

Protection of software algorithms executed on secure modules

Citation for published version (APA):
Hollmann, H. D. L., Linnartz, J. P. M. G., van Lint, J. H., Baggen, C. P. M. J., & Tolhuizen, L. M. G. M. (1997).
Protection of software algorithms executed on secure modules. Future Generation Computer Systems, 13(1),
55-63. https://doi.org/10.1016/S0167-739X(97)89111-X

DOI:
10.1016/S0167-739X(97)89111-X

Document status and date:
Published: 01/01/1997

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 04. Oct. 2023

https://doi.org/10.1016/S0167-739X(97)89111-X
https://doi.org/10.1016/S0167-739X(97)89111-X
https://research.tue.nl/en/publications/a6ae3461-4db8-4839-af02-198e3da1f3e8

FGCS

ELSEVIER Future Generation Computer Systems 13 (1997) 55-63

OUTURE
@ENER.~TI~N

COMPUTER
mYSTEMS

Protection of software algorithms executed on secure modules?

H.D.L. Hollmanna3* J.P.M.G. Linnartza3’, J.H.van Lintb, C.P.M.J. Baggena*2,
L.M.G. Tolhuizena,3

a Philips Research Laboratories. Prof: Holstlaan 4, WY& 5656 AA Eindhoven, Netherlands
b Eindhoven University of Technology, Eindhoven, Netherlands

Abstract

Loop structures in software code may reveal essential information about implemented algorithms and their parameters,
even if the observer has no knowledge about which instructions are executed. Regular patterns can for instance be observed
in power consumption, instruction fetches in external memory, or radiated EM energy. This paper addresses the use of
dummy operations to obscure the details of the algorithm executed by the processor. We show that for a particular class of
dummy insertion strategies, a Viterbi decoder can fairly reliably distinguish dummy fetches from real instruction fetches.

In the second part of this paper, we study strategies to choose dummy fetches from a more general model. For certain
situations, the optimum protection strategy appears to be deterministic (as opposed to random). Moreover, we show that
in such a case, it is fundamentally not possible to enhance the security of the implementation by keeping the strategy for
generating dummy fetches secret to the attacker.

Keywords: Software protection; Secure processor; Viterbi decoder; Dummy instructions

1. Introduction

Most investigations into the strength of crypto-
graphic algorithms assume the encryption or de-
cryption algorithm to behave as a black box with
three well-defined ports to the external world: one
input and one output for the user data and an input
for the cryptographic key. A classical situation is the

’ This paper was presented at the 2nd CARDIS Conference,
September 1996, Amsterdam.
* Corresponding author. E-mail: hollmann @natlab. research.
philips.com.
’ E-mail: linnartz @natlab. research. philips.com.
’ E-mail: baggen @natlab. research. philips.com.
3 E-mail: tolhuizn @natlab. research. philips.com.

chosen plaintext attack in which an attacker can
send input data of his own choice to the circuit and
can observe the encrypted output (ciphertext). This
scenario is often used to evaluate attacks on smart
cards with the objective to find the hidden keys
buried in the silicon circuit on the card.

Practical implementations, however, may be less
ideal than such a black box model, because signifi-
cant amounts of information about the key may
leak through necessary actions of the processor
during execution of the cryptographic algorithm.
Execution times, currents drawn through power
supply pins, radiated electromagnetic energy and
accesses to an external memory for fetching instruc-
tions can all be exploited by an attacker.

0167-739X/97/$17.00 Copyright 0 1997 Elsevier Science B.V. All rights reserved
PI~SOl67-739X(96)OOO2O-9

56 H.D.L. Hollmann et al./Future Generation Computer Systems 13 (1997) 55-63

Recently, it has been realized (e.g. [l]) and dem-
onstrated that observed computation times used by
an RSA public-key crypt0 system [3] might be
exploited to find the private key used by the proces-
sor. In RSA, a plain text message m is raised to some
power e, where e is a cryptographic key. Typically,
the operation c = me mod N is implemented on
a binary machine through successive squaring of an
intermediate result &. The algorithm recursively
reads all key bits. For a bit in the key e that is set
(“l”), the processor executes at least one multiplica-
tion instruction more than for a “0” bit. If the
attacker is able to determine when such instructions
are executed, the secret key e can be found.

rithm performed and its parameters from the loop
structure of the algorithm. These can be obtained
through periodic patterns in the addresses of in-
structions fetched from memory. Particularly if the
above exponentiation algorithm is executed, the
trace of addresses reveals which bits in the key have
been set to “1”. Attempts to obscure the loop struc-
ture by a secret permutation on the location of
instructions on the memory chip slows down the
memory access, and by itself it cannot obscure
repetitive patterns in addresses.

