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Preface

In recent years a considerable interest has been shown in the so-called fractional calculus,
which allows us to consider integration and differentiation of any order, not necessarily
integer. To a large extent this is due to the applications of the fractional calculus to
problems in different areas of physics and engineering.

The fractional calculus can be considered an old and yet novel topic. Starting from some
speculations of Leibniz and Euler, followed by the works of other eminent mathemati-
cians including Laplace, Fourier, Abel, Liouville and Riemann, it has undergone a rapid
development especially during the past two decades. One of the emerging branches of
this study is the theory of fractional evolution equations, i.e. evolution equations where
the integer derivative with respect to time is replaced by a derivative of fractional order.
The increasing interest in this class of equations is motivated both by their application to
problems from viscoelasticity, heat conduction in materials with memory, electrodynamics
with memory, and also because they can be employed to approach nonlinear conservation
laws.

This thesis is concerned with abstract fractional evolution equations. It is an outcome of
the author’s research during her Ph.D. study at the Eindhoven University of Technology
(December 1997 - September 2001). Most of the material in the thesis is based on the
following articles from this period:

[1] E. Bazhlekova, The abstract Cauchy problem for the fractional evolution equation.
Fractional Calculus & Applied Analysis 1, No 3 (1998), 255-270.

[2] E. Bazhlekova, Perturbation properties for abstract evolution equations of fractional
order. Transform Methods and Special Functions, AUBG’99. Fractional Calculus & Ap-
plied Analysis 2, No 4 (1999), 359-366.

[3] E. Bazhlekova, Subordination principle for fractional evolution equations. Fractional
Calculus & Applied Analysis 3, No 3 (2000), 213-230.

[4] E. Bazhlekova, Perturbation and approximation properties for abstract evolution equa-
tions of fractional order, Research Report RANA 00-05, Eindhoven University of Tech-
nology, Eindhoven (2000).

[5] E. Bazhlekova, Maximal L? regularity of fractional order equations, preprint.

[6] Ph. Clément, E. Bazhlekova, Global solutions for a quasilinear fractional evolution
equation, in preparation.



ii

Chapter 1 contains notations and some background material. In Chapter 2 ([1],[2],[4])
applying functional analytical methods, the solvability of the problem and the properties
of the solution operator are investigated. We develop a theory which extends the classical
theory of Cy-semigroups of operators. The subordination principlewe is studied in detail
in Chapter 3 ([3]) applying transform methods. Chapter 4 ([5]) is devoted to the maximal
L? regularity. In Chapter 5 the problem of regularity is tackled in Hilbert space settings
by the method of sums of accretive operators. The obtained regularity results are applied
in Chapter 6 ([6]) to investigate the nonautonomous fractional evolution equations, a
transient case between linear and quasilinear problems. As an application, the global
solvability of a quasilinear fractional evolution problem is obtained.

Here I would like to thank all the people, who helped me during the preparation of the
thesis. I am grateful to prof.dr.ir. J. de Graaf, who gave me the opportunity to carry out
my doctorate research in the group of Applied Analysis at the Eindhoven University of
Technology, for many helpful discussions and constant encouragement. I am indebted to
prof.dr. Ph. Clément for keeping me up to date with the very recent developments of the
topic, for his inspiring suggestions, criticism and patience. [ am grateful to prof.dr. V.
Kiryakova for introducing me to the world of fractional calculus. Thanks are also due to
prof.dr.ir. M.L.J. Hautus and prof.dr. J. Boersma for the critical reading of parts of the
manuscript. I thank the members of the Applied Analysis group for providing a pleasant
and stimulating working environment. Last but not least I thank my husband Ivan and
our sons Svetlio and Galin for their help, patience and understanding.



Contents

Introduction

Fractional integration and differentiation

1.1 Preliminaries . . . . . . .. . .. ...
1.2 Fractional integration and differentiation . . ... ... ... ..
1.3 Mittag-Lefler and Wright functions . . . . . . . . ... ... ...

1.4 Operators of fractional differentiation in L?P spaces .. ... ..

Solution operators: generation, approximation and perturbation

2.1 Solution operators . . . . . . . . ... ...
2.2 Analytic solution operators . . . . .. ... ... ... ...
2.3 Approximation . . ... ... ... ...

2.4 Perturbation properties. . . . . . ... ... ... ... ..

Subordination principle

3.1 Subordination principle and its invertibility . . . . . . . ... ..
3.2 An inversion formula . . . . . . ... ...

3.3 The semigroup of subordination operators . . . . . .. ... ...

Strict LP solvability

4.1 The notion of maximal L? regularity .. ... ... ........
4.2 Maximal L? regularity for fractional order equations . . . . . .

4.3 Strict LP solutions of fractional order equations . .. ... ...

Maximal regularity in Hilbert spaces via accretivity

5.1 Two classical results . . . . . . . . . . . .. ... ..

5.2 The case of nonlinear m-accretive operators with o € (0,1) . . . .

il

19
19
25
29
33

39
39
45
48

53
53
%)
61

71
71
72



CONTENTS

5.3 Reduction of problems with @ € (1,2) . ... ... ... ....... 76
5.4 Linear nonautonomous problems with « € (0,1) . . . ... ... .. 80
5.5 Example: fractional Lowner-Kufarev equation . . ... .. ... .. 83
Quasilinear problems 87
6.1 Linear nonautonomous case . . . . . . . . . . . . .. ... 87
6.2 Global solutions for a quasilinear equation . ... ... ... .. .. 93
Bibliography 99
Index 105

Curriculum Vitae 107



Introduction

This thesis is devoted to the study of abstract differential equations of fractional order,
describing the evolution in time of the state of a system.

Let @« > 0 and m = [«], the smallest integer greater than or equal to a. Assume
u: [0,00) = X, where X is a Banach space. Define the fractional derivative of u of order
a by

dam [
Diu(t) .= — | gm-al(t —s)u(s)ds, t >0,
dtm J,
where
i1
g(t) = r@ L 0, 8 >0.
When « = n is integer, we set D} := gt—i, n=12,....

Let A be a closed linear operator densely defined in X. Given x € X, we investigate first
the following problem:
Di(u—x) = Au(t), t >0, (1)

with initial conditions u(0) = z, u®(0) =0, k =1,2,...,m — 1. If Au(t) is continuous
in ¢ (this we require later in the definition of strong solution), the initial conditions are
implied automatically by the equation (1).

In the case a = 1 this problem coincides with the classical abstract Cauchy problem of
first order
u'(t) = Au(t), t>0; u(0)==x. (2)

There is a vast amount of literature devoted to it and its equivalent formulation - the
semigroup theory. Choosing v = 2 results in the second-order problem

u"(t) = Au(t), t>0; u(0) == u'(0)=0, (3)

with the corresponding theory leading to the concept of a cosine family. The study of
problem (1) presented in this thesis (Chapters 2 and 3) is thus an extension (of some
ideas) of the semigroup theory and the theory of cosine families.

Let Ry := [0,00). A function u € C(R;;X) is called a strong solution of (1) if
u € CR;DA))NC™"™ R ; X), g * (u—12) € C™(R,; X) and (1) holds on R, .
The concept of well-posedness of (1) is a direct extension of the corresponding notion
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usually employed for the abstract Cauchy problem (2). For well-posed problems we de-
fine S, (t)x := u(t), where u(t) is the solution of (1), and call the operator function S,(t)
the solution operator of (1).

Note that in case of noninteger « there is no analogue of the semigroup property
Si(t+s) = S1(t)S1(s)
or cosine functional equation
So(t + s) 4+ Sa(t — s) = 255(t)Sa(s),

which play a crucial role in the developing of the corresponding theories. This is due to
the nonlocal character of the fractional differentiation leading always to some presence of
memory.

Equation (1) (possibly with a forcing function f(¢)) can be rewritten in an equivalent
form as

u(t) = /Ot Gt — $)Au(s) ds + h(t), ¢ >0, (4)

where h(t) ==z + fot ga(t — $) f(s)ds. So, we can rely in our study on the basic results on
abstract Volterra integral equations. A very rich source is the monograph on evolutionary
integral equations [64].

The representation (4) shows clearly the causality of the system described, i.e. the present
state of the system is determined only by its history and the present force, but does not
depend on the future.

The generation, approximation and perturbation results presented in Chapter 2 general-
ize some facts concerning Cy-semigroups and cosine families, but also distinguish some
new features. The analogue of the Hille-Yosida theorem (see [25]) reads as follows: The
problem (1) is well-posed with solution operator S,(t), satisfying ||S,(t)|] < Me“" for
some M,w > 0, if and only if (w®, 0o) belongs to the resolvent set of A and

|| o Mn!
o\ (A —w)ntl’
This criterion, however, is practically not applicable because it requires verification of
infinitely many inequalities. This motivates the study of other aspects of problem (1)

such as generation of analytic solution operators, subordination, perturbation, giving
other methods to prove well-posedness.

(AT = A)Th| < A>w, n=0,1,2,...

The obtained representation formula for the solution operator S, (t), which is a general-
ization of the exponential formula for Cy-semigroups Si(t)z = lim,, o (I — %A)_"x, T €
X, t > 0, is important for the numerical approximation of the solution, especially for
implicit approximation schemes.

Another aspect of our study is the relationship between problems (1) with different orders
«, resulting in the so-called subordination principle (Chapter 3). This is an extension of
the abstract Weierstrass formula relating the semigroup S; and the cosine family Ss,

1 R
Si(t) = \/ﬁ/o e~ /UG, (s5)ds, t > 0,
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which shows that if A generates a cosine family, it is necessarily a generator of an analytic
semigroup of angle m/2. Roughly speaking, the subordination principle means that one
and the same operator A guarantees better properties of the solution if « is smaller and
that the set of operators A, such that (1) is well-posed, shrinks when « increases. In
particular, if & > 2, then A is necessarily bounded. For this reason we consider mostly
a € (0,2). The subordination principle is studied in detail, involving the problems of
invertibility and the properties of the related semigroup of subordination operators.

The next two chapters are devoted to the regularity aspects of the fractional evolution
equations. Maximal regularity of a problem with a forcing function f means that Au has
the same ”smoothness“ as f, which is in principle not always the case.

Let « € (0,2), m = [a],1 <p<ocand T > 0. Let A be a closed positive linear operator
of D(A) C X into X. Instead of working with continuous functions of time we work now
with functions which are of class LP and consider the problem

Diu(t) + Au(t) = f(t), a.a.te€]0,T], (5)
(g1—a *xu)(0) =z, if @€ (0,1),
(go—a *u)(0) = xg, (go_q *u)'(0) =y, if a € (1,2).

Let first o = x; = 0 and define the operators A and L, by

(Au)(t) = (Au)(t),  D(A) := L7(0,T; D(A)),
(Lou)(t) := (Dfu)(t), D(La) :=A{u € LP(0,T;X) | gm-a xu € Wy"(0,15X)}.

The properties of operators £, and their domains of definition are studied in Chapter 1.
We say that there is maximal LP regularity of problem (5) if for every f € LP(0,T;X)
there exists a unique u € D(A) N D(L,) satistying (5).

This problem can be reformulated as the operator equation
Lou+ Au = f. (6)

One then can apply the method of sums to study (6). To this aim the theorems of
Da Prato-Grisvard and Dore-Venni or some very recent results involving the concept
of R-boundedness can be used. They imply that (5) with zy = z; = 0 has maximal L”
regularity if and only if the family of operators (ip)*((ip)*I+A)~, p € (—o0o, 0)U(0, +00),
is R-bounded. Since this is a very recent topic, a part of the references have not been
published yet.

Concerning the equation with f = 0, xy,x; € X, a direct approach is applied to study
problem (5). It appears that the solution v € L?(0,7; D(A)), whenever z, and x; belong
to some real interpolation spaces. Combining the above two cases we obtain conditions on
A, zo and x1, under which, for any f € LP(0,7; X), problem (5) has a strict L? solution,
i.e. a solution satisfying Au € L?(0,7; X) (Chapter 4).

A word explaining the change of the form of the equation (1) to (5) seems to be necessary.
Assume « € (0,1). In the case of continuous functions, u(0) is well defined and the form
(1), which yields an initial condition u(0) = x, is more natural. In the case of L? functions
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it is known that the elements of D(L,) are continuous only if & > 1/p. So, it is more
appropriate to give initial values not to the function u itself, but to g;_, * u, which is
always continuous for u € D(L,). The operator A is replaced by —A because the form (6)
is more natural to apply the theory of sums of operators. Let us note that problem (5) can
be rewritten in the form (4) with A replaced by —A and h(t) = f(f Gt —s)f(s)ds+g(t)
where g(t) = xoga(t) if @ € (0,1) and g(t) = xoga—1(t) + 2194(t) if & € (1,2). This
representation shows that the problems (1) and (5) are principally of the same form.

When we work in L?(0, T; H), where H is a Hilbert space (Chapter 5), a different approach
can be used to prove regularity: the method of sums of accretive operators. It is applicable
even in the case when A is nonlinear. Since L, is accretive only for a € (0,1), this
approach cannot be applied for a € (1,2). To do this indirectly we use a result on reducing
an equation of order a to a corresponding equation of order «/2. This is an approach
providing a simple proof of regularity, but without further development it can be applied
only for a quite limited class of operators A. Nonautonomous problems in Hilbert space
settings are also tackled by the theory of sums of accretive operators. Applications to the
so-called fractional Léwner-Kufarev equation are presented.

Nonautonomous problems are important especially as a transient case between the linear
and the nonlinear theory. General results on nonautonomous equations in Banach spaces
are obtained in Chapter 6 on the basis of the regularity theorems of the corresponding
autonomous problems using an inductive argument in time. These results are applied to
obtain the global solvability of the following quasilinear fractional evolution equation of
order « € (1,2), intermediate to the quasilinear diffusion equation and quasilinear wave
equation:

Diu = (0(uy))s + f- (7)

Here u = u(t, x) is a real-valued function for t > 0, x € (0, 1), and the subscript x denotes
the partial derivative with respect to x. The Dirichlet boundary condition

u(t,0) = u(t,1) =0, t >0,

and initial conditions

t

t
i [ gt = uls. ) ds = 0 i = / go-alt — s)uls,z) ds = 0,

are assumed. We suppose that o € C?(—o0, +00) and satisfies
0<op<0'(y) <oy <00, y€ (—00,+0), (8)

for some constants oy, o;. While the behaviour of the solution of (7) in the linear case
o(y) = y is reasonably well understood, only very partial results exist for the nonlinear
equations of this type. The existence of global smooth solutions in a very general setting
is proved in [31] but only for av < 4/3. In [43] this is proved for the Hilbert space case
under an assumption on the deviation of ¢ from a linear function. We use a similar
assumption and apply LP(L9) estimates to establish global existence of strong solution of
(7) in LP(0,T; L%(0,1)) for all a € (1,2) and p, g - sufficiently large.



Chapter 1

Fractional integration and
differentiation

This section contains some preliminaries used throughout the whole thesis. After present-
ing some notations and definitions, the operators of fractional integration and differenti-
ation of Rieman-Liouville and Caputo type are defined. Next we introduce two special
functions intimately related to fractional differential equations. At the end of this chap-
ter we study the properties of the operator of Riemann-Liouville fractional differentiation
in LP spaces which are important for the theory of maximal L regularity developed in
Chapter 4, but are also of independent interest.

1.1 Preliminaries

Some notations

Most notations used throughout this thesis are standard. So, N, R, C denote the sets of
natural, real and complex numbers, respectively, and Ny := NU {0}, R, := [0, 00),

Yo(w) :={A e C\{0}] |arg(A —w)| < 0}, 0 € [0,7), w e R,

and Xy := 3y(0) for short. If & > 0, |«] denotes the largest integer less than or equal to
a and [a] denotes the smallest integer greater than or equal to a.

Let X, Y be Banach spaces with norms ||.||x, ||.||y; the subscripts will be dropped when
there is no danger of confusion. By B(X,Y) we denote the space of all bounded linear
operators from X to Y, B(X) := B(X, X) for short. If A is a linear operator in X then
D(A), R(A), N(A) denote domain, range and null space of A, respectively, while o(A)
and p(A) mean spectrum and resolvent set of A and R(\, A) := (A — A)~! stands for the
resolvent operator of A. We say that the Banach space X is continuously embedded in

the Banach space Y and write
X =Y

if X Y and ||y < C|.|x.
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Let J = (a,b), where —0o < a < b < +00, and 1 < p < co. Then LP(J; X) denotes the
space of all (equivalent classes of) Bochner-measurable functions f : J — X, such that
I (®)|% is integrable for ¢ € J. It is a Banach space when normed by

| Fllpeix) = (/J 1) ds) 1/p'

If p = oo the space LP(.J; X) consists of all measurable functions with a finite norm

[ fllzoo(rix) = esssupge, || f (1) ]| x-

If X is the underlying scalar field R or C, the image space in the function space notation
introduced above and further in this section, will be dropped. For example we write L?(.J)
instead of LP(J;R). As usual, * denotes the convolution of functions, defined on R or

on Ry:

(k*f)(t):/+Ook(t—s)f(s)ds, teR, ke L'R), fe LR X),

o0

(k*f)(t)zfotk(t—s)f(s)ds, teR,, ke L'R.), feL'(R:X).

We recall two important inequalities:

e the Holder inequality:

/J IF@®)g@)llx dt < | Flleexollgllor x5

where p' = p/(p — 1) and f € LP(J;X), g € L*(J;X). We see that the embedding
LP(J; X) — LP*(J; X), p1 > p2 > 1, is derived from the Holder inequality, if .J is a finite
interval.
e the Young inequality: if k € L'(J), f € LP(J; X) for some p € [1,00), then k * f €
LP(J; X) and

1k % flleerixy < NElpro L [lLeix)-

By C(J; X), resp. C™(J;X), we denote the spaces of functions f : J — X, which are
continuous, resp. m-times continuously differentiable; C§°(R; X') consists of all infinitely
differentiable functions with compact support.

Let now I = [0,7], T > 0. Then C(I; X) and C™([; X) are Banach spaces endowed with

the norms

Ifllo = sup [IF@)1x: ([ fllom = sup > [ FP@)lc.
tel tel 4o
The Holder spaces C7, 0 < v < 1, are defined by

C(I;X) :={f € C(I; X)| sup I7®) = Fs)lle 00}

s,tel |t - 5|7
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e 1) - O
— f(s
[fllcr = sup [[f ()]l + sup 29
tel sitel [t — s|7
The little Holder spaces h? are defined by
(I X) :={f e C(I; X)| lim sup 1) = F(s)]lx = 0}.
syt€l, 0<|t—s|<6, 510 |t —s|7

If A > 1 we define C*(I; X) as the space of all functions satisfying f € C™(I,X) and
fm e CV(I; X), where m = ||, v = A — m. It is endowed with the norm

1£llex = [ llem + 117 o

Let I = (0,7),or I =R;,or I =R, m €N, 1 <p< oco. The Sobolev spaces can be
defined in the following way (see [8], Appendix):

m—1

tk tm—l

WL X) = {f| Jp e LP(I;X): f(t)=) ot o(t), tel}. (L1)

Note that o(t) = f™(t), ¢z = f*(0). Let

WP (LX) = {f e W™ (I; X)] fP0)=0, k=0,1,...,m—1}.

So, f e W"P([; X) iff f = Jnm—:ll)!*gofor some ¢ € LP(I; X).

The Laplace transform of a function f € L'(Ry; X) is defined by

-~

f) = /oo e Mf(t)dt, Red > w,

0
if the integral is absolutely convergent for Re A > w.

The Fourier transform of a function f € L}(R; X) is denoted by

o0

f(p) ;:/_ e P f(t)dt, peR

o0

Operators in Banach spaces

Let X be a complex Banach space, and let A: D(A) C X — X be a closed linear densely
defined operator in X. In the sequel we suppose that D(A) is equipped with the graph
norm of A, ie. ||z||p) = ||z||x + ||Az||x; since A is closed, D(A) is a Banach space,
continuously and densely embedded into X.

Definition 1.1 We call an operator A : D(A) C X — X nonnegative iff the following
two conditions are satisfied:
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(i) there exists K > 0 such that for all A > 0 and all u € D(A),
AMullx < K||Au+ Aul|x (1.2)
holds;
(ii) R(A + A) = X for all A > 0.

Observe that if A satisfies (i) and (ii), it is closed. Moreover, any nonnegative operator
in a reflexive Banach space is densely defined [50]. If A is a nonnegative operator on X,
then define

da:=sup{6 € [0,7]] p(=4) > Ty, sup AN + A) sy < o0}
PYS

Ka(¢) == sup [[AMA] + A) M), ¢ < da.

)\EE¢

The spectral angle of A is defined by
WA =T — Qa. (1.3)

Definition 1.2 An operator A satistying (i) of Definition 1.1 with K = 1 is called ac-
cretive. If A moreover satisfies (ii) then A is called m-accretive.

Note that if A is accretive and (ii) holds for some Ay > 0 then it holds for all A > 0, so it
is m-accretive. Indeed, the equation Au + Au = f is equivalent to

u= NNl + A)7* (Aiof + (1 - %)u) : (1.4)

Since [[Ag(Aol + A)7Y| < 1 and |1 — %0| < 1 provided A < 2}, according to the fixed
point theorem, (1.4) has a unique solution for all A < 2)\g. Repeating this procedure we
obtain solution for any A > 0.

It is well known that if X is a Hilbert space with inner product (.,.) then A is accretive
iff Re (Au,u) > 0 for all u € D(A).

Definition 1.3 An operator A is said to be positive if it is nonnegative and 0 € p(A).

There are many examples of positive operators. For instance, any positive-definite self-
adjoint operator acting in Hilbert space is a positive operator. If A generates a Cjy-
semigroup of negative type then —A is a positive operator. The reverse statement, how-
ever, is untrue, since there exist positive operators which are not generators of suitable
semigroups. In many cases, however, condition 0 € p(A) is not satisfied, e.g. for the
Laplace operator on LP(R") we have 0 € o(A). Therefore it is desirable to weaken this
condition.



1.1. Preliminaries 9

Definition 1.4 An operator A is called sectorial if it is nonnegative and N(A) = {0}
and R(A) = X.

Obviously, any positive operator is sectorial. Examples of sectorial, but not positive
operators are some differential operators on unbounded regions, like the Laplace operator
or the Stokes operator on exterior domains.

For the class of sectorial operators one can define complex powers (see e.g. [64]). A
sectorial operator A is said to admit bounded imaginary powers if the purely imaginary
powers A% of A are uniformly bounded for s € [—1,1]. Then it can be shown that A’
forms a strongly continuous Cy-group of bounded linear operators. The type 64 of this
group defined by

0,4 := lim|5‘%00|8|_1 log HAZSHB(X).

is called the power angle of A. Then for any ¢, > 04, there exists constant M =
M(p4) > 1 such that .
| A" 5x) < Me#Abl s e R

We denote A € BIP(X;M,pa) or A € BIP(X;pa). The spectral angle w, and the
power angle #4 of an operator satisfy the inequality 04 > wa (see [65]).

Let A be a nonnegative operator in X, v € (0,1), p € (1,00). Consider the spaces

Da(7,p) = {2 € X| [#]p,(y,p) < 00},

where
a di\ 7
s = { [ 0141+ ) el S} (15)
endowed with the norm ||z||p,¢yp) = [|#]|x + [Z]p4(y,p).- These spaces coincide up to the

equivalence of norms with the real interpolation spaces (X, D(A)),, between X and
D(A) ([14], Proposition 3). They are intermediate spaces between D(A) and X in the
following sense:

D(A) < Da(7y,p) — Da(?/,p) = X, 0 <+ <y <L (1.6)
The real interpolation spaces are extensively studied; we refer e.g. to [70] for a more

detailed description.

Recall that a Banach space X is said to belong to the class HT if the Hilbert transform
H defined by

HHW = lm [ fe-9Z, teR feCE®Y),

e—>0+ ‘S|26 s

extends to a bounded linear operator on LP(R; X) for some p € (1,00). It is well known
that Hilbert spaces are of class #7 and if X is of class HT then LP(R; X) is of class HT
for every p € (1,00). Note also that any Banach space of class HT is reflexive.
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1.2 Fractional integration and differentiation

Let & > 0, m = [a] and I = (0,7) for some T" > 0. For the sake of brevity we use the
following notation for g > 0:

Ll s,
gs(t) = { 0o <0 (1.7)

where T'((3) is the Gamma function. Note that go(¢t) = 0, because I'(0)~' = 0. These
functions satisfy the semigroup property

Joa * 9 = Ja+4- (18)
The Riemann-Liouville fractional integral of order o > 0 is defined as follows:

JRf(t) = (g0 % )(t), feL(I), t>0. (1.9)

Set JPf(t) := f(t). Thanks to (1.8) and the associativity of the convolution we obtain
that the operators of fractional integration obey the semigroup property

JEJP = JrE a8 > 0. (1.10)

The Riemann-Liouville fractional derivative of order « is defined for all f satisfying

feLMI), gmox*feWm™HI) (1.11)

by
D} f(t) := Dy (gm-a * f)(t) = D" J" [ (1), (1.12)
where D} := ,?t—rjm m € N. As in the case of differentiation and integration of integer

order, Dy is a left inverse of J{*, but in general it is not a right inverse. More precisely,
we have the following theorem [67]:

Theorem 1.5 Let a > 0 and m = [«]. Then for any f € L'(I)
DeJEf = f. (1.13)

If moreover (1.11) holds then

-1

JEDEF() = (1) =Y (gm-a * [)P(0)gaskri-m(t). (1.14)

3

Ed
Il
o

In the particular case ¢,,_o * [ € Wom’l(f), we have JEDf = f.

