

A fast multiplier over GF (2^n)

Citation for published version (APA):
Potgieter, M. J., Dyk, van, B. J., & Tjalkens, T. J. (2002). A fast multiplier over GF (2^n). In B. Macq, & J-J.
Quisquater (Eds.), 23rd symposium on information theory in the Benelux (pp. 69-74). Werkgemeenschap voor
Informatie- en Communicatietheorie (WIC).

Document status and date:
Published: 01/01/2002

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 04. Oct. 2023

https://research.tue.nl/en/publications/eb52262f-6419-469f-b53d-5060f90b3dfd

A Fast Multiplier over GF(2n)

M.J. Potgieter1, B.J. van Dyk1 and Tj.J. Tjalkens2

1 University of Pretoria, Pretoria, South Africa
2 Eindhoven University of Technology, Eindhoven, the Netherlands

e-mail: t.j.tjalkens~tue.nl

Abstract. In this paper we will present a hardware implementation of
a GF(2n) polynomial basis multiplier that is twice as fast a the classical
multiplier while requiring about 50 % more chip area. We implement a
flexible scalar (or point) multiplier for elliptic curve cryptosystems using
this multiplier and find that the flexible system performs almost twice
as fast as compared with the classical multiplier.

Introduction

An elliptic curve cryptosystem (ECC) can be used to exchange keys over
an insecure channel. ECC belongs to the class of public key cryptosystems.
The famous Diffie-Hellman system [1) relies on the prohibitive complexity
of solving s from

g8 == k modp, (1)

where g,. k, an p (a large prime) are known. The RSA system [2) is a
widely used variant on this theme.

In an ECC another complex operation is used, namely the point addi
tion, see [3,4] or the more recent [5]. Here solving m from mP, where P
is a known point on a known elliptic curve in GF(2n) is the intractable
operation. The operation mP is known as the elliptic curve scalar multi
plication.

For the Diffie-Hellman and RSA systems that use a multiplicative
group, a sub-exponential, w.r.t. logp, running time algorithm, the index
calculus method, exists, while all known algorithms for solving the EC
scalar multiplication problem are still exponential in n. Thus, much smaller
keys can be used in an ECC (about 160 bit keys) than in RSA systems
(about 1000 bit keys). Even though the basic operation in an ECC, point
addition, might be more complex than the multiplication in RSA, the dif
ference in field sizes needed, make the ECC system an attractive choice
for low power flow complexity applications.

While implementing a flexible, programmable, hardware EC scalar
multiplier we found a novel field multiplier that is twice as fast as the
standard multiplier, while requiring 50% more chip area.

69

70

2 Field multipliers

Because we are interested in a flexible system a polynomial basis
GF(2n) seems more appropriate than a normal basis. Multiplication
a normal basis representation is only efficient if an optimal normal
exists, and in the range of n that we were interested in, 160 ... 200,
a few optimal bases exists.

So, the field elements are expressed as binary vectors (ao, at, ... , a
n
_

1 of dimension n, relative to the base {I, 0:, 0:2, ... , o:n-l}, where 0: is a
of the irreducible polynomial I(x) of degree n over lF

2
.

The classical multiplier implements the multiplication operation to
gether with the modular reduction. The following pseudo-code
this multiplier and figure 1 gives a hardware implementation hereof. It
is clear that the running time, or number of clock cycles, is equal to n.
Note that the multiplication by x in the code is a simple left shift of the
register r.

Inputs: a, b and the polynomial I(x).
Output: r, where r == a· b mod I(x).

r+-O
for i from n downto 0 do

msb +- rn-l
r +- (msb and I(x)) EEl (r * x)
r +- r EEl (ai and b)

endfor
return r

Listing 1: Pseudo code for the classical multiplier

For odd characteristic fields, a more efficient multiplier exists, the
Montgomery multiplier [6]. Applying this idea to GF(2n) we end up with
a multiplier that is very similar to the classical multiplier, see Listing 2.
The main difference is that it operates on the least significant bits of a.

Fig. 1. The classical multiplier

.. nning time is again equal to n clock cycles. Not~ also that the
:~s;: by x in the code is a simple right shift of the regIster r.

Inputs: a, b and the polynomial I(x).
Output: r, where r == a· b· x-n mod I(x).

r+-O
for i from 0 to n - 1 do

r +- r EEl (ai and b)
r +- (ro and I(x» EEl r
r +- rjx

endfor
return r

Listing 2: Pseudo code for the Montgomery multiplier

Instead of computing r == a' b mod f(x) the Montgomery multiplier

(MM) computes MM[a,b] ~ r == a . b . x-n ~od f(x). Therefor we

GF(2n) b M(a) - a . xn mod f(x). So, represent every element a E y -

71

72

if we wish to compute a . b mod I(x} we compute M M[M(a}, M(b)]
a·b·x

n
mod I(x). We observe that MM[M(a),M(b)] = M(ab). '-'VJJIV., ...

ing a value a to its Montgomery representation M (a) is easily
using the Montgomery multiplier as M(a) = M M[a, x2n]. The COJlIVP'l"";~.
from M(a) to a is similarly performed by a = MM[M(a), 1].

