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Chapter 1 

Introduction 

A distributed system consists of a number of physically separated computing 
components that work on a common goal using their private storage, and, when 
needed, communicate by explicit message passing. An example is a banking sys­
tem consisting of a large number of terminals in the various different branches 
and point-of-sale terminals in the streets. Whenever a customer wants to with­
draw money from his account, the system must check for a positive balance 
with the appropriate data base. If money is indeed withdrawn, the customer's 
account is updated accordingly. 

A real-time system is a system whose correct functioning depends crucially 
on the timing of its actions . An example of a real-time distributed system 
is the anti-lock braking system in a car. Many sensors provide input to the 
system, and a prompt reaction to any of the wheel rotation sensors signaling 
a dangerously low rotation speed is imperative to avoid the wheel starting to 
slip. Moreover, if the system responds to the signals of one sensor significantly 
faster than to those of another the possibility exists that the car pulls to the 
left or the right. 

A failure occurs when the behaviour of a system is abnormal, that is, devi­
ates from that required by its specification [RLT78) . The failure of a component 
appears to the system as a fault . Notice that there is no conceptual difference 
between 'fault' and 'failure': they are merely used to distinguish the cause 
from the consequence. According to Laprie ( cf. [Laprie85)) fault tolerance is 
the property of a system "to provide, by redundancy, service complying with 
the specification in spite of faults having occurred or occurring". 

Faults are usually classified according to the specific aspects of the specifi­
cation they violate, for instance timing faults. If it is possible to deduce from 
assertions about a component's behaviour that some fault has occurred, we 
call that fault detectable. Different fault classes arise from the assumptions 
about the correctness of the behaviour with respect to the various specifica­
tion aspects, and, in case that behaviour is not assumed to be correct, the 
detectability of such faults. 

1 
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In a fault tolerant system, three forms of behaviour are distinguished: nor­
mal, exceptional and catastrophic [LA90]. Normal behaviour is the behaviour 
that conforms to the specification. The discriminating factor between excep­
tional and catastrophic behaviour is the failure hypothesis which stipulates 
how faults affect the normal behaviour. Relative to the failure hypothesis an 
exceptional behaviour exhibits an abnormality which should be tolerated. A 
catastrophic behaviour has an abnormality that is not required to be tolerable 
(cf. [RLT78, AL86, LA90]). Consider, for instance, the failure hypothesis that 
a transmission medium might lose messages. For this medium the corruption of 
messages is catastrophic. The exceptional behaviour together with the normal 
behaviour constitutes the acceptable behaviour. 

In general, the catastrophic behaviour of a component cannot be tolerated 
by a system. Under a particular failure hypothesis for each of its components, 
a system is designed to tolerate only the anticipated faults. Important for 
this design is the fault hypothesis which, in fact, determines the collection of 
components that must function correctly during any interval of operation (see, 
e.g., [Schepers93a] for some design examples). 

A distributed program is an abstract description of the operations of a dis­
tributed system. The behaviour of a component is modeled by a so-called 
process, and a distributed program consists of a collection of processes that 
work concurrently. Interaction between the processes of a distributed program 
takes place by means of communication rather than by shared variables. We 
use a failure prone process to model the behaviour of an unreliable component. 

It is difficult to prove the properties of a distributed program composed 
of failure prone processes, as such proofs must take into account the effects 
of faults occurring at any point in the execution of the individual processes. 
Yet, as distributed systems are employed in increasingly critical areas, e.g. to 
control aircraft and to monitor hospital patients, the inherently closely related 
fault tolerance and real-time requirements become stronger and stronger. This 
thesis is concerned with the specification and verification of fault tolerant real­
time distributed systems. 

The reliability of a system is usually defined as the probability that the 
system functions correctly over a certain period of time, and thus requires a 
probabilistic, and hence quantitative, specification and verification framework. 
However, the correctness of a program is a qualitative issue. In this thesis 
we reason about the reliability of a system in terms of qualitative statements 
concerning the system's behaviour. More precisely, we reason about properties 
that hold for all possible executions of a program. It is of little practical value 
to know that some of the executions tolerate a particular fault. 

To specify a system we define an assertion language in which the properties 
of a system can be described . We use a correctness formula of the form P sat tjJ 
to express that the process P satisfies the property t/J. Such a formula expresses 
that all executions of P satisfy t/J. To verify that a process satisfies such a 
specification we present a proof theory (also called a proof system), that is, 
a collection of axioms and rules by which valid correctness formulae can be 
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deduced. 
A proof system is called compositional if the specification of a compound 

process can be deduced from specifications of its constituent parts without any 
further information about the internal structure of those components. In other 
words, a compositional proof theory allows reasoning with the specifications of 
processes without considering their implementation and the precise nature and 
occurrence of faults in such an implementation. In a compositional proof system 
every process can be developed in isolation. Moreover, it supports top-down 
program design where, to master the complexity, a program is decomposed into 
a number of smaller ones; in a compositional framework such design steps can 
be individually verified. 

Apart from side conditions, in this thesis a proof rule has the form 

... , P; sat ¢;, .. . , ~i --> 1};, ... 

Psat ¢ 

where P and P; are process terms and ¢, ¢;, ~i and 1}; are assertions. The 
interpretation of such an inference rule is that if the formulae above the line 
have been derived then the formula below the line may be concluded: if, for all i, 
P; sat ¢; and ~i --> 1}; then P sat ¢. 

In particular, we investigate whether an existing compositional proof theory 
for reasoning about the normal behaviour of a system can be adapted to deal 
with its acceptable behaviour. To do so, we formalize a failure hypothesis as a 
relation between the normal and the acceptable behaviour of a system. Such a 
relation enables us to abstract from the precise nature and occurrence of a fault 
and to focus on any abnormal behaviour it causes. For a failure hypothesis x 
we introduce the construct Plx (read "P under x") to indicate execution of 
process P under the assumption X· Our approach allows a general treatment 
of paradigms for fault tolerance because it supports a modular treatment of 
acceptable behaviour: the acceptable behaviour of the process P under the 
failure hypothesis xis the normal behaviour of the failure prone process Plx. 

We consider networks of processes that communicate synchronously via di­
rected point-to-point channels. Synchronous communication means that either 
the sender or the receiver has to wait until a partner is available. In the case 
of asynchronous communication a message can always be sent without delay 
but in effect it must be buffered until it can be delivered to the receiver. Thus, 
asynchronous communication can be modeled by synchronous communication 
by introducing the (infinite) buffer as an explicit process. 

As mentioned above, processes do not share variables. In this thesis we 
focus on the formalization of fault tolerance in relation to concurrency. We 
abstract from the internal states of processes and concentrate on the input 
and output behaviour that is observable at their interface. So, in our proof 
theory we do not deal with the sequential aspects of processes and instead use 
a simple compositional formalism to reason about the properties of networks 
of processes. Termination and divergence, the situation where a process ap­
pears to be doing nothing because it has entered an infinite loop in which no 
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communication command occurs, are not observable in our framework. 
In this thesis we reason about both safety and liveness properties. In the 

absence of the factor time, a safety property expresses that "nothing bad will 
happen" whereas aliveness property expresses that "eventually something good 
will happen" [Lamport83]. Consider, for instance, a simple 1-place first-in first­
out buffer B that has two observable channels in and out, with the obvious 
interpretation. Typical safety properties of B are "if there is a communication 
on out then the communicated value is equal to the most recently communi­
cated value on in" and "the number of out communications is equal to or one 
less than the number of in communications" . Observe that a safety property 
does not express that something must happen: it is trivially satisfied if nothing 
happens. A characteristic liveness property of B is "after an input eventually 
output is produced" . To prove liveness properties, often fairness conditions 
such as "in an infinite execution communication on c occurs infinitely often" 
are enforced . 

1.1 Tolerating faults 

As mentioned before, fault tolerance is concerned with providing a specified 
service, even in the presence of faults . Practical fault tolerance, however, only 
provides protection against those faults that had been anticipated during the 
design of the system. Either way, fault tolerance depends upon the effective 
deployment and utilization of redundancy1 . 

The most rigorous way to tolerate a fault is to use so much redundancy 
that it can be masked (see, e.g., [Krol91]), for instance the triple modular 
redundancy paradigm presented in Section A.3. But this kind of redundancy 
is generally too expensive. 

If faults cannot be masked, then our first concern is how to identify an an­
ticipated fault (fault detection). Before the system can be allowed to continue 
to provide its service, fault diagnosis must be applied and the fault's - un­
wanted - consequences must be undone. Leaving incorrect implementations 
out of consideration, the fault diagnosis must identify the components that are 
responsible for the fault and also whether that fault is transient or permanent. 

If the fault is only transient, its consequences can be undone by simply 
restarting the system2 , i.e. by putting it in some initial state, or, in case a 
valid system state is regularly recorded as a checkpoint, by bringing the system 
back to its last checkpoint and then continuing operation from that state. 
This technique is called backward recovery, and it allows actions to be atomic 
[Lomet77] : they are either executed completely or not at all. Manipulating the 

1 In the literature there is a classification by what kind of element (for instance component 
and information) is replicated. This classification , however, is not orthogonal (for instance 
component redundancy also means information redundancy). 

2 This only helps, of course, if the application allows the involved delay; for time-critical 
applications this is often not the case. 
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current erroneous state to produce a valid new state is called forward recovery. 
Once taken to a consistent state the system can continue to provide its service. 

If the fault is not transient but permanent the system needs repair first. 
If the faulty component can be replaced, the system can deliver its service 
without modification; otherwise, other components must take over the faulty 
component's tasks in addition to their own, and this may lead to a degradation 
of the service in case not all the tasks can be fulfilled. Graceful degradation 
allows as many tasks as possible to be still accomplished. Replacing a faulty 
component can be done either physically or logically by means of reconfigu­
ration, where a faulty component is taken out of action and a spare, already 
present in the system, is put into service. 

In Appendix A we present and analyze a few paradigms that are typical for 
fault tolerance. In particular, we qualitatively investigate under what condi­
tions a particular paradigm successfully tolerates a given class of faults. 

1.2 Overview of this thesis 

This thesis is organized as follows. In Chapter 2 we present, after discussing 
existing formal methods for fault tolerance, our approach of formalizing the fail­
ure hypothesis of a process as a relation between the normal and the acceptable 
process behaviour. This method was first introduced in [Schepers93b]. 

The basic formalism, which is the result of joint work with Jozef Hooman 
[SH93a, SH93b], is presented in Chapter 3. To emphasize the essence of our 
approach, we do not consider deadlock and the timing of actions, and restrict 
ourselves to the specification and verification of safety properties of fault tol­
erant distributed systems. A process is in a state of deadlock if it is blocked in 
a communication that will never occur. Such a situation is possible because, 
in the case of synchronous communication, communication partners are each 
dependent on the other for their respective completion. Because safety proper­
ties are properties that can be falsified by finite observations (see for instance 
[Zwiers89]), our basic theory is based on a finite trace model. 

Based on the formalism of Chapter 3, a compositional refinement theory is 
presented in Chapter 4. This theory is a result of research carried out together 
with Jos Coenen [SC94] . 

In Chapter 5 we introduce time into the formalism, to allow reasoning about 
properties of fault tolerant real-time systems. Then, the above mentioned char­
acterization of safety and liveness properties is no longer appropriate (as indeed 
mentioned in [Lamport83]). Consider, for instance, a transmission medium that 
accepts messages via a channel in and relays them to a channel out. The real­
time property "after a message is input to the medium via in it is output via 
out within 5 seconds" is a safety property, because it can be falsified 5 seconds 
after an in communication. Note, however, that it expresses that something 
must happen. Hence, by adding time, the class of safety properties also in­
cludes real-time properties, and, consequently, the importance of liveness and 
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fairness decreases. We replace the underlying finite trace model by a model in 
which the timed, infinite traces of a process are decorated with timed refusal 
sets. This work is based on joint research with Rob Gerth [SG93]. Besides 
real-time properties, the extended model allows liveness issues and deadlock to 
be considered. 

The formalism of Chapter 5 assumes that each process has its own proces­
sor. But complex programs are typically executed on systems whose limited 
resources are shared according to some scheduling discipline. In such a case 
the order of execution is determined on the basis of the priorities of the various 
actions. In the final stage of the development of our proof theory the model 
is generalized to facilitate multiprogramming. To do so, the blocking and de­
blocking related to a synchronous communication are made explicit, and the 
infinite traces mentioned above are further decorated with timed histories of 
both the processor occupation and the outstanding requests. The resulting the­
ory, which will appear in [Schepers94], does not require priorities to be fixed. 
In particular, it is possible to specify how priorities depend on the time already 
spent waiting for the processor. 

Conclusions and suggestions for future research appear in Chapter 7. 