Proof: If f € L'(I), then J2f satisfies (1.11): J&f = g * f € L*(I) and g¢,, o * (J*f) =
Om-a * Ja * f = gm * [ € W (I). So, we can apply D® to J*f and thanks to the
semigroup property (1.10)

DEJef = Df i f = DR f = )
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If f satisfies (1.11), then according to (1.1),
Im—a * f = Z Ckgk+1(t) + Gm * P, (115)

where ¢ € L'(I), ¢t = (gm-a * f)*(0). Therefore
JEDE = JEDM g % ) = T, (1.16)

Convolving both sides of (1.15) with g,, and applying the semigroup property (1.8), we

obtain
m—1

Gm * [ = Z Ckga+k+1(t) + Gotm * ¢

An application of D}" to both sides gives
f= Z CkYath+1-m(t) + o * @,

which together with (1.16) implies (1.14). If g,,_o % f € Wy (I), that is ¢, = 0, k =
0,1,...,m—1, we have JAD}f = f. O

In particular, if & € (0,1), and if g;  * f € WHI(I) then (1.14) reads
JEDFF) = f(1) = (91-a * [)(0)ga(t)-

If f € W™(I) (which implies (1.11)),then D¢ f may be represented in he form

m—1

D f = fY(0)gk asa(t) + I D f(E). (1.17)
k=0

It follows from the representation (1.1) of the elements of W™!(I) and the definition of
D¢, In many cases it is more convenient to use the second term in the right-hand side of
(1.17) as a definition of fractional derivative of order cr. The usefulness of such a definition
in the mathematical analysis is demonstrated in [29]. Later, this alternative definition
of fractional derivative was introduced by Caputo [10], [11], and adopted by Caputo and
Mainardi [12] in the framework of the theory of linear viscoelasticity. So, the Caputo
fractional derivative of order o > 0 is defined by

Dy £(t) i= JP D} (1), (1.18)
Some simple but relevant results valid for «, 3,t > 0 are:
Jtagﬁ = Ja+8; D?gﬂ = 98— ﬁ Z . (].]_9)

In particular, Di*g, = 0. We also note that Di*1 = g;_,, a < 1, while Dj'1 = 0 for all
a > 0. If instead of f € W™!(I) we have only (1.11) and f € C™ !(I), then we can use
the following equivalent representation, which follows from (1.17), (1.18) and (1.19):

D{f(t)=D ( f 0) gk (t ) (1.20)

k=0
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The Caputo derivative DY is again a left inverse of J* but in general not a right inverse:

-1

DiJf = f JPDf(t) = f(H) = Y fP(0)gn (D). (1.21)
0

3

ES
Il

The first identity is valid for all f € L'(I), the second for f € C™ '(I), such that
(1.11) is satisfied. In particular, if a € (0,1), g1 o * f € WH(I) and f € C(I), then
JEDf(t) = f(t) — £(0).

Applying the properties of the Laplace transform and since g,(A) = A™%, we obtain

m—1
DEf(N) =2 F(N) = 3 (gma * [)B(O)A™1F, (1.22)
k=0
m—1
D F(A) = A"F(A) = Y fBP)retE, (1.23)
k=0

1.3 Mittag-Lefler and Wright functions

In this section we summarize some properties of two special functions which play an
important role in the study of fractional differential equations.

The Mittag-Leffler function (see [32], Vol. 3, Chapter 18), is defined as follows:

z

0 n 1 IU/Oé*/BeN
Boglz)i =y — = — du, a,8>0,z€C, 1.24
=Y F = 5 po@f> 0.z (1.24)

@
—Z
n=0 K

where C' is a contour which starts and ends at —oo and encircles the disc |u| < |z|'/®

counter-clockwise. For short, E,(2) := E,1(2). It is an entire function which provides
a simple generalization of the exponential function: F;(z) = e¢* and the cosine function:
E5(2?) = cosh(z), Ey(—2z?) = cos(z), and plays an important role in the theory of frac-
tional differential equations. Similarly to the differential equation d/dt(e**) = we“" the
Mittag-Leffler function E,(z) satisfies the more general differential relation

DYE,(wtY) = wE,(wt®). (1.25)

The most interesting properties of the Mittag-Leffler functions are associated with their
Laplace integral
Na—h

/ e ML B, s(wt®) dt = ) . Red>w'/® w>0, (1.26)
0 “-w

and with their asymptotic expansion as z — oo. If 0 < a < 2, § > 0, then

1 1
E,5(2) = az(l’ﬂ)/”‘ exp(2Y9) + eap(2), |argz| < 0T, (1.27)
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Eas(2) = as(2), |ara(~2)| < (1= o), (1.28)
where
N-L
Eap(z) == TG o +0(|z|™), z = .

=1

S

Moreover, F,(—z) is a completely monotonic function for x > 0 and 0 < a < 1, i.e.
(=1)"(d"/dx™)Ey(—2x) > 0.

Let us consider the ordinary fractional differential equation
Dju(t) = —wu(t), 0 < a <2, w>0. (1.29)

According to the cases 0 < a@ < 1 and 1 < a < 2 it can be referred to as the fractional
relaxation or the fractional oscillation equation, respectively. In the former case, it
must be equipped with a single initial condition, say u(0) = ug, and in the latter with two
initial conditions, say u(0) = wug, and «'(0) = u;. The solution of (1.29) can be obtained
by applying the Laplace transform technique which implies:

u(t) = uoEu(—wt®), a € (0,1),
u(t) = ugFu(—wt®) +uitEyo(—wt®), a € (1,2).

If we assume u; = 0 in order to ensure the continuous dependence of the solution of (1.29)
on « in the transition from o = 1— to a = 1+, we observe the following behaviour of u(t).
In comparison to ordinary relaxation (o = 1) fractional relaxation for small times exhibits
a much faster decay (the derivative tends to —oo in comparison to —1) and for large times
a much slower decay (algebraic decay in comparison to exponential decay). Compared
to the ordinary oscillation (o = 2), the solution of the fractional oscillation equation
does not exhibit permanent oscillations but an asymptotic algebraic decay. There are
some attenuated oscillations, whose number and initial amplitude increase with «, i.e. we
observe features intermediate between relaxation and oscillation.

If we consider the analogue of (1.29) with Riemann-Liouville fractional derivative
Diu(t) = —wu(t), 0 <a <2, w >0,

which requires an initial condition (g; o * u)(0) = uo when 0 < a < 1 and two initial
conditions (g2 o * u)(0) = up and (g2 * u)'(0) = u; when 1 < a < 2, we obtain

u(t) = upt® 'Euo(—wt®), a € (0,1),
u(t) = upt® *Epq 1(—wt®) + uit® 'E,o(—wt®), a € (1,2).

Consider also the following function of Wright type (see [74], [54], [39], [56]):

= (—2)" 1 / -1
®.(2) == S — ) dp, 0 <y <1 1.30
H(2) =) :n!F(—7n+ =) " 2w M exp(p—zp")dp, 0 <y <1,  (1.30)

n=0
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where [' is a contour which starts and ends at —oo and encircles the origin once counter-
clockwise. It is of interest because of the following relationship with the Mittag-Leffler
function:

E,(2) = /0 P, (t)edt, z€C, 0<vy<1, (1.31)

that is, £,(—=z) is the Laplace transform of ®,(¢) in the whole complex plane. Therefore,
®, () is a probability density function:

(1) >0, t>0; / O, () dt = 1. (1.32)
0

The identity is a particular case of (1.31). The positivity of ®,(¢) follows from (1.31),
the complete monotonicity of E,(—x) for z > 0 and 0 < v < 1 and the Post-Widder
inversion formula:

Lemma 1.6 Let u(t) be a X valued continuous function defined in t > 0 such that
u(t) = O(exp(yt)) as t — oo for some v and let u(\) be the Laplace transform of u(t).

Then 1y wil [ g
u(t) = lim = (7) (8)\"a> (7)

uniformly on compacts of t > 0.

The entire function @, has the following asymptotic expansion for 0 < v < 1, as |z| = oo
in the sector |arg z| < min{(1l —v)37/2,7} —e:

®,(2) = YH/Ze*Y(i ALY ™ £ O(Y| M) (1.33)

m=0

with Y = (1 —7)(7y72)/1=7), where A,, are certain real numbers ( see [74] ).

1.4 Operators of fractional differentiation in L? spaces

Let X be a complex Banach space. Let o > 0, m = [a], p € [1,00), and [ = (0,7T) where
T > 0. In this section we study D{* as operators acting in LP([; X).

Denote the operators of fractional integration on LP(I; X) by Jy:
D(TJ,) == LP(I; X), Jau:= ga *u, (1.34)

where the integration is in the sense of Bochner. Applying the Young inequality, it follows
that J, € B(LP(I; X)):

| Taul|Lor;x) = |90 * wllzerxy < |gallornllvlleedx) = garr (D) |[ull o)

In fact, the following theorem can be proved just as in the scalar case:
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Theorem 1.7 Operators of fractional integration J,, o > 0, form a Cy-semigroup of
bounded operators in LP(I; X), 1 < p < co.

Define the spaces R*?(I; X) and Ry?(I; X) as follows. If a ¢ N, set

ROP([;X) = {u € LP(I;X) | gm—o *u € W™P(I; X)}, (1.35)
ReP(1;X) == {u € L([; X) | gm-a *u € W™ (1; X)}. '

If & € N we take
R*P(I; X) := W*P(I; X), Ry?(I; X) := W"P(I; X). (1.36)
Denote the extensions of the operators of fractional differentiation in LP(I; X) by L,, i.e.
D(Ly) = Ry (I; X), Lau:= D{u, (1.37)

where Df* is the Riemann-Liouville fractional derivative (1.12). In the next lemma we
study the properties of L.

Lemma 1.8 Let a > 0, 1 < p < oo, X be a complex Banach space, and L, be the
operators defined by (1.37). Then

(a) L, are closed, linear, densely defined;

(b) Lo =T, "

o )

(¢) Lo = LY, the a-th power of the operator Li;
(d) if « € (0,2) then L, are positive operators with spectral angle w., = an/2;

(e) if X is of class HT and a € (0,2) then L, € BIP(LP(I; X);a(n/2 + ¢)) for each
e > 0;

(f) if « € (0,1] then L, are m-accretive operators.

Proof: The operator 7, is injective. Indeed, if J,u = 0, then Jiu = Ji_oJau = 0,
whence u = 0. Therefore J ' exists. We shall prove that £, = J;!. If u € R(J,), then
U = go * v for some v € LP(I; X), and ¢y, o ¥ U = Gima * g * U = g * v. Therefore,
Gm-a *u € Wi"P([; X), that is, u € Ry" = D(L,). The identities Lo Tou = u, u €
LP(I; X)), JoLov = v, v € D(L,), can be proven in the same way as in the scalar case,
Theorem 1.5. Thus, we proved (b). The representation £, = J, ! incidentally shows that
L, is a closed operator as an inverse of a bounded operator and that it is densely defined
because D(L,) = R(J,), which is dense in LP(I; X'). Obviously, it is also linear and (a)
is proved.

Let us compute the resolvent of L,

(sI+ L) Ht) = /t eI f(r)dr, Res >0, t € I. (1.38)
0
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This representation implies that £, is positive with spectral angle ¢, = /2. We shall
prove that £, = L{. Consider first the case o € (0,1). We have the following represen-
tation (see e.g. [1], eq. (4.6.9)):

sin T

Lot = / s* H(sl + L£y) ' ds.
0

™

Applying (1.38) and using the definition of the Gamma function and the formula
Fa)'(1 - «) =n/sinra

we obtain . ~ '
c?—lf(t)zsmm/ / D f(r)drds = g1 o % f (1.39)
0 0

™

fort € I, f € LP(I; X). Since £, is an isomorphic mapping from D(L$) to D(L ) ([70],
Section 1.15.2) then f € D(LY) is equivalent to £ 'f € D(L;). This is equivalent to
f € D(L,) by (1.39) and by the definition of D(L,). Therefore D(L$) = D(L,). Applying
Ly to (1.39) we obtain L{f = L, f for f € D(LY) = D(L,). Let now o > 1. Then from
the definition of £, and the above result one has Lo = L1 La—myr = LTHLE™H = L2

The facts that L, « € (0,2), are positive and ¢, = an/2 follow from the representation
Lo = LY. To see that wy, < am/2 one applies [59], Proposition 4. Assume that w,, <
ar/2. Then ¢, > m(1 — «/2). But from the representation ([67], Example 42.2)

(I + L) )(t) = / (t = 1) Bl —s(t — 7)) [(r) dr

and from the asymptotic expansion of the Mittag-Leffler function (1.27) it follows that if
[ is a constant then |[s(sI + L)™' f||ze(r,x) — 00 as |s| — oo and | arg(—s)| < am/2. By
this contradiction wg, = anr/2.

According to [28], Th.3.1, if X belongs to the class HT, then the imaginary powers of £;
satisfy the estimate .
||£1S||B(Lp([;x)) S C(]_ —+ 82)65“9', s €R.

Therefore, given € > 0, there exists M > 0 such that
L3 5oy < Me3HPL s € R, (1.40)

which means £, € BIP(LP(I;X);7/2 + ¢). Since L,, a € (0,2), are positive, their
fractional powers L2, z € C, are well defined and satisfy ([1], Theorem 4.6.13 ) £¥ =

(%)

(L) = L. Therefore, by (1.40), £, has bounded imaginary powers and
L8 || srrix)y < Me*EHll s e R)

that is £, € BIP(L*(I; X);a(r/2+¢€)).

Lastly, (f) follows from [19], Theorem 3.1, because g;_, € L'(I) is nonnegative and
nonincreasing for a € (0,1]. O
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Let us note that if p = 2 and X = H is a Hilbert space with inner product (.,.), then
L?(I; H) is again a Hilbert space with inner product

(u, ) 2(1;m) ::/0 (u,v)(t) dt.

In this case the accretivity of £, follows directly from the fact that g,, a € (0,1], is a
kernel of positive type, i.e. Re(gq * u,u)r2(;;my) > 0. This together with £, = Tt
implies

Re (Lov,v) 20y = Re (Lav, ToLaV)L2(r;m) > 0.

Next we study the properties of the domains of the operators of fractional differentiation
D(L,), endowed with the norm

| fllgewix) = 1Laf o)

We proved that D(L,) = R(J,) (Lemma 1.8, (b)). So, studying the mapping properties
of the operator of fractional integration we obtain some interesting properties of D(L,).
The following two results can be proven in the same way as in the scalar case (see [67],
Theorems 3.5 and 3.6).

Theorem 1.9 If0 < o<1l and1<p<1/a, then J, € B(LP(I; X), LY(I; X)), for all q
such that 1 < ¢ <p/(1 — ap).

This theorem shows that
RyP(I;X) — LYL;X), 0<a<l, 1<p<l/a, 1<qg<p/(l-—ap).
Theorem 1.10 If a > 0, p > 1/a, then J, € B(L?(I; X),C*Y?(I; X)) ifa— 1/p € N.
If f € L(I; X) then J,f(t) = o(t*"'/?) as t | 0. Moreover,
Jo: LP(I;X) = 7YY X)), 1/p<a<1+1/p.

This theorem implies that
RYP(I; X) — C* V(I X), a>1/p, a—1/p &N,

and that all the elements of Ry” belong to ha_%(l; X)ifl/p<a<1+1/p.

We proceed with the identification of Ry” as domains of the fractional powers of the
operator L1: L, = LY (Lemma 1.8, (¢)). The first straightforward consequence is that
we have the embeddings

RyV(I;X) = RYP(I; X) = LP(I;X), 0 < a < B.

Applying [70], Section 1.15.2, it follows that if o, u > 0, m € N, a + p < m, then L, is
an isomorphic mapping from D(Lq+,) onto D(L,) and from (LP(I; X), D(Ly,)) a+u , onto
(LP(1; X), D(L)) & . But [70], Section 2.10.4, Theorem 1, gives

(LX), D(Ln)) 2, = (L2 (LX), WP (X)) 2, = WGP, 6= 1/p & N,

m
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where W#?(I; X) denotes the Sobolev space of fractional order (3 > 0 [70] and
WP X) = {f € W (LX) fR(0) =0, k=0,1,....[8=1/p]}, B=1/p¢ N,

In this way we proved the following result:

Proposition 1.11 Let a,u > 0, 1 < p < oo. Then L, is an isomorphic mapping from
RTMP(I; X) onto RYP(I; X). If moreover pn — 1/p ¢ Ny, o+ — 1/p ¢ Ny, then L, is
also an isomorphic mapping from WP (I; X) onto WP (I; X).

Applying [70], Sections 1.15.4 and 2.10.4, we obtain for 0 < o < < 1,0 < 7 < 1,
a(l =)+ py—1/p ¢ N,

(RGP (13 X), R{P(13X) ) = (DES), DUED) ) = (L2(15X), DIED) atiogrsnn,

= (B X), DUE)atny s = (LX), WAL X))y = WL 5991 ),
and, if oy —1/p ¢ Ny,

(LP(L; X), Ry (1 X))y p = We P (15 X). (1.41)

In the case when X is of class H7, we obtain a precise identification of Rg” for a—1/p ¢
No. In this case £; has bounded imaginary powers and therefore ([70], Theorem 1.15.3)

Ry? = D(L,) = D(LY) =[L”,D(L1)]a, 0 < a < 1,

the complex interpolation space between LP and D(L;) — L? of order a. Now
introduce the Bessel potential spaces defined by

H (R X) i= {f] 3fa € L' (R X) : falp) = 1p1°F(0), p € RE | fll s ix) = fallioezx;

Ha’p IX = = Ha’p RX a,p(]-: = 1 f a,p(R: X) 5
(LX) :={f=y9l1, g€ (R XV} [ llaerix geyig(R;X)HgHH (R X)

HP(; X) :={f € H*!(I; X), f(’”(o):o, k=0,1,....,[a=1/p|}, a—1/p¢ N,.

For k € N we have H*(I; X) = W*?(I;X). Therefore D(£,) = W,”? = H,*. If
o —1/p ¢ Ny, then according to [70], 2.10.4, Theorem 1, [L?, Hy*], = HJ" and therefore
in the case of HT space we obtain for a € (0, 1)

RO(I; X) = HOP(I; X), a—1/p¢ N,. (1.42)

This is also true for all @« > 0, « — 1/p ¢ Ny, because L,, 1 is an isomorphism from
HS? onto HY ™ and from RSP to RS ™ = HS ™. The identity (1.42) has
been proven in the scalar case in [67], Theorem 18.3 and Remark 18.1, applying another
approach.



Chapter 2

Solution operators: generation,
approximation and perturbation

The fractional evolution equation with Caputo fractional derivative, which will be studied
in the following two chapters, is formulated. The notion of solution operator plays a basic
role in its study. Problems such as generation of a solution operator, conditions for
its analyticity, representation in terms of the corresponding generator, perturbation, are
studied.

2.1 Solution operators

Consider a closed linear operator A densely defined in a Banach space X. Let a > 0
and m = [a]|. Given zx € X, k = 0,1,...,m — 1, we investigate the following Cauchy
problem for the fractional evolution equation of order « :

Du(t) = Au(t), t > 0; u®(0) =24, k=0,1,...,m — 1, (2.1)

where D¢ is the Caputo fractional derivative defined by (1.20).

Definition 2.1 A function v € C(R;;X) is called a strong solution of (2.1) if u €

C(Ry; D(A) N C™HR5X), gma * (0 — Ypoy e (0)grn) € C™(Ry;X) and (2.1)
holds on R, .

Definition 2.2 The problem (2.1) is called well-posed if for any z, € D(A), k =
0,1,...,m — 1, there is a unique strong solution u(t;xy,...,%,—1) of (2.1), and xy, €
D(A), x, — 0 as n — oo, imply u(t; x1,,...,Tm-1,) — 0 as n — oo in X, uniformly

on compact intervals.

Consider the following particular case of (2.1):

Du(t) = Au(t), u(0) =2z, u®™(0)=0, k=1,...,m — 1. (2.2)
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Applying (1.21), we obtain that the Cauchy problem (2.2) is well-posed iff the following
Volterra integral equation

u(t) =z + /0 ga(t — s)Au(s) ds (2.3)

is well-posed in sense of [64], Definition 1.2. That is why we refer several times to this
monograph for basic results on evolutionary integral equations. For shortness, we define
solution operator of (2.2) in terms of the corresponding integral equation (2.3).

Definition 2.3 A family {S,(t)}>0 C B(X) is called a solution operator for (2.2) if
the following conditions are satisfied:

(a) Su(t) is strongly continuous for t > 0 and S,(0) = I;

(b) Sa(t)D(A) C D(A) and AS,(t)x = So(t)Ax for all x € D(A), t > 0;

(¢) Sa(t)x is a solution of (2.3) for all x € D(A), t > 0.

Following [64], problem (2.2) is well-posed iff it admits a solution operator. Moreover,
if (2.2) has a solution operator S,(t) then the corresponding problem (2.1) is uniquely

solvable with solution )

=D (JFSa) (),

3

o

provided x; € D(A), k = 0,...,m — 1. Therefore it is well-posed. For this reason we
restrict ourselves to the problem (2.2).

Definition 2.4 The solution operator S,(t) is called exponentially bounded if there
are constants M > 1 and w > 0 such that

1S, (1) < Me**, t > 0. (2.4)

An operator A is said to belong to C*(X; M, w), or C*(M, w) for short, if the problem (2.2)
has a solution operator S,(t) satisfying (2.4). Denote C*(w) = [J{C*(M,w); M > 1},
C* := |J{C*w); w > 0}. In these notations C' and C? are the sets of all infinitesimal
generators of Cp-semigroups and cosine operator families (COF), respectively. Next
we give a characterization of C*(M, w).

Assume A € Ca( ) and let S, ( ) be the corresponding solution operator. For Re A > w
we define H(\)z = fo e MSy(t)rdt, x € X. In view of (2.4), H(A) € B(X). Using
properties b) and c) of Definition 2.3 and the identity (1.23) we obtain

MNHNx —A*'e = AH(MNz, v € X; A*H(Nz — \* o = H(\) Az, © € D(A).
Hence the operator A*I — A is invertible and H(\) = A* ' R(\*, A), that is

{A\*: ReA>w} Cp(A) (2.5)
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and
AR, A)r — / MG (D dt, Red>w, 7€ X, (2.6)

0

Just as in the case a = 1 we have the following

Theorem 2.5 Let a« > 0. Then A € C® and the corresponding solution operator is
continuous in the uniform operator topology iff A € B(X).

Proof: Let A € C*(M,w) and take A > w. Then (2.6) implies
AR A) — A = / e M(Sa(t) — 1) dt,
0

whence

NTROC, A) — AL|| < / eNop(t) dt,
0

where n(t) = ||Sa(t) — I is continuous on t > 0, n(t) < Me“* + 1, and 7(0) = 0. Fix
e > 0 and take § > 0 such that n(t) < e if t € [0,6]. Then

00 0 (9] 1
/ e~ Mn(t) dt = / e~ Mn(t) dt + / e Nn(t) dt < 4o (—) , A — 00.
0 0 5 A A

Therefore, for A large enough we obtain |[A*R(A*, A) — I|| < 1, hence A*R(A*, A) has a
bounded inverse, that is, R(A%, A)~! = A\*I — A is bounded, thus A € B(X).

Conversely, let A € B(X) and set

io: Angan (27)

Fan+1

The right-hand side of (2.7) converges in norm for every ¢t > 0 and defines a bounded
linear operator S, () (note that I'(¢) > 0 for ¢ > 0):

Sa(t ||_Z“A””tm = Ea(lAl). (2.8

Let first o € (0,2). Then inequality (2.8) implies that S,(t) is exponentially bounded.
Indeed, the asymptotic expansion (1.27) and the continuity of the Mittag-Leffler function
in £ > 0 imply that if w > 0, there is a constant C' such that

Eo(wt®) < Ce*’™t t>0, a € (0,2). (2.9)
Therefore (2.8) and (2.9) imply

1Sa(t)]] < CelA™e, (2.10)
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If @ € [2,00), fix k € N such that £ > «/2. Then

|A|| (1/k) knt a/k)k

||A||"t"‘" |
<
15t ”_Z ['(an+1 ZO I'((a/k)kn+1) —

l 1/k) ng (a/k)n

Z Ty = Es(lAI )

Now we can apply (2.9) and obtain again the estimate (2.10).

Moreover, S, (t) satisfies conditions of Definition 2.3, hence A € C*(||A||*/®) and S,(t) is
the corresponding solution operator. Estimating the power series yields

1Sa(t f||_Z A = A e (A1),

therefore limy o ||S,(t) — I]] = 0, i.e. the solution operator is uniformly continuous. O

It is well known that if A € C* for some integer o > 3 then A is a bounded operator ([34],
p. 99). The following theorem is a generalization of this result.

Theorem 2.6 Assume A € C* for some o > 2. Then A € B(X).

Proof: If A € C* for some « > 2 then (2.5) implies that
Yaw: ={A": ReA>w, |arg\| < 7/a <7/2} C p(A).

Hence p(A) consists of the entire complex plane with the exception of some bounded set
containing the origin. If y € C with |u| large enough then p = A* € ¥, ,. Equations
(2.4) and (2.6) imply

M _ M| M

B DI < ReX=0 = Weostaja) —w  cos(nja)’

1] — oo
Then the following lemma ([37], Lemma 5.2) shows that A is bounded. O

Lemma 2.7 If 0(A) is a bounded subset of C and ||R(p, A)|| = O(1/|p|) as |u| — oo
then A € B(X).

In view of Theorem 2.6 further we will consider mainly «, 0 < o < 2.

After easily justified differentiation under the integral sign in (2.6) we obtain

aa)\n (ATR(AY))z = (—1)"/ t"e NSy () dt, n=0,1,..., 1€ X, Rel > w,
0
that together with (2.4) gives
0" a1 a Mn!
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It appears that this condition is also sufficient for an operator to belong to C*(M,w).

The following generation theorem is a particular case of a result, essentially due to Da
Prato and Iannelli [25]. We use the version given in [64], Theorem 1.3, which in our case
reads:

Theorem 2.8 Let 0 < a < 2. Then A € C*(M,w) iff (w*, 00) C o(A) and

an

12 Mn!
o\

(RO A €

A>w, neN. (2.12)

Let us note that inequalities (2.11) follow from their real counterparts (2.12). The proof
of this fact uses Taylor series expansion for the function A*"'R(A\%, A).

The following result is an immediate consequence of the previous theorem.

