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CHAPTER 

INTRODUCTION 

The vertices of a regular (2s+l)-gon in the plane forma set of 

points on the circle with the property that the distance between different 

points assumes only s different values. It is easy to see that 2s+l 

is the maximal cardinality of such a set since, starting with any point on 

the circle, there are at most two points at a prescribed distance away 

from it. If we denote by f(s,d) the maximal number of points on the 

unit sphere in d-dimensional space Rd , constituting an s-distance set, 

then exactly the same reasoning yields an exponential bound in d by the 

inequality f(s,d) ~ I + sf(s,d-1). If s is s.mall compared to d , all 

·known examples indicate that the proper bound should be polynomial in d, 

of degree s. Using ingredients from the theory of harmonie analysis, 

especially the addition theorem for Gegenbauer polynomials, Delsarte, 

Goethals and Seidel [DGS] showed that this is the case. Koornwinder [KJ 

gave a simpler argument, yielding the same absolute bound and avoiding 

harmonies. His method is to associate with an 

unit sphere in Rd an independent set of lXI 
in d variables. Hence the cardinality of X 

s-distance set X on the 

polynomials of degree s 

is bounded by dim Pol(s,d) 

i.e., the dimension of the space of polynomials of degree at most s, in 

d variables. 

Koornwinder's metbod is applicaile in many cases, however if we 

consider sets of veetors with few inner products in an arbitrary inner 

product space, this method does not depend on the signature of the inner 

product. With the harmonie method we can do better in case of an 

indefinite inner product, i.e., the vector space Rp,q provided wii:h .. the 

inner product (x,y) = xlyl + x2y2 + .. +x y - xp+lyp+l - . . -xp+qyp+q p p 

of signature (p,q). Th is is done in chapter 2, which is joint work 

with Bannai, Delsarte and Seidel [BBDS] First we prove a generalized 

version of the addition formula, which is of independent interest. Then 

we apply it to few-distance sets in indefinite inner product spaces. 

For example theorem 2. 8. I. reads as follows: Let X be a set of unit 

veetors in such that the inner product between-different 

' 
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elements of X assumes only s different values (all different from 1). 

( d+ss-1) • Then card (X) s 

We conclude this chapter with examples, e.g.: The maximal number of vee

tors in R9• 1 having inner products {0,~ ~} is exactly 165. 

Another way to obtain better bounds is to start with ~oornwinder's 

method, but to show that one can actually construct a larger independent 

set of polynomials. In chapter 3 this approach yields an essentially 

sharp bound on the number of equiangular lines in Rd,l viz. theorem 

3.2. I. : Let X be a set of equiangular lines in Rd,l at angle 

arccos(a) • Then 

(i) if (d+l)a2 
< I 

(ii) if (d+l)a2 ~ card(X) s ld(d+l) • 

The first case is proved using the eigenvalue method and is called the 

special bound. 

In chapter 4 , we apply the same idea to imprave the bounds for 

s-distance sets in Euclidean d-space, Ed , and hyperbalie d-space, Hd • 

In these cases we get the following result: Let X be an s-distance 

set in Ed or Hd , then card(X) ::;; (d:s). 

The bound for Hd can also be derived from the results in chapter 2. 

It is still an open question whether an harmonie analysis approach could 

give the bound for Ed as well. 

An interesting idea, due to Frankl and Wilson [FW] , is to consider 

sets of points with few distances modulo a prime. In chapter 5 a 

useful number theoretic lemma is combined with Kaamwinder's argument to 

give a.o. the following result (theorem 5.3.1.): Let X be a set of 

veetors in Rd such that there are integers a 1, ••• ,as with 

(i) (x, x) i a. (mod p) , (x, x) ~:: Z for all XéX ,I ::> i ::>._s. 
l. 

(ii) (x,y) - ai (mod p) for some i, 

Then c~rd(X) s (d+s). 
s 

::> i ::> s , if x~èX • 

In chapter 6 , the same lemma is applied to the more natural 

question of few-distance sets modulo a prime in Delsarte spaces, a notion 



due to Neumaier [Nl] and Delsarte. Since the basic text is not generally 

available, we repeat the basic theory of Delsarte spaces and association 

schemes in this chapter. As a corollary of the mod p bound for Delsarte 

spaces we obtain the result of Frank! and Wilson and also the following 

theorem: Let X be a collection of subsets from an n-set, such that 

for any x~y€X : lx 6 yl €T , where T is the union of t non-zero 

residue classes mod p. Th en card(X) 

This chapter finishes with a series of examples meeting this bound. Part 

of the work in this chapter is joint work with Singhi. 

In chapter 7 a relation between two-distance sets and a problem of 

ErdÖs isdemonstrated. Isosceles sets are sets of points , such that each 

triple among them determines an isosceles triangle. We show that an 

isosceles set in Ed can be decomposed in a coliection of "mutually 

orthogonal" two-distance sets. As a result the following bound is 

obtained (theorem 7.2.5.): Let X be an isosceles set in Ed, then 

· card(X) $ !{d+l)(d+2) • Equality implies that X is a two-distance set 

or a spherical two-distance set together with its center. 

Crucial in the proof of the decomposition theorem is the following 

graph-theoretical proposition: Let the edges of the complete graph on n 

vertices be colored by k colors, such that 

(i) each triangle bas at most two colors 

(ii) the induced graph on each color is connected. 

Then there are at most two colors. 

In chapter 8 , which contains joint work with Wilbrink and Kloks, 

the same proposition plays a key role in the study of the structure of 

graphs satisfying the following two regularity conditions: 

(i) There is a constant K, such that every maximal clique bas 

size K. 

(ii) There is a constant e, such that for every maximal clique C 

and every vertex p not in C , there are exactly e vertices in C , 

adjacent to P• 

These graphs were introduced by Zara [Z] in an attempt to characterize 

polar spaces (in the sense of Veldkampand Tits). The main result in 

3 



4 

this chapter is theorem 8.5.11 : Let G be a coconnected Zara-graph of 

rank r, then the reduced graphof G, say G', is again a coconnected 

Zara-graph and the partially ordered set of closed cliques in G' is an 

M -space in the sense of Neumaier [N]. 
r 



CHAPTER 2 

THE ADDITION FORMULA FOR Rp,q 

§2.1 Introduetion 

In [DGS] , the authors investigate few-distance sets on the sphere 

in Euclidean d-space, Rd. If a two-distance set is considered, then a 

"lifting" process re sul ts in a set of equiangular lines, either in Rd+ 1 

cf. [vLS] , or in Rd,t • In this way the 5 points of the regular 

pentagon correspond to the 6 diagonals of the icosahedron. This is one 

of the reasons to study the problem of few-distance sets and sets of lines 

with few angles in the more general setting of an arbitrary inner product 

space. 

If we want to apply the same techniques as in [DGS] we need a 

generalization of the addition formula for Gegenbauer polynomials. The 

addition formula reads as follows: 

llk 

Yk~(d-Z)/2 ((x,y)) z ~ f ( )f ( ) -k "'" k.x k.y 
i= I '

1 
'

1 

Here c_<d-2)/2 _k is a Gegenbauer polynomial, with a sealing factor yk 

while x and y are unit veetors in provided with the standard 

inner product (x,y). The {fk i} form an orthonormal basis of the space 
• 

of the homogeneaus harmonie polynomials of degree k, with respect to the 

inner product 

<f,g> f f(x)g(x)dw(x) 
1n1 n 

Here n .stands for the unit sphere in Rd • 

5 
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From this representation of the inner product the difficulty in deriving a 

generalized addition formula becomes apparent: In the case of an indefi

nite space we no longer have a compact unit sphere, so we have to define 

the inner product on the space harm(k) of homogeneaus harmonie polynomials 

of degree k in d variables in a different way. To do this we introduce 

differentlal operators and the algebra of symmetrie tensors ,cf. [BBDS] 

It turns out that the new inner product gives back the "old'' addition 

formula in the Euclidean case, while in the indefinite case we still get 

Gegenbauer polynomials, the only difference being that the inner product 

on the space harm(k) is no longer positive definite. This fact enables us 

to improve the bounds for few-distance sets in indefinite spo1'-ce. In the 

most interesting case of hyperbolic space, Rd' 1 , we obtain equality in a 

number of examples. 

The main objective in this chapter is to give the setting for the 

more general inner product. The application to few-distance sets is 

essentially the same as in [DGS]. 

§2.2. Polynomials and tensors 

Let V denote a real d-dimensional vector space and let 

1 2 d * (v ,v , ••• ,v) be any basis of V. Let S denote the algebra of 

polynomial functions on V; thus s* consists of the functions 

f : V ~ R that are represented by polynomials in tbe coordinates with 
1 d respect to the basis (v, •.• ,v ). Next let S denote the symmetrie 

algebra on V , consisting of the symmetrie tensors 

s = 

with sa ER and a=(a1,a2, ••• ,ad) , only a finite number of the sa 

being non-zero. 

Let Aut V denote the automorphism group of V. The àction of 

an element OE Aut V will be written in the form xEV ~ x0 EV • 

The groqp Aut V acts as an algebra automorphism group on both s* and S 

according to the following rules. The image f 0 of a polynomial f E s* 
0 -1 is defined by f (x) = f(x o ) • The image of a symmetrie tensor s E S 



is defined by 

cr al I cr ... ad(vd)cr • s ~ s ~ (v) ••• ~ 
a 

a 

§2.3. Differential operators. 

To any vector w € V corresponds the directional derivative 

which is the linear operator on s* defined by 

a 
w 

7 

(a f)(x) 
w 

lim h-l [f(x+hw) - f(x)] , 
h->-0 

(I) 

. for x E V and f " s*. We extend this definition to the whole algebra 

S by aasociating the differential operator a s 
al ad 

I:saal ••• ad , where 

a. 
1 

to the symmetrie tensor 

s = 

Note the property 

A.nonsingular linear pairing < I > between s and s* is defined by 

<slf> =(a f)(O) 
s s € s f " s* . 

<setlf> • <sla f> • 
t 

(2) 

Let hom(d,k) denote the space of the homogeneous polynomials of degree 

k in d variables. Por later use we prove the following lemmas. 

LEMMA 2. 3. I. For all x " V , and f " hom(d,k) we have 



8 

PROOF. For k"'1 the statement follows from the definition of a f. 
x 

Indeed <xlf> "' a f(O) ~ f(x) since f is linear. For k>l we have x 

(k-1) : (a f)(x) 
x 

Now if f is homogeneous of degree k then (axf)(x) • kf(x) since 

(a f)(x) • lim h- 1 [f((1+h)x)-f(x)] 
x 

This finishes the proof. 

-1 k lim h ((1+h) -1)f(x) 

LEMMA 2.3.2. FoP aU cr E Aut V , s E S and f Es* we have 

PROOF. First note that for x E V we have 

By inductión on the degree of s we then can prove 

§2.4. Bilinear form spaces. 

0 

0 

Let B(.,.) denote any nondegenerate symmetrie bilineàr form on V. 

Then B induces a vector space isomorphism B: v'~ v* (the dual of V), 

given by x~ B(x,.) for all x E V. This vector space isomorphism 

naturally extends to the algebra isomorphism B: S ~ s* given by 

al 1 ad d B(vl al d ad LS e v ••• e v ~ L s ,.) ••• B(v ,.) a a a a 

It is clear from the definition that we have, for all x,y in V 
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<xiBy> B(x,y) = <yiBx> 

More generally we have 

LEMMA 2.4.1. <siBt> <tiBs> for s,t E S • (3) 

PROOF. 
i i 

B(v ,v ) =+i 

Let 1 2 d v ,v , ... ,v be an orthogonal basis of V , with 

and let 

t 

Then <siBt> = 0 if there is an index i with a. jl.b. , while if s = t 
1 1 

we have, with + = n+i 

d 
<siBt> =+na.! 

i=l 1 

Since tensors of the form 

proof is finished. 

d 
+ n b.! 
i=l 1 

constitute a basis for s the 

The isomorphism B allows one to interpret the pairing in (2) 

between s and s* as an inner product on the space s* ; the defini

tion of this inner product is as follows: 

0 

<f,g> -1 <B flg> for f,g € s* (5) 

From (3) it follows that this inner product is symmetrie, i.e., 

<f.g> = <g,f> • To any polynomial gE s* let us now associate the 

differential operator ~g defined by ~ = ~ Then multiplication 
g B-lg 

an4 differentiation with respect to a given polynomial are adjoint opera

tions wi tb respect to the inner product defined in (5) , in the sense that 

<gh,f> = <h,~ f> 
g 

for f,g,h E g* (6) 



10 

Let Aut B denote the automorphism group of the bilinear form B, i.e., the 

subgroup of Aut V containing all o such that B(x0 ,y0
) = B(x,y) for · 

all x,y EV. Using <s0 lf0 > <s[f> together with the property 

B(s0
) = (Bs) 0 for all o EAut B , one can show that the inner product 

defined in (5) is invariant under Aut B , i.e., 

THEOREM 2.4.2. 

§2.5. Harmonie polynomials. 