This example appears to be a special case of
a larger class of possible attacks to reconstruct
embedded algorithms in electronic circuits. There-
fore, in this paper we widen our scope, including not
only smart cards but also security modules that
consist of several chips, connected with buses that
can be probed.

Information leakage can be avoided if one allows
that the processor always reads all instructions in
the external memory sequentially, but only uses the
instructions needed. Such a solution severely limits
the performance of the implementation, so mostly
this is not realistic or desirable.

Since conventional processors provide almost no
possibilities to keep the algorithm or its parameters
confidential, smart cards and “secure processors”
[4-61 are commonly used to allow execution of
algorithms without revealing critical details to ex-
ternal observers. The central processor unit (CPU)
of a secure processor accesses an external memory
to fetch encrypted instructions. Decryption occurs
on the CPU chip. This scenario has the advantage
that the manufacturer or its service organization
can easily replace the (cheap) ROM memory to
update the features of the system, without having to
replace other, more expensive modules.

Secure processors often play exactly the same role
as smart cards, i.e., providing a secure shell in an
insecure system, except that secure processors are
not detachable but hardwired into the system. Se-
cure processors are for instance used in the ignition,
steering and braking control of automobiles. The
automotive industry desires to keep their propri-
etary algorithms confidential to their competition,
and does not want dangerous situations to evolve if
hobbyists “tune up” the performance of their vehicle
by tampering with the algorithms.

This paper reports new results on minimizing the
amount of information leaked in such scenarios.
The organization is as follows: Section 2 models the
process of fetching instructions from memory as
a Markov process. This suggests to use a Viterbi
decoder to trace the most likely path, which is
worked out in Section 3. A more generic case is
presented in Section 4 and evaluated in Sections
5 and 6. Section 5 derives a lower bound for the
probability that the attacker can guess the program
sequence correctly. Section 6 shows that a particular
strategy can be chosen to ensure optimum security.
In this case, the probability that the attacker can
guess the correct program sequence is minimum. As
an example, Section 7 addresses the case of an
n round sequential execution of an algorithm having
n - k rounds of relatively short duration and
k rounds of long duration.

2. Dummy reads

As illustrated in Fig. 1, a secure processor consists
of a single chip with a microprocessor and a decryp-
tion circuit for incoming instructions. The decryp-
tion key depends on the address of the instruction.
Typically a (secret) random number is generated,
using the address as a seed.

Even if the attacker of the secure processor is not It has been proposed to insert dummy fetches
able to break the encryption/decryption algorithm, (only) when the processor is busy executing
he may get substantial information about the algo- previously fetched instructions or instructions

H.D.L. Hollmann et aLlFuture Generation Computer Systems 13 (1997) 5543 5-l

::.
:::: :,

,..........

Fig. 1. Basic elements of secure micro processor. The CPU and decryption are implemented on the same chip, using a silicon technology
that is difficult to reverse engineer.

that are already in the processor core (or its cache
memory).

In order to investigate such dummy reads, it
appears reasonable to model the CPU as a finite
state machine, which asks for the next instruction
depending on its current state. In Sections 2 and
3 we will make the simplification that the sequence
X” = x,, x,, . * .) X, of addresses of instructions is
a time-homogeneous Markov process. That is, the
probability that X0+] =j depends only on X,, but is
further independent of the (discrete) time u. The unit
of time can for instance be the length of a clock cycle
on the bus connecting the CPU chip with its mem-
ory. In Section 4 we broaden this model.

Now let pi,j denote the transition probability of
X “+i = j given X, = i. Whenever i = j, the processor
is busy executing instruction X, during cycles u and
u + 1, and Xu+i may on the external address bus be
replaced by an arbitrary dummy read Y,+i. Other-
wise, if i#j then x+, =X”+r. We use
Y”= Y,,Y,,..., Y, to denote the sequence of
(dummy and real) addresses that can be observed on
the address bus.