Theorem 2.9 Let 0 < a < 2. Then A € C*(M,w) iff (w* 00) C p(A) and there is a
strongly continuous operator-valued function S(t) satisfying ||S(t)|] < Me*t, t > 0, and
such that

AN IR(AY A)r = / e MS(txdt, \>w, z € X. (2.13)
0

If this is the case S(t) = S, (t).

Proof: Let a function S(t) with the properties mentioned above exists. After easily
justified differentiation under the integral sign in (2.13) we obtain the inequalities (2.12).
Applying Theorem 2.8, it results that A € C*(M,w). Let S,(¢) be the corresponding
solution operator. Then (2.13) holds for both S,(¢) and S(t) and S,(t) = S(t) follows
from the uniqueness of the Laplace transform. The converse has already been proven
before Theorem 2.5.00

Next we apply Theorems 2.8 and 2.9 to study solvability and to obtain some properties
of Su(1).

Corollary 2.10 If A € C'(w) then A € C*(w'/?) for any o € (0, 1).

Proof: Let A € C'(w). Then from the Hille-Yosida theorem there exists a constant
M = M(w) > 1 such that R(\, A) exists for A > w and

M
—, A>w, neN (2.14)

IR AP < o

We will prove that there exists a constant M, = M, (w, @) such that

8TL

n!
55

()\ _ wl/a)n+1 ’

(ATIR(A, A))|| < M,y A>w/® neN,. (2.15)
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By induction in n we obtain the following representation

8 n+1
(A LR(A\*, A)) = —(n+1) Zbknﬂ A AN neNy, a>0, (2.16)

where 0}, are given by the recurrence relations
)

by, =1,
by, =nm—1—ka)by, +ak-=1)by,, , 1<k<n, n=23,..., (2.17)
bpn=0, k>n, n=12...

In the considered case a € (0,1) we obtain from (2.17) that by, > 0. Then from (2.16)
and (2.14) we have for A > w!/®

o n+1 o .
S VTR AN <Y B TR, A (2.18)

n+1 _
)\ka n—1 N an e 1
< Mzbkn+1 )k:M(_l) W(Aa—w>’

where the last equality follows as a particular case of (2.16) with A = w.

Differentiating under the integral sign (1.26) with 5 = 1, we have

an )\a—l 00
(_l)na,\n (/\a _w> :/0 t"e M E, (wt®) dt.

Applying (2.9), we obtain

AP n!
(—]_) An <m> < Om, n e No. (219)

This inequality together with (2.18) implies (2.15). Therefore A € C*(w'/®).0

To obtain a representation of the solution operator S, (t) in terms of the resolvent operator
of A we apply the Post-Widder inversion formula ( Lemma 1.6 ). It together with (2.16),
which holds for any a > 0, gives:

Proposition 2.11 Let a > 0 and A € C*. Then the corresponding solution operator is

given by:
n+1

Sa(t)z = lim — Zbkm — (t/n)*A)~" (2.20)

where bf,, are the constants in (2.17). The convergence is uniform on bounded subsets of
t >0 for any fixed x € X.
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This is a generalization of the exponential representation for Cy-semigroups

t
Si(t)r = lim (I — EA)’”x, r € X, (2.21)

n—oo
uniformly on bounded subintervals of ¢ > 0.

Next we express the operator A in terms of the corresponding solution operator S, (t) of
the Cauchy problem (2.2).
Proposition 2.12 If S,(t) is the solution operator of (2.2) then

A = D(ar+ 1) lim 22t =@

i == (2.22)

for those x € X for which this limit exists.

Proof: For any function v(.) € C(Ry; X) we have:
Jio(t)

limo(t) = lim :
40 t0 gat1(t)

(
Taking v(t) = (D$S,)(t)x and using (2.2) and (1.21), we obtain (2.22).0
Incidentally, (2.22) shows that S, (¢)x with a € (0, 1) is not differentiable at ¢ = 0.

2.2 Analytic solution operators

Definition 2.13 A solution operator S,(t) of (2.2) is called analytic if S, (t) admits
an analytic extension to a sector Xy, for some 6y € (0,7/2]. An analytic solution operator
is said to be of analyticity type (0, wy) if for each 0 < 6y and w > wy there is M = M (0, w)
such that

1So(B)|| € Me*Ret, t € 3. (2.23)

The set of all operators A € C®, generating analytic solution operators S,(t) of type
(6o, wp) is denoted by A“(6y, wp). In addition, denote A%(6y) := [J{A%(by,wo);wo € Ry },
A* = J{A%(0); 6y € (0,7/2]}. For . = 1 we obtain the set of all generators of analytic
semigroups.

Analytic solution operators have been introduced by Da Prato and Iannelli [24], who
also proved a weaker version of the generation theorem [64], Theorem 2.1. The following
characterization of A%(fy,wy) is a particular case of this theorem.

Theorem 2.14 Let o € (0,2). A linear closed densely defined operator A belongs to
A%(0p, wo) if A* € p(A) for each X € Yy, 4r/2(wo), and for any w > wy, § < by, there is a
constant C' = C'(0,w) such that

C

)\a—l )\a A < 7
RO A <

LN E Ngprpn(w). (2.24)
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Proof: Here we present only the proof of the sufficiency part. For the complete proof we
refer to [64], Theorem 2.1. Let ¢t € Xy for some 0 < 6y and 6 € (6,6y), w > wg, 0 > 0. Set

Salt) 1= —— / SATIROC, A) d, (2.25)
r

- 2mi
where
I = {wtre 210, 5 <r < oo}U{w+0e™; || < 1/2+6 U{w+re™2H). h < < o0}

is oriented counterclockwise. Let o = 1/|t| and a = sin(d — ¢). Then from (2.25) and
(2.24) it follows

C d\ C wRet 00 d T
“Sa(t)“ < _/eRe (At) | | < € (/ e—ar_r +/ oS¢ d@) < M@LURet.
271' r |)\ — w| 1 0

T r

(2.26)
This estimate shows that the integral in (2.25) is absolutely convergent for t € ¥y, hence
Sa(t) is analytic in this region and estimate (2.23) holds.

Now fix A > w, and take o < A. Then for the Laplace transform of S, (t), defined by
(2.25), we obtain

o 1 oo
/ e MS, () dt = — [ p* ' R(p®, A)/ e~ dt dy =
0 271 r 0
-1 [ p*'R(p*, Az

— dp = A\*"R(\Y, A
omi | i p (A%, A),

where Fubini’s theorem and Cauchy’s integral formula are used. So, we have proved that
the conditions of Theorem 2.9 are fulfilled. Therefore A € C* and the corresponding
solution operator is S,(t).0

Next we prove an important property of the analytic solution operators (see also [64],
Theorem 2.2 (ii) ).

Proposition 2.15 Let « € (0,2) and assume A € A*(0y,wy). Then for any x € X and
t > 0 we have S,(t)x € D(A) and

|AS,(8)]| < Ce* (1 +t%), t>0, w> wp. (2.27)

Proof: 1f t > 0, applying A to both sides of (2.25) and using the identity AR()\) =
AR(A) — I, we have

21 g

AS,(t) = = /F MANTLAR(ANY) dA = = /F MNTLR(AY) dA — aft), (2.28)

where a(t) = g1-4(t) if @ € (0,1) and a(t) = 0 if @ € (1,2). There exists a constant
¢ = ¢(w, ) such that

|)\a| < C(|)\ — W|a + 1), AE EW/Q_HQ((A)).
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Applying this inequality and (2.24) to (2.28) we obtain

|AS.(2)]] < leeReAt(|A—w|a+1) L + a(t)
r A —w]

< Clewt </ e—art(Ta + 1) @ _|_/ eptcosw(pa 4 1) dg@) + a(t)
p 0

r

and (2.27) follows taking p =1/t. O

As a byproduct of this proposition we obtain that for any z € X, S,(t)x is a strong
solution of (2.2) in ¢ > 0. In contrast to analytic semigroups, we can not proceed beyond
Proposition 2.15. It is not true in general that A2S,(t) is a bounded operator for ¢ > 0,
see [64], Theorem 2.2 (iii).

We formulate two immediate corollaries of Theorem 2.14 for wg = 0.

Corollary 2.16 Let a € (0,2). Then A € A%(6o,0) iff p(A) D Xa(r/2+0,) and for all
0 < 90
IRO, A < CIAL A€ Sauaay (2.29)

Note that inequality (2.29) is satisfied iff —A is a positive operator with spectral angle
woa<m—a(r/240).

Corollary 2.17 If p(A) D {\: Re A > 0} and for some constant C

IR\, A)|| < C/Re ), ReA > 0. (2.30)

then for any « € (0,1), A € A*(min{(1/a — 1)7/2,7/2},0).

Proof: Fix a € (0,1) and 6y = (1/a—1)7/2. Then a(n/2+406y) < 7/2 and 50, Xo(r/2405) C
o(A). Taking 3, such that a(7/2 + 6y) < 3 < 7/2, we obtain

C C C
NA) < =
IR Al < ReA |\ cosyp < |\l cos 3

A€ Eoz(7r/2+090)7

where ¢ = arg A and so, (2.29) holds.O

It is instructive to consider some simple examples.

Example 2.18 Consider the fractional diffusion-wave equation for v = u(z, t)
DYu = k*Uyy, —00 <2 <00, t>0, 0<a<2, keER, (2.31)

with conditions u(Foo,t) = 0, u(x,0) = f(x), w(z,0) = 0 (the last one only when
1<a<2). Let X = I’(R), A = k*D? with D(A) = W2?(R).

The fractional diffusion equation (a € (0,1)) has been explicitly introduced in physics
by Nigmatullin [61] to describe diffusion in special types of porous media, which exhibit
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a fractal geometry. Mainardi [53] has shown that fractional wave equation (« € (1,2))
governs the propagation of mechanical diffusive waves in viscoelastic media which exhibit
a simple power-law creep. It is proven in [35] that (2.31) with a € (1,2) interpolates
between diffusion and wave equations.

It is well known that A generates an analytic semigroup of angle 7/2, that is,

IR(A, A)[| < M/IA[, A € Zre.
Then Corollary 2.16 implies A € A%(min{%2m, 37},0), o € (0,2). Problem (2.31)
is studied further in Chapter 3, Example 3.6. Similar results hold for a more general

fractional diffusion-wave problems in RY with A = A, the Laplace operator in L?((2),
where 2 C RY is open with, say, Dirichlet boundary conditions.

Example 2.19 Let o € (0,1), 6 € [0,7), and consider the problem
D%y = —eu,, 0 <z <1, t>0; u(0,t)=0, u(x,0) = f(z).

Set X = LP(0,1), Ag = —eD! with D(A4y) = {f € W'?(0,1), f(0) = 0}. It is well
known that A, generates a contraction Cy-semigroup:

IR(\, Ao)|| < 1/Re), Red >0, (2.32)

and using Corollary 2.17 it follows that Ay € A*(min{(1/a— 1)7/2,7/2},0). For general
6 € (0, 7) we have by (2.32)

IR(X, Ap)ll = [IR(A, €’ Ag) | = [IR(\e ™™, Ag)|| < A € Xnja-o,

A cos(p — 8)’

where ¢ = arg A\. Therefore ¥/, ¢ € p(A4y) and

M(e
1RO A < 2 Ae S

whence Ay € A"‘(min{ﬂ/i—*e —2,2},0) if || < (1 — a)r/2. Note that Ay € C' only if
0 =0.

This property can also be derived from the following explicit representation of the solution
obtained by applying the Laplace transform method:

u(z,t) = eieta/ Do (se Pt ) f(x — s)ds
0
for |#] < (1 — a)7/2, where ®,, is defined by (1.30).

Example 2.20 Let o € (0,2), 6 € [0,7), and consider the problem

Dfu:eieum, O<z<l1,t>0;
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with initial and boundary conditions u(0,t) = u(1,t) = 0, wu(z,0) = f(z), w(z,0) =0
(the second only if a € (1,2)).

Take X = L?(0,1), By = €D2, D(By) = {f € W??(0,1), f(0) = f(1) = 0}. Since By
has eigenvalues z, = —e“n?7? and eigenfunctions sinnmz, then if f(z) = Y7 ¢, sinnra
the solution is represented by the series

u(z,t) = Z CpsinnmaEy, (2,t%).

n=1

Now it is clear from the asymptotic expansion of the Mittag-Leffler function (1.27) and
(1.28) that By € C*(0) iff |#| < (1—a/2)7w. Moreover, if |#] < (1—a/2)m, then By € A%(0).
So, By with 7/2 < |0] < (1 —«/2)~, is another example of an operator generating analytic
solution of (2.2) but not generating Cy-semigroup, because no right half-plane is free of
spectra of By.

2.3 Approximation

In this section we prove directly a representation of type (2.20) and show its importance
for the numerical approximation of the solution operator S,(t), especially for implicit
approximation schemes.

Let us first consider the case o = 1. Usually, to find an approximation of the value of the
solution of the problem

u'(t) = Au(t), u(0) =, (2.33)
at a fixed time ¢ > 0, we divide the interval [0, ¢] into n equal parts and approximate the
derivative by a difference. If we take the two-point backward difference, we obtain the
following implicit difference scheme

%[un(jh) —un((j — 1)h)] = Au,(jh), j=1,...,n, u,(0)=x, (2.34)

with h = t/n. The equations (2.34) can be solved explicitly and their solution w,(t),
given by un(t) = (I — LA)™"z for n sufficiently large, is an approximation of the solution
u(t) of (2.33). Then the exponential formula (2.21) implies that u,(t) — u(t), as n — oo,
uniformly on bounded subsets of ¢ > 0. So, the solution of the difference scheme (2.34)
converges to the solution of the differential equation (2.33).

We generalize these results to the case of the fractional order problem (2.2). Consider the
numerical method for solving fractional differential equations using the following approx-
imation of D¢ by the backward fractional difference (see [63], Chapters 7 and 8):

lo/ml
Df(r)mh™ > (-1) <Z> f(r —ih), (2.35)

1=0

where
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Applying (1.20) to the solution u(t) of (2.2) we obtain Dfu(t) = D (u(t) — x). Then
using (2.35) to approximate the equation in (2.2) and forward differences

i (K
(k) ~ —k i 2 _ 9 — i
u®(0) ~ h ZO:( 1) <Z> w((k—i)h), k=0,1,...,m—1,

to approximate the initial conditions in (2.2), we obtain the following difference scheme

d [
e 30 () (= 08) =) = Aunb), G =1 (230

=0

up(jh) =z, 7=0,1,...,m — 1, (2.37)

where h = t/n. It can be solved explicitly and the result is presented in the next

Theorem 2.21 Let o > 0, A € C*(M,w) and u,(t) be the approximation defined by
(2.36), (2.37) to the solution u(t) of (2.2). Then

n—m-+1

un(t) = ﬁ S b (L= (t/m)A) 0, € X, (2.38)

where by, are given by the reccurence relations (2.17) and u,(t) converges to u(t) as
n — oo uniformly on bounded subsets of t > 0.

Proof: The case t = 0 is trivial, applying Zzg bf i1 = n!, which can be obtained from

(2.16) with A = 0. Consider ¢ > 0. Then, using (2.37) and the identity

S (3) = (1)

we rearrange (2.36), obtaining (here we let 320 = 0):
i A o
(=1 Ayl (on+ ) = 317 (F) 5=+ () g =01

i=1

(2.39)
If we choose n such that n/t > w and apply (2.6) then (I —h*A)~! = h~*R(h™*, A) exists
and we obtain from (2.39)

up((m—+j)h) =h™*R(h™, A)

=1

zj:(—l)i+1 <j‘> un((m +j —i)h) + <j ; O‘) x] . (2.40)

Denote for shortness F()\) := A* 'R(A%, A). Next we shall prove by induction on j that
un((m +j)h) = v,(j,h), j=0,1,..., where

(1N
J!

vn (4, h) = { F(j)()\)x] ,§=0,1,.... (2.41)
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For j = 0 this is trivial. Suppose that u,((m +1)h) = v,(l, h) is true for all { < j —1. By
(2.40) and the induction hypothesis it follows

J )\]+1 7 ] i«
un((m+ j)h) = | AF(A J“Z ( ) FUD(\)z + <‘7 . > T :
i=1 (7 —1) J A=1/h
(2.42)
Further, we use the identity
AFD Nz = AV F(\)Dg 4 (—1) 1 jIyItet (J ; O‘) z, j €Ny, (2.43)

which can be easily proven by induction. Note that AF@()\) is a bounded operator by
(2.16) and the fact that AR(A*, A) is bounded. So, it is sufficient to prove (2.43) for
x € D(A). Applying the operator —R(A*, A) to both sides of (2.43) and using that
AR(\*, A)x = R(\*, A)Axz = \F(\)xz — x, © € D(A), and R(A\*, A) = N72F()\), we
obtain

FONz=F) |=A"*AFA\) Dz + AFD Nz + (—1)75077 A (2.44)
j

With the aid of the Leibniz rule
J .
(AP = (J) ala—1).. (a—i+ DA FD()
i=0

(2.44) can be written in the form

() _ (=1t
FY Nz = Vs AF (A

J+lzj: ( ) )]‘]ilzz FU=D(\)z + <j ; a) x] . (2.45)

1=1

Now (2.42) and (2.45) imply u, ((m + j)h) = v,(j, ). Taking j = n — m we obtain

—1 nfm)\nfm+1
un(t) = [( ()n —m)!

Flnm) (A)x] : (2.46)

A=n/t
and this representation together with (2.16) implies (2.38).

Differentiating (2.6) n —m times with respect to A and inserting the result into (2.46) we
find

0= |2 [T (2.47
up(t) = 7/ s"TMeT VS, (s a:ds} . 2.47
(n—m)! J, N—
Noting that A"~ [ s~ me=25 ds = (n —m)!, it follows
0= unlt) = | s [T e a0 - s, (0)0) 249
w(t) — u,(t) = | ——— sTTMe™ (S, (0 — S, (s)x) ds , .
(n—m)! J, —
and after the change of variables s = to we obtain
nn m—+1 o0
ult) = ) = e /0 " (S, ()7 — Sa(to)z) do. (2.49)

It remains to apply the following lemma and the proof of Theorem 2.21 is completed. O
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Lemma 2.22 Let f(-) : [0,00) — X be a continuous function such that ||f(t)|] <
Me*t, t > 0, for some M > 1 and w > 0. Then for any integer k > 0 we have

n

n—k+1 00
lim / ke[ £ (8) — f(to)] do = 0
n—o (n—k)! J,
uniformly on bounded subsets of t > 0.

This lemma can be proven by a method similar to that in [62], p.34, so we omit the proof.

The representation (2.20) is (2.38) with m = 0. In fact, (2.49) together with Lemma
2.22 shows that no matter what integer m > 0 we take in the representation (2.46), resp.
(2.47), of u,(t) we always have wu,(t) — u(t) as n — oo.

Next we estimate the rate of convergence of representation (2.38) when « > 1.

Theorem 2.23 Let « > 1, A € C*(M,w) and v € D(A). If u,(t) is the approximation
defined by (2.36) and (2.37) to the solution u(t) of (2.2) then

lu(t) = un ()] = O(n™"2), n — o0, (2.50)
uniformly on t in compacts of R, . If A € C(M,0) then the more precise estimate
lu(t) = un ()]l < Cla)Mn~"?t%|| Ax]], = € D(A), (2.51)

holds, where C'(a) depends only on a.

Proof: We start from (2.48). Let us find a bound for S, (t)x — S.(s)z. Applying D} J& to
both sides of the equation in (2.2) and using the property (1.21) we obtain

S! () = Dy JEAS,(H)x = Dy JHIE 1S, () Ax = J& 1S, (t) Ax. (2.52)

Therefore S, (t)z — Su(s)z = [! Po(7) Az dr with

Po(t) = /0 s (t — $)Su(s) ds (2.53)

From ||S,(t)]] < Me*" it follows
[Pa(t)]| < Me gqlt). (2.54)

Therefore

19a(t)x = Sa(s)zl < Mt = 5| max ga(7)e*" || Az]| = M| Az] {

—~~
.

s —1)ga(s)es, s >t
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Inserting these bounds in (2.48) we get

w8} = wnla)]] < %(%)nmﬂ [/otsn_me_"s”(t—S)Qa(t)e”tds (2.55)

+ / s e " (5 — 1) go(s)e ds}
t

M || Az ||t>evt 1
Rl Lo L —m+1n) — —y(n—m+2
(@) (1 — 1) y(n—m+1,n) n’y(n m+2,n)
nnfm+1efwt
+ I'(n—m+a+1,n—wt)

(n _ wt)n—m—l—a—i—l
nn—m+1€—wt

T o wt)n—mmr(n —m+a,n— wt)] :

where v(a, b) = fob e 't*tdt, T'(a,b) = [,° e "t ! dt are the incomplete Gamma functions
(see [32], vol.1). Using the identities

v(a +1,b) = ay(a,b) — b, T'(a+ 1,b) = al'(a,b) + b e,
we simplify the last expression and obtain

M||Az|[tet [m —1

1) —up(?)] < — 1, 2.56
o)~ o) < AU T 1 (256)
ot wt\ "t (o + wt —m) n—wt , . .
e (1 - ;) (= o) L(n—m+a,n—wt)+ e

Applying the inequalities
y(n4+1,n) <T(n+1)=n!, T(n+a,n—wt) <D(n+a), 2(n) tn"e™ < (2/7n)/?
and the asymptotic property of the Gamma functions
L(n+a)/n!l=n*"114+0(n"), n— oo,

we see that the last term in the brackets is dominating as n — oo, that implies (2.50). In
case w = 0 the estimate (2.56) reduces to

M||Az||t* [m—1 a—m

Jult) = 0] < s | L)+

L(n+a,n)+2n" ™e™

This by remarks above implies (2.51) O

2.4 Perturbation properties

Since in this section we consider solution operators with different generators, we use the
notation S,(t; A) for the solution operators generated by A.
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A classical result (see [62] and [60]) is: if A is the generator of a Cy-semigroup (or COF)
and B € B(X), then A+ B is again a generator of a Cy-semigroup (COF). This is not
true in general for solution operators of (2.2) with 0 < o < 1, as the following example
shows.

Example 2.24 Let 0 < o < 1 be fixed. Assume X = [!, the Banach space of all
sequences ¢ = {z,}°°,, z, € C, with norm [jz|[p = >2°7, |z,] < co. Let A, be an
operator defined by

D(A,) ={zel": Zn|xn| < o0}, Agr = {e“ina,}> .

n=1

We shall prove that A, € C*, but A, + 1 & C®.

Applying (1.25), it follows that if S, (¢; A,) exists, it is given by the formula
So(t; Ag)x = {Ea(e™2nt®)z, }2°,.

Since arg(e’®2nt®) = an/2 for t > 0, the asymptotic property of Mittag-Leffler functions
(1.27) implies |E,(e5nt®)| =~ 1/a, n — oo. Therefore ||Sq(t; Ag)z|n < (1/a + &)||z||n
for some £ > 0 and any z € [!, hence A, € C“.

Similarly, if S, (t; A, + I) exists, it is given by
So(t; Ao + D = {Ea((e"2n + 1))z, }%° .

Using again the asymptotic relation (1.27),
B (650 + 1)%)| ~ éexp(Re (%5 n 4+ 1)Y/%4), n = oo, (2.57)
we shall show that, given ¢ > 0, there is no constant C' such that
15a(t; Ao + Dalln < Cllafp.
Indeed, let us use the representation
Re ((e"3n + 1)Y/%) = Re ((r, exp(i6,)) ) = rY/ cos(6, /), (2.58)

where
nsin(amr/2)

ro = (0”4 14 2n cos(am/2))'/%, 0, = arctan ;— ncos(am/2)

(2.59)

Now we study the asymptotic behaviour of cos(f,/a) as n — oo. Using a well-known
school formula and (2.59) we obtain

tan(ar /2 — 0,) = tan(am/2) — tanf, sin(am/2) O(l) s oo
" 1+ tan(ar/2)tanf, n+cos(an/2)  'n’ ’
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that is, 7/2 — 0,/a = O(1/n), n — oo. Hence cos(#,/a) = sin(r/2 — 0,/a) =
O(1/n), n — oo. Together with ry/* = O(n'/®), n — oo, we obtain

riecos(0, /o) = O(nY*7 1Y), n — oo.
Since 1/ — 1 > 0, using (2.57) and (2.58), we have the desired result.

If A € A% then perturbations by bounded operators are possible also for a € (0,1).
Next we prove a stronger result, which is a generalization of the corresponding result for
analytic semigroups ([62], p. 80).

Theorem 2.25 Let o € (0,2) and A € A%(6y,wp). Let B be a closed linear operator
satisfying D(B) D D(A) and

[Bx|| < af| Az]| + bllz]], @ € D(A). (2.60)
There exists 6 > 0 such that if 0 < a < § then A+ B € A%,
Proof: Since A € A*(0y,wq), then A\* € p(A) for each A € Xg1n/2(wp). Fix w > wy,
6 < 0y. Then there is a constant C' = C(#,w) such that

C
A —wl’

IANTR(AY, A)|| < A€ Egpna(w).

This together with (2.60) implies that for every x € X,
IBR(AY, A)z|| < al| AR(AY, A)z|| + b||R(/\O‘ A)l] (2.61)

5 'A'|>|| =2 el

Choosing A such that |A —w| > 2bC and § = £(1 + C) "', where

IN

a(l+
|A w|

A
Ch:= sup CIA

NS ns2(@), h-wl>1 [A — @]’

we obtain [[BR(A*, A)|| < 1 for A € ¥y r0(w), |A —w| > max{1,2bC}. Therefore for
such A the operator I — BR(A*, A) is invertible and

RO\, A+ B) = R(\*, A)(I — BR(\*, A)) !,

which implies
!

