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Abstract 

A free boundary problem for viscous fl uid flow in injection moulding 

J.c.w. V AN VROONHOVEN and W.J.J. KUIJPERS· 

Eindhoven University of Technology, (. author for co"espondence), 

Department of Mathematics and Computing Science, 

P.O. Box 513,5600 MB Eindhoven, The Netherlmads. 

The injection of a viscous fluid into a mould formed by two parallel plates is considered. The 
flow front is supposed to move at constant speed. It is assumed, that there is complete adher
ence between the fluid and the mould walls, and that the environmental pressure is constant. 
For a Newtonian fluid the problem is described in terms of two analytic complex functions. 
The shape of the fluid surface is calculated by means of a conformal mapping technique, which 
leads to a Hilbert problem. The results are compared with known finite element simulations. 
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1. Introduction. 

Injection moulding is a process for the manufacture of products of a thennoplastic material 
Before moulding this material is heated beyond its melting-point and then injected under pres
sure into a mould cavity. In order to achieve complete filling of the cavity pressure is main
tained during the cooling stage of the process. When the material has solidified and has 
attained the mould shape. the product is ejected from the mould. 

During the filling stage the fluid surface advances until the mould cavity has been filled com
pletely. As the shape of the surface is unknown. it is called a free boundary. The flow directly 

behind the front resembles the flow of a fountain. Streamlines. initially parallel. diverge when 
approaching the flow fronl Fluid particles decelerate and move outwards to the cavity walls. 
TItis characteristical flow is therefore referred to as "the fountain effect". We focus our atten

tion on the free boundary. i.e. the fluid surface. Since it takes some time until the melting
temperature has been reached. solid layers will form at a certain distance of the flow from. So 
the effects of cooling and solidification can be neglected and we may restrict ourselves to the 

isothermal problem. 

A classical problem in injection moulding is the flow of a viscous fluid between two parallel 
plates. The solution of this problem also gives a realistic impression of the fountain flow and 
of the shape of the fluid surface in the case of a mould of a more general geometry. We use 

the model of an incompressible Newtonian fluid. TIlis is a linear. homogeneous. isotropic fluid. 
for which the stresses depend linearly on the strain-rate. The equations describing the fluid. 
behaviour are the incompressibility condition. the equilibrium of the stresses and the constitu
tive equations. The boundary conditions for the typical geometry of the fountain flow are deter
mined by the following assumptions. The fluid will fully adhere to the mould walls. which 
means that no slip will occur. It is supposed that the fluid surface advances at a constant speed 
and that its shape does not alter. The environmental pressure is assumed to be constant and the 
effects of surface-tension are neglected. In order to complete the mathematical fonnulation of 
the problem we need the condition that the velocity field is fully developed far behind the flow 
front . TIlis fully developed velocity field for a Newtonian fluid is the Poiseuille flow. 

TIlis free boundary problem has been analysed by Mavridis. Hrymak and Vlachopoulos [7]. 
who used a finite element simulation. and by Dierieck [2). who introduced a stream function to 
satisfy the incompressibility condition. To determine the shape of the free boundary both 
authors use an iterative method involving much numerical effort For a more specific treatment 
of the fountain effect we employ an alternative method of solution based on the theory of com
plex functions. The incompressibility condition is satisfied by the introduction of a stream 

function and the equations of equilibrium of the stresses are satisfied by the introduction of a 
stress function. The constitutive equations relate these two functions to each other. As a 
consequence these functions are solutions of the biharmonic equation. All equations are 
satisfied by the introduction of two independent analytic functions. These analytic functions 
are completely determined by the boundary conditions. The problem is solved by a conformal 
mapping technique leading to a Hilbert problem. TIlis method of solution is often used in the 
theory of linear elasticity. e.g. see England [3), Muskhelishvili [91. and can be applied to the 
current problem, because the behaviour of an incompressible Newtonian fluid and of an 
incompressible linear elastic (Hookean) material is governed by essentially the same equations. 
The theory presented by Muskhelishvili and England is usually applied to elastic bodies of a 
shape that is known beforehand. In this paper we deal with a free boundary problem which 
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means that the flow region has an unknown shape. Nevertheless, the confonnal mapping tech
nique can still be used to calculate the velocity field together with the shape of the free boun
dary. The . theory of complex functions was also used by Garabedian [4], who derived the 
sOlution of several inverse problems. He prescribed the shape of the free boundary and calcu
lated the velocity of the fluid for some specific geometries. 

