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Abstract

This paper deals with the analysis of a multi-item, continuous review model of a multi-location

inventory system for repairable spare parts, in which lateral and emergency shipments occur in

response to stock-outs. A continuous review base-stock policy is assumed for the inventory

control of the spare parts. The objective is to minimize the total cost for inventory holding,

lateral transshipments and emergency shipments subject to a target level for the average waiting

times at all locations. We structure the optimization problem as a combinatorial problem and

four different heuristics are developed and evaluated in terms of their total costs and computation

times. A lower bound obtained by applying Lagrangian relaxation is used for the evaluation of

the heuristics. A first computational experiment shows that the greedy-type heuristic has the best

performance, with an average gap to the lower bound of only 0.61%. Interesting insights with

respect to the relative cost savings achieved by applying a system approach and pooling policy

are obtained from a second experiment.

Keywords: inventory; spare parts; system approach; lateral transshipment; heuristic

Introduction

Equipment-intensive industries such as airlines, nuclear power plants, various process and

manufacturing plants using complex machines often require large quantities of spare parts to

guarantee high system availability which in turn results in excessive holding cost. The

aviation industry for example, must carry about $32 billion each year to stock the spare parts

they need to keep their airplanes flying.1 Unfortunately, there can be massive inefficiencies in

how such inventories are utilized. On the one hand, companies can find themselves carrying

an excessive number of spare parts. On the other hand, if they were not available when
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needed, companies will face severe downtime consequences. As many parts are very

expensive, critically important and their failure rates are so low that they are difficult to

forecast, spare parts inventory management within these industries is one of the hardest

problems to deal with. Traditionally, companies relied on the recommended spare parts

listings provided by the Original Equipment Manufacturer (OEM). Today, companies need to

plan more smartly to cut down their inventory cost.

It is well known from the literature on spare parts inventory management that the system

approach and the lateral transshipment (inventory pooling) policy are two approaches that

may lead to significant reductions in inventory cost. Under a system (multi-item) approach,

all parts in the system are considered when making inventory-level decisions. In contrast,

under an item approach, inventory levels for each individual part are set independently.

Previous studies, e.g. Sherbrooke,2 Thoneman et al,3 and Rustenburg et al4 have shown that a

system approach gives significant savings in inventory cost in comparison to an item

approach. Cooperation among companies through inventory pooling or lateral transshipments

can also be used to improve the companies’ service levels while reducing the total system cost

at the same time. Lateral transshipments are used to satisfy a demand at a location that is out

of stock from another location with a surplus of on-hand inventory. In case of a stock-out, a

lateral transshipment is certainly preferable to an emergency shipment as long as the cost and

lead-time of a lateral transshipment are lower than the ones of an emergency shipment. In a

system where the downtime has to be as low as possible, lateral transshipments are therefore

very important in reducing the system’s downtime and inventory cost.

Most of the work related to spare parts systems with lateral transshipments has been done in

the context of single-item problems. Lee5 considers lateral transshipments in a two-echelon

inventory system for repairable items that employs continuous-review inventory policy. He

analyzes a system which consists of one depot and several bases. The bases are grouped into

several pooling groups such that members of each group are identical with respect to the stock

level and demand rate. He developed a model to derive an approximation for the fractions of

demand satisfied immediately from stock, demand satisfied by lateral transshipment, and

demand that is backordered. Axsäter6 improves Lee’s model by relaxing the assumption that

bases have to be identical. His model puts more emphasis on modeling the demand processes

at the bases. He models the effective demand rate at a warehouse under two conditions: when

stock on hand is positive and when stock on hand is zero or negative. When stock on hand is

positive, a base faces its own demand and lateral transshipment requests from other bases.
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When stock on hand is zero or negative, the only demand considered is the demand that has to

be backordered. A random sourcing rule is used to select a base as the source of lateral

transshipment. Sherbrooke7 presents a simulation study to investigate the importance of

lateral transshipments in a two-echelon depot-base system for repairable items. Regression

analysis on the simulation data is used to derive approximate expressions for the expected

system backorders. Several authors develop new models based on the model of Axsäter.6

Alfredsson and Verrijdt8 extend Axsäter’s model by allowing emergency shipments from the

depot and an outside supplier. In the case when all bases are out of stock, the depot has stock

on hand, and a demand arrives at any base, the demand is satisfied through direct delivery

from the depot. If there is no stock on hand at the depot, the demand is satisfied by direct

delivery from an outside supplier. With such emergency shipments, no demands arriving at

any bases are backordered. In this paper we also consider such emergency shipments that are

commonly practiced in many real-life situations, especially when the downtimes have to be as

low as possible. Like Axsäter,6 Alfredsson and Verrijdt8 assume exponential lead times, and,

based on their simulation results, they conclude that the lead time distribution hardly affects

the service performance. In a more recent work, Kukreja et al9 generalize Axsäter’s model by

relaxing the assumption of an exponential replenishment (repair) lead time distribution. They

also prove that the service performance is almost identical for all lead time distributions with

the same finite mean. This finding is important since our approach will be based on Markov

analysis and the assumption of  exponential lead-time distribution is therefore required. Other

papers consider lateral transshipments under periodic review policies. Examples are Gross,10

Krishnan and Rao,11 Das,12 Karmarkar,13 Tagaras,14,15 Robinson,16 Tagaras and Cohen,17 and

Herer and Rashit;18 see Wong et al,19 for an overview of these papers.

