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Abstract

In this paper, we study a two-category classification problem. We indicate the categories by
labelsY = 1 andY = −1. We observe a covariate, or feature,X ∈ X ⊂ R

d. Consider a collection
{ha} of classifiers indexed by a finite-dimensional parametera, and the classifierha∗ that minimizes
the prediction error over this class. The parametera∗ is estimated by the empirical risk minimizer
ân over the class, where the empirical risk is calculated on a training sample of sizen. We apply
the Kim Pollard Theorem to show that under certain differentiability assumptions, ˆan converges to
a∗ with raten−1/3, and also present the asymptotic distribution of the renormalized estimator.

For example, letV0 denote the set ofx on which, givenX = x, the labelY = 1 is more likely
(than the labelY = −1). If X is one-dimensional, the setV0 is the union of disjoint intervals. The
problem is then to estimate the thresholds of the intervals.We obtain the asymptotic distribution
of the empirical risk minimizer when the classifiers haveK thresholds, whereK is fixed. We fur-
thermore consider an extension to higher-dimensionalX, assuming basically thatV0 has a smooth
boundary in some given parametric class.

We also discuss various rates of convergence when the differentiability conditions are possibly
violated. Here, we again restrict ourselves to one-dimensionalX. We show that the rate isn−1 in
certain cases, and then also obtain the asymptotic distribution for the empirical prediction error.

Keywords: asymptotic distribution, classification theory, estimation error, nonparametric models,
threshold-based classifiers

1. Introduction

In the theory of classification, the problem is to predict the unknown natureof a feature. The topic
plays a basic role in several fields, such as data mining, artificial intelligenceand neural networks.
In this paper we discuss the classification problem from a parametric-statistical point of view.

Let the training set(X1,Y1), · · · ,(Xn,Yn) consist ofn independent copies of the couple(X,Y)
with distributionP, whereX ∈ X ⊂ R

d is called a feature andY ∈ {−1,1} is the label ofX. A
classifierh is a functionh : X → {−1,1}, attaching the labelh(X) to the featureX. The error, or
risk, of a classifierh is defined asP(h(X) 6= Y). Following Vapnik (2000) and Vapnik (1998), we
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MOHAMMADI AND VAN DE GEER

consider the empirical counterpart of the risk which is the number of misclassified examples, i.e.,

Pn(h(X) 6= Y) :=
1
n

n

∑
i=1

�
(h(Xi) 6= Yi).

Here, and throughout,
�
(A) denotes the indicator function of a setA. We will study empirical risk

minimization over a model classH of classifiersh. We takeH to be parametric, in the sense that

H = {ha : a∈ A},

with A a subset of finite-dimensional Euclidean space.
Let

F0(x) := P(Y = 1|X = x) (1)

be the conditional probability of the labelY = 1 if the featureX has valuex. Given a new feature
x∈ X , we want to guess whether the label isY = 1 orY =−1. A natural solution is to predictY = 1
when the labelY = 1 is more likely than the labelY = −1 (Bayes rule). Thus the set

V0 := {x∈ X : F0(x) > 1/2}, (2)

plays a key role in classification. Bayes classifier is

h0 = 2
�{V0}−1.

The collectionH of classifiers is viewed as model class forh0. However, we will not require that
h0 ∈ H . If h0 /∈ H , the model is misspecified.

In the statistical theory of classification, rates of convergence of empirical classifiers have been
studied by a number of researchers, see for example Lugosi and Vayatis (2004), Lugosi and Nobel
(1999), Lugosi and Wegkamp (2004), Koltchinskii and Panchenko (2002), Boucheron et al. (2005),
Koltchinskii (2003a), Koltchinskii (2003b), Mohammadi (2004) and Tsybakov and van de Geer
(2005). These papers generally consider a high-dimensional model class and use regularization to
tackle the curse of dimensionality. Rates of convergence for the regularized estimators are obtained,
and also non-asymptotic bounds. In this paper, we consider a low-dimensional model class. This
means that we place the subject in the context of classical parametric statistics. Under regularity
assumptions, one can establish rates, as well as the asymptotic distributions. Indeed, our main aim
is to show that one can apply certain statistical results to the classification problem with parametric
model class. In practice, one may not be willing to assume a simple parametric model class, as the
complexity of the problem is not known a priori. In this sense, our study is primarily a theoretical
one.

In Section 2, we generalize the problem considered in Mohammadi and van de Geer (2003). It
gives an application of the cube root asymptotics derived by Kim and Pollard (1990). We briefly
explain the main idea of the Kim Pollard Theorem. Its exact conditions are given in Section 4.
We study in Subsection 2.1 the case whereX is one-dimensional. The setV0 ⊂ R is then a union
of disjoint intervals, and our aim is to estimate the boundaries of the intervals. These boundaries
will be called thresholds. The situation thatV0 is the union of intervals has also been considered
in Breiman et al. (1984). They explain how to use the training set to split the feature spaceX and
construct trees. See also Kearns et al. (1997) for a comparison of various algorithms in this case.
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A simple case, with just one threshold, has been presented in Mohammadi andvan de Geer (2003).
We will establish the asymptotic behavior of estimators of the thresholds, using the set of classifiers
with K thresholds as model class. HereK is fixed, and not bigger than, but not necessarily equal
to, the number of thresholds of Bayes classifier. We moreover assume thatF0 is differentiable. In
Subsection 2.2, we extend the situation to higher-dimensional feature space, X := R

d, d ≥ 1. The
problem there is related to assuming a single index model for the regression of Y onX, i.e.,

F0(x) = η0(x
Ta∗),

wherea∗ is an unknown vector parameter, andη0 is an unknown (monotone) function. We let
X = (U,V), with U ∈ R

d−1 andV ∈ R and minimize the empirical classification error over the
classifiers

ha(u,v) := 2
�{ka(u) ≥ v}−1,

wherea is an r-dimensional parameter andka : R
d−1 → R is some given smooth function ofa.

Under differentiability conditions, this will again lead to cube root asymptotics.
In Section 3, we study various other rates, and also the asymptotic distributionin the case of a

(1/n)-rate. We consider here only one-dimensionalX . The Kim Pollard Theorem and the proofs of
the results in Section 2 are given in Section 4.

