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Abstract 

Loop structures in software code may reveal essential information about implemented algorithms and their parameters, 
even if the observer has no knowledge about which instructions are executed. Regular patterns can for instance be observed 
in power consumption, instruction fetches in external memory, or radiated EM energy. This paper addresses the use of 
dummy operations to obscure the details of the algorithm executed by the processor. We show that for a particular class of 
dummy insertion strategies, a Viterbi decoder can fairly reliably distinguish dummy fetches from real instruction fetches. 

In the second part of this paper, we study strategies to choose dummy fetches from a more general model. For certain 
situations, the optimum protection strategy appears to be deterministic (as opposed to random). Moreover, we show that 
in such a case, it is fundamentally not possible to enhance the security of the implementation by keeping the strategy for 
generating dummy fetches secret to the attacker. 

Keywords: Software protection; Secure processor; Viterbi decoder; Dummy instructions 

1. Introduction 

Most investigations into the strength of crypto- 
graphic algorithms assume the encryption or de- 
cryption algorithm to behave as a black box with 
three well-defined ports to the external world: one 
input and one output for the user data and an input 
for the cryptographic key. A classical situation is the 
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chosen plaintext attack in which an attacker can 
send input data of his own choice to the circuit and 
can observe the encrypted output (ciphertext). This 
scenario is often used to evaluate attacks on smart 
cards with the objective to find the hidden keys 
buried in the silicon circuit on the card. 

Practical implementations, however, may be less 
ideal than such a black box model, because signifi- 
cant amounts of information about the key may 
leak through necessary actions of the processor 
during execution of the cryptographic algorithm. 
Execution times, currents drawn through power 
supply pins, radiated electromagnetic energy and 
accesses to an external memory for fetching instruc- 
tions can all be exploited by an attacker. 

0167-739X/97/$17.00 Copyright 0 1997 Elsevier Science B.V. All rights reserved 
PI~SOl67-739X(96)OOO2O-9 
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Recently, it has been realized (e.g. [l]) and dem- 
onstrated that observed computation times used by 
an RSA public-key crypt0 system [3] might be 
exploited to find the private key used by the proces- 
sor. In RSA, a plain text message m is raised to some 
power e, where e is a cryptographic key. Typically, 
the operation c = me mod N is implemented on 
a binary machine through successive squaring of an 
intermediate result &. The algorithm recursively 
reads all key bits. For a bit in the key e that is set 
(“l”), the processor executes at least one multiplica- 
tion instruction more than for a “0” bit. If the 
attacker is able to determine when such instructions 
are executed, the secret key e can be found. 

rithm performed and its parameters from the loop 
structure of the algorithm. These can be obtained 
through periodic patterns in the addresses of in- 
structions fetched from memory. Particularly if the 
above exponentiation algorithm is executed, the 
trace of addresses reveals which bits in the key have 
been set to “1”. Attempts to obscure the loop struc- 
ture by a secret permutation on the location of 
instructions on the memory chip slows down the 
memory access, and by itself it cannot obscure 
repetitive patterns in addresses. 

This example appears to be a special case of 
a larger class of possible attacks to reconstruct 
embedded algorithms in electronic circuits. There- 
fore, in this paper we widen our scope, including not 
only smart cards but also security modules that 
consist of several chips, connected with buses that 
can be probed. 

Information leakage can be avoided if one allows 
that the processor always reads all instructions in 
the external memory sequentially, but only uses the 
instructions needed. Such a solution severely limits 
the performance of the implementation, so mostly 
this is not realistic or desirable. 

Since conventional processors provide almost no 
possibilities to keep the algorithm or its parameters 
confidential, smart cards and “secure processors” 
[4-61 are commonly used to allow execution of 
algorithms without revealing critical details to ex- 
ternal observers. The central processor unit (CPU) 
of a secure processor accesses an external memory 
to fetch encrypted instructions. Decryption occurs 
on the CPU chip. This scenario has the advantage 
that the manufacturer or its service organization 
can easily replace the (cheap) ROM memory to 
update the features of the system, without having to 
replace other, more expensive modules. 

Secure processors often play exactly the same role 
as smart cards, i.e., providing a secure shell in an 
insecure system, except that secure processors are 
not detachable but hardwired into the system. Se- 
cure processors are for instance used in the ignition, 
steering and braking control of automobiles. The 
automotive industry desires to keep their propri- 
etary algorithms confidential to their competition, 
and does not want dangerous situations to evolve if 
hobbyists “tune up” the performance of their vehicle 
by tampering with the algorithms. 