We now fix a bilinear form B of inertia (p,q), with p+q = d , so 

that 1 d B is nondegenerate. Thus fora suitable basis v, •.• ,v of V 

we may write 

Let Then the polynomial corresponding to s is: 

f Bs 

Hence, given a polynomial g , we may write the associated differential 

operator as follows: 

Here a. 
l. 

form: 

ag - a _1 - g(a) 
8 g 

stands for a i • 
V 

The inner product 

<f,g> = (f(a)g)(O) • 

(5) takes the following 

Let us mention in particular the differential operator associated to the 

quadratic form B itself: a(x) := B(x,x) : 
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a~ is called the Laplacian (associated to the bilinear form B). 

Define the space hai'ID;s (k) to consist of the polynomials f E s* which 

are homogeneaus of degree k and satisfy the Laptace equation a~f = 0 ; 

thus 

Let us mention the following important decomposition (cf. [V] page 446) 

of hom(d,k) into the kemel and the image of the operator ~a~ 

hom(d,k) = ha~(k) .L ~(.)hom(d,k-2) 

The orthogonality of the summands on the right hand side of (7) is an 

immediate consequence of (6) • When no confusion is possible we shall 

write hom(k) instead of hom(d,k). 

The monomials with 
d 
1: ai = k , 

i=l 

orthogonal basis forthespace hom(k); furthermore we have 

d 
II a.! 

~ i= I 

form an 

(7) 

as a direct consequence of (4). This.leads us to the following decompo

sition of hom(k) 

hom+(k) 
d 

Here <x a I: a. • 0 (mod 2)> 
i=p+l ~ 

d 
and hom-(k) <xa I I: a. s I (mod 2)> 

i=p+l ~ 



12 

Clearly the restrietion of the innerproduct to hom+(k) is positive 

definite, while the restrietion to hom-(k) is negative definite. We 

will show that ha~(k) splits in a similar way into subspaces harm;(k) 

and harm;(k) , and we shall compute the dimensions of these subspaces. 

Let H denote the projection H: hom(k) ~ ha~(k) , with res

pect to the decomposition 

hom(k) = ha~(k) • B(.)hom(k-2) 

LEMMA 2.5. I. + If f E hom (k) then aLso Hf E hom+(k) and 

f E hom-(k) impLies Hf E hom-(k) 

PROOF. Analogous to (V] , page 445 (13), one can prove that Hf 

may be written in the following form: 

lk/2j 
Hf= E 

i..O 
(8) 

for some constants co· . .. ,clkL2J . It therefore suffices to show that 

aa
6

f is in hom+(k) 
' 

resp. hom (k) • if f is. This however fellows 

from the fact that x~a~f is in hom+(k) • resp • hom-(k) • if f is, 
1 J 

for all i,j. 

The lemma gives us the following decomposition: 

e; e; 
where ha~(k) := hom (k) n ha~(k) for e: = +/- . 

Finally we shall use this information to determine the dimensions of 
+ -

ha~(k) and ha~(k), and hence the inertia of the inner product. 

THEOREM 2. 5. 2. The dimenaions of the spaces conside:rred in this 

section arre as foLLows: 

(i) : (d+k-1) d1m hom(d,k) • k 
/ 

0 



(iii) 

(iv) 

(v) 

k/2 
dim hom+(d,k) • :E 

j=O 
(p+k-2~-l)(q+2~-l) k-2J 2J 

(k-!)'2 (p+k-2J·-2xq+2J.) dim hom- (k) = ' 
~i~ k-2j-l 2j+l 

dim harm;(k) =dim hom+(d,k) -dim hom+(d,k-2) = 

(k-l)/2 ( +k-2.-2)( +2") =:EP J QJ_ 
j=O k-2j-1 2j+l 

(k-3)/2 (p+k-2j-4xq+2j) 
j!o k-2j-3 . 2J+t, 

PROOF. (i) is well-known ; (ii) follows from the decomposition 

13 

hom(d,k) = har~(k) .L B(.)hom(d,k-2) • To see (iii) we construct an 

explicit basis of hom+ (k): Write a = (a+;a_) where a=(a 1, ••• ,ap+q), 
a a+ a_ and 

a+ = (a1, ••• ,ap) and a_ = (ap+l' ••• ,ap+q) Then x = x .x 

d 
iff :E a. = k 

i•l l. 

and 
d 
:E 

i=p+l 
ai • 0 (mod 2) • Hence 

k/2 
dim hom+(k) = L dim hom(p,k-2j).dim hom(q,2j) • 

j=O 

Thê proof of (iv) is entirely similar. Statements (v) and. (vi) follow 

from the following decomposition: 

E: E: = ha~(k) • hom (d,k-2) E:• +/- 0 
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§2.6. The addition formula. 

Let B be a bilinear form of inertia (p,q) • For any vector x E V 

the map f + f(x) defines a linear functional on the space ha~(k) ; 

Hence there exists a unique polynomial iE ha~(k) with the following 

"reproducing" property : 

<x,f> f(x) for all f E ha~(k) (9) 

Note that for all a EAut B we have a -a , since for all f E ha~(k) x • x 

<xa ,f >= f(xa) 
-1 

lJ (x) ..... a 
<x,f 

-1 
"'0 > <x ,f> • 

Next write q(x,y) .. i(y). Since a ~ct 
we have x "'x 

for x,y E V and Cf EAut B • 

Consider an "orthonormal" basis {fk,i;~,jli•1, •• ,lltt;j•1, •• ,vk}, 

i.e., a basis of ha~(k) such that 

<fk .,fk >"=ó. ; <2.. .,2.. >•-o. 
,1. ,u l.U -lt,J ~lt,V JV 

<fk . ,2.. ,> ,= 0 for all i,j ,u,v • 
,l. -te.,] 

The harmonie polynomial x has the following expansion in this basis 

J.lk 

x • :r <x,fk .>fk . -
i•1 '

1 
'

1 

Combining this with (9) yields : 

~ "k 
q(x,y) • I: fk .(x)fk .(y) - I: ~ .(x)~ .(y) 

i•1 ' 1 ,J j=I ,J ,J 

(10) 
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Next we show.that we may identify the function q(x,y) in termsof 

the Gegenbauer polynomial of order (d-2)/2 and degree k in the variabie 
k [x,y] :,. B(x,y) • By lemma 2.3.1. we have < Oll x,f> = k!f.(x) for x E: V 

and f E: hom(k). The polynomial corresponding to &kx is 

k [x,.} E: hom(k) 

hence 

k <[x,.] ,f> • k!f(x) • 

As before, let H denote the projection H: hom(k) + ha~(k) , according 

to decomposition (7). From the uniqueness of the harmonie polynomial x 

and the orthogonality of decomposition (7) we then have : 

I k 
x • k! H[x,.] • (11) 

For the explicit determination of x we need the following identity for 

f € hom(k), which is easy to verify (cf. [V] page 446): 

(12) 

In view of (8) we may write 

with a0 • I and m = lk/2j 

To determine the other coefficients ai , apply a8 to both sides and use 

(12). From this one can derive the following recurrence relation: 

a1 + (2i+2) (d+2k-2i-4)ai+l = 0 • 

Together with the following observation 
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i k k! k 2' . ae [x,.] = (k-2i)! [x,.] - 1S1(x) 

we obtain along the lines of [V] page 458 : 

-1 Q(d-2)/2 where yk = [(d-2)(d) ••• (d+2k-4)J , and ik is a Gegenbauer 

polynomial. The Gegenbauer polynomial cP is defined as fo111ows : 
m 

Cp(t) = 2m (p+m) [tm _ m(~1) + m(~1)(~2)(m-3) ] 
m m! (p) 2 4 + •• 2 (p~t) 2 .1.2. (p~t),(p+m-2) 

(cf. [V] page 458). An alternative definition is the following ([V] p. 492) 

00 

(l-2th+h2)-p = E 
m=O 

We now may combine (10),(11) and (13) to obtain the generalized 

addition formula. 

THEOREM 2. 6. t. k/2 k/2 (d-2) /2 L 1 
YkS(x) S(y) Ck (B(x,y)/a(x) 2 S(y) 2

) = 

~k vk 
• E. fk .(x)fk .(y)- EZ ~ .(x)~ .(y) 

i=1 ;1 ,1 j=1 -lt,J -lt,J 

Here ~ = dim harm;(k) , · vk = dim harm;(k) (cf. theorem 2.5.2) , while 

-1 yk = [(d-2)d ••• (d+2k-4)J • 

§2.7. Applications to few-distance sets in Rp'q. 

In this section we shall use the generalized addition formula and 

the knowledge of the inertia of the inner product on ha~(k) to obtain 



bounds on the size of s-distance sets of unit veetors in 

particular Rp,l and Rl,q • 

and in 

LEMMA 2.7.1. Let A be a v x m matPi~,I t = diag(ts,-lt), 
s, 

7JJhere s + t = m , and suppose AI tA t I 
S, V 

Thenv~s. 

PROOF. Suppose that v > s , then certainly rank (A) > s, and 

there exis ts an x E R v wi th the property that 

Since AI At = I 
s,t v 

this implies that xtx < 0 , contradiction. 

' 
Let X be a set of points on the "unit sphère" of V = Rp'q: 

S := {x E Rp,q I B(x,x) I} 
p,q 

with card(X) = v. Again we shall write [x,y] for B(x,y). 

Let A:= Hx,y] I x,y E X , x,&y} and suppose that t A • Also put 

A' : = A u{ I} . We de fine the following matrices 

[fk,1. (x)] x~x • I 
~ ].= ••• ,J.lk 

~ Gk(y,j) = [~.J.(y)J y~x · -k -K ~ ; J=l, •• ,vk 

[d (x,y)] X ll XE yEX dll(x,y) = I if [x,y] =.ex 

d (x,y) = 0 otherwise. 
(l 

As a direct consequence of the addition formula the following holds 

F F t .;.. ~Gkt 
k k -k 

c_<d-2)/2 
yk!t • Define the "annihilator polynomial" · <P of X: 

Ht> 

17 
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and expand q, in the "normalized" Gegenbauer polynomials Qk 

Th en 

i.e., 

Here 

where s = card(A) • 

4J(a)D = I a v 

and 
11k "k diag ( I , (-I ) ) 

The following theorem is now an immediate consequence of lemma 2.7.1.: 

THEOREM 2.7.2. Let X be a set of unit veetors in Rp,q, suah 

that, for x,y ( X, [x,y] assumes only s different values, all 

different from I. Let q, = E ~kQk be the expansion of the annihila-

tor polynomial in the normalized Gegenbau.er polynomials. Then 

s 
card(X) :s; E ok , 'Wh ere 0k = 11k if ~ > 0 

k=O 
0k = "k if q, < 0 • 
0 = 0 if ~ = 0 . 0 

Here \lk = dim harm;(k) , "k = dim harm;(k) • (cf. theorem 2.5.2). 

§2.8. Examples. 

In this section we shall compute the bounds explic.itly for the case 

p=d-1, q=l. According to theorem 2.5.2. , \lk and "k have the follo

wing va lues: 

(
d+k-3) 
k-J 1 ° 

Hence we get the following absolute bound: 
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THEOREM 2.8. I. Let X be a set of wtit veetors in Rd-l' 1 such 

that the inner product bettiJeen different eZements of X asswnes only s 

different values, all different fr'om I, then 

card(X) ~ (d+:-1). 

s k=O~s (d+kk-2) PROOF. Card(X) ~ I: pk ~ 
k=O 

0 

In certain cases we can improve the bound, using the expansion of 

the annihilator polynomial in Gegenbauer polynomials explicitly. We give 

the first Gégenbauer polynomials: 

Q
1 
(t) = dx 

1 3 3 Q3(t) = ~(d+2)(d+4)(x - d+2 x) 

1 . 4 6 2 3 
Q4(t) = ~(d+2)(d+4)(d+6)(x - d+4 x + (d+2)(d+4)) 

EXAMPLE 2.8.2. Let X be a set of unit veetors in R9 • 1 with 

inner products {O,-i,+i}. The annihilator polynomial in this case is 

41(t) 
4 = -t(t+i)(t-j} 
3 

Sinde d=10 the annihilator polynomial is an exact multiple of Q3• 

Hence the bound of theorem 2.7.2. yields card(X)~ dim harm;, 1(3) = 165. 

Equality is realized by the following set of veetors in 

R10 • 1, in the orthoplement of the vector (3; 110) 

and (1;r3 ,o7) 

There are 90 veetors of the first type, which fall in 45 antipodal 

pairs, and 120 of the second type~ This system can be regarded as an 

extension of the rootsystem E8 in the following representation : 
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7 .:!:. (0; I , -I ,0 ) and 

in the orthoplement of the isotropie vector (3;1 9) in R9 • 1 

EXAMPLE 2.8.3. Let X be a set of veetors with inner products 

{+1/3,-1/3} in R9 • 1• The annihilator polynomial (9t2-l)/8 is a multiple 

of Q2 . We get card(X) s dim harm; 1(2) • 36. Equality is realized by 

the following veetors in R9• 1 in the orthoplement of (212;1 9) : 

2 7 (612;1 ,0 ) • 

This system can be seen as a subsystem of the previous example in the 

following way: Fix a vector and consider all veetors with inner product 

+6 with this vector. Now project this system on the orthoplement of the 

fixed vector. 

NON-EXAMPLE 2.8.4. Let X be a set of veetors .in R3• 1 , with 

inner products {0,.:!:.~•.:!:.~/3}. Then ~(t) = t(4t2-1)(4t2-3)/3 is an exact 

multiple of Q5 • From this we get that card(X) s 21 • However this 

bound cannot be achieved, as was established by Bussemaker using a 

computer search. 