We note here that we will mainly concentrate on the estimation of the parametera∗ that min-
imizes the prediction error over the classH . One may argue that the most interesting and useful
subject is perhaps not the convergence of the estimator ˆan to a∗, but rather the convergence of the
prediction error of (the classifierhân corresponding to) ˆan. We remark however that our approach
to study the former is via the latter. For example, in Corollary 2 the asymptotic distribution of the
prediction error follows as a corollary.

The conclusion is that by considering some assumptions on the distribution of the data, we can
prove rates of convergence and asymptotic distributions. In computer learning theory, usually no or
minimal distributional assumptions are made. The results of the present papergive more insight in
the dependency of the asymptotic behavior on the underlying distribution.

We consider asymptotics asn→ ∞, regarding the sample(X1,Y1), . . . ,(Xn,Yn) as the firstn of an
infinite sequence of i.i.d. copies of(X,Y). The distribution of the infinite sequence(X1,Y1),(X2,Y2), . . .
is denoted byP. The marginal distribution function ofX is denoted byG. In case that the density of
the distributionG of X with respect to Lebesgue measure exists, it is denoted byg. The Euclidean
norm is denoted by‖ · ‖.

2. Cube Root Asymptotics

We first examine in Subsection 2.1 the case where the feature spaceX is the unit interval inR so
that Bayes rule is the union of some subintervals in[0,1]. As model class, we take the union of a,
possibly smaller, number of subintervals. Next, we consider in Subsection 2.2 the situation where
X = R

d with d > 1. Our model class is then the class of graphs of smooth parametric functions. In
both situations, the class of classifiersH is parametric, i.e. it is of the form

H = {ha : a∈ A},

with A a subset ofRr , where the dimensionr is fixed (not depending onn).

2029



MOHAMMADI AND VAN DE GEER

Define the empirical risk
Ln(a) := Pn(ha(X) 6= Y), (3)

and the theoretical risk
L(a) := P(ha(X) 6= Y). (4)

Moreover, let
ân = argmin

a∈A
Ln(a)

be the empirical risk minimizer, and let

a∗ = argmin
a∈A

L(a)

be its theoretical counterpart. We assume thata∗ exists and is unique. We also assume that the
estimator ˆan exists, but it need not be unique. In fact, in the situations that we consider, there will
be many solutions for ˆan. Our results will hold for any choice of ˆan.

We will derive cube root asymptotics. Let us first sketch where then−1/3-rate of convergence
comes from. One may write down the equality

L(ân)−L(a∗) = − [νn(ân)−νn(a
∗)]/

√
n+[Ln(ân)−Ln(a

∗)] , (5)

with
νn(a) =

√
n[Ln(a)−L(a)] , a∈ A ,

being the empirical process indexed byA . SinceLn(ân)−Ln(a∗) ≤ 0, this equality implies

L(ân)−L(a∗) ≤− [νn(ân)−νn(a
∗)]/

√
n. (6)

Under regularity conditionsL(a)−L(a∗) behaves like the squared distance‖a−a∗‖2. Moreover,
again under regularity conditions, the right hand side of (6) behaves in probability like σ(ân)/

√
n,

whereσ(a) is the standard deviation of[νn(a)− νn(a∗)]. Due to the fact that we are dealing with
indicator functions, the standard deviation of[νn(a)− νn(a∗)] behaves like thesquare root‖a−
a∗‖1/2 of the distance betweena anda∗. Inserting this in (6) yields that‖ân−a∗‖2 is bounded by a
term behaving in probability like‖ân−a∗‖1/2/

√
n. But this implies‖ân−a∗‖ is of ordern−1/3 in

probability.
Let us continue with a rough sketch of the arguments used for establishing the asymptotic dis-

tribution. We may write

ân = argmin
a

[

n
1
6
[

νn(a)−νn(a
∗)
]

+n
2
3
[

L(a)−L(a∗)
]

]

.

When we already have then−1/3-rate, it is convenient to renormalize to

n
1
3 (ân−a∗) = argmin

t

[

n
1
6
[

νn(a
∗ +n−

1
3 t)−νn(a

∗)
]

+n
2
3
[

L(a∗ +n−
1
3 t)−L(a∗)

]

]

.

Now, under differentiability assumptions,

n
2
3
[

L(a∗ +n−
1
3 t)−L(a∗)

]

≈ tTV t/2,
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whereV is the matrix of second derivatives ofL ata∗. Moreover, the process{n1/6[νn(a∗+n−
1
3 t)−

νn(a∗)] : t ∈ R
r} converges in distribution to some zero mean Gaussian process, sayW. We then

apply the “Argmax” Theorem (“Argmin” Theorem in our case), see e.g., van der Vaart and Wellner
(1996). The result is thatn1/3(ân−a∗) converges in distribution to the location of the minimum of
{W(t)+ tTV t/2 : t ∈ R

r}.
Kim and Pollard (1990) make these rough arguments precise. See Section 4for the exact con-

ditions.

2.1 One-Dimensional Feature Space

With a one-dimensional feature space,X = [0,1], Bayes rule is described by the number, sayK0,
and the locations, saya0 = (a0

1, . . .a
0
K0

)T , where 2F0−1 changes sign. We call the locations of the
sign changesthresholds. With a sign change we mean that the function has strictly opposite sign in
sufficiently small intervals to the left and right side of each threshold. The boundary pointsa0

0 = 0
anda0

K0+1 = 1 are thus not considered as locations of a sign change.
Let K ∈ N andUK be the parameter space

UK := {a = (a1, . . . ,aK) ∈ [0,1]K : a1 < .. . < aK}. (7)

Let for a∈UK

ha(x) :=
K+1

∑
k=1

bk
�{ak−1 ≤ x < ak},

wherea0 = 0, aK+1 = 1 and b1 = −1, bk+1 = −bk, k = 2, . . . ,K. Let H be the collection of
classifiers

H = {ha : a∈UK}. (8)

Let
L(a) := P(ha(X) 6= Y), Ln(a) := Pn(ha(X) 6= Y). (9)

The empirical risk minimizer is

ân := arg min
a∈UK

Ln(a). (10)

We emphasize that we take the number of thresholdsK in our model class fixed. Ideally, one
would like to chooseK equal toK0, but the latter may be unknown. Kearns et al. (1997), investigate
an algorithm which calculates ˆan for all values ofK, and a comparison of various regularization
algorithms for estimatingK0. With a consistent estimator̂K in our model class, the asymptotics
presented in this paper generally still go through. However, Kearns et al. (1997) and also later
papers, e.g. Bartlett et al. (2002) show that the choice ofK is very important in practice. Non-
asymptotic bounds for a related problem are in Birgé (1987).