2. The fundamental equations. 

An incompressible Newtonian fluid is injected into the space between two parallel plates at 
mutual distance 2h. The flow front moves with a constant velocity VI relative to the fixed 
walls as shown in figure 2.1. 

Fig. 2.1. The fixed frame of reference. 

The problem will be described in a moving frame of reference defined by • 
X -VI t Y 

x= y=-, 
h h 

(2.1) 

where X and Y are Cartesian coordinates in a fixed frame and t denotes the time. All quanti
ties describing the flow are functions of the coordinates x and y only. 

Let A and C be the points where the fluid surface makes contact with the walls. The x
coordinate in the points A and C is chosen to be zero. The plane y = 0 corresponds to the plane 
of symmetry. Let B be the point of the surface where y =0 (see figure 2.2). The y-coordinates 
of the planes AE and CD are equal to -1 and + 1 respectively. 

Fig. 2.2. The moving frame of reference. 

The dimensionless velocity of the fluid relative to the flow front is denoted by 

v = u (x ,y ) ex + v (x • y ) ey . 

The absolute velocity of the fluid relative to the fixed walls is then given by 

V = VI (1+u(x.y»ex + VI v(x.y)ey . 

(2.2) 

(2.3) 

The stress tensor in the point (x. y) is denoted by T. The dimensionless stress tensor t in 
(x • y) is defined by the relation 
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(2.4) 

where 1\ is the viscosity of the fluid. 

The constitutive equation for an incompressible Newtonian fluid is 

't = -p I + d , (2.5) 

where p is the dimensionless hydrostatic pressure and d is the rate of defonnation tensor, 

d=~(L+LT), L=~: . (2.6) 

For an incompressible fluid the conservation of mass yields the incompressibility condition 

au + ~ = 0 ax cry . (2.7) 

This equation is satisfied by introducing a stream function 'If = 'If (x ,y), 

~=u cry , ~=-v ax . (2.8) 

The stresses must satisfy the conservation of momentum. When body forces are absent and 
the accelerations can be neglected, we have for two dimensional flow 

txy,x + tyy,y = 0 
a 

( ,x = ax ) . (2.9) 

These equations are satisfied by introducing the Airy stress function ~ = ~ (x, y), 

(2.10) 

Furthermore, the pressure p is related to ~ by 

P = - ~ (txx + Iyy ) = ~ Ll ~ = ~ (41%% + ljIyy ) . (2.11) 

Because of the analogy between the theory of plane linear elasticity and the two-dimensional 
flow problem a description in complex functions as shown by Muskhelishvili [9, Ch. 5] can be 
used. Several problems for plane strain and generalized plane stress are treated by England [3, 
sec. 2.5]. An application to viscous fluid flow is given by Jacob [6, pp. 316-320]. Following 
these references we introduce the complex variables 

z=x+iy and z=x-i y. (2.12) 

All equations, including the constitutive relations (2.5), are satisfied by the introduction of two 
complex functions Q(z) and c.o(z) which are analytic in the domain Gz occupied by the fluid. 
The general solution of the flow problem is then given by 

~ + i'lf = Z Q(z) + c.o(z) , 

w = u + i v = z Q'(z) + c.o'(z) - Q(z) , 

txx + tyy = -2 [Q'(z) + Q'(z) 1 , 

(2.13) 
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tv: - tyy + 2i txy = 2 [z Q"(z) + ro"(z) ] . 

The accent' indicates differentiation with respect to the complex argument 

For the resulting force over an arc PQ the following expression can be derived, see [3, sec. 
27], [9, sec. 33]. 

Q 

K = - j (til + i ts ) dz = [z Q'(z) + ro'(z) + O(Z)J: ' (2.14) 

where til and ts are the nonnal and shear stresses along the arc PQ. 

The functions Q(z) and ro(z) are completely determined by the boundary conditions. Along 
every part of the boundary two conditions are necessary. Along the fluid surface, which is a 
free streamline of unknown shape, even three conditions are required. 

It is assumed that there is complete adherence between the fluid and the straight walls AE and 
CD. This means V =0 there, or 

u=-I, v=O, y = ±1 . (2.15) 

The environmental pressure is a constant denoted by Po. Consequently, the normal stress til 

and the shear stress ts must satisfy the following conditions along the free boundary ABC, 

til = -Po' ts = 0 . (2.16) .. 