AR\, A+ B)|| <
IR0 A+ B)| < o

AE 20+ﬂ-/2 (w)

Hence A+ B € A%(6y,wp). O

If AeC* ae(1,2) and B € B(X), then A+ B € C*. In the next theorem we prove
this in a more general case of bounded time-dependent perturbations B. For o = 2 an
analogous theorem is presented in [52].
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Theorem 2.26 Let o € (1,2), A € C*(M,w) and B(t) € C(R;,B(X)). Then for every
x € D(A) the Cauchy problem

Du(t) = (A+ B(t))u(t), t > 0, (2.62)
u(0) =z, «'(0) =0, (2.63)
admits an uniquely determined solution u(t) given by the formula
u(t) = Sa(t; A+ B)z =Y Sanlt; Az, (2.64)
n=0

where

Sao(t; A) = Sa(t; A);
t
Sun(t: A) = / Pa(t — s AVB(5)Sun 1(s: A)ds, n € N; (2.65)
0

and P,(t; A) is defined by (2.53). Moreover, if K; = maX,cjoq || B(s)||, we have for all
t € [0,T) the bounds

lu(t)|| < Me? Eq(MKpt®)||=]],
(2.66)
[u(t) — Sa(t; A)z|| < Me*!(Ba(MKrt*) — 1)

Proof: Applying (2.54) and the semigroup property (1.8) to (2.65), we obtain inductively
[San(t; Al € M K} gania(t), 1€ Ny (2.67)

From these bounds it follows that the series representing S,(¢t; A + B) in (2.64) are uni-
formly convergent on compact subsets of R, with respect to the operator norm topology.
Hence, S, (t; A + B) is a strongly continuous function on R, with values in B(X).

Next we prove that u(t) satisfies (2.62) and (2.63). Since S,(0; A) =1,S5,,(0;4) =0, n €
N, 57,,(0;4) =0, n € Ny, we have S,(0; A+ B) = I, S,,(0; A+ B) = 0, i.e. the initial
conditions are satisfied. Applying (2.64) and (2.65), it follows

u(t) = sa(t;A)Hf: /0 Pt — 5 A)VB(5)Sun(s: AV ds (2.68)

= Sa(t; A)x + /Ot P,(t — s; A)B(s)u(s) ds,

where the interchanging of the summation and integration is justified by the uniform
convergence of the series. Integrodifferentiating (2.68), we obtain

D2u(t) = ASy(t: )z + DP / Pt — 5 A)VB(s)u(s) ds. (2.69)
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Setting h(t) := B(t)u(t) and using (1.20), (1.12), (P, * h)(0) = (P, * h)'(0) = 0, the
associativity of the convolution, implying JP(f % ¢) = (J'f) * g, and the semigroup
property (1.10), we obtain

DY (Py(.; A) x h) = D¥(Po(.; A) x h) = D} JZ*(J7 1 Sa(; A) x h) (2.70)

= D;(Sa(;;A) * h) = Sy(t; A) x h+ Sa (03 A)h.
Since S'(0; A) = 0, it follows by the closedness of A

S (t; A) = JID?S,(t; A) = J* 1 T2 “D2S,(t; A) (2.71)

— JOIDES, (1 A) = JOLAS, (1 A) = AT LS, ( A) = AP (t; A).
Combining (2.68), (2.69), (2.70) and (2.71), we obtain that u(t) satisfies (2.62).

To prove the uniqueness, let v : R, — D(A) be a solution of (2.62) with v(0) = v'(0) = 0.
Then (1.21) gives v(t) = JFAv(t) + JPB(t)v(t) and applying the variation of parame-
ters formula (see [64], Prop. 1.2), v(t) satisfies the integral equation

Setting m; = max,cjo 4 ||v(s)||, we see that for m, > 0
¢
< MK;my / (t— S)a—lew(t—s) ds < MKymy 1wt
I'(a) Jo [(a+1)

if ¢ > 0 is chosen sufficiently small. Thus, v(¢) = 0 on [0, ¢y] with ¢y, > 0. Iteration of this
argument leads to v(¢) =0 on Ry. The bounds (2.66) follow directly from (2.67). O

< my,
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Chapter 3

Subordination principle

The subordination principle, presented earlier by Priiss [64] for general Volterra inte-
gral equations, is studied in detail for the fractional evolution equation. Besides some
additional properties of the subordinated solution operator, we discuss also some new
aspects of this principle, such as invertibility, an inversion formula and the semigroup of
subordination operators.

3.1 Subordination principle and its invertibility

Let a € (0,2], m = [a] and D{ be the Caputo fractional derivative of order c.. Let A be
a linear closed densely defined operator in a Banach space X and x € X. In this section
we are concerned again with the fractional evolution equation

Du(t) = Au(t), u(0) ==z, u®0)=0, k=1,...,m — 1. (3.1)

It is well known ([34], p.169) that if A generates a cosine operator family Sy(¢) then
A generates a Cy-semigroup S;(t) and they are related by the abstract Weierstrass
formula:

1 o 2
50 = <= /0 106, (5) ds, ¢ > 0, (3.2)

which incidentally shows that S;(¢) is an analytic semigroup of angle 7/2. However, the
converse is false: there are infinitesimal generators of analytic semigroups of angle 7/2
which do not generate cosine families. A well-known example is the Laplacian A in LP(R™)

ifp#2, n#1 (see e.g. [45]).

Generalizing these classical results, we study the relationship between problems (3.1) for
different values of «, resulting in the subordination principle. This principle is presented
in the next two theorems. The first of them is a particular case of [64], Th. 4.2 and Cor.
4.5. Here we give another proof based on the properties of Mittag-Leffler and Wright
functions.

39
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Theorem 3.1 Let 0 < a < 3<2,v=0a/B3, w>0. If A € C¥(w) then A € C*(w'/7) and
the following representation holds

Sat) = /0 " (5)Sa(s) ds, >0, (3.3)

where ¢, ,(s) := t77®,(st™") and ®,(z) is defined by (1.30); (3.3) holds in the strong
sense.
Proof: Define
S(t)x :/ i,(5)Ss(s)xds, t>0. (3.4)
0

Our aim is to prove that S(t) satisfies the conditions of Theorem 2.9 with w'/7 instead of
w. Since A € C(w), then (w”,00) C o(A) and there is a constant M > 1 such that

1Sa(s)|| < Me**, s> 0. (3.5)
Then the condition ((w'/7)*, 00) C o(A) is trivially fulfilled. Further, (3.5) together with
(1.31) and (1.32) implies

15(t)] < / " o ()1S5(3) ds < M / T pun(9)e ds = ME, ("), 20, (3.6)

This together with (2.9) gives
IS(#)]| < MCexp(w'/7t), > 0. (3.7)

Next we prove the strong continuity of S(¢) at the origin on the basis of the dominated
convergence theorem, using (1.32), (1.33), (3.7) and the strong continuity of Ss(t) at the
origin:

o0

: L y B _
lgf(r)l S(t)r = lgf(r)l i Q. (0)Ss(ot")xdo = /0 ¢, (0)rdo = .

For A > w!'/7, using (3.4) and interchanging the order of integration, we have

/Ooo S (t)x dt = /0 ) Sp(s)x /0 ) e Ny (s) dt ds. (3.8)

Substituting p = t7 in (1.30) and shifting the new contour I'' = I'/t to ' we get the
integral representation

1 -
Vi (5) = %/Fﬂ Lexp(rt — 775) dr. (3.9)
Therefore o
/ e Moy (s)dt = N exp(—A7s). (3.10)
0

Using now (2.6) for Ss(s) we obtain from (3.8) and (3.10)

/ e MS(t)wdt = )\71/ exp(—A75)S5(s)x ds = \* TR(\*, A)x.
0 0
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So, we have proved the conditions of Theorem 2.9. Therefore A € C%(w'/7) and the
corresponding solution operator S, (t) = S(t).0

Since ®15(2) = 712/ the formula (3.3) coincides with the abstract Weierstrass
formula (3.2) when oo = 1, 3 = 2. By (3.6) we obtain the following additional result:

Corollary 3.2 Assume o € (0,1), w € R, and A is the infinitesimal generator of a
Cy-semigroup Sy (t) satisfying ||Sl(t)|| M @t t>0. Then A € C* and

|Sa(t)|| < ME,(wt®), t > 0.
Next we study the analyticity properties of the subordinated resolvent S, ().

Theorem 3.3 Under the hypotheses of Theorem 3.1 the solution operator S,(t) has the
following additional properties, where 6(v) = (1/vy — 1) /2:

(a) Sa(t) admits an analytic extension to the sector Yingo(y),r};
(b) If w =0, [|Sa(t)]| < C fort € Xmin{o(y)x}—s, Where C = C(7,¢);
(c) Ifw >0, ||Sa(t)]] < Ce’®et for t € Ymin{0(y)r/2}—=, Where 6 = 0(,¢), C = C(d,7,¢).

Proof: Let
1S()]| < Me, ¢ > 0, (3.11)

and ¥ be the sector ¥ = Yyinfo(y),r}- The function under the integral sign in (3.3) is
analytic in ¢ € X. In view of the asymptotic expansion (1.33) and the inequality (3.11)
and, noting that Re (t77/14=7) > 0 when ¢ € ¥ and 1/(1 —v) > 1 for 0 < v < 1, it follows
that the integral in (3.3) is absolutely and uniformly convergent on compact subsets of X.
Therefore, S,(t) given by (3.3) is analytic in ¥ (see [57], p. 32, Th. 7). This implies (a).

In what follows, ¢, denote positive constants, not depending on ¢. Let ¢ € Xyin{g(y),r}—e-
Then (3.3) and (3.11) imply
15,0 < M|t|‘7/ @ (st77) e ds = M/ i) | sl g, (3.12)
0

where ¢ = —vyargt, that is |p| < (1 — y)7/2 — ye. Thanks to the expansion (1.33) there
exists S > 0 such that for any s > S

D, (se')| < cps /DA exp {—01 sin 176 31/(1_7)} : (3.13)
-
Divide the last integral in (3.12) into two parts: I; from 0 to S and I, from S to oco. If

w = 0 then /; and I, are uniformly bounded: [;- since ®,(z) is an entire function and I,-
in view of (3.13). Hence b) is proven.
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Assume now w > 0 and ¢t € Xpingo(y),x/2)—e- Denote r = |t|. Then [; < cyexp(esr?) <
caexp(esr), since 0 < v < 1. Applying (3.13) we have

I, < Mco/ s(r=1/2)/(1=) exp {—01 sin c sH0=7 4 wr"’s} ds.
0

I—~

Using now the asymptotic expansion (see [33], p. 141)
/ sP exp(—s? + ys) ds &~ Ay @12/ exp Loyt - ¢ > 1,y — 400,
0

where A = A(p,q), a = a(q) are positive constants, we obtain Iy < ¢z exp(crr) <
cgexp(cor). Then I) + I, < Cexp(cyor). Since |argt| < m/2 —¢e, we can take § = ¢/ sine
and then [|S,(t)]| < Cexp(dRet). O

So, we proved in Theorem 3.3 that S,(t) is an analytic solution operator. Note that
if w=0and v < 1/2, S,(t) is in fact analytic in a sector with opening angle § > =
and if v < 1/3, it is analytic in all of C except of a neighbourhood of the negative
real axis. To complete the picture, we note in addition to Theorem 3.3 that if Ss(¢) is
analytic in Yy, and o = v, v < 1, then S,(t) is analytic in Xin{a(y)+6e/7,x/2}- Indeed,
if for || < 6y we consider the path T'r = [0, R], Rexp(i[0, ¢]), [R, 0]e'®, then by Cauchy’s
theorem ‘fFR ©1,(2)S5(2) dz =0, i.e. for R — 0o we obtain

Sult) = / 01 (5)S(s) ds = / 1 (56%) S (s6%) e ds
0 0

and the desired result follows as in the proof of Theorem 3.3. This result can be also
obtained applying Theorem 2.14.

Next we present some simple but interesting corollaries of the above theorems.
Corollary 3.4 If A € C*(1,0) for some a € (0,1], then A € C*(1,0) for all o« € (0,1].

Proof: If A € C*(1,0) for some a € (0, 1], then according to Theorem 2.8, (0,00) C p(A)
and (2.12) holds with w = 0, M =1 and n = 0, that is [[A*'R(A*, A)|| < 1/\, A > 0.
This is exactly ||R(u, A)|] < 1/p, p > 0. Hence A € C'(1,0) and Theorem 3.1 implies
A€ C*(1,0) for all @ € (0,1].0

Combining Theorem 3.3 and Corollary 3.4, we obtain the following result:

Corollary 3.5 Let a € (0,1) and S, (t) be a contraction: ||S,(t)|| < 1,t > 0. Then S,(t)
is necessarily an analytic solution operator.

The next example illustrates how Theorems 3.1 and 3.3 can be applied to obtain solutions
of (3.1) for noninteger « from known solutions for @ = 1 or 2 and to study their properties.
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Example 3.6 Consider the fractional diffusion-wave equation (see Example 2.18). It
is well-known that this problem is well-posed for o = 2, more precisely A = k*D? €
C?(LP(R); 1,0), and the solution is given by the d’Alembert formula:

(S2(07)(@) = 5(F(a + k) + f(z — ht). (3.14)

Therefore, according to Theorem 3.3 (a),(b), A € A*(327,0) if a > %, A € A%(7,0), if
a < % Applying formulas (3.3) and (3.14), we obtain the explicit form of the solution

Sa(t)f(x) = t7°/2 /000 D40 (st_a/Q) So(s)f(x)ds

1 > 5|
= — P _— — s)ds.
2|k|ta/2/ a/2 <|k|ta/2> f(x S) S

—0o0

This representation coincides with a result given in [54].

So far, given A € C?, we studied the properties of S,(t) for & < 3. Now we shall try to
do the converse: to find properties of S, (t), sufficient for the existing of Ss(t), 5 > «a.

Set o = 1 in Theorem 3.3. If A € C# for some 3 € (1,2], then A generates an analytic
semigroup S(t) of angle (3 — 1)m/2. We are interested in the opposite: whether the
analyticity of Sy(f) in ¥(g_1)r/2 suffices for existing of exponentially bounded solution
operator Sg(t)? For = 2 the answer is negative, as it was mentioned in the beginning
of this section. The next example shows that the same answer holds for 5 € (1, 2).

Example 3.7 Fix € (1,2) and consider in X = L*(R) the operator Az = /=722
D(A) = W*(R). Since D? generates a bounded analytic semigroup of angle m/2 then
|R(N, D2) sty < M/|A|, A € Xy—.. Therefore

IR(A, Ag)llsery = [IR(e 72, D)y < M/|AL A € Bprpa—e,

i.e. Az generates a bounded analytic semigroup of angle (3 — 1) /2. Let us now consider
the problem

D/ u(x,t) = Agu(z,t), u(x,0) = f(z), u(z,0) =0,
with f € S(R), the space of rapidly decreasing functions of Schwartz. Then the solution
is given by

2

This can be verified proving that [ e Mu(xz,t) dt = N'R(N, Ag) f(z). Suppose Ag €
CP for X = L*(R). Then given ¢t > 0 there is a constant C such that ||Ju(z,t)||;: < C||f]|z:
for any function of the form (3.15). Let ¢, be a delta sequence (i.e. for any y € L'(R),
0y, %y — y with respect to || ||z1 as n — oo and ||, |[zr = 1). Setting f(z) = 4, in (3.15)
and calling u,(z,t) the function so obtained we see that

1 . o .
u(z,t) = —eZ(Zﬂ)W/‘l/ @r/2(e @O s|) f(x — 5) ds. (3.15)

1 . .
un(,) = b(, 1) = eI i gy (eI )

for all x € R. Since ||0,||zr = 1, it follows from Fatou’s lemma that k(-,¢) must be in
L'(R) which is false in view of the asymptotic expansion (1.33).
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Next we give a simple sufficient condition, under which A € C#(0).

Proposition 3.8 If 1 < 3 < 2 and
[R(A, Al < M/IA], A € Zprpa, (3.16)

then A € C%(0).

That is, “a little bit more” than analyticity of Si(t) in X(s_1)x/2 is sufficient. Condi-
tion (3.16) is satisfied for example, if the analytic semigroup Si(t) in X(g_1)r/2 admits
boundary values [2], that is

sup [|S1(¢)|| < oo, where X' :={t € C; t € X(g_1)rj2, Imt >0, |t| < 1}.
EI

Proof: The key to the proof of Proposition 3.8 is the following lemma due to Priiss [64],
Proposition 0.1:

Lemma 3.9 Let h()\) be analytic for Re A > 0 and C' > 0 is such that
AR < C5 IR (M) < C, Red > 0. (3.17)

Then
PR () /0l < 2C, >0, neN. (3.18)

Setting now h(\) = MIR(M, A) it easily follows from (3.16) that h()\) satisfies (3.17)
with C' = max{M, M(3 — 1) + M?$}. Then we have (3.18), that is exactly (2.12) with
a =03, w=0. Hence A € C#(0).0

Corollary 3.10 If A is the infinitesimal generator of a bounded analytic semigroup of
angle (3 — 1)n/2 + ¢, where ¢ € (0,(2 — )7/2) can be chosen arbitrarily small, then
A € Ch0).

This corollary incidentally shows that if A generates a bounded analytic semigroup of
angle /2 (e.g. the Laplacian A in LP(R")) then A € C? for any 8 < 2, moreover Sj(t)
is analytic in ¥;, for sufficiently small d5. Recall that in this case A does not necessarily
generate a cosine family, i.e. not necessarily A € C%.

We conclude this section with another application of the subordination principle. Let

€ (1,2). If Ay, Ay € C* and they commute, is it true that A; + Ay € C*? For a = 1
the answer is positive (see [71]) and for & = 2 — negative (see [38]). Here we notice only
a weaker property of A; + Ay, as follows:

Proposition 3.11 Let o € (1,2), Ay, Ay € C* and they commute. Then A; + A, gener-
ates a semigroup analytic in Y1) /2-
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Proof: According to Theorem 3.1, A; and A, generate Cy-semigroups analytic in Xq—1)r/2
and given by the formulas

Si(t; Aj)x :/ ©r1/a(8)Sa(t; Aj)wds, j=1,2.
0

Since S, (t; A1) and S, (t; Ay) commute for all ¢,s > 0, then Sy (¢; Ay) and Sa(t; Ag) com-
mute for t, s > 0. Hence ([71]) Al + A2 S Cl and Sl(t,Al + Ag) = Sl(t, Al)Sg(t,Ag) is a
strongly continuous semigroup analytic in Y, 1)r/2. O

Let us note that the analyticity of S;(¢; A1 + Ay) in X4 1)r/2 does not imply in general
A + Ay € C* ( Example 3.7), but only A; + A, € C*¢ for any ¢ > 0.

3.2 An inversion formula

Let X be a complex Banach space. We give an inversion of formula (3.3) provided A
satisfies some additional conditions. Recall the Mellin transform defined by

(Mf}(0) = / (e de

and its inverse )
1 c+100
=5 [ (MIHo e (3.19)

2mt J._;

From the integral representation (1.30) of ®,(2), v € (0, 1), we obtain

{M®,}(0) :==T(0)/T(1 =7+ 70), Reo>0.

Taking ¢ € (0,1) in (3.19) and making the substitution 0 =1 — p, we have

1 ' -
o (1) = _/ T0=9) o1y,
271 J;, T'(1 — v0)

where L = {c+ iy, —oo < y < oo} and ¢ € (0,1) can be arbitrarily chosen thanks to
Cauchy’s theorem. Substituting this representation in (3.3) we obtain formally

Su(t) = % /L %tw{/\dsﬂ}(a) do. (3.20)

We are looking now for conditions under which (3.20) holds for 0 < f <1 < a < 2,
v =/ > 1. To this aim we involve fractional powers of positive operators.

If —A is a positive closed densely defined operator, we have (see e.g. [1], eq. (4.6.9)):

(—A)™ = Smm/ s7(s—A)"'ds, 0<Reo <1. (3.21)
0

™
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In particular, if A generates an exponentially decaying Cy-semigroup S;(t), then (—A) is
positive and the following representation holds (see e.g. [1], Th. 4.6.6.):

(—A) 7 = e /OOO 718, (t) dt, Reo > 0.

An analogous representation of (—A) 7 for 0 < Reo < 1 in terms of the solution operators
Ss(t),0 < f < 1, is given in the next theorem.

Theorem 3.12 Let 0 < 3 <1, A € C% and assume that there are constants M > 1 and
i > 0 such that

1S5(0)I| < MEs(~put?), t>0. (3.22)
Then -
(—A)™7 = %/{) t777185(t) dt, 0 < Reo < 1. (3.23)

Proof: Applying (3.22) it follows
||/ P71 Sa(t) dt|| < M/ PR g (—putf) dt, 0 < Reo < 1,
0 0

where the integral on the right is convergent in view of the asymptotic expansion (1.28).
Then the right side of (3.23) is a bounded linear operator. According to (2.6)

R(s", A) = 517 / ¢S, (1) dt
0
and thanks to (3.22) and (1.26) we obtain the estimate
IR A < Ms 7 [ e Byt de = /(57 ), s >0,
0

Therefore (—A) is positive and formula (3.21) holds for it. Making the substitution s = u”
in (3.21), applying (2.6) and the well-known formula I'(0)I'(1 — o) = 7/ sin 7o, it follows
by Fubini’s theorem

= TR v A

# h u*B‘T h €7Ut u = M > po—1
F(a)r(1_g)/0 /0 Sp(t)dtd F(U)F(l—a)/o Ss(t)t?7 " dt.O

Substituting now (3.23) in (3.20), we obtain

Sa(t) = QLM /L %t”(—fl)" do. (3.24)
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Let us estimate the expression under the integral sign. The asymptotic expansion of the
Gamma function (see [57], p. 49)

T+ iy)| = Vgl exp(=Zly) (1 +0(1/y), Iyl = oo,

implies that if o = ¢+ iy, |y| — oo, then

‘F(U)F(l —0)
I'(1— ao)

= Varly exp(—(2 = @)l (L+ O/y).  (325)

Further, (—A)™z = (—A)™¢(—A) %z for + € D(A?) [1], Th.4.6.5. Suppose that A
satisfies conditions of the theorem. Then, from (3.23), (3.22) and the denseness of D(A?%)
in X, it follows ||(—A4) 7] < [|(=A) " ¢|[II(-A)"¥] < C(B,c)||(=A)"%||. Therefore, the
integral in (3.24) is convergent if we impose some conditions on the imaginary powers of
the operator (—A).

The main result of this section is given in the following

Theorem 3.13 Assume 0 < <1< a < 2 and
—AeBIP((2—a—¢e)r/2) (3.26)

for some € € (0,2 — «). Then A € C* and the representations (3.20) and (3.24) hold.

Proof: According to [65], Theorem 2, (3.26) implies that A generates a bounded analytic
semigroup Si(t) of angle (a« — 1 + ¢)7/2 and, applying Proposition 3.8, it follows that
A € C*. Moreover, since 0 € p(A), Si(t) is exponentially decaying: there are constants
M > 1 and p > 0 such that ||S;(¢)|| < Me ™, t > 0 (see [62], Theorem 4.3.). Applying
Corollary 3.2, it follows that A satisfies the conditions of Theorem 3.12. Therefore the
representation (3.23) holds. In view of (3.25) and (3.26) the integral in (3.24) (respectively
in (3.20)) is absolutely convergent. Set
1 I'(l1-o0)

S(t) == 3 ), Wtﬂ”{/\/ls,g}(o) do.

After some routine calculations using Fubini’s theorem and the identities

o 1
/ e~ Mt* L dt = T'(2)A7%, Rez > 0,\ > 0; 5 / I(1—-o0)u"tdo=¢e" u>0,
0 L

™

we find that the Laplace transform of S(¢) for A > 0 equals
/ e MS(1) dt = AT / e NSy (t) dt = X*TLR(N, A).
0 0
Then S(t) = S, (t) follows from Theorem 2.9. O

)
In fact, (3.24) is an abstract version of a representation of the Mittag-Leffler function,
given in [57], p.118.
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3.3 The semigroup of subordination operators

Besides the semigroups associated with the subordination of Volterra integral equations
(see [64], p.116, [22]) in the special case of fractional evolution equations another inter-
esting example of a semigroup appears. In this section we study its properties.

Let us look back at the subordination formula (3.3) and define a family of operators G,
for v € (0,1] by
Jo~ #ta(s)f(s)ds, v € (0,1);
(G, )(t) = (3.27)
f(t)a v=1,

where f belongs to some appropriate function space X. Then (3.3) can be written in
the form S, = G,Ss with v = o/ € (0,1]. For this reason we call G, subordination
operators. The following identity plays a crucial role:

/ Oy (8)@ss(0) ds = @rh5(0), v,0€(0,1), 0> 0. (3.28)
0

Its proof is based on the equalities (3.9) and (3.10). Applying (3.28), G, yields
G,YG(; = G,yts, v,0 € (O, 1], (329)

i.e. the family of operators {G.--}.>¢ has the semigroup property.
Assume that X = LP(Ry,e 'dt), p > 1, consists of all measurable functions f on (0, 00),

such that
o0 1/p
|||f|||p=</0 et|f(t)|pdt> <

Theorem 3.14 The family {G .- },>¢ is a Cy-semigroup of contractions on LP (R, e~* dt).

