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Abstract

This report presents a spatial image reconstruction technique suited to passive
microwave radiometry. The objective is to obtain images with spatial resclution
comparable to the scale of atmospheric phenomena. The method has been applied to
various (noisy) input signals and results are presented in order to illustrate the
performance of the technique. Special attention is given to the effect of statistical and
systematic errors, in both the measured antenna noise temperature and the antenna
pattern, on the reconstruction.
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1 Introduction

Passive remote sensing of the atmosphere is based on the natural
electromagnetic noise emission of the atmosphere and therefore capable of providing
relevant information about atmospheric processes and parameters (such as liquid
water content, water vapour content, the air temperature gradient and so on). The
use of passive remote sensing was originally restricted to IR—observations, but in
recent years the use of microwave radiometry for this purpose has developed rapidly.
This is motivated by the lesser extinction of microwaves in clouds in contrast to
IR—observations of the cloudy atmosphere which are only capable of giving
information of its upper (or lower) boundaries. Another advantage of microwave
radiometry lies in the use of these frequencies for satellite communication. It is
possible to obtain a prediction of the behaviour of communication links at those
frequencies by using the knowledge that is obtained from sensing the atmosphere. A
major disadvantage of microwave radiometry is the substantially lower spatial
resolution as compared to that of infrared systems.

A partial enhancement of spatial resolution can be obtained by exploiting
the relative motion between the observed scene and the microwave radiometer
system. Several techniques have been proposed to this end [1]-{5]. However, some
techniques use approximations, the validity of which may be questionable; [1] neglects
the radiometer receiver properties, [2] uses some trial-and—error constant which are
related to the input, [3] needs an a—priori model of the object to be reconstructed, [4]
and [5] need some "proper" truncation of a series (in [4] a series of eigenfunctions and
in 5] a Fourier series). The purpose of this report is to show the results of research
concerning the practical possibilities of spatial reconstruction where as few
approximations as possible are made.

In chapter 2, a model for the relationship between a cloud scene and the
radiometer output is given. In chapter 3 the reconstruction technique is discussed. As
the objective is to obtain images with spatial resolution comparable to the scale of
atmospheric/geophysical phenomena, chapter 3 is followed by a discussion of the
scales involved and their implications on the recorstruction. Several examples of the
performance are given in chapter 5 and results obtained with a focused and axially
defocused antenna pattern are compared and discussed. Finally, the conclusions of
this research are given in chapter 6.



2 Relation between observed scene and observation instrument

2.1 Basic problems related to noise temperature measurements

Consider a radiometer system (antenna + receiver) which is monitoring a distributed
target to be referred to as a "scene" (see figure 2.1). The influence of the radiometer
antenna pattern can be given by the following relation:

T, = ;1; 4 S T(0,)G(0,4)da (2.1)
T

where T, is the antenna noise temperature, T(0,4) the brightness temperature of the
scene and G(#4,¢) the radiometer antenna pattern.

footprint

----------------------------------------------

Figure 2.1. Observation of a scene with a radiometer.

Figure 2.1 represents a momentaneous situation, in reality there will be a relative
motion between the scene and the radiometer. This enables a sequence of radiometric
measurements to be taken for (partially) overlapping positions of the antenna
footprints. Where the antenna footprints are taken as the intersection between the
scene and the three dimensional antenna pattern at a certain level. As a result the
measured antenna temperature is given by the following relation:

T, (t) = Zl [ T(1,0,)G(0,4)d0 (2:2)

T4r



Because of the finite dimensions of the antenna, resulting in a non—zero beamwidth,
the antenna temperature measured may differ significantly from the brightness
temperature of the scene. It is better to say that the measured temperature represents
a spatially filtered brightness temperature.

Furthermore, the radiometer receiver integrates the signal T A in time, and T A
becomes:

T
t 4=

2
1
Ta(t) = = .
a(t) = 7 T(e) dt (2:3)
73
Where 7 is the integration time of the radiometer receiver.

If a more detailed image of the scene is needed, the influences of antenna and receiver
have to be cancelled. This leads to inverse methods in microwave imaging. However,
the problem inherent to radiometric observation is that the inversion is a very
complex matter. To obtain some understanding in this matter it is convenient to
enumerate in which way the brightness temperature of the scene is altered before it
reaches the output of a radiometer receiver. The different alterations are as follows:
a) addition of cosmic radiation and radiation from the environment, including
reflections.
b) alteration of the radiation energy by absorption and attenuation.
c) integration of the scene with the radiation pattern characteristics
of the radiometer antenna and receiver.
d) addition of systematic and statistical changes to the detected radiation by the
electronic components of the detection equipment.

If a) and b) are taken for granted, the problem can now be stated as eliminating (or
at least reducing) the influences ¢) and d).