Chapter 2 

How to Characterize the 
Effects of Faults and 
Schedulers 

A number of formal methods for fault tolerance have been proposed in the 
literature. Much of the, by now classical, work on the formalization of fault 
tolerance is state based. In the state machine approach the output of several 
instantiations of a program, each running on a distinct processor, is compared. 
Lamport's original description [Lamport78] dealt with fault-free environments 
only; for a survey of the efforts to generalize the state machine approach to deal 
with faults see [Schneider90] . A well-known application of the state machine 
approach is the implementation of fail-stop processors [SS83]. 

In layered architectures the exception handling concept (see e.g. [LA90]) 
is popular: a layer that provides service to some upper level layer raises an 
exception to signal that upper level layer that a problem occurred as a result 
of which the requested service could not be provided. The upper level layer 
contains handlers which deal with such exceptions. In a proof system based 
on Hoare triples (see [Hoare69]) one reasons about correctness formulae of the 
form {p}S{q} where Sis a program, and p and q are assertions expressed in 
a first order language. Informally, the triple {p}S{q} means that if execution 
of S is started in a state satisfying p, and if S terminates, then the final state 
satisfies q. Cristian [Cristian85] uses Hoare logic to make the normal and ex­
ceptional domain of execution explicit by partitioning the initial state space 
into disjoint subspaces for normal and exceptional behaviour, and providing a 
separate specification for each part. Started in the normal subspace the pro­
gram terminates normally, but started in the exceptional subspace the program 
terminates exceptionally, that is, by raising an exception. 

7 
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Example 2.1 (Cristian's approach) Consider the following procedure to 
read the contents b of the block starting at address a on disk d 

proc READ (d: disk; a: address; b: block; u: bool); 

where return code u (meaning: undefined block) is true if, and only if, the 
block starting at address a has a parity error. Under the convention that only 
the addresses of the blocks that have no parity error are contained in domain 
dom(d) of disk d a successful read operation can be specified as follows: 

{ a E dom(d) } READ (d, a, b, u); { b = d(a) /\ -,u } 

and a non-successful read operation as follows: 

{ a (j_ dom(d) } READ (d, a, b, u); { u } 

Save processor crashes, only the effects of the faults that occurred before 
the invocation of the program are accounted for. Note that, in terms of Exam­
ple 2.1, the specification {true} READ (d, a, b, u); { b = d(a) V u} is trivially 
satisfied by any process that just raises the exception. In [Coenen93J deontic 
logic is proposed to overcome this lazy programmer paradox. All the same an 
exception-based approach is inadequate to reason about the behaviour of the 
bottom layer: a corrupted message, for instance, just appears at the physical 
interface. 

In the formalisms of [JH87, JMS87] the execution of a process restarts as 
soon as a fault occurs. Hence, a failure prone execution of a process P consists 
of a number of partial executions of P that end in failure followed by a final and 
complete execution. The incorporation of checkpointing and backward recovery 
(see Section 1.1) into a program has been investigated in [LJ93, PJ93J. 

Processes that crash are investigated in [Peleska91]. More precisely, a dual 
computer system is proved correct. Such a system contains two replicas of the 
crash prone process, called master and slave. The slave shadows the master 
and takes over if and when the master crashes. 

The formalism proposed in [CH93] allows a program to exhibit arbitrary 
behaviour after a fault occurs. This approach results in conditional specifica­
tions: a process behaves according to its specification as long as no faults have 
occurred. Fault tolerance is proved by virtue of the system's fault hypothesis 
and the available redundancy. A similar approach can be found in [CdeR93]. 
These approaches are not satisfactory in case the effects of faults cannot be 
masked. For instance, when verifying a system or protocol which employs an 
error detecting code (see Section A.4) it is crucial to be able to express that 
even in case of corruption one valid codeword is not changed into another. 

In (Weber87) Weber sketches a formalism which takes the effects of faults 
on the process behaviour into account. 
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Example 2.2 (Weber's approach) The events from which the histories of 
a file system are constructed are 'read-file data' and 'write-file data'. The 
history (write-file contents, read-file contents) is obviously a valid trace of the 
file system. The history (write-file contents, read-file garbage), where contents 
and garbage are different, should not be an admissible trace of the system. 
Using the designated symbol 't' to denote the occurrence of a fault, the history 
(write-file contents, t, read-file garbage), on the other hand, is again a valid trace 
of the system. 1:::. 

In [Nordahl93] the normal behaviour of a system S (characterized by the 
specification S original) is distinguished from it's exceptional behaviour ( charac­
terized by the 'failure mode' s, ). However, unlike what one would expect in a 
compositional framework, s, cannot be derived from Soriginal· 

In this thesis we investigate how, based on a particular failure hypothesis, 
the set of behaviours that characterize a process must be expanded. To this end 
a failure hypothesis is formalized as a relation between the normal behaviour 
and the acceptable behaviour. Hence, in case we allow faults the distinction 
between normal and exceptional behaviour disappears. This approach results 
in a proof rule by which a specification of the acceptable behaviour can be. 
obtained from the specification of the normal behaviour and a predicate char­
acterizing the failure hypothesis. The method allows a modular treatment of 
acceptable behaviour: the acceptable behaviour of the process P under the 
failure hypothesis x is the normal behaviour of the failure prone process Plx 
(read "P under x"). 

In this thesis we formalize the behaviour of a process by using traces, or 
histories, which record the communications along the observable channels of 
the process. Abstracting from the timing of computations, we represent the 
synchronous communication of value von channel c by a pair (c,v). An un­
timed history his a finite sequence ({c1 ,vl), . .. ,{cn,vn)) . Then, a possible 
history h of the process Square, which alternately inputs an integer via the 
observable channel in and outputs its square via the observable channel out 
(see Figure 2.1), may be ((in, 1), (out, 1), (in, 3), (out, 9)). 

______ z_·n ____ ~,~~----o_u_t ____ • 

Figure 2.1: Process Square 

Under the hypothesis that Square's output channel may transiently be stuck 
at zero, we might observe, instead of the trace ((in, 1 ), (out, 1 ), (in, 3), (out, 9)), 
the trace ((in, 1), (out, 1), (in, 3), (out, 0)) . However, we should not observe the 
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sequence ((in, 1), (out, 1), (in, 3), (out, 15217)) . Then, a natural way to abstract 
from the precise nature and occurrence of faults is to formalize a failure hypoth­
esis as a relation between the set of normal behaviours and the set of acceptable 
behaviours. To do so, a failure hypothesis is characterized by a predicate, ex­
pressed in a first order assertion language, whose free variables are hand hold · 

The interpretation is such that hold denotes a normal behaviour, whereas h 

denotes a behaviour that is acceptable with respect to the failure hypothesis 
under discussion. 

The relation StuckAtZero corresponding to the stuck at zero hypothesis 
mentioned above is characterized by the fact that 

• with respect to the number of in and out communications hold and h are 
equally long, 

• the order of in and out communications as recorded by hold is preserved 
by h, 

• the ith input value as recorded by h equals the ith input value as recorded 
by h old , and 

• the ith output value as recorded by h equals the ith output value as 
recorded by hold, or it is equal to zero. 

Example 2.3 (Stuck at zero) The before mentioned relation StuckAtZero 
relates, for instance, trace hold= ((in,1),(out,1),(in,3),(out,9)) to trace 
h = ((in,1),(out,1) , (in,3),(out,O)). Notice that StuckAtZero does notre­
late, for instance, trace hold= ((in,1),(out,1),(in,3),(out,9)) and trace h = 
((in, 1), (out, 1), (in , 3), (out, 15217)) ~::,. 

Multiprogramming leads to a new notion of acceptability, as executions 
may be interrupted in favour of higher priority tasks and continued later. If we 
consider the behaviour of a program in case each process has its own proces­
sor to be its normal behaviour, then a scheduling strategy can be regarded as 
just another transformation between this normal behaviour and the behaviour 
that is acceptable with respect to that strategy in case the processor has to be 
shared. In essence, scheduling introduces breaks in an execution that would not 
exist in case each process has its own processor. However, different scheduling 
strategies do not necessarily lead to different behaviours. The resulting be­
haviour depends namely primarily on the process behaviour and the processes 
the processor is shared with . The fact that a scheduling strategy may introduce 
breaks can sufficiently be accounted for by a straightforward extension of the 
definition of the normal behaviour. When composing behaviours we then have 
to make sure a particular scheduling strategy is followed . 



Chapter 3 

Fault Tolerant Distributed 
Systems 

It is difficult to prove the properties of a distributed system. It requires an 
extra effort to prove the properties of a distributed system composed of failure 
prone processes, as such proofs must take into account the effects of faults 
occurring at any point · in the execution of the individual processes. In this 
chapter we present our basic formalism for fault tolerance in which we model 
the effects of faults on the externally visible input and output behaviour of a 
process and let its syntactic interface remain unchanged. 

To support top-down program design we wish to reason with the specifi­
cations of processes without considering their implementation and the precise 
nature and occurrence of faults in such an implementation. This implies that 
we aim at a compositional proof theory for fault tolerant distributed systems. 

Typically, the correctness of a fault tolerant distributed system does not de­
pend on its (initial) state: the system is initialized while communicating with 
its environment. We abstract from the internal states of processes and concen­
trate on the input and output behaviour that is observable at their interface. 
Especially, in this chapter we only describe the sequence of communications 
that are performed by the processes. In particular, we focus on the formaliza­
tion of fault tolerance in relation to concurrency. Also, we do not yet consider 
the timing of those communications and the enabledness of a process to com­
municate (so we do not yet reason about deadlock). In our proof theory we 
do not deal with the sequential aspects of processes and instead use a simple 
compositional formalism to verify properties of networks of processes. 

Our basic framework is restricted to the specification and verification of 
safety properties offault tolerant distributed systems. Safety properties are im­
portant for reliability because, in the characterization by Lamport [Lamport83], 
they express that "nothing bad will happen". Termination and divergence are 
not observable in our framework. Because we do not consider liveness proper-

11 
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ties, no fairness assumptions are needed. 
Given the classification of behaviour in Chapter 1, we investigate whether an 

existing compositional proof theory for reasoning about the normal behaviour 
of a system can be adapted to deal with its acceptable behaviour. To do 
so, we formalize a failure hypothesis as a relation between the normal and 
the acceptable behaviour of a system. Indeed, such a relation enables us to 
abstract from the precise nature and occurrence of a fault and to focus on 
any abnormal behaviour it causes. It is important to note that our goal is to 
examine whether it is possible to develop a compositional proof theory based 
on the idea of transforming behaviours; it is not our aim to find a logic to 
express failure hypotheses as elegantly as possible. 

We consider networks of processes that communicate synchronously via 
directed channels, each of which connects exactly two processes. Processes do 
not share variables. We express a property of a process by means of a first 
order trace logic, using a special variable h to denote the trace, also called 
history, of the process. Such a history describes the observable behaviour of 
the process by recording the communications along its visible channels. For 
instance, a possible history of buffer B is ((in, 1), (out , 1), (in,3), (out,3)}. To 
express that a process P satisfies a safety property ¢ we use a correctness 

· formula of the form P sat ¢ . 
Based on a particular failure hypothesis, the set of behaviours that char­

acterize a process is expanded, as has been argued in Chapter 2. To keep 
such an expansion manageable, the failure hypothesis of a process P is for­
malized as a predicate, whose only free variables are hold and h, representing 
a relation between the normal and acceptable histories of P . The interpre­
tation is such that hold represents a normal history of process P, whereas h 
is an acceptable history of P with respect to the failure hypothesis under dis­
cussion. For a predicate x representing a failure hypothesis, we introduce the 
construct Pix (read "P under x") to indicate execution of process P under 
the assumption X· This construct enables us to specify failure prone processes. 
Consider again buffer B . Under the hypothesis that, due to faults, values in 
the buffer are corrupted, which is formalized by some failure hypothesis predi­
cate Cor, the history ((in, 1), (out, 1), (in, 3), (out, 3)) may be transformed into 
the history ((in, 1), (out, 1), (in, 3), (out, 5)). Then, we would like to prove that 
failure prone processBI Cor still satisfies the property that "the number of out 
communications is equal to or less than the number of in communications". 

We define the trace semantics of a failure prone proc~ss FP, and define 
when correctness formulae of the form FP sat¢ are valid. We present a proof 
theory to verify that a system tolerates the abnormal behaviour of its com­
ponents to the extent expressed by the failure hypothesis. The proof theory 
is compositional in the sense that it allows reasoning with the specifications 
satisfied by failure prone processes while ignoring their implementation details. 
Further, our approach supports a modular treatment of normal and acceptable 
behaviour. The usefulness of our method is illustrated by applying it to a triple 
modular redundant system and the alternating bit protocol, where, indeed, we 
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only use the specifications of the components. Finally, we show that our proof 
theory is sound and obtain a completeness result by establishing preciseness 
preservation (see (WGS92)) . 