Branch or Jump

Fig. 2. Markovian model for instruction addresses in software
execution.

Fig. 2 describes a postulated model for instruc-
tion addresses X”. The parameters have been in-
spired by rules of thumb used in processor design,
such as “about one in five instructions is a jump”,
i.e., for all i,pi,i+l =4xjpij, with j#i,i+l. and
“75% of time the processor’is busy executing previ-
ously loaded instructions” (pi,i z 0.75).

3. Estimation of bidden Markov process

An attcker must estimate the original sequence
X” from the observed Y”. Under the condition that
the Y”JX” is a sequence of independent random
variables, that is, the choice of the dummy read Y,
depends only on X, but not on X”- ‘, the problem
reduces to that of estimating a hidden Markov
process. In particular, the most likely path can be
found using

Xv= arg max Prob(X’I Y’),
X”

that is, it finds the argument X’ that has maximum
a posteriori probability, given the observed Y”.
Using Bayes’ rule, this expression is rewritten as

8” = arg max
Prob(X’I Y’) Prob(X’)

X” Prob(Y’) ’

where we may omit Prob(Y’) because it does
not influence the choice of X’ that maximizes
the expression. Moreover, using the Markovian
property of the instruction sequence X” and the

58 H.D.L. Hollmann et aLlFuture Generation Computer Systems 13 (1997) 55-63

independence of Y,lX,, X,_, on Xvm2, and after
taking a logarithm, we arrive at

X”=argmax i [logProb(Y,,,lX,,X,_,)
X” w=o

+ log Prob(X, I X, _ ,)I
where we define Pro&X, 1X_ I) as the initial (a
priori) probability Prob(X,). The above expression
has been the basis to the architecture of the Viterbi
decoder, which gives an efficient way to find the
sequence 8’ that has maximum probability using
dynamic programming. The complexity of the
Viterbi decoder is of the order of the number of
states visted by the underlying Markov Process.
In our particular application, the decoder continu-
ously administers for every possible address
i a matrix related to the probability that the algo-
rithm is at that address (Prob(X, = i)). For a de-
tailed review of this decoder we refer to [7] or one of
the many text books on communication theory.

In Fig. 3, we use transition probabilities from our
postulated model on the a priori behaviour pi,j of
software algorithms, and we use Prob(Y, 1 X,, X,_ J
from the assumption that dummy reads are ran-
domly chosen whenever X, = X,_ 1 with equal (uni-
form) probability for all memory addresses.

In Fig. 3, the program proceeds with the next
instruction (or with the next cache line) with prob-
ability pi, i+, = 0.2. With probability 0.05, a jump to
an instruction with a uniformly random location
occurs. The probability that the CPU does not fetch
a new instruction is 0.75, which is equal to the
fraction of instructions fetched on the external bus
that are dummy reads. We take X, = 0 with prob-
ability 1.

In this example we see that the decoder only
makes errors between clock cycles 10 and 20. In the
rest of the trace, the estimated path (e-) coincides
with the path that the CPU actually followed
through the instructions.

100

X x
00 - x

X
X

10 - X
X

(
X

70 - X X
X x X X

x x X
3 60-

X X

,o

43
X

c 50- xx
u

s X X

alo- x X X
X

X XX X x XXX

30 - X
X X x x

X
X

20 -
xx X

X X X

X x xxx X xx
10 -

X
X X

O- x I , TX

0 20 40 60 00 100
Cbck Cycle

Fig. 3. Instruction address as a function of time. Sample path of the address (solid line) seen by CPU, instruction fetches on bus, including

both real and dummy reads (crosses), and the most likely path as estimated by a Viterbi Decoder (.-.-).

H.D.L. Hollmann et al./Future Generation Computer Systems 13 (1997) 55-63 59

Speaking in terms of hidden Markov processes,
the software developer wishes to minimize the mu-
tual information 1(X”; Y”). Explicit computation of
the conditional entropy H(X”J Y”) or
1(X”; Y”) = H(Y”) - H(Y”lX”) is known to be tedi-
ous for hidden Markov processes. Moreover, the
designer may select more intricate strategies for
choosing Y” than is covered by the hidden Markov
model. In such cases the Viterbi algorithm may not
be applicable. In the next section, we broaden the
class of dummy generation strategies. It turns out
that we can quantify the uncertainty in X” given the
observation Y” for some special cases.