The following theorem states that ˆan converges to the minimizera∗ of L(a) with rate n−1/3

and also provides its asymptotic distribution after renormalization. We assume in this theorem that
K ≤ K0. If K = K0, one can show that when the minimizera∗ is unique, it is equal toa0, i.e., then
ha∗ is Bayes classifier. The caseK < K0 is illustrated at the end of this subsection.

We use the notation
�
(u,v > 0) for

�
(u > 0)

�
(v > 0), for scalarsu andv. Likewise, we write

�
(u,v < 0) for

�
(u < 0)

�
(v < 0).
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Figure 1:F0 and the points at which 2F0−1 changes sign.

Theorem 1 Suppose F0(0) < 1/2, that

a∗ = (a∗1,a
∗
2, . . . ,a

∗
K) := arg min

a∈UK
L(a), (11)

is the unique minimizer of L(a), that a∗ is in the interior of UK , and that L(a) is a continuous
function of a. Suppose that F0 has non-zero derivative f0 in a neighborhood of a∗k, k= 1, . . . ,K. Let
g(a∗k) > 0, for all k = 1, . . . ,K, where g, the density of G, is continuous in a neighborhood of a∗.
Then the process

{n2/3
[

Ln(a
∗ + tn−1/3)−Ln(a

∗)
]

: t ∈ R
K}

(where we define Ln(a) = 0 for a /∈UK), converges in distribution to a Gaussian process{Z(t) : t ∈
R

K} with continuous sample paths, and expected valueEZ(t) = tTV t/2, where

V =









2 f0(a∗1)g(a∗1) 0 . . . 0
0 −2 f0(a∗2)g(a∗2) . . . 0
. . . . . . . . . . . .
0 0 . . . (−1)K−12 f0(a∗K)g(a∗K)









,

and covariance kernel H= [H(s, t)], where

H(s, t) =
K

∑
k=1

g(a∗k)
[

min(sk, tk)
�
(sk, tk > 0)−max(sk, tk)

�
(sk, tk < 0)

]

.

Moreover,
n

1
3 (ân−a∗) →L argminZ(t).

The proof can be found in Section 4, where it is also noted that the diagonal elements of the
matrix V are all positive.
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Under the assumptions of Theorem 1

L(ân)−L(a∗) ≈ (ân−a∗)TV (ân−a∗)/2

for largen. The theorem therefore also provides us the raten−2/3 for the convergence of the predic-
tion errorL(ân) of the classifierhân, to the prediction error ofha∗ , and the asymptotic distribution
of the prediction errorL(ân) after renormalization. We present this asymptotic distribution in a
corollary.

Corollary 2 Suppose the conditions of Theorem 1 are met. Then

n
2
3 [L(ân)−L(a∗)] →L UTV U/2,

where U= argmint Z(t), and Z is defined in Theorem 1.

Recall that one of the conditions in the above theorem is thatL has a unique minimizer in the
interior of UK . This implies thatK should not be larger thanK0. Let us consider the situation
K = 1,K0 = 2 and discuss when there is a unique minimizer.

SupposeK = 1 and

F0(x)

{

< 1/2 x 6∈ [a0
1,a

0
2],

> 1/2 x∈ (a0
1,a

0
2),

(12)

wherea0
1 anda0

2 are unknown and 0< a0
1 < a0

2 < 1. Note that

L(a) = P(Y = 1, ha(X) = −1)+P(Y = −1, ha(X) = 1)

=
Z a

0
F0dG+

Z 1

a
(1−F0)dG

=
Z a

0
(2F0−1)dG+

Z 1

0
(1−F0)dG.

If
R 1

a0
1
(2F0−1)dG> 0, thena∗ = a0

1 is the unique minimizer ofL. If
R 1

a0
1
(2F0−1)dG< 0, thenL

has a unique minimum at 1. The minimizer is not in the open interval(0,1), and Theorem 1 indeed
fails. In this case, the convergence result is the same as Theorem 5 below(under its assumptions).
If

R 1
a0

1
(2F0−1)dG= 0, thenL has two minima at 1 anda0

1.

2.2 Higher-Dimensional Feature Space

In this subsection,X ⊂ R
d with d > 1, and we write forX ∈ X ,

X = (U,V), U ∈ R
d−1, V ∈ R.

Consider given functions
ka : R

d−1 → R, a∈ A ,

and classifiers
ha = 2

�{Ca}−1, a∈ A ,
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where
Ca := {(u,v) : v≤ ka(u)}, a∈ A .

This kind of classifiers has been frequently considered and discussedin classification theory. We
study the case where the parameter space is finite-dimensional, sayA = R

r . A famous example
is whenka is linear ina, see for instance Hastie et al. (2001). Tsybakov and van de Geer (2005)
consider this case for larger, depending onn. In contrast, we assume throughout thatr is fixed.

Let again
a∗ = argmin

a
L(a),

be the minimizer of the theoretical riskL(a), and

ân = argmin
a

Ln(a)

be the empirical risk minimizer. We would like to know the asymptotic distribution of ˆan.
In this subsection, we suppose that the class{Ca : a ∈ R

r} is VC, i.e., that{ka(u) : a ∈ R
r}

is VC-subgraph. We also suppose thatka is a regular function of the parametera ∈ R
r , i.e., the

gradient
∂

∂a
ka(u) = k′a(u) (13)

of ka(u) exists for allu, and also its Hessian

∂2

∂a∂aT ka(u) = k′′a(u). (14)

We will need to exchange the order of differentiation and integration of certain functions. To be
able to do so, we require locally dominated integrability, which is defined as follows.