This chapter is organized as follows. Section 3.1 introduces the program­
ming language. In Section 3.2 we present the computational model. Section 3.3 
defines the denotational semantics. In Section 3.4 we present the assertion lan­
guage and associated correctness formulae. Section 3.5 presents a proof system 
for the language of Section 3.1. In Section 3.6 we incorporate failure hypotheses 
in our formalism. Section 3. 7 presents a compositional network proof theory 
for fault tolerant distributed systems. We illustrate our method by applying 
it, in Section 3.8, to a triple modular redundant system, and, in Section 3.9, to 
the alternating bit protocol. In Section 3.10 we prove that the proof theory of 
Section 3.7 is sound and relatively complete. 

3.1 Programming language 

In this section we present a programming language, inspired by CSP (Hoare78] 
and occam (INMOS88], which can be used to define networks of processes 
that communicate synchronously via directed channels. Channels always con­
nect exactly two processes, that is , two different processes do not both use 
some channel as input channel or output channel. A channel via which a pro­
cess communicates with its environment is called an external channel of that 
process. When two processes are composed in parallel their joint channels are 
said to be the internal channels of that composite process. After composing 
processes we usually no longer wish to observe the internal communications. To 
conceal communications along internal channels these channels can be hidden. 

Let N denote the set of natural numbers (including 0). Let VAR be a 
nonempty set of program variables, CHAN a nonempty set of channel names, 
and let VAL be a denumerable domain of values (VAL:;;? lN). The syntax of our 
programming language is given in Table 3.1, where n E 1N, n ~ 1, JL E VAL, 
x E VAR, f E VALn -+ VAL, c E CHAN, and cset ~CHAN. 

Table 3.1: Syntax of the programming language 

Expression e 

Boolean Expression b 

Guarded Command G 

Process P 

JL I X I f(eJ, ... ,en) 

e1 = e2 I e1 < e2 I •b I b1 V b2 

[ Uf::1 bi -+Pi 1 
skip I x := e I c!e I c?x I P1 ; P2 
G I * G I P1 II P2 I P \ cset 
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Informally, the statements of our programming language have the following 
meaning: 

Atomic statements 

• skip terminates without any effect. 

• The assignment x := e assigns the value of expression e to the variable x. 

• The output statement c!e is used to send the value of expression e on 
channel c as soon as a corresponding input command is available. Since 
we assume synchronous communication, such an output statement is sus­
pended until a parallel process executes an input statement c?x. 

• The input statement c?x is used to receive a value via channel c and assign 
this value to the variable x. As for the output command, such an input 
statement has to wait for a corresponding partner before a (synchronous) 
communication can take place. 

Compound statements 

• P1 ; P2 indicates sequential composition: first execute P1 , and continue 
with the execution of P2 if and when P1 terminates. 

• Guarded command [ Oi:: 1 b; -t P; ]. If none of the Boolean expressions b; 
evaluates to true (i.e., is open) then this guarded command terminates. 
Otherwise, non-deterministically select one of the b; that evaluates to 
true and execute the corresponding statement P;. 

• Iteration * G indicates repeated execution of guarded command G as long 
as at least one of the guards is open. When none of the guards is open 
* G terminates. 

• P1 II P2 indicates the parallel execution of the processes P1 and P2 . This 
means that P1 and P2 execute independently except that the communi­
cations along their joint channels require the simultaneous participation 
of both P1 and P2. . 

• P \ cset hides communications along the channels from a set cset of in­
ternal channels. 

For a guarded command G = [0i=1b; -t P;] we define ba = b1 V . .. V bn. 
The set of variables occurring in process P, notation var(P), is defined in 
Definition B.l. The set of visible, or observable, input channels of process P, 
denoted in(P), is defined in Definition B.2; the set of observable output channels 
of process P, notation out(P), is defined in Definition B.3. 

Definition 3.1 (Observable channels of a process) The set chan(P) of 
process P's observable channels is defined by chan(P) = in(P) U out(P) . <> 
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Example 3.2 (Observable channels of a process) 

chan(*[true ~ c?x; [x<O-+d!O 0 x~O~d!l]]) 

3.1.1 Syntactic restrictions 

15 

{c,d}. 

To guarantee that channels are unidirectional and point-to-point, that is, con­
nect exactly two processes, we have the following syntactic constraints (for 
arbitrary expressions e, e1, and e2, for any n E N, c,c1,c2 E CHAN, and 
x, XI, X2 E VAR): 

• For the process P1 ; P2 we require that if PI contains c!e then P2 does not 
contain c?x, and if P1 contains c?x then P2 does not contain c!e, that is, 
in(PI) n out(P2) = 0 and in(P2 ) n out(PI) = 0. 

• For the Boolean guarded command [ Df=1 b; ~ P;] we require that if P; 
contains c!e then Pj does not contain c?x, that is, out(Pi) n in(Pj) = 0, 
for all i, j E { 1, ... , n}, i =f. j. 

• For P1IIP2 we require that if P1 contains c!e1 then P2 does not contain 
c!e2, and if P1 contains c?x1 then P2 does not contain c?x2. Equivalently, 
in(PI) n in(P2) = 0 and out(P1) n out(P2) = 0. 

To avoid programs such as (c?x)\ {c}, which would be equivalent to a random 
assignment to x, we require that only internal channels are hidden. 

• For P\ cset we require that cset ~ in(P) n out(P). 

Furthermore, we do not allow parallel processes to share program variables. 

• For P1IIP2 we require that var(PI) n var(P2) = 0. 

3.2 Model of computation 

Since we abstract from the timing of computations, we represent a synchronous 
communication of value IL E VAL along channel c E CHAN by a pair (c, /L}, 
and define: 

(Channel) ch((c, IL)) = c; 

(Value) val( ( c, IL)) = IL· 

To denote the behaviour of a process P we use a history () which is a fi­
nite sequence (also called a trace) of the form ((c1,jLI}, ... , (cn,/Ln)} of length 
len(O) = n, where n E lN, c; E chan(P), and /Li E VAL, for 1 ~ i ~ n. Such 
a history denotes the communications of P along its observable channels up to 
some point in an execution. 
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Example 3.3 (History) During some execution of process Square, which al­
ternately inputs an integer via the observable channel in and outputs its 
square via the observable channel out, we may observe the traces 0, ( (in, 1)) , 
((in, 1), (out, 1)), ((in, 1), (out, 1), (in,3)) , ((in, 1), (out, 1), (in,3), (out, 9)) and 
so on . 

Let () denote the empty history, i.e. the sequence of length 0. The concatena­
tionoftwohistoriesfh = ((cl , J.ll) , . . . ,(ck,J.lk)) and82 = ((dl,vl), ... ,(d!,vl)), 
denoted 0/'82 , is defined as ((c1 ,J.Ll), .. . ,(ck,J.Lk),(dl,vl), . .. ,(d~,vl)) . We use 
811 (c,J.L) as an abbreviation of 8"((c,J.L)). 

Definition 3.4 (Traces} Let TRACE be the set of traces, that is, the small­
est set such that 

• 0 E TRACE , and 

• if{) E TRACE, c E CHAN, and J.L E VAL then 811 (c,J.L) E TRACE . 0 

Definition 3.5 (Projection} For a trace 8 E TRACE and a set of channels 
cset ~ CHAN, we define the projection of {) onto cset, denoted by {) l cset, as 
the sequence obtained from 8 by deleting all records with channels not in cset . 
Formally, 

{ 
0 if{)= o. 

8l cset = Oo l cset if{) = Oo"(c, J.L) and c ¢ cset, 
(00 l cset)"(c, J.L) if{)= 8o"(c, J.L) and c E cset . 

0 

Example 3.6 (Projection) 

((a, 3),(c,4),(a,2),(a,3))l{a} = ((a,3),(a,2),(a, 3)) . 

We abbreviate h l { c} as h l c. 

Definition 3. 7 (Hiding) Hiding is the complement of projection. Formally, 
the hiding of a set cset of channels from a trace 8 E TRACE, notation 8\ cset, 
is defined as 

8\cset = 8l(CHAN- cset). 

Example 3.8 (Hiding) 

((a,3),(c,4),(a, 2),(a,3))\{a} = ((c,4)). 
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Definition 3.9 (Channels occurring in a trace) The set of channels oc­
curring in a trace(}, notation chan(fJ), is defined by 

chan(fJ) = {c E CHAN I fJi{c} i= ()}. 
0 

Notice that fJT cset = (} if, and only if, chan( fJ) ~ cset, and fJT{ c} = (} if, and 
only if, c fl. chan(fJ). 

Definition 3.10 (Length of a trace) The length of trace(}, notation len(fJ), 
is defined by 

• len(())= 0, and 

• len ( (}11 
( c, JL)) = len ( (}) + 1. 0 

Definition 3.11 (Prefix) The trace (}1 is a prefix of a trace (}2 , denoted by 
fJ1 ~ fJ2, if, and only if, there exists a trace (}3 such that fJ1 11fJ3 = fJ2. 0 

If fJ1 ~ fJ2 and fJ1 i= fJ2 then fJ1 is a strict prefix of (}2, notation (}1 -< (}2. 

3.3 Denotational semantics 

In semantics, one is concerned with defining the meaning of programs in terms 
of a mathematical model. When developing a compositional proof system a 
convenient starting point is the formulation of a denotational, and hence com­
positional, semantics. In such a semantics the meaning of a statement is defined 
without any information about the environment in which it will be placed. Con­
sequently, the semantics of a statement in isolation characterizes all potential 
executions of the statement, regardless of its environment. When composing 
statements, the semantic operators select the appropriate execution sequences. 

In this section we define a denotational semantics for the programming 
language of Section 3.1 in terms of the finite trace model presented in the 
previous section. 

Definition 3.12 {States) Define the set STATE of states as the set of map­
pings a which map a variable x E VAR to a value a(x) E VAL. 0 

Thus, a state a assigns to each program variable x a value a(x). For simplicity 
we do not make a distinction between the semantic and the syntactic domains 
of values. 

In the sequel we assume that we have the standard arithmetic operators +, 
-, and x on VAL. Define the value of an expression e in a state a, denoted by 
£[e](a), inductively as follows: 

• £[p.](a) = JL, 

• £[x](a) = a(x), and 
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• £[J(el, ... , en)](O") = j(£[e1D(O"), ... , £[en](O")), 

where the function f on the right-hand side of the equality sign is the 
interpretation of the function f on the left-hand side. 

We define when a Boolean expression b holds in a state O", which we denote 
by B[b](O"), as 

• B[e1 = e2](0") if, and only if, £[e1](0") = £[e2](0"), 

• B[e1 < e2](0") if, and only if, £[e1](0") < £[e2](0"), 

• B[•b](O") if, and only if, not B[b](O"), and 

• B[b1 V b2](0") if, and only if, B[b1](0") or B[b2](0"). 

Using the finite traces that have been defined in Section 3.2 we can denote 
the finite, i.e., terminating, computations of a program, and approximate its 
infinite executions. This is justified since [Scott70] in this chapter we only deal 
with safety properties (see for instance [Zwiers89]), and since (the semantics of) 
our programming language is such that an infinite trace represents a behaviour 
of the process if, and only if, all its prefixes do. 

Example 3.13 Consider the process P1 = * [x > 0 -+ c!1; x := x-1]; d!O. Be­
cause the variable x is not initialized, the traces that can be observed up to any 
point in the execution of P 1 are(), ((d, 0)), ((c, 1)), ((c, 1), (d, 0)), ((c, 1), (c, 1)), 
( ( c, 1), ( c, 1), ( d, 0)), etc. In this respect the process P1 is equivalent to the pro­
cess P2 = * [x > 0 -+ c!1; x := x- 1]; [true -+ d!O U true -+ skip]. On the 
basis of these observations, the liveness property "eventually there is a com­
munication on d" cannot be verified. D. 

Example 3.14 Consider the process 

P = [true-+ *[X> 0-+ c!1; x := x- 1]; *[true-+ d!OJ Utrue-+ *[true-+ c!lJI. 

Under the fairness condition "in an infinite execution communication on c oc­
curs infinitely often" the infinite executions of P satisfy the safety property 
"no communication on d occurs". This cannot be conclude from the finite 
approximations. D. 

Consequently, we can deal with so-called reactive processes (see [HP85]) that 
are typically non-terminating and that have an intense interaction with their 
environment. To reason about the input and output behaviour of both termi­
nating and non-terminating processes, we want to observe, for any execution 
of a process P, 

• the initial state of P, 

• the sequence of communications performed by P, and, 

• for a terminating computation of P, the final state of P. 
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In general, the semantics of a program is a set of denotations representing 
all finite observations of the program during its possible executions. At any 
point before termination we only observe the history of communications that 
have been performed by the process, using a special state .l (read "bottom") 
to indicate that the program has not yet terminated. 

Let STATE1. = STATE U {.l}. The semantic function M assigns to a 
process P a set M[PD of triples (uo,B,u) with uo E STATE, BE TRACE, 
and u E STATE1.. Informally, a triple (u0 ,B,u) E M[P] has the following 
meaning: 

• if u f. .l then it represents a terminating computation which has per­
formed the communications as described in B and terminates in state u, 
and 

• if u = .l then it represents a point in a computation of Pat which P has 
performed the computations as described in B but has not yet terminated. 