4. Generic model

In what follows, we will refer to X” as a program
sequence of length u. To encrypt such a sequence,
entries at locations n for which X, = X,_, may be
replaced by another, according to some method, the
encryption strategy, that is specified beforehand. We
will call a location n with X, = X,_, a “star”, as we
may replace the entry X, by a “wild-card” *. (By
abuse of notation, we will denote both the original
program sequence and the sequence obtained after
these replacements by X”.) Regardless of whether
this is desirable from a security point of view, at this
point we will allow this encryption method to be
non-deterministic, that is, the same sequence may
be encrypted differently, at different moments
or by different realizations of the processor.
(Later, we will see examples where the best
encryption strategy turns out to be deterministic
after all.) We can thus describe an encryption
strategy by specifying, for each program sequence
X” = s and each possible encryption Y” = t of s,
the probability that s will be encrypted as t. The
task of the interceptor is to obtain information
about the original program sequence from the en-
crypted version.

We can formalize the above idea as follows. Let
S be the collection of all possible program (“source”)
sequences, and let Tdenote the collection of all
possible images (encrypted sequences). Write lS(to
denote the cardinality of S. Note that this model is
not just limited to instruction fetches by a secure
processor. Tmay for instance denote the observed

power consumption pattern of a smart card, while
S is the set of possible RSA private keys.

An encryption strategy is described by an
ISI x ITI-matrix Q, where Q,,, = p(t(s) is the prob-
ability that a given program sequence s will be
encrypted as the sequence t. Obviously, the attacker
cannot do better than following a Maximum A Pos-
teriori (MAP) probability decoding method: given
an encryption t, the original program sequence is
estimated as

s = arg max p(s 1 t).
se.7

(Note that, in general, the attacker would have to
know the encryption strategy Q in order to do so.) In
this case, the optimal (MAP) probability p of correct
decoding, averaged over all t, is

P = tsTp(t) max p(sl t) = C max p(t Is) p(G
SES IET se.?

where p(s) denotes the probability that the program
sequence to be encrypted equals s. Our aim is to
choose Q such that p is as small as possible, since the
attacker on an average has the uncertainty of at least
l/p program sequences that could have resulted in
the observed Y” = t. In the special case of equiprob-
able program sequences, i.e., if p(s) is independent of
s, we have p(s) = l/IS1 and the detection principle
reduces to maximum likelihood detection, with

p = ISI-’ Cmaxp(tls).
rcT ses

Note that this p is an average probability, that is,
some sequences may be easier to decrypt than
others.

5. A method to obtain a lower bound

We will now show that p cannot be made arbitrar-
ily small by choosing a suitable Q. To this end, let
A c S be a collection of source sequences such that
any two distinct words in A will always be encrypted
into distinct codewords. (Note that this is precisely
the case when we can find for each two distinct
sequences in A a (non-star) coordinate where these
sequences have different non-star symbols.)

Now a possible approach by the attacker is to
decrypt when possible an observed sequence into

60 H.D.L. Hollmann et aLlFuture Generation Computer Systems 13 (1997) 55-63

the corresponding program sequence a from A.
(Note that by our assumption on A there can be at
most one such sequence.) Using this approach, the
probability of correct decoding at least equals the
probability that the program sequence is contained
in A. So we have proved that

P 2 c P(U).
GA

In the case of equiprobable program sequences, this
bound reduces to

~2 lAMSI.

6. A case of equality

We will now discuss a situation where the lower
bound in the previous section holds with equality.
For the remainder of this section, we will assume
that the program sequences are equiprobable. Let
A be a collection as in the previous section. To each
a~ A we will assign a fixed encryption t,E T. Now
suppose that this assignment can be done in such
a way that the collection B = { t,(aE A} has the
property that each program sequence can be en-
crypted into some member of B. Then, as a conse-
quence of these assumptions we can assign to each
program sequence SES an encryptionf(s) in B, with
f(u) = t,, a E A. Note that, due to our assumptions on
A, the sequences t,, UEA, are all distinct, that is,
I BI = I Al. We will consider the map f as describing
a deterministic encryption rule.