Definition 3 Let { fa : a ∈ A}, A ⊂ R
r , be a collection of functions on some measurable space

(U,µ). It is called locally dominated integrable with respect to the measure µ and variable a if for
each a there is a neighborhood I of a and a nonnegative µ-integrable function g1 such that for all
u∈ U and b∈ I,

| fb(u)| ≤ g1(u).

The probability of misclassification using the classifierha is

L(a) = P(ha(X) 6= Y) =
Z

Ca

(1−F0)dG+
Z

Cc
a

F0dG

=
Z

Ca

(1−2F0)dG+P(Y = 1).

Suppose that the densityg of G, with respect to Lebesgue measure, exists. We use the notation

m(x) := (1−2F0(x))g(x). (15)

Assumption A: Assume existence of the derivatives (13) and (14) and also of

m′(u,v) :=
∂
∂v

m(u,v).
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Assume furthermore that the functionsm(u,ka(u))k′a(u) and ∂
∂aT [m(u,ka(u))k′a(u)] are locally dom-

inated integrable with respect to Lebesgue measure and variablea. Also, assume that the func-
tion

R

k′a(u)g(u,ka(u))du is uniformly bounded fora in a neighborhood ofa∗, and that for eachu,
m′(u,ka(u)) andk′′a(u) are continuous in a neighborhood ofa∗.

Write

Va :=
∂2

∂a∂aT L(a).

Then
Va =

Z

Σa(u)m(u,ka(u))du, (16)

where

Σa(u) = k′a(u)k′Ta (u)
m′(u,ka(u))

m(u,ka(u))
+k′′a(u). (17)

In the following theorem, we show thatn
1
3 (ân−a∗) converges to the location of the minimum

of some Gaussian process.

Theorem 4 Suppose that L has a unique minimum at a∗ and that it is continuous at a∗. Assume
that for all u, the density g(u,v) is continuous as a function of v at v= ka∗(u). LetVa be continuous
at a∗ andV := Va∗ be positive definite. Under Assumption A, we have

n
1
3 (ân−a∗) →L argmin

t∈Rr
Z(t)

where{Z(t) : t ∈ R
r} is a Gaussian process withEZ(t) = tTV t/2, t ∈ R

r , and with continuous
sample paths and covariance structure

Cov(Z(t),Z(s)) =
Z

g(u,ka∗(u))αT(u, t,s)k′a∗(u)du, t,s∈ R
r ,

with

α(u, t,s) =























−s tTk′a∗(u) ≤ sTk′a∗(u) ≤ 0
−t sTk′a∗(u) ≤ tTk′a∗(u) ≤ 0
t 0≤ tTk′a∗(u) ≤ sTk′a∗(u)
s 0≤ sTk′a∗(u) ≤ tTk′a∗(u)
0 o.w..

(18)

The proof is given in Section 4.

As an example of Theorem 4, supposer = d andka is the linear function

ka(u) := a1u1 + . . .+ar−1ur−1 +ar .

It is interesting to compute the matrixV (see (16) and (17)) in this case. Using our notations, we
have

k′a(u) = [u1 u2 . . . ur−1 1]T .
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Let f0(u,v) := ∂
∂vF0(u,v) andg′(u,v) := ∂

∂vg(u,v) exist. Then by (15), we have

m′(u,v) = −2 f0(u,v)g(u,v)+(1−2F0(u,v))g′(u,v)

and by (16) and (17)

V =

[

Z

uiu j(−2 f0(u,ka0(u))g(u,ka0(u))+(1−2F0(u,ka0(u)))g′(u,ka0(u)))du1 . . .dur−1

]

,

where we defineur := 1.

3. Other Rates of Convergence

In this section, we will investigate the rates that can occur if we do not assumethe differentiability
conditions needed for the Kim Pollard Theorem. We will restrict ourselves tothe case of a one-
dimensional feature space, withX = [0,1].

We first assumeK = 1, and that 2F0−1 has at most one sign change (i.e.K0 ≤ 1). Then, we
briefly discuss what happens for generalK0 andK.

3.1 The Case of One Threshold and at Most One Sign Change

Let K = 1 andK0 ≤ 1. Now, either 2F0−1 changes sign ata∗ ∈ (0,1) or there are no sign changes
in (0,1), i.e.K0 = 0. In the first case, we assumeF0(x) < 1/2 near 0. In the latter case, we assume
F0(x) < 1/2 for all x∈ (0,1), and leta∗ = 1, or F0(x) > 1/2 for all x∈ (0,1) and leta∗ = 0. One
easily verifies thata∗ is the minimizer ofL(a) overa ∈ [0,1]. However, ifF0 is not differentiable
at a∗, Theorem 1 can not be applied. In this section, we impose themargin conditionof Tsybakov
(2004) (see also Mammen and Tsybakov (1999)). It can also be foundon papers concerned with
estimation of density level sets, see Polonik (1995) and Tsybakov (1997).In our context, this
margin assumption is Assumption B below. Throughout, a neighborhood ofa∗ is some set of the
form (a∗−δ,a∗ +δ), δ > 0, intersected with[0,1].

Assumption B: Let there existc > 0 andε ≥ 0 such that

|1−2F0(x)|g(x) ≥ c|x−a∗|ε, (19)

for all x in a neighborhood ofa∗.

In Section 2, we assumed differentiability ofF0 in a neighborhood ofa∗ ∈ (0,1), with positive
derivative f0. This corresponds to the caseε = 1. We haveε = 0 if F0 has a jump ata∗, and also
if a∗ ∈ {0,1}. In general, Assumption B describes how wella∗ is identified: large values ofε
correspond to less identifiability.

Recall now equality (6):

L(ân)−L(a∗) ≤− [νn(ân)−νn(a
∗)]/

√
n. (20)

Let σ(a) be the standard deviation of[νn(a)−νn(a∗)]. Let

ψ(r) = E

(

sup
a: σ(a)≤r

∣

∣νn(a)−ν(a)
∣

∣

)

, r > 0. (21)
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It will follow from the proof of Theorem 5 below, thatψ(r) ∼ r. Moreover, the standard deviation
σ(a) behaves like‖a−a∗‖1/2. Therefore. as we already stated in Section 2, the right hand side of
(20) behaves in probability like‖ân−a∗‖1/2/

√
n. From Assumption B, we see that the left hand

side behaves like‖ân−a∗‖1+ε. This leads to the raten−
1+ε
1+2ε .