Proof: First we prove that if f € LP(R,,e *dt), then
IG5 £l < 0fllps 0 <y <1 (3.30)
Applying Holder’s inequality and (1.32), we obtain
[ en@re s < [ enolierds 331
Therefore, by use of Fubini’s theorem and (3.10) with A = 1, we have
6.1 < [ ([ e @lrepds d
= [T e et ands = L
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Next we prove that if f € LP(R;,e *dt), then |G,f — f]l, = 0 as v — 1. Using the
representations implied by (3.27) and (1.32),

(anwzlf@xwﬂwwm,ﬂwszéﬁwﬂww,

we obtain by Holder’s inequality

6.~ 1l < [t [ @l - so) dse (3.2

Suppose that f € C§°(R, ), so that f(¢) is smooth on (0, 00) and has a compact support.
Fix ¢ > 0. By the uniform continuity of f(¢) on (0,00) there exist d,dy > 0, such that
|f(st7) = f(t)|P < eP/3 whenever 1 — < 4y, |s—1] <, t € (0,00). Consider the integrals

I :/0 7 D, (s)|f(st?) = ()P ds, I :/1 D, (s)[f(st7) — f(E)[" ds,

-0

L= [~ @l - s ds

146
For the second one we obtain immediately I, < (¢7/3) [;° ®,(s)ds = €?/3. Since f €
CP(R,), there exists a constant M > 0, such that |f(st”) — f(t)|P < M for all s,t €
(0,00), v € (0,1). Therefore I; < Mf J(s)ds, Iy < Mf1+6 (s)ds. To estimate
I, and I3 we use the integral representation of ®,(s) given in (1. 30) Applying Fubini’s
theorem, we have

1-6
/ O (s)ds = == [ p~let(1—e ") dy
0 r

and similarly

/OO Q. (s)ds = L p et O gy
149 2mi Jp

Letting v — 1~ under the integral sign, which is justified by the dominated convergence
theorem, and using the identity

1 et 1, ¢>0

= =1 _cu — )
omi ) et dp {0’ c<0. w > 0. (3.33)

we obtain that both integrals tend to 0. Hence, there exists ¢; such that I; < e?/3, I3 <
e?/3, provided 1 — v < §;. Therefore, if 1 — v < §y = min{dy, 0}, then [} + Ir + I3 < P
and, according to (3.32), |G, f — fll, < €. To prove this result for any f € LP(R;,e " dt)
we use the fact that C§°(R, ) is dense in LP(R, e *dt), which follows from its denseness
in LP(R} ), and (3.30). It remains to add the semigroup property (3.29) and the theorem
is proved. O

We now proceed to the determination of the infinitesimal generator Aq of the semigroup
{Ge-+}:>0. For the resolvent operator we obtain the following representation

(RO AG) D) = [ e (Geh = [ B(ts 0 f (s
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where .
E(t,s,\) ::/ ooy () do, t,5 > 0.
0
In the particular case A = 1, inserting (3.9) in the above identity, we have
E(t,s,1) =s e *v(t) —v(t—s)), t,s >0,

where

Z/( fO u+1 du t Z 0’
t < 0.

For the properties of v(t) see [32], Vol. 3, Chapter 18. Next we give an explicit expression
for the infinitesimal generator. Denote for m € N

We Ry e~ dt) == {f] Jp € LP(Ry,e™"dt) + f(t) = (J"p)(t)}-

Theorem 3.15 Consider the semigroup {Ge--}.>o on LP(Ry,e~"dt). Its infinitesimal
generator Ag is defined by

D(Ag) ={f € L*(Ry,e tdt)| JH1* f) — 1x (tf) € WP (Ry, et dt)}, (3.34)
(A = 20 ) =L ), (3.35

where [(t) :=log Ct, C-Euler’s constant.

Proof: Suppose that f € D(Ag). Then (G.--Agf)(t) = (LGe--[f)(t). Applying the
integration operator J} to both sides, we obtain after some routine calculations, using
(3.27), (3.9) and Fubini’s theorem

_")/ -

TG AT 0) = 52 [ 4 Hog s (FG0) + 0 ))e d
1N

where y = e, I'y = (w—i00,w+io0), w > 1, and F(X) = [[* e f(t) dt. In this identity

we let v — 17, applying on the left the strong contmulty of G-+ and on the right the

dominated convergence theorem. It follows

JAH®) = —— [ 1 logu (F(u) + pF ()" dps. (3.36)

21 Jp,
If we set ¢(t) :=lo* f, ¥(t) := 1y * (tf), where [; = J{l, i = 1,2, then by the properties

of the Laplace transform

(u) = / Tty de = — B p (), W) = / ey de = OB (),

p G

Moreover, the integrals representing ®(u) and W(u) are absolutely convergent. Indeed,
fix w = Rep > 1, then by Young’s inequality

/Oe“’|¢(t)|dt§/0 e“’|l2(t)|dt/0 e“’|f(t)|dt:C/0 et £ (1)) dt.



3.3. The semigroup of subordination operators 5l

Now, by means of Hélder’s inequality when p > 1 (and for p = 1 because w > 1), we have
the estimate

/ e f(t)| dt < Kp(/ e f @) dt)? = Kyl flp < oo,

0 0

1-p

where K; = 1; K, = <“;)p:11) T, p > 1. The absolute convergence of the second integral

follows in the same way. Moreover, ¢(t) and (t) are absolutely continuous functions,
therefore we can apply the theorem for the inverse Laplace transform [73], Theorem 7.3,

p. 66, to (3.36), which implies J} (A f)(t) = —¢(t) + ¥(t), or

T (Aaf)(t) = =J; (L f) +1x (tf). (3.37)
Since Agf € LP(Ry,e tdt), it follows that
—JH (U )+ 15 (tf) € WP (Ry, e dt) (3.38)

and differentiation of (3.37) with respect to ¢ implies (3.35).

Conversely, suppose (3.38). Then an elementary calculation shows that

2

B
[ G (505D = Gt (1)) dr =Gy = Graf 0 <a < <0

Here we let « — 0. Since G,-- is of class Cy the right member tends to G,-sf — f. Then
[46], Theorem 10.5.2, applies and shows that f € D(Aq) and that (3.35) holds. O
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Chapter 4

Strict LP solvability

We study the strict LP solvability of the linear autonomous nonhomogeneous problem for
the fractional differential equation with Riemann-Liouville fractional derivative of order
a € (0,2). Our analysis combines two different approaches. First we prove maximal
L? regularity of the problem with zero initial conditions using the method of sums of
operators. We apply both classical theorems and some very recent results involving the
notion of R-boundedness. Concerning the problem with zero forcing function, we use
the resolvent approach and prove strict LP solvability provided the initial data belongs to
some real interpolation spaces.

4.1 The notion of maximal L? regularity

The notion of maximal LP regularity plays an important role in the functional analytic
approach to parabolic partial differential equations. Many initial and boundary value
problems can be reduced to an abstract Cauchy problem of the form

u'(t) + Au(t) = f(t), t € I, u(0) =0, (4.1)

where I = (0,7), T > 0, —A generates a bounded analytic semigroup on a Banach space
X and f and u are X-valued functions on I. It is well known that (4.1) has a strong
solution for all locally Bochner integrable f, but in many applications we need that u' has
the same “smoothness” as f, which is not always the case. In particular, one says that
problem (4.1) has maximal LP regularity on I if for every f € LP(I; X) there exists
one and only one u € LP(I; D(A)) N WP(I; X) satisfying (4.1). From the closed graph
theorem it follows easily that if there is L? regularity then there exists C' > 0 such that

lulle + lu'lle + [ Aulle < ClLF Lo (4.2)

The theory of strongly continuous semigroups could suggest that it is more natural to
study the continuous regularity for (4.1), i.e. the existence and uniqueness of a solution
u € C(I; D(A)) N C'(I; X) for any continuous f. But Baillon [3] proved that if there is

93
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continuous regularity for an unbounded operator A that generates a C semigroup, then
the space X must contain a subspace isomorphic to ¢y, the space of sequences converging
to 0. This fact implies that X cannot be reflexive. On the other hand there are good
results of LP regularity in some reflexive spaces.

There is a rich literature on sufficient conditions for maximal L? regularity (see for a
survey [27]), which implies that for most classical differential operators that may be of
interest, there is maximal L? regularity of problem (4.1). Quite recently, necessary and
sufficient conditions for maximal L? regularity was obtained in terms of R-boundedness.
For completeness, we present the definition of this notion ( see e.g. [20] ).

Definition 4.1 A family 7 C B(X) is called R-bounded (randomized bounded), if
there exists a constant M > 0, such that

2.

ee{-1,1}V

2

<My

ee{-1,1}V

2

N N

(4.3)

eiljx; €5T;
0 0

J= J=

holds for all {T;}}*, C 7, all {;})_, C X, and all N € N. The smallest constant M such
that (4.3) holds is called the R-bound of 7 and is denoted by R(T).

This definition can be seen as a straightening of the concept of uniform boundedness of
the family 7.

The following theorem is due independently to N. Kalton and L. Weis. For a proof see
e.g. [72].

Theorem 4.2 Let —A generates a bounded analytic semigroup on an H'T space X. Then
problem (4.1) has maximal LP regularity if and only if the set {\(A+A) | A € iR, \ # 0}
is R-bounded.

In Hilbert spaces the uniform boundedness of this set already implies maximal L regu-
larity, but only in Hilbert space: recently Kalton and Lancien [47] essentially proved that
if for every negative generator A of a bounded analytic semigroup on a Banach space X
problem (4.1) has maximal LP regularity, then X is isomorphic to a Hilbert space. It
appears that the additional assumption which we need in more general Banach spaces is
namely the R-boundedness of the set.

Maximal LP regularity is an important tool in treating evolution equations more complex
than the basic Cauchy problem (4.1), such as second order equations, Volterra equations,
nonautonomous and quasilinear equations. In this thesis we apply maximal L? regularity
to study fractional order equations: both autonomous and nonautonomous.
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4.2 Maximal L? regularity for fractional order equa-
tions

Let A be a linear closed densely defined operator on a Banach space X. Let I = (0,7) for
some T" > 0. Consider the Cauchy problem for the fractional differential equation with
Riemann-Liouville fractional derivative of order a € (0, 2)

Diu(t) + Au(t) = f(t), a.a.tel, (4.4)

with an initial condition (g1_q * u)(0) = 0 when « € (0,1) and two initial conditions
(g2—a *u)(0) = 0 and (ga—q * ©)'(0) = 0 when « € (1,2).

Let Ry?(I;X) be the domain of the operator of fractional differentiation, defined by
(1.35). All other notations in this section are also defined in Chapter 1.

Definition 4.3 We say that there is maximal LP regularity of (4.4), on I, in X, if for
every f € LP(I; X) there exists one and only one u € LP(I; D(A)) N Ry’ (I; X) satisfying
(4.4).
It follows from the closed graph theorem that if there is L? regularity of (4.4) then there
exists C' > 0 such that

[ullee + | DFull e + | Aulle < CJIf| e (4.5)
Following Da Prato and Grisvard [23], we rewrite the equation (4.4) for X-valued functions

uw and f as an operator equation in X = LP(I; X). To this end we define the linear closed
operator A on X by

D(A) = L*(I; D(A)); (Au)(t) = Au(t), u € D(A), (4.6)
and take B = L,, where L, is defined by (1.37). Then rewrite equation (4.4) as
Av+Bu=f, feX. (4.7)

More than 20 years ago Da Prato and Grisvard [23] found sufficient conditions for maximal
regularity of (4.7) in real interpolation spaces. Later, Dore and Venni [28] solved this
problem in the case of H7 space. Here we present these theorems, reformulated suitably
for our application (see [14], Theorem 4, and [1], Theorem 4.9.7 and Corollary 4.9.8).

Theorem 4.4 ( Da Prato-Grisvard ) Let X be a complex Banach space and A and B be
nonnegative operators in X with spectral angles w4 and wg, respectively, such that
wp+wp <.

Let moreover A and B be resolvent commuting and satisty 0 € p(A)Up(B). IfY is one of
the spaces D 4(0,q) or Dg(6,q), where 6 € (0,1) and g € [1, 00|, then for any f € Y there
is a unique u € D(A) N D(B) such that Au+ Bu = f. Moreover, Au and Bu € Y and

[ully + [l Aully + [[Bully < ClI£lly,

where the constant C depends on X, 0, q, wa, wp, Ka(m — 0) and Kg(f) for some
0 € (wa, ™ — wg), but not on the individual operators A and B.
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Theorem 4.5 ( Dore-Venni ) Let X be an HT space. Assume
A€ Pr(X)NBIP(X; M, p4), Be Pg(X)NBIP(X; M, pg)

with
s+ <, (4.8)

and let A and B be resolvent commuting. Then for any f € X there is a unique u €
D(A) N D(B) such that Au+ Bu = f. Moreover,

[ullx + [[Aullx + |Bullx < Cll f]lx,

holds, where the constant C' depends on X, K, M, ¢4 and ¢gp, but not on the individual
operators A and B.

Next we apply Theorems 4.4 and 4.5 to our concrete problem (4.4).

Corollary 4.6 Let o € (0,2),1 < p < 00, d € (0,1). Let A be a positive operator in a
Banach space X with spectral angle satisfying

wa < m(l—a/2). (4.9)

(a) IfY = (X, D(A))sp, then (4.4) has maximal LP regularity on I in the space Y. More
precisely, the following estimate for the solution u holds:

lulloray + D7l oy + 1 Aull oy < Cill ooy (4.10)

(b) Let a0 —1/p ¢ Ny. For any f € WE?(I; X) there exists a unique solution u of (4.4).
Moreover, D®u, Au € W?(I; X) and

HUHW‘I&P(I;X) + ||DSUHW°¢5’P(I;X) + HAUHW“&P(I;X) < 02||f||Wa&P(I;X)-

The constants Cy and Cy depend on «, p, 6, wa and K 4(0) for some 6 € (an /2,7 — wa),
but not on T and on the individual operator A.

Proof: We apply first Theorem 4.4 to the problem on LP(R; X) in order to obtain a
constant, which does not depend on T'. Let f € LP(I;Y") and define the function

f, tel0,1],
fo= { 0. t¢0.1]. (4.11)

Then fy € LP(R;Y"). We extend the definition of the fractional derivative to functions on
LP(R) as follows. Let u € C§°(R), which is dense in LP(R). Define

Lou := D™(gm—_o *u), m=[a]l, (4.12)

where * is the convolution on R. This operator is nonnegative, therefore closable, and we
take its closure in LP(R) as definition of fractional derivative on LP(R). We use the same
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notation L,. Let L,, A denote the extensions of L,, A to L?(R; X). For the Fourier
transform of £,u we have

Lou(p) = (ip)*u(p), peR\{0}, fe€CFR\{0};X).

Therefore, according to [64], Theorem 8.6, £, is a sectorial operator in X = LP(R; X)
with spectral angle w,, = an/2. It is immediate that A is a positive operator on X with
spectral angle w4 = wy. Consider the problem on R:

Lou+ Au = fy. (4.13)

By (4.9) operators A and L, satisfy conditions of Theorem 4.4. If we take Y = (X, D(A));,,
we obtain by [70], Theorem 1.18.4,

Y = (LR X), LP(R; D(A)))sp = L*(R; (X, D(A))sp) = LF(R;Y),

and Theorem 4.4 implies (a) on LP(R;Y). Now turn back to our equation (4.4) on
LP(I;Y). Denote by ug the solution of (4.13). Because of the causality of the equation,
up = 0 for t < 0. This easily implies that ug satisfies the initial conditions of problem (4.4).
Therefore, the restriction u(t) of uy(t) to I will be a solution of (4.4), satisfying (4.10), and
(a) is proved. The claim concerning the constant follows from the corresponding claim in
Theorem 4.4.

Applying the same argument we prove (b) taking Y = (X, D(L,))sp, which by (1.41) is
equivalent to Y = W for ad — 1/p ¢ Ny. O

Corollary 4.7 Let o € (0,2), A be a positive operator in an HT space X satisfying
A e Pr(X)NBIP(X; M, pa) with

pa <7(l—a/2). (4.14)
Then (4.4) has maximal LP regularity on I in X. More precisely,

lullzer,xy + Jullgerx) + [[Au]| o x) < C||fllo@x), (4.15)

where C' depends on «, p, K, M, p4, T, but not on the individual operator A.

Proof: First note that X = LP(I; X) is an ‘H7T space, because X is and 1 < p < oo. Since
A € Pg(X)NBIP(X;M,p,), for the extension A of A to X we have A € Pg(X) N
BIP(X;M,pys). Then Lemma 1.8, (d), and (4.14) imply that the conditions of Theorem
4.5 are satisfied and we obtain the desired result. Because X is of class HT, Ry’ = Hy™”
for o —1/p # 0,1, and therefore || Dful| Lo, x) = ||u|| ger(r;x). O

If we want to prove that the constant C' does not depend on T, we have to apply a
generalization of Theorem 4.5 to sectorial operators [65] and work first on LP(R; X) as in
the proof of the previous corollary. We skip this argument, because in what follows we
present a stronger result.
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Next we formulate weaker conditions on A, sufficient for maximal L? regularity of (4.4).
This is possible applying the following very recent generalization of the Michlin multiplier
theorem due to Weis [72], Clément and Priiss [22].

Let S(R; X) be the space of Schwartz of smooth rapidly decreasing X-valued functions
and S'(R; X) be the space of X-valued distributions. Let m : R\ {0} — B(X) be
differentiable and define for f € S(R; X)) the function M f € S'(R; X) by

M (p) :=m(p)f(p), p € R\ {0}, (4.16)

where fdenotes the Fourier transform of f.

Theorem 4.8 Let X be an HT space, 1 < p < oo, and let m € C*(R\ {0}; B(X)) be
such that the following two conditions are satisfied

(D) R({m(p) | p € R\{0}}) =: ko < 00,
(ii) R({pm'(p) | p € R\{0}}) =: k1 < o0

Then the operator M, defined by (4.16), extends to a bounded operator on LP(R; X). Its
bound depends only on X, p, ko and k.

For a proof, we refer to [22], Theorem 1. The statement about the bound is implicitly
given in this proof.

It was proven ([22], Proposition 1.) that the R-boundedness condition (i) is also necessary
for M to be extended to a bounded operator on LP(R; X).

Let just as in the proof of Corollary 4.6 £, be the fractional derivative in LP(R; X), A
be the extension of A to LP(R; X) and define f; as in (4.11). Consider the corresponding

problem on R:
Lou+ Au = fo. (4.17)

Applying Fourier transform, we obtain
u(p) = ((ip)*I + A) " folp), peR\{0}.
Therefore we have the estimate
[LaullLrsx) + [ Aull rx) < M| foll Lo :x) (4.18)

iff the operator M defined by

M/ (p) == A((ip)*I + A) ™' f(p), p € R\ {0},

is a bounded operator on LP(R; X). So, set m(p) := A((ip)*I + A)~'. Suppose that A is
nonnegative with spectral angle, satisfying (4.9).Then m(p) and pm/(p) for p € R\ {0}
are bounded operator valued functions, that is m € C*(R\ {0}; B(X)). Hence, to obtain
the boundedness of M on LP(R; X), 1 < p < 0o, we have to check conditions (i) and (ii)
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for m(p) of Theorem 4.8. Since we have the representation pm’(p) = —a(I — m(p))m(p)
and since the product of two R-bounded families is again R-bounded, it follows that
condition (i) of Theorem 4.8 for our concrete function m(p) implies condition (ii). That
is, the maximal regularity estimate (4.18) holds iff the family of operators

AT+ A) Y A eiR, A#£0} (4.19)

is R-bounded.

Definition 4.9 A sectorial operator A on X is called R-sectorial if
Ra(0) :=R{t(tI + A)7'| t > 0} < 0.
The R-angle w% of A is defined by means of
whi = inf{f € (0,7)| Ra(r — 0) < oo},
where

Ra(0) = RE{MAM +A) 1| A € o\ {0}}).

It is immediate that wf > w,. It has been shown by Weis [72] that R-sectorial operators
behave well under perturbations, like the class of sectorial operators.

We prove now the following result for the problem on I.

Proposition 4.10 Let a € (0,2), 1 < p < oo, X be a Banach space of class HT, A be
an R-sectorial operator on X with 0 € p(A) and R-angle, satisfying

Wi <n(l—a/2). (4.20)
Then problem (4.4) has maximal LP regularity and the following estimate holds

lull ey + [ull ey + [|Aullorx) < Cllflleax), (4.21)

where the constant C depends on X, p, «, Ra(am/2), but not on T and on the individual
operator A.

Proof: Condition (4.20) implies that the family of operators (4.19) is R-bounded. There-
fore, according to Theorem 4.8, for any u € D(L,) N D(A) the estimate (4.18) holds.
Consider equation (4.17) on LP(R; X). Since £, and A are resolvent commuting, 0 € p(.A)
and wg, + wyg < 7 (see the proof of Corollary 4.6), the pair of operators (L,,.4) is an
admissible pair in L?(R; X) in the sense of [13], Definition 3.2, and, according to Theorem
3.3 of the same reference, the equation

u+ LA lu=A"fo, fo € LP(R X), (4.22)
has a solution u satisfying

lul| Lo x) < CapKe, (0)] follLr@;x) (4.23)
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for some 6 € (ar/2,m —w4), where C 4y depends only on A and 6. This solution is called
mild solution of (4.17) and it becomes its strict solution if u € D(L,) or u € D(A).

Combining (4.18) and (4.23), we obtain the full estimate for the mild solution
[l Lox) + AUl Le@ix) + 1 Latelle@ix) < CllLav+ Aull Log;x)- (4.24)

Using this estimate, we shall prove that (4.17) has a strict solution for any f, € L?(R; X).
We know ([13], p.22, Remark), that if fy € D(L,) then the solution u of (4.22) belongs
to D(L,) and so, it is a strict solution of (4.17). Take a sequence f,, € W*P(R; X') such
that f,, — fo in LP. Since f,, € W?? C D(L,), then the equation (4.17) with right-hand
side f,, has a strict solution, denoted by u,. Applying estimate (4.24) to the difference of
two such equations, we obtain in L?(RR; X):

[un = || + [ A(un = wm) || + | £a(un = um)l| < Cl[fo = fnll-

Hence u,, Lqu,, Au,, are Cauchy sequences. The closedness of the operators £, and A
implies that there exists u € D(L,) N D(A) such that u, — u, Lou, = Lou, Au,, — Au,
in LP. Therefore u is a strict solution of (4.17).

Turn back to our equation (4.4) on LP([; X). Its solution is obtained as a restriction of
the solution of (4.17) to [0,7]. Estimate (4.21) will follow from (4.24). O

It is proven in [22], Theorem 4, that if X is of class HT and A € BZP(X;604) then A is
R-sectorial and wf < 0,4. Therefore Corollary 4.7 can be obtained from Proposition 4.10.

In fact, under the conditions of Proposition 4.10 we have even more: not only maximal
LP regularity of (4.4), but also A-regularity.
Definition 4.11 Let X be a Banach space. The pair of closed operators (A, B) is called
A-regular in X if for any f € X, A > 0 the problem
Mu+ Bu = f

has a unique solution u € D(A) N D(B) and the following inequality holds

INAu|| + ||Bul| < M|[MNAu + Bul|, A>0
for some M > 1, independent of A, and for all u € D(A) N D(B).
Suppose the hypotheses of Proposition 4.10 are fulfilled. Then the pair of operators

(L4, A) is A-regular. Indeed, replacing the operator A by AA, A > 0, we obtain the
following multiplier function

ma(p) == AA((ip)*T + AA) ™t = A\ (ip)*T + A) L.

Therefore R({mx(p)| p € R\{0}}) = R({m(p)| p € R\{0}}) = ko and so, it does not
depend on A. Applying Theorem 4.8, the estimate

Lol o) + 1Ml oerx) < MI|Fllee;x)

follows, where M does not depend on A.

Corollary 4.12 Conditions of Proposition 4.10 are sufficient for (L, A) to be a A\-regular
pair in LP(I; X)) and in LP(R; X).
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4.3 Strict L? solutions of fractional order equations

Consider now the fractional evolution equations with nonzero initial conditions

e (0.1): Dfu(t) + Au(t) = f(t), a.a. t >0, (4.25)
(91-a * u)(0) = 0.

and
e (L2): Dfu(t) + Au(t) = f(t), a.a. t >0, (4.26)
(92-a * u)(0) = o, (g2-a * u)'(0) = 1.

where zy, ¥, € X and f € LP(I; X).

Definition 4.13 A function u : I — X is said to be a strict LP solution of (4.25), resp.
(4.26), on I, in X, if u € LP(I; D(A)) N R*P(I; X) and (4.25), resp. (4.26), is satisfied.

Obviously, if o = 1 = 0, then (4.25), resp. (4.26), has strict L? solution for any f € L?
iff it has maximal LP regularity.

In order to solve (4.25), we write u = v + w, where v satisfies

Dfo(t) + Av(t) = f(t), a.a. t >0,

(4.27)
(g1-a *0v)(0) = 0.
and w satisfies
Dfw(t) + Aw(t) =0, a.a. t >0,
(4.28)
(g1-a * w)(0) = wo.
Similarly, in order to solve (4.26), we write u = v + w + 2z, where v satisfies
Dio(t) + Av(t) = f(t), a.a. t >0,
P+ 40() = 10, 2 o
(92-a ¥ 0)(0) = 0, (g2—a *v)'(0) =0,
w satisfies
Dfw(t) + Aw(t) = 0, a.a. t > 0,
, (4.30)
(92-a * w)(0) = 2o, (g2—a *w)'(0) =0,
and z satisfies
D¢z(t) + Az(t) =0, a.a. t > 0,
/ (4.31)
(g2-a*x2)(0) =0, (g2-a*2)'(0) =x.

We apply different methods to analyse the above problems. For the analysis of (4.27) and
(4.29) we use the results on maximal L regularity given in Proposition 4.10 and Corollary
4.6, while for the analysis of (4.28), (4.30) and (4.31) we use the solution operator P,(t)
associated with it, defined as follows.
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Let A be a nonnegative operator with spectral angle w, satisfying (4.9). Define the
operator-valued function

1
P,(t)x := NN 4+ A) e d), (4.32)

a 2—m FT,G
where ¢ € (3, min{m, *=?4}) and
T,p:={re®; o] <0}U{pe’; r < p< ool U{pe ™ r<p< oo}

The orientation of the contour is such that the argument does not decrease along it. This
function corresponds to the solution operator S, (t) in the case of equations with Caputo

fractional derivative considered in Chapters 2 and 3. Next we summarize some properties
of P,(t).

Lemma 4.14 Assume that « € (0,2) and A is a nonnegative operator in a complex
Banach space X with spectral angle wa satisfying (4.9). Then the following assertions
hold

(a) Py(t) € B(X) for each t > 0 and sup,. o t**|| Pa(t)||5(x) < 00;
(b) For any x € X, t > 0, P,(t)r € D(A) and sup,. t|| AP, (t)|[sx) < 00;
(c) Po(.), AP () € C=(R,; B(X)) and for any integer k >0 and [ = 0, 1,

sup t1+k+a(l71)||Alpl£k)(t)||6(x) < o0;
t>0

(d) For any fixed 6 € (O,min {7r, e %), k > 0,1 = 0,1 there exists an analytic
extension of A'PF)(.) to .