The corresponding strategy matrix Q is given by

PW) =
1

1 if t =f(s),

0 otherwise.

We now claim that under these assumptions, we
have that

P = M/l~l>

with optimal encryption strategy described by Q (or
byf). Indeed, we have that

P=&m~PwM~l

= 2 l/IS1 = IWPI = IAl/lSl.

We conclude that the optimal encoding strategy can
be deterministic. The result also shows that choos-
ing a statistical strategy does not always make the
task of the attacker more difficult.

7. Example

As a special case of the theory developed in the
previous sections, consider the sequential execution
of n rounds of an algorithm out of which some, say
k steps require a longer execution time. A program is
represented by a sequence X” of length u = n + k
obtained from the sequence

123.. . n

by the insertion of precisely k stars. Moreover, the
first and last symbols in the sequence are non-stars,
and the sequence does not contain two consecutive
stars.

Let S be the collection of all source sequences with
n symbols and k stars, and let Tdenote the collection
of all possible images of source sequences in S. Write
) Sl or) Sl(n, k) to denote the cardinality of S(n, k).
Note that IS((n,k) =(“;I).

For a word s in S, let e(s) denote the collection of
positions where the source sequences has a star. For
example, if

s = 12*3*45,

then

*(s) = {3,5}.

To simplify the following arguments, we imagine
that the collection of positions I = (1,2,. . . , n + k} is
partitioned into pairs

I, = {1,2}, I, = {3,4},.. .,

and possibly (if n + k is odd) the singleton set
I, = n + k. (Note that, if n + k is odd, then all words
s in S will have the symbol n in position n + k, hence
all stars in words of S occur within the sets rj,j > 0.)
We take the set A as the collection of all a in S for
which *(A) consists of even numbers only. Note that
we have

IAI =

H.D.L. Hollmann et al./Future Generation Computer Systems 13 (1997) 55-63 61

It can be reasoned that any two members of this
A will always produce distinct codewords. The en-
coding mapfis described in terms of the coordinate
pairs Zj as follows. For all sequences s in S, replace
a star in position iElj, say, by the symbol on the
other position of Ij. The resulting t sequence could
also have been generated from a sequence with stars
only in even positions. It is now evident that

f(s) =fMs))

holds for every word s in S, where a(s) denotes the
special sequence in A that has the same image as s.
So we have proved that the probability of correct
decoding

C(n + k - lh’21 p =
k

= [(n + k - 1)/2]!(n - k - l)!

[(n-k- 1)/2]!(n- l)!

holds for each n and k, with the optimal determinis-
tic encoding strategy given by the mapfabove.

7.1 Asymptotic behavior

To study the asymptotic behavior for large pro-
grams (n + cc), we define the ratio a = k/n. Appen-
dix A shows that

p + 2”‘1 - 0~ - Ml/Z + Q)),

The optimum ratio 01 which asymptotically mini-
mizes the value of the probability of correct decod-
ing p with a given n and variable n + k appears to be
CI = k/n = $ The optimum density of stars in very
long programs equals f. This leads to

lim slogp + ; -h ;
0 0

z -0.322,
n-.oC

where h(q) is the binary entropy function. Hence, the The authors wish to thank P. Lenoir for fruitful
probability of correct decoding tends to p = 2-“.322”. discussions.

We interpret this as “every three rounds reveal
about one bit of information”. If the model applies
to particular observations made on a smart card
running a computation of 512 bit RSA, the attacker
would have an uncertainty of about 165 bits in
estimating the key. At this moment, we are unaware
of methods that exploit such information in break-
ing this cryptographic algorithm.

Appendix A: Asymptotic star density

To study the asymptotic behavior for large pro-
grams (n + co), we use the binary entropy function,
defined as

h(q)= -[qlogq+(1-q)log(l-q)l. (A.11

8. Concluding discussion

We investigated leakage of information through
observations made on the execution of algorithms.
The results apply to smart cards, secure processors
and other detachable or fixed security modules.

The address bus between a secure processor and
its memory is a weak point in the security of the
system. Substantial information can be obtained
from observing the loop structure of the program
executed by the secure processor.