3 A modified field multiplier

If we briefly ignore the modular reduction we see that the classical multi.
plier and the M~ntgomery multiplier actually compute the same product.
Say a(x) = a4X +aaXa+a2x2+alx+ao and b(x) = b4X4+baxa+~x2+
b1x + boo Then the classical multiplier results in

(a4x
4
+ a3x

a + a2x2 + alX + ao)(b4x4 + b3Xa + ~x2 + b1x + bo) =

C8X
8
+ C7X

7 + C(;x
6 + csxs + C4X4 + C3X3 + C2X2 + CIX + Co

It is easy to see that the result for the Montgomery multiplier is c(x} .x-n
because the intermediate results are shifted to the right.

a4b4 a4b3 a4~ a4bl a4bO
aab4 a3b3 aa~ aabl aabo

a2b4 a2b3 a2~ a2bl a2bo
alb4 al b3 al~ albl albo

aob4 aob3 aob2 aobl aobo
C8 C7 C(; Cs C4 C3 C2 cl Co

Assume that n is even, then multiplying c(x) by xn/2 can be seen
as a combination of left and right shifts on the partial results. However
these results can be performed in parallel and the two partial end results

b added together. It is still possible to perform the modular
then e 1·· 1 d r t" 2

L __ "l£Ul using the original algorithms from Istmg an IS mg .

Inputs: a, b and the polynomial I(x).
Output: r, where r == a· b· x-n/2 mod I(x).

rc~O

rm~O

for i from 0 to n/2 -1 do
msb ~ rCn-l
rc ~ (msb and I(x» ED (rc * x)
rc ~ rc ED (an-I-i and b)
rm ~ rm EB (ai and b)
rm ~ (rmo and I(x» ED rm
rm ~ rm/x

endfor
return rc ED rm

Listing 3: Pseudo code for the modified multiplier

The main increase in chip area is caused by the extra (temporary)
result register, rm and rc in stead of r in the original multipliers.

It is easy to extend this method to the case where n is odd. In that case
the Montgomery part works on the (n - 1) /2 least significant coordinates
of a and the representation is M(a) = a· x(n-l)/2 mod I(x). The number
of clock cycles needed is (n + 1)/2. Odd, or preferably prime, values for
n are often used in cryptographic systems.

4 Comparing the classical and modified multipliers

The mUltipliers were implemented in a field programmable gate array
FPGA. The following two tables give an indication of the speed-up and
chip area cost of the modified multiplier relative to the classical multi
plier. We show the timing and chip area for the complete ECC scalar
multiplier unit in table 1 and table 2 respectively.

5 Conclusion

The results of the ECC scalar multiplier comparison indicate that the
field multiplier is the predominant factor in the speed-up of the design.

73

74

Field size n tclassica.\ tmodified

163 6.619 3.776
233 13.316 7.158
283 19.518 10.299

Table 1. Timing comparison in milliseconds

% modified
Field size n % slices (modified) % slices (classical)

% classical
96 35 26 1.346
192 56 40 1.400
304 81 56 1.446
384 99 67 1.478

Table 2. Chip area in FPGA slices

The increase in chip area is caused by the field multiplier only. This and a
more detailed comparison of the designs show that the modified multiplier
costs about 50 % more chip area. Because we designed a flexible and
programmable Eee unit, many optimizations that are possible with fixed
and clever choice of parameters were not possible in this implementation.
This might influence the speed and chip area cost of a design enormously.
Still the speed-up factor will be more or less the same because in many
designs the field multiplier will determine the speed of the overall circuit.

References

1. Diffie, W. and M.E. Hellman, "New directions in cryptography," IEEE 1hms. In
form. Theory, vol. 22, 1976, pp. 644-654.

2. Rivest, R.L., A. Shamir, and L. Adleman, "A method for obtaining digital signatures
and public-key cryptosystems," Comm. ACM, vol. 21, 1978, pp. 120-126.

3. Koblitz, N., "Elliptic curve cryptosystems," Math. Comp., vol 48, 1987, pp. 203-209.
4. Miller, V., "Use of elliptic curves in cryptography", In Advances in Cryptology,

CRYPTO 85, Ed. H.C. Williams, Springer-Verlag, LNCS 218, 1986, pp. 417-426.
5. Blake, LF., G. Seroussi, and N. Smart, Elliptic Curves in Cryptography, Cambridge

University Press, Cambridge, 1999, pp. 1-76.
6. Montgomery, P.L., "Modular multiplication without trial division," Math. Comp.,

vol 44, 1985, pp. 519-521.