Since we abstract from the timing of actions we cannot distinguish between 
an unfinished and a deadlocked computation (there is no way of telling whether 
one has been observing the process infinitely long). Thus, the semantics of a 
program is a prefix closed set of denotations in the sense that if ( uo, B, u) is an 
element of the semantics of a program then so is ( u0 , B, .l), and, furthermore, 
if (u0 , B, .l) is an element of that semantics then so is (uo, 8, .l), for all 8 ~ B. 
Below we define the meaning of an atomic process as the smallest prefix closed 
set containing its terminating executions. 

Definition 3.15 (Prefix closure) For a given set 0 consisting of triples from 
STATE x TRACE x STATE1., the operator PC expresses its prefix closure. 

PC(O) = 0 U { (u0 ,8,.l) I there exists a (uo,B,u) E 0 such that 8 ~ B } . 

0 

Example 3.16 {Prefix closure) 

PC( {(u0 , ((c, 1)}, u)}) = {(uo, (), .l), (uo, ((c, 1)}, .l), (uo, ((c, 1)}, u)}. 

Definition 3.17 (Variant of a function) The variant of a function I with 
respect to a variable x and a value {), notation (f : x f-+ {)), is defined below. 
The variant of an undefined function is again undefined: 

• if I = .l then (f : x f-+ {)) = .l, and 

{ 
{) if 

• if I f. .l then (f: x f-+ iJ)(y) = l(y) if ~: ~: 
0 
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Example 3.18 (Variant of a state) Consider a state a such that a{x) = 3 
and a(y) = 4. Then (a: x ~----+ 7)(x) = 7, but still (a: x ~----+ 7)(y) = 4. . !::. 

The semantics of a process P can now be defined inductively as follows: 

• A skip statement does not communicate and terminates with a final state 
that is equal to its initial state. 

M[skipD = PC ( { (ao,(),ao) I ao ESTATE}). 

• The assignment x := e does not communicate and terminates with a final 
state that is equal to its initial state, except that the value of variable x 
is replaced by the value that e had in its initial state. 

M[x := eD = PC ( { (ao, (), (ao : x ~----+ £[eD(ao))) I ao E STATE } ). 

• A computation of the output statement c!e communicates the value that e 
had in its initial state and terminates with a final state that is equal to 
that initial state. Note that, because the semantics is prefix closed, the 
observations of a deadlocked output statement are included automati­
cally. 

M[c!eD = PC ( { (ao, ((c, £[eD(ao))), ao) I ao E STATE } ). 

• A computation of the input statement c?x communicates a value and 
terminates with a final state that is equal to its initial state, except that 
the value of variable x is replaced by the communicated value. The 
semantics contains a triple for each value that can be received. Again, 
the observations of a deadlocked input statement are generated by the 
application of PC. 

M[c?xD = PC ( { (ao,8,a) I ao ESTATE and there exists a value 
JL E VAL such that 8 = ((c, JL)) and 
a = (ao : x ~----+ JL) } ). 

• An execution of P1 ; P2 is a non-terminating execution of Pt or a termi­
nating execution of P1 followed by some execution of P2 • 

M[Pt; P2D = { (ao,8,J.) I (ao,8,J.) E M[PtD} 
U { ( a 0 , 8/'82, a) I there exists a a1 f. J. such that 

(ao,8t,ad E M[Pt] and 
(a1,82,a) E M[P2] }. 
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• If in the initial state no guard is open, i.e., true, a Boolean guarded 
command terminates with final state equal to its initial state. Otherwise, 
the process corresponding to one of its open guards (non-deterministically 
chosen) is executed. 

M[ [Uf=1 bi-+ Pi]] = PC ( { (uo, (), uo) I --.B[bl V ... V bn](uo) } ) 
U PC ( { (u0 ,ll,u) I there exists a k E {1, . .. ,n} 

such that B[bk](uo) and 
(uo,O,u) E M[Pk]} ). 

• If no guard is open in the initial state, * G terminates with a final state 
equal to its initial state. Otherwise, * G consists of one or more executions 
of the body G, each starting in a state in which at least one of the guards 
is open. 

M[*G] =PC ( { (uo,O,u) I there exists a k E 1N and a list (uo,lh,ul), 
.. . , (CTk-1, Ok, O"k) SUCh that 0 = 0/' ... "fh, 
u = CTk, and for all i E {0, ... , k- 1 }: 

CTi "# .l, B[ba](ui), 
(ui,Oi+l,ui+I) E M[G], 

and if O"k "# .l then B[--.ba](uk) } ). 

• Recall that the semantics of an input statement in isolation includes a 
triple for all possible values that could have been received. When two pro­
cesses are composed in parallel, the triples that correspond to the actual 
values transmitted on the joint channels are selected. Since communica­
tion is synchronous a trace 0 of the process P1IIP2 has the property that 
or chan( PI) and or chan(P2) match traces of P1 and P2, respectively. Al­
though necessary, this restriction is not sufficient as it allows 0 to have 
records (c, JL) for arbitrary c E CHAN - chan(P1 II P2) and arbitrary 
JL E VAL. 

Example 3.19 Consider processes P1 = a!3; b!4 and P2 = b?x; c!(x+1). 
Consequently, chan(P1) = {a, b} and chan(P2) = {b, c}. Consider trace 
0 = ((a, 3), (b, 4), (d, 3), (c, 5)). Although or chan(PI) = ((a, 3), (b, 4)) is 
an admissible trace of P1 and or chan(P2) = ((b, 4), (c, 5)) is a possible 
sequence of communications of P2, 0 cannot be a trace of P1 II P2. fc,. 

We add the condition that 0 =or chan(P1II P2). Note that a computation 
of P1 II P2 does not terminate until both P1 and P2 have terminated. 
Since P1 and P2 do not share variables, the final state of an execution of 
P1 11 P2 is a straightforward combination of the final states of the respective 
executions of P1 and P2. 
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M[P1II P2D = { (17o,0,17) I fori= 1,2 there exist Oi and l7i such that 
(17o,Oi,l7i) E M[PiD, 
if 171 = l. or 172 = l. then 17 = l., and, 

otherwise, for all x E VAR, 

{
17i(x) if x E var(Pi), 

~7(x) = 17o(x) if x f/. var(P1 II P2), 
or chan( Pi) = oi, and or chan(Pl II P2) = 0 }. 

• Hiding of (internal) channels causes communications along those channels 
to be no longer observable but does not affect the internal state of a 
process. 

M[P\csetD = { (17o,O\cset,17) I (17o,0,17) E M[PD }. 

Example 3.20 (Meaning of a process) Consider (a!3; b!4)ll(b?x; c!(x+1)). 
We have 

M[a!3] = PC({(17o, ((a,3)),17o) I 17o ESTATE}) 

and 

M[b!4] = PC({(17o, ((b,4)),17o) I 17o ESTATE}), 

from which we easily obtain 

M[a!3; b!4] =PC( {(17o, ((a, 3), (b, 4)), 17o) I 17o E STATE}). 
Furthermore, 

M[b?xD = PC({(170 ,0,17) I 17o ESTATE and there exists a value 
J.L E VAL such that 0 = ((b, J.L)) and 
17 = (17o: x 1---+ J.L)}) 

and 

M[c!(x + 1)D =PC( {(17o, ((c, 17o(x) + 1)), 17o) I 17o ESTATE}), 

or, equivalently, 

M[c!(x + 1)D = 

PC ({ .(((c, (17o(~ox:.: :)(J) + 1))) 
(17o : x 1---+ J.L) 

(17o : x 1---+ J.L~ E STATE}) , 

JJ,E VAL 

lead to 

M[b?x; c!(x + l)D = 

PC ({ (((b,J.L),(c,(17o :
17
: 1---+ J.L)(x) + 1))) 

( 17o : x 1---+ J.L) · 

17o E ~TATE}) , 

J.LE VAL 
that is, 

M[b?x; c!(x + 1)D = 
PC( {(17o, ((b, J.L), (c, J.L + 1)), (17o : x 1---+ J.L)) I 17o E STATE 1\ J.L E VAL}). 
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Consider a trace B with BT{ a, b} = ((a, 3), (b, 4)}, Bj{b, c} = ((b, J.L), (c, f..L + 1)), 
and Bj{a,b,c} =B. In this case f..L = 4, and hence B = ((a,3),(b,4),(c,5)). 
Since, obviously, x fl. var(a!3; b!4), we obtain 

M[(a!3; b!4) II (b?x; c!(x + 1))] = 
PC( {(uo, ((a, 3), (b, 4), (c, 5)), (uo : x ...... 4)) I uo E STATE}). D. 

Now we can abstract from the internal state of a process. 

Definition 3.21 (Traces of a process) The traces of a process P, notation 
H[P], are defined as follows: 

H[P] { B I there exist uo and u such that ( u0 , B, u) E M [P] } . 

Example 3.22 (Traces of a process) 

1i[(a!3; b!4) II (b?x; c!(x + 1))] = { (), 
((a, 3)}, 
((a, 3), (b, 4)}, 
((a,3),(b,4),(c,5)} }. 

0 

The set H[P] represents the normal behaviour of the process P. In Section 3.6 
we determine the set 1i[Plx] representing the acceptable behaviour of P under 
the failure hypothesis x, that is, the normal behaviour of the failure prone 
process Plx. 

3.4 Assertion language and correctness 
formulae 

Assertions are used to express the properties of a program in terms of its 
observable quantities. Since we abstract from the internal state of a process 
and focus on the pattern of communications, the only observable quantity is 
the trace of the process. More precisely, an assertion is a logical function of 
the communication history of the process. In this thesis we specify the relation 
between a program P and an assertion ¢ by means of a so-called correctness 
formula of the form P sat ¢. Informally, such a correctness formula expresses 
that any sequence of communications which P may exhibit satisfies ¢. 

Similar to the semantic denotation of traces in Section 3.2, we use in as­
sertions communication record expressions such as (c,J.L), with c E CHAN and 
f..L E VAL. We have channel expressions, e.g. using the operator ch which 
yields the channel of a communication record, and value expressions, using the 
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operator val which yields the value of a communication record, and a number 
of n-ary functions which remain uninterpreted. To reason about natural num­
bers, integer expressions include the length operator len. We use the empty 
trace, 0, traces of one record, e.g. ((c, JI)}, as well as the concatenation op­
erator 11 and the projection operator l to create trace expressions. Further, 
for a trace expression texp and an integer expression iexp we use texp( iexp) 
to refer to record number iexp of texp, provided iexp is a positive natural 
number less than or equal to len( texp ). We write texp[iexp] to denote the 
prefix of texp that has length iexp. A special variable h is used to refer to 
the communication history of a process. Then, we can write specifications like 
c!2 sat hl {c} = 0 V hl {c} = ((c, 2)}. 

In assertions we furthermore use logical variables which serve as placeholders 
for arbitrary values. Let IVAR, with typical representatives i, j, k, l, and n, 
denote the set of logical value variables ranging over 1'1, let VVAR, with typical 
representative v, denote the set of logical value variables ranging over VAL, and 
let TVAR, with characteristic element s, be the set of logical trace variables 
ranging over TRACE. Assume that IVAR n VVAR = 0, IVAR n TVAR = 0, 
and VVARn TVAR = 0. 

The syntax of the assertion language is given in Table 3.2, with i E IVAR, 
c E CHAN, J1 E VAL, v E VVAR, J E VALn -+ VAL, s E TVAR, and 
cset ~ CHAN. An expression in the assertion language of Table 3.2 does not 
refer to program variables since we abstract from the internal state of a process. 

Table 3.2: Syntax of the assertion language 

Integer expression iexp 

Channel expression cexp 

Value expression vexp 

Record expression rexp 

Trace expression texp 

Assertion 

0 I 1 I i I iexp1 + iexp2 I iexp1 x iexp2 
len(texp) 

c I ch(rexp) 

J1 I v I iexp I val( rexp) 
f(vexp 1 , •.. ,vexpn) 

(cexp, vexp) I texp(iexp) 

s I h I 0 I (rexp} I texp1
11 texp2 

texplcset I texp[iexp] 

iexp 1 = iexp2 I iexp1 < iexp2 I 
cexp1 = cexp2 I vexp1 = vexp2 I 
vexp1 < vexp2 I texp1 = texp2 I 
<Pt 1\ <P2 I ·¢ I 3i · <P I 3v · ¢ I 3s · ¢ 

Syntactic Restriction For any occurrence of ( ( cexp, vexp)} in an assertion 
we require that the term h does not appear in value expression vexp. The 
reason for this restriction will become clear after Lemma 3.51. 
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Definition 3.23 (Abbreviations) 

• ch(cexp, vexp) = ch((cexp, vexp)). 

• val(cexp, vexp) = val((cexp, vexp)). 

• texp l cexp = texp l{ cexp} . 