The insertion of dummy instructions helps to
obscure the exact structure of the program. How-
ever, methods exist to separate dummy reads from
real instruction reads. We tested the use of a Viterbi
decoder on simulated address traces and concluded
that dummy reads may not simply be chosen uni-
formly randomly.

A frame work for the analysis of dummy reads has
been proposed. We used this framework to find
results for a special case of software code. For our
considered situation, optimum strategies are deter-
ministic. In such cases, revealing the attacker infor-
mation about the strategy for generating dummy
reads does not compromise the security of the secure
processor.

Although our results are only a preliminary step
towards a full understanding of these issues, the
results are believed to be relevant to evaluate the
strength of secure processors, to develop stronger or
more efficient strategies for dummy fetches and to
better understand the potential of recently introduc-
ed timing attacks (in which cryptananalysts exploit
measurements of instruction execution times).

Acknowledgements

62 H.D.L. Hollmann et al./Future Generation Computer Systems 13 (1997) 55-63

Its derivative is

l-q
h’(q) = log -

4 ’
(A.21

for any base of the logarithm. In this paper, we
assume all logarithms and entropy functions to the
base 2.

Using Stirling’s approximation for factorials

Jj&“e-“e-l”‘Z”+l’ < nl

< JIZ;E;;tlVV”‘2~, (A.31

we obtain for binomial coefficients

n

0 k
= ~nIW/~) + O(t@rnln)l (A.41

Inserting this in the expression for p, we obtain

l+cr
lim klogp =Th $

()
- h(a) (A.51

n+ao

= 1 -a-h(++;a). (A4

We are interested in the value of k which asymptoti-
cally minimizes the value of probability of correct
decodingp. In order to find the optimum (for a given
n and variable n + k), we set the derivative with
respect to ct equal to zero:

- 1 =fh’(;++;log(~).

We find that the optimum tl equals a = i. Note that
the optimum density of stars in very long programs
equals $, since the total length of a string including
the stars equals (1 + cc)n. Substituting this result in
(A6), we obtain

limklogp=ih i -h i .
n-m 0 0

(A.71

References

Cl1

121
c31

P.C. Kocher, Cryptanalysis of Diffie-Hellman, RSA, DSS
and other systems using timing attacks, Proc. Crypto96,
(Santa Barbara, August 1996).
B. Schneier, Applied Cryptography, (Wiley, New York, 1996).
R.L. Rivest, A. Shamir and L.M. Adleman, A method for
obtaining digital signatures and public-key cryptosystems,
Comm ACM, 21(2) (1978) 120-126.

r41

PI

C61

c71

R.M. Best, Preventing software piracy with cryptomicro-
processors, Proc. Compcon IEEE-CS Press, Los Alamitos,
CA, 1980) 466-469.
R.M. Best, US Patent 4168396, Microprocessor for execu-
ting enciphered programs, 18 September 1979.
US Patent 5386469, Firmware encryption for microproces-
sor/microcomputer, 31 January 1995.
G.D. Forney, Jr., The Viterbi algorithm, Proc IEEE, 61,
(1973) 268-278.

Henk Hollmana was born in Utrecht,
Netherlands, on 10 March 1954. He
received his masters degree (cum laude)
in Mathematics from Eindhoven Uni-
versity of Technology, with a thesis on
association schemes. In 1982 he joined
CNET, Issy-les-Moulineaux, France,
where he worked mainly on Number
Theoritic Transforms. Since 1985 he is
with Philips Research Laboratories,
Eindhoven, Netherlands. In 1996, he
recieved a Ph.D. degree from Ein-
dhoven University of Technology with

the thesis “Modulation codes”. His research interests include
discrete mathematics/combinatorics,information, cryptography,
and digital signal processing.