These conditions are substituted into the expression (2.14) for the resulting force over an arc 
PQ . Taking P fixed and Q in z E ABC we find 

K = z Q'(z) + ro'(z) + Q(z) = Po z + PI' (2.17) 

where PIE C is an integration constant. 

The third condition along the fluid surface ABC follows from the assumption that its shape 
does not alter. This means that the normal velocity relative to the moving frame must vanish, 

(v ,n) = 0, (2.18) 

where n denotes the outer normal to the surface ABC. 

For a complete determination of the mathematical problem conditions at infinity (x ~ - 00) are 
required. At large distance of the flow front the flow will resemble the fully developed flow, 
the so-called Poiseuille flow, which will be denoted by an index O. This type of flow occurs 
when the space between the two parallel plates would be completely filled with fluid. The lim
iting value of the velocity must be 

1/ 3, 2 u ~ U o = 2 - 12 Y , (x ~ -00) . (2.19) 

The procedure of solution is to calculate the functions Q(z) and ro(z) subject to the boundary 
conditions (2.15), (2.17), and (2.19), and subsequently to determine the free boundary with 
condition (2.18). 

Because of the inhomogenity of the conditions (2.15) and (2.19) for the velocity it proves to be 
convenient to substract the Poiseuille flow. We write 
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(2.20) 

The velocities u 0 and Yo are given by (2.19), while U I and Y I are the new unknown functions. 

We replace n(z) and ro(z) by Oo(z) + n,(z) and woCz) + w,(z) ,respectively, with 

(2.21) 

representing the Poiseuille flow and with nl(z) and wl(z) the new unknown functions. The 
constant P 1 E R represents a uniform pressure and is still free to be chosen. 

From (2.13) and (2.21) we find 

WI = z n~(z) + W'I(Z) - nl(z) , 

txx + tyy = -2 [n~(z) + n~(z) ] + %(z + Z)-2Pl' 

txx - tyy + 2i t7;J = 2[z n'~(z) + w'~(z) ] - %(z - z), 

and from (2.14) for the resulting force along an arc PQ 

Q 

K = - f (t,. + i ts ) dz = 
p 

= [z n~(z) + w:(z) + nl(z) - %(z2 + 2z z - z2) + Pl z]: 
The boundary conditions (2.15), (2.17), and (2.19) transfonn into 

WI = Z O~(z) + w~(z) - 01(Z) = 0, y = ± 1 , 

WI = z O'I(Z) + (O'I(Z) - OI(Z) ~O, (x ~-oo) , 

K, = Z O',(z) + (O:(z). + OI(Z) = 
= % (z 2 + 2 Z z - z2) + (p 0 - P 2) z + PI' zEABC. 

Choosing P 2 = Po and omitting the irrelevant constant PI' we have 

K, = %(z2+2zz-z2), zEABC. 

3. The conformal mapping. 

(2.22) 

(2.23) 

(2.24) 

(2.25) 

For the solution of the problem described in the preceding section conformal mapping tech
niques will be used. The domain G z occupied by the fluid is transformed into the interior of 
the unit circle, G ~+ := {~E C I I~I < I} (see figures 3.1 and 3.2). 

The mapping function will be denoted by 

z = m(O . (3.1) 

This transformation is conformal, implying that the function m(O is an analytic and univalent 

function for ~E G~·. Further, it is assumed that the mapping function is continuous on G ~+ , 

except in the point ~ = -1. 
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Fig. 3.1. The domain Gz • 

Fig. 3.2. The ~-plane. 

The conformal mapping of G~+ onto Gz exists and is uniquely detennined by the choice of the 

points B, C, and D on the unit circle. This is a result from the Riemann mapping theorem. 

We shall now consider the limit for ~ tending to a point ~ on the boundary of 
G ~+, I~ I = 1 , ~ *- -1. The corresponding point z = m(~) will tend to a point of the boun
dary of G z. The limiting value of z is 

m+(~) = lim m(O = x(~) + i y(~) . (3.2) 
~--+~~EG~+ 

The complex parameter ~ is related to the arclength s along the boundary of Gz ' ~ = ~(s) say. 
Then, the following relations for the tangential vector s = Sx ex + Sy e, and the normal vector 

n = nx ez + ny e, along the boundary of Gz exist 

Sz + i Sy = ~ + i 1; = ~ = m/+(~) ~ , 

nx + i ny = Sy - i Sx = - i m'+(~) ~ . (3.3) 

We shall now eliminate the derivative d~/ds. Since ~ is on the unit circle, we have 

~ ~ = 1 . 