EXAMPLE 2.8.5. Let X be a set of veetors in R25 • 1 , with inner 

products {0,+6,+1} • Then ~(t) is a multiple of Q5 and we get 
29- -

card(X) s ( 5). This example is analogous to example 2.8.2. in the follo-

wing sense. Example 2.8.2. is a system of veetors that is an extension 

of a (1,1)- dimensional lower extremal system. In this case the extremal 

· R24 · d d • • · f the (2
5
8) • d 1 · f system Ln Ln ee exLsts, cons1st1ng o ant1po a pa1rs o 

veetors closest to the origin in the Leech lattice. Whether this system 

can be extended in a certain sense to (2;) veetors in R25 • 1 is unknown. 

EXAMPLE 2.8.6. Let X be a set of veetors in R24 • 1 , with inner 

products {0,.:!:. i /3} • 

and the bound yields 

The annihilator polynomial is a multiple of Q3 • 

2600 • <26 ) • There do exist 2300 veetors with the 3 23 prescribed inner products in R • So far the best we can realize in 

R24 •1 is 2324, viz. the following set of vectors: ( 8;42,o22) ,giving 

<2i> vectors, and the veetors (0;(.:!:.1) 24) where the +I positions corre

spond to a word in the extended binary Golay code, 2048 pairs. 



CHAPTER 3 

EQUIANGULAR LINES IN Rd' I 

§ 3. l. Introduet ion. 

Let Rd' 1 be the (d+t)-dimensional vector space .over the reals, 

provided with the following inner product: 

21 

If two lines through the origin span a planè on which the inherited inner 

product is positive definite, we can define their angle to be arccosl(x,y)l 

,where x and y are unit veetors along the lines. A set of equiangular 

lines is a set of lines, such that for each pair tbe angle is defined and 

equal to the same value, arccosa say. Using an argument based on an idea 

of Koornwinder [KJ, and on éigenvalue techniques of van Lint and Seidel 

[vLS] we obtain sbarp bounds on tbe cardinality of set!! of equiangular 
lines in Rd,l. 

§3.2. The tbeorem 

THEOREM 3.2.1. Let x be a set of equiangul.ar lines in Rd,l 

angle arccos(a) , then 

(i) if (d+l)a 2 :s: then card(X) $ d(l-a 2) I (l-da2) 

(i i} if (d+t)a 2 
> I , then card(X) $ ~d(d+t) ' 

and equalit;y in (i) aan only be realized if the set is in a positive 

definite subspaae of dimeneion d • Also, an infinite series of sets 

realizing equalit;y in (ii) e~ists. 

at 

PROOF. Let U be a set of unit vectors, one along eacb line of X. 

The Gram matrix G of tbe set u bas at most d positive eigenvalues. 
-I 

I) bas eigenvalues less tban or equal -I Hence C =a (G - v-d to -a 

witb v • card(X). Call the otber eigenvalues "i'"2' . . ·"d • 
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Since the matrix C has zeros on the diagonal and +l elsewhere 

0 tr c s À
1 

+ À
2 

+ •• * + 

v(v-1) + ••• + 

As a consequence the following inequalities hold: 

(v-d)2 --;;:r $ 

In case d < l/a2 this is equivalent to 

2 2 v s: d (1 -a ) I ( 1-da ) • 

Note that equality can only occur if Àd+l' ••• ,Àv are all equal to -1/a 

and this implies that the subspace <U> is actually positive definite. 

To prove the second part we proceed as follows. For each u € U 

define F : Rd• 1 .... R by 
u 

2 2 F (x) ~ (u,x) - a (x,x) 
u 

and define d+l additional functions 

(x, x) 

We will show that the set F • {F ,f0 ,f.l i•l, •• ,d ,u EU} is indepen
u l 

dent. This implies our claim, since all these functions are homogeneous 

of degree 2 and therefore. card(f) s: ! (d+ 1) (d+2). 

Suppose there is a dependency re lation for the functions in F 

d 
E a F (x) + r aifi (x) + aofo (x) = 0 • (1) 

UEU U U i=l 

For u,v € U always F (v) • (t-a2)ö , hence when we insert u E U u uv in 

this relation the following results: 



d 2 a (1-a ) + E a.u0u. + a0 = 0 
u i=l 1 1 

Camparing coefficients of 

2 2 
E a (u. - a ) + a

0 
= 0 

U€U U 1 

-2 E a u0u. + a. • 0 
U€U u 1 1 

Now add (3) and (4) 

2 a u. 
u 1 

(I) yields 

Summation of both sides of this equation, and putting (u,u}•l yields: 

From (3) one obtains 

23 

(2) 

(3) 

(4} 

(5) 

(6} 

Now if (d+l)a2 = this implies a0-o . Otherwise we can multiply (I) by 

au and.sum over u (using (5) and (~}} to obtain 

• 0 

This is a sum of squares since (d+l)a2 - 1 > 0, hence all ai are 0. 

lf (d+l)a2 = 1 we get the same relation except for the term invalving a0 
and we are done as well. So card(U) = card(F)-(d+l) .~ ~d(d+l) • 0 

An infinite series of sets realizing the bound is provided by: 
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In Rd+l,l the vector w=(212;1d+l) satisfies (w,w) • d-7 • Therefore 

we may identify w~ with Rd,l for d ~ 7. The set of ld(d+t) veetors 

of the form 

is in w~ and spans a set of equiangular lines at arccos(l/3). For d=7, 

w~/<w> is isomorphic to R7 and the construction yields 28 equiangular 

lines. More on this system can be found in [LS] and [vLS] • This represen

tation is due to Seidel (unpublished). For a=1/5 , d=23 , there exists a 

set of 276 lines (cf. [LS]). With the help of the Steiner system 

4-(23,7,1) they can be nicely described as a set of lines in R23 • 1 as 

follows: (For details about Steiner systems see [CvL] ) 

where the positions of the seven ones in the last type corresponds to the 

blocks of the Steiner system 4-(23,7,1). 

Related to this example are sets of lines at arccos(1/5) in R22 and 

R21 realizing the bound in part (i) of the theorem. Fora ~1/5 no 

case of equality is known. 

REMARK 3.2.2. In the case (d+2)- 1< a 2 
< (d+l)-1 we have 

This set of values for a is excluded however by the following theorem. 

THEOREM 3.2.3. If V< 2d+2 then -I 
a is an integer>. 

PROOF. This is essentially theorem 3.4. from [LS], d~e to Neu~ 

mann. Let A= a-1(G-I) where G is the Gram matrix of u. Then A 
is an integral matrix, and bas eigenvalue ~-I with multiplicity m=v-d-1. 

Th f - 1 • 1 b • • d 1 b • • • ere ore, -a 1s an a ge ra1c 1nteger, an every a ge ra1c con]ugate 1s 

an eigenvalue with the same multiplicity m. Since 2m=2v-(2d+2) > v, 

there is at most one eigenvalue of multiplicity m, which implies that 
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-1 -1 
-a is rational, and hence an integer._ (In fact one can prove that a 

is an odd integer.) 



26 

CHAPTER 4 

FEW-DISTANCE SETS IN Ed AND Hd 

§4.1. Introduction. 

Using Koornwinders argument one obtains the same bounds for s-dis

tance sets in Ed , d-dimensional Euclidean space, and Hd , d~dimensional 
hyperbolic space , viz. 

(d+s) + 
s 

(d+s-1) • 
s-1 

In both cases it is possible to reduce the bounds using the trick of finding 

an additional set of independent functions. As a consequence we get the 

following 

THEOREM 4. 1. 1. Let X be an s-distanae set in Ed OP Hd • then 

card(X) 0 

§4.2. Preliminaries and notation. 

The vector space Rd together with the usual metric, coming from the 

inner product (x,y) = x1y1 + ••• + xdyd , will be called Ed ,i.e., 

d-dimensional Euclidean space. By Hd we denote d-dimensional hyperbolic 

space. Hd can be realized as follows Let Rl,d be a (d+l)-dimensional 

vector space over R provided with the inner product 

The points of Hd are the 1-dimensional subspaces <X>,· with <X,x> > 0. 

Distance ~s defined by 

d(<X>,<y>) arcosh ~~Ï~~ I · 
<X,X> <y,y> 



If we take for x and y unit veetors with positive first coordinate, 

this becomes d(:x:,y) == arcosh(-<x,y>). Veetors in Rd or R
11
•d will be 

denoted by u,v,x,y,z, where x=(x
1
,x

2
, ••• ,xd) or x==(x

0
,x

1
, ••• ,xd) • 

By b,c, •• ,g we denote veetors of length d or d+l with nonnegative 

integral entries. 
eo el ed e 

The monomial x
0 

x
1 

••• xd is denoted by the symbol x. An 

27 

appropriate greek letter will denote the sum of the entries of an integral 

vector (B = b
0

+b
1
+ ••• +bd etc.) • Also 

(B> _ a! 
b - b 'b ' b i o· I''" d' 

Let cr(j) be the elementary symmetrie function in the variables a
1

, •• , as• 

of degree j. So 

Denote by 

variables 

Note that 

0 (') u J 

(u,u) -

s 

s 
1: o(j)ts-j 

j=O 

the elementary symmetrie function of degree 

ai ; i=l, ••• ,s • So 

II (t+(u,u)-ai) 
i= I 

cr (") u J 

j in the 

Finally if V is a vector space with basis A , we. write p= 1: [p,a]a 
aEA 

for p E V , so [p,aJ are the coordinates of p relative to the basis A. 

§4.3. The bound in Euclidean space. 

THEOREM 4. 3. I • Let X be an s-distanae set in Ed, then 

card(X) 
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PROOF. Let a 1,a 2, ••• ,as be the squares of the distanc~s that occur 

in X • For each u E X define the polynomial 

F (x) 
u 

s 
n { (x-u,x-u)-ai} 

i=1 

s 
n {(x,x)-2(x,u)+(u,u)-a.} 

i•1 l 

For u,v E X 

mials F (x) 
u 

we have F (v) = 0 iff u+v • This implies that the polyno
u 

are independent. We may expand Fu as follows: 

s . 
F (x)= E a (s-j)((x,x)-2(x,u)]J 

u j=O u 

= E 
e:;g 
e+yss 

(l) 

The summation in (1) is over all nonnegative integral d-vectors g and 

nonnegative integers e , such that e+g
1
+g2+ +gd ~ s. 

The F are linear combinations of the functions in the set 
u 

0 b { (x,x) x I ó+ B = s or ö= 0 and B <S} 

The following bound is a direct consequence of this: 

card(X) 

We now proceed to show that in fact the set 

{F (x) , xb I u E X ,a < s} 
u 

is independent. This yields the desired result 

card(X) + (d+s-1) s 
s-1 

Suppose tben, there is a dependency relation: 

b 
E a F (x) + E ~x 0 

uEX u u b:13<s 
(2) 
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LEMMA 4.3.2. Relation (2) implies 

Vb with 8 <s E a ub = 0 
ü€X u 

PROOF. We shall use induction. First consider the part of (2) that 

is homogeneous of maximal degree 2s in x. From the explicit expansion 

(I) of Fu we see that this only happens for E = s, ö = 0 , and we 

obtain E a = 0. So the lemma is true for 8 = 0. Now suppose 
u€X u 

E a } = 0 for all b with 0 5.8 < t < s • 
U€X u ' 

Consider· the part of (2) that is homogeneous of degree 2s-t in x. 

This yields 

Since 

cr (s-e:-y) 
u 

( s )(u u)s-E-y ( s-1 )( )s-E-y-1 
s-E-y ' - s-e:-y-1 u,u ± 

we may, after changing the order of summation, use the induction hypothesis: 

Hence 

E a (u,u)s-e:-y-i ug 0 
U€X U 

E 
qg 

2e;+y=2s-t 

Finally, substituting x-v , multiplying by 

all v € X yields: 

for all i > 0 • 

and summing over 
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E 
e;g 

2e+y=2s-t 

0 . 

This is a sum of squares, with all coefficients of same sign, ,therefore 

and in particular 

E 
UEX 

a u 
u 

d 
0 if 

0 if 2e+y 2s-t 

y = t . D 

We now proceed with t~e proof of the theorem. From (2) it follows in par

ticular, with TT= IT (-a.) 
i=l ~ 

a TT + 
u 

b 
E ~u 

b: S<s 
0 . 

The second term of the left hand side is 0, by lemma 4.3.2., so finally 

we arrive at au 0 for all u E X. This finishes the proof of 

theorem 4. 3. I. D 

4.4. The bound in hyperbolic space. 

THEOREM 4. 4. I • Let X be an s-distance set in Hd , then 

card(X) 

PROOF. We use the representation of Hd described in 4.2., each 

point will be identified with a unit vector in Rl,d with positive first 

coordinate. Let a
1
,a2 , ••• ,as denote the different values of <u,v> for 

distinct u,v E X. For each u E X define 

s 
n (<u,x> - ai) ' 

i= I 
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and consider these polynomials as elements of the ring 

Si nee in this ring, a basis is formed by the set 

{xe I e0 é {0,1}}. The Fu are independentand they are linear combina

tions of the basis elements xe with e ~ s • From this it follows that 

In this case we will show that in fact the following set is independent: 

{Fu(x) 'Xe I UéX' E ~ s 'eo = I} 

From this we get card(X) We shall write 

E. 
~ 

{e I E ~ s 'eo i} 'i=O,I E = E
0 

u E
1 

• 

f e Also, [x ,x] will be abbreviated by [f,e] (see 4.2. last line). 