Jean-Paul M.G. Linnartz received his
Ir. (MSc. E.E.) degree in Electrical En-
gineering (Cum Laude) from Ein-
dhoven Univeristy of Technology,
Netherlands, in 1986. During 1987-
1988, he worked with the Physics and
Electronics Laboratory (F.E.L-T.N.O.,
The Hague) of Netherlands Organi-
zation for Applied Scientific Research
on frequency planning and UHF
propagation. From 1988-1991, he was
Assistant Professor at Delft University

of Technology, where he received his Ph.D. (Cum Laude) on
multi-user mobile radio nets in December 1991. Since January
1992, he has been an Assistant Professor in the Department
E.E.C.S. at the University of California at Berkeley, USA. In
1994, he returned to Delft University of Technology m Nether-
lands, as an Associate Professor. Currently he is with Philips
Natuurkundig Laboratorium, Eindhoven, Netherlands. His
main research interests are conditional access and information
security, electronic watermarks, (wireless) multi-media com-
munications, communication over fading channels and multi-
carrier CDMA. In 1993, he published the book “Narrowband
Land-Mobile Radio Networks”. He is Editor-in-Chief of “Wire-
less Communications, The Interactive Multimedia CD ROM”
His URL is “http://www.eecs.berkeley.edu/~ linnartz”.

Jacobus H. van Lint was born in Ban-
dung, Indonesia, on 1 September 1932.
He received the M.Sc. in Mathematics
and Physics and the Ph.D. degree in
Mathematics from the University of
Utrecht in 1955 and 1957, respectively.
In 1959 he became the Professor of
Mathematics at Eindhoven University
of Technology where he ended his ca-
reer as rector magnificus in the period
February 1991-September 1996. In
1966,1971, and 1977 he was a tempor-

ary Member ofTechnical Staff at Bell Laboratories, Murray Hill,
N.J. During 1970-1971 he was Morgan Ward Visiting Professor

H.D.L. Hollmann et aLlFuture Generation Computer Systems 13 (1997) 55-63 63

at the California Institute of Technology, Pasadena, CA, where
he was a Fairchild Distinguished Scholar during 1982-1983 and
Visiting Professor in 1988-1989. He has been a consultant at
Philips Research Laboratories since 1985. His research interests
include combinatorics. codine theorv. and number theorv. He is
the author of several ‘books:including Introduction to ‘Coding
Theory and A Course in Combinatorics (with R.M. Wilson). He is
a member of the Royal Netherlands Academy of Arts and
Sciences. He received honorary doctorates from Bergen Univer-
sity (Norway) and the Technical University of Bucharest (Roma-
nia).

Stan Baggeo was born in Grubben-
vorst, Netherlands, on 22 March 1953.
He received the Ingenieurs (Ir.) degree
from the Eindhoven University of
Technology in 1979. The Ir. thesis re-
search was conducted at the Institute of
Perception Research (IPO), Eindhoven,
in the area of cognition. In 1979, he
joined the Philips Research Labora-
tories in Eindhoven, where he is cur-
rently a senior sctentist. His main
research interests are in the area of alge-

braic coding, communication and information theory, and appli-
cations thereof to storage and transmission of digital informa-
tion. He spent seven years in the optical recording group, where
he designed the error correction system of the first generation 12”
optical recorders. He was involved in the design of error correc-

tion decoders for CD players and in standardization discussions
of CD-ROM third layer error correction. In 1986, he moved to
the digital signal processing group, where he became responsible
for research on channel coding. He spent the academic year
1989-1990 with Prof. Jack Wolf at the Center for Magnetic
Recording Research (CMRR), at UCSD, San Diego, where he
started working towards a Ph.D. He received his Ph.D. in
Electrical Engineering (Communication Theory and Systems)
from the UCSD in 1993. Recently, he has been involved in the
design of channel coding systems for Digital Video Broadcast
(DVB), and for the Digital Versatile Disc (DVD) system.

Ludo Tolhuizen was born on 23 June
1961, in Roosendaal, Netherlands. In
1986, he obtained the MSc. (Ir.) degree
(with honours) from Eindhoven Uni-
versity of Technology with a thesis on
error correcting codes. After that, he
joined Philips Research Laboratories in
Eindhoven where he has been working
on theoretical and practical issues in
error correcting codes. In 1996, he re-
ceived the Ph.D. degree from Ein-
dhoven University of Technology with

the thesis “Cooperating error-correcting codes and their decod-
ing”. The research interest of Ludo Tolhuizen include error-
correcting codes, information theory, combinatorics, cryptogra-
phy and digital signal processing. He is a member of the IEEE
Information Theory Society.