Theorem 5 Consider the classH defined in (8), with K= 1 and b1 = −1. Under Assumption B,

‖ân−a∗‖ = OP(n−
1

1+2ε ), L(ân)−L(a∗) = OP(n−
1+ε
1+2ε ).

Proof We use the inequality (20):

L(ân)−L(a∗) ≤−[νn(ân)−νn(a
∗)]/

√
n, (22)

with νn(a) :=
√

n[Ln(a)−L(a)]. By Assumption B, we have the lower bound

L(ân)−L(a∗) ≥ c‖ân−a∗‖1+ε

for the left hand side of of (22).
To find an upper bound for the right hand side of (20), we apply Theorem 5.12 of van de Geer

(2000). Define
G := {φ : φ(x,y) :=

�
(ha(x) 6= y), a∈ [0,1]}

and forφ∗(x,y) =
�
(ha∗(x) 6= y) andδ > 0,

G(δ) := {φ−φ∗ : φ ∈ G ,‖a−a∗‖ ≤ δ2}.

Let {HB(u,G1(δ),P),u > 0} be the entropy with bracketing, for the metric induced by theL2(P)
norm, of the classG(δ). It is easy to see that for some constantc1, and for allδ > 0,

HB(u,G1(δ),P) ≤ 2log
c1δ
u

, ∀u∈ (0,δ).

Set δn = n−1/2. We may selectT, C, C0 andC1 such that fora := C1T2δn and R := Tδn, the
conditions of Theorem 5.11 of van de Geer (2000) hold. This theorem then gives that for largeT
and largen,

P

(

sup
‖a−a∗‖≤δ2

n

|νn(a)−νn(a
∗)| ≥C1T2δn

)

≤Cexp(−T).

Now, by the peeling device, see for example van de Geer (2000), we canshow that

lim
T→∞

limsup
n→∞

P
(

sup√
‖a−a∗‖>δn

|νn(a)−νn(a∗)|
√

‖a−a∗‖
≥ T

)

= 0.

So,
|νn(ân)−νn(a∗)|
√

‖ân−a∗‖∨δn
= OP(1). (23)

Combining this with (22) and Assumption B yields

c‖ân−a∗‖1+ε ≤ (
√

‖ân−a∗‖+δn)OP(1)/
√

n
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or ‖ân−a∗‖ = OP(n−1/(1+2ε)). Using (23) and (22), we can calculateL(ân)−L(a∗) = OP(n−
1+ε
1+2ε ).

�

Theorem 5 can be refined to a non-asymptotic bound, for example in the following way. Letψ̄
be the smallest concave majorant ofψ defined in (21), and letw(·) be the smallest concave upper-
bound of

r 7→ sup
L(a)−L(a∗)≤r2

σ(a).

(In our situation,w(r) ∼ r
1

1+ε .) Let r∗ be the positive solution of

r2 = ψ̄(w(r))/
√

n.

Then, from Massart (2003), Koltchinskii (2003b), or Bartlett et al. (2004), we obtain that

P
(

L(ân)−L(a∗) > r2
∗ +

w(r∗)
r2∗

2x
n

)

≤ e−x, x > 0.

WhenF0 has a jump ata∗, we have the caseε = 0. Under the conditions of Theorem 5 withε = 0,
we derive the asymptotic distribution of the renormalized empirical risk, locally ina neighborhood
of order 1/n of a∗, the local empirical risk. The rescaled estimatorn(ân−a∗) remains bounded in
probability. However, since the local empirical risk has a limit law which has nounique minimum,
n(ân−a∗) generally does not converge in distribution. Similar results can be derivedwhena∗ is one
of the boundary points 0 or 1. For simplicity we only consider the right hand side limit. We assume
thatF0 andg are right continuous.

In Theorem 6 below, convergence in distribution is to be understood in the sense given e.g. in
Barbour et al. (1992).

Theorem 6 Consider the classH defined in (8), with K= 1 and b1 = −1. Assume that a∗ ∈ (0,1),
1/2 < F0(a∗) < 1, g and F0 are right continuous at a∗ and g(a∗) > 0. Let

λ1 := F0(a
∗)g(a∗), λ2 := (1−F0(a

∗))g(a∗).

Let Zn(t) = n[Ln(a∗ + t/n)−Ln(a∗)], t > 0. The processZn converges in distribution to Z1−Z2,
where Zi is a Poisson process with intensityλi , i = 1,2, and Z1(t) and Z2(s) are independent for all
s, t > 0.

Proof We have fort > 0

Zn(t) = ∑
Yi=1

�
(a∗ ≤ Xi < a∗ + t/n)− ∑

Yi=−1

�
(a∗ ≤ Xi < a∗ + t/n).

Define
In(t) := ∑

Yi=1

�
(a∗ ≤ Xi < a∗ + t/n), Jn(t) := ∑

Yi=−1

�
(a∗ ≤ Xi < a∗ + t/n). (24)

The random variableIn(t) has a binomial distribution with parametersn andp1, where

p1 := P(Y = 1,a∗ ≤ X < a∗ + t/n) =
Z a∗+t/n

a∗
F0dG. (25)
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For largen, p1 is close toλ1t/n. Similarly, for largen, Jn(t) has binomial distribution with pa-
rametersn and p2 := λ2t/n. We know thatB(n,λt/n), for largen and smallt, is approximately
Poisson(λt), i.e. the total variation distance between the two distributions goes to zero asn→ ∞.