These properties can be obtained in the same spirit as the properties of S, (¢) in Theorem
2.14 and Proposition 2.15. Note that A is nonnegative with spectral angle w4 satisfying
(4.9) iff —A € A*(0,0) with 0y = (7(1 — @/2) —wa)/a.

From the definition of P,(t) it follows

(AT + A) Ly = / e NPy (1) dt. (4.33)
0

The maximal L? regularity of (4.4) is equivalent to the boundedness in LP(I; X) of the
operator M, defined by

ME(t) = /OtAPa(t—s)f(s) ds,

because from the variation of parameters formula for the solution w of (4.4) we have
Au(t) = M f(t). The solutions of the equations with arbitrary initial conditions and zero
forcing function can also be represented in terms of P,(¢). Using this representation, we
formulate some results on existence and uniqueness of strict I” solutions.
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The case a € (0,1)

Our main results concerning the case o € (0, 1) are two theorems on strict L? solvability in
X and in real interpolation spaces D (6, p), correspondingly. First we prove two lemmas
about strict solvability of the equation with zero forcing function.

By (4.33) and the uniqueness of the Laplace transform it follows that w(t) := P,(t)xg
satisfies (4.28). The following lemma gives sufficient conditions for P,(t)x, to be a strict
solution of (4.28). In fact we prove a stronger result, which except for our application, is
of independent interest, because it gives an equivalent norm in the interpolation spaces
DA(’;;;,p) in terms of the operator-valued function AP,(t).

Lemma 4.15 Assume that « € (0,1) and A is a nonnegative operator in a complex
Banach space X with spectral angle wa satisfying (4.9). Then the following assertions
hold

(a) Let 1 < p < &5 Then AP,(t)zg € LP(Ry, X) iff xg € Da(%F,p). In this case
there are constants Cy,Cy, depending only on «, p, ws and K(¢) for some ¢ €
(am/2,m — wa), such that

Cl[xO]DA(%,p) < [[APL(t)zol| Lo ryix) < CZ[HUO]DA(%,,)) (4.34)
(b) Let p > . Then AP,(t)zy € LP(Ry, X) iff 2o = 0.

Proof: Let 1 < p < ﬁ and xy € DA(’;;;,p). According to (4.32) and using analyticity
to change the integration path we get, when we change the integration variable,

1 @ d
AP, (t)rg = — e“A('u—I + A) g —H, r> 0. (4.35)
271 | te t

By the dominated convergence theorem we can let » — 0 and get
616‘ 00 ; aei(w
APy )ag = = [ e AL

T Jo t

I+ A)_1$0 %

(4.36)
To estimate the function under the integral sign we use the representation for s > 0
A(A+ 50D — A(A+sI)7" = (e — 1)se?(A + 5eFT) TP A(A + sI) 7
which implies
|A(A + 20) || x < (1 + 2sin gKA(¢)> NA(A + |2|]) " wo||x, |argz] = ¢.  (4.37)

Therefore

o0 (6] d
APzl < e [ AT+ ) Haalx L
0
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where ¢; = 7 1(1+ 2sin @ K 4(af)). Applying the generalized Minkowski inequality

L e Ca{ [ e ol s

where f(7,t) is a measurable function, defined on Ry x R, such that the integrals on
both sides are well defined, we obtain

f(r,t)dt

Ry

AP Oallirey < o [ e (/ (AT + 4) ol >pdt)1dp (439)

(e.e) (0.0 1 d
0 0 o

= @ [xO]DA( > P)’
with ¢, = ¢;I'(1/p)(—a cos#)~/? and we have used
o N N dt, 1
[2lpaz ) = (04/0 (AT +A) 2lx)" )7 (4.40)

easily obtained from (1.5) for 0 < v < «, p € (1, 00).

Suppose now that AP, (t)xy € LP(Ry; X). Applying (4.33) and the generalized Minkowski
inequality, we obtain when we change twice the integration variable

</°o N3 AT + A) Ll ‘?) (4.41)

0

_ ( / 2| / e‘/\tAPa(t)xodtH’;(d)\)p
0 0

_ </ x2||/ e—TAPa(g)xodTH’)’(d)\)p
0 0

/e(/ AP Dl dA)pdT

0 0

= / e~ v dr (/ |AP, (o) % da) ’
0 0

1
= T = DlAPaB)zolleqe, x) < oo

VAN

Therefore, if 1 < p < =, (4.40) and (4 41) imply [xo]DA(p 1y S | AP ()0 | Le(ry,x) <
oo and thus xy € DA( o ,p) If p > ;= then (4.40) and (4 41) implies zy = 0, because
D4(1,p) ={0}.0

In case 0 € p(A), we can take ||.||p,sp) = [.]Da@p) @ an equivalent norm in D4 (d,p) (see

[14]) and inequalities (4.34) imply

Cullwollp ezt gy < AP0l [y < CllTollp g2zt (4.42)

p)
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Moreover, Lemma 4.14 (b) implies

o0 T o0 T Oon
| 1arg = [ lar@p e [ Claraolides [ janolkdes [ e
0 0 T 0

T

Since p > 1 then AP, (t)xy € LP(I;X) is equivalent to AP,(t)xy € LP(Ry;X). These
results together with Proposition 4.10 imply the following theorem.

Theorem 4.16 Suppose that « € (0,1), 1 < p < oo, X is a Banach space of class HT,
A is an R-sectorial operator in X with 0 € p(A) and with R-angle w¥, satisfying (4.20),
and f € LP(I; X). Then the following statements hold:

(a) if 1 < p < 7=, then there is a unique strict L? solution u of (4.25) iff x, € DA(’L;;,p);
(b) if p > = then (4.25) has a unique strict L? solution iff zo = 0.
In both cases the following estimate is satisfied (for (b) we set xo = 0):
[ullzraix) + [1DFullrix) + [[Aullerrxy < Cllzollp, ezt ) + 1 fllera), (4:43)

where the constant C' depends on X, «, p, wa and K4(0) for some 0 € (ar/2,m — wa)
and on R (am/2), but does not depend on T' and on the individual operator A.

To obtain further regularity results we need more detailed estimates on AP, (t)z,. Next
we present conditions under which AP, (t)xy belongs to some interpolation spaces.

Lemma 4.17 Assume that « € (0,1) and A is a nonnegative operator in a complex
Banach space X with spectral angle w, satisfying (4.9). If 1 < p < ﬁ, 0<o< ap;igﬂ

and xy € DA(% + 0,p) then AP,(t)xy € LP(Ry;Da(6,p)). More precisely, there is a
constant C' depending on «, §, p, wa and K 4(¢) for some ¢ € (am/2,m — wa), such that

||APa(t)xOHLP(RJr;DA(é,p)) < CHxOHDA(%-HS,p)' (4.44)
Proof: Set v = ad. According to (4.32) we get

APa (t)l‘o -

= —— eMANT + A) tzyd), > 0. (4.45)
271 I

Take p® > r. Since

« «

« -1 (07 -1 _ M @ _1—
AT + A)TPANCT + A) —MQ_MA(MHA) 5 e

AT + A)7

it follows by (4.45)
AT + A)7LAP,(t) g
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1 pe 1 A oM -1
=A(p*l+ A A\ — — —— VAN T+ A dA.
(T +4) 27m_/F o 1° —)\ae o 21 Jp, , B —)\0‘ ( +4)

When we close the path I',y at infinity by increasing argument, we see that the first
integral is 0 by Cauchy’s theorem and we get
1 A

A(p®l + A) AP, (Hxy = —— MANT + A) Lz d. 4.46
(H + ) ( )‘TO 2711 T Iua _ )\ae ( + ) Zo ( )

In this integral we may let r | 0 without changing the value of the integral, because the
function we integrate is analytic and the integral over a part of the circle with radius r
goes to 0 by the assumption that 6 € (7, min{r, **4}), and the definition of T, 5.

Thus we have by (4.46) and (4.37)

P AT + A) T AP ()0l x (4.47)
o0 Y o
< Cl/ LWSSNOSGHA(SQI—FA)_la?OHXdS
o T e

> (%)7 st cos a ds
= CI/O |(H)a—_eia€|8’y+1€t 9||A(S I+A) .IOHX?

where ¢; =7 1(1 4 2sin 2 K 4(ab)). Let for 7 € R
F(r) = eT0tDeemteost) Ao 4 AV Lagllx, g(7) == e[| A(e™T + A) LAP,(t)xo||x,
h(r) := €™ /]|e™™ — .

By changing variables (s = €?) in the integral in (4.47) we conclude that

o) < e / T b — o) (o) do. (4.48)

o0

Since h € LY(R), f € L?(R; X), we can apply the Young inequality to (4.48) to obtain
gllLr;x) < cillhllpiw || f]lLrr;x). Because a change of variables shows that ||g|Lr@) =
[AP,(t)20] D4 (5,), We conclude after another change of variables that

SR L o ds
APl <0 | s ([T e+ a) g )
o |59+ e 0 s

Therefore, setting ¢y = ¢; fo ds, we obtain

SO‘ +ew¢9‘

([ 1m0l ) ",
o ([T [T a4ty —dt)
= ([ LG e @) ] ) )

IN
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= ¢ (/000 (U”YH*%eacosa)p da/ooo (t‘”‘l A ((%) A) 1370 X)p dt>%

oo oo d
= ¢ (/ eapcoseda/ ( Y+1— pHA( a[—l—A 370||X _)
0 0 T

= alwl) noy = alvol, ety < slvollp, et o

where ¢3 = ¢y(—pcos 0)*%. By (4.49), (4.42) and the embedding
-1

ap

(i.e. ||x0||DA(%’p) < c||330||DA(%+67p)), we obtain (4.44).0

Sl

+5p)‘—>DA(

—1
D
ne p” D)

This lemma shows that if 2o € DA(Z;p1 +6,p) then P,(t)xy is a strict L? solution of (4.28)
in D4(0,p). This result together with Corollary 4.6 (a) implies the following theorem:

Theorem 4.18 Suppose that a € (0,1), 1 < p < oo, A is a positive operator in a
Banach space X with spectral angle w4, satisfying (4.9). If 1 <p < ﬁ, 0<d< O‘p;i;;“,

Ty € DA(pa;pl +0,p), f € LP(I; D4(d,p)), then there is a unique strict LP solution u of
(4.25) in D (0, p) satisfying

[ulleor,pa@on HIDE Ul oaspaemHAulleepaea < Clllzollp, ezt i) T llermpaean)-

This result holds also if ""’;75“ < < 1 and vy = 0. The constant C' depends on
X, a, p, 6, wy and K4(0) for some 0 € (am/2,m —wa), but does not depend on T and
on the individual operator A.

Lemma 4.17 concerns “spatial regularity”. We expect that the following result concerning
“temporal regularity” also holds. If it is true, it could be combined with Corollary 4.6 (b)
to obtain a result analogous to Theorem 4.18.

Conjecture: Under the conditions of Lemma 4.17 the following statements hold

() f1<p<=,0<6< O"’%ﬁ“ then AP, (t)xy € WP(Ry; X) iff p € DA(’;;;—i—é,p).
In this case there are constants C,Cy such that

Cilwolp =1 4p) < AP0 l[wess @, ix) < Calto]p, 21 45) (4.50)
(b) If 1 <p < {15, 6 > 2B then AP, (t)xg € W*P(Ry; X) iff 2y = 0.

We give the proof of the “only if” part of (a) and (b). If AP,(t)r € W*P?(R,; X), we
obtain as in (4.41)

> —lig 1Y — dA
oo = ([ INEAGR 5 )l )’

1 > z
= I'(1- 2—9 + ad) (/ a*pa5||APa(o)xo||§( da)
0

CHAPOL(t)xOHWD“S’P(R+,X) < Q0.

VAN
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Therefore, xy € DA(% +4,p) if ’%pl + 6 < 1, otherwise xq = 0.

The case a € (1,2)

Applying the Laplace transform to the equations (4.30) and (4.31) we obtain formally that
the Laplace transforms of their solutions w and z are A(A*1 + A) zg and (A*1 + A) lay,
respectively. Therefore, besides P, (), defined as in (4.32), we consider also Q,(t), defined
by

Qu(t)z = —— / AT + A)w d) (4.51)

2m1 I

with the same integration path as P,(t). The properties of Q,(t) can be derived from
Lemma 4.14 and the fact that Q,(t) = P.(t). It is not difficult to check that w(t) :=
Qa(t)z satisfies (4.30) and z(t) := P,(t)x; satisfies (4.31). More information about
regularity of these solutions is contained in the following two lemmas, which can be
proven in the same way as Lemmas 4.15 and 4.17, so we omit their proofs.

Lemma 4.19 Assume that « € (1,2) and A is a nonnegative operator in a complex
Banach space X with spectral angle wa satisfying (4.9). Then the following assertions
hold

(a) Let 1 < p < 52=. Then AQ.(t)xy € LP(Ry; X) iff zy € DA(%,p). In this case

—Q

2
there are constants C7 and Cy, such that

01[$0]DA(%7,)) < [[AQa()zollLrry;x) < 02[$0]DA(%,17)

(b) Let p > 7. Then AQ,(t)xy € LP(Ry; X) iff 2y = 0.

(¢) For all p > 1, AP,(t)x; € LP(Ry;X) iff z; € DA(’;;;,p). In this case there are
constants C| and C), such that

Ol ezt ) S NAPa(B) 21|l x) < Colan]p o=t )
The constants depend on «, p, wy and K4(0) for some 0 € (ar /2,7 — wy).

Lemma 4.20 Assume that o € (1,2) and A is a nonnegative operator in a complex
Banach space X with spectral angle w, satisfying (4.9). Then the following assertions
hold

(a) If1<p<357-,0<6< ""’;72;’“ and g € DA(% + d,p) then Q. (t)xy is a strict
solution of (4.30) in LP(R,; D4(0,p)), satisfying

1AQa()aollLras:pa@e) < Clizollp (2=t 15):
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(b) Ifp>1,0<0 < O‘p;i;;“ and x; € DA(Z;p1 + d,p) then P,(t)x is a strict solution of
(4.31) in LP(Ry; Da(0,p)) and

[APa ()1 [l oy; 04000 < Cll2illn 2t 15
The constants depend on «, §, p, wa and K4(0) for some 0 € (an /2,7 — w,).
Lemma 4.19 together with Proposition 4.10 implies the following theorem:

Theorem 4.21 Let « € (1,2), 1 < p < oo, X be a Banach space of class HT, A be
an R-sectorial operator in X with 0 € p(A) and with R-angle w%, satisfying (4.20), and
fel;X) Ifl <p< ﬁ, Xy € DA(QP L p) and z, € Dy (2 l,p) then there is a
unique strict LP solution u of (4.26) sat1sfy1ng

[ullzrax) + [1DFullorasx) + ([ Aullerix) < Clllzollp 2=t ) + 121l py 2zt ) + 1 Fllzeax)

This result holds also if p > 2Ea, xg = 0 and x; € Da(%~ ” L ). The constant C' has the
same properties as in Theorem 4.16.

Lemma 4.20 together with Corollary 4.6 imply the following theorem.

Theorem 4.22 Suppose that a € (1,2), 1 < p < oo, A is a positive operator in a
Banach space X with spectral angle wy, satisfying (4.9), and f € LP(I; D4(0,p)). If
l<p<z;-,0<d< O‘p;izi“, Ty € DA(2’;;1 +4,p), 11 € DA(% + d,p), then there is a
unique strict solution u of (4.26) in LP(I; D 4(6, p)) satistying

ullze:pap)) + 1DF Ul o104 60)) + | AUl Lo (2,04 (5.0))

< Olllwollp ezt o) + il ezt o) + 1 lo@paem)-

This result holds also if p > ﬁ, 0<6< a”%ﬁ“, x9g =0, 2, € DA(’;;p1 + 6,p). The

constant C' has the same properties as in Theorem 4.18.

In this way we obtained a complete picture of the strict L? solvability of fractional au-

tonomous equations. Note that maximal regularity results in the setting of Holder con-

tinuous functions instead of LP functions are obtained in [15] for @ € (0,1) and [16] for
€ (1,2).
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Chapter 5

Maximal regularity in Hilbert spaces
via accretivity

If @ € (0,1) then £, are m-accretive operators. So, taking A also accretive, we can apply
the theory of sums of accretive operators (see e.g. [30]) to prove maximal regularity even
for A nonlinear. This is a simple real method, completely different from the theorems of
Da Prato-Grisvard and Dore-Venni type. Since the operators £, with « € (1,2) are no
more accretive, we can not apply directly the method of sums of accretive operators in
this case. On the other hand, it is well known that the reduction of a second order Cauchy
problem to a first order system is an important tool in treating second order problems.
An attempt to apply this idea to our case, rewriting the problem of order a € (1,2) to
a problem of order «/2 with an accretive operator, shows, however, that this is possible
only when the original operator is self-adjoint.

Linear nonautonomous problems are also studied via accretivity. The obtained results are
applied to the fractional Lowner-Kufarev equation.

5.1 Two classical results

Let o € (0,2). Assume H is a Hilbert space with inner product (.,.) and A is a linear
closed densely defined operator on H. Let I = (0,7), T > 0, and consider again the
problem

Diu(t) + Au(t) = f(t), a.a.tel, (5.1)
with an initial condition (g;_ * u)(0) = 0 when a € (0,1) and two initial conditions
(g2—a *u)(0) = 0 and (ga—q *u)'(0) = 0 when « € (1,2). Our goal is to study its maximal
regularity in the Hilbert space L?(I; H).

We can use the following two theorems on the sum of commuting operators in Hilbert
space. The first is due to Grisvard [44], the second to Dore and Venni [28].

Theorem 5.1 Let A and B be two linear, resolvent commuting, nonnegative operators
in a Hilbert space H with spectral angles w4 and wg, respectively, such that w4+ wg < 7

71
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and let 0 € p(A) U p(B). Assume
DA(ea 2) = Da- (97 2) (52)

for some 0 < 6 < 1. Then 0 € p(A+ B) and wayp < max(wa,ws).

Theorem 5.2 Let A and B be two linear, resolvent commuting, nonnegative operators
in a Hilbert space H with spectral angles w4 and wg, respectively, such that w4+ wg < 7
and let 0 € p(A) U p(B). Assume

sup [JA®] < oo, (5.3)

0<ls|<1

Then 0 € p(A+ B) and wayp < max(wy,ws).

Let us note that if condition (5.2) is satisfied, then (5.3) holds [75]. In [9] an example of
an operator A, satisfying (5.3), but not (5.2), is given. It has been shown in [49] that if
A is m~accretive in a Hilbert space, then condition (5.3) holds.

Since L, are operators with bounded imaginary powers in L*(I; H) and 0 € p(L,), we
obtain the following result:

Corollary 5.3 Let « € (0,2), T > 0, and H be a Hilbert space. If A is nonnegative with
spectral angle wy < m(1 — «/2) then (5.1) has maximal regularity in LP(I; H).

This can be obtained also from Proposition 4.10, because in Hilbert space the R-bounded-
ness coincides with the uniform norm boundedness. So, the problem for the maximal
regularity of (5.1) in L?([; H) is completely solved. Our goal in this chapter is to apply
a simpler real method to study its maximal regularity: the method of sums of accretive
operators.

5.2 The case of nonlinear m-accretive operators with
a € (0,1)

Since the method of sums of accretive operators works also for nonlinear operators, we
prefer to formulate our results in this more general form. First we extend some definitions
to the nonlinear case. Let A be a nonlinear multivalued operator of D(A) C H into H.
Just as in the linear case the operator A is called m-accretive, if for all A > 0 the
resolvent (A + A)~! is everywhere defined and ||(A] + A)7!| < A™!. By expressing the
last condition in terms of the inner product of H it can be shown that the operator A is
m-accretive iff A is monotone, that is

(up — ug,v; — vg) > 0, for all v; € Auy, i =1,2, (5.4)

and the operator A/ + A is surjective for each positive number A ( equivalently, for some
A>0).
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We suppose that
A is m-accretive and 0 € A0 (5.5)

and
feLl*I;H). (5.6)

Consider the abstract fractional differential equation of order o € (0, 1)

Diu(t) + Au(t) > f(t), aa.tel,

5.7
(g1-a * u)(0) = . (5.7)

Define maximal L? regularity of (5.7) in the same way as for linear A (Definition 4.3).

In this chapter we use a basic lemma [8], Lemme 2.4, which we prove now for completeness.

Lemma 5.4 Let A be m-accretive and let B be an accretive Lipschitz continuous every-
where defined operator in a Hilbert space H. Then A+ B with D(A+ B) = D(A) is
m-accretive.

Proof: 1t is immediate that A + B is accretive. Thus, in order to prove the m-accretivity
of the operator A + B, we need to show that the equation

A+ Au+ Bu = f (5.8)

has a solution u € D(A) N D(B) for all A > 0 and f € #H. Just as in the linear case it
suffices to prove this only for some \g > 0. Equation (5.8) is equivalent to

u= N+ A (f - Bu). (5.9)

Now take Ay > 0 sufficiently large, such that ||Bu; — Bus|| < Ao/2||u; — usgl|. Since
|(Xol + A)7| < Mgt it follows that the right-hand side of equation (5.9) defines a strict
contraction in ‘H and therefore it admits a unique fixed point. Therefore (5.8) has a
unique solution. O

In [18] maximal regularity of a generalization of (5.7) in L?(I; H) is studied using the
theory of sums of accretive operators in a real Hilbert space. We repeat here the argument
used in a slightly improved and shortened form. We consider only the case of our specific
kernel g;_q.

Theorem 5.5 Let o € (0,1), H be a real Hilbert space and A be a nonlinear multivalued
operator in H. Assume the conditions (5.5) and (5.6) hold. Then there exists a unique
function u € L*(I; D(A)) N H**(I; H), satisfying (5.7).

Proof: Define operators of fractional differentiation on R via Fourier transform. Let u
denotes the Fourier transform of u. We define L, the operator of fractional differentiation
on R, by

—~

Lyu(w) = (iw)%u(w), w € R\ {0},
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D(L,) = {u € L*(R;R)| [R|w|2a|ﬂ(w)|2 dw < 0o} = H*?*(R; R). (5.10)

Denote by M(R) (see [21]) the set of linear m-accretive operators L in L?(R; R) such that
the resolvent (I + AL)~! is order preserving and contractive in LP(R;R) for all p € [1, oo]
and all A > 0.

Since g;_, is nonnegative and nonincreasing on R, , it follows that L, € M(R) ([22]). Let
L? be the adjoint operator of L,. Via Fourier transform we obtain D(L,) = D(L}) and
| Laul| 2z = ||L5ullL2@z), hence Lo is a normal operator. Define Lay = (Lo + L)
with D(Lao) = D(Ly). This operator is clearly symmetric. Since L, is m-accretive,
wr, < /2. Similarly L} is m-accretive and wrs = wr,. Therefore wy, +wp. <. Since
L., is normal it is evident that

Dy (0,2) = D= (0,2), 6€(0,1),

and it follows from Theorem 5.1 that L, is m-accretive. The fact that the resolvent of
L, is order preserving and contractive in LP(R;R) for all p € [1,00] and all A > 0 can

be seen using the Trotter product formula [71]. And finally, since L, is normal, we have
in L*(R; R)

2(Lou, (Lo + L})u) = (Lou, Lou) + 2(Lou, Liu) + (L, Liu).

In this way we have proved the following

Lemma 5.6 If L, is defined as above, then
(a) L, is a normal operator, L, € M(R);
(b) Lo is a symmetric operator, L,y € M(R);

(C) (LaaLa,O)Lz(R;R) = ||La,0||%2(R;R)‘

Let A > 0, A, denotes the Yosida approximation of A, Ay = (I — (I + AA)™!) C
A(I +XA)~!. Consider the approximating equations to (5.7) in L*(I; H)

Auy (t) + %(gl_a s uy)(t) + Ayun(t) = f(t), t € 1. (5.11)
Let ;
fo= { (J; EZI (5.12)

and L,, L., A, and A, denote the m-accretive extensions of L,, Lo, A, and A,,
respectively, to L?(R; H). Then we have

D(La) = D(Lap) = {u € L*(R H)| /RIwIMIIﬂ(M)II% dw < oo} = H**(R; H).
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Now rewrite (5.11) in L*(R; H) as
)\u,\+£au,\+¢4)\l®\ == fO- (513)

Since L, is m-accretive, Ay-accretive, Lipschitz continuous, everywhere defined, by Lemma
5.4 this equation has, for each A > 0, a unique solution uy € D(L,). It follows from its
uniqueness that uy =0, £ < 0.