This paper reports new results on minimizing the 
amount of information leaked in such scenarios. 
The organization is as follows: Section 2 models the 
process of fetching instructions from memory as 
a Markov process. This suggests to use a Viterbi 
decoder to trace the most likely path, which is 
worked out in Section 3. A more generic case is 
presented in Section 4 and evaluated in Sections 
5 and 6. Section 5 derives a lower bound for the 
probability that the attacker can guess the program 
sequence correctly. Section 6 shows that a particular 
strategy can be chosen to ensure optimum security. 
In this case, the probability that the attacker can 
guess the correct program sequence is minimum. As 
an example, Section 7 addresses the case of an 
n round sequential execution of an algorithm having 
n - k rounds of relatively short duration and 
k rounds of long duration. 

2. Dummy reads 

As illustrated in Fig. 1, a secure processor consists 
of a single chip with a microprocessor and a decryp- 
tion circuit for incoming instructions. The decryp- 
tion key depends on the address of the instruction. 
Typically a (secret) random number is generated, 
using the address as a seed. 

Even if the attacker of the secure processor is not It has been proposed to insert dummy fetches 
able to break the encryption/decryption algorithm, (only) when the processor is busy executing 
he may get substantial information about the algo- previously fetched instructions or instructions 
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Fig. 1. Basic elements of secure micro processor. The CPU and decryption are implemented on the same chip, using a silicon technology 
that is difficult to reverse engineer. 

that are already in the processor core (or its cache 
memory). 

In order to investigate such dummy reads, it 
appears reasonable to model the CPU as a finite 
state machine, which asks for the next instruction 
depending on its current state. In Sections 2 and 
3 we will make the simplification that the sequence 
X” = x,, x,, . * . ) X, of addresses of instructions is 
a time-homogeneous Markov process. That is, the 
probability that X0+] =j depends only on X,, but is 
further independent of the (discrete) time u. The unit 
of time can for instance be the length of a clock cycle 
on the bus connecting the CPU chip with its mem- 
ory. In Section 4 we broaden this model. 

Now let pi,j denote the transition probability of 
X “+i = j given X, = i. Whenever i = j, the processor 
is busy executing instruction X, during cycles u and 
u + 1, and Xu+i may on the external address bus be 
replaced by an arbitrary dummy read Y,+i. Other- 
wise, if i#j then x+, =X”+r. We use 
Y”= Y,,Y,,..., Y, to denote the sequence of 
(dummy and real) addresses that can be observed on 
the address bus. 

Branch or Jump 

Fig. 2. Markovian model for instruction addresses in software 
execution. 

Fig. 2 describes a postulated model for instruc- 
tion addresses X”. The parameters have been in- 
spired by rules of thumb used in processor design, 
such as “about one in five instructions is a jump”, 
i.e., for all i,pi,i+l =4xjpij, with j#i,i+l. and 
“75% of time the processor’is busy executing previ- 
ously loaded instructions” ( pi,i z 0.75). 

3. Estimation of bidden Markov process 

An attcker must estimate the original sequence 
X” from the observed Y”. Under the condition that 
the Y”JX” is a sequence of independent random 
variables, that is, the choice of the dummy read Y, 
depends only on X, but not on X”- ‘, the problem 
reduces to that of estimating a hidden Markov 
process. In particular, the most likely path can be 
found using 

Xv= arg max Prob(X’I Y’), 
X” 

that is, it finds the argument X’ that has maximum 
a posteriori probability, given the observed Y”. 
Using Bayes’ rule, this expression is rewritten as 

8” = arg max 
Prob(X’I Y’) Prob(X’) 

X” Prob(Y’) ’ 

where we may omit Prob( Y’) because it does 
not influence the choice of X’ that maximizes 
the expression. Moreover, using the Markovian 
property of the instruction sequence X” and the 
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independence of Y,lX,, X,_, on Xvm2, and after 
taking a logarithm, we arrive at 

X”=argmax i [logProb(Y,,,lX,,X,_,) 
X” w=o 

+ log Prob(X, I X, _ ,)I 
where we define Pro&X, 1X_ I) as the initial (a 
priori) probability Prob(X,). The above expression 
has been the basis to the architecture of the Viterbi 
decoder, which gives an efficient way to find the 
sequence 8’ that has maximum probability using 
dynamic programming. The complexity of the 
Viterbi decoder is of the order of the number of 
states visted by the underlying Markov Process. 
In our particular application, the decoder continu- 
ously administers for every possible address 
i a matrix related to the probability that the algo- 
rithm is at that address (Prob(X, = i)). For a de- 
tailed review of this decoder we refer to [7] or one of 
the many text books on communication theory. 