Note that for every 0< t1 < t2 < 1,

nP(Y = 1,a∗ + t1/n≤ X ≤ a∗ + t2/n) = n
Z a∗+t2/n

a∗+t1/n
F0dG→ λ1(t2− t1)

and

nP(Y = −1,a∗ + t1/n≤ X ≤ a∗ + t2/n) = n
Z a∗+t2/n

a∗+t1/n
(1−F0)dG→ λ2(t2− t1)

asn → ∞. Now by Theorem 5.2.4, Remark 4 and Proposition A2.12 of Embrechts et al.(1997),
we conclude that the whole processIn (Jn) converges weakly to a Poisson process with intensityλ1

(λ2). (See also Barbour et al. (1992).) With the method of moment generating functions we can
prove that the processesIn andJn are asymptotically independent, i.e., for anyt1, ..., tm,s1, ...,sk,

E(exp(r1In(t1)+ ...+ rmIn(tm)+ l1Jn(s1)+ ...+ lkJn(sk)))

converges to

E(exp(r1Z1(t1)+ ...+ rmZ1(tm)))E(exp(l1Z2(s1)+ ...+ lkZ2(sk))).

Thus,In−Jn converges weakly to the difference of two independent Poisson processes with inten-
sitiesλ1 andλ2. �

3.2 Extension to Several Thresholds and Sign Changes

Recall thatK0 is the number of sign changes of 2F0−1, and thatK is the number of thresholds in
the model classH defined in (8). Below, whenever we mention the raten−1/3 or n−1, we mean the
rate can be obtained under some conditions onF0 andg (see Theorem 1 (whereε = 1), and Theorem
5 with ε = 0). Recall thata0 denotes theK0-vector of the locations of the sign changes of 2F0−1.

1. Let K ≤ K0 anda∗ is an interior point ofUK . In this case, ˆan converges toa∗. The rate is
n−1/3.

2. Let K = K0 + 1. Then,K0 of the elements of ˆan converge toa0, and either ˆa1,n converges
to 0 or âK,n converges to 1. The rate of convergence to the interior points isn−1/3 and the rate of
convergence to the boundary point isn−1.

3. Let K > K0 + 1. In this case,K0 of the elements of ˆan converge toa0 with raten−1/3. If
K−K0 is odd, one element of ˆan converges to one of the boundary points 0 or 1.

4. Proof of Theorem 1 and Theorem 4

We start out with presenting the Kim Pollard Theorem (Kim and Pollard (1990)) in a general context.
Let ξ1,ξ2, . . . be a sequence of independent copies of a random variableξ, with values in some space
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S . Let φ(·,a) : S → R be a collection of functions indexed by a parametera ∈ A ⊂ R
r . Define

Ln(a) = ∑n
i=1 φ(ξi ,a)/n andL(a) = Eφ(ξ,a). Moreover, let

νn(a) =
√

n[Ln(a)−L(a)], a∈ A .

Define
GR := {φ(·,a) : |ak−a∗k| ≤ R, k = 1, ..., r}, R> 0. (26)

The envelopeGR of this class is defined as

GR(·) = sup
φ∈GR

|φ(·)|.

Theorem 1.1 in Kim and Pollard (1990) requires uniform manageability of a class of functions.
The definition of uniform manageability can be found in Pollard (1989) and Pollard (1990). IfG
is VC-subgraph, then a sufficient condition for the classGR to be uniformly manageable is that its
envelope functionGR is uniformly square integrable forRnear zero.

Theorem 7 ( Kim and Pollard (1990)) Let{ân} be a sequence of estimators for which
(i) Ln(ân) ≤ infa∈A Ln(a)+oP(n−2/3),
(ii) ân converges in probability to the unique a∗ that minimizes L(a),
(iii) a ∗ is an interior point ofA .
Let φ(·,a∗) = 0 and suppose
(iv) L(a) is twice differentiable with positive definite second derivative matrixV at a∗,
(v) H(s, t) = limτ→∞ τEφ(ξ,a+s/τ)φ(ξ,a+ t/τ)) exists for each s, t in Rd and

lim
τ→∞

τEφ(ξ,a∗ +s/τ)2�{|φ(ξ,a∗ +s/τ)| > ητ}) = 0

for eachη > 0 and s inR
r ,

(vi) E|φ(ξ,a)−φ(ξ,b)| = O(‖a−b‖) near a∗,
(vii) the classesGR in (26), for R near zero, are uniformly manageable for the envelopes GR and
satisfy E(G2

R) = O(R) as R→ 0, and for eachη > 0 there is a constant C such that E(G2
R
�{GR >

C}) < ηR for R near zero.
Then the process{n2/3[Ln(a∗ + tn−1/3)−Ln(a∗)] : t ∈ R

r}, (where we take Ln(a) = 0 if a /∈ A}),
converges in distribution to a Gaussian process{Z(t) : t ∈ R

r} with continuous sample paths,
expected valueEZ(t) = tTV t/2 and covariance kernel H. If Z has non-degenerate increments, then
n1/3(ân−a∗) converges in distribution to the (almost surely unique) random vector thatminimizes
{Z(t) : t ∈ R

r}.

Proof of Theorem 1 We apply the Kim Pollard Theorem to the function

φ(x,y,a) :=
�
(ha(x) 6= y)− �

(ha∗(x) 6= y),

Condition (i) is met by the definition of ˆan. To check Condition (ii), we note that, because
{φ(·,a) : a ∈ UK} is a uniformly bounded VC-subgraph class, we have the uniform law of large
numbers

sup
a∈UK

|Ln(a)−L(a)| → 0, a.s..
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Since we assume thata∗ ∈UK is unique andL is continuous., this implies

ân → a∗, a.s..

Condition (iii) is satisfied by assumption.
To check Condition (iv), for oddi, we have

∂
∂ai

P(ha(X) 6= Y) = (2F0(ai)−1)g(ai)

so
∂2

∂a2
i

P(ha(X) 6= Y)

∣

∣

∣

∣

ai=a∗i

=

(

[

2 f0(ai)g(ai)+(2F0(ai)−1)g′(ai)
]

)∣

∣

∣

∣

ai=a∗i

= −2 f0(a
∗
i )g(a∗i ).

For eveni, these terms are symmetric. Thus (iv) is satisfied with

V :=









2 f0(a∗1)g(a∗1) 0 . . . 0
0 −2 f0(a∗2)g(a∗2) . . . 0
. . . . . . . . . . . .
0 0 . . . (−1)K−12 f0(a∗K)g(a∗K)









.

Now,a∗ minimizesL(a) for a in the interior ofUK , so 2F0−1 changes sign from negative to positive
at a∗k for oddk, and it changes sign from positive to negative ata∗k for evenk. Hencef0(a∗k) > 0 for
oddk and f0(a∗k) < 0 for evenk and thereforeV is positive definite.