Differentiating (3.4) with respect to the arclength s, we obtain 

~~+~~=O. 
ds ds 

(3.4) 

(3.5) 

Combining (3.3) and (3.5) we find a relation between the components of the normal vector and 
the derivative of the conformal mapping function, reading 

nz + i ny 
-i m'+(~) ~ 

~ m'+(~) ds 
(3.6) = = 

nz - i ny i m'+(~) .s!S.. ~ m'+(~) 

ds 
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This relation is not valid in the point ~ = -1 , because this point corresponds to infinity in the 
complex z-plane. This point, ~ = -I, is a singular point of the conformal mapping. The char
acter of this singularity is logarithmic. This implies, that the introduction of branch cuts from 
~ = -1 to ~ = 00 and along the arc ABC is necessary when the function m(O is continuated to 
the exterior of the unit circle G ~- := { ~E C I I~ I > 1 }. Analogously to the theory of linear 
elasticity [3, Ch. 5], [9, Ch. IS, 21], we shall approximate the conformal mapping function 
m(~) by a polynomial. This technique has been applied successfully to several problems with 
given boundaries. Thereby, difficulties caused by branch cuts are avoided. The basis of this 
approximation is the Taylor expansion of the mapping function, 

00 

m(O = L Ilk ~k , 
k=O 

(3.7) 

The radius of convergence of this series is 1. The series is still converging for I~I = 1 except 
in ~ = -1. For reasons of symmetry the coefficients Ilk are real. Truncating the series after 
N + 1 terms, we have a polynomial of degree N, 

N 

mN(~) = L Ilk ~k . 
k=O 

(3.8) 

Since the shape of the free boundary ABC is to be determined, the conformal mapping and its 
coefficients Ilk are unknown. In the following sections the coefficients Ilk , 0:5; k:5; N, given N, 
will be calculated such that all conditions are satisfied as well as possible. A specification of" 
these conditions is given in the last pan of section 5. After the coefficients are determined, an 
approximation of the shape of the fluid surface is given by 

(3.9) 

We assume, that the polynomial mN(~) produces a good approximation of m(O in the neigh
bourhood of the free boundary ABC, for instance in the right half of the interior of the unit 
circle D := {~EC I I~I < 1, Re~>O}. 

The function mN(~) can be defined not only in the domain G ~+ but also in G ~-. To this end, 
the same functional prescription (3.8) is applied. The continuated function mN(~) is analytic for 
all ~E C and branch cuts do not occur. A physical interpretation of ffiNCO in the region G ~- is 
not possible, because this domain does not correspond with any pan of the flow region. 

It has not yet been shown, that the function mNC~) is a conformal mapping, i.e. analytic and 
univalent for ~E G ~.. Since mNC~) is a polynomial, it is clearly an analytic function. The 
univalence of a conformal mapping is equivalent to the condition that its derivative doesn't 
vanish. It is therefore assumed, that the polynomial mNCO satisfies this condition in the domain 
G ~+. Once the coefficients Ilk have been determined, this assumption must be verified. Since 
our main interest lies in the free boundary, it is sufficient that m~C~) doesn't vanish in the 
region D c G ~ •. 

We expect that, with increasing N, the function mN(~) will produce a bener approximation of 
the conformal mapping mC~). The domain onto which the interior of the unit circle G~· is 
mapped by mNC~) will resemble the domain Gz onto which G ~+ is mapped by mC~), for large 
N, see [1, sec. 104] and [5, Ch. 1. sec. 5, Th. 1-2]. In the following sections an approximate 
solution of the flow problem is derived by means of an analytic continuation of complex 
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functions, in analogy with the Muskhelishvili method in linear elasticity. 

4. Transformation of the problem. 

The flow of the fluid is described by the functions 01(Z) and rol(z). The complex velocity and 
the stresses are expressed in these two functions by the relations (2.22). The functions 01(Z) 

and rol(z) are completely determined by the boundary conditions (2.24) and (2.25). 