• rexp1 = rexp2 = ch(rexp1 ) = ch(rexp2 ) 1\ val(rexp1 ) = val(rexp2 ). 

• texp \ cset _ texp l( CHAN - cset). 

• last ( texp) = texp (len ( texp)). 

• texp1 ~ texp2 = 3s · texp/'s = texp2 . 

This expresses that texp1 is a prefix of texp2 . 

• texp1 ~n texp2 = 3s · len(s) ~ n 1\ texp/'s = texp2 . 

This denotes that texp1 is a prefix of texp2 which is at most n records 
shorter. 

• texp 1 -< texp2 = texp 1 ~ texp2 1\ texp 1 f. texp2 • · 

This denotes that texp 1 is a strict prefix of texp2 • 

• texp 1 -<n texp2 = 3s · 1 < len(s) ~ n 1\ texp/'s = texp2 . 

This expresses that texp 1 is a strict prefix of texp2 which is at most n 
records shorter. 

• texp 1 ~ texp2 = 3s · len(s) = len( texp 1 ) 

1\ Vi· 1 ~ i < len(s) -+ val(s(i)) < val(s(i + 1)) 
1\ Vi· 1 ~ i ~ len(s) -+ texp2 ( val(s(i))) = texp 1 (i). 

This expression denotes that texp1 is a (not necessarily contiguous) sub­
sequence of texp2 (observe that it implies that len( texp1 ) ~ len( texp2 )). 

• Val(texp 1 ) ~ Val(texp 2 ) = Vi· 1 ~ i ~ len(texpd 
-+ val(texp 1 (i)) = val(texp2(i)). 

This expresses that the sequence of values in the trace texp1 is a prefix 
of the sequence of values in the trace texp2 • 

• Val(texp 1 ) ~n Val(texp2 ) = 0 ~ len(texp2 )- len(texp1 ) ~ n 
1\ Val(texp 1 ) ~ Val(texp2 ) . 

This expression denotes that the sequence of values in the trace texp1 is 
a prefix of the sequence of values in the trace texp2 , that the trace texp2 

is at least as long as the trace texp 1 , and that the trace texp1 is at most 
n records shorter than the trace texp2 . <> 
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Furthermore, we use the standard abbreviations </J1 V </J2 = -.( -.<!Jl /1. -.<!J2), 
and <Pt ---+ <P2 = -.<!Jl V </J2 · Also, for natural numbers x and y, we use the 
relations x ~n y and x <n y to denote that 0 ~ y - x ~ n and 0 < y - x ~ n, 
respectively. 

Example 3.24 (Medium) Consider the medium M that accepts messages 
via in and delivers them via out in first-in first-out order. To specify that M 
has a capacity of one message, we write 

M sat Val(hfout) j 1 Val(hfin). 

Next we define the meaning of assertions. To interpret the logical variables 
of IVAR U VVAR U TVAR we use a logical variable environment 'Y· This 
environment maps a logical value variable i to a value 1( i) E 1N, a logical value 
variable v to a value 1(v) E VAL, and a logical trace variable s to a trace 
1(s) E TRACE. An assertion is interpreted with respect to a pair (8,1), where 
trace B gives hits value. We use the special symbol f (read "undefined") to deal 
with the interpretation of texp( iexp) where index iexp is not a positive natural 
number, or if it is, is greater than the length of trace texp. The value of an 
expression is undefined whenever a subexpression yields f. We define the value 
of an integer expression iexp in the trace B, and an environment 1, denoted by 
I[iexp](B, 1), as yielding a value in 1N U { f}; the value of a channel expression 
cexp in the trace B, and an environment 1, denoted by C[cexp](B, 1), as yielding 
a value in CHAN U { f }; the value of a value expression vexp in the trace B, and 
an environment 1, denoted by V[vexp](B,1), as yielding a value in VALU { f}; 
the value of a record expression rexp in the trace B, and an environment 1, 
denoted by R[rexp](B, 1), as yielding a value in CHAN x VAL U { f}; and the 
value of a trace expression texp for trace(}, and an environment 1, denoted by 
T[texp](B, 1), as yielding a value in TRACE U { f}. 

• I[O](B, 1) = 0; 

• I[l](B, 1) = 1; 

• I[i](B,1) = 'Y(i); 

• I[iexp 1 + iexp2](B,1) = 

{ ;(;""1', )(9, 1) + I[;""J'2)(9, 1) 

if I[iexp 1](B, 1) = f or 
I[iexp 2 ](B,1) = f, 
otherwise; 
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I[l (t )~(O ) { f if T[texpD(O,'Y) = f, 
• en exp ~ ' 'Y = len ( T[ texp D( (), 'Y)) otherwise; 

• C[cD(O,'Y) = c; 

{ 

f if'R[rexpD(O,/) = f, 
• C [ ch ( rexp )D ( (), 'Y) = c if there exists a JL such that 

'R[rexpD(O,'Y) = (c,JL); 

• V[JLD(O, 1) = JL; 

• V[vD(O,'Y) = r(v); 

{ 
f if 'R[rexp](O, 'Y) = f, 

• V[ val ( rexp)] ( 0, 'Y) = JL if there exists a c such that 
'R[rexp](O,'Y) = (c,JL); 

• V[f( vexp1 , ..• , vexpn)D(O, 'Y) = 

{ 

f ~r ~~~~:1](0, 'Y) = f, 

V[vexpn](O,/) = f, 
f(V[vexp 1](0,/), ... , V[vexpn](O,'Y)) otherwise; 

• 'R[(cexp,vexp)](O,'Y) = 

{ 

f if C [ cexp] ( 0, 'Y) = f or 
· V[vexp](O, 'Y) = f, 

(C[cexp](O,/), V[vexp](O,'Y)) otherwise; 

{ 

( c, JL) if there exist. 01 and 02 such that 
'"[ (. )](O ) len(OI) = I[zexp](O, 'Y)- 1 and 

• ,~ texp zexp , 'Y = T[t ] (n ) _ () "( )"n exp u,/ - 1 C,JL u2, 
f otherwise; 

• T[sD(O,'Y) = r(s); 

• T[h](O,'Y) = 0; 

• T[()](O,/) = (); 

T[( )](O ) { f if 'R[rexp](O, 'Y) = f, 
• rexp ,/ = ((c,JL)) if'R[rexp](O,/) = (c,JL); 

• T[texp 1"texp2 ](0,/) = 

{ 

f if T[texp 1](0,/) =for 
T[texp2 ](0, 'Y) = f, 

T[ texp1] ( 0, 'Y )"T[ texp2 ] ( 0, 'Y) otherwise; 

T[ ](() ) { 
f if T[texp](O,'Y) = f, 

• texp i cset ''Y = T[ texp] ( 0, 'Y )i cset otherwise; 

27 



28 3 Fault Tolerant Distributed Systems 

• T[texp[iexp]](O, "Y) = 

{ 
f if T[texp](O,'f') =for len(T[texp](O,'f')) < I[iexp](O,"Y), 
0 if 0 ~ T[texp](O,'f') and len(O) = I[iexp](O,'f'). 

We inductively define when an assertion ¢> holds for a trace 0, and an 
environment "Y, denoted by (0, "Y) f= ¢>. To avoid the complexity of a three­
valued logic, an (in)equality predicate is interpreted strictly with respect to f, 
that is, it is false if it contains some expression that has value f. 

• (O,"Y) f= iexpi = iexp2 iff I[cexpi](O,"Y) = I[cexp2](0,"Y) and 
I[cexpi](O,"Y) =1- f; 

• (O,"Y) f= iexpi < iexp2 iff I[vexpi](O,"Y) < I[vexp2](0,"Y) and 
I[vexpiD(O,'f') =1- f and I[vexp2](0,'f') =1- f; 

• (O,"Y) f= cexpi = cexp2 iff C[cexpiD(O,"Y) = C[cexp2](0,"Y) and 
C[cexpi](O, "Y) =1- f; 

• (O,"Y) f= vexpi = vexp 2 iff V[vexpi](O,"Y) = V[vexp 2 ](0,'f') and 
V[vexpi](O,'f') =1- f; 

• (O,"Y) f= vexpi < vexp2 iff V[vexpi](O,"Y) < V[vexp2](0,"Y) and 
V[vexpi](O,'f') =1- f and V[vexp2](0,'f') =1- f; 

• (O,'f') f= texpi = texp2 iff T[texpi](O,"Y) = T[texp2](0,'f') and 
T[texpi](O,'f') =1- f; 

• ( 0, "Y) f= ¢I 1\ 1>2 iff ( 0, "Y) f= ¢I and ( 0, "Y) f= 1>2; 

• (0, "Y) f= •¢> iff not (0, "Y) f= ¢>; 

• (0, "Y) f= 3i · ¢> iff there exists an integer n such that (0, ("Y: i 1-+ n)) f= ¢>; 

• (0, "Y) f= 3v · ¢> iff there exists a value J.L such that (0, ("Y: v 1-+ J.L)) f= ¢>; 

• (0, "Y) f= 3s · '1/J iff there exists a trace if such that (0, ("Y: s 1-+ if)) f= ¢>. 

Example 3.25 (Satisfaction) Consider the assertion 

s ~ h ---+ sT{c} = (}. 

Since h obtains its value from 0, we have (0, "Y) f= s ~ h ---+ sT{c} = (}for any 
environment "Y and trace 0 such that if "Y( s) ~ 0 then "Y( s) T{ c} = (}. 6 

Definition 3.26 (Validity of an assertion) An assertion ¢> is valid, which 
we denote by f= ¢>, if, and only if, for all 0 and "Y, ( 0, "Y) f= ¢>. 0 
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For an assertion</> Definition B.4 defines the set chan(</>) of channels such that 
c E chan(</>) if a communication along c might affect the validity of ¢. For 
instance, the validity of the assertion h = () is affected by any communication 
and thus we have chan(h = ()) = CHAN. On the other hand, the validity of 
the assertion ( h j { c} )"( d, 7) = ( ( d, 7)) can only be changed by a communication 
along channel c, although d also occurs in the assertion. Hence, chan(</>) consists 
of the channels to which references to h in ¢ are restricted, the so-called history 
channels of</> (cf. [Zwiers89, Hooman92]). Note that the value of a logical 
variable is not affected by any communication. 

Observe that the fact that c E chan(</>) does not imply that the validity 
of </> indeed depends on communications along c. For instance, according to 
Definition B.4 chan(h = () V h =/; ()) = CHAN although the assertion will 
always be true. However, if some channel is not contained in chan(¢) then </> 
does not impose any restrictions on communications along that channel. It is 
this aspect that we are interested in. 

We conclude this section by defining when a correctness formula P sat </> is 
valid. Since we focus on reliability, we are interested only in properties that 
hold for all observations. 

Definition 3.27 (Validity of a correctness formula) For a process P and 
an assertion </> a correctness formula P sat ¢ is valid, denoted by f= P sat¢, 
if, and only if, for all"( and all(} E 'H[P], (0, "f) f= ¢. 0 

3.5 A compositional proof theory for plain 
processes 

In this section we present a compositional proof theory for the programming 
language of Section 3.1. The theory consists of an axiom for each atomic pro­
cess and an inference rule for each composition operator of the programming 
language. To reason about the sequential details of processes we use an ex­
tended assertion language which includes program variables and a denotation 
to indicate termination (e.g. [Zwiers89]) . 

To reason about program variables, we extend the assertion language of 
Section 3.4 with the value expressions x and x0 . For a variable x E VAR, the 
term x denotes the value of x in the (non-bottom) final state, and the assertion 
term x0 denotes the initial state value of x. Further, to denote a terminated 
computation, we add the primitive predicate fin. 

• V[x](ao,O,a,"() = {hx](a) 

• V[xo](ao, 0, a, "f) = £[x](ao); 

and 

• (ao, 0, a, "f) f= fin iff a# l. . 

if a= l., 
otherwise; 
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Sentences of this extended assertion language are called proper assertions 
and are typically denoted(. Let var(() denote the program variables occurring 
in ( and let varo(() denote the variables x E VAR such that Xo appears in ( . 
For a proper assertion (, the proper assertion ([fin] is obtained from ( by 
replacing occurrences of fin by true. So, for instance, 

• ((I 1\ (2)!fin] =(I !fin]/\ (2[fin], and 

• fin[fin] = true. 

Definition 3.28 (Valid proper assertion) A proper assertion (is valid, no­
tation f= (,if, and only if, for all CTo, 8, CT, and"(, (CT0,8,CT,"f) f= (. 0 

Definition 3.29 (Valid proper correctness formula) For process P and 
proper assertion ( the proper correctness formula P sat ( is valid, notation 
f= P sat (, if, and only if, for all 'Y and all ( CTo, 8, CT) E M [P], it is the case 
that (CT0,8,CT,"() F (. 0 

Axiom 3.30 (Skip) 

skip sat true 

The axiom for the assignment statement is given next. Note that the ex­
pression e is evaluated in the initial state. Hence, when referring to the ultimate 
value of x in a proper assertion, any term x in expression e as it appears in 
x := e must be replaced by x0 . Also note that execution of this assignment 
may only change the value of x, not the other variables referred to in e. 