The work by Archibald et al20 and our previous work19 are the only existing studies

addressing lateral transshipments in the context of multi-item problems. Archibald et al20

analyze a multi-period, periodic-review model of a two-location inventory system in which

lateral transshipments can occur at any time during the period. They first formulate the two-

location, single-item inventory problem as a Markov decision process and they then extend

the results to a two-location, multi-item inventory problem with limited storage space.

Different from their work, Wong et al19 analyze a multi-item, continuous-review model of a

two-location inventory system for repairable spare parts in which lateral and emergency

shipments can occur in response to stock-outs and there is a target level for the average

waiting time (for all items together) at each of the two locations. A solution procedure was

developed based on Lagrangian relaxation that gives both a heuristic solution and a lower
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bound for the optimal total cost. The performance of this solution procedure is quite

satisfactory as very small gaps (below one percent) were obtained between the cost under the

heuristic solution and the lower bound. This solution procedure, however, has a limitation

since it requires a long computation time to solve rather large problems. For example, an

average computation time of 14 minutes is required to solve two-location problems with 100

items (run on a PC with a 333-MHz Pentium II processor). As the computation time can

increase very fast when more locations are involved, it would be useful to develop a more

efficient solution procedure.

In this paper, we address multi-item problems with lateral transshipments for the case with

multiple locations. We develop a more efficient, but still accurate solution procedure for

solving the problems that involve many items and several locations. Such solution procedure

enables us to analyze savings that can be obtained through the application of pooling and

system approach in systems with up to hundred items and six locations.

The paper is organized as follows. In Section 2, we present the problem formulation. We

introduce the basic assumptions and the notations of the model, and we present the

mathematical formulation of our problem. In Section 3 we describe a local search based

solution procedure and develop three different heuristics. The Lagrangian relaxation approach

for obtaining the lower bound of the optimal total cost is also described. The lower bounds are

needed for the evaluation of the heuristics. Section 4 presents our computational experiment

for the evaluation of the heuristics. Further, we also analyze the cost savings that are obtained

by applying a system approach and pooling policy in comparison to an item approach and no-

pooling policy. Finally, we summarize the results in Section 5 and conclude with directions

for further research.

Model description

In this section we introduce our model. Firstly, we present the assumptions and notations used

in the model. Secondly, we describe the model for the evaluation of a stocking policy and

lastly, we formulate the optimization problem.
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Assumptions and notations

We model the situation of  J (J ≥ 2) independent companies who keep spare parts on stock for

their technical systems. Note that throughout this paper the words company and location are

used interchangeably. The companies are indexed by j = 1, 2, …, J. We assume that all

companies have a number of technical systems of the same type. These systems consist of

components which are subject to failures. In total there are I different items (SKUs). These

items are indexed by i = 1, 2, …, I. Failures occur according to Poisson processes with

constant rates. The total failure rate of components of item i at company j is given by i
jm (≥

0). If an item i does not occur in the configurations of the technical systems at company j,

then i
jm = 0. We assume that 

1

J i
jj

m
=∑ > 0 for all i. Further, Mj = 

1

I i
ji

m
=∑  denotes the total

failure rate at company j. We assume that Mj > 0 for j = 1,…, J. All companies use base-stock

policies for the inventory control. Company j has 0( : {0} )i
jS ∈ = spare parts of item i. In

total, the companies share i
totS  spare parts of item i, with 

1

Ji i
tot jj

S S
=

= ∑ .

All parts are repairable and there is no condemnation. When a part of item i fails at company

j, the failed part is immediately removed and sent into repair. A ready-for-use part is put back

into the system where the failure occurred as soon as such a part is available. If  company j

has a ready-for-use part on stock then this can be done immediately. If not, then there is a

waiting time for a ready-for-use part. In that case, the required part may be obtained by a

lateral transshipment from another company that has a ready-for-use part on stock. The

waiting time is then limited to the average transshipment time i
jkTL (= i

kjTL ) where k is the

company selected as the source of the lateral transshipment. Since it is possible to have two or

more companies for the source of a lateral transshipment, a selection rule is required. In this

paper we use the closest neighbor sourcing rule that is also used by Kukreja et al,9 and ties are

broken with equal probabilities. Wong21 shows that the closest neighbor sourcing rule is

preferable to the random sourcing rule used by Axsäter6 and Alfredsson and Verrijdt.8

Further, we also assume that complete pooling is applied. That means a company offers its

entire available inventory when there is a lateral transshipment request from another company

experiencing a stock-out. If no ready-for-use part is available at any of the companies, then an

emergency supply mode is applied. This means that either the repair operation is expedited or

the required part is ordered from an outside supplier e.g., an OEM or a third party supplier. A

ready-for-use part then becomes available after an average time iTE . Failed parts that are sent

into repair are returned as ready-for-use parts after exponential repair lead-times. The lead-
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times of different parts of the same item and of parts of different items are independent. The

repair rate of a failed part of item i is given by iµ . We assume that in case a lateral

transshipment (an emergency shipment) takes place from company j (the outside supplier),

the failed part will be returned to company j (the outside supplier) upon completion of its

repair. With this assumption, the number of parts on stock plus the number of parts in repair

of item i at company j  is always equal to i
jS .