The conformal mapping transforms the domain G z occupied by the fluid into the unit circle of 

the complex ~-plane. Consequently, the velocity and the stresses must be expressed in the 
complex variable ~. To this end, we write 

(4.1) 

The derivatives are given by 

O'(z) = 0.'(1') ~ = o.~(~) 
1 I" dz m'(~)' (4.2) 

If the conformal mapping m(O is approximated by a polynomial m}V(O, the functions nl(~) and 

001(0 must be replaced by O}V(~) and ro}V(O respectively. It is emphasized that these two func
tions are not necessarily polynomials. 

The complex velocity and the stresses can now be expressed in the variable ~ and in the co.
plex functions mN(~)' n}V(~), and roN(~)' From (2.22), we find for the approximations 

mN(O~ +~ 
W N 1 = m~(~) - nN(~) , 

[ 
n~(~) n~(~) 1 3 -

tn + tyy = -2 , + + ~2(mN(~) + mN(~» - 2po' 
mN(~) m~(~) 

(4.3) 

The limiting values of the functions nN(O and roNCO for ~ tending to a point ~ on the boun
dary of G~' , I~ I = 1 , are denoted by 

n~(~) = lim nN(o , ro~(~) = lim roN(~) . (4.4) 
~~.~EGt ~-+~~EGt 

The boundary conditions for nN(~) and roN(~) on the unit circle follow from (2.24) and (2.25), 

m~(~) n~(~) + ro~(~) 
~------ - n~(~) = 0, 

m~(~) 

m~(~) n~(~) + ro~(~) 
------- + n~(~) = gN (~) , 

m~(~) 

with gN (~) defined by 

~ECDEA , (4.5) 

~EABC , (4.6) 
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g,. (~):= % ( [ m~(~) ]2 + 2 m~(~) m~(~) - [m~(~)]2) , ~E ABC. (4.7) 

The condition (2.18) for the detennination of the free boundary can be written as (with w 
replaced by W,.) 

Re [w N (nx - i fly ) ] = 0 , 

which, with use of (3.6), leads to 

Re [ w,. ;m~(~) ] = 0 , ;eABC, 

where, in accordance with (2.19) and (2.20), 

wN = 1h + 3/8 ([ m~(;)]2 - 2 mZ(~) mZ(~)+ [mZ(;)]2) + W N 1 • 

(4.8) 

(4.9) 

The functions nN(~) and roN(~) are to be determined from the boundary conditions (4.5) and 
(4.6). These equations can be solved by a continuation of nN(o to the exterior of the unit cir
cle, G ~ -. This continuation is denoted by 'I' ,.(~) and is defined by 

(4.10) 

The function 'I' ,.(~) is analytic for ~E G ~+ and for ~E G ~- . Once 'I' N(O is known, the functions 

n,.(~) and ro,.(~) follow from definition (4.l0). For ~E G ~+ we have 

n,.(~) = 'I' ,.(C) , 

ro~(Q = m~(O 'I',.(l!~) - m,.(l!~) 'I'~(~) 

(4.11) 

(4.12) 

Since m,.(C) is a polynomial of degree N, the functions m,.(1/~) and 'I'N(l!~) have poles of 

order N in the origin C = O. However, ro~(C) is an analytic function for ~E G ~ + including the 

origin and hence, the right-hand side of equation (4.12) must remain bounded for C -7 O. This 
condition is known as the holomorphy condition (see [3, sec. 5.4]). 

Substitution of (4.10) into the boundary conditions (4.5) and (4.6) yields 

~ECDEA , 

'I' ;(~) + 'I' Z(~) = g,. (~) , ~E ABC. 

Expressing the complex velocity w,. 1 in the function '¥ ,.(~), we find 

- m,.(C) - m,.(l!~) -,-
W,.l = 'I',.(1I0-'I',.(C)+ '¥,.CO. 

m~(~) 

(4.13) 

(4.14) 

(4.15) 

Since the velocity must remain finite near the points A and C, we have the following condition 

'I' ,.(C) = 0 (1) , (C -7 ± i ) . (4.16) 

From (4.13), we conclude that '¥,.(~) is continuous over the arc CDEA and, therefore, is an 

analytic function for ~E C \ ABC. Along the cut ABC the jump condition (4.14) holds and 
near the endpoints A and C condition (4.16) must be satisfied. This problem for the function 
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'II N (0 is called a Hilbert problem. Its solution is derived in the next section. 