Suppose then we have the following dependenee relation: 

Then, with 11 

I: 
UEX 

a F (x) + I: U,U 

d 

e a x 
e = 0 • 

rr (1-a.) 'we have in particular 
i=l 1. 

a 11 + I: a ue = 0 , 
u e 

eEEI 
for all UEX • 

(3) 

(4) 

The F (x) may be represented relative to the basis {xel eEE} as follows: 
u 

F (x) 
u 

~ s-~ f f ~-fa 
E ("') (s-cfl) (-I) "'u x (-I) 

f:~s:s f 

cfl f e (s-cfl)(f)u [ I: [f,e]x] 
eEE 
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Note that [f,e] = 0 either for all eEE0 or for all eEE 1 depending on 

whether f0 is odd or even. So, comparing coefficients of the respective 

basis elements we get: 

(-I)s-I E a E (~)[f,e]ufa(s-~) 
uEX u f:~:>;s 

and 

E a E (:)[f,e]ufa(s-~) = 0 
uEX u f:~:>;s 

+ a e 0 \IeEE! (5) 

(6) 

Multiplication of (5) by ve and of 

over e E E yields: 

(6) by 
s-I e · 

(-I) v and summatien 

= 0 • 

Since E [f,e]ve = vf 
eEE 

this together with (4) implies 

Finally, after multiplication by a 
V 

and summation over all vEX 

- 'IT E 
UEX 

Now (-1 )s'IT > 0 since a. > for all i. Therefore we have again a sum 
1 

of squares, and a = 0 for all uEX, Th is finishes the proof of u 
theorem 4. 4 • I • . 0 
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CHAPTER 5 

FEW-DISTANCE SETS MOD p 

5.1. Introduction. 

In [FW] the authors proved the following theorem: 

THEOREM 5.1.1. Let F = {F.Ii € I} be a aoUection of subsets of an 
1 

n-set> and iet ~0 .~ 1 ••••• ~s be distinat ~sidues moduZo a prime P> suah 

that IFil • k • with k s ~O (mod p) > and 

h, I Sb ss • Then I Fl s (n) • 
s 

IF.nF.! = ~h(mod p) forsome 
1 J 

In this chapter we shall generalize this theorem to arbitrary bilinear form 

spaces in two ways. Central to the proof is the following lemma, where ZM 

denotes the set of all Z-linear combinations of elements from the set M. 

LEMMA 5.1.2. Let M be a nonempty finitesetof ~az nwnbers. If 

M c pZM foP some pPime p, then M = { 0} • 

PROOF. QM is a finite dimensional vector space over Q, the field 

of rational numbers. Write the elements of M as veetors expressed in 

some fixed basis of this vector space. For m € QM let v (m) be the 
p 

minimal exponent of p in all coordinates of m relative to this basis, 

where the exponent of p in 0 is to be taken +m, Since 

v (m+n) ~ min(v (m),v (n)), we have the following : 
p - p p 

min v (m) = min v (m) ~ min v (m) 
m€ZM p m€M p mEpM p 

Hence M = {0} • 

5.2. The mod p-bound , first version. 

+ min v (m) 
m€M p 

Let V Rd be equipped with a bilinear form B , say 
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THEOREM 5.2. I. Let X be a set of veators in V sueh .that there 

are a0,a1, •••• as € Z alt distinat mod p ~th 

(i) B(x,x) a0 for aU x E X ; 

(ii) B(x,y) • ai(mod p) forsome i, ~i~ s if x f: y EX; 

then card(X) ~ (d:~~ 1 ) + (d:~~2 ) • 

PROOF. Let Pol(s,d) denote the set of all polynomials of degree at 

most s in d variables restricted to the "sphere" B(x,x) = a0 • Then 

dim Pol(s,d) q~O or d, and a0 ~ 0 resp. 
s 

a0 ~ 0). Again we associate to x E X 

where (x,y) = B(x,y) • We then have : 

the polynomial f (y)= TI ((x,y)-a.) 
x i=J 1 

f (x) ~ O(mod p) 
x 

f (y) • O(mod p) x 

for all x E X 

for x f: y E X . 

Assume there is a relation 

yields: 

E m f = 0. Inserting xEX i~ this relation 
XEX x x 

m f (x) 
x x 

- E m f (x) € pZM 
yf:x y y 

where M = (m I x E X} x Since f (x) ; 0 (mod p) this implies that x 

mx € pZM for all x , hence M c pZM. Lemma 5.1.2. now yields that 

M = {0}, i.e., the polynomials are independent. This finishes the proof. D 

5.3. The mod p-bound second version. 

THEOREM 5.3.1. Let X be a set of veators in V sueh that there 

are a 1, ••• ,as E Z with 

(i) B(x,x) € Z and B(x,x) ~ a. (mod p) for aU x € X and 
1 

~ i ~ s; 



then 

(ii) B(x,y) • ai(mod p) 

d+s card(X) ~ ( d ) • 
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forsome 

PROOF. The proof is entirely similar to the previous one. The only 

difference is that one takes instead of Pol(s,d) the space of all polyno

mials of degree at most s, i.e., no longer restricted to the "sphere". 

EXAMPLE 5.3.2. Let X be a set of veetors in Rd all with norm 17. 
Assume the inner products that are allowed are 0,2,3,5,6. The bound in 

theorem 5.2.1. with p=3 yields card(X) ~ ~d(d+3). So far the best 

bound was (d+9) + (d+S) 
10 9 

For more significant and realistic examples we refer to the end of the next 

cbapter. 
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CHAPTER 6 

ASSOCIATÎON SCHEMES, DELSARTE SPACES AND THE MOD p-BOUND 

§6.1 Introduction. 

The theorem of Frankl and Wilson of the previous chapter deals with 

collections of k-subsets of an n-set, i.e., sets of points in the 

Johnson scheme J(n,k). This scheme as wellas the Hamming scheme are 

examples of Q-polynomial association schemes. These schemes have central 

properties in common with finite dimensional projective spaces over the 

real or the complex numbers. Neumaier [NI] proposed a common generaliza

tion which he calls Delsarte spaces. It is our aim in this ch~pter to 

present the basic facts concerning association schemes and Delsarte spaces, 

to prove the generalization of Frankl and Wilson's theerem for Delsarte 

spaces and to give examples meeting the bound, in particular for the 

Hamming scheme. 

§6.2. Association schemes. 

Let X be a finite set with cardinality n. An s-class associa

tion scheme on X is a partition of X x X into s+l symmetrie relations 

r 0 ,r 1, ••• ,rs having the following properties : 

(i) ro is the identity : r 0 = {(x,x) I x eX} 

(ii) There are constants k=O, 1, ••• ,s such that for all xeX: 

(iii) There are constants k 
a •. 

1.] 
, i,j,k = O,l, ••• ,s wit~ V(x,y)erk: 

The a~. 
l.J 

valencies. 

k l{z ex I (x,z) er. A (z,y) e r.JI =a .. 
1. J l.J 

are called the intersectien numbers of the scheme, the vk the 

Note that (iii) implies (ii) since vk = ~k 
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Another way to characterize the defining properties of an association 

scheme is by means of the adjacency matrices Ao•···•As defined by 

A. (x,y) = 
1 

if (x,y) "'r. 
1 

0 otherwise 

Since r 0 is the identity Au = I. The r. partition x x x • hence 
1 

Property (ii) and (iii): A.A. 
1 J 

s k 
E a .. A. 

k=O 1J-K 

Since the relations rk are symmetrie , so are thematrices t\ . The 

vector space <Ao,A
1

, ••• ,As>R is therefore a commutative algebra called 

the Bose-Mesner algebra of the association scheme. 

EXAMPLES 6.2.2. Let X be the collection of all k-subsets of an 

n-set. Put (x,y) E r. if lxáyl = 2i, for i=O,t, ••• ,k , where k ~ !n. 
1 

This defines an association scheme called the Johnson scheme J(n,k). This 

scheme has the following intersection numbers 

Next let X be the collection of all subsets of an n-set , and put 

(x,y) € r. if lxáyl =i, for i= O,l, ••• ,n. This association scheme 
1 

is called the Hamming scheme H(n,2) and has the following intersection 

numbers: 

h a ... • 
1J 

if i+j+h is even , 

0 otherwise • 

§6.3. The Bose-Mesner algebra. 

An important r8le in the theory is played by the basis of orthogonal 

minimal idempotents (cf [D],[BM]). They are precisely the projectors on 
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the coDDDOn eigenspaces of the matrices ~ ,A1, •.•• ,As, and are denoted by 

E
0

,E
1

, ••• ,Es with E
0 

= ~. The Bose-Mesner algebra is also closedunder 

Schur (or Hadamard) multiplication, defined by AoB(x,y) = A(x,y).B(x,y) • 

This implies the existence of constanes 

Moreover b~. ~ 0 
1J 

for all i,j ,k since 

E.®E. 
1 J 

which is positive semidefinite. 

parameters. Summarizing 

(i) E.E. <'i •• E. 
1 J 1J 1 

(ii) A.oA. <'i •• A. 1 J 1J 1 

The matrices p (pik) and Q 

by the following relations 

s 

~ E pik Ei 
i=O 

b~. such that 
I s k 

E.oE. =- E b .. Ek. 
1 J ~=0 1J 1J 

E.oE. 
1 J 

The b~. 
1J 

E.oE. 1 J 

A. A. 
1 J 

(qik) 

E. 1 n 

is a principal minor of 

are called the Krein 

s k 
E b .. Ek 

n k=O 1J 

s k 
E a .. ~ 

k=O 1J 

' 
i,k=O, I, ... ,s are defined 

s 
E qki~ 

k=O 

Note that is an eigenvalue of ~ with multiplicity ll· = rk E. = 
1 1 

= tr Ei = q0i The ll• 
1 

i 
are called the multiplicities of th~ scheme. 

Let ~ = diag(p.).s
0 ll 1 1= 

and The multiplicities and the 

valencies are related as follows 

THEOREM 6 • 3. I. 

PROOF. 
qk. 

E A. ~n1 "' A. E i 0 -K " -K 
elts elts 

Define a graph on X by X- y if (x,y) E r 1• lf (x,y) E ri iff 

d(x,y) = i in this graph the scheme is called metric. The Johnson scheme 

and the Hamming scheme are examples of metric schemes. In a metric scheme 

a~j = 0 if i+j < k because of the triangle inequality (similarly ~j=O 

if i+j < k, etc.). As a consequence there are polynomials f
0
,f 1, ••. ,fs' 

with fk of degree k, such that ~ = fk(A 1) and therefore Pzk=fk(pz 1). 
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Thus the elements of the k-th column of P are polynomials of degree k 

in the elements of the "first" column. Therefore metric schemes are also 

called P-polynomial. Of more importance to us is the notion Q-polynomial. 

An association scheme is called Q-polynomial, if there exist polynomials 

~,g 1 , ••• ,gs , with ~of degree k, satisfying qzk = ~(qzl) • Q-polyno

mial schemes are sametimes also called cometric. As a consequence of 

theorem 6.3.1., which can also be written in the form PtAPP nAv, or 

nA QtA Q we get 
p V 

s 
I: p p p • nv ö 

z=O z zk zm k k,m 

and s 
I: vzqzkqzm = npkök m 

z=O • 

That means, that in case the scheme is P-polynomial the fk are orthogonal 

polynomials with respect to the weight p • And similar in case of a z 
Q-polynomial scheme. 

Let A be a matrix and f a polynomial. Then f o A is the 

matrix defined by f o A(x,y) f(A(x,y)). The following is an alternative 

definition of Q-polynomiality: There exist polynomials g
0

,g
1

, •• ,gs, with 

~ of degree k, such that ~ = ~ o E1• 

§6.4. Delsarte spaces. 

In this section we present the theory of Delsarte spaces from Neumaier 

[NI]. A finite Delsarte space is the same as a Q-polynomial association 

scheme. 

Let (X,d) be a metric space with finite diameter lö • together 

with a finite measure w put w(X) Write 2 . We = w. c • d (x,y) for xy 
x,y € X, 

We define 

then 0 s c s ö. Th ere is an xy 

the me as ure p on [O,ö] by 

p(A) = w-l ~({{x,y}lc € A}) xy 

induced measure 

Ac [O,ö]. 

For every polynomial f the following holds: 

f f(a)du(a) = w-IJ J ~ f(cxy)dw(x)dw(y) • 
[O,ö] X X 

lil on x x x. 
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If X is finite, w and p are taken to be multiples of counting measures, 

and all integrals are finite sums. Suppose X bas s non-zero distances, 

i.e., s+l is the smallest cardinal of a set T satisfying p([O,óJ\T) = 0. 

We call s the degree of X. 

THEOREM 6.4.1. There exisu a famiZy {qi} , i=O, I, •• ,s , if s < oo, 

resp. i•O, I,... if s is infinite, of orthogonaZ poZynomiaZs, ûJith 

deg(q.) =i ,i.e., the q. satisfy 
l 1 

J q. (a)q. (a.)dP(a) = ó .• 
[O,ó] l J lJ 

PROOF. (f,g) = ff(a)g(a)dp(a) is a positive definite inner product 

on the space of all polynomials of degree at most s, since (f,f) = 0 

implies f(a) = 0 a.e •• Using Gram-Schmidt on the basis {J,x, ••• ,xs} 

(if s is finite) yields the family {qi}. 