At company j, there is a maximum level max
jW given for the average waiting time per request

for a ready-for-use part. This average is calculated for all items together. Total system cost

consists of holding cost, transshipment cost and emergency shipment cost. A holding cost
iCH  is counted for each spare part of item i. The transshipment cost is dependent on the

locations between which the lateral transshipment takes place. For item i, a cost iCT  is

counted for each distance unit of lateral transshipment. A cost iCE is counted for each part

coming from the emergency supply. The objective is to find a stocking policy
1 1 1 1 2 2 2

1 2 1 2 1 2( ;...; ) ( , ,..., ; , ,..., ; ... ; , ,..., )I I I I
J J JS S S S S S S S S S S S= =  under which the average total

cost is  minimized subject to the waiting time constraints for all companies.

Exact evaluation of a given policy

We now describe an exact evaluation of a stocking policy. We first need to define:
i
jβ = fraction of demands for item i at company j satisfied by company j itself

i
jkα = fraction of demands for item i at company j satisfied by lateral transshipments from

    company k ( k j≠ )

i
jα =

1,

J i
jkk k j

α
= ≠∑ fraction of demands for item i at company j satisfied by lateral

transshipments
i
jθ = fraction of demands for item i at company j satisfied by emergency supplies

Wj = average waiting time per request for a ready-for-use part at company j

Obviously, i i i
j j jβ α θ+ + = 1 for i = 1,…,I; j = 1,…J.  Since complete pooling is applied here,

i
jθ is the same for j = 1,…J, i.e. 1 2 ...i i i i

Jθ θ θ θ= = = =  for all i.
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The system behavior with respect to an item i is independent of all other items and can be

described by a J-dimensional Markov process. For each item i, we introduce the state

1( ,..., )i i
Jx x=ix , where i

jx represents the physical stocks of spare parts of item i at company j,

and 0 ≤ i
jx ≤ i

jS , 0
i
jx ∈ . We define 1 1 1( ,..., , 1, ,..., )i i i i i

j j j Jx x x x x− += +xxxx i
j+  and

1 1 1( ,..., , 1, ,..., )i i i i i i
j- j j j Jx x x x x− += −x . All possible transitions of the Markov process are as

follows:

Transition 1: a failure of a part of item i occurs at company j while i
jx > 0; the state transition

is i i
j-→x x ; The transition rate is i

jm .

Transition 2: a failure of a part of item i occurs at company j while 0i
jx =  and 0i

kx >  for at

least one other company k ≠ j. Define { }| , 0,  for all i i i
k jk jmK k k j x T T m j= ≠ > ≤ ≠ . A

company k K∈  is selected as the source of the lateral transshipment with probability 1/|K|.

The state transition is i i
k k -→x x . The transition rate is i

jm /|K| and this represents a lateral

transshipment sent from company k to company j.

Transition 3: a failure of a part of item i occurs at company j while i = 0x . An emergency

supply is applied; the state remains  0. The transition rate is i
jm .

Transition 4: the repair of a part of item i belonging to company j is completed. The state

transition is i i
j+→x x . The transition rate is ( )i i i

j jS x µ− .

Figure 1 shows an example of the Markov process for a system with J = 3, ( 1 2 3, ,i i iS S S ) =

(2,1,1), 23 12 13
i i iTL TL TL< < .

Let q →x x'  denote the transition rate from state x to state x’. All the defined transition rates

will form an infinitesimal generator Q of an irreducible continuous-time Markov chain and Q

has the size of N x N, where N =
1
( 1)J i

jj
S

=
+∏  represents the total number of states in the

Markov process. We define ππππ  as the steady-state probability vector and ππππ  is determined by

solving 0Q =ππππ .

The fraction of demands for item i satisfied by emergency supplies is equal to the probability

of being in state 0. Thus, we can write iθ π= 0 . This fraction can also be obtained by the

aggregation on the basis of total physical stock at all locations. This shows that iθ  is also

equal to the Erlang loss probability of an / / /i i
tot totM M S S  queuing system.
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Figure 1. Markov process for ( 1 2 3, ,i i iS S S ) = (2,1,1)

Next, we show how to determine the fraction of demands satisfied by lateral transshipments.

Suppose we want to determine i
jkα , the fraction of demands for part of item i at company j

satisfied by lateral transshipments from company k. We first define

{ }| 0, 0, 0 for all , ,i i i i i i
jk j k m jm jkX x x x x m j m k TL TL= = > = ≠ ≠ < ,

{ }( ) | , , 0,i i i i i i i
jk m jm jk jkY x m m j m k x TL TL x X= ≠ ≠ > = ∀ ∈ .

We can then determine i
jkα using the following expression:

 1/(1 | ( ) |) i

i i
jk

i i i
jk jk x

x X
Y xα π

∈
= +∑ . (1)

The expected waiting time for a lateral transshipment of a part of item i to company j is given

by 
1,

Ji i i
j jk jkk k j

D TLα
= ≠

= ∑ . The fraction of demands satisfied by local stock equals to

1i i i
j jβ α θ= − − .