Axiom 3.31 (Assignment) 

x := e sat fin ---4 (x = e[xofx]l\ Y = Yo) 

where Y E VAR* is a Jist containing ally E var(e)- {x }, Yo the corresponding 
list of terms yo, andY= Yo abbreviates Vy E Y · y =Yo · 

Axiom 3.32 {Output) 

c!e sat h jc j ((c, e[Xo/ X])} 1\ fin ---4 (h jc = ((c, e)) 1\ X= Xo) 

where X E VAR* is a list containing all x E var(e). 

Axiom 3.33 (Input) 

c?x sat 3v · (hjcj((c,v)) 1\ fin ---4 (hjc=((c,v))l\x=v)) 

The proof system contains the following two invariants. 
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Rule 3.34 (Channel invariance) 

cset n chan(P) = 0 
P sat hlcset = () 
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which captures the fact that the history of a process only records the commu­
nications along the channels of the process. 

Rule 3.35 (Variable invariance) 

vset n var(P) = 0 
P sat 'Vx E vset · x = Xo 

which captures the fact that processes do not share variables. 
The proof system contains the following two general rules. 

Rule 3.36 (Conjunction) 

Rule 3.37 (Consequence) 

P sat (I , P sat (2 
p sat (I 1\ (2 

P sat (I , (I -+ (2 
P sat (2 

In case an execution of PI ; P2 is a terminating execution of PI followed 
by an execution of P2 then the initial state of P2 's execution equals the final 
state of PI's execution. More specifically, given that PI sat (I and P2 sat (2 a 
term x appearing in (I is evaluated the same as a term xo appearing in (2. 

Definition 3.38 (Sequential composition operator) Let X E VAR* be 
a list containing all x E VAR such that x E var((I) n varo((2); Xo is the 
corresponding Jist of terms xo. Let V E VVAR* be a list of fresh logical value 
variables of the same length as X. Then (I; (2 is expressed by: 

(I 1\ •fin 
V 3si,s2, V · (I[fin](si/h, VJXJ 

1\ (2[s2/h, V/Xo] 
1\ hl(chan((I) U chan((2)) = (s/'s2)l(chan((I) U chan((2)) . 

Then we have the following inference rule for sequential composition. 

Rule 3.39 {Sequential composition) 

PI sat (I , P2 sat (2 
PI ; P2 sat (I;(2 

0 
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The inference rule for guarded commands is given below. Note that the guards 
are evaluated in the initial state. Consequently, when referring to the guard bi 
in a proper assertion, any term x in the Boolean expression bi as it appears in 
the program [ Ui=I b; -+ P; I must be replaced by xo. 

Rule 3.40 (Guarded command) 

( •{Vf=I b;[Xo/ X]) 1\ X = Xo 1\ h l Uf=I chan(Pi) = (}) -t ( , 

/\~I Pi sat (; , 
~'~i=I ((il\bi[Xo/XJ)-+ ( 

[ U ~I bi -+ Pi I sat ( 

where X E VAR* is a list containing all x E var( [ Ui=I bi -t Pi I). 
For iteration we have the following well-known inference rule. 

Rule 3.41 (Iteration) 
skip sat (I , 
G sat (2 , 
(I j (2 -t (I 

* G sat (I 

The inference rule for parallel composition is: 

Rule 3.42 (Parallel composition) 

PI sat (I , 
P2 sat (2 , 
var{(I) ~ var(PI) , 
var((2) ~ var(P2) , 
chan((!) ~ chan(PI) , 
chan((2) ~ chan(P2) 

PI II P2 sat (I 1\ (2 

The conditions var((I) ~ var(PI) and var{(2) ~ var(P2) capture the re­
quirement that processes are not allowed to share variables. The conditions 
chan((!) ~ chan(PI) and chan((2) ~ chan(P2) express that the assertion that 
holds for one process refers only to channels of that process ( cf. [Zwiers89, 
Hooman92]). 

Example 3.43 Clearly, c!2 sat hfc = (} V hfc = ((c,2)). Also, obviously, 
d!O sat h l c = (} . It is, however, not the case that c!2 II d!O sat h l c = (}. /::,. 
Note that, as a consequence of this restriction, any occurrence of h in proper 
specification (i of the process Pi should be projected onto a subset of chan( Pi)· 

The effect of hiding a set cset of channels is simply that records of com­
munications via channels in that set disappear from 'the history of the process. 
Then, the process P \ cset satisfies ( if P does so, unless a reference to h in ( 
includes one or more channels from cset. The following inference rule captures 
this idea. 
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Rule 3.44 (Hiding) 
P sat ([(h \ cset)/h] 

P\ cset sat ( 
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Example 3.45 (Calculator) Consider the following calculator program 

C = * [true -> in?x; out!f(x) ]. 

By input axiom 3.33, channel invariance rule 3.34, conjunction rule 3.36, and 
consequence rule 3.37, 

in?x sat 3v · hT{in, out} j ((in,v)) {3.1) 
/\fin-> (hT{in,out}=((in,v)) 1\ x=v). 

By output axiom 3.32, channel invariance rule 3.34, conjunction rule 3.36, and 
consequence rule 3.37, 

out?f(x) sat hT{in, out} j ((out,f(xo))) {3.2) 
1\ fin -> (hi{ in, out}= ((outi, /(xo)))). 

By (3.1), (3.2), sequential composition rule 3.39, and consequence rule 3.37, 

in?x; out!f(x) sat 3v·hi{in,out} j ((in,v)) 
V 3s1,s2,v · s1 i{in, out}= ((in,v)) 

1\ s2i{in,out} j ((out,f(v))) 
1\ hi{ in, out}= (st"'s2)i{in, out}, 

from which we may conclude 

in?x; out!f(x) sat 3v·hi{in,out} j ((in,v),(out,f(v))). 

Define (1 = 3v ·hi{ in, out} j ((in, v), (out,f(v))) . Then, by guarded com­
mand rule 3.40, 

[ true -> in ?x ; out!f(x) ] sat (1 · {3.3) 

Define (2 =Vi ·1 ~ i ~ len(hlout) -> val(hlout(i)) = f(val(hlin(i))). Ob­
viously, since skip sat len(hl out) = 0, 

skip sat (2· {3.4) 

By Definition 3.38 and consequence rule 3.37, (2 ; ( 1 implies 

Vi ·1 ~ i ~ len(hlout) -> val(hlout(i)) = f(val(hlin(i))) 
V 3s1 ,s2 · Vi ·1 ~ i ~ len(s1 lout) -> val(s1 lout(i)) = f(val(stlin(i))) 

1\ 3v·s2i{in,out} j ((in,v),(out,f(v))) 
1\ hi{ in, out}= (s1"s2)i{in, out}, 
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which implies 

Vi ·1:::; i:::; len(hfout) --+ val(hfout(i)) = f(val(hfin(i))) 
V 3sl,s2 · Vi · 1:::; i:::; len(s1fout) --+ val(s1lout(i)) = f(val(slfin(i))) 

1\ Vi · 1:::; i:::; len(s2lout) --+ val(s2lout(i)) = j(val(s2lin(i))) 
1\ hl{in, out}= (s/'s2)l{in, out} . 

Hence, 

(2 j (1 --+ (2 . (3.5) 

By (3.4), (3.3), (3.5), and iteration rule 3.41, 

C sat Vi · 1:::; i:::; len(hfout) --+ val(hfout(i)) = f(val(hfin(i))). 

3.6 Incorporating failure hypotheses 

As mentioned in the introduction, a failure hypothesis x of a process P is 
formalized as a predicate which represents a relation between the normal and 
acceptable histories of P . Such a predicate is expressed in a slightly extended 
version of the assertion language given in Table 3.2. This version contains, 
besides h, the special variable hold · As in the previous section, variable h de­
scribes the observable behaviour of a program, but now this behaviour might 
be affected by faults. So, h represents an acceptable history of process P, 
whereas hold represents a normal history of P . For instance, a possible his­
tory of process Square, which alternately inputs an integer via the observ­
able channel in and outputs its square via the observable channel out, is 
((in, 1), (out, 1), (in, 3), (out, 9)) . Consider the exceptional behaviour caused 
by Square's output channel transiently being stuck at zero. The relation be­
tween the normal and the acceptable behaviour can be defined using a predicate 
StuckAtZero asserting that 

• with respect to the number of recorded in and out communications hold 
and h are equally long, 

• the order of in and out communications as recorded by hold is preserved 
by h, 

• the ith input value as recorded by h equals the ith input value as recorded 
by hold, and 

• the ith output value as recorded by h equals the ith output value as 
recorded by hold, or it is equal to zero. 
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The construct Squarel StuckAtZero indicates execution of Square under the 
failure hypothesis StuckAtZero . Since predicate StuckAtZero holds for h = 
hold= ((in,1},(out,1},(in,3},(out,9}), we have that Square's normal beha­
viour ((in, 1 ), (out, 1 ), (in, 3}, (out, 9)) is contained in 'H[Squarel StuckAtZero], 
the set representing the acceptable behaviour of Square under StuckAtZero . 
Also, because StuckAtZero holds for h = ((in,1},(out,1},(in,3},(out,O)) and 
hold = ( (in, 1), (out, 1), (in, 3), (out, 9)), we obtain that the abnormal behaviour 
((in, 1 ), (out, 1}, (in, 3}, (out, 0}) is an element of 'H[Squarel StuckAtZero]. 

Example 3.46 (Stuck at zero) The predicate StuckAtZero mentioned be­
fore can formally be defined as follows : 

StuckAtZero = len(hold l{ in, out}) = len(h l{ in, out}) 
1\ 'Vi · 1 ~ i ~ len(hl{in, out}) 

--+ ch(h l{ in, out}( i}} = ch(hold l{ in, out }(i}} 
1\ 'Vi · 1 ~ i ~ len(hjin) 

--+ val(h j in( i}} = val(hold j in( i)) 
1\ 'Vi · 1 ~ i ~ len(hjout) 

--+ val(h j out( i)} = val(hold j out( i)} 
V val(hjout(i)) = 0. 

By not specifying the value part of an out record in h, allowing it to be any 
element of VAL, we can formalize corruption. 

Example 3.47 (Corruption) We formalize corruption as follows: 

Cor = len( hold l{ in, out}) = len( h l{ in, out}) 
1\ '</i · 1 ~ i ~ len(hl{in, out}) 

--+ ch(hl{in, out}(i)) = ch(holdl{in, out}(i)) 
1\ 'Vi · 1 ~ i ~ len(hjin) 

--+ val(h j in( i)} = val(hold j in( i) }. 

Example 3.48 (Loss) Consider the medium M of Example 3.24. To formal­
ize the hypothesis that M may lose messages we define: 

Loss = h j {in, out} :::1 hold j {in, out} 
1\ hjin = holdjin. 

We extend the assertion language with trace expression term hold . Sen­
tences of the extended language are called transformation expressions, with typ­
ical representative 1/J. For a transformation expression 1/J we also write 1/J(hold, h) 
to indicate that 1/J has two free variables hold and h. We use 1/J( texp 1 , texp2 } to 
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denote the expression which is obtained from 1/1 by replacing hold by texp1 , and 
h by texp2 . A transformation expression is interpreted with respect to a triple 
(00 ,0,'f'). Trace 00 gives hotd its value, and, in conformity with the foregoing, 
trace 0 gives h its value, and environment 'Y interprets the logical variables of 
IVARU VVARU TVAR. The meaning of transformation expressions can easily 
be obtained from the meaning of assertions defined in Section 3.4. For instance, 

T[t f t](O 0 ) { f ifT[texp](Oo, 0, 'Y) = f, 
• exp cse 0 • ,'/' = T[texp](00 ,0,'f')lcset otherwise. 

The only new clause is: 

We write ( 00 , 0, 'Y) f= 1/J to denote that the traces Oo and 0, and the environ­
ment 'Y satisfy the transformation expression 1/J. Since the term hotd does not 
occur in assertions, the following lemma is trivial. 

Lemma 3.49 (Correspondence) For an assertion ¢ and for all 00 it is the 
case that (Oo,O,'f') f= ¢if, and only if, (O,'Y) f= ¢ . 0 

The following lemmas are easy to prove by structural induction. 