Take the inner product of (5.13) with £, ouy to obtain in L*(R; H):
Aun; Lapur) + (Latin, Laoun) + (Axun, Laour) = (fo, Laotin)- (5.14)
Lemma 5.6 (c) implies
(Laur, Lapun)r2wsm) = || Laotial|L2@;m)- (5.15)
By (5.6), (5.12), (5.15) and by the accretivity of L, it follows
||‘Ca,0u)\||%2(R;H) + (Anun, Laour) 2@ m) < cf|Laotial|L2@;m), (5.16)

where ¢ = || f||2(;;n) < 0o. Next, from Lemma 5.6 (b) and (5.5) it follows ([30], Theorem
3.3.1.) that

(Axun, Laour) 2y > 0, A >0, (5.17)
and this inequality together with (5.16) implies
sup || Lot 2@y < ¢ < oo. (5.18)
A>0

But, using the properties of the Fourier transform, we get

T
| a0t L2 ;1) = cOS a§||£auA||L2(R;H)7

therefore -
sup || Laual|z2@am) < c(cosa=)"" < oo. (5.19)
A>0 2
Next we prove that
T
sup/ | ua(®) 1% dt < eT(1 = )T < o. (5.20)
x>0 Jo

If v € R**(I; H) we obtain

| Grloas o) o= ano®) [ ol dt+ [ (Gllonma = 0o < 00t

and because g, o(t) — g1_o(7) is positive, nonincreasing for ¢ € I, the second integral on
the right hand side is nonnegative and so

A(%(gla*v),v)Hdtzgla(T)/o loll3 dt. (5.21)
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Now multiply (5.11) by u,, integrate over I and use the accretivity of Ay ,(5.6) and (5.21)
to obtain (5.20). From (5.6), (5.20) and (5.19) there follows

sup [|[Axua| L2 (r;m) < 00. (5.22)
A>0
Next we show that u, converges as A | 0. By (5.11)

Auy — puy, + %(gl_a s« (un —uy)) + Ayuy — Ayu, = 0. (5.23)
Take the scalar product of (5.23) and uy — u, in L*(I; H) and let A, | 0. By (5.20),
lim sup (Aux — pny, ux — uy) r2em) = 0. (5.24)
Ad0
Furthermore, by (5.22), (5.24) and the monotonicity of A, denoting Ry := (I +XA)~!, we
have

lim sup (A)\U)\ — Auuu, Uy — u,u)L2(I;H)

A0
= lim EUE) (A)\U,)\ - Auu#, )\A)\U,\ - /LAILU,# + R,\U,)\ - RMU’#)Lz(I;H)
210
= lim fu\{) ((Anuy — Ay, NMAyuy — pAuu,) 2
»140

+ (AR)\U)\ - ARNUIM R)\U)\ — Ruuu)Lz([;H)) Z 0.
Combining the last inequality with (5.23) and (5.24), we obtain
, d
lim sup (= (g1-a * (ux — uy)), ux — )2y < 0. (5.25)
A,p0 dt
So, by (5.21) and (5.25) we have

lim sup [Jux — vyl r20;m) = 0. (5.26)
A,ud0

By (5.26) there exists u such that uy — w in L*(I; H). It follows from (5.19) and (5.22)
the existence of v and w, such that L uy — v, Ayuy — w, where — denotes the weak
convergence in L?(I; H). Since L, is linear and closed in L?(I; H), it is also weakly closed
and therefore u € D(L,) and L,u = v. It remains to use [8], Prop. 2.5, to get w = Au.
This completes the existence part of the theorem.

To obtain the uniqueness, assume the contrary and use (5.21) together with monotonicity.O

In the next section we use the specialization of this result to linear operators A.

5.3 Reduction of problems with o € (1,2)

Let H be a real Hilbert space with inner product (.,.) and A : D(A) C H — H be a linear
m-accretive operator, 0 € p(A). Let a € (1,2) and f € L*(I; H). Consider the problem

Du(t) + Au(t) = f(t), a.a.tel,

(-0 % u)(0) = 0, (g2 *u)(0) = 0. (5.27)
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Since in this case the operator of fractional differentiation is no longer m-accretive, we
cannot apply directly the method of the previous section. A way to make the application
of this method possible also for a € (1,2) is to rewrite (5.27) as a system of equations
of order «/2, where the corresponding matrix is an m-accretive operator. Recall that
this is a natural way to study equations of order a = 2 and many results for second-
order Cauchy problems can be obtained by rewriting them as first-order problems. In the
present section we try to apply this idea to our case.

The properties of A imply that A'/? is well defined and we can define the Hilbert space
H = D(AY?) x H with inner product

<< v > ! < o >>H = (AY2u, A2 u) + (v, 02), (5.28)

Define the matrix operator C' : D(C') — H by

D(C) = D(A) x D(AY?), C = ( 31 _OI ) : (5.29)

For 8 = «a/2, hy = < ? ) consider the following problem in H

Dlw(t) + Cw(t) = ho(t), a.a.tel,

(g1 * w)(0) = 0. (5.30)

Proposition 5.7 Let a € (1,2), 3 = «/2. If for any f € L*(I; H) equation (5.30) has
a unique solution w € RY*(I,H) N L*(I; D(C)) then the problem (5.27) has maximal
regularity in L*(I; H).

Proof: Let A and C denote the extensions of A and C to L*(I; H) and L*(I;H), respec-
tively. For o € (0,2), 3 € (0, 1), define operators £, and Lz as follows

D(Lo) = R3*(I; H), Lau = Dju, u€ D(La), (5.31)

D(xLs) = RI*(I;H), #Lsu= D}u, u€ D(3Ls). (5.32)
Problems (5.27) and (5.30) can be written in operator form as
Lou+ Au = f; (5.33)
nLpw + Cw = hy. (5.34)
Let w = ( Z ) be the unique solution of (5.30). Therefore v = Lsu and Lzv + Au = f.
Since £ = L,, then u satisfies (5.33). The maximal regularity estimate for (5.30)

|l Law|| L2y + |Cw|| L2100 < M| hol 22232 (5.35)
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is equivalent to
||A1/2['5U||L2(I;H) + [1Lsvll L2y + ||A1/2U||L2(I;H) +llAullzmy < M|l 2y, (5.36)
which by Lzv = L,u implies

| LaullL2smy + | Aull 23y < M| fllL203m).0 (5.37)

In fact a somewhat stronger result holds, showing that it is natural to expect that problems
(5.27) and (5.30) simultaneously have or do not have maximal L? regularity. Namely, if

H is a complex Hilbert space then the following relation between the spectral angles of
A and C holds

2we = wy + . (5.38)

Indeed, suppose that A is nonnegative with spectral angle ws. By (5.43) we obtain for
AE Y
3 (

2

T—wA—€)

APIO+C) Rl = [AAY2 (P +A4) T g+ f)[PHIAZ (AP +A) g —AAY 2 (A2 A) T H A2 f12,

Using the inequality ||a + b[|* < 2(||a|* + ||0]|?), we have

APIO+C)M0IE, < 2 AAY2O2 + A) g2 + 2| NP AY2 (O + )P (5.39)
+ 2NN+ A) g+ 2AAVE (N 4 A AV F.

Since the spectral angle of A is w4 it follows for A € E%

(r—wa—e)
I+ )7 <e., [AN?+A)H <e+1.
Applying [69], Proposition 2.3.3, these two inequalities imply for such A,
A2 4 47 <

Substituting the above inequalities in (5.39), we obtain that there exists a constant M.,
such that for any A € E%(

T—wA—€)
AP+ C) a3, < ME(IAYZ I + [lgl1)- (5.40)

Therefore, the spectral angle we of C satisfies we < “’ATJ“” Conversely, if C' has spectral
angle we then (5.40) is satisfied for A € ¥,_,._.. Taking f = 0 we obtain

NN+ A)7Y < M., X€Sp_po.

Hence A is nonnegative and ws < 2we — w. Therefore (5.38) holds. Since wg, =
ar/2, w,r, = Br/2 (Lemma 1.8 (d)) then (5.38) shows that the inequality we, +wa <
is equivalent to w, ¢, +we < 7 if f = /2.

Now instead of (5.27) we would like to study (5.30) by the method of sums of accretive
operators. Thus, we need C to be m-accretive. Next lemma gives the relationship between
the properties of operators A and C.
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Lemma 5.8 Let A be an m-accretive operator, 0 € p(A). Then C' is m-accretive iff A is
self-adjoint.

Proof: If A is an m-accretive and self-adjoint operator with 0 € p(A) then A2 has the
same properties. If w = ( Z ) € D(C), then

(Cw,w)y = —(AY?v, AY?u) + (Au, v) (5.41)

and therefore (Cw,w)y = 0. So, C and —C' are m-accretive. Moreover, R(A\] + A) =
H, A\ >0, implies R(AI + C) =H, A > 0. Indeed, consider the equation

Aw+Cw=~h, heH, A>D0. (5.42)
Ifw= < :}L > ,and h = ( ch > , then for any A > 0 its solution is given by

u= N+ A) g+ ), v=AN+A) g — A2\ A) LAV (5.43)

Since f € D(AY?), g € H, then u € D(A), v € D(AY?), i.e. (5.42) has unique solution
w € D(C) and thus R(AI +C) =H, A > 0. Therefore C' is m-accretive.

Conversely, let C' be m-accretive. This implies by (5.41) that (Au,v) > (AY?u, AY%v),
Setting u; = AY?u, we have (AY?uy,v) > (u1, AY?v) for all uy,v € D(A'Y?). Taking now
—u; instead of u;, we obtain in fact equality

(AY2uy,v) = (uy, AY?0), Vuy,v € D(AY?).

Therefore A'/? and thus also A is symmetric. Since it is by assumption also m-accretive,
the following basic lemma ( see [48] ) shows that it is self-adjoint.O

Lemma 5.9 A linear operator A is self-adjoint and accretive, iff it is symmetric and
m-accretive. If in addition 0 € p(A), then there exists 3 > 0 such that (Au,u) > B|ul*.

Proof: Let A be self-adjoint and accretive. Since Al + A is self-adjoint for any A > 0,
then H = N(AM + A) @ R(M + A) [48]. But N(Al + A) = {0} by the accretivity of A.
Therefore R(A + A) = H and A is m-accretive.

Let now A be m-accretive and symmetric. Therefore (I + A)~! is bounded operator.
Then [48], Ch. 3, Theorem 5.30, implies that ((I + A)*)~! is bounded, too, and ((I +
A) )7t = ((I+A)~1)*. Since (I+ A)~" is bounded symmetric, it is self-adjoint. Therefore
(I +A)1)*=(I+ At Thus we obtain (I + A)~! = (I + A*)~!, which implies that
D(A) = D(A*) and Au = A*u for all w € D(A). Therefore A is self-adjoint.

To prove the last part of the proposition we note that o(A) C (—oo, +00) because A is

self-adjoint. Since it is accretive, we have (—o0,0) C p(A). If moreover 0 € p(A) then
(since the resolvent set is open) there exists 3 > 0 such that (—oo, 5) € p(A). Therefore
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the operator Ag = A — (3 has its spectrum on the nonnegative real axis and for any A > 0,
(A + A) ey < AL Hence, if u € D(A) we obtain in H:

lull < A7HI(Ap + Aull

lul* < A7 Agull* + 207" (Agu, w) + [|ul|*
0 < A Agull® + 2(Asu, u).
Taking A — oo we obtain (Agu,u) > 0.0

According to Lemma 5.8, C' is m-accretive only if A is self-adjoint. So, our idea to reduce
the problem of order a € (1,2) to a problem of order «/2 and applying to it Theorem
5.5 works only for self-adjoint operators A. But in this case maximal regularity can be
obtained by spectral theory and this is the most natural way.

5.4 Linear nonautonomous problems with a € (0, 1)

In this section we suppose that o € (0,1) and I = (0,7), where T" > 0. Let H be a
complex Hilbert space and f € L?(I; H). Consider the linear nonautonomous problem
Dfu(t) + C(t)Au(t) = f(t), a.a.tel,
(91-a * u)(0) = 0.
where A : D(A) =: Hy — H, where H, is densely embedded in H and endowed with the
norm ||z||g, = ||Az||g, and moreover
(A) A is accretive and self-adjoint in H, 0 € p(A);

(C) C(.) defines a bounded operator in L*(I; H) and there exists v > 0, such that
Re (C()us w) 2y > Ylull oy, for any u € L*(I; H).

(5.44)

Note that Lemma 5.9 elucidates condition (A).
Further, define operators A and C in L*(I; H) as follows
D(A) = L*(I; Hy), (Au)(t) = Au(t), for a.a. t € I, u € D(A);
D(C) = L*(I; H), (Cu)(t) = C(t)u(t), for a.a. t € I.
Then equation (5.44) can be rewritten as an operator equation of the form

Lou+CAu = f (5.45)

or, setting v = A tu, as
Lo, A v+ Co = f. (5.46)

The operator A is m-accretive as an extension of the m-accretive operator A ([30], Section
2.4). Moreover, A is symmetric and 0 € p(.A), because A has these properties. Consider
the operator L, A7 on D(L,A™Y) = {u € L*(I; H)|A'u € D(L,)}. Applying [13],
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Proposition 2.1, it follows that £, A ! is m-accretive. Concerning C — 7, it is immediate
by (C), that it is a bounded accretive operator. Therefore, a natural way to prove
solvability of (5.46), resp (5.45), is to apply a specialization of Lemma 5.4 with B an
accretive bounded operator. According to this lemma £, A~! + C — v is m-accretive, that
is, for any f € L?(I; H) the equation (5.46) has a unique solution v € L?(I; H). By taking
the inner product of (5.46) with v we obtain by using the accretivity of L, A™! and C —~
and Cauchy-Schwarz inequality that

1
vl L2y < ;||f||L2(1;H)- (5.47)

Further, from the boundedness of C, (5.46) and (5.47) we obtain that there exists a
constant C such that

1LaA™ 0l 2y + V]| 200 < ClSp2smy- (5.48)

Therefore u = A~ 'v is the unique solution of (5.45), for which (5.48) implies
1Latllz2@my + |Aull2mmy < Cllfll2wm)-
So, we proved the following result:
Theorem 5.10 Let « € (0,1), H be a complex Hilbert space and suppose that (A) and
(C) hold. Then for any f € L*(I; H) there exists a unique function
u e RY*(I; H)N LA(I; Hy),

satisfying (5.44) for which the following estimate holds

Null 2,y + 1D w2y + ull 2y < CNfl|p2osm)- (5.49)

Since for Hilbert spaces H, Ry?(I; H) = HyP(I; H), o # 1/2, in this case we can refor-
mulate the above result in terms of Bessel potential spaces Hy™?(I; H).

In order to apply Lemma 5.4 we needed the fact that £,A4 ! is m-accretive. It is inter-
esting to see to what extent the self-adjointness of A in condition (A) could be relaxed,
preserving the m-accretivity of £,A7!. First note that condition R(Al + L,A™") = H,
A > 0 is satisfied for any m-accretive A, because in this case the equation NMu+ L u = f
is uniquely solvable for any A\ > 0, f € L*(I; H) (Theorem 5.5, which holds also for
complex Hilbert space H). The accretivity of Lo,A™

Re (ﬁaA’lv,v)Lz(I;H) >0, vE€D(LL A,
is equivalent to Re (u, JoAu) 2y > 0, u € D(A). This holds whenever go(t)A is an
operator-valued kernel of positive type [64], that is

Re /OT(/Ot Gult — ) Au(r) dr, u(®)) g dt > 0, u € LA(I; Hy). (5.50)

The following lemma ([64], Proposition 6.7) gives necessary and sufficient conditions for
a kernel k(t)A to be of positive type.
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Lemma 5.11 Let k(t) € L' (I;R) and A € B(Hy, H). Then k(t)A is a kernel of positive
type if and only if

~

Re [k(A)(Au,u)g| >0, Yu € Hy, A€ Xy, (5.51)
where k is the Laplace transform of k.

Since go(A) = A%, the inequality (5.51) is satisfied for k = g¢,, o € (0,1), and for all
A € Y2, if and only if

|arg(Au,u)y| < (1 — a)mw/2. (5.52)
Note that this property is stronger than accretivity only ((Au,u)g € Xr/2) and weaker
than accretivity + self-adjointness ((Au,u)gy C R, ). Inequality (5.52) is equivalent to

(tan ar/2)|Im (Au, u)y| < Re (Au,u)y, u € Hy, (5.53)
when « € (0,1). An m-accretive operator, satisfying such an inequality is called regularly
me-accretive (see [64], p.233). Therefore we can relax condition (A) to
(A’) A is regularly m-accretive with angle an/2 (i.e. (5.52), resp (5.53) is satisfied).

Since Lemma 5.4 holds for nonlinear, accretive, Lipschitz continuous everywhere defined
operators BB, we can make further generalizations of Theorem 5.10 assuming instead of
(C) the following condition

(C") C(t) is nonlinear operator, everywhere defined in L*(I; H), satisfying for any u;, u, €
L(I; H)
1C(t)ur = C)usll 2y < MlJuy — usl| 2y,
(C()w = C(uz, ur — wa)r2imy > Vllur — wallZarmy-

In this way we obtain

Theorem 5.12 Let a € (0,1) and suppose that (A") and (C") are satisfied. Then the
claims of Theorem 5.10 hold.

Another generalization of Theorem 5.10 is to consider instead of (5.44) a more general
integrodifferential equation

d

%(k xu)+C(t)Au = f(t), a.a.tel,

where k € L'(I;R) is nonnegative and nonincreasing. To study this problem, consider
the class of operators, defined as follows:

d
D(K)={ue LP(I)| kxu € Wy*(I)}, Ku= 7 (k> w), ue D(K), (5.54)
where k € L'(I; R) is nonnegative and nonincreasing. Next result is proven in [19], Th.3.1.

Actually, [19] deals with LP(I;R), however, without any changes the proof carries over to
Lr(I;C).
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Lemma 5.13 Let the operator K be defined by (5.54). Then K is m-accretive operator
in LP(I;C) and 0 € p(K).

Suppose moreover that k satisfies |argE()\)| < ¢p < /2 for all A € X;/5. Then the
condition (A’) has to be suitably changed as follows

(A}) A is regularly m-accretive, satisfying

(tan k)| Im (Au, u) y| < Re (Au,u)y, v € Hj. (5.55)
Define the operators K by

D(K) = {u € LP(I: X)| k + u € WEP(1: X)), Ku = %(k vu), ue DK),  (5.56)

Then K is the m-accretive extension of K to LP(0,T; X), therefore the properties given
in Lemma 5.13 remains true for K in L?(0,7; X). According to Lemma 5.11, KA™! is
m-accretive iff A satisfies (Aj},) and the rest follows from Lemma 5.4. Thus, we obtained

Theorem 5.14 Suppose that k € L'(I;R) is nonnegative and nonincreasing, satisfying
larg k(\)| < ¢ < /2 for all X € ¥, /5 and that (A}) and (C) (or (C")) hold. Then for
any f € L*(I; H) there exists a unique function

w € D(K) N L*(I; Hy),

satisfying

%(k xu)(t) + C(t)Au(t) = f(t), a.a. tel, (5.57)

for which the following estimate holds
d
Null L2,y + ||%(k s u)|| L2y + lull 2@y < ClFlle2am)- (5.58)

In spite of these generalizations, the conditions required are still quite restrictive. It is
known (see e.g. [64], p. 233) that an operator A satisfying (A’) belongs to BZP(H;0)
with 0 < (1 —a)n/2. If we take for example C(t) = C, a positive constant, we know that
(5.44) is solvable under much weaker condition # < (2 — a)7/2 (Theorem 5.2). Another
disadvantage of this method is that we can not study (5.44) with « € (1,2), because in
this case L, are not m-accretive. Anyway, it is a simple method, which can be used in
applications. An example is considered in the next section.

5.5 Example: fractional Lowner-Kufarev equation

For a recent study on the linear and quasilinear Lowner-Kufarev equation we refer to
[51], [40], [41], see also the references therein. Let D := {z € C: |z| < 1} be the unit
disk, 7" > 0. Recall the linear Lowner-Kufarev equation:

Q(z,t) = 2F(2,1)Q, (2, 1), Qz,0) = Qo(2), (5.59)
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where F'(z,1) is a continuous function on D x I and analytic with respect to z € D for all
fixed ¢t € I, and (%) is an analytic function on D. Its study is important as a transient
case to the quasilinear Lowner-Kufarev equation.

We are concerned with the “fractional approximation” of the problem (5.59), where the
first derivative on time is replaced by the Riemann-Liouville fractional derivative of order
€ (0, 1), namely

DyQ(z,t) = 2F(2,)2,(2,1), (91-a*2(z,.))(0) =Q(2), a€(0,1), (5.60)

and call it fractional Lowner-Kufarev equation

It turns out that if we want to discuss the existence of solutions, it is more appropriate
to consider time dependent functions in the Hilbert space H := L*»* (0, 27; C), consisting
of all functions of the form f(0) = >°7, f,e™, for which Y>> |f,|> < oo, and endowed
with the inner product

o0

=5 [ 1OO=3 15

Denote

WL2+(0,27;C) := {f € L**(0,2m;C) Zn2|fn|2<oo}.

Define an operator A by

o0

D(A) := W"H(0,2m;C), Af(0) == —if'(0) = > nfoe™. (5.61)
n=1
This operator yields the following properties:
A is accretive and self-adjoint, 0 € p(A). (5.62)

Indeed, we have (Af, f) = 3207, n[fal* > 0 and (Af,9) = 3272, nfugn = (f, Ag), so
that A is accretive and symmetric. According to Lemma 5.9 it remains to show that
R(M + A) = H, A > 0. But it is immediate that for any A > 0 and g € H the equation
Af + Af = g has a unique solution with f, = (A +n)g,.

Let H, := D(A) = Wh2%(0,2m; C) with (f, 9)u, :== (Af, Ag)n. Since A satisfies (5.62)
then AY/? exists and has the same properties. Its explicit representation reads

D(AY?) = {f € L**(0,2m;C) : Z\/_|fn|2<oo} A2 £ (0) Z\an

Define
Hyy = D(AY2), (f,9)m,, = (AV2f, AV2g) (5.63)
H3/2 = D(A3/2) = {U, € H;: Au € Hl/g} ( )H3/2 . (A3/2f7 A3/2g)H .
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Let the family of operators {C(t)};c; be defined by
C(tu(0,t) = —F(e”, t)u(d,t), 0€[0,2r], tel. (5.64)

Since F(e? t) is a continuous function on (6,¢) € [0,27] x I then there exists a constant
M > 0 such that |F(e?,t)] < M, (0,t) € [0,27] x I. Therefore

C(.) € B(L*(I; H)) (5.65)
If we suppose moreover ,
Re F(e” 1) < —y <0, (5.66)
then for any u € L*(I; H)
Re (C()u,uw)2(r;my = —Re / / e t)|u(8,t)|* do dt > 7||u||L2 LH)- (5.67)

So, the operator C(t) is strictly accretive in L?(I; H), i.e. there exists v > 0 such that
Re (C(.)U,U)L2([;H) Z ')/||U||%2(LH), Yu € L2(I, H) (568)

On the Hilbert space H; /s consider the family of operators {A(t)},c;, defined by
D(A(t)) == Hszje, A(t) :=C(t)A.

Again by the continuity of F', it follows A(.) € C'(I; B(Hss, Hy/2)). If (5.66) is satisfied
then the extension of the operator A(s) (s € I is fixed ) to L*(I; Hy2) is an m-accretive
operator. Indeed, according to (5.67), if s € I is fixed then

Re (A(s)u, u)2(r.m, ,,) = Re (C(s)Au, Au) 2,y > 0.

The fact that R(AI + A(s)) = L*(I; Hij2), A > 0, can be proven by solving the corre-
sponding ordinary differential equation. The m-accretivity shows that ws) < 7/2 and
50 Wa(s) < (1 — /2) for any o € (0,1), s € 1.

Some of the above properties will be used here and the rest in the next chapter to study
maximal regularity of the fractional Lowner-Kufarev equation (5.60).

Substituting
v(0,1) == Qe 1) — Qo(e?)ga(t), f(O,1) =P F(e”, 1) (e”)gal(t),
we rewrite (5.60) in the form
Div(t) + C(t)Av(t) = f(t), (g1—a*v)(0) =0; «a € (0,1). (5.69)
Applying Theorem 5.10, the following result holds:
Proposition 5.15 Let a € (0,1), H = L*»"(0,2m;C), H = WbHY%(0,2m;C). As-

1
sume F(e t) is continuous on (0,t) € [0,27] x I and (5.66) is satisfied. Let moreover
ga(t)F(e? t) € L3(I; H) and Qy(e?) € H,. Then (5.60) has a unique solution

Q(e”,t) € L*(I; Hy) N Hy'* (I; H),

satisfying
12 L2500y + |12 ow(rsmy + Q2] 22500,

< CllgaOF (€, )| 2 1], + ca(T) (120l + [1Q0]122,)-
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Chapter 6

Quasilinear problems

The goal of this last chapter is to develop a method to study fractional quasilinear prob-

lems of the form
Diu+ A(u)u = f,

where A(u) is a linear operator for any fixed u. A natural way of solving such problems
is by applying a fixed point argument to the equation

Diu+ A(v)u = f

with v given, which is a nonautonomous linear problem. For this reason we study first the
solvability and maximal LP regularity of the nonautonomous problem for the fractional
differential equation with the Riemann-Liouville fractional derivative of order o € (0, 2).
To this aim we use the results on the strict L? solvability of the corresponding autonomous
problems (Chapter 4) and work inductively in time. Next we establish the global existence
of a strong solution of a quasilinear equation, intermediate to the quasilinear diffusion and
wave equations.

6.1 Linear nonautonomous case

In this section we assume that « € (0,2), 1 < p < oo, T > 0 and X is a Banach space.
Let {A(t) }ieo,r7 be a family of linear closed densely defined operators on X, such that
the domain of A(t) does not depend on t: D(A(t)) = D(A(0)) =: X7 and 0 € p(A(t)).
We equip X; with the graph norm ||z||x, := ||Az||x-

If {A() }+ejo,r) yields the above properties, then by the closed graph theorem, the operator
A(t)A(0)~! is in B(X). Therefore, we have the representation A(t) = C(t)A, where
A = A(0) is closed linear operator in X and C(t) = A(t)A™! € B(X). We used this
factorization in Section 5.4.

Consider the problem

Dfu(t) + A(t)u(t) = f(t), a.a.te[0,T], (6.1)

87
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(g1-a*u)(0) = if a € (0,1),

(92—a ) (0

)
where the forcing function f(¢) € LP(0,7; X) and the initial data zy,z; € X. In analogy
with the autonomous case we give the following definition.

| (62)
= Ty, (92 axu)'(0) =2, ifae(l,2),

Definition 6.1 A function v : [0,7] — X is called a strict LP solution of (6.1) on
[0,7] in X ifu € LP(0,T;X;) N R*P(0,7; X) and (6.1), (6.2) are satisfied.

We suppose that the corresponding autonomous problems with A = A(s), where s € [0, 7]
is fixed, are strictly solvable in L?(0,7; X') with estimates, uniform on s € [0,77]. On the
base of these assumptions we are able to solve (6.1) inductively, dividing the interval [0, T|
in sufficiently small intervals, and to prove its strict L? solvability. This approach was
introduced in [26] in the case = 1 and it is used recently in [17], [42] for studying of
some fractional equations.