To visualize the problem related with c), consider equation (2.1). For simplicity
G(0,4) is taken as the antenna pattern and the influence of the radiometer receiver is
temporarily neglected. The problem of the smoothing action of the antenna pattern
can be demonstrated by considering the following example of brightness temperature
and antenna pattern:



T(0.6)="T(0,6), TH0,6) = T(4,4) + Ceos(w)

G(0,4)= ﬁf 0<N<N, (2.4)
0 elsewhere

The difference between T A= G+Tyand T A, = Ga T, (where # denotes the integral
operator) is given by:

Ty Ty, | = —C 4——fcos(w0 ah Cw (2.5)
a n a

So, by making v sufficiently large or C sufficiently small, the difference can become
very small and it will become impossible to distinguish between T, and T3. This
means that integration with the antenna pattern is equivalent with low—pass filtering.
This result also forms an introduction to the problems related with d). Due to the
smoothing action of the antenna—pattern, small-amplitude or spatially-rapid
variations in T(#,4) will have no effect on T A- Otherwise stated, a detectable change
in T, will have to come from a relatively large or slow change in T(4,4). However,
the antenna temperature is measured with a non—ideal radiometer receiver which
introduces additional noise to the noisy signal T,. So, a change in T, can also
originate from the radiometer receiver. Performing the inversion process in that case
will lead to errors in the reconstruction of the original brightness temperature. This
makes clear that the problem of inversion is a very complex matter.

The related problems originate from the physical relation as given by
Eq.(2.2). These problems can not be solved by increasing the accuracy and efficiency
of the numerical algorithms used in the inversion process. This is due to the fact that
Eq.(2.2) is a first kind Fredholm integral which is a well-known example of an
ili—posed problem; this means [6] that Eq.(2.2) does not satisfy the following
properties:

1) for every T A there exist a solution T

2) the solution T is unique

3) the problem is stable, such that a small change in T leads to a small change in T A
and vice versa.



The discussion above makes clear that the second and third properties are not
satisfied, making the problem ill—posed.

Luckily, the inversion can sometimes be facilitated by assuming knowledge
about object and data properties. This knowledge would exclude a large variety of
solutions, that would otherwise be generated. Some examples of a—priori knowledge
are: the mean and standard deviation of the noise temperature as derived from
statistics, and the upper and lower limit of the noise temperature as derived from
worst case statistics.

To be able to perform the inversion, a model for the radiometric measurements is
needed.

2.2 Modelling the relation between the observed scene and radiometer

The basis for the modelling is formed by Eq.(2.2). Firstly, the scene is projected to a
x—y plane, given by the vectors x and y (where x represents the direction of the

movement), and represented by a brightness temperature distribution T(x,y). Figure
2.2 shows the coordinates used.

Zo

Yo

Xa

Figure 2.2. The coordinate systems.

The relative movement between the cloud and the radiometer can be modelled as the
movement between the antenna contour plots on the x—y plane and the distribution
T(x,y) (changing the three—dimensional problem into a two dimensional one, see
figure 2.2). Due to the fact that measurements can be taken at different relative



positions between antenna and scene, it is possible to estimate T(x,y) in the direction
of the movement. Indirectly, it is also possible to gain knowledge about the
boundaries of the scene (in the direction of the movement) because outside the cloud
T(x,y)=0 is found. At Eindhoven University of Technology (EUT) an antenna is used
in 2 non—scanning configuration and reconstruction is only possible in the direction of
the movement. Perpendicular to this direction the antenna smoothing effect can not
be cancelled. Therefore it is obvious to try to convert the problem to a one
dimensional problem to simplify calculations. Assuming that the movement, with
constant v along the x-axis is linear in the time interval of measurements it is
possible to write:

() =1 f [ f f ”6 e (x,y)dxdy]df-- (26)
o “T(x,y)
_: f [41 f f I x+v¢‘,y)dxdy]d£
“- PG(x+ve,y)dy
Ta ~ T Y —_“"——dx d 2.7
03 [ f( U e 0

where T(x,Y) is an average value with respect to the y—coordinate. In this way it is
possible to write:

Ta(t) » — f T(x)G'(x,t,7) dx (2.8)

b4
2

_ “G(x+v¢,y)dy
with T'(x) = T(x,Y) and G'(x,t,7) = %-_j; [ fm]d

i 1}

Here it is assumed that in a period 7, needed to obtain Ta(t), T(x,Y) does not vary
and can be taken as frozen.



The evaluation of eq.(2.8) needs some mathematical manipulation. This problem is
simplified if the movement is divided into a movement parallel to the antenna
aperture and a movement towards the antenna (see figure 2.3).

Figure 2.3. Modelling the movement.

As a change in R will be small for subsequent measurements it is possible to neglect
the latter movement. In this way all the antenna—pattern symmetry properties are
maintained and the mathematical manipulations are kept to a minimum.



3 Reconstruction

3.1 The estimation of T

In the previous chapter, a model was derived for the relative movement between the

scene and the radiometer system. The problem of determining T’(x) can now be dealt
with in several ways [1],[2],[3],[4] but it can be visualized as in figure 3.1.

Figure 3.1. The projection of the set T’(x) to T,

Due to the fact that the problem is ill posed, the T, measured corresponds to a set of
functions T’(x) and it is necessary to develop an inversion G ! which gives an unique
T°(x) as solution to the problem. Different inversions methods G™! will result in a

different function T’(x). However, as a radiometer system is used, it is rational to
treat the imaging problem from the radiometer point of view. It is possible to draw a
parallel with the traditional use of the radiometer for for accurate measurement of T,
as a function of time. In this way it is possible to obtain radiometer statistics which
can be used for predicting the quality of a future satellite link. In such a radiometer
system an antenna is used, followed by a highly sensitive microwave receiver which
basically consists of an RF—amplifier, mixer, [F—amplifier, filter, square—law detector
and an integrator. The integrator is used to improve the radiometer sensitivity which
is defined as the minimum change in input signal that is necessary to produce a
detectable change in the output signal. Detectable is defined as a change in dc—-level
of the output voltage equal to the standard deviation of the superimposed ac—signal.
So, the integrator is used to get the best possible estimate of the average of the
antenna brightness temperature. If T; is written as follows:

Ta(t) = <Ta(t)> + §Ta(t) (3.1)
where <.> indicates ensemble averaging, the intention is to minimize the time



variations §T,(t). Otherwise stated it is the intention to reconstruct the signal T; in
time.