0,0,0

0,1,01,0,0

2,0,0

1,0,1

2,1,1

2,1,0

0,0,1 1,1,0

2,0,1 1,1,1

0,1,1

1
im

2 iµ
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i i im m m+ +
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i i im m m+ +

2 3
i im m+iµ
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i i im m m+ +
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222222222222222222222222222222222222222

111111111111111111111111111111111111
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We now explain how to calculate the average waiting time. When there is a failure of a part of

item i, the waiting time for a ready-for-use part at company j is given by:

( )ii
jW S = 1,0 Ji i i i i

j jk jkk k j TL TEβ α θ= ≠+ +∑
= i i i

jD TEθ+ (2)

Taking all items together, the average waiting time per request for a ready-for-use part at

company j for a given stocking policy can be expressed as:

( )jW S = 1
I
i=∑ Prob {an arbitrary failing part at location j is of item i} (average waiting

     time for a ready-for-use part of item i)

     = 
1

( )
i

I ij i
ji

j

m
W S

M=∑

= 
1

( )
i

I j i i i
ji

j

m
D TE

M
θ

=
+∑  (3)

The optimization formulation

With all the above defined notations, we can now formulate our optimization problem as

follows:

Problem P0: Minimize ( )1 1
( ) J I i i i i i i i i

j j j jj i
Z S CH S CT m D CE m θ

= =
= + +∑ ∑  (4)

subject to 
1

( )
i

I j i i i max
j ji

j

m
D TE W

M
θ

=
+ ≤∑   j = 1, …, J (5)

0ijS ∈   i = 1, …, I;  j = 1, …, J. (6)

Problem P0 is an integer-programming problem with a non-linear objective function and non-

linear constraints.
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Description of the heuristics

We can structure problem P0 as a combinatorial problem. The goal is to find a stocking policy

S ∈  that minimizes the total cost where  is the set of all feasible solutions for problem

P0. We develop a solution procedure that is based on local search, also referred to as

neighborhood search. A basic local search algorithm begins with an arbitrary feasible solution

and it tries to improve this solution by making small changes to it and ends up in a local

minimum where no further improvement is possible. Following the general local search

optimization, our solution procedure consists of two steps. The first step generates an initial

solution and the second step executes the local search process. As the choice of an initial

solution may influence the quality of the final outcome, we will evaluate three different

initialization algorithms and apply one and the same local search process for all initialization

algorithms.

Generation of an initial solution
Initialization algorithm 1 (greedy approach)

This procedure is iterative. We start with S = 0  and next, in each iteration one unit of stock is

added into the system. The iteration process is terminated when a feasible solution is

obtained. In each iteration, we add one unit of stock for the item and the location that gives

the largest decrease in distance to the set of feasible solutions per extra unit of costs. Let

(0,...,0,1,0,...,0)i
je =  denote a stocking policy with one unit of stock for item i and location j

and zero stocks for all other items and locations. We define for each solution S  the distance

to the set of feasible solutions as max
1( ( ) )J

j jj W S W +
= −∑  where ( ) max(0, )a a+ = . For each

combination of {1,..., }i I∈  and {1,..., }j J∈ , we calculate the ratio 
i
ji

j i
j

W
r

Z
∆

=
∆

 where:

i
jW∆  = max max

1 1( ( ) ) ( ( ) )J J i
j j j j jj jW S W W S e W+ +

= =− − + −∑ ∑ (7)

and
i
jZ∆  = ( ) ( )i

jZ S e Z S+ − (8)

One unit of stock is then added for the item and location with the highest ratio. The formal
statement of this initialization procedure is as follows:
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Initialization algorithm 1

Step 1: Set the initial solution S = 0 ; calculate ( )jW 0  for all locations j.

Step 2: For all i ∈ {1,…, I} and j ∈ {1,…., J}: Calculate i
jW∆ , i

jZ∆ , and i
jr .

Step 3: Let i* and j* be the combination with the highest ratio. Set *
*

i
jS S e= + .

If max( )j jW S W≤  for all j go to END; otherwise go to Step 2 .

END

Notice that in the above algorithm, during the first iteration we need to solve in total  IJ

Markov processes to obtain the values of i
jW∆  and i

jZ∆  for all combinations of i and j. All

values are kept in the memory so that for the next iterations we only need to solve the new

Markov process for the item of which the number of stock has been changed. (Recall that any

changes of the stock levels for an item do not affect the Markov processes of all other items).

This is important in minimizing the computation time of the algorithm since solving the

Markov processes constitutes the most time consuming part of the algorithm.

Initialization algorithm 2 (item approach)

In this initialization procedure the stocking policy is determined for each item independently.

For each item we have the problem of minimizing the total cost while the average waiting

time per request for a ready-for-use part of this item can meet the target maximum waiting

times at all locations. Intuitively, the solution for each individual item will form a feasible

solution for the original problem. To solve the problem for each item i, we use a similar

method as in the first initialization procedure. We start with zero stock at all locations. Then

we increase the stock incrementally by one until a feasible solution is obtained. For each

iteration, one unit of stock is added at the location that gives the largest decrease in distance to

the set of feasible solutions per extra unit of costs. The formal statement of this procedure is

as follows:

Initialization algorithm 2

(This algorithm is applied for each item i)

Step 1: Set the initial solution iS = 0 ; calculate ( )ii
jW S  for all locations j.