The following definition is the analogue for metric spaces of the 

notion of Q-polynomiality. 

DEFINITION 6. 4. 2. (X,d,w) is a Delsar te space if for e~tch pair of 

nonnegative integers i,j, there exists a polynomial 

most min{i,j} such that for all a,b E X: 

J ei ~ dw(x) = f
1
.J.(cab) • X ax x 

f.. 
lJ 

of degree at 

THEOREM 6.4.3. Let X be a DeZsarte spaae ûJith degree s. Then for 

aZZ i,j E {O,I, ••• ,s} and a,b EX: 

-I 
q.(O) q.(c b)ó .. 

1 1 a 1J 
(I) 

PROOF. By induction: assume (I) is true for all i ~ i
0 

, j ~ j
0 

, 

but (i,j) ~ (i0 ,j 0). The definition of Delsarte space implies the existence 

of constauts u~ • such that 1oJo 

fq. (c )q. (eb )dw(x) x lo ax Jo x 

m k 
I: u .. qk(c b) 

k=O 1 0J0 a 
(2) 
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Here m = min(i0 ,j 0). Take i 0 $ j 0 withoutlossof generality. For h<i0 , 

multiplication of (2) by qb(~y) followed by integration over b yields 

(using the induction hypothesis and changing the order of integration): 

0 = f q. (c Hf q. (c. )qh(cb )dw(b)} dw(x) 
X 10 ax X Jo DX y 

whence u~ • • 0 for all h < i 
1oJo 

f q. (c b)q. (c. )dw(x) 
X 1.0 a Jo DX 

Therefore 

Finally let a = b and integrate over a: 

ó .. w = wfq.(a)q.(a)dJJ == ffq.(c )q.(c )dw(a)dw(x) 
l.J 1. J 1. ax J ax 

Hence q. (0} {- 0 and 
]. 

proving (l) 

Let H(t) denote the space of all functions on X , that can be 

written as linear combinations of functions in the set 

0 

{ei I a E X} and 0 $ i ~ t 
a x Then H(t} is a positive definite inner 

product space when we define (f,g) = fx f(x)g(x)dw(x} • 

The subspace of H(t} generated by the functions x+ q.(c ) , a EX, 
1. ax 

is called harm(i) , From theorem 6.4.3. we have the following decompo

sition: 

H(t) = harm(O} i harm(1} i ••• i harm(t) • 
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THEOREM 6.4.4. Dim harm(i) = q.(0)2w ~ 0 foP 0 ~i~ s. 
1 

PROOF. Consiàer an orthonormal basis {sh I h € L} • For certain 

functions ph , and a finite set ~ c X 

sh(x) = E ph(b)q.(~ ) 
b€~ 1 DX 

(3) 

Also for certain functions rh : 

q.(c ) • E rh(a)sh(x) 
1 ax h€L 

(4) 

where for each a € X only finitely many rh(a) I 0 . Using (3),(4) and 

theorem 6.4.2. one obtains 

rh(a) = <q.(c ),sh(x)> • fq.(c )sh(x)dw(x) • 
1 ax 1 ax 

= f E ph(b)q.(c )q.(~ )dw(x) = 
X b€~ 1 ax 1 DX 

-1 -1 = E ph(b)q.(O) q.(c b) = q
1
.(0) sh(a) 

b€~- 1 1 a 

Hence sh(a) = q. (O)q. (c ) and by (4) 
1 1 ax 

E sh(a)sh(x) = q.(O)q.(c ) 
h€ 1 1 1 ax 

(5) 

where for each a € X anly finitely many sh(a) I 0. Hence for all x € X 

and 

2 E sh(x) 
h€1 

2 q. (0) 
1 

card(L) = E (sh,sh) = E f sh(x}
2
dw(x) = 

h€1 h€1 x 

= f E sh(x} 2dw(x) = f q.(0) 2dw(x) = q.(0) 2w 
h€1 x 1 1 

The precise relation between Delsarte spaces and Q-polynomial 

0 
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association schemes is provided by 

THEOREM 6. 4. 5. A fini te metrie apaee with distanee matrix C is a 

Delsarte space (with respect to the discrete measure) iff its distribu

tion seheme is a Q-po~ynomia~ assoeiation seheme. 

PROOF. The distance matrix of a finite metric space X is defined by 
2 C(x,y)= d (x,y) for x,y <:: X. The associated distribution scheme_. bas as 

relations the distances that occur in X. We will show that the minimal 

idempotents can be labeled in such a way that ~ = ~ o C , for the 

following polynomials ~ of degree k:~(x)= qk(O)qk(x). 

By theorem 6.4.3. : 

Multiplying this equation by qk(O)qj(O) yields 

~ ~ (c )g.(~ ) = ~(c b)ök. 
xe:X -lt ax J x a J 

so 

(~ o C)(gj o C) = (~ o C) kj 

Therefore E
0

,E
1

, ••• ,E
8 

are s+l mutually orthogonal idempotente forming 

a basis. For the if part, and the implicitly used fact that the distibu

tion scheme is an association scheme we refer to (HIJ. 

A Delsarte space is a metric space. This seems to suggest that only 

Q-polynomial schemes that are metric, i.e., P-polynomial, are Delsarte 

spaces. However the two "metrics" are different: 

REMARK 6.4.6. Eveey finite seheme ean be reaUzed as the distribu

tion scheme of a apherica~ metrie apaee. 

For the proof we refer again to [NI]. 

In case of a Q-polynomial scheme, dim harm(i) is equal to ~--rk E •• 
~ ~ 

For a number of infinite Delsarte spaces dim harm(i) has been computed by 

Hoggar [H]. 
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§6.5. The mod p-bound in Delsarte spaces. 

THEOREM 6.5. 1. Let X be a Delaarte apace and B a eet of points 

in X • Suppoee there ia a prime p , and integere a 
1
, ••• , at ;. 0 (mod p) 

euch that for aH a;. b in B: cab • ai(mod p) foP aome i:1si:st. Then 

t 
card(B) ~ E dim harm(i) • 

i=O 

t 
PROOF. H(t) bas finite dimension E dim harm(i) , and the inner 

i=O 

product ((I) in theorem 6.4.2.) is nondegenerate. Hence for all x € X, 

there is an i € H{t) satisfying <x,f> = f(x). We will show, using 

lemma 5 •. J.2. that B := {b I b € B} is an independent subset of H(t). 

Suppose 

for certain coefficients ~· For each a € B define f (x) = F(c ), a ax 
t 

where F(u):= rr (ai-u) 
i=l 

Since F is a polynomial of degree t 

fa is in H(t). Taking the inner product of fa with (6) yie~ds 

Now f (b) s O(mod p) 
a 

Let M = {~ I b € B} , 

t 
if b;. a and fa(a) = rr ai~ O(mod p). 

i=l 

then m € pZM with a arbitrary. Therefore a 

M cpZM and we may apply lemma 5.1.2., so M = {0}. 

§6.6. Examples. 

(6) 

The Johnson scheme J(n,k) is a Delsarte space if wedefine cxy=llx~yl. 

n n · In this case dim harm(i) = (i) - (i_ 1). Hence we get the following bound 

fora t-distance set mod p: ~ [(~) - (.n
1
)J = (~) This is exactly 

i=O 1 1-



Frankland Wilsons result (cf. theorem 5.1.1.). 

The Hamming scheme H(n,2) is a Delsarte space for c = I x tJ.yl. 
xy 

Dim harm(i) = (~) and the bound for a t-distance set mod p becomes 

t 
E (:") 

i=O 1 

There seem to be many examples realizing this bound 
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EXAMPLE 6.6.1. Let p be any prime. B is the collection of subsets 

with even cardinality of a (2p-l)-set. No distance in Bis O(mod p) 

EXAMPLE 6.6.2. Let n • 3(mod p). B is the collection of subsets of 

an n-set with cardinality 0 or n-1. All distances are 2 (mod p). 

EXAMPLE 6.6.3. Let n e 2 (mod 3). B consists of the empty set, 

all 2-sets and all (n-1)-sets. Distance 0 (mod 3) does not occur. 

EXAMPLE 6.6.5. Let n • 2 (mod 5). B consists of all singletons, 

3-sets, (n-2)-sets and the complete set. Distances are 1,2 and 4 (mod 5). 

EXAMPLE 6.6.5. 

pl(m-2) , and p odd. 

Let n=m2+m+l be the order of a projective plane, 

The set of all linea, together with the complete 

set realizes the bound. All distances are 4 (mod p). 

EXAMPLE 6.6.6. Let P be a projective plane of order n. We can 

define a Q~polynomial association scheme as follows : X consists of the 

points and linea of the projective plane; relation I consists of all inci

dent point line pairs; relation 2 of all point point and all line line 

pairs; relation 3 is the rest. For a,b in X the following, normalized, 

non-zero values occur : {nln, nln + n + In, nln + In + n + I} • Unfortu

nately, these never reduce to leas nonzero numbers modulo a prime. Hence 

we do not obtain new criteria for the existence of projective planes. 

In a similar way one can see that no now existence conditions for 

strongly regular graphs are obtained. 
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CHAPTER 7 

ISOSCELES POINT SETS 

§ 7. I. Introduetion and notation. 

In this chapter we will solve a problem, due to Paul Erdös, related 

to two-distance sets in Euclidean space. An isosceles set is a set of 

points such that among any three of them at most two distances occur, i.e., 

every triangle is isosceles. Two-distance sets are isosceles sets. We will 

show that essentially the converse is also true. More precisely we prove 

that isosceles sets can be decomposed in a collection of mutually 

"orthogonal" two-distance sets. Th is gives the bound Hd+I)(d+2) for an 

isosceles set in Euclidean d-space. It also shows that maximal two-dis-

tance sets yield maximal isosceles sets. Throughout this chapter X will 

denote an isosceles set in Rd, X= {xi•Xz•••••xv} , and we assume 

aff(X) := 
V 

{ l: a.x.l l: a. 
i=I 1 1 1 

I} 

For any subset XI c: X , dim(XI) will denote the dimension of! aff(XI) • 

The set X is called decomposable if there is a partition X = XI u x2 , 

with card(X2) > I and XI f 0 , such that any point of XI is equidistant 

to all points of x2 (this distance may vary for different points of XI). 

§7.2. The structure of isosceles sets. 

LEMMA 7. 2. I. If (XI ,x2) is a decomposition for X , then 

PROOF. Let P be the orthogonal projection on aff(X2). Then for 

any xi E XI , Pxi is the center of a sphere in aff(X2) containing x2• 

Since x2 spans aff(X2) , P maps XI onto a single point. Therefore the 

flats aff(XI) and aff(X2) are orthogonal. 
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THEOREM 7. 2. 2. Let X be an isosce"les set. If X is indecomposab w 

then it is a two-distance set. 

PROOF. Consider the complete graph on the points of X , with the 

following edge coloring: to each Euclidean distance between different 

points x,y of X we associate a unique color c(x,y). The set of colors 

thus obtained will be called C • For each c E C , Xc denotes the indu

ced graph on the color c, that is, the graph with point set X and edges 

the pairs {x,y} with c(x,y) = c. The following two lemmas together 

provide the proof of theorem 7.2.2.: 

each 

LEMMA 7.2.3. If X is an indeoomposable isoscelea set, then for 

c E c the gvaph X ia connected. c 

PROOF.· Let c be a color for which Xc is disconnected and let x2 
be a connected component of Xc having more than one point. From the 

isosceles property it now follows that each point not in x2 is joined to 

the points of x2 with edges of the same color. Indeed, if yz is a 

c-colored edge in x2 and x E X x2 then c(x,y) and c(x,z) are 

different from c since x2 is a component of Xc. Hence they are equal. 

This implies that (X\X2,x2) is a decomposition of X , contradicting the 

assumption that X is indecomposable. 0 

LEMMA 7. 2. 4. Let the edgea of the complete graph X be oo lored û1i th 

k colors, auch that 

(i) for each c <: C , Xc ia connected ; 

(ii) in each tPiangle at most two colors occur • 

Then k s 2. 

PROOF. We distinguish two cases. First we assume that there is a 

color c <: C for which the diameter of X exceeds 2. Secondly we treat c 
the case that diam(X ) s 2 for all c E C. 

c 

CASE 1. Let c E C and suppose u and y have distance 3 in 

the graph Xc • Put c(u,v) = a. Let U be the set of points in X that 

are closer to u than to v in the graph Xc and put V = x\u. 
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For any z E U there is (u,z)-path entirely in U , so by the isosceles 

property (i i) 
' 

c(v,z) = a. Similarly c(u,w) = a for all w € V. Now 

take zl € u and z2 E V and let PI be a shortest (z 
1 

, u) -path and p2 

a shortest (z2 , v)-path. We will show that c(z
1 
,z2) E {a,c} . If zl ~ z2 

in x then c(z
1 
,z2) c. If zl is not adjacent to any pqint on p2 c 

then c(z
1
,z2) = a by the isosceles property (ii). The same is true if 

z2 is not adjacent to any point of P
1 

• Finally let z
1 

hl!ive a neighbor 

z' 
I 

This contradiets the fact that 

graph Xe). So indeed for all 

But now for any further color b 

since no edge of color b joins 

Th en 

zl € u (d c 
zl € u and 

, the graph 

u with V. 

denotes the distance in the 

z2 E V, c(z
1
,z2) E {a,c} 

~ cannot be connected, 

Hence k ~ 2. 