Lemma 3.50 (Substitution) For the transformation expression 1/!(hotd, h), 

(a) (Oo,O,'Y) f= 1/l(hotd, texp) if, and only if, (Oo, T[texp](Oo,O,'f'),'Y) f= 1/1; 

(b) (Oo,O,'Y) f= ,P(texp,h) if, and only if, (T[texp](Oo,O,'f'),O,'Y) f= 1/J. 0 

Lemma 3.51 (Projection) Consider cset ~ CHAN and transformation ex­
pression 1/J. If chan ( 1/J) ~ cset then, for all Oo, 0, and 'Y, 

(a) (Oo, 0, 'Y) f= 1/1 if, and only if, (Oo, Of cset, 'Y) f= 1/1; 

(b) (Oo, 0, 'Y) f= 1/1 if, and only if, (Oo f cset, 0, 'Y) f= 1/J. 0 

Notice that the projection lemma would not hold without the restriction, men­
tioned on page 24, that for any occurrence of ((cexp, vexp)} in an assertion 
the term h does not appear in value expression vexp. The following example 
illustrates this. Consider assertion ¢ = hfc = ((c, len(hfd))}lc and trace 
0 = ((c, 1), (d, 7)}. Clearly, Ofc = ((c, 1)) = ((c, len(Ofd))}. Hence, for any Oo 
and '/', (00 ,0,'/') f= ¢ . Let cset = {c}. Observe that chari(¢) = {c}, but 
T[h f c](Oo, Of c, 'Y) = ((c, 1 )} and T[ (( c, len(h f d))) f c](Oo, Of c, 'Y) = (( c, 0)). 
Hence, ( ( 00 , 0 f c, 'Y) ~ ¢. Instead of the restriction on ( ( cexp, vexp)) a valid 
projection lemma could have been obtained by defining T[ texp f cset] ( 0, 'Y) to 
be 

{ 
f if T[texp](O,'Y) = f, 
T[ texp](Of cset, 'Y) f cset otherwise; 



3.6 Incorporating failure hypotheses 37 

and T[texpTcset](Oo,O,/) to be 

{ 
f if T[texp](00 ,0,r) = f, 
T[texpD(Oo T cset, OTcset, 1H cset otherwise. 

We have decided against this because then the interpretation of transformation 
expressions would no longer be a straightforward adaptation of the interpreta­
tion of assertions. 

Definition 3.52 (Validity of a transformation expression) A transfor­
mation expression '1/J is valid, which we denote by f= '1/J, if, and only if, for all 
Oo, 0 and/, (Oo,O,/) f= '1/J . 0 

Since h and hold may both occur free in a transformation expression, its validity 
might be affected by communications along the channels to which references to 
h or hold are restricted. For instance, the validity of transformation expression 
h T { c} = hold T { c, d} might be affected by communications along c as well as d. 
The set of history channels of a transformation expression '1/J, notation chan ( '1/J), 
is as defined in Definition B.4 with the extra clause: 

• chan(hold) = CHAN. 

Definition 3.53 (Failure hypothesis) A failure hypothesis x is a transfor­
mation expression which represents a reflexive relation on the normal be­
haviour, to guarantee that the normal behaviour is part of the acceptable 
behaviour: 

As mentioned before, the semantics of a process contains the finite traces that 
can be observed up to any point in a normal execution. To maintain this 
property for acceptable behaviour, we require a failure hypothesis x to preserve 
the prefix closedness: 

• F= (x(hold, h) 1\ s ...(h) ~ 3sotd j hold· x(sold, s). 

Furthermore, a failure hypothesis for a process FP does not impose restrictions 
on communications along those channels that are not in chan(FP) : 

• chan(x) ~ chan(FP). 0 

Example 3.54 Consider the process Square introduced at the beginning of 
this section. Examine 

'1/J = hT{in, out}= hotdT{in, out} 
1\ hT{alarm} = (). 

This transformation expression prohibits communications along channel alarm, 
which is not even a channel of Square. As we have seen before, this may cause 
problems when composing Square in parallel with another process. t::,. 
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Using P to denote a process expressed in the programming language of 
Section 3.1, we define the syntax of our extended programming language in 
Table 3.3. Since we formalize fault tolerance in relation to concurrency, the 
language has no sequential constructs for failure prone processes. 

Table 3.3: Extended syntax of the programming language 

Failure Prone Process FP P I FP1 II FP2 I FP\ cset I FPlx 

In FPlx, we have, by Definition 3.53, that chan(x) ~ chan(FP). Conse­
quently, chan(FPlx) = chan(FP) . As before, we define chan(FP1 II FP2) = 
chan(FPI) U chan(FP2), and chan(FP\ cset) = chan(FP)- cset. 

Since we are only interested in the traces of a process, the semantics of a 
failure prone process FP is inductively defined as follows: 

• If 0 is a trace of FP1 II FP2 then OT chan(FPI) and OT chan(FP2) corre­
spond to the sequence of communications performed by FP1 and FP2, 
respectively. Also, 0\ chan(FP1 II FP2) = (). 

1-l[FP1 II FP2] = { 0 I fori= 1,2, OTchan(FP;) E 7-l[FP;], and 
OT chan(FP1 II FP2) = 0 }. 

• The effect of hiding internal channels is that communications along those 
channels are no longer observable. 

1-l[FP\cset] = { 0\cset I 0 E 1i[FP] }. 

• A trace 0 is admitted by FP l x if there is a trace 00 E 7-l[FP] to which 0 
is related, according to X· 

Example 3.55 (Loss) The failure hypothesis Loss defined in Exam­
ple 3.48 holds for trace Oo = ((m;n, 1), (mout, 1), (m;n, 3), (mout, 3)) and 
trace 0 = ((m;n, 1), (m;n, 3), (mout, 3)). Unfortunately, Loss also holds 
for trace Oo and trace 0 = ((m;n,1),(a,19),(m;n,3),(mout,3)), since it 
does not impose restrictions on communications along channels other 
than m;n and mout. D. 

We add the requirement that 0\ chan(FP) = ~). 

1-l[FPlx] = { 0 I there exists a 00 E 7-l[FP] such that, for all "f, 
(Oo,O,"f) f= x, and OTchan(FP) = 0 }. 
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Observe that this trace semantics is defined such that if (} E ?t[FP] then 
chan(O) ~ chan(FP). Notice that, for a process FP, the failure hypothesis 
xFP = h l chan(FP) = hold l chan(FP) serves as an identity relation, that is, 
1i[FP] = 1i[FPlxFPl Also, note that, because of the reflexivity of X on the 
traces of 1i[FP], 1i[FP] ~ 1i[FPlxl 

Lemma 3.56 (Prefix closedness) If(} E ?t[FP] and 0 ~(}then 0 E ?t[FP] . 

Proof. See Appendix C.l. 

Definition 3.57 (Composite transformation expression) For the trans­
formation expressions '¢1 (hold, h) and '¢2(hold, h), the composite transformation 
expression '¢1 l'¢2 is defined as follows: 

'1/Jd'¢2 = 3s·'¢I(hold,s) 1\ 'I/J2(s,h), 

where s must be fresh . 0 

We will also use this operator to compose assertions and transformation ex­
pressions, e.g. <Pl'I/J = 3s · ¢(s) 1\ '1/J(s, h) . Observe that, since¢ is an assertion, 
hold does not occur in ¢, and hence also <Pl x is an assertion. 

From Definition 3.57 we easily obtain the following lemma. 

Lemma 3.58 (Composite failure hypothesis) 

Proof. See Appendix C.2. 

Since the interpretation of assertions has not changed, the validity of a 
correctness formula FP sat¢ is as defined in Definition 3.27, with P replaced 
by FP. 

Definition 3.59 {Validity of a correctness formula) For a failure prone 
process FP and an assertion¢ a correctness formula FP sat¢ is valid, denoted 
by f= FP sat¢, iff, for all 1 and all(} E ?t[FP], (8,1) f= ¢ 0 

3. 7 A compositional network proof theory for 
failure prone processes 

In this section we present a compositional proof theory to prove safety prop­
erties of networks of processes. Since we focus on the relation between fault 
tolerance and concurrency, we have abstracted from the internal states of the 
processes and do not give rules for atomic statements or sequential composition. 
Such a proof theory is called a network proof theory. 

The proof system contains the following two general rules. 
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Rule 3.60 (Consequence) 

Rule 3.61 (Conjunction) 

FP sat </>1, </>1 -+ </>2 
FP sat </>2 

FP sat ¢1, FP sat ¢2 

FP sat </>1 1\ </>2 

Since the history of a process FP only records the communications along 
the channels in chan(FP), we have: 

Rule 3.62 (Invariance) 

cset n chan(FP) = 0 
FP sat hjcset = () 

From this rule we obtain the following lemma. 

Lemma 3.63 (Invariance) FP sat h \ chan(FP) = () 

The inference rule for parallel composition is: 

Rule 3.64 (Parallel composition) 

Next is the rule for hiding. 

Rule 3.65 (Hiding) 

FP1 sat </>1, 
FP2 sat </>2 , 
chan(</>1) ~ chan(FPI), 
chan(</>2) ~ chan(FP2) 

FP1IIFP2 sat </>1 1\ </>2 

FP sat </>(h \ cset) 
FP \ cset sat </> 

Finally, we formulate the rule for the introduction of a failure hypothesis. 

Rule 3.66 (Failure hypothesis introduction) 

FP sat</> 

FPlx sat </>lx 

0 
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Example 3.67 (Loss) Consider the medium M introduced in Example 3.48. 
By failure hypothesis introduction rule 3.66, 

MILoss sat 3s · ( Val(hfout) ~ 1 Val(hfin) )[s/h] 
1\ ( hl{in, out}~holdl{in, out} 

1\ hfin =hold fin )[s/hotd], 

which reduces to 

MILoss sat 3s · Val(sfout) ~ 1 Val(sfin) 
1\ hl{in,out}~sl{in,out} 
1\ hfin = sfin . 

(3.6) 

Now, for instance, by h l{ in, out}~ sl{ in, out}, it is obviously the case that 
h lout~ s lout, which, since s satisfies Val(sl out) ~ 1 Val( sf in), implies that 
Val(hfout)~ Val(sfin) . Then, by sfin = hfin, we obtain 

MILoss sat Val(hfout)~ Val(hfin). (3.7) 

Property (3. 7) expresses that, under Loss, M does not generate messages. 
Since, by (3.6), Val(sfout) ~ 1 Val(sfin), we have 

Vi· ch(sl{in, out}(i)) =out 
---+ val(sl{ in, out}( i)) = val( last(s l{ in, out }[i]l in)). 

As, again by (3.6), h l{ in, out} ~sl{ in, out} while h fin = sf in , this leads to 

MILoss sat Vi· ch(hl{in, out}(i)) =out (3.8) 
---+ val(hl{in, out}(i)) 

= val(last(hl{in, out}[i]lin)), 

which expresses that whenever there is an output the value equals the value of 
the most recent input. 6 

3.8 Example I : Triple modular redundancy 

Consider the triple modular redundant system of Figure 3.1. It consists of 
three identical components Cj, j = 1, 2, 3, an input triplicating component In, 
and a component Voter that determines the ultimate output . The intuition 
of the triple modular redundancy paradigm is that three identical components 
operate on the same input and send their output to a voter which outputs the 
result of a majority vote. Clearly, the failure of one component can be masked, 
and the failure of two or all three components can be detected, as long as they 
do not fail identically. 
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in out 

Figure 3.1: Triple modular redundant system 

Definition 3.68 (Abbreviations) Throughout this section we use the fol­
lowing abbreviations: 

• c(i) = val((hfc)(i)); 

• cold(i) = val((hold fc)(i)); 

• c8 (i) = val((sfc)(i)) . 0 

Component C1 alternately awaits an input message from in1, performs some 
computation J, and produces an output message on out1. We abstract from 
the implementation details of a component; we only consider the following 
specification (see Example 3.45 for a possible implementation). 

Cj sat Vi ·1::; i::; len(hfoutj) -+ outj(i) = f(inj(i)). 

The voter awaits the output of each of the three components, takes a ma­
jority vote, and outputs the result of that vote. Formally, 

Voter sat len(hfout)::; min(len(hfouti), len(hlout2), len(hfoutJ)) 
1\ Vi, v · 1 ::; i ::; len(h lout) 

-+ ((3k 'I l· outk(i) = v 1\ out1(i) = v) -+ out(i) = v). 

Finally, component In conforms to 

In sat Vi,j · 1::; i::; len(hfinj) -+ in1(i) = in(i) . 

The voter produces the desired output if at least two of the values output 
by Ct, C2, and C3 are correct. Hence, to mask the failure of one component, 
at most one of the values output by cl' c2, and c3 may be corrupted for each 
vote. This assumption is formalized by the following failure hypothesis. 
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Gor5.1 = Vi·l~i~min(len(h1outt),len(h1out2),len(h1out3)) 
--+ 3k "I l · outk(i) = outk1d(i) 1\ outz(i) = outj'1d(i) 

1\ h l{ int, in2, in3} = hold l{ int, in2, in3} . 
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We show that, given this assumption, the triple modular redundant system 
Inii((GtiiG2IIG3)l Gor9 )11 Voter produces the desired output, that is, hiding 
the communications along the internal channels we prove 

{In II {(GtiiC2IIC3)l Gor9 ) II Voter)\ {int, in2, in3, outt, out2, out3} 
sat 
Vi ·1 ~ i ~ len(hlout) --+ out(i) = f(in(i)). 