In Fig. 3, we use transition probabilities from our 
postulated model on the a priori behaviour pi,j of 
software algorithms, and we use Prob( Y, 1 X,, X,_ J 
from the assumption that dummy reads are ran- 
domly chosen whenever X, = X,_ 1 with equal (uni- 
form) probability for all memory addresses. 

In Fig. 3, the program proceeds with the next 
instruction (or with the next cache line) with prob- 
ability pi, i+, = 0.2. With probability 0.05, a jump to 
an instruction with a uniformly random location 
occurs. The probability that the CPU does not fetch 
a new instruction is 0.75, which is equal to the 
fraction of instructions fetched on the external bus 
that are dummy reads. We take X, = 0 with prob- 
ability 1. 

In this example we see that the decoder only 
makes errors between clock cycles 10 and 20. In the 
rest of the trace, the estimated path (e-) coincides 
with the path that the CPU actually followed 
through the instructions. 

100 

X x 
00 - x 

X 
X 

10 - X 
X 

( 
X 

70 - X X 
X x X X 

x x X 
3 60- 

X X 

,o 

43 
X 

c 50- xx 
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s X X 

alo- x X X 
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X XX X x XXX 

30 - X 
X X x x 
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xx X 

X X X 

X x xxx X xx 
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X 
X X 

O- x I , TX 

0 20 40 60 00 100 
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Fig. 3. Instruction address as a function of time. Sample path of the address (solid line) seen by CPU, instruction fetches on bus, including 

both real and dummy reads (crosses), and the most likely path as estimated by a Viterbi Decoder (.-.-). 
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Speaking in terms of hidden Markov processes, 
the software developer wishes to minimize the mu- 
tual information 1(X”; Y”). Explicit computation of 
the conditional entropy H(X”J Y”) or 
1(X”; Y”) = H(Y”) - H(Y”lX”) is known to be tedi- 
ous for hidden Markov processes. Moreover, the 
designer may select more intricate strategies for 
choosing Y” than is covered by the hidden Markov 
model. In such cases the Viterbi algorithm may not 
be applicable. In the next section, we broaden the 
class of dummy generation strategies. It turns out 
that we can quantify the uncertainty in X” given the 
observation Y” for some special cases. 

4. Generic model 

In what follows, we will refer to X” as a program 
sequence of length u. To encrypt such a sequence, 
entries at locations n for which X, = X,_, may be 
replaced by another, according to some method, the 
encryption strategy, that is specified beforehand. We 
will call a location n with X, = X,_, a “star”, as we 
may replace the entry X, by a “wild-card” *. (By 
abuse of notation, we will denote both the original 
program sequence and the sequence obtained after 
these replacements by X”.) Regardless of whether 
this is desirable from a security point of view, at this 
point we will allow this encryption method to be 
non-deterministic, that is, the same sequence may 
be encrypted differently, at different moments 
or by different realizations of the processor. 
(Later, we will see examples where the best 
encryption strategy turns out to be deterministic 
after all.) We can thus describe an encryption 
strategy by specifying, for each program sequence 
X” = s and each possible encryption Y” = t of s, 
the probability that s will be encrypted as t. The 
task of the interceptor is to obtain information 
about the original program sequence from the en- 
crypted version. 

We can formalize the above idea as follows. Let 
S be the collection of all possible program (“source”) 
sequences, and let Tdenote the collection of all 
possible images (encrypted sequences). Write lS( to 
denote the cardinality of S. Note that this model is 
not just limited to instruction fetches by a secure 
processor. Tmay for instance denote the observed 

power consumption pattern of a smart card, while 
S is the set of possible RSA private keys. 