CASE 2. We now assume that X is connected and bas diameter at 
c 

most 2 for each c E C. Let a,b,c be three different colers in C. We 

shall construct an infinite subset of X, thus obtaining a contradiètion. 

Let z be an arbitrary point in X , and a
1 

a point with c(a
1
,z) =a. 

Since diam(~) ~ 2, there is a point b
1 

having c(b
1
,z) = 9(b

1
,a

1
) = b. 

Similarly there is a point c
1 

with c(c 1 ,z) = c(c
1 
,b

1
) = c. ! Since c 1a 1 

is both in triangle c
1
a

1
b

1 
and c

1
a

1
z , c(c

1
,a

1
) = c also. Next let a2 

be a point satisfying c(a2,c
1
) = c(a2,z) =a and define b2:,c2 ,a3 , .. 

analogously. We will show that at each stage the new constructed point bas 

edges of the same color to all previous points. Suppose the new point is ~· 

and assume that our induction hypothesis holds for a 1,b 1, •• ,~_ 1 • By 

definition c(~,z) = c(~,~-l) = a. Comparing z~bj and ~-l~bj we 

see that c(~bj) = a. By comparison of z~cj and bj+l~cj (where 

j+l ~ k) we conclude that c(~,aj) = a. For bk and ~ a similar 

proof holds. Since all points are new this procedure produces an infinite 

is at most 2. 0 subset, contradiction. Hence k 

The lemmas 7.2.3. and 7.2.4. together yield the proof of theerem 7.2.2. 
0 

THEOREM 7.2.5. Let X be a:n isosceles set in Rd , then 

card(X) ~ !(d+l)(d+2) . Equality implies that X is a two-dista:nce set, 

or a spherical two-distance set togethe~ with its center. 
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PROOF. The proof is by induction on d. lf d = 1 then lXI s 3 

For d = 2 , Kelly proved [K] that the maximum is 6, realized only by 

the centered regular pentagon. Now let d > 2. If X is a two-distance 

set, then we have the required inequality from theerem 4.1.1. lf X bas 

more distances, then by theerem 7.2.2. , X is decomposable. Let (X1,x2) be 

a decomposition. 

Case t. Dim(X1) ~ 0. 

that 0 < dim(X1) < d, since 

It fellows from lemma 7.2.1. , with dim(X) = d 

1x21 > I. Let dim(X.) = d., tben by induc-
1 1 

tion it fellows that 

2 
lXI = lx11 + IX21 s E 

i= I 
~(d.+l)(d.+2) < ~(d+l)(d+2) 

1 1 

Case 2. Dim(X 1) = 0. In this case x1 is a singleton and x2 lies 

on a sphere. If x2 is not a two-distance set it is again decomposable 

and we are in case I again. Otherwise 

lXI + lx21 s I + ld(d+J) = i(d+t)(d+2) . 

Equality therefore implies that X is a centered maximal two-distance set. 

D 
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C'HAPTER 8 

GRAPHS BELATED TO POLAR SPACES 

§8.1. Introduction. 

Let P be a finite projective geometry, tbat is, tbe collection of 

all subspaces of a finite projective space. A polarity Tr on P is a 

permutation of P of order 2, reversing inclusion: 

11 11 vs. T E p : (S c T) => (T c s ) and 11 2 
= I • 

A subspace S E P is called totally isotropie if S c S11 • The set S(11) 

of all (totally) isotropie points of 11 is provided witb tbree essentially 

equivalent structures, namely (cf. [BSJ) 

(i) A grapb structure: p ~ q if 
11 

p E q for p,q E S(11) • 

(ii) The structure of tbe totally isotropie lines. 

(iii) The structure of the totally isotropie subspaces,p~rtially 

ordered by inclusion. 

The set S(11) provided with any of the structures (i), {ii) and (iii) 

is called tbe polar space relative to 11 • All maximal totally isotropie 

subspaces have the same dimeosion d and d+l is called tbe rank of S{11). 

Also given a maximal t.i. subspace L and a point p E S(11}\L tbere is 

a unique maximal t.i. subspace M sucb tbat p E M and M n L bas dimen

sion d-1 (M = <p11 n L,p> ). Hence the grapb (i) defined on S(n) bas 

tbe following two properties: 

(i) 3K: every maximal clique bas size K. 

(ii) 3e: given a maximal clique C and a point p ! C, there are 

precisely e points in C adjacent to p. 

In tbis cbapter we shall investigate grapbs satisfying these two conditions. 

A finite grapb satisfying (i) and (ii) will be called a Zara-grapb, after 
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F. Zara who introduced the concept in [ z]. 

§8.2. Preliminaries and notation. 

Following Bigman [Hij we use the following graph theoretica! nota

tion. Let G • (V,E) be a simple graph. We write x- y or x~ y if 

{x,y} € E and x~ = {y € V(G) I x=y or x - y} • A graph G is called 

connected if for all x,y E V(G) there is a sequence x=x0,x1, ••• ,xn=y, 

such that xi- xi+l for i=O, ••• ,n-1. Gis called coconnected if the 

complement of G is connected. If G1 is a Zara-graph with parameters 

(K1,e 1) and G2 is a Zara-graph with parameters (K2,e2) , then the graph 

obtained by joining all points of G1 to all points of G2 is a Zara 

graph whenever K1+e2 = Kz+e 1 • Every Zara-graph can be built from 

coconnected Zara-graphs in this way. Our main concern will therefore be 

the structure of coconnected or cc-Zara-graphs. 

Note that if G is a Zara-graph with parameters (K,e), then the 

induced subgraph on x\'{x} is a Zara-graph with parameters (K-l,e-1). 

This graph is called the residue of x, or Res(x). 

we define n 
XES 

~ x • If s is a clique Res(S) 

For arbitrary S c V, 

is defined analogous-

ly, i.e., Res(S) is the induced subgraph on s\s. Again Res(S) is a 

Zara-graph with parameters (K-ISI,e-ISI). An equivalence relàtion ~ 
~ ~ is defined on V b}! x~ y <•> x '·' y • The equivalence classes [x] 

are cliques and if x and y are adjacent then all points in [x] are 

adjacent to all points in [y]. The graph G/~ is defined on V/~ by 

[x] - [y] whenever x - y and [x] I [y] • This graph is called the 

reduced graph of G. In general a graph H is called reduced if 

[x] = x for each point x E V(H). In §8.6. we will show that the 

reduced graph of a cc-Zara-graph is a (reduced) cc-Zara-graph. 

Let S be a clique in a graph H. Then S~~ is again a clique 
since S c S~~ c S~ • Note that S~~ = (S~~,~~ • We call S~~ the 

closure of s, in particular x~~ = [x] • An equivalent way of defining 

reduced is to say that each point is closed. The key theorem, .whiloh allows 

us to use induction in the proofs that follow,is the fact that for each x 

in a cc-Zara-graph the residue of the closure of x, Res([x]) , is again 

a cc-Zara-graph (theorem 8.5.3.). Using this we can prove that all equi

valence classes under ~ have the same size. It fellows that if G is 

a cc-Zara-graph with parameters (K,e), then G/• is again a 
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cc-Zara-graph with parameters (K/]i?CJI,e/l[x]l) •. Closures of cliques are 

called singular subsets or closed cliques~ The closure of the empty set is 

called the radical of G, rad(G). The intersection of two singular subsets 

is again a singular subset. For x,y E X we define: 

>..(x,y) 

IJ(x,y) 

d(x) is called the degree of x 

lx.l n y.ll -2 

lx.l n y.ll 

if x~ y 

if x f y 

lf d, >.. and 11 are constant the graph is called strongly regular. We 

will show that a reduced cc-Zara-graph is. strongly regular. The collection 

of singular subsets forms a partially ordered set under inclusion. In a 

polar space this is exactly the structure of all totally isotropie subspa

ces. This poset will be investigated in §§8.5 and 6. Following Neumaier 

[NI] we define the notion of an Mr-space: (cf. also [N3]) 

Let P be a set of points and 

Write X= X1 u ••• u Xr. Elementsof 

r-varieties are also called blocks. 

x1 ,x2 , •. , ,Xr sets of subsets of P. 

Xi are called i-varieties, 

X is an Mr-space if it satisfies: 

(i) x1 is the set of all singletons {a} a E P 

(ii) There are constants I=K
1 

< •.. <Kr, such that an i-variety 

contains exactly K. 
1 

points. 

(iii) There are constauts R1 > ••• > Rr=l , such that an i-variety 

is contained in exactly Ri blocks. 

(iv) The intersection of two varieties is a variety or empty. 

(v) If x is an i-variety, z a block containing x and p 

a point in z but not in x , then there is an (i+l)-variety 

y c z con taining x and p. 

The main result in this chapter is that a reduced cc-Zara-graph is an 

Mr-space for some r , called the rank of the Zara-graph. 

§8~3. Examples of Zara-graphs. 

In [Z] Zara gives the following examples of (cc-) Zara-graphs. 



1. Polar spaces. Let W be an m-dimensional vector space, m 

finite, over a finite field F, together with a field automorphism B 
satisfying s2 = 1. Let F0 denote the subfield fixed by B. Put 

IF0 1 = q , then IFI = q or IFI = q2 . 

53 

Let $: W x W + F be a B-sesquilinear form, nondegenerate and reflexive. 

Q : W + F is a quadratic form with an associated bilinear nondegenerate 

form $ 1 : W x W + F. The following graphs are Zara-graphs. In each 

case V is the set {<a> I a é: V\{.Q_}}, <a> isotropic, resp. singular} 

and <a>- <b> if ~(a,b) = 0, resp. ~ 1 (a,b) = 0 and <a>~ <b> • 

The following cases óccur : 

(Sp). $ alternating, m = 2m1 B = I ; 

m1 m1 
(IVI,K,e) = ((qm-1)/(q-1}, (q -1}/(q-1}, (q -1}/(q-1}) 

(Q) • Q quadratic , B = I ; 

I mi ml-1 
((qm- -1)/(q-1), (q -1}/(q-1), (q -1)/(q-1)). 

(H) m=2m1 , maximal Witt index ; 

m1 m1-1 m1 m1-t ((q -l)(q -1)/(q-1), (q -1)/(q-1), (q -1)/(q-1)) 

non-maximal Witt index 

m1 m1-1 . m1-1 m1-2 
((q +l)(q -1)/(q-1), (q -1)/(q-1), (q -1)/(q-1) 

(U) • $ a non-degenerata B-hermitean form, 2 IFI = q 
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(GQ). Rank 2 polar spaces, or generalized quadrangles GQ(s,t) • 

For definition and examples of generalized quadrangles see [ThJ. 

(IVI,K,e) = ((s+l)(st+1), s+l, I) 

2. Let W be a 2m-dimensional vector space over GF(2)' , tagether 

with a quadratic form Q of maximal Witt index, for which the associated 

alternating bilinear form is non-degenerate. V = {xlxEW, Q(x) = 1} , and 

x- y if x~ y and ~ 1 (x,y) = 0 • 

3. V consists of all triples from a 7-set. 

(i) x - y if lx n yl = 1 (35. 7. 3) 

(ii) x - y if lx n yl ~ I ; (35, 5, 2) 

Note that case (i) is the same as Q(ii) with ~6, q=2. 

4. Let W be a 6-dimensional vector space over GF(3) tagether 

with a non-degenerate symmetrie bilinear form ~ , such that ~ admits an 

orthonormal basis. V= {<a> a € W , ~(a,a) • 1} and <a> f-- <b> if 

<a>+ <b> and ~(a,b) • 0; (126, 6, 2). 

5. The strongly regular graph of McLaughlin (cf. [GSJ); (275, 5, 2). 

6. Let W be a 2m-dimensional vector space over 

with a quadratic form Q of maximal Witt inde» • V = W, 
Q(x-y) • 0 and y+x; ( q2m, qm, qm-1) 

GF(q) , tagether 

and x- y if 

7. L2 (n). 

(a,b) - (c,d) if 

Points are all ordered pairs from an n-set, 
2 a+c and b+d (n , n, n-2) • 

and 

8. 'f(2n) • V • all pairs from a 2n-set, x - y if x n y ~; 

(n(2n-1), n, n-2) 
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§8.4. Regularity properties of Zara-graphs, 

All examples given in the previous section are strongly regular 

graphs. As a consequence of the results in the present section we will see 

that a reduced cc-Zara-graph, i.e., {x} [x] for each point, is strongly 

regular. In the following G will always denote a Zara-graph. 

LEMMA 8.4.1. Let C be a ma:r:imal clique in G and p {. C • The:r:oe 

is a unique ma:r:imal clique containing p and e points of C • 

PROOF. The statement is equivalent to : two distinct maximal 

cliques interseet in at most e points; this is a direct consequence of 

property (ii) , defining e. 