Strictly, we suppose the following three properties of A(t):

(A1) D(A(t)) = D(A(0)) =: Xy; for any t € [0,T], A(t) is positive with spectral angle
waw) < (I —a/2)mand A(.) € C(0,T; B(X,, X)).

It follows from (A1) and the compactness of [0, 7] that the graph norms of the operators
A(t) are uniformly equivalent, i.e. there exist constants a; and ay such that for each
z € X; and t € [0,7] we have

mlle]x, < A@)z]|x < alzflx,- (6.3)

Denote by par(s) the modulus of continuity of the continuous function A(t), that is

par(s) = sup [A(t1) — A(t2)ll5x,,x)-
tl,tQE[O,T], |t17t2‘§8

(A2) There exist subspaces Zy, Z; — X such that for any z; € Z;, i = 0,1, f €
LP(0,7; X) and for any fixed s € [0,77] the problem

Diu(t) + A(s)u(t) = f(t), a.a.te]0,T], (6.4)

with initial conditions (6.2) has a strict LP solution u(t), satisfying the estimate (if a €
(0,1) we set 1 = 0):

[ull ooy < M| fllzoo.rix) + lollzo + ll21]]2,)- (6.5)
We suppose in addition

(A3) estimates (6.5) are uniform with respect to s € [0, 7], i.e. the constant M does not
change for different values of s € [0,T].

Under these assumptions we have the following result on strict LP solvability of the nonau-
tonomous problem (6.1), (6.2):
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Lemma 6.2 Let « € (0,2) and assume that (A1), (A2) and (A3) hold. Then for any
x; € Z;, 1 =0,1, f € LP(0,T; X), there exists a unique strict L? solution of (6.1), (6.2),
and the following estimate holds

[ullzrorixny < N[ fllzromx) + [[zollzo + [J21]l2,), (6.6)
where N depends only on M.

Proof: Let us note that (6.5) holds with 7" replaced by an arbitrary T € [0,7] and M
unchanged. To see this, consider the equation

Du(t) + A(s)u(t) = f(t), a.a.tel0,T], (6.7)

where f € L?(0,T; X) and define fy(t) = f(t), a.a.t € [0,7] and fo(t) =0, a.a. t € [T, T].
If uy(t) is the unique solution of (6.4) with f replaced by fy, then u(t) = wuy(t), a.a.
t € [0,T), is the unique solution of (6.7) and by the definition of L? norms we conclude
that we in fact have our claim:

lull oo,y < MU poomiy T @0l zo + N2l 2)- (6.8)

Take T, such that a
T)<ei=—b_. 6.9
par(l:) <e S (6.9)

We solve first (6.1), (6.2) for t € [0,7.]. For v € V. = LP(0,7.; X) we consider the
equation
Dfu(t) + A(0)u(t) = £(t) + (A(0) — A(2))A0) " (t) (6.10)

with initial conditions (6.2). Since the right-hand side is an element of V. we obtain by the
strong solvability of (6.10) that there is a unique solution u € V. such that A(0)u € V..
Therefore the mapping v : v — A(0)u maps V; into itself and from (6.8) we have

1y (v1) = () lzrmiy < MI(A(0) = A())A(0) *(v1 — va)l|zomes)

<M S[up | 1A0) — A()|5cx,,x)llor = vallzeo,1x) < Mpar(T2)|[vr — vallLeo15x)
te[0,1%

According to (6.9) and noting that a;/as < 1, the mapping ~ is a contraction and there
is a unique fixed point. Thus we get a solution on the interval [0, 7;]. Again by (6.8) and
(6.9)

1A ullze(o.x) < MIIf + (A(0) = A(#)A0) 0lleqoix) + 1ol zo + |71]l2)

< M| fllzro.:x) + par (To) V]| Leozx) + |70l 2o + |21 2,)
< M| flloorix) + llwollze + (121l z) + 27 o)l Loo12x) -
Since A(0)u = v, then

||U||LP(0,TE;X1) < 2]\4(||f||LP(0,T;X) + ||$0||Zo + ||$1||Zl)-
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Suppose now that Ty € [0,7] and that we have found a solution of (6.1), (6.2) on [0, T¢]
which satisfies the inequality

[l oo oy < N (o) (| f ey + w0l zo + 2 llz)- (6.11)
Let T = min{T, T, 4+ T.} and define the set
V ={velL0,T;X)| v(t) = A(To)u(t), a.a.te[0,Ty}
For each v € V' we proceed to find a solution w of the equation
Diw(t) + A(To)w(t) = f(t) + (A(To) — A(t))A(To) "v(t) (6.12)

with initial conditions (6.2). Since the right-hand side of (6.12) is an element of LP(0,7’; X),
from the strong solvability of (6.12) there is a unique solution w € L?(0,T; X) such that
A(Ty)w € LP(0,T; X) and the uniqueness guarantees A(Tp)w € V. Denote the mapping
v — A(Ty)w by A(Tp)w =: Guv. By the linearity of (6.12) and applying (6.8) and (6.3) we
obtain

1G(v1) = G(v2) | oo vy < a2 MI(A(To) — A1) A(To) ™ (v1 = v2) | 1o,z
Since vy, vy € V then v; — vy = 0 a.e. on [0, Ty and the last inequality implies

1G(v1) = Gl o zix) < @20 "M sup [JA(To) — A(®)llsexe.x) lor = v2ll oo gix)
te|To, T

< aga; ‘Mpar(T2)|loy — V2l oo 75x)-

Hence, by (6.9) the mapping G is a contraction and thus we get a solution on the interval

~

[0, T]. If we take vy € V' to be such that vo(t) = 0 a.e. on [Ty, T], then ||vo|| o i x) =
| A(To)u|| e (0,10;x)- Using inequalities (6.8), (6.11) and (6.3) we obtain

1wl oo.ixy < MU+ (A(Ty) = A)ATo) ool oo gx) + ol z + 21l z,)

< M(1+ azag pag (L) N(Lo)) (1 flrorsx) + 1ol zo + Nl 2,)
and (6.11) holds with T replaced by T and N(T) replaced by

N(T) = M(1 + agay par(To)N(Tp)).

Since this procedure can be repeated with the same 7., we find a solution on [0, T] that
satisfies the bound (6.6), where we have obtained by induction:

k
N = MZ(%&IIPA,T(Ts)M)ia

i=0
where k& € N is the necessary number of steps k = |T/T.] + 1. Applying (6.9) it follows

k 00
NSMZW' <MZ2‘i:2M. O
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Suppose (A1) is fulfilled. It is interesting to see when (A2) together with continuity
of A(t) for t € [0,7] and the compactness of [0,7'] implies (A3). According to the
theorems in Section 4.3, the constant of maximal regularity depends always on K 4 (0),

0 € (am/2,m — wa()). Next lemma gives the uniform boundedness of these quantities for
te0,T].

Lemma 6.3 Let {A(t)}cor) be a family of operators satisfying (A1). Then there exist
constants w and K such that wyq) < w < (1 — a/2) and Ky (m —w) < K for any
t € 10,17

Proof: Clearly (A1) implies that given s € [0,T],

K

IO + A6 oo < 7Ty

A€ Xy, U{0},

where am/2 < ¢, < Pa) =T — was) < 7. Moreover,
(M + A1) = (M + A(s)) I + (A(t) — A(s))A(0)FA(0) (M + A(s) 71t

for t € [0,T] with |t — s| < &, and A € 5,4, U {0}. So, due to the compactness of [0, 7]
there are constants K > 0 and an/2 < ¢ < m such that

K
1+ |Al

1AL+ A@®) s <

for A € £, U {0}, t € [0,T]. To obtain the desired result we have to set only w = 7 — ¢.0

Since in the Hilbert space case the R-boundedness is equivalent to the uniform bound-
edness, then the constant of maximal regularity depends only on K, (f). Therefore,
according to the above lemma, in this case (A1) together with (A2) implies (A3).

We are now ready to apply the results obtained so far in this section to the fractional
Léwner-Kufarev equation (5.60) which can be rewritten in an abstract form as

Dfu+ C(t)Au =0, (g1—q *u)(0) = up; « € (0,1), (6.13)

where A and C(t) are defined by (5.61) and (5.64), and u = u(0,t) = Q(e, 1), up(f) =
Q(e”). Take as a basic space Hjjz, defined by (5.63). We have already proved that in
this space the family of operators A(t) = C(t)A satisfies (A1). According to Theorem
4.16, if o € (1/2,1), (A2) is also satisfied for the equation with f = 0 and with Z; :=
(Hy/2, Hg/g)ig. Next apply Lemma 6.3 to obtain (A3). Therefore Lemma 6.2 applies
and gives:

Proposition 6.4 Let o € (1/2,1) and the spaces H,/, and Hs/, be defined as in Section
5.5. Assume that F(e?t) is continuous on (0,t) € [0, 2] x [0,T], (5.66) is satisfied and
Q(e?) € (H1/2,H3/2)%’2. Then the fractional Lowner-Kufarev equation (5.60) has a
unique solution Q(e,t) € L*(0,T; Hsj5) N H**(0,T; Hy ) and

12U 20,13, ) + Q|22 0,158,0) + Q| o208, 1) < ClIQ0ll (11, 0,11,)

1
3q 2
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Turn back to our abstract problem. For Banach spaces of class H7T the constant of
maximal regularity depends also on Raq)(ar/2). So, in order to obtain (A3) we have
to require the uniform boundedness of this quantity. Then Lemma 6.3 implies that if
we apply Theorems 4.16 and 4.21 to problem (6.4), s € [0,T], where the family {A(¢)}
satisfies (A1), then the estimates given in these theorems are uniform with respect to
s € [0,T]. Note that Dy (0,p) = Da(,p) because D(A(s)) = D(A). So, combining
these results with Lemma 6.2, we obtain the following theorem

Theorem 6.5 Suppose that o € (0,2), 1 < p < oo, X is a Banach space of class HT,
{A(t) }iejo,r) is a family of operators satisfying (A1) and f € LP(1; X). Let moreover A(t)
be R-sectorial operators with R-angle

Wiy <71 —a/2) (6.14)

and Raw)(ar/2) <R fort € [0,T]. Let one of the following conditions be satisfied

(a) @ € (0,1), 1 <p < 15 and xg € Da(%1,p);

(b) @ € (0,1), p > 7= and zy = 0;

2p—1
ap

(C) ac (172)7 1< p < ﬁ; Zop € -DA( 7p) and T € -DA(I;;;JP)?

(d) Q€ (172)7 P2 ﬁ; ro=0and z, € DA(pa;plap)‘
Then problem (6.1), (6.2) has an unique strict LP solution u satisfying
[ullzoa) + [[1DFullrx) + [ Aullraixy < Clleollpmemt ) + 121l p,y 2ot gy + 1 llzeain),

where m = [« and we set ©1 = 0 if « € (0, 1]. The constant C' depends on X, a, p, R, w
and K, given in Lemma 6.3, but does not depend on I" and on the individual operators
A(t).

Obviously, Lemma, 6.2 is fulfilled if we take instead of the whole space X some interpo-
lation space Y = Dy(d,p), 6 € (0,1), 1 <p < oo and Y] :={u € D(A) : Au € Y},
lu|ly, := ||Au||y. This observation together with Theorems 4.18 and 4.22 and Lemma 6.3
implies the following result:

Theorem 6.6 Suppose that « € (0,2), 1 <p < o0, d € (0,1), {A(t)}ieo,r) is a family of
operators in a Banach space X satisfying (A1), f € LP(0,T; DA(0,p)). Suppose that any
of the following conditions is satisfied

(a) € (0,1), 1 <p< iy, 0<30 <22 55 € Da(B +0,p);
1—a’

(b) € (0,1), 1 <p< s, ELH <5 < 1,19 = 0;

(C)ae(oal)apz ﬁ; zo = 0;
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(d)ae(l,2),l<p<z, 0<d< 28 ZPH xOEDA(Zp L+6,p), 11 € Da(22 1+5p)

(e)ae(1,2),1<p< 5=, O‘I’TQ;’H<6<O‘””+1 zo =0, 1 € Da(*> L 16,p);

(f) o€ (1,2),p> 55, 0<30 < L 5 =0, 21 € Da(E +6,p);

(g)ae(1,2),p>1, T <5 <1, a9=0, 2, =0.
Then (6.1), (6.2) is strictly solvable in LP(0,T; D 4(6,p)) and the following estimate holds

lullLor; Do) + 1DF || LoD a5, + AU Lo (1.0 4 (5.0))
< C([lzoll p me= mp=1 5 + 1]l py = b=ty 1 fll 2o (1;04(50)))5

where m = [«] and 1 = 0 if « € (0,1]. The constant C' depends on X, «, p, §, w and
K, given in Lemma 6.3, but does not depend on T and on the individual operators A(t).

6.2 Global solutions for a quasilinear equation

Let a € (1,2), 1 <p, ¢ < oo, T > 0. Suppose that
o€ C*R)and 0 <oy <0o'(y) <oy <00, y€ER, (6.15)

for some constants oy, 0;. In this section we establish the global existence of a strict
solution in LP(0,7'; L(0, 1)) of the following quasilinear equation for u = u(t, z):

Diu—(o0(ug))y = f, t>0, z€(0,1) (6.16)
with Dirichlet boundary conditions
u(t,0) =u(t,1) =0, t >0,

and initial conditions

t

d t
ltifg i Go—o(t — s)u(s,x) ds = 0; III(I)I o / go—a(t — s)u(s,x)ds =0, z € (0,1).

The reason for studying this equation is that it and various variants of it appear in
mathematical models of viscoelasticity. It is also of interest in itself when one explores the
borderline between the quasilinear diffusion and quasilinear wave propagation. Equations
of this type are considered in [43] and [31]. In the first paper the problem is studied in
the Hilbert space setting under the assumption that o;/0q is sufficiently small. In the
second paper a very general LP(L?) setting is considered and existence and uniqueness of
a global solution is proved provided a < 4/3. We use a similar assumption as in [43] but
a different approach, based on LP(L?) estimates, to obtain global existence for p, ¢ large
enough and all a € (1,2).
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Denote by ¢ the mean of oy and oy:

=20 ; o (6.17)

Let W2(0,1) := {u € W24(0,1)| u(0) = u(1) = 0} and
By = Hy"(0,T; L4(0,1)) N LP(0,T5; W9(0,1)), a#1+1/p.
We use also for shortness the following notations, where v € L?(0, T’; Wj;‘I(o, 1)):

1
Au = —cuy,, D(A)= Wi’q(O, 1); M(v)u:= EU'(%)U, D(M(v)) = L9(0,1). (6.18)
Let A and M(v) be the extension of the above operators to LP(0,7; L(0,1)), i.e. A €
B(LP(0,T; Wi’q(o, 1)), LP(0,T; L%(0,1))), M(v) € B(LP(0,T;L%(0,1))). Denote as usual
by L, the extension of Dy* to L?(0,T; LY).

Our ultimate goal is to solve the problem

Lou~+ M(u)Au = f. (6.19)

Consider first the linear autonomous equation
Low~+ Aw = fo, (6.20)

on R, where fj is the extension of f with 0 outside [0, 7] and L, is the fractional derivative
on LP(R; L7(0,1)) defined as in the proof of Corollary 4.6. Since for any ¢ > 0, £, €
BZIP(LP(R; L1(0,1)); an/2+¢) ( [64], Theorem 8.6 ) and A € BIP(LP(R; L1(0,1));¢) ( see
e.g. [66] ) then (L,, .A) is a A-regular pair of operators in LP(R; L?(0,1)) (Corollary 4.12).
Therefore, for any f € LP(R; L9(0,1)) there is a unique solution w € Hy""(R; L(0,1)) N
LP(R; W37(0,1)), satisfying

| D wl| o®;za(0,0)) + [[Aw| Lo@;za(0,1)) < Cpgll fllLorizeo,1), (6.21)

where C), , depends on p and ¢, but does not depend on ¢. Then the solution of (6.20) on
[0,77] is a restriction of the solution on R to [0, 7] and therefore it satisfies

| Dfwl|Loo/rsza0,0)) + [[Aw]|oo,25290,1)) < Cpgll fllooz32000,0))- (6.22)
Next we show that if we take p and ¢ large enough, then
Eyy = C(0,T;CY(0,1)), (6.23)

where the embedding is compact. First, according to the so-called mixed derivative
theorem ( see [68], ) for any 6 € (0,1),

D(L,) N D(A) C D(LSAYY). (6.24)



6.2. Global solutions for a quasilinear equation 95

Since ( see [70] )
D(L%) = [H{P(0,T5 L9(0,1)), LP(0, T; LY(0,1))]s € H*?(0,T; L%(0,1)),

D(A™") = [L7(0, T3 W*(0,1)), L(0, 75 LU(0, 1)) C LP(0, T3 H*'=9(0,1)),
then (6.24) implies

E,, < H*0,T; H*94(0,1)). (6.25)
Suppose
L.t (6.26)
ap  2q¢ 2 '
1

Then0<o%p<%<1andwecantake€€(
l<p:=2(1-6)—1/q and

o %). Therefore 0 < v := af — 1/p,

H?(0,T; H*1=9:9(0,1)) < C(0,T; C*(0,1)) — C(0,T;C*(0,1)). (6.27)

The first embedding follows from Theorem 1.10, the second is compact and it is implied
by the Arzela-Ascoli theorem. Therefore the embedding (6.23) holds and it is compact.

Fix p and ¢, satisfying (6.26) and let C, , be the corresponding constant from (6.21) and
(6.22). It follows from (6.27), continuity of o' and (6.18) that M(u) € C([0,7] x [0,1])
for v € E,,. Moreover, (6.15) implies

o1 — 0Oy
1-— < ) 6.28
11— M(u)lleqomxpy < p——— (6.28)
Take og and oy such that c
01 pgt1
—_ < = 6.29
0o Cp,q — 1 ( )
Then
01 — 0p
1>6,,=——0C,,. 6.30
p.a o1 +0g Pt ( )

Now we are ready to find a global solution of (6.19) applying the Schauder fixed point
theorem to the equation

Lou~+ M(v)Au = f. (6.31)

In what follows we denote for shortness LP(LY) := LP(0,7;L%(0,1)). We prove conse-
quently

(a) for any v € E,, there exists a unique u € E,, satisfying (6.31). Denote the corre-
sponding mapping v — u by v =: Gv; G maps the closed convex set in £, ,

K :={ue Epq: “D?UHLP(Lq) + (1 - 6p,q)||Au||LP(L‘1) < Cp,q“f”LP(Lq)}
into itself;

(b) G: E,, — E,, is a continuous mapping;
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¢) G maps bounded sets in E, , in relatively compact sets in E,, .
2 y 2

(a) We already have solvability and maximal regularity of the linear autonomous problem
(6.20). The next step is to prove this for the equation

(Dfu)(t,x) + M(v(s,x))Au(t,z) = f(t,x), with fixed s € [0,T], (6.32)
where v € E, ;. Let
L(0)u := Dj*u+ Au; L(1)u := Dj'u + M(v(s,z))Au.

For p € [0, 1], denote
L(p) := (1 = p)L(0) + pL(1).

The operators L(0), L(1) are bounded linear operators from E, , to L’(L?). Moreover,
there exists a constant C’ > 0, independent of p, such that

Julls,, < CIL(ullirieny (6.3
Indeed, let L(p)u = f, or, equivalently
(Dfu)(t, x) + Au(t,z) = f(t,x) + p(1 — M(v(s, x)))Au(t, x).
Applying (6.22), (6.28) and (6.30), we obtain

— 0o
o1+ 0g
< p,qu”LP L) +5p,q||AU||LP (L9)5

1DFullzrpay + | Aullioey < Cpgll fllzoea) +P Cp gl Aul| Lo (o)

therefore
| D} ul|oay + (1 — pq)llAulle e) < Cpgll fllze(ze), (6.34)

and so, (6.33) is satisfied with C" := 1 . Since L(0) : E, , — LP(L7)) is an isomorphism,
applying [36], Theorem 5.2, it follows that L(1): E,, — LP(LY) is also an isomorphism.
In this way we proved solvablhty and maximal regularity of the equation (6.32). Looking
at the above proof we see that the maximal regularity constant does not depend on s. So,
the family of operators A(¢) defined for ¢ € [0, T] by

A(t)u := M(v(t,z))Au, D(A(t)) := Wj;‘I(o, 1),
satisfies conditions (A1), (A2) and (A3) of the previous section. Therefore, equation
(6.31) has maximal regularity with estimate (6.34) and (a) is proved.
(b) Let v, — v in E, , and take u, = G(v,), v = G(v). Hence, equation (6.31) is satisfied
also with u replaced by u, and v replaced by v,. Therefore,
D¥(u, — u) + M(v)A(u, —u) = (M(v) — M(v,))Au,
and according to (6.34)

I DF (tn — u)|zoay + (1= dpg) | A(un — )| LrLe) (6.35)
< CpgllM(v) = M(vn)|leqorxo AU Lo L)
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By (6.34), ||Aun||rr(zey is bounded by a constant, which does not depend on n. Since
v, — v in E,, and because of the embedding (6.27) and the continuity of ¢, it follows
that

| M (v) — M(va) o<, = 1o (vn)z) — 0" (va)leqo,ryxjo,) — 0, 7 — 0o, (6.36)

So, the right-hand side of (6.35) tends to 0 as n — oo. Therefore u,, — v in E,, and (b)
is proved.

(c) Let v, be a bounded sequence in E,,. Since (6.23) is a compact embedding, there
exists a subsequence v, x, convergent in C(0,T;C"'(0,1)). Therefore, (6.36) is satisfied
with v, replaced by v, ;. Applying now the same argument as in the proof of (b) (with
v, replaced by v, ;) we obtain that there exists u € E, 4, such that G(v,;) — u in E, .

Properties (a), (b), and (c¢) imply that G is a completely continuous operator which
maps the bounded closed convex set K into itself. According to the Schauder fixed point
theorem there exists at least one function v € K such that Gu = v and this is a solution
of (6.19). The uniqueness of the solution can be proved as in [31]. In this way we proved
the global solvability of (6.16).

Theorem 6.7 Let o € (1,2), T > 0 and 1 < p,q < oo are such that « # 1 + 1/p and
(6.26) hold. Let oy,0, > 0 satisfy (6.29) and let the function o(y) yields (6.15). Then
for any f € LP(0,T;L%0,1)) there exists a unique function v € Hy"*(0,T;L1(0,1)) N
LP(0,T; W3(0,1)) satisfying (6.16).

If « =1+ 1/p then the above theorem also holds but we have to take Ry* (0,7 L4(0, 1))
instead of Hy""(0,7; L%(0,1)).

Condition (6.26) shows that this approach is not applicable in the purely Hilbert space
case p = q = 2.

Implicit estimates for the constant C),, could be obtained by the multiplier theorem or
Dore-Venni theorem:.
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THESES

accompanying the dissertation

Fractional Evolution Equations
in Banach Spaces

Emilia Grigorova Bajlekova
I

The fractional diffusion-wave equation interpolates between diffusion and wave
propagation describing an intermediate process (1 < « < 2), or extrapolates from
diffusion to a corresponding ultraslow process (0 < a < 1).

Section 2.2 of this thesis.

II

Let A be a nonnegative operator in a Banach space X, 0 <0 < 1,1 < p < o0,
and « 1= ;% < 2. Let P,(t) be the solution operator defined in Section 4.2. Then

[2llop = llzllx + [[APa(8)2]| Lo (0,00:x)

is an equivalent norm in the real interpolation space (X, D(A))g,-
Section 4.3 of this thesis.

II1

Maximal regularity is an important tool in treating quasi-linear equations. It
enters usually in setting up a fixed-point argument.
Chapter 6 of this thesis.

IV

For generators A of solution operators S, (t) with arbitrary o > 0 several Landau-

Kolmogorov-type inequalities hold. For example, if A € C*(1,0), then

4al? ()
['(2c)

24301 ()

JAal? < e

A%z ||«]l; || Az]® < | A% z],
for z € D(A?) and © € D(A?), respectively.
See Section 2.1 of this thesis for notations.



v

The Duhamel-type representation u = Q2 x f of the solution u(z,t) of an evolution
equation, where Q(x,t) is a kernel associated with the equation, f(x,t) represents
the initial data, * is a convolution in the sense of [1], is appropriate for numerically
solving the problem with various initial data.

[1] LH. Dimovski, Convolutional Calculus. Kluwer, Dordrecht (1990).

[2] E. Bazhlekova, Duhamel-type representations of the solutions of non-local boundary
value problems for the fractional diffusion-wave equation, in: P. Rusev, I. Dimovski,
V. Kiryakova (Eds.), Transform Methods and Special Functions, Varna’96, Bulgarian
Acad. Sci., Sofia (1998), pp. 32-40.

VI

The possible direct connection between Fractional Calculus and Fractals is rather
actual but yet an open problem.

[1] B.B. Mandelbrot, The Fractal Geometry of Nature. Freeman, New York (1982).

[2] A. Carpinteri, F. Mainardi (Eds.), Fractals and Fractional Calculus in Continuum
Mechanics. Springer Verlag, Wien (1997).

VII

Fractional Calculus is a ”laboratory “ for special functions and integral transforms.
V. Kiryakova, All the special functions are fractional differintegrals of elementary func-
tions. J.Physics A: Math.69 Gen. 30 No 14 (1997) pp. 5085-5103.

VIII

"There are two essential elements to teaching science. One is to know the subject.
The other, more subtle and more difficult, is that you have to be able to remember
what it was like not to understand something you now understand. That’s very
hard because each thing you understand transforms you for life. Nevertheless, the
key to teaching that thing is to remember your untransformed self.

D. Goodstein, Needed: An Isaac Newton of Science education. Los Angeles Times, 3
Dec. 1989, MS.

IX

"How’s your Mathematics? — I speak it like a native.“
S. Milligan, The Goon Show Scripts. The Woburn Press, London (1972).

X

We are independent: nothing depends on us.