Step 2: For all j ∈ {1,…., J}: Calculate i
jW∆ , i

jZ∆ , and i
jr .

Step 3: Let j* be the location with the highest ratio. Set * * 1i i
j jS S= + .
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If max( )ii
j jW S W≤  for all j go to END; otherwise go to Step 2 .

END

Initialization Procedure 3 (no-pooling approach)

In this initialization procedure, lateral transshipments are not allowed among locations. This

implies that the optimization problem for each location is solved independently. We apply a

Lagrangian relaxation approach to solve this problem. For a given Lagrange multiplier λ , the

relaxed problem for each company j can be formulated as follows:

Minimize ( ) ( )max
1 1( ) ( )I Ii i i i i i i i i i

tot j tot j tot j ji iCH S CE m S m S TE M Wθ λ θ
= =

+ + −∑ ∑

The optimal Lagrange multiplier for this problem can be easily solved using a standard

bisection procedure. A more detail description of this procedure is described in Wong et al.19

Since we have a closed-form formula for the Erlang loss probability, no numerical solutions

of Markov chains are needed here. As a result, we could expect that this initialization

procedure is faster than the other two procedures. But with respect to the quality of the

obtained initial solution, this initialization procedure would probably give the most expensive

initial solution since higher stock levels are required with the absence of pooling.

Local search

We will first define the neighborhood structure for our problem. For each solution S , we

define the neighborhood of S  as 1 2 3 4( ) ( ) ( ) ( ) ( )N S N S N S N S N S=  where:

{ }' '
1( ) all | , {1,..., }, {1,..., }i

jN S S S S e i I j J= ∈ = − ∈ ∈

{ }' '
2 ( ) all | , {1,..., }, {1,..., }i

jN S S S S e i I j J= ∈ = + ∈ ∈

{ }' ' '
3 '( ) all | ,  {1,..., }, ' {1,..., }, {1,..., }, ' {1,..., }, 'i i

j jN S S S S e e i I i I j J j J i i= ∈ = + − ∈ ∈ ∈ ∈ ≠

{ }' '
4 '( ) all | , {1,..., }, {1,..., }, ' {1,..., }, 'i i

j jN S S S S e e i I j J j J j j= ∈ = + − ∈ ∈ ∈ ≠

The neighborhood of a solution can thus be seen as an integration of four sub-neighborhoods.

The first sub-neighborhood is formed by reducing one unit of stock for each combination of i
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and j. In most cases when the transportation cost is small compared to the inventory holding

cost, moving to this neighborhood may be useful in order to reduce the inventory holding

cost. In contrast, moving to a neighbor of the second sub-neighborhood which is formed by

adding one unit of stock, may be useful when the transportation cost is very expensive

compared to the inventory holding cost. Moving to the third sub-neighborhood may be useful

as an expensive part is removed and replaced with a less expensive part. Lastly, moving to the

fourth sub-neighborhood may be useful to obtain a better stock allocation. It can be shown

that the upper bound for the size of the neighborhood defined above is given by (2 )IJ IJ+ .

Having defined the neighborhood structure, we now describe the local search process. Here,
we apply a greedy (steepest descent) local search method that allows us to explore the entire
neighborhood at each iteration. The method uses an iterative improvement technique. During
each iteration, all possible neighbors of the current solution are evaluated, and the one with
the minimum total cost is selected. If the obtained new total cost is less than the current total
cost, the selected solution becomes the current solution. Otherwise, no local improvement is
possible and we take the current solution as the heuristic’s solution. Notice that our definition
of the neighborhood implies that all non feasible solutions are excluded in the local search
process.

As we may have a large neighborhood size in our problem, it is very important to devise an

efficient way in the evaluation process of all neighbors. In principal, the approach used in the

first initialization algorithm is also used here. To calculate the total cost for each neighbor of

the current solution, during the first iteration we need to solve in total 2IJ Markov processes

for all neighbors in the first and second sub-neighborhoods and IJ(J-1) Markov processes for

all neighbors in the fourth sub-neighborhood. For the third sub-neighborhood we can use the

results obtained from the first and the second sub-neighborhood. Since any changes of the

stock level for an item do not affect the Markov processes of other items, we only need to

solve at most 2 ( 1)J J +  Markov processes for all the next iterations.

Finding the lower bounds

To evaluate the performance of the heuristics, it is useful to compute a lower bound of the

optimal total cost. We use the lower bounding procedure based on Lagrangian relaxation as

developed in Wong et al. (2003). Our evaluation is made based on the distances between the

total costs obtained by the heuristics and the lower bounds.
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For a given multiplier vector Jλ ∈ℜ  with λj ≥ 0, j = 1,…, J, we formulate the following

problem P1 that is obtained from problem P0 by relaxing the waiting time constraints. Notice

that the constraints in (5) can be rewritten as

 ( )1

I i i i i max
j j j ji

m D TE M Wθ
=

+ ≤∑  j = 1,…, J (9)

We then formulate the relaxed problem as follows:

Problem P1:

Minimize  1 ( )PZ λ = ( )1 1

J I i i i i i i i i
j j j jj i

CH S CT m D CE m θ
= =

+ +∑ ∑

( )1 1
( )J I i i i i max

j j j j jj i
m D TE M Wλ θ

= =
+ + −∑ ∑ (10)

subject to    0ijS ∈   i = 1, …, I;  j = 1, …, J. (11)

The original problem P0 is a service model, a model in which the objective is to minimize the

average total cost subject to the constraints that certain target service levels have to be met. In

our case, the target service levels are represented by the maximum waiting time constraints.