LEMMA 3.4.2. Let c~ c1 and 

G auch that c
1 

and c
2 

intePsect 

c2 be diffe:r:oent ma:cimal cliques in 

c in e points. Then c
1
nc2 c C 

0 

PROOF. lf c 1nc2 <t C , then I (C1L•C2)ncl > e and there is a point 

x € c
1
nc2\c. This point is joined to more then e points of C, contra-

diction. 0 

As a consequence of lemmas 8.4. 1 and 2 we can start with any maximal 

clique C, take for each point outside C the unique clique through this 

point and e points of C. This way we obtain a collection of cliques 

c
1

, ••• ,Cs inducing a partition of V\C. This collection is called the 

C-decomposition. 

THEOREM 8.4.3. Let x,y € V(G) • If x f y then d(x) d(y) 

PROOF. Let c be a maximal clique containing x. Th en y {_ c. 

Consider the C-decomposition {C
1

, ••• ,Cs} with y € cl and put 

C\C 1 • {x-xl,x2'''''~-e} For each z € c
1
\ c we have 

8 

d(z) E (e- lc1ncil) + K- I • 
i=2 

lndèed, the number of points in Ci\c
1 

adjacent to z is e - 1c
1
nci1 , 
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and since c1nci c C , all these points are outside C , hence no points 

are counted twice. Rewriting this yields 

s 
d(z) = I: { 

i=2 m:x t::C. m 1 

I } + K- I 

since I: 
m:x t::C. m 1 

= e- lc
1
ncil • Changing the order of summation yields: 

d(z) 
K-e 

{ I: 
m=l 

(d(x )-(K-1))/(K-e)} + K-1 
m 

I K-e 
= K-e I: 

m=l 

Hence d(zi) = d(zj) for all zi,zj E: c
1
\c , and by symmetry 

d(xi) = d(xj) for all xi,xj E: C\C1• This implies d(y) = d(x) • D 

COROLLARY 8.4.4. A cc-Zara-gt>aph is z>egular. 0 

Tl:IEOREM Let G be a cc-Zara-graph. There exists a constant 

~ , such that ~(x,y) = ~ foP all x,y t:: V(G) , x f y • 

PROOF. We will show that ~(x,y 1) = ~(x,y2) for each triple 

x,y I •Yz with x f yl and x f Yz . First assume yl - Yz· Take a 

clique cl containing yl and Yz and a clique c with x E: c and 

1Cnc
1

1 = e . Consider the C-decomposition { c I • cz' ... 'c s} For i=J,2: 

independent of i. Hence ~(x,y 1 ) = ~(x,y2). 

Next let y
1 

f Yz • Claim: there either exists a point z with z f x, 

and z ~ y
1 
,y2 or for all z ~x, we have y

1 
~ z<,~>y2 ~ z. To see this 

suppose z -x, z - y
1 

and z f Yz and let C be a clique containing y
1 

and z. Then x~nC and y~ nC are different sets of the same cardinality 
• • t ~ • • e, Hence there 1s a po1nt z E: y2nc not adJacent to x. Th1s proves the 

claim. În the first case ~(x,y 1 ) = ~(x,z) = ~(x,y2). In the second case 

~ ~ ~ ~ x ny 1 = x ny2 , hence also ~(x,y 1 ) = ~(x,y2). Since G is coconnected, 
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~ is constant for the whole graph. 

THEOREM 8.4.6. Let G be a cc-ZaFa-graph. There e~ists a constant 

~ such that À(x,y) =À fo~ x,y € V(G), x~ y and x~ y. 

PROOF. First reeall lemma 7.2.4.: let the edges of the complete 

graph X = K be colored with k colors such that (i) for each color c, 
n 

the induced graph on this color, X , is connected; (ii) in each triangle 
c 

at most two colors are used. Then k is at most 2. 

Now let H = G/N be the reduced graph of G. Note that H is also cocon

nected. We are going to color the edges and non-edges of H. All non-edges 

get the same color = , while if [x]~ [y] the edge ([x],[y]) gets the 

color À(x,y) , i.e., the number of common neighbors of x and y in G. 

This coloring satisfies the hypotheses (ii) aud (i) of lemma 7.2.4.: 

(ii) Triaugles with less than two edges satisfy the requirements auto-

mátically. Next consider [y] ~ [x] ~ [z] , [y] 1 [z] inH. In G we 

have y- x~ z, y 1 z. Since Res(x) is a Zara-graph, theorem 8.4.3. 

tells us that d (y) = d (z) Res(x) Res(x) • This just meaus À(x,y) À(x,z). 

Hence triaugles with two edges also satisfy (ii). Finally let 

[x] ~ [y] ~ [z] ~ [x] in H, or x,y,z mutually adjacent and non-equiva

lent in G. If there is a point u in G adjacent to precisely one of 

x,y,z, say to x, then by the previous reasoning À(u,x) = À(y,x) and 

À(u,x) = À(z,x) and we are done. If not, then, writing ~(x,y,z) for the 

number of common neighbors of x,y and z in G: 

d(x) = À(x,y) + À(x,z)- ~(x,y,z) 

d(y) À(y,z) + A(y,x) - À(x,y,z) 

d(z) = À(z,x) + À(z,y) - A(x,y,z) 

Since G is coconnected it is regular and therefore À(x,y)•A(y,z)•À(z,x) 

in this case. This shows that for each triangle (ii) holds. 

(i): Let H be a connected component for the color c, IR l> I, and c c 
suppose H bas not all of the vertices of H. A point outside H is c c 
joined to all points of He with edges (or non-edges) of the same color, 

by the isosceles property and the fact that He is connected and a 

component. In particular a point outside He is either adjacent to all 
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points of He' or to ~point of 

are adjacent to all points of H c 
none. Note that N is certainly 

H • Let A be the set of points that c 
and N the set of points adjacent to 

non-empty, since H is coconnected. 

In case A is empty H is not connected and also G is not connected, 

i.e., e=O. In this case x- y implies x~ y and the theorem is void. 

So let A ~ ~. Now H c 
is not a clique, since in that case [x] and [y] 

in He would have the same neighbors, i.e., x~ y. Take [b]€ He , 

[a] € A and construct a maximal clique C in G containing [a] and [h]. 

Let A' be the "preimage" of A in G, similarly define H~ and N'. 

Any point n € N' bas e neighbors in A'nc, hence IA'ncl ~ e. There 

is a_,póint h' € H'\C having a neighbor in H~nc , since H~ is connected 

and not a clique. But this point is also adjacent to all points of A' , 

therefore it has more than e neighbors in C, contradiction. So He = H, 

i.e., the induced graph on c is connected. This shows (i) and the 

theorem is proved, because since there are at most two colors, one of 

them ~ , the other one must be the constant A. D 

COROLLARY 8.4.7. Let G be a ztedueed cc-Zaru-g!'C{(>h, i.e., G = G/~. 

Then G is strongZy reguZar. 0 

§8.5. The poset of singular subsets. 

In this section we study the partially ordered set of closed cliques. 

Crucial steps in the investigation that allow US to study the structure by 

induction are: 

(i) If G is a cc-Zara-graph and x € V(G) then Res([x]) is 

again a cc-Zara-graph. 

(ii) All equivalence classes of points have the same size. 

We start off with two simple lemmas. Throughout this section G will be a 

Zara-graph. 

LEMMA8.5.1. u and v are connected by a path in G , then 

the distànce of u and v in G, dG(u,v) is at most 2. 

PROOF. The points u and v are in the same coconnected component 
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of G • But coconnected components of a Zara-graph are cc-Zara-graphs. 

LEMMA 8.5.2. Let x,y,z E V(G) , where G is a cc-Zara-graph. 

Suppose Res([x]) is nov coconnected, and y,z are in different 

cc-components of Res([x]). Then Res([y]) is not coconnected, and x,z 

are in different cc-components of Res([y]). 

PROOF. We show that the following statements are equivalent: 

(i) Res([x]) is not coconnected and y,z are in different cc-compo-

nents. 

(ii) There is no point u adjacent to x and not to y,z. 

(iii) There is no point v adjacent to y and not to x,z. 

(iv) Res([y]) is not coconnected and x,z are in different 

cc-components. 

(i)=> (ii) : By definition. (ii) => (i): Lemma 8.5.1 •• 

(ii)<=>(iii): x,y and z are mutually adjacent and non-equivalent. Let 

A1(x) be the number of points adjacent to x and not to y,z. Then 

d(x) = A1(x) +A(x,y) + ~(x,z)- A(x,y,z) = 

A1(x) + 2A- A(x,y,z) • 

d(y) = ~ 1 (y) + 2A- A(x,y,z) 

where again (x,y,z) is the number of common neighbors of x,y and z. 

This shows that A1(x) = A1(y) • 

(iii)<=> (iv): This is the same as (i)<=>(ii) 

Triples x,y,z as in the lemma will be called trios. Note that 

the lemma says that the order of x,y,z is irrelevant. 

THEOREM 8.5.3. If G is a cc-Zara-graph, x E V(G) , then 

Res([x]) is a cc-Zara-graph. 

D 
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PROOF. It is enough to show that trios do not exist. Let {x,y,z} 

be a trio, then no point of G is adjacent to exactly one point of 

{x,y,z}. Let Ax ={u.: V(G) u 1- x, u- y, u- z}, Ay. and Az 

similar; C = {u I u- x,y,z} ; N = {u I u 1- x,y,z} • Pictu~: 

Observe: (i) N;. ~ (lemma 8.5.1.) 

(ii) There are no edges between N and 

and A • 
z 

If x' .: Ax , then 

trio, for x' and 

This is shown as follows: 

x' ,y ,z is again a 

x are in the same 

cc-component of Res([y]) and therefore 

x~ and z in different cc-components. Since the points of N are not 

adjacent to y and z they arealso notadjacent to x'. The proof is 

finished by deriving a contradiction. Let x' E A Since x' and x x 
have ~ common neighbors, x' bas less than p neighbors in C (at most 

p-2). On the other hand nEN and x' must have p common neighbors in 

C • This is a contradiction, hence trios do not exist and the proof is 

finished. 

In order to investigate the poset of closed cliques we n~ed the 

following characterization of singular subsets. Here C denotes the set 

of all maximal cliques in G. 

LEMMA 8.5.4. Let S be a alique in G , then 

sii = n{C E c I s c C} • 

PROOF. 8LL = n{yi I s c yil == n {yi t y E C} 
CeC 
Scyi 

n{Ci I s c c E Cl = n{C E C I S c C} , 

since ei = c for all c € c. 

Notation: (S ,c) is the poset of singular subsets, for C € C 

de fine 
S(C) {S E SI s c C} 

D 



Let X,Y be different elements from a lattice (L,c). If X c Y c Z 

implies X=Z or Y=Z we say that Y covers X and write X < Y. A 

lattice is semi-modular if for all X,Y: (X> XAY)<=> (XvY > Y). 

The following two lemmas enable us to show that (S(C),c) is a semi

modular lattice for all C € C . 

LEMMA 8.5.5. The gr>aph defined on C by C ~ D if !CnDI = e ia 

aonneated. 

PROOF. lie show that two maximal cliques C and D are j oined by 

a path using induction on ICnDI. 

(i) If ICnDI = e then c~n and there is nothing to prove. 

(i i) If I enD I < e take x € C\D and a clique E containing 

and e points of D, then I EnD! = e and I enE! > lcnDI , hence 

and E are joined by a path. Since E~D we are done. 

LEMMA 8.5.6. Let S € S , c € C , S c C • Then ther>e e:x:ists a 

D € C suah that s = c n D • 

PROOF. By induction on the size of S. 

(i) !SI = e. This case is trivial. 

(ii) Is! < e. Choose closed cliques SI and s2 minimal wi th 

respect to s c s. c c • This is possible since s = n{T € SI T => S} 
<F 

1. 

Since SI and s2 are minimal, SI n s2 = s and there are maximal 

cliques Dl and D2 such that s. = c n D. • i=l,2. Choose 
1. 1. 

xeD2\(CuD1) such tb at x is not adjacent to all of s1\s ( and 

x 

c 
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0 

of s1\s). .1 hence to none Let D3 be the closure of (x nel) u {x} . Th en 

o3nc = s. To see this, suppose y € (D3nc)\S. Then either y € s,' which 

implies y /. SI, 
.1 y ~ x, or but then ly nn11 > e, contradiction. 

We define the binary operations A and v on S as follows : 

s " T = s n T S v T = n{U e S I U => SuT} 

Sn T is again a singular subset since (SnT).1.1 = S.1.1 n T.1.1 (cf 8.6). 
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THEOREM 8.5.7. Let G be a aa-Za:r'a-g:r>aph. and C a ma:x:ima2 aZique 

in G • Then (S(C) ,c: ) is a semi-modu2ar 2attioo. 

PROOF. Let X,Y E S(C) with XnY < X and suppose XvY ~ Z ~ Y, 
". ". 

Then ZnX = YnX , for otherwise XnY c: XnZ c: X • Take a point z E Z\Y 

". "' 
and x E X\Y • Apparently .L .L x c: z in the Zara-graph Res(Y). To see 

this let u be adjacent to x and Y. Since X covers X n Y u is 

joined to all of X, and if is u is joined to X and Y it is joined 

to all of XvY , including z. By repeatèd application of theorem 8.5.3. 

Res(Y) is a cc-Zara-graph, hence x.L = z.L in Res(Y). This is a contra

rlietion since z E Z while x i Z. 

