groot t.o.v. de halve breedte ly, wordt het maximum 
van Pn over alle patronen gegeven door 

met 

( 
1 1 n )

1
'
2 

s=2 xy . 

DxDyn 

VIII 

Het verdient aanbeveling om het snijprobleem in een golfkartonfabriek, waar 
men rechthoekige platen snijdt uit een voortlopende baan golfkarton, te for­
muleren als een z.g. overdekkingsprobleem met gelijkheidsbeperkingen. In de 
formulering treden de complete of gesloten snijpatronen, en eventueel andere 
patronen met bijzondere eigenschappen, op als activiteiten die al dan niet uit­
gevoerd moeten worden. Dit kan leiden tot een rekentechnisch aanvaardbare 



probleemstellingwaarin ook de vaste kosten van een omstelling der messen, de 
toleranties op de lengte en breedte van de gevraagde platen golfkarton, en de 
gewenste verdeling van het orderpakket over de snij-inrichtingen zijn verdiscon­
teerd. 

F. A. Lootsma, An algorithm for the cutting-stock problem in the 
corrugated-cardboard factory. Nat. Lab. Technica! Note 43/66, Philips 
Resèarch Laboratories, Eindhoven, Netherlands. 

R. S. G arfinkel and G. L. N emhauser, The set-partitioning problem: 
set covering with equality constraints. Operations Research 17, 848-856, 
1969. 

IX 

Als model voor een activiteitsduur in planningstechnieken is een gammaver­
deling te verkiezen boven een betaverdeling. 

F. A. Lootsma, A gamma distribution as a model of an activity dura­
tion. Méthodes à chemin critique. Actes du Congrès Internet I, Vienne, 
1967. Dunod, Paris, 1969. 

x 
Het voorstel van de commissie-Braun tot het instellen van een centraal orgaan 
post-academisch onderwijs, met als taak het stimuleren, coordineren en finan­
cieren van post-academisch onderwijs aan de universiteiten en hogescholen, is 
door de Academische Raad ten onrechte verworpen. 

Rapport post-academisch onderwijs (uitgebracht door de commissie­
Braun van het verbond van Wetenschappelijke Onderzoekers). Weten­
schap en Samenleving, supplemènt op de 18de jaargang, april/mei 1964. 

Brief van de Academische Raad aan de Minister van Onderwijs en 
Wetenschappen, nr. AR· 1627, 31 december 1966, met bijlagen. 

XI 

Terugziende op de periode waarin hij lid was van het Air Defence Research 
Committee (1935-1939) schrijft Churchill: "ft is aften possible in England for 
experienced politicians to reconcile junelions of this kind (felle kritiek op, en 
waar mogelijk loyale medewerking aan het regeringsbeleid, L.) in the same way 
as the sharpest politica/ di.fferences are sametimes found not incompatible with 
personal friendship. Scientists are ho wever a far more jealous society". Een der­
gelijke bewering waarmee de loyaliteit en onderlinge communicatie van de be­
oefenaars der exacte wetenschappen ongemotiveerd in twijfel getrokken wor­
den en die ook in onze tijd de verstandhouding tussen politici en wetenschaps­
mensen kan vertroebelen, is verwerpelijk. 

W. S. Churchill, The second world war. Vol. I, Cassell & Co., London, 
1948, p. 120. 