By putting the service level constraints in the objective function as in problem P1, we have a

so-called cost model, a model without service level constraints. In the cost model, the

problem can be decomposed into I  independent single-item problems.

It is well known that for each 0λ ≥ , 1 ( )PZ λ represents a lower bound of the optimal cost of

problem P0. The sub-gradient optimization method is applied to determine the best Lagrange

multipliers that give the tightest lower bound (see Wong et al. 2003 for a more detailed

description of the lower bounding procedure). This lower bounding procedure can also be

considered as a heuristic for the original problem. During the execution of the sub-gradient

method, we evaluate the cost for each solution S  that is feasible in problem P0 and we keep

track of the best solution obtained so far. If the final solution of the sub-gradient method is

feasible, we may stop. Otherwise, we look for a feasible solution by applying a greedy

approach similar to the one used in the first initialization algorithm. The local search

algorithm is then applied to further improve the obtained solution.
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Computational Experiment

In this section we present and discuss our numerical findings. Our main inquiry will focus on

the performance evaluation of the heuristics and the analysis of cost savings obtained by

applying a system-approach and pooling policy.

Evaluation of the heuristics
We first describe the set-up of our experiment for evaluating the four different heuristics (the

first three heuristics correspond to the three different initialization procedures and the fourth

heuristic is the Lagrangian heuristic). Table 1 shows all parameter values used in this

experiment. The experiment involves problems with three different numbers of locations (J =

2, 3, and 4) and two different numbers of items (I = 20 and 50). The choice of the values for

several input parameters in this experiment is partly based on the data collected from an air

carrier company. We focus on a setting with high inventory holding costs in comparison to

transportation costs, and a short lateral transshipment and emergency shipment time in

comparison to the regular repair lead-time. The ratio of demand rates for each item is

generated randomly from a uniform distribution. The value for the repair rates is fixed at
iµ = 0.05/day. The values of the inventory holding cost parameters are generated from two

distributions representing two different variabilities of holding cost among items. Further, we

examine problems in which all locations have identical and different maximum waiting times.

Due to the integrality of our decision variables, the values of the output parameters may to

some extent contain the effect of coincidences. A very small change in one of the input

parameters may cause a large change in one of the output parameters. A number of samples

could be useful in reducing the effect caused by these coincidences. In this experiment, 10

samples were generated for each combination of I, J, the distribution for generating the

maximum waiting times, the distribution for generating the iCH , and the distribution for

generating the demand rates. This gives in total 240 problem sets.

For the evaluation of the heuristics, we computed and recorded the following performance

measures:

• %GAP : percentage gap between the total cost obtained by the heuristic and the lower

bound

%GAP = heuristic's total costs - lower bound  x 100
lower bound



16

• The number of iterations incurred in the local search procedure

• The computation times required to solve the problem

Table 1. Parameter values for the computational experiments

Name of the parameter Unit
Number
of values Values

Number of locations (J) 3 2, 3, 4
Number of items (I) 2 20, 50

Inventory holding cost ( iCH ) $/unit/year 2 U[6000,18000], U[3000,21000]

Transshipment cost ( iCT ) $/day 1 1000

Emergency supply cost ( iCE ) $/day 1 1000

Lateral transshipment lead time ( i
jkTL ) days 1 U[0.15,0.25]

Emergency supply lead time ( iTE ) days 1 1

Maximum waiting time ( max
jW ) days 2 0.3, U[0.2,0.4]

Repair rate ( iµ ) /day 1 0.05

Demand rate ( i
jm ) /day 1 U[0.0075,0.1125]

The results of our experiment are summarized in Tables(2)-(4). Tables 2(a)-2(e) present the

comparison of %GAP. Table 3 presents comparisons of the average number of iterations

incurred in the local search procedure for all combinations of I and J. The average

computation times of the three heuristics are presented in Table 4 (the experiment is executed

on a PC with a 333-MHz Pentium II processor).