With an imaging radiometer, where the objective is to reconstruct
T'(x)= <T'(x)> + §T’(x), it is therefore reasonable for trying to get the best possible
estimate of the average of T' with respect to x, while minimizing the spatial

variations §1°(x). This can be accomplished by minimizing:

[Tx)dx = <T)>"+ [ {5T(x)}dx (3.2)

' —m

with the constraint that T* has to satisfy the measurements given by Eq.(2.8). Here it

is assumed that §T’(x) varies rapidly with respect to the average value.
Using the following formulation:

ti-i-:; ®
Tai =1 f (Tp(6)dt = Zi [T(x) Go(x) dx (3.3)
by —®
ti+% VG(x+v _¢,y)dy
with G(x) ”_"%f., [ J Rz)((x ¥) ]d§

it is possible to write the problem as: reconstruct T’(x) which satisfies

Tai =f fT’(x)Gi’(x) dx (1<i<N) and minimizes f{T’(x)}de (3.4)

—

Using this discretization, it is possible to transform the integral relation into a matrix
equation. Eq.(3.4) can be seen as a dot product in a function space.
Tal = 4% Gl"T’
1
Taz ".—'" G2’ . T’
DA (3.5)

_— ]‘ ] )
TaN—-EGN 'T
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Furthermore T’ has to minimize Eq.(3.2), which can be written as:

min{T-T} = min{ | T[] } (3.6)

Here ||T’|| represents the "length" of T’ in the function space, which can be
visualized as given in fig.3.2.

Figure 3.2. The length of T® in function space. T® represents a T that satisfies
Eq.(3.5)

Here % represents a linear manifold in function space containing all the functions T’

which satisfy Eq.(3.5). The solution to Eq.(3.4) is the T’ which has the minimum
"distance" to the origin & A detailed mathematical derivation and the consequences

of this constraint for the form of T° is given in Appendix A, but it can easily be
understood that the T’ with the minimum length from ¢ to % has to be

perpendicular to ¥ . Using Eq.(3.5) it is clear that a T that satisfies that condition
can be written as:
N

T'=% a;Gy (3.7)
i=1

N
50 Tas = 3G’ T? = Tai=(72)Gy"* 1 265" = Tui = (DG Gla=
J:

Ta=(£) G-G'a (3.8)
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or, ,r:,[‘_ﬂ- = GE (39)
Ta, a | v’
with Ty = T‘j‘ 21,a=12?},G= G2’} and G a N«N matrix with elements
TH.N a-N GN,
@
Gy = [—l] [ Gi(x)Gj(x) dx. (3.10)
4r
-

It is simple to determine the reconstruction vector a via:

a=G T, (3.11)

The corresponding T’ can be found by substituting a in Eq.(3.7). The matrix G’ is a
Gramm matrix, but in this special case it is also a Toeplitz matrix which takes the

form of a positive definite, symmetric band matrix with elements Gi},j=G}.x,j—«

3.2 Trade—off between resolution and accuracy

The above recomstruction technique enables T’ to be written as a summation of

shifted versions of the antenna pattern G’. As an example the process of
reconstruction is illustrated in figure 3.3.

/\ Resolution /ﬁ—\‘,

Resolution

a) b) c) d)

Figure 3.3. The process of reconstruction: a)lnput b) G'(x) «¢) aiGi’(x) d) T(x)
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The pattern G’ is given in figure 3.3.b and Gy'(x) in figure 3.3.c, if N=4, a;=0.3,

ay=0.5, a3=0.4, a4 = 0.2, T’ will be as given in figure 3.3.d.
In terms of resolution it is desirable to have as many, slightly shifted Gi’s as possible;

then it is possible to reconstruct T’ in more detail. However, calculating a in that case
can lead to unacceptable errors in the reconstruction. If Gy’ is a slightly shifted

version of G’ there will be a strong interdependence between the rows and columns of
G, resulting in a large condition number of G. As T, is contaminated with noise from
the radiometer receiver, this noise carn be multiplied with the condition number
during the calculation of a. To improve the condition number, it is necessary to make
the interdependence less. This implies that there has to be as little overlap as

possible. Therefore the reconstruction of T' asks for a trade—off between resclution
and accuracy of reconstruction.

3.3 Measurements contaminated with noise

3.3.1 Statistical errors due to the receiver

The method derived in section 3.2 selects T’ to satisfy Eq.(3.4) and it neglects
a—priori knowledge of the existence of measurement errors in the signal T,;. One
contributor to the measurement error is the radiometer receiver which introduces a
statistical error equal to the radiometer temperature resolution e. Statistical errors on
the antenna pattern can be neglected because the influence is minimal due to both
spatial and time integration of the pattern. Therefore, the problem as stated in
Eq.(3.3) and Eq.(3.6) is more realistically represented by:

| G)G-T' ~Ta|]2<e? and  min{|| T'||} (3.12)

and figure 3.1 changes into figure 3.4.