Next, we study the existence of the covariance kernelH, required in Condition (v). Consider
t,s∈ R and largeτ > 0 so thata∗+ t/τ,a∗+s/τ ∈UK . First we note that the product of the brackets
is the same forY = 1 and forY = −1. Fora1 < a2,b1 < b2,a∗1 < a∗2, we have

[

�
(a∗1 ≤ x < a∗2)−

�
(a1 ≤ x < a2)

][

�
(a∗1 ≤ x < a∗2)−

�
(b1 ≤ x < b2)

]

=

[

�
(x≥ a1)−

�
(x≥ a2)−

�
(x≥ a∗1)+

�
(x≥ a∗2)

]

×
[

�
(x≥ b1)−

�
(x≥ b2)−

�
(x≥ a∗1)+

�
(x≥ a∗2)

]

= A(x)−B(x)−C(x)+D(x),

where
A(x) := (

�
(x≥ a1)−

�
(x≥ a∗1))(

�
(x≥ b1)−

�
(x≥ a∗1))

=
�
[min(a1,a

∗
1),max(a1,a

∗
1))

�
[min(b1,a

∗
1),max(b1,a

∗
1))

=
�
[a∗1,min(a1,b1))

�
(a∗1 < min(a1,b1))+

�
[max(a1,b1),a

∗
1)
�
(a∗1 > max(a1,b1)),

D(x) := (
�
(x≥ a2)−

�
(x≥ a∗2))(

�
(x≥ b2)−

�
(x≥ a∗2))

=
�
[min(a2,a

∗
2),max(a2,a

∗
2))

�
[min(b2,a

∗
2),max(b2,a

∗
2))

=
�
[a∗2,min(a2,b2))

�
(a∗2 < min(a2,b2))+

�
[max(a2,b2),a

∗
2)
�
(a∗2 > max(a2,b2)),
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B(x) := (
�
(x≥ a1)−

�
(x≥ a∗1))(

�
(x≥ b2)−

�
(x≥ a∗2)),

and
C(x) := (

�
(x≥ a2)−

�
(x≥ a∗2))(

�
(x≥ b1)−

�
(x≥ a∗1)).

Assume thata1 = a∗1 +s1/τ,a2 = a∗2 +s2/τ,b1 = a∗1 + t1/τ,b2 = a∗2 + t2/τ. Whenτ tends to infinity,
we have

R

BdG=
R

CdG= 0. Moreover,
Z

(A+D)dG

=

[

�
(0 < s1, t1)

Z a∗1+min(s1,t1)/τ

a∗1
dG+

�
(0 > s1, t1)

Z a∗1

a∗1+max(s1,t1)/τ
dG

+
�
(0 < s2, t2)

Z a∗2+min(s2,t2)/τ

a∗2
dG+

�
(0 > s2, t2)

Z a∗2

a∗2+max(s2,t2)/τ
dG

]

= min(s1, t1)g(a∗1)
�
(0 < s1, t1)−max(s1, t1)g(a∗1)

�
(0 > s1, t1)

+min(s2, t2)g(a∗2)
�
(0 < s2, t2)−max(s2, t2)g(a∗2)

�
(0 > s2, t2). (27)

Let mbe the integer part of(K +1)/2. Now, we obtain

Eφ(X,Y,a∗ +s/τ)φ(X,Y,a∗ + t/τ)

= E

[

�(
X ∈ ∪m

i=1[a
∗
2i−1 +s2i−1/τ,a∗2i +s2i/τ)

)

− �(
X ∈ ∪m

i=1[a
∗
2i−1,a

∗
2i)
)

]

×
[

�(
X ∈ ∪m

i=1[a
∗
2i−1 + t2i−1/τ,a∗2i + t2i/τ)

)

− �(
X ∈ ∪m

i=1[a
∗
2i−1,a

∗
2i)
)

]

=
K

∑
k=1

E

[

�(
X ∈ [a∗k,a

∗
k +min(sk, tk))

)�
(0 < sk, tk)

−�(
X ∈ [a∗k +max(sk, tk),a

∗
k)
)�

(0 > sk, tk)

]

(28)

(for largeτ). Finally, by (27) and (28), the limit ofτEφ(X,Y,a∗ + s/τ)φ(X,Y,a∗ + t/τ) asτ → ∞
becomes

H(s, t) =
K

∑
k=1

[

min(sk, tk)g(a∗k)
�
(0 < sk, tk)

−max(sk, tk)g(a∗k)
�
(0 > sk, tk)

]

.

So, the first part of condition (v) is satisfied. As for the second part ofcondition (v), for anyε and
τ > 1/ε, andt ∈ R, we have

E

[

�2(ha∗+ t
τ
(X) 6= Y)

�
(
�
(ha∗+ t

r
(X) 6= Y) > τε)

]

= 0.

To show that Condition (vi) is satisfied, we note that for anya,b∈UK ,

E

[

∣

∣

�
(ha(X) 6= Y)− �

(hb(X) 6= Y)
∣

∣

]

≤
K

∑
k=1

E

[

�(
X ∈ [min(ak,bk),max(ak,bk))

)

]
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≤
K

∑
k=1

|ak−bk|g(ξk)

for someξk ∈ [min(ak,bk),max(ak,bk)]. Hence

E

(

∣

∣

�
(ha(X) 6= Y)− �

(hb(X) 6= Y)
∣

∣

)

= O(‖a−b‖),

for a andb neara∗.
Now we calculate an upper bound for the envelope function. Fix(x,y) ∈ X ×{−1,1}. To

maximize the functionφ(x,y,a) =
�
(ha(x) 6= y)− �

(ha∗(x) 6= y)|, note that fory = 1, this function
is increasing inak’s for evenk and decreasing inak’s for oddk. To simplify, assumeK is odd. Over
GR, φ(x,y,a) is maximized when

a1 = a∗1−R, a2 = a∗2 +R, a3 = a∗3−R, . . . , aK = a∗K −R. (29)

Fory = −1, it is maximized when

a1 = a∗1 +R, a2 = a∗2−R, a3 = a∗3 +R, . . . , aK = a∗K +R. (30)

Similarly,
�
(ha∗(x) 6= y)− �

(ha(x) 6= y) is maximized fory = 1, in case (30) and fory = −1, it is
maximized in case (29). So, the maximum of|φ(x,y,a))| is the maximum of

�
(

x∈ [a∗1−R,a∗1]∪ [a∗2,a
∗
2 +R]∪ . . .∪ [a∗K −R,a∗K ]

)

and
�
(

x∈ [a∗1,a
∗
1 +R]∪ [a∗2−R,a∗2]∪ . . .∪ [a∗K ,a∗K +R]

)

.