17

Table 2. Comparison of %GAP

(a) Average %GAP with respect to J    (b) Average %GAP with respect to iCH

J = 2 J = 3 J = 4 U[6000,18000] U[3000,21000]
Heuristic #1 0.45 0.60 0.78 Heuristic #1 0.58 0.64
Heuristic #2 0.68 0.71 0.98 Heuristic #2 0.81 0.77
Heuristic #3 2.96 3.01 3.64 Heuristic #3 3.24 3.16
Lagrangian 0.32 0.40 0.57 Lagrangian 0.40 0.46

(c) Average %GAP with respect to max
jW (d) Average %GAP with respect to I

0.3 U[0.2,0.4] I = 20 I = 50
Heuristic #1 0.33 0.89 Heuristic #1 0.72 0.50
Heuristic #2 0.68 0.91 Heuristic #2 0.83 0.75
Heuristic #3 2.98 3.42 Heuristic #3 3.11 3.29
Lagrangian 0.45 0.41 Lagrangian 0.44 0.42

(e) Overall average %GAP

Heuristic #1 0.61
Heuristic #2 0.79
Heuristic #3 3.20
Lagrangian 0.43

Table 3. Average number of iterations in the local search process

J = 2 J = 3 J = 4

I =20 I = 50 I = 20 I = 50 I = 20 I = 50

Heuristic #1 2.1 6.3 7.6 14.5 7.8 14.8

Heuristic #2 13.8 31.6 24.5 38.9 29.3 42.4

Heuristic #3 11.6 27.0 29.6 53.2 43.0 91.8

Lagrange 2.8 5.8 6.9 12.8 8.6 15.2

Table 4. Average CPU times for the three heuristics (seconds)

J = 2 J = 3 J = 4

I =20 I = 50 I = 20 I = 50 I = 20 I = 50

Heuristic #1 7 30 38 141 192 533

Heuristic #2 8 38 31 156 234 657

Heuristic #3 14 52 54 238 301 863

Lagrange 73 212 396 858 2177 6121
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The main observations drawn from these tables can be summarized as follows:

• Among the first three heuristics, the first heuristic appears to be the best one in terms of

the obtained total cost. The quality of the solution obtained by the first heuristic is quite

good as indicated by very low %GAP with an average of 0.61%. This gap is only a little

higher than the gap of the Lagrangian heuristic (0.43%). The second heuristic applying an

item approach for the initialization procedure is the second best heuristic with an average

%GAP of 0.79%. Through our experiment we noted however, that for few instances the

second heuristic gave better solutions than the first heuristic. The third heuristic that

applies a ‘no-pooling’ approach for the initialization procedure performs unsatisfactorily

and it is dominated by the other two heuristics. It has an average %GAP of  3.20%.

• In line with our findings in Wong et al,19 it is shown in Table 2(d) that except for the third

heuristic, %GAP is decreasing in the number of items, I. Another observation which may

be interesting is that the performance of the heuristics is sensitive to the variability of the

maximum waiting times at all locations. Table 2(c) shows that all heuristics (especially

the first and the second heuristic) perform better when all locations set identical target

maximum waiting times.

• The first heuristic is also the most efficient heuristic as its average computation times are

the lowest in comparison to the other heuristics (see Table 4). This result is related to the

observation that can be drawn from Table 3 where the averages of the number of

iterations in the local search process are shown. The first heuristic requires very few

iterations in the local search process compared to the other two heuristics. This gives an

indication that the greedy-type initialization algorithm provides initial solutions that are

close to the (local) optimum. It is also shown that the third heuristic has the longest

computation times (among the three first heuristics) although it has the fastest

initialization algorithm. This is due the two following reasons. First, the third heuristic

starts with initial solutions that have a higher number of stocks in comparison to the first

and second heuristic. As a result, the state space of the Markov processes becomes larger

and thus longer times are required to obtain numerical solutions of the Markov chains.

Second, the third heuristic has also the highest number of iterations in the local search

process. This is shown in all problem sets with the exception of the problem sets with J =

2. Another observation is that, as expected, the computation time for the Lagrangian

heuristic is considerably high.
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The results of this experiment show that the first heuristic applying a greedy-type

initialization continued by a local search procedure represents a promising solution procedure

for solving multi-item, multi-location spare parts inventory problems. Besides its simplicity,

this heuristic is also capable in providing very high quality solutions. As we use an exact

model for the evaluation of a stocking policy, we can see in Table 4 that the computation

times increase very fast with the number of locations. When dealing with larger problems

(e.g. problems with 20 locations), an approximate evaluation procedure such as the one

developed in Alfredsson and Verrijdt8 would be of great help to speed up the computation

time of the heuristic.

Analysis of the cost savings
In addition to the evaluation of the heuristics, we are also interested in studying the economic

implication of  integrating the system approach and pooling policy. More specifically, we are

interested in knowing how much money could be saved by applying such policy and which

parameters affect the obtained cost savings. For such a purpose, we used all problem sets

generated for the evaluation of the heuristics. Additional problem sets are generated to cover

problems with a higher number of items (I = 100) and a higher number of pooling members (J

= 5 and 6). The analysis is thus based on 600 problem sets. Since the first heuristic is the best

heuristic, all calculations in this analysis are based on the total cost obtained by the first

heuristic. For each problem set, we computed the following performance measures:

• %SAVE1 : the percentage cost savings obtained when moving from ‘no-pooling and

item-approach’ strategy to ‘pooling and system-approach’ strategy.

• %SAVE2 : the percentage cost savings obtained when moving from ‘no-pooling and

system-approach’ strategy to ‘pooling and system-approach’ strategy.

• %SAVE3 : the percentage cost savings obtained when moving from ‘pooling and item-

approach’ strategy to ‘pooling and system-approach’ strategy.