Figure 3.4. The projection of the set T*(x) to the set Th.

The set T(x) becomes larger and makes it possible to search for a smoother (a more
"well-behaved") solution to the ill-posed problem. In Appendix A.2. it is shown that
the solution to this problem can again be written as a linear combination of antenna
patterns, so using Eq.(3.7), Eq.(3.12) becomes:

|| Ga—Ta(]2¢ €2 and, (3.13.3)

min{(G"2-G")} = min{4r(a” Ga)} (3.13.b)
where ¢ is the radiometer temperature sensitivity.
In Appendix B it is shown that this problem is equivalent with:

|| Ga—Ta ||2=¢2? and, (3.14.a)
min{4r(al Ga)} (3.14.b)

With the help of the Lagrange multipliers it is possible to show that the solution to
this problem has to satisfy:

2Ga= grad(aGa)= a grad(|[Ga — Ta]|2) = a(2GTGa — 2GT,) (3.15)

Noting that G is positive definite and GT=G, it follows that:
a = o(Ga —Ta) (3.16)

13



14

So the problem becomes:
[l Ga—Ta ||2=¢€? and,
2 = o(Ga ~T,)

From Eq.(3.17.a) it follows that:
Ga=Ta—e€e2z withl|z]||2=1

Substitution of 3.18 in Eq.(3.17.b) gives:

a=0(Ta—e2z2—T,) = —ae
o1,

aelz = o(Gaelz +T,) = €([—aG)z = Ty =(1—aG) 'To= e22

= | [(1I-aG) 'Ta] |2 = €2

(3.17.3)
(3.17.b)

(3.18)

(3.16)

(3.20)

(3.21)

So, after calculating a from Eq.(3.21) it is possible to derive a from Eq.(3.17.b).

However, the problem as given by Eq.(3.21) is not linear anymore and the solution is

not that straightforward. One way to determine a is based on diagonalization of the

Gramm matrix G-

G = BDBY

(3.22)

with D a diagonal matrix with elements given by the eigenvalues (A, Az,..,AN) of the

matrix G, and B an orthogonal matrix which columns are formed by the eigenvectors

(e, €9, gN) of G. Furthermore, a and T, are decomposed into the eigenvectors of

the matrix G:
N N
a=1X {ies To= ¥ 7a1¢
i=1 i=1
leading to
N
Ga=13 § e
i=1

and Eq.(3.17.a) becomes:

(3.23)

(3.24)
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£i=a( Aifi— Tai) (3.25)
and Eq.(3.20) becomes:

N
Y (FTaiyr = 2 (3.26)
i=1 1-ak;

This is a quadratic form in a, so two solutions will be found. To determine which a is
correct, Eq.(3.17.a) is written as follows:

N

B(Aséi— 7a1)? = €2 (3.27)
i=1

This shows that Eq(3.17.a) is an ellipsoide. Using the sketch as shown in figure 3.5,
where n represents the normal of the ellipse, it can be seen that the a that corresponds
to the minimum length will be negative. The value that corresponds to the maximum
length is positive. So checking the signs will give the correct a.
Substitution of a, obtained from Eq.(3.26), in Eq.(3.25) and the result in Eq.(3.23)
gives the coefficients a; and the solution to the original inversion problem.

In this way a method is obtained for regularization of the ill-posed problem.

Applying the same way as described above for the case where errors are neglected
(section 3.2) would have led to:

a=
i

I a2
o
=4
forg (o
[g23

) i (3.28)

while the solution now takes the form of

—aTai

a =i£1 T=ak;) & (3.29)

A small value for A;in Eq.(3.28) can lead to unacceptable errors in the reconstruction,
while in Eq.(3.29) where a limited error is accepted this will have much less influence.
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£z

£y

Figure 3.5. The determination of the correct a

3.3.2 Systematic errors due to the antenna

In the previous section a statistical error was discussed and in this section systematic
errors are considered. Systematic errors from the receiver are neglected because they
can be seen as an offset voltage which can be compensated by calibration. Systematic
errors originating from the finite measurement accuracy of the antenna pattern can be
shown to have little influence. This is shown in detail in Appendix C, but as can
easily be seen from Eq.(3.17.b) and Eq.(3.21) the problem of determining a and a is
well conditioned if the matrix G has a good condition number. So, the influence of
these systematic errors is less prominent than the influence of statistical errors on the
inversion method.

3.3.3 Systematic errors due to the object

In the previous section errors due to the receiver system were discussed. A short
derivation in appendix D shows that incorrect estimation of the velocity of the object
results in errors of the matrix G. This was to be expected from Eq.(3.3) and
Eq.(3.10). Interesting to note is that the error in the G increases if the total
observation time t; increases. This is trivial if the relation x = vt is considered. So,
errors in v can be dealt with as discussed in the previous section and appendix C.



4 Objectives and implications

4.1 Introduction

To be able to provide relevant information about the atmospheric processes it is
necessary to have some general krowledge about the scales involved in these
processes. The time scales involved are important because recomstruction of the
atmospheric "object" is only relevant if between successive measurements the
structure can be considered as being frozen.

Knowledge of the spatial scales is important because this will define the desired
resolution needed during the reconstruction.