An encryption strategy is described by an 
ISI x ITI-matrix Q, where Q,,, = p(t(s) is the prob- 
ability that a given program sequence s will be 
encrypted as the sequence t. Obviously, the attacker 
cannot do better than following a Maximum A Pos- 
teriori (MAP) probability decoding method: given 
an encryption t, the original program sequence is 
estimated as 

s = arg max p(s 1 t). 
se.7 

(Note that, in general, the attacker would have to 
know the encryption strategy Q in order to do so.) In 
this case, the optimal (MAP) probability p of correct 
decoding, averaged over all t, is 

P = tsTp(t) max p(sl t) = C max p(t Is) p(G 
SES IET se.? 

where p(s) denotes the probability that the program 
sequence to be encrypted equals s. Our aim is to 
choose Q such that p is as small as possible, since the 
attacker on an average has the uncertainty of at least 
l/p program sequences that could have resulted in 
the observed Y” = t. In the special case of equiprob- 
able program sequences, i.e., if p(s) is independent of 
s, we have p(s) = l/IS1 and the detection principle 
reduces to maximum likelihood detection, with 

p = ISI-’ Cmaxp(tls). 
rcT ses 

Note that this p is an average probability, that is, 
some sequences may be easier to decrypt than 
others. 

5. A method to obtain a lower bound 

We will now show that p cannot be made arbitrar- 
ily small by choosing a suitable Q. To this end, let 
A c S be a collection of source sequences such that 
any two distinct words in A will always be encrypted 
into distinct codewords. (Note that this is precisely 
the case when we can find for each two distinct 
sequences in A a (non-star) coordinate where these 
sequences have different non-star symbols.) 

Now a possible approach by the attacker is to 
decrypt when possible an observed sequence into 
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the corresponding program sequence a from A. 
(Note that by our assumption on A there can be at 
most one such sequence.) Using this approach, the 
probability of correct decoding at least equals the 
probability that the program sequence is contained 
in A. So we have proved that 

P 2 c P(U). 
GA 

In the case of equiprobable program sequences, this 
bound reduces to 

~2 lAMSI. 

6. A case of equality 

We will now discuss a situation where the lower 
bound in the previous section holds with equality. 
For the remainder of this section, we will assume 
that the program sequences are equiprobable. Let 
A be a collection as in the previous section. To each 
a~ A we will assign a fixed encryption t,E T. Now 
suppose that this assignment can be done in such 
a way that the collection B = { t,( aE A} has the 
property that each program sequence can be en- 
crypted into some member of B. Then, as a conse- 
quence of these assumptions we can assign to each 
program sequence SES an encryptionf(s) in B, with 
f(u) = t,, a E A. Note that, due to our assumptions on 
A, the sequences t,, UEA, are all distinct, that is, 
I BI = I Al. We will consider the map f as describing 
a deterministic encryption rule. 

The corresponding strategy matrix Q is given by 

PW) = 
1 

1 if t =f(s), 

0 otherwise. 

We now claim that under these assumptions, we 
have that 

P = M/l~l> 

with optimal encryption strategy described by Q (or 
byf). Indeed, we have that 

P=&m~PwM~l 

= 2 l/IS1 = IWPI = IAl/lSl. 

We conclude that the optimal encoding strategy can 
be deterministic. The result also shows that choos- 
ing a statistical strategy does not always make the 
task of the attacker more difficult. 

7. Example 

As a special case of the theory developed in the 
previous sections, consider the sequential execution 
of n rounds of an algorithm out of which some, say 
k steps require a longer execution time. A program is 
represented by a sequence X” of length u = n + k 
obtained from the sequence 

123.. . n 

by the insertion of precisely k stars. Moreover, the 
first and last symbols in the sequence are non-stars, 
and the sequence does not contain two consecutive 
stars. 

Let S be the collection of all source sequences with 
n symbols and k stars, and let Tdenote the collection 
of all possible images of source sequences in S. Write 
) Sl or ) Sl(n, k) to denote the cardinality of S(n, k). 
Note that IS((n,k) =(“;I). 

For a word s in S, let e(s) denote the collection of 
positions where the source sequences has a star. For 
example, if 

s = 12*3*45, 

then 

*(s) = {3,5}. 

To simplify the following arguments, we imagine 
that the collection of positions I = (1,2,. . . , n + k} is 
partitioned into pairs 

I, = {1,2}, I, = {3,4},.. ., 

and possibly (if n + k is odd) the singleton set 
I, = n + k. (Note that, if n + k is odd, then all words 
s in S will have the symbol n in position n + k, hence 
all stars in words of S occur within the sets rj,j > 0.) 
We take the set A as the collection of all a in S for 
which *(A) consists of even numbers only. Note that 
we have 

IAI = 
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It can be reasoned that any two members of this 
A will always produce distinct codewords. The en- 
coding mapfis described in terms of the coordinate 
pairs Zj as follows. For all sequences s in S, replace 
a star in position iElj, say, by the symbol on the 
other position of Ij. The resulting t sequence could 
also have been generated from a sequence with stars 
only in even positions. It is now evident that 

f(s) =fMs)) 

holds for every word s in S, where a(s) denotes the 
special sequence in A that has the same image as s. 
So we have proved that the probability of correct 
decoding 

C(n + k - lh’21 p = 
k 

= [(n + k - 1)/2]!(n - k - l)! 