5. The solution of the Hilbert problem. 

The theory for the solution of Hilbert problems has extensively been treated by Muskhelishvili 
[8] and [9, Ch. 18]. A summary of this theory is given by England [3, Ch. 1]. The equation 
(4.14) along the arc ABC and the condition (4.16) near the endpoints A and C produce the 
Hilbert problem for the function 'II N(C), TIle general solution is given by 

'¥N(O = XCC)GN(~)+X(OFN(O, ~eC\ABC. (5.1) 

where GN (0 is defined by 

G (~) = ~j gN(~) d~. 
N 27tl C X·(~) (~-O 

CeC\ABC, (5.2) 

while the function X (0 is the characteristic Plemelj function defined by 
1 Ih 

X (0 = (~- i) h (~ + i) • Ce C \ ABC • (5.3) 

having a branch cut along the arc ABC. The function FN (0 still has to be determined. 

The branch cuts for the roots in the function X (0 are chosen in the following way. The branch 
for ~ + i is from - i to - i 00 along the imaginary axis, so - 112 7t ~ arg ( C + i ) ~ 3h 7t • The 
branch for C - i is from + i to - i along the arc ABC and from - i to - i 00 along the ima
ginary axis. This means that X (0) = - 1 and 

XCQ = ~+O(l!C), (1~1~00). (5.4) 

As the function X (~) is continuous across the part of the imaginary axis from - i to - i 00. the 
branch cut reduces to the arc ABC and X (C) is analytic for Ce C \ ABC. Along the arc ABC 
one has 

(5.5) 

The function GN (C) is analytic for Ce C \ ABC and 

G N (C) = O( 11 C) , ( I C I ~ 00) . (5.6) 

With use of the Plemelj formulae for Cauchy integrals (see [8, sec. 17], [9, sec. 68]) we derive 

(5.7) 

This means that X (C) GN CC) is a particular solution of equation C4.14). From an expansion of 
G

N 
(C) near the endpoints A and C we find (see [8, sec. 29], [9, sec. 110]) 

(5.8) 

The function GN (C) can be calculated explicitly in terms of the coefficients ~k , OS k S N, by 

means of contour integration. 

We proceed with the determination of the function FN (0, which is proven to be analytic for 

CeC \ ABC only. From (5.1) and (5.7), we conclude that X(~) FN (C) is a homogeneous solu

tion of equation (4.14), i.e. 



and with (5.5) it then follows that 

. F;(~) = F;(E;) , ~E ABC . 

Hence, FN (~) is analytic for ~EC \ {i ,-i }. 

Due to (4.16) and (5.8), 
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X(OFN(~) = 0(1), (~~±i), 

or 

(5.9) 

(5.10) 

and, thus, the singularities of FN (~) in ~ = ± i are removable. So we conclude that FN (0 is an 
entire function, i.e. analytic for all ~E C . Since, according to (4.10), 
'P NCO = O( ~N ), ( I ~ I ~ 00), the function FN (0 must be a polynomial of degree N -1, 

N-l 

FN (0 = ~ Ik ~k , 
k=O 

~EC . (5.11) 

For reasons of symmetry the coefficients I k , O~ k ~ N - 1, are real. These coefficients are 
detennined by applying the holomorphy condition to (4.12), producing 

m~(~) 'PN(l!~)-mN(l!O'P~(O = 0(1), (~~O). (5.+2) 

This condition yields N linear equations for the unknown I k ' O~ k ~ N - 1 . 

The functions FN (C) and GN (0 and, hence, also 'PN(O (see (5.1» are now entirely expressed 
in the coefficients Ilk , O~ k ~ N , of the confonnal mapping mN(O. Relation (4.8) gives a cri
terion for the detennination of these coefficients. Since the exact mapping function m(O is 
approximated by a polynomial of degree N, a discrete set of N + 1 equations is required. First, 
we impose for geometrical reasons that the point C, ~ = i , is mapped onto z = i in the domain 

Gz ' i.e. 

(5.13) 

The point A, ~ = -i , is then mapped onto z = -i. The real and imaginary parts of (5.13) 
yield two equations for the coefficients Ilk , O~ k ~ N . The other N - 1 equations are derived 
by demanding that the nonnal velocity vanishes in N - 1 points of the arc ABC. Because of 
the symmetry of the problem, we restrict ourselves to the arc Be. On this arc we choose the 

points 

1~k~N-1 . (5.14) 

The coefficients Ilk ' O~ k ~ N , are now detennined by (5.13) and by the conditions 

Re [ W N ~k m;;(~k)] = 0, l~k~N-l . (5.15) 

These equations are solved by a numerical procedure for the solution of systems of non-linear 
equations. An approximation of the shape of the free boundary ABC is then given by the rela
tion (3.9) . The results are presented in the final section. 
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6. Results and conclusions. 