4.2 Scales involved

The dynamic atmospheric processes range from very small-scale and rapid physical
processes (the nucleation and growth of cloud particles) up to the very large—scale
and slowly varying processes that are associated with synoptic weather systems. A
generally adopted subdivision is that of Orlanski [7] (see figure 4.1). In figure 4.1 the
relation between spatial and time extent is visible. If the smallest scale processes are
omitted, it is clear from figure 4.1 that the resolution has to be in a spatial range from
several meters to 20m and a time range from several seconds to 1 minute. To be able
to determine the lower limit of the corresponding atmospheric processes (plumes (of
clouds or from chimneys)}, roughness and atmospheric turbulence) more accurate,
some results of groups of meteorologists are presented.

4.2.1 Spatial extent

An impression about the spatial scales involved can be obtained from [8,9]. Here the
liquid water mixing ratio is measured (see figure 4.2). In [9,pp341] it is stated that the
measurements were performed with a resolution of nearly 10m and that the sharp
gradients in the measurements were of a larger scale.

Another group of meteorologists [10] observed the characteristics of eddies in
boundary layer cumuli. They obtained good results with a resolution of 5—10m
[9,pp426] (see figure 4.3).
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Figure 4.3. Dynamic processes in cumuli (the liquid water mixing ratio). The contour

interval is 0.2 g kg_l and the 0.01 contour is shown as a dotted line. The
time is in minutes,

Therefore it is concluded that a resolution of 5—20m is sufficient for obtaining relevant
information about atmospheric dynamics.

4.2.2 Time dependence

From figure 4.1 it is clear that the time variations are of the order of seconds to
minutes. Combination of [9] and figure 4.4 [11] gives confirmation to this assumption.
ABrightness

ACloud thickness
are performed with an accuracy of 0.1K and taking the average up drift speed from [9]

it is concluded that for stratus, stratocumulus and cumulus clouds it will take more
than 10 seconds to measure a change.

Taking the worst case from figure 4.4, assuming that measurements
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Therefore, it is concluded that for most atmospheric processes it is valid to take the
structure as frozen for about 10-60 seconds.



5 Performance of the reconstruction algorithm

5.1 The antenna pattern

A skeletal structure for the reconstruction algorithm has been given in Chapter 3.
Flow diagrams of the algorithm are given in appendix E. In this chapter results
obtained with the algorithmi are given. The first antenna pattern that is used to get a
first impression of the performance is the pattern of a front—fed parabolic antenna
which can be modelled adequately by a function of the following form:

J(ad))2 1
G(O}:Go[ a"; ] a0’ (5.1)

(see figure 5.1.a) where a and b determine the beamwidth and level of first sidelobe,
respectively and Gy is 2 normalization constant.

The second pattern that is used is the pattern of a defocused parabolic antenna (see
figure 5.1.b). For sake of simplicity the main lobe is approximated by the idealized
pattern as given in figure 5.1.c. The reason for this is purely academic because in this
way the effect of the values 0, and 0, (see figure 5.1.c) on the results can be
determined more easily.

The defocused pattern is included because it is possible that shaping of the main lobe
could affect the trade—off between resolution and accuracy of reconstruction (refer to
section 3.2).

5.2 Results obtained with the approximated pattern of a front—fed antenna system

First the results of the algorithm using the pattern given by Eq.(5.1) are given. This
pattern is tranformed into the G(x) pattern (the pattern after integration over the
y—coordinate, see figure 5.2) followed by time averaging given by Eq.(2.8) (see figure

5.2) resulting in the G’(x) pattern.

For the examples to follow a configuration is used with a=2.6 and b=0 which is an
approximation of a paraboloid of 25 A diameter with a first sidelobe at —17.6 dB. This
pattern gives a footprint of 47 m at a height of 0.5 km if the elevation angle is 909.
The integration time of the receiver is set on 1 sec, which is representative for actual
radiometers. Results are shown for different values of the resolution, which is defined
as the dimension of variation that can be reconstructed (refer to section 3.2).
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The first example input—object is a Dirac é—pulse. As can be seen in figure 5.3 the
reconstructed signal resembles a sinc—signal, with its first zero at a distance nearly
equal to the resolution. This can also be seen in figure 5.4 where the resolution is set
to 15m in contrast to 6m with figure 5.3. This implies that the algorithm has a nearly
rectangular spatial transfer function.

Figure 5.3. A Dirac §-pulse input signal. The resolution is 6m.
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The second input object is a sine—shaped signal. The reconstructed signal in figure 5.5
nearly equals the input signal. The reason for this extremely good result is that a
sine—function is an eigenfunction of the algorithm (due to the nearly rectangular
spatial transfer function).
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Figure 5.5. A sine—shaped input signal. The resolution is 5m.

A good example of the gain in resolution which can be obtained with this method is
shown in the third example input—object. Figure 5.6 shows the result if the resclution
is 15m. Figure 5.7 corresponds to a resolution of 5m. These figures clearly show the
increase in resolution that is obtained with this method.
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Figure 5.6. A combination of triangles as input signal. The resolution is 15m.
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Figure 5.7. A combination of triangles as input signal. The resolution is 5m.