[(n-k- 1)/2]!(n- l)! 

holds for each n and k, with the optimal determinis- 
tic encoding strategy given by the mapfabove. 

7.1 Asymptotic behavior 

To study the asymptotic behavior for large pro- 
grams (n + cc), we define the ratio a = k/n. Appen- 
dix A shows that 

p + 2”‘1 - 0~ - Ml/Z + Q)), 

The optimum ratio 01 which asymptotically mini- 
mizes the value of the probability of correct decod- 
ing p with a given n and variable n + k appears to be 
CI = k/n = $ The optimum density of stars in very 
long programs equals f. This leads to 

lim slogp + ; -h ; 
0 0 

z -0.322, 
n-.oC 

where h(q) is the binary entropy function. Hence, the The authors wish to thank P. Lenoir for fruitful 
probability of correct decoding tends to p = 2-“.322”. discussions. 

We interpret this as “every three rounds reveal 
about one bit of information”. If the model applies 
to particular observations made on a smart card 
running a computation of 512 bit RSA, the attacker 
would have an uncertainty of about 165 bits in 
estimating the key. At this moment, we are unaware 
of methods that exploit such information in break- 
ing this cryptographic algorithm. 

Appendix A: Asymptotic star density 

To study the asymptotic behavior for large pro- 
grams (n + co), we use the binary entropy function, 
defined as 

h(q)= -[qlogq+(1-q)log(l-q)l. (A.11 

8. Concluding discussion 

We investigated leakage of information through 
observations made on the execution of algorithms. 
The results apply to smart cards, secure processors 
and other detachable or fixed security modules. 

The address bus between a secure processor and 
its memory is a weak point in the security of the 
system. Substantial information can be obtained 
from observing the loop structure of the program 
executed by the secure processor. 

The insertion of dummy instructions helps to 
obscure the exact structure of the program. How- 
ever, methods exist to separate dummy reads from 
real instruction reads. We tested the use of a Viterbi 
decoder on simulated address traces and concluded 
that dummy reads may not simply be chosen uni- 
formly randomly. 

A frame work for the analysis of dummy reads has 
been proposed. We used this framework to find 
results for a special case of software code. For our 
considered situation, optimum strategies are deter- 
ministic. In such cases, revealing the attacker infor- 
mation about the strategy for generating dummy 
reads does not compromise the security of the secure 
processor. 

Although our results are only a preliminary step 
towards a full understanding of these issues, the 
results are believed to be relevant to evaluate the 
strength of secure processors, to develop stronger or 
more efficient strategies for dummy fetches and to 
better understand the potential of recently introduc- 
ed timing attacks (in which cryptananalysts exploit 
measurements of instruction execution times). 

Acknowledgements 
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Its derivative is 

l-q 
h’(q) = log - 

4 ’ 
(A.21 

for any base of the logarithm. In this paper, we 
assume all logarithms and entropy functions to the 
base 2. 

Using Stirling’s approximation for factorials 

Jj&“e-“e-l”‘Z”+l’ < nl 

< JIZ;E;;tlVV”‘2~, (A.31 

we obtain for binomial coefficients 

n 

0 k 
= ~nIW/~) + O(t@rnln)l (A.41 

Inserting this in the expression for p, we obtain 

l+cr 
lim klogp =Th $ 

( ) 
- h(a) (A.51 

n+ao 

= 1 -a-h(++;a). (A4 

We are interested in the value of k which asymptoti- 
cally minimizes the value of probability of correct 
decodingp. In order to find the optimum (for a given 
n and variable n + k), we set the derivative with 
respect to ct equal to zero: 

- 1 =fh’(;++;log(~). 

We find that the optimum tl equals a = i. Note that 
the optimum density of stars in very long programs 
equals $, since the total length of a string including 
the stars equals (1 + cc)n. Substituting this result in 
(A6), we obtain 

limklogp=ih i -h i . 
n-m 0 0 

(A.71 
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