The approximation of the exact mapping function m(O by a polynomial mN(~) of degree N, 
see (3.8), and subsequent calculation of the function 'fI N(O, as described in the preceding sec
tion, has been carried out for N = 3, 4, 5, and 6. The results for the coefficients 
~k ' OS k S N, are listed in table 6.1. Estimates of the errors in the numerical solution of the 
equations (5.13) and (5.15) for the coefficients ~k are also comIXlted. They are in the order of 
10-5, if N = 3, 4, 5. Because of the non-linearity of the equations (5.15) for the coefficients 
~k ' the numerical procedure for the solution of these equations is slowly converging when N 
becomes too large. Nevertheless, the coefficients ~k can be calculated for N = 6 with an error 
of 10-3 at most, i.e. less than 1%. For higher values of N convergence is too slow to produce 
more than 3-digit accuracy which means an error of 1 % at moSL On the other hand, no funher 
improvement of the outcome is observed when N = 7 or 8. So the results for N = 4, 5, 6 are 
satisfactory . 

k 3 4 5 6 

0 -0.04287 -0.01699 0.01997 0.125 
1 0.98349 0.95126 0.88278 0.689 
2 -0.04287 -O.(XX)65 0.07560 0.307 
3 -0.01651 -0.04874 -0.12904 -0.368 
4 0.01634 0.05563 0.189 
5 -0.01182 -0.057 
6 0.008 

Table 6.1. The coefficients ~k for several values of N. 

As has been said in section 3, it 'must be verified that the polynomial mN(~) is a conformal 
mapping, i.e., that the derivative m~(~) doesn't vanish in the domain G t The total number of 
zeroes of m~(s) inside a contour r is given by the integral 

! = _1_ r m:(~) d~ . 
21ti f mN(~) 

(6.1) 

Calculation of the integral! with r being the unit circle proves that the function mN(O is con
formal for N = 3, 4, and 5. In the case N = 6 the function mN(O is conformal in the right 
half D of the unit circle. This can be shown by evaluating the integral ! with r being the 
boundary of the region D . 

The shape of the free boundary is calculated from relation (3.9). It appears that the curves for 
N = 5 and N = 6 are lying between those for N = 3 and N = 4. So we can say that the curves 
are converging to the exact free boundary. The difference between the successive approxima
tions of the free boundary is about 2-3 % of the semi-distance of the two plates. Since there 
exists no visual distinction between all the approximations, we confine ourselves to showing 
the fluid surface in figure 6.1 in the case for N = 5 only. 

By the equation (4.15) the velocity w is related to the mapping function mN(s) and the function 
qJ N(~)' These two functions can be expressed in the coefficients ~k and therefore the velocity 
w is known when the coefficients are calculated. In figure 6.1 streamlines are drawn in the 
region behind the flow front. When approaching the front the streamlines diverge. This typical 
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behaviour is called the fountain effect, as indicated before. 

Fig. 6.1. The free boundary. 

We conclude that the shape of the fluid surface can be calculated by means of a polyoomial 
approximation of the conformal mapping function which maps the flow region onto the unit 
circle. Taking degree N = 4, 5, 6 for the polynomial already produces good results for the free 
boundary. These results only differ by 2-3 % from those obtained by Dierieck [2] and Mav
ridis, Hrymak and Vlachopoulos {71. who used an iterative scheme for the determination of the 
free boundary. Numerical efforts involved in such an iteration are avoided in this paper. Cal
culations are restricted to the solution of the equations (5.13) and (5.15) for the coefficients of 
the conformal mapping function. When these coefficients are computed, the velocity of the 
fluid can be calculated in the neighbourhood of the free surface with the relation (4.15). The. 
characteristical fountain effect of the diverging streamlines is demonstrated in figure 6.1. 

The method of complex functions and conformal mapping, which is up to now mostly utilized 
to solve problems in mathematical physics with prescribed boundaries, appears to be just as 
well useful for solving free boundary problems in viscous fluid flow. This technique has also 
been applied to the die-swell problem for the extrusion of a fluid from a capillary. This 
research has been done in cooperation with AJ.M. Sipers. The results will be presented in a 
forthComing paper. 
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