Finally a pulse—shaped input—signal and its corresponding reconstructed signal is
shown in figure 5.8.
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5.2.1 The Influence of measurement errors in T,

As stated previously measurement errors due to the radiometer receiver can result in
a completely erroneous reconstruction of the object. In this part the signal T, is
obscured with a random noise of 0.1 K (equal to the radiometer sensitivity). If the

reconstruction is based on Eq.(3.12) and the ¢ is taken as 1078 (so defining the
corrupted signal as exact) the reconstruction fails (see figure 5.9). If however the ¢ is
taken equal to 0.1 K the reconstruction will assure good results even with noisy data

45 v v T
(see figure 5.10).
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Figure 5.10. A combination of triangles as input signal. The ¢ = 1077,



5.2.2 The influence of measurement errors in G

The first kind of measurement error in G that is simulated is a random error. In this
section the convolution is performed with G as defined by Eq.(5.1) but the
reconstruction is performed with G + random noise. The random signal is placed in a
band Gpoise around G. As can be seen in figure 5.11 the effect is of minor importance
if the noise band is 2 dB. In figure 5.12 the noise band is 9 dB and the effect is clearly
visible. In practice it appears that if the noise band is larger than 7 dB the
reconstructed signal becomes obscured and it is clear that the effect of statistical
errors can be neglected. The reason for this is that the influence is minimal due to
both spatia.l4g,nd time inte:gration of t'he pattern.
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Figure 5.11. Random noise is added to the antenna pattern. Gpgise = 2 dB.
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Figure 5.12. Random noise is added to the antenna pattern. Gpoise = 9 dB.
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Another error that is simulated is a systematic error in G. Now the signal T, is
determined with G as defined in Eq.(5.1) but the reconstruction is performed with a
G where the parameters a and b are altered. This error could simulate a antenna
pattern mismatch resulting from incorrect measurement in an antenna test range.

Figures 5.13 to 5.15 show the effect for various combinations of a and b.

Figure 5.13.

Figure 5.
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14. Ta determined with a=2.2, b=0. While the reconstruction is performed
with a=0.9x2.2 and b=0.



Figure 5.

Radiometric Reconstruction
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15. Ta determined with a=2.2, b=0. While the reconstruction is performed
with a=2.2 and b=2.

These figures show that the reconstruction technique is rather insensitive for changes
in the parameter a, viz. the f—scaling of the pattern. As expected, the value of b,

represent

ing the sidelobe level, has more influence. Here b=1 corresponds to a

sidelobe level of —22.4 dB.
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5.3 Results obtained with the approximated pattern of a defocused antenna system

In this section results of the algorithm using the approximated pattern of a defocused
antenna system are given. For the following examples #;, and f#}, are chosen to
approximate an defocused antenna system where the feed is axially displaced from the
focal point of the antenna over a distance —2) and their values are §, = 10 and 0}, =

30. The corresponding patterns G(x) and G’(x) are shown in figure 5.16.

To facilitate comparison between the results obtained with the pattern of a focused
and a defocused antenna system, the same input signals as in section 5.2 are
considered.

The first example input—object is again a Dirac 6—pulse. As can be seen in figure 5.17
the reconstructed signal resembles a sinc—signal, with its first zero at a distance equal
to the resolution. This can also be seen in figure 5.18 where the resolution is set to
15m in contrast to 6m with figure 5.17.

-0 . . . S
— G(x)
20} - 6
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Length [m]

Figure 5.16. G(x) (=G(x,y) averaged over y) and G’(x) (=G(x) averaged over time).
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The second input object is a sine—shaped signal. As expected the reconstructed signal
in figure 5.19 nearly equals the input signal.
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Figure 5.19. A sine—shaped input signal. The resolution is 5m.

The third example input—object is shown with a resolution of 15 m (fig. 5.20) and 5m
(fig 5.21). Again the gain in resolution is clearly visible.
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Figure 5.20. A combination of triangles as input signal. The resolution is 15m.
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Finally a pulse-shaped input—signal and its corresponding reconstructed signal is

shown in figure 5.22.
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5.3.1 The Influence of measurement errors in T,

In this section the signal T, is obscured in the same way as described in section 5.2.1
If the € is taken equal to the radiometer sensitivity the reconstruction will assure good
results even with noisy data and a defocused antenna pattern (see figures 5.23 and
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Figure 5.23. A combination of triangles as input signal. The ¢ = 105,
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5.3.2 The influence of measurement errors in G

In this section the convolution is performed with G as defined in section 5.3, but the
reconstruction is performed with a G where the parameters #, and #, are altered.
Only this systematic error is considered, because the influence of statistical errors can
be neglected. Figures 5.25 to 5.28 show the effect for various combinations of 8, and
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Figure 5.25. Ta determined with 0,=1, f,=3. While the reconstruction is performed
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Figure 5.26. Ta determined with f,=1, f,=3. While the reconstruction is performed
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Figure 5.27. Ta determined with #,=1, f,=3. While the reconstruction is performed
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As can be seen from these figures the reconstruction is rather insensitive for a small
mismatch with respect to the shape of the main beam.

5.4 Comparing the results obtained with a focused and defocused antenna system

In the previous sections the reconstruction technique was tested with several input
objects. Furthermore, the performance of the techrique was demonstrated using a
focused and a defocused antenna pattern. As mentioned before the reason for
including a defocused antenna pattern was the possibility that shaping of the main
lobe could affect the trade—off between resolution and accuracy of reconstruction. To
be able to make a quantitative comparison the square error is calculated as follows:

N
B [T(xi) - T(xy)]2
¢ =i=l xi=ilength of T [m] (5.2)
sq N N
3 [T(x1)):

Where T is the input signal (in this case the input signal is equal to the one used in

figure 5.20), and T* the reconstructed signal. This error can be treated as a sort of
signal to noise ratio ((S/N)-1).