The semi-modularity of tbe lattice S(C) allows us to introduce a 

rank fuction on S(C) satisfying rk(S) rk(T) + I whenever S < T 

and rk(~) = 0, cf. [Bi] By lemma 8.5.5. this rank function can be ex-

tended to the poset 

in S , the rank in 

s . 
S(C) 

Indeed, for a given set E 

is tbe same for all C ~ E. 

of cardinality e 

All maximal 

cliques have the same rank r. This r is called the rank of the Zara

graph. 

§8.6. Zara-graphs and Mr-spaces, 

In this section the main structure theorem for cc-Zara-graphs is 

proved. We show that the poset of singular subsets of the reduced grapb 

of a rank r Zara-graph is an Mr-space (for the definition see §8.2. ). 

Write S =S0 u S 1 u u Sr • Reeall that Si is the collection of 

singular subsets of rank i. We shall prove the following properties: 

(i) There are constants Ra•···•Rr such that each rank i singular 

subset is in Ri maximal ciiques. 

(ii) There are constants K0 , ••• ,Kr such that each rank i singular 

subset has Ki points. 

(iii) The intersection of two singular subsets is again a singular 

subset. 

(iv) If x is a rank i singular subset, and Cl· a maximal clique 

containing x and p E C\x , then there is a rk (i+ I) singular subset y, 
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containing x and p, and contained in C. 

No te that it follows from (ii) that all equivalence classes have the same 

size Ka , and that (i), ••• • (iv) imply that G/P::S is an Mr-space. 

Property (iv) is a consequence of the semi-modularity of the latti.ce S(C) 

for each c E: c. Property (iii) follows 

s and 

arbitary sets A and B we have 

T are 

(A c: B) 

1• h Ll c 1que t en A c A • Hence (S n T c: (S n 

from the observation that 

singular subsets. Indeed, for 

=> BL c AL and if A is a 
T)LL and (S n T)LLcSLL n ~L 

The following theorems establish (i) and (ii). 

THEOREM 8.6. I. Let G be a aa-Zara-gr.>aph. There are aonstants 

Ru, ... Rr, 

aUques. 

suah that eaah S o: Si is aontained in preaiseZ.y R. ma:cimaZ. 
1 

PROOF. By induction in i. For i 0 there is nothing to prove. 

Rank sets are the equivalence classes of points. Let [x] and [y] E S
1 

, 

x 1 y • For each maximal clique C containing x, and hence [x], there is 

a unique clique containing y and intersecting C in e points. This 

establishes a one to one correspondence between the cliques containing [x] 

and those containing [y]. Since G is coconnected we are done. 

Finally let i > I , S,T o: S. . If S n T ; ~ then we may use the induc-
1 

tion hypothesis since Res(SnT) is again a cc-Zara-graph. Hence in this 

case S and T are in the same number of maximal cliques. However, the 

graph defined on S. by S - T if S n T ; ~ is connected if i > I , 
1 

since every edge of G is in a rank i set, and G is connected if the 

rank of G as a Zara-graph is greater than 1. So for all S,T o: Si the 

number of maximal cliques containing them is constant. 

THEOREM 8.6.2. 

aonstants Ka, ••. ,Kr 
Let G be a ac-Zara-graph of rank r • There are 

suah toot eaah S o: S. has K. points. 
1 1 

In order to prove this we need the following lemma. 

LEMMA 8.6.3. Let G be a ac-Zara-graph of rank r , and suppose 

ISI = K. for aZ.Z. S ES. , i=O, ••• ,r Then the number of rank i sets 
1 1 

in a given ma:x::imaZ. al.ique c equals 

0 
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i-I 
li 

j=O 

K - K. 
r J 

K. - K. 
1 J 

PROOF of the lemma. We use induction on r, the case r=l being 

trivial, using the convention that the empty product equals I. Now let 

r > I, and C a maximal clique containing 

is partitioned into rank I sets c 1 = Kr/K1• 

c. rank i sets. 
1 

Next let i> I. 

Since C 

Counting in 

two ways the pairs S,T c C , 

using the induction hypothesis yields 

i-1 
li 

j=l 

This proves lemma 8.6.3. 

TE S. 
1 

satisfying S c T and 

PROOF of the theorem. Again we use induction on r, If r=l or 2 

the statement is true by definition. Let r > 2 
' and take s E S

1 
with 

I I I sl = s. By induction Res(S) has parameters Kr-I'''' ,K()=O . So each 

D 

rank i set containing s has cardinality I 
Ki-l + s. We allready noticed 

that the graph defined on s. by S-T if S n T ,& 0 is connected. 
1 

Hence there allready exist constants K2 ,K
3

, ..• ,Kr. Count the number of 

points inside and outside a given maximal clique C, observing that G is 

regular, say of degree k. Hence, using the lemma: 

r-3 
k-s+l = [Res(S)I = K!-l + II 

j=O 

K
1 

-K! 
r-1 J 

K1 -K~ r-2 J 

To explain this note that each point in Res(S) outside C determines a 

unique clique intersecting C 

is in Rr-l maximal cliques. 

in e points, while each e-set in S 
1 

1• > I t K1 K hr-

k-s+l 

For 

K - s 
K -s + __ r __ 

r Kr_ 1-s 

we may pu i-I = i-s, w ence 

r-3 K - K. I 
li r J+ (R 

1
-I)(K-K 

1
). 

j=l Kr_ 1-Kj+l r- r r-

Considered as an equation in s we see that there is only one solution. 

Indeed, rewrite the equation to get 



k+I-K 
r 

K -K 
(I + r r-1 

K -s r-1 
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r-3 Kr - Kj+l 
Il K -K 

j=l r-1 j+l 
(R 

1
-1) (K -K I) , r- r r-

and notice that (K -K 
1
)/(K 

1
-s) is monotonie. Hence s is constant r r- r-

i.e., K1=s • This finishes the proof of the theorem. 

MAIN THEOREM 8.6.4. Let G be a aa-ZaPa-gPaph of Pa:nk r ~ then 

G' • the Peduaed gPaph of G is aZso a aa-ZaPa-gPaph~ and the poset of 

aZosed aliques of G' is an MT'-spaae. 

§8.7. Final remarks. 

0_ 

0 

In the previous section it was proved that the reduced graph of a cc

Zara-graph is strongly regular. The parameters of this strongly regular 

graph can be computed in terms of K, e, and the smallest eigenvalue 

(cf. [N4] ). The integrality of the multiplicity of the eigenvalues puts 

further restrictions on the feasibility of parameter sets. Another related 

subject is the classification of completely regular two-graphs (cf. [N5]). 

To each completely regular two-graph there is related at least one Zara

graph. More about these aspects will appear in a forthcoming artiele by 

Wilbrink, Kloks and the author. The list in §8.3. contains all examples 

known to the authors of reduced cc-Zara-graphs. More about Mr-spaces can 

be found in [NI;3J • Neumaier gives a.o. the following examples: 

(i) All sr subsets of an n-set. 

(ii) All sr dimensional subspaces of a projective space PG(n,q). 

(iii) All subspaces of apolar space over GF(q). 

The graph associated with these structures is the complete graph in (i) and 

(ii). Only in case (iii) we have a "proper" Zara-graph • The structure 

of all varietles in a fixed block of an Mr-space , or the lattice 

(S(C),c) in case of a Zara-graph is a perfect matroid design [We] 

1 ~~ . . . 1 Our c osure operator co1nc1des w1th the usual c osure operator for 

matroids. The singular subsets are called subspaces or flats in this 

terminology. 
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SAMENVATTING 

Het voornaamste onderwerp van dit proefschrift is het bepalen van 

grenzen voor de cardinaliteit van puntverzamelingen met weinig afstanden. 

Voor puntverzamelingen op de eenheidsbol in de Euclidische ruimte Ed, 

werden reeds scherpe grenzen afgeleid in [DGS]. Koornwinder gaf later 

een 

van 

simpeler bewijs voor een apart geval hiervan, namelijk verzamelingen 

gelijkhoekige rechten in Ed. 

71 

In hoofdstuk 2 wordt de theorie ontwikkeld, die het mogelijk maakt om 

de methoden uit [DGS] toe •te passen op puntverzamelingen op de "eenheids

bol" in inprodukt ruimten met een willekeurige signatuur. Vooral het geval 

van de hyperbolische ruimte Rd' 1, levert scherpe grenzen op. 

Een verscherping van de methode van Koornwinder stelt ons in staat de 

grenzen voor s-afstands-verzamelingen in Ed en Hd, d-dimensionale 

hyperbolische ruimte, te verbeteren. Ook worden op die manier scherpe 

grenzen voor verzamelingen van gelijkhoekige rechten in Rd' 1 verkregen. 

Nemen de afstanden alleen maar bepaalde gehele waarden modulo een 

priemgetal aan, dan kunnen opnieuw scherpere grenzen worden bereikt. De 

metrische ruimten waarin dit het meest tot zijn recht komt zijn de zoge

naamde Delsarte ruimten. Als corollarium treedt een stelling van Frankl 

en Wils on op. 

Hierna wordt een probleem van Erdös opgelost, nauw verwant met 

2-afstands-verzamelingen, namelijk: wat is het maximaal aantal punten in 

Ed, zodanig dat elke driehoek, die dOOl" dTie punten uit de veTzameling 

wordt bepaald, gelijkbenig is. Een essentieel lemma uit dit hoofdstuk 

vol"mt de verbinding met het laatste onderwel."p. Welke grafen voldoen aan 

de volgende eigenschappen: 1. Er is een K zodanig dat elke maximale 

kliek omvang K heeft; 2. Er is een e zodanig dat voor elke maximale 

kliek C en punt p niet in C, het punt p precies e buren in C heeft. 

Deze grafen werden geïntroduceerd door Zal."a [Z] in een poging polaire 

ruimten te karakteTiseren. We laten zien dat Zara-grafen die aan enkele 

noodzakelijke eigenschappen voldoen stel."k regulier zijn en verdel."e Tegel

matigheidseigenschappen hebben. 
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STELLINGEN 

I. Er bestaat geen Zara-graaf met 95 punten , K = 5 en e = 2. 

Er bestaan geen Zara-grafen met K/2 < e < K - 2. De enige cc-Zara

grafen met K • e + 2 zijn L(n) en T(2n) , met n ~ 3 • 

A. Blokhuis, T. 'Kloks, H. Wilbrink; A alass of graphs aontaining the 

polar spaaes. to appear\. 

2. Er bestaan geen niet-triviale compleet reguliere "two-graphs" op 96 

of · op 640 punten. 

3. Zij o{n;k) het aantal formulieren dat ingevuld moet worden bij een 

toto met n wedstrijden en k mogelijke uitslagen per wedstrijd, om 

zeker een prijs te winnen voor alle of op één na alle goede uitslagen. 

Dan geldt, met q is priem en k 

(i) 

(ii) 

o(k,q) s (q-t+tYl-r 

m-1 o(n,mt) s o(n,m)t 

(iii) o(q+ I ,qt) q-1 q q t 

(iv) o(np+l,p) s o(n,p)pnp-n 

r-1 1 + t(q -1)/(q-1) : 

(v) o(7,3) s 216 , o(I0,3) s 5.36 , 12 o(16,5) s 13.5 • 

A. Blokhuis, c. Lam; More aoverings by rook domains. To appear in the 

J. of Comb. Theory A. 

4. ·Het is niet mogelijk een eindig aantal even lange lucifers zodanig neer 

te leggen in het vlak dat twee lucifers nooit over elkaar heen liggen en 

in elk eindpunt vijf lucifers bij elkaar komen. 

5. De volgende formule van N,· Bebiano voor de permanent: 

exp (,! , Ax_)t I: tk I: 
k=O 1~1~ I]J=k 

k k 
.!-·z- per A(!.•~ 
k! .1! 

d 
is eenvoudig met multilineaire algebra te bewijzen. Hier Z1Jn .!•l. E R 

k k k 
k = (k 1, ... ,kd) , ~! = k 1 !k2! .. kd! , x-= x1 l .. xd d. Tenslotte is 



A(l,~) de matrix die uit A ontstaat door de i-de rij li keer en de 

j-de kolom k. ke.er te herhalen. Natália Bebiano; On. the evaZuation of 
J 

pe!'ma1'1ents~ Pacific J. Math. vol. 101 no. 1, 1982. 

6. Zij C een kleuring van de kanten van de volledige graaf op n punten 

(n eindig), zodanig dat voor elke vijfhoek in Kn geldt dat er twee 

opeenvolgende zijden zijn met gelijke kleur, terwijl de geïnduceerde 

graaf op elke afzonderlijke kleur samenhangend is. Dan zijn er hooguit 

twee kleuren. 

7. Als men n koorden trekt in een cirkel, zodanig dat er geen drie door 

één punt binnen de cirkel gaan, en als deze koorden m snijpunten binnen 

de cirkel bepalen, dan wordt de cirkel in n + m + 1 gebieden verdeeld. 

Met deze observatie kan men probleem 8.1 uit L. Comtet; Advanaed aombi

natorias, p. 74, zeer eenvoudig oplossen. 

8. In tegenstelling tot de indruk die bij het middelbaar onderwijs gewekt 

wordt, houdt een wiskundige zich bezig met onopgeloste problemen. 

9. De maximaal toegelaten rugwind bij het lopen of springen van een wereld

record dient mindeF te zijn op grote hoogte dan op zeeniveau, ~n verband 

met het verschil in luchtweerstand. 