The results of this experiment are presented in Tables 5(a)-(e). The main observations drawn

from these tables can be summarized as follows:

• Applying a system approach together with the pooling policy in making inventory

decisions gives quite significant cost savings in comparison to the conventional method

that uses an item approach and does not consider pooling. The overall average for

%SAVE1 in this experiment is 39.6% as shown in Table 5(e).  It is also shown that the

effect of pooling to the total cost improvement is higher than the effect of system
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approach as the overall average for %SAVE2 and %SAVE3 are 24.9% and 9.5%

respectively. Further, the average of %SAVE1 is 5.2% above the sum of the averages of

%SAVE2 and %SAVE3. It is important to mention that those magnitude of savings may be

representative only for settings with similar parameter values as used in this experiment.

The average of %SAVE3, for example, that reaches only up to 9.5% in this experiment

might be caused by the limited range of inventory holding costs used in the experiment

(recall that our experiment allows a maximum ratio of seven between the highest and the

lowest inventory holding costs). In a different setting with a single-location model,

Thonemann et al3 indicate much higher savings (up to 25%) could be obtained when

moving from an item approach to a system approach.

Table 5. Cost savings with respect to different parameters

(a) Percentage savings with respect to J

J = 2 J = 3 J = 4 J = 5 J = 6
%SAVE1 31.8 36.7 40.5 43.1 45.4
%SAVE2 16.0 21.1 25.6 29.2 32.6
%SAVE3 10.4 9.9 9.6 8.8 8.8

(b) Percentage savings with respect to max
jW (c) Percentage savings with respect to iCH

0.3 U[0.2,0.4] U[6000,18000] U[3000,21000]
%SAVE1 41.9 37.3 %SAVE1 38.8 40.4
%SAVE2 26.7 23.1 %SAVE2 25.0 24.8
%SAVE3 10.2 8.8 %SAVE3 8.3 10.7

(d) Percentage savings with respect to I (e) Overall percentage savings

I = 20 I = 50 I = 100
%SAVE1 38.4 38.9 41.5 %SAVE1 39.6
%SAVE2 23.2 25.6 25.9 %SAVE2 24.9
%SAVE3 9.2 9.6 9.7 %SAVE3 9.5

• Both %SAVE1 and %SAVE2 are increasing with the number of cooperating companies, J,

but the increase rate is slowing down. %SAVE3 is decreasing with J although the decrease

rate is not so large.

• The variability of inventory holding cost among items has some impacts on %SAVE1 and

%SAVE3 as indicated in Table 5(c). The percentage cost savings increase when the
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variability is higher. This result is also in line with the findings of Thonemann et al3

Wong et al.19

• Table 5(b) shows that the three types of savings are higher when the maximum waiting

times are identical. This result however, should be interpreted with more caution as it is

known from Table 4(c) that all heuristics also perform better when the maximum waiting

times are identical for all locations (for the first heuristic, the difference of %GAP is

0.56%). However, smaller differences in %SAVE3 compared to differences in %SAVE1

and %SAVE2 may indicate that both %SAVE1 and %SAVE2 are indeed sensitive to the

variability of the maximum waiting times.

Conclusions and directions for further research

In this paper we have developed a solution procedure for solving the optimization problem in

multi-item spare parts systems where lateral and emergency shipments can occur in response

to stock-outs and there exist constraints of the target maximum waiting times for a ready-for-

use at all locations that have to be satisfied. We structured the optimization problem as a

combinatorial problem and developed a solution procedure based on a local search

optimization method.  The solution procedure mainly consists of two steps: initialization and

improvement. Three different initialization algorithms were formulated and a steepest-descent

local search method has been used for the improvement step. A computational experiment

was performed to evaluate the relative merits of the three heuristics. The Lagrangian

relaxation based approach is used to obtain the lower bounds of the optimal total costs and the

evaluation of heuristic is made based on the relative distance between the heuristic solutions

and the lower bounds. The results of the experiment show that the heuristic applying a

greedy-type method for the initialization is the best one and its performance is quite good as

its total costs have an average distance of 0.61% to the lower bounds. In terms of the

computation time, this heuristic is also the most efficient one. Compared to the Lagrangian

heuristic developed in Wong et al,19 the new heuristic gives quite a significant reduction in

computation times with nearly the same quality.

In addition to the evaluation of the heuristics, our numerical experiment has also shown that

significant benefits are obtained through spare parts pooling and the application of a system

approach. More specific conclusions are summarized as follows: (1) the relative cost savings

of applying a pooling policy are higher than the relative cost savings of applying a system

approach; (2) the relative cost savings of applying a pooling policy increase with the number
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of pooling members with a decreasing increase rate; (3) the relative cost savings of applying a

pooling policy are higher when all pooling members set identical maximum waiting times; (4)

the relative cost savings of applying a system approach increase when the variability of

inventory holding costs among items increases.

Our work can be extended in several directions. One possible extension is to consider a two-

echelon setting. This extension is relevant since there is a trend nowadays towards

outsourcing the MRO operations (Maintenance, Repair and Overhaul).  Consequently, pooling

will move more into a vendor or third-party model where a neutral independent company (at

the first echelon) will offer component pooling options to companies (at the second echelon).

The presence of a pooling provider company at the first echelon complicates the problem as

the logistical performances of the companies in the pool depend not only on the demand rate

and the stocking levels at their locations, but also on the stocking levels of the pooling

provider.
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