This error is calculated for the pattern given by Eq.(5.1) and for different defocused
patterns as a function of resolution. The result is presented in Figure 5.29.

As can be seen in this figure results obtained with a defocused antenna system have
larger errors than compared to those obtained with a focused antenna system.

So, defocussing of the antenna system does not appear to offer any advantages.
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Fig 5.29. Square error as a function of resolution for different antenna patterns
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6 Conclusions

A microwave radiometer inversion method has been presented. The method has been
applied to various {noisy) input signals and results have been presented which show
the capability of this methods in restoring spatial resolution. The effect of statistical
errors in the antenna pattern on the results is reduced by spatial and time integration
(averaging). The errors in the results due to systematic errors in G are shown to be of
the same order of magnitude. The method presented here appears to have a nearly
rectangular spatial transfer function. Special attention is given to the possible
influence of shaping the main beam to the trade—off between resolution and accuracy
of reconstrcution. Defocusing of the antenna system does not appear to offer any
advantages in this trade—off.
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Appendix A : Writing the solution as a combination of shifted antenna patterns

A.1. The noise free problem

In Chapter 2 it was stated that the solution to the problem
Gy T =ay i=(1,2,...N) and min||T"}| (A.1)

resulted in a T’(x) which could be written as a linear combination of Gi(x). A
geometrical motivation, will be given in this appendix.

All the functions T’ that satisfy Eq.(1) form a function space V given by:

V={T| G¢-T" = a3} (A.2)
let V* be the linear manifold (a shifted version of V such that it contains the origin):
V' = {v| Gy-v =0} (A.3)
Then the space W perpendicular to V’ is just the span of Gy, i.e.
W={w|w-v=0, YveV'}=<Gy|i=1.N> (A.4)

T%/__ T
Ve v ‘,"’

Y

/

LY /

Figure A.1 The function spaces V and V°.

Then it follows from fig.A.1. that for all T" in V:

Ty 1 (T'—Ty) (A.5)
Since T'-To e V= Toe (V' =W (A.6).
So Ty has to be an element of W and can be written as:

N
To = Ba;iGy’ (A.7)

i=1
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A .2 Including noise

If the problem is rearranged such that:

|;ai—£—r STx)Gr()]| = ¢ and min [ Tx(x)dx (A.8)

-m

The solution T is again a linear combination of the antenna patterns, this will be
shown as follows:

PROOF

Suppose T is a solution ( So T'(x) is an € good representation of T*(x)), and write:

4—-:; fT(x)Gi’(X) = i (A.9)

Consider the following problem of finding a Ty(x) which satisfies:

i— S To(x)Gy(x) = ps; min f To¥(x)dx (A.10)

Referring to the prove given in section A.l, the solution to this problem is a unique
linear combination of the antenna pattern:

N
To(x) =_Ei.iGi’(x) (A11)
Now, =
141_‘r [ To(x)Gr(x) - ai] = {pi— s = 1411 LG (x) - as] < e (A.12)

N
So T'(x) also satisfies the conditions, so To(x) = T(x)= ZaiG;(x)
i=1
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Appendix B : The optimization problem including measurement errors

The problem is stated as:

|| Ga—Ta || <€ and (B.1.a)
min 47(a’ Ga) (B.1.b)
Suppose the vector b minimizes (B.1.b)and || Gb—T, || < ¢

Leta = 1b (B.2)

The left part of Eq.(B.1.a) can be written as:
|1 Ga—Ta |} =] 7Gb~Ta[| = || Gb—Ta+ (7-1)Gb ||

Applying the triangle equality, leads to:
|1Gb~Ta + (y-1)Gb|| ¢ [[Gb—Ta|| + |[(7-1)Gb]| (B.3)

If 7<1 but close to 1 it is possible that Eq(B.3) still satisfies Eq.(B.1.a), the problem
becomes:

HGb—Ta ||+ [| (r-1)Gb || <€

However

gT Ga= 129TG_b_ < hTG‘t_) (because A<1)

which contradicts the fact that b was the minimum.

So if b satisfies Eq.(B.1.b) then it also satisfies

|| Gb—Ta || = ¢

So the problem as stated in Eq.(B.1) is equivalent with the problem where the < sign
is replaced by the = sign.



Appendix C: Influence of measurement errors in G

In this Appendix the influence of systematical errors originating from the finite
measurement accuracy of the antenna pattern is discussed. As will be shown, the
influence of these systematical errors is less prominent than the influence of statistical
errors on the inversion method.

Again the problem is stated as:

|| Ga—Ta || =¢ and (C.1.a)

min || T’|| = min4r(a’ Ga) (C.1.b)
With the help of the Lagrange multipliers it is possible to derive that the solution to
this problem must satisfy:

|| Ga—Ta|| =¢ and, (C.2.a)

a = a(Ga -Ta) (C.2.b)

1 1
Interesting to note is that if | |a|| is not small, a is proportional to ||Ga~Ta| | © P
a~i3

So, a is a large number.