So the envelopeGR of GR satisfies
GR ≤ G′

R

where

G′
R =

�
(

x∈ ∪K
k=1[a

∗
k −R,a∗k +R]

)

.

Now, note that

E(G′2
R) ≤

K

∑
k=1

P(a∗k −R≤ X ≤ a∗k +R)

and
P(a∗k −R≤ X ≤ a∗k +R)

R
=

2Rg(a′k)

R
< R∗, ∃R∗ < ∞,

for somea′k ∈ (a∗k −R,a∗k + R), whenR is close to zero. We thus haveE(G2
R) = O(R). SinceG′

R
is bounded by one, it is also easy to see thatG′

R is uniformly square integrable forR close to zero.
Finally, sinceG is VC-subgraph, we conclude thatGR is uniformly manageable for the envelope
GR. �

Proof of Theorem 4
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Checking the Conditions (i)-(vii) of the Kim Pollard Theorem is very similar to theproof of
Theorem 1. We consider againφ(x,y,a) = P(ha(X) 6= Y)−P(ha∗(X) 6= Y). Condition (i) is clearly
true. Because the class{Ca : a ∈ R

r} is VC andL is continuous ata∗, we know by the same
argument as in the proof of Theorem 1 that ˆan → a∗ almost surely. So, Condition (ii) is met.
Condition (iii) is met becauseRr is open. The functionL is twice differentiable with positive
definite second derivative matrixV at a∗. So, (iv) is satisfied. To show that (v) is satisfied, we
consider the covariance structure ofφ(X,Y,a). Now,

Cov
(

φ(X,Y,a)],φ(X,Y, ã)
)

= I − II ,

where
I := E

[

φ(X,Y,a)φ(X,Y, ã)
]

and
II :=

[

L(a)−L(a∗)
][

L(ã)−L(a∗)
]

= O(τ−4),

for ‖a−a∗‖ = O(1/τ) and‖ã−a∗‖ = O(1/τ). As for I , writeC = Ca, C̃ = Cã, andC∗ = Ca∗ , then

I = P(Y = 1,X ∈Cc∩C̃c)−P(Y = 1,X ∈Cc∩Cc
0)

−P(Y = 1,X ∈Cc
0∩C̃c)+P(Y = 1,X ∈Cc

∗)

+P(Y = −1,X ∈C∩C̃)−P(Y = −1,X ∈C∩C∗)

−P(Y = −1,X ∈C0∩C̃)+P(Y = −1,X ∈C∗).

It is easy to see that

I =
Z

[

Z

v≥ka(u),v≥kã(u)
F0(u,v)−

Z

v≥ka(u),v≥ka∗ (u)
F0(u,v)

−
Z

v≥ka∗ (u),v≥kã(u)
F0(u,v)+

Z

v≥ka∗ (u)
F0(u,v)

+
Z

v<ka(u),v<kã(u)
(1−F0(u,v))−

Z

v<ka(u),v<ka∗ (u)
(1−F0(u,v))

−
Z

v<ka∗ (u),v<kã(u)
(1−F0(u,v))+

Z

v<ka∗ (u),
(1−F0(u,v))

]

g(u,v)dudv.

=
Z

ka(u)≤kã(u)≤ka∗ (u)

Z ka0(u)

kã(u)
g(u,v)dvdu+

Z

kã(u)≤ka(u)≤ka∗ (u)

Z ka∗ (u)

ka(u)
g(u,v)dvdu

+
Z

ka∗ (u)≤ka(u)≤kã(u)

Z ka(u)

ka∗ (u)
g(u,v)dvdu+

Z

ka∗ (u)≤kã(u)≤ka(u)

Z kã(u)

ka∗ (u)
g(u,v)dvdu.

For eachs, t ∈ R
r , and for sequences{ā(τ)} and{a(τ)} with

lim
τ→∞

ā(τ) = lim
τ→∞

a(τ) = a∗,

we have

lim
τ→∞

τ
Z

ka∗+s/τ(u)≤ka∗+t/τ(u)≤ka∗ (u)

Z ka∗ (u)

ka∗+t/τ(u)
g(u,v)dvdu
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= lim
τ→∞

τ
Z

ka∗+s/τ(u)≤ka∗+t/τ(u)≤ka∗ (u)

(

ka∗(u)−ka∗+t/τ(u)

)

g(u,kā(τ)(u))du

= lim
τ→∞

τ
Z

ka∗+s/τ(u)≤ka∗+t/τ(u)≤ka∗ (u)

(

−tT/τ
)

k′a(τ)(u)g(u,kā(τ)(u))du. (31)

Whenτ → ∞, the conditionska0+s/τ(u) ≤ ka∗+t/τ(u) andka∗+t/τ(u) ≤ ka∗(u) becomes(−sT +
tT)k′a∗(u) ≥ 0 and−tTk′a∗(u) ≥ 0, respectively. So the limit in (31) becomes

−
Z

0≥tTk′a∗ (u)≥sTk′a∗ (u)
tTk′a∗(u)g(u,ka∗(u))du.

Hence, have shown that

lim
τ→∞

τCov
(

φ(X,Y,a∗ +s/τ),φ(X,Y,a∗ + t/τ)
)

=
Z

αT(u, t,s)k′a∗(u)g(u,ka∗(u))du,

whereα is defined in (18). The second part of Condition (v) is true because the functionsφ(·,a) are
bounded. We conclude that Condition (v) is satisfied.

Conditions (vi) and (vii) are verified in the same way as in the proof of Theorem 1. �
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