The influence of errors in the matrix G (originating from the errors in the antenna
pattern Gj(x)) on the inversion can be determined as follows:

a+0a = (a+6a)((G+6G)(a+da) —Ta) (C.3)
Neglecting higher order terms gives:

62 = (I-eG) "N (Ga~Ta)da + (I - aG) La 6Ga (C.4)
b2 = (1-aG) 28, 4 L _qysc a (C.5)

Where (% - G)—'1 is nearly equal to G~! because a is large and (Iu—sz)"1 gives no rise
to problems because a is negative for the minimum.

|18al| 8 -

e =+ & - e sl (C-6)
la || 2

|{6al |
——« (] 14G] ) (c.7)
la ||

Consequently, this error can be made arbitrary small by putting effort in obtaining
exact knowledge of the antenna pattern.

45



46

Appendix D : Errors due to incorrect estimation of the object velocity

Consider an error in v given by év. Given Eq.(3.3) this will result in an §G which is
proportional to :

{-f Jalan L

t-iz g

G(x+v, ¢ ,}’)
yd{] 5v

where @ denotes the partial derivative. Because, the partial derivative of G is
bounded, the following holds:

R
t+i-

6Gy(x) = [— S lflde] 6v)

t- 15

=

6G'(x) = A |ts| 6v)

Eq.(3.10) shows that this will lead to an error in the matrix G and in the previous
appendix it was shown how to deal with those errors.



Appendix E: Flow diagrams of the algorithm

In this appendix flow diagrams of the reconstruction program are given. The
notations used are nearly similar to the ones used in the report. In this appendix X(.)
indicates the function X and X[] indicates the array version of X. Furthermore,

G(x,y) averaged over y is represented by G’(x) and G”(x) corresponds to the time

averaged version of G’(x). The dimensions of all vectors are N and of all matrices
N x N. In the flow diagrams xgax is used, which corresponds to the x—value of the
outer circle of figure 2.3 (from figure 2.2 and 2.3 it is possible to derive that

Rtan(#)= {x¥+y%). LIL and UIL correspond to the lower integration limit

(—{Xmax*xZ) and upper integration limit({Xpax?—x2), respectively. NF is the
normalization factor to obtain a 4r normalized antenna pattern. Figure E.1 gives the
flow diagram of the complete program and figures E.2 to E.7 give flow charts of parts
of the program.
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T (x) 6" (x)
-=> T[1] --> 6" [1])
Determine Determine
B ———
vector Ta 6" 1]
Determine essantial
elements Gij
complete matrixé
(%) l
Calculates the
i eigenvalues,
algenvectors
(%) 4 () l
Detarmine Daetermine
[ ———
vector factor
Deterains
vector a

4

Calculate
T (x)

*

{x) : Standard Numsrical Procedurss

Fig. E.1. Flow digram of the complete reconstruction program.




Determine G' (x)

Integrate G(x, y)
over y from LIL to
UIL via TRAPEZIUM
i: =iy X: aX+xamx/#

Integrate 6°' (x) over
x from -Xmax to Xmax
via TRAPEZIUM
Result=6"
NF : 60=G"/2

'

—
for i:=0 to 2#
At points Xi do
G'(x) is
calculated G'[1}: =6' [1] #NF

Fig. E.2. Flow digram of the determination of G(x) (= G(x,y) averaged over y).
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Determine 6" {x)

!

de=delta
d: =V.Xmax/#

!

For {:=0 to 24+d do
6° [1]: =SUM{6) ' [1-3]}

1 i<md ——> O<mi<mi
1 d<i<2$ --> O<mj<nd
1f 2#cui<mpptd —->

28-1<=j<=d
Yes
da<2#
No
for i:=0 to for 1:=0 to
2#+d do 2#+d do
6" [1): =6" [1)/ 6" [1):=6"[1}/
{(28+1) (d+1)

J_ |
6" (x}) determined

at poits Xi
i=0..2#+d

Fig. E.3. Flow digram of the determination of G*(x) (= G(x) averaged over time).



Determine essential
elements 61)

A
j: =1
6k" (x) :

{x-1) d-points
shifted 6" (x)

r

Integrate 6" (x) Gj"* (x)
via RIEMANN-
approximation
Result = B1j

61}: =G1)%Xmax/Bxpiné

'

yo=jHd

6j" (x) is
shifted d
points

Do G" {x)
and Gj" (x)
gtill have
points

common?

Elements 61}
determined,
61j: 614. .61m

Fig. E.4. Flow digram of the determination of the matrix G.
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Deteraing Ta

/

j: =4
choose object
choose offset

;

Integrate G'(x)*T(x)
RIEHANN—approxination

Talj)l:=Taljl=
Xmax/8%pine

'

shift 6° (x)
d points
ji=j+d

Does Yas
6" (x} still
have points
common with

T {x)

Ta[j] determined
for =4 .N

Fig. E.5. Flow digram of the determination of the signal T,.



Calculate
vector a

No

Fig. E.6. Flow digram of the determination of the vector a.

Yes

i: =144

No

i>N

Yes

Vector a is

calculated
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Calculate T' (x)

i: =0
=3
i
j:=ind
T ' [3):=T' [j1+
6" [jlud] a Rﬂ]
J:=j+e
No
No Yas
- f: mi+14 i>N-1
Yes
T* (x)
calculated

Fig. E.7. Flow digram of the determination of T*(x).
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