Proof. By parallel composition rule 3.64, 

3 

CtiiC2IIC3 sat 1\ (Vi ·1 ~ i ~ len(hloutj) --+ outj(i) = f(inj(i))). 
j=l 

By failure hypothesis introduction rule 3.66, 

(CtiiC2IIC3)l Gor9 

sat 
3s· (I\~= 1 (Vi·1~i~len(h1outj)--+ outj(i)=f(inj(i))))[s/h] 

1\ GorS 1
[ s/hold ], 

which, by definition, is equivalent to 

(CtiiC2IIC3)l Gor9 

sat 
3s · /\~= 1 (Vi ·1 ~ i ~ len(sloutj) --+ outj(i) = f(inj(i))) 

1\ Vi · 1 ~ i ~ min{ len(h l outt), len(h l out2), len(h l out3)) 
--+ 3k "I l· outk(i) = outk(i) 1\ outz(i) = outj(i) 

1\ hl{int,in2,in3} = sl{int,in2,in3}, 

and, thus, by consequence rule 3.60, 

{CtiiC2IIC3)l Gor9 

sat 
3s · Vi ·1 ~ i ~ min(len(hloutt), len(hlout2), len(hlout3)) 

--+ 3k "I l· outk(i) = f(ink(i)) 1\ outz(i) = f(inj(i)) 
1\ h l{ int, in2, in3} = sl{ int, in2, in3}. 

Note that /\~= 1 (Vi ·1 ~ i ~ len(hlinj) --+ slinj(i) = hlinj(i)) is implied by 
h l{ in1 , in2, in3} = s l{ int. in2, in3}. Hence 
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(CdC2IIC3)I Cor9 

sat 
Vi · 1 ::; i ::; min( len(h lout I), len(h l out2), len(h l out3)) 

--+ 3k -=f l· outk(i) = f(ink(i)) 1\ out,(i) = f(in,(i)) . 

By parallel composition rule 3.64, we get 

In II ((C1IIC2IIC3)I Cor~1 ) 
sat 

Vi · 1 ::; i ::; min(len(h l outl), len(h l out2), len(h l out3)) 
--+ 3k -=f l· outk(i) = f(ink(i)) 1\ out,(i) = f(in,(i)) 

1\ Vi,j ·1::; i::; len(hlinj) --+ inj(i) = in(i). 

Hence, by consequence rule 3.60, 

In II ((C1IIC2IIC3)I Cor9 ) 
sat 
Vi · 1 ::; i ::; min( len(h lout I), len(h l out2), len(h l out3)) 

--+ 3k -=f l· outk(i) = f(in(i)) 1\ out,(i) = f(in(i)). 

By parallel composition rule 3.64 and consequence rule 3.60, we add the voter 
and obtain the relation between in and out. 

In II ((C1IIC2IIC3)ICor9 ) II Voter 
sat 
Vi · 1::; i::; len(hlout) --+ out(i) = f(in(i)). 

Finally, by hiding rule 3.65, we obtain 

(In II (( CdiC2IIC3)1 Cor9 ) II Voter)\ { in1, in2, in3, out1, out2, out3} 
sat 
Vi · 1::; i::; len(hlout) --+ out(i) = f(in(i)). 

0 

3.9 Example II : The alternating bit protocol 

The alternating bit protocol [BSW69], extended with timers, is a simple way 
of achieving communication over a medium that may lose messages. Consider 
the duplex transmission medium of Figure 3.2, where A and Mare media with 
failure hypothesis Loss as already discussed in Example 3.67. 

Sender S accepts via in data from the environment, appends a bit to it, and 
sends it via m;n ; the value of the bit alternates for successive messages, starting 
with 1. Receiver R awaits a message via mout, and sends the bit via a;n as 
an acknowledgement; R only passes the data via out to the environment if the 
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value of the message's bit differs from the value of the previous message's bit, 
or if it is the first message. Thus, messages along M consist of data-bit pairs 
(d, b), and we define dat((d, b)) = d and bit((d, b)) =b. Medium A transmits 
bits. Under the alternating bit protocol, S keeps sending a message via min 

until its acknowledgement arrives via aout· The alternating bit ensures that R 
can identify duplicates. 

A 

in out 

M 

Figure 3.2: Duplex transmission medium 

In this section we will prove that ABP = S II (MILoss) II (A/Loss) II R 
satisfies the safety property Val(hlout) ~ Val(hlin) . We use the following 
functions: 

Definition 3.69 (Removal of duplicate messages) For a trace texp that 
records only communications along chan(M), 

1
0 
RDMsg(texp0 ) 

RDMsg(texp) = 
RDMsg(texp0 )''(c, (d, b)) 

if texp = O, 
if texp = texp0"( c, ( d, b)) and 
b = bit(val(last(texp0 ))), 

if texp = texp0"(c, (d,b)) and 
b # bit(val(last(texp0 ))) . 

Definition 3.70 (Removal of duplicate acknowledgements) For a trace 
texp recording only ain and aout communications, 

1
0 
RDAck( texp0 ) 

RDAck(texp) = 
RDAck( texp0 )"( c, b) 

if texp = 0, 
if texp = texp0" ( c, b) and 
b = val(last(texp0 )), 

if texp = texp0 "( c, b) and 
b # val(last(texp0 )). 
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Definition 3.71 {Abbreviations) 

• For trace texp 1 and trace texp2 such that chan( texpt) ~ chan( M) and 
chan(texp2 ) ~ chan(M), 

Dat(texp1 ) ~ Dat(texp2 ) = Vi· 1 ~ i ~ len(texp1 ) 

-+ dat( val( texp1 ( i))) = dat( val( texp2(i)) ). 

This expression denotes that the stream of data in the trace texp1 is a 
prefix of the stream of data in the trace texp2 • 

• For trace texp 1 and trace texp2 such that chan( texp1 ) ~ chan(M) and 
chan(texp2 ) ~ chan(S), 

Dat(texp1 ) ~ Val(texp2 ) = Vi· 1 ~ i ~ len(texp1 ) 

-+ dat(val(texp 1 (i))) = val(texp2 (i)). 

This expresses that the stream of data in the trace texp 1 is a prefix of 
the sequence of values in the trace texp2 . 

• For trace texp 1 and trace texp2 such that chan(texp1 ) ~ chan(A) and 
chan(texp2 ) ~ chan(M), 

Val(texp 1 ) ~ Bit(texp2 ) = Vi· 1 ~ i ~ len(texp 1 ) 

-+ val(texp1(i)) = bit(val(texp2 (i))). 

This expresses that the sequence of values in the trace texp1 is a prefix 
of the stream of bits in the trace texp2 . 

• For trace texp 1 and trace texp2 such that chan( texp1 ) ~ chan(R) and 
chan(texp2 ) ~ chan(M), 

Val(texp 1 ) ~ Dat(texp2 ) = Vi· 1 ~ i ~ len(texp 1 ) 

-+ val( texp1 ( i)) = dat( val( texp2 ( i)) ). 

This expression denotes that the sequence of values in the trace texp 1 is 
a prefix of the stream of data in the trace texp2 . <> 

In the sequel we write h where we mean hjchan(ABP). 
The informal description of sender S given above can be formalized as 

follows: 

S sat Dat(RDMsg(hfmin)) ~ 1 Val(hfin) 
1\ Val(RDAck(hfaout)) ~ 1 Bit(RDMsg(hjmin)). 

Similarly, we obtain the following specification for receiver R: 

Rsat Val(hjout) ~ 1 Dat(RDMsg(hfmout)) 
1\ Val(RDAck(hfain)) ~ 1 Bit(RDMsg(hfmout)) . 
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Then, by consequence rule 3.60 and parallel composition rule 3.64, we obtain 

ABP sat Dat(RDMsg(hjmin)) j 1 Val(hjin), (3.9) 

ABP sat Val(RDAck(hiaout)) j 1 Bit(RDMsg(hjmin)), (3.10) 

ABP sat Val(hjout) j 1 Dat(RDMsg(himout)) (3.11) 

and 

ABP sat Val(RDAck(hjain)) j 1 Bit(RDMsg(himout)). (3.12) 

Property (3.7) implies that 

ABP sat len(RDMsg(himout)) ~ len(RDMsg(hjmin)). (3.13) 

Since property (3.8) can only be invalidated by communications on min and 
mout, we conclude 

ABP sat Vi· ch(h(i)) = mout --+ val(h(i)) = val(last(h[i]imin)). (3.14) 

For medium A we obtain similarly 

ABP sat len(RDAck(hiaout)) ~ len(RDAck(hjain)), (3.15) 

and 

ABP sat Vi · ch(h(i)) = aout --+ val(h(i)) = val(last(h[i]iain)) . (3.16) 

The crucial property of the alternating bit protocol is the following. 

Lemma 3.72 {Persistency) 

ABP sat Val(RDAck(hiaout)) j 1 Val(RDAck(hjain)) 
1\ Dat(RDMsg(himout)) j 1 Dat(RDMsg(hjmin)) . 

Proof. See Appendix C.3. 

Then, by consequence rule 3.60, we have 

ABP sat Dat(RDMsg(himout)) j 1 Dat(RDMsg(hjmin)), 

which, by (3.9) and (3.11), yields 

ABP sat Val(hjout) j Val(hjin), 

which shows that the alternating bit protocol tolerates loss of messages and 
acknowledgements. 
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3.10 Soundness and relative network 
completeness 

In this section we prove that the proof theory of Section 3. 7 is sound: if a 
correctness formula FP sat¢ is derivable, then it is valid. Furthermore, we 
prove that the proof system is complete: if a correctness formula FP sat ¢ is 
vruid, then it is derivable. 

Theorem 3.73 (Soundness) The proof system of Section 3.7 is sound. 

Proof. See Appendix C.4. 

As usual when proving completeness, we assume that we can prove any 
valid formula of the underlying (trace) logic (cf. [Cook78]). Thus, using I-¢ to 
denote that assertion ¢ is derivable, we add the following axiom to our proof 
theory. 

Axiom 3.74 (Relative completeness assumption) For an assertion¢, 

1-- ¢ if F= ¢. 

0 

A specification that exactly characterizes the behaviour of a process is called 
precise. As a consequence, any valid specification is implied by the precise spec­
ification. However, as we have seen before, a specification should not impose 
restrictions on communications along channels other than those of the process. 
A specification that conforms to this restriction and that exactly character­
izes the behaviour of the process with respect to the communications along its 
channels is called relatively precise. 

Definition 3. 75 (Relative preciseness) An assertion ¢ is relatively precise 
for failure prone process FP if, and only if, 

(i) f= FP sat¢; 

(ii) if chan( B) ~ chan(FP) and, for some"(, (B, "!) f= ¢then(} E 'H[FP]; 

(iii) chan(¢)~ chan(FP) . <> 

An (absolutely) precise specification can be obtained from a specification which 
is only relatively precise by means of the invariance and conjunction rules, 
that is, if assertion ¢ is relatively precise for some process FP then assertion 
¢ 1\ h \ chan(FP) = () is absolutely precise for FP. In the sequel, preciseness 
refers to relative preciseness. 

As in [WGS92], we use the preciseness preservation property to achieve 
relative completeness. The intuition is that as long as the specifications of 
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the individual processes are precise, so also are the deduced specifications of 
systems composed of such processes. 

Let 1- P sat ¢> denote that correctness formula P sat ¢> is derivable. Note 
that no proof rules were given for the sequential aspects of processes, so our 
notion of completeness is relative to the assumption that for a process P there 
exists a precise assertion ¢ . This leads to the definition of network complete­
ness. 

Definition 3. 76 (Network completeness) Assume that for every process 
P there exists a precise assertion ¢> with 1- P sat ¢. Then, for any failure prone 
process FP and assertion ~' p FP sat~ implies 1- FP sat~ - 0 

The following lemma asserts that preciseness is preserved by the proof rules of 
Section 3.7. 

Lemma 3. 77 (Preciseness preservation) Assume that for any process P 
there exists an assertion ¢> which is precise for P and 1- P sat ¢. Then, for any 
failure prone process FP there exists an assertion TJ which is precise for FP and 
1- FP sat TJ. 

Proof. See Appendix C.5. 

The following lemma asserts that any specification satisfied by a failure 
prone process is implied by the precise specification of that process. Since a 
precise specification refers only to channels of the process, and a valid specifi­
cation might refer to other channels, we have to add a clause expressing that 
the process does not communicate on those other channels. 

Lemma 3. 78 (Preciseness consequence) If ¢> is a precise specification for 
FP and p FP sat ~ then 

p (¢ A hl(chan(O- chan(FP)) = ()) -+ ~-

Proof. Assume that ¢>is precise for FP, and that 

p FP sat~ - (3.17) 

Consider () and 'Y . Assume 

(B,'Y) p ¢>A hj(chan(O- chan(FP)) = (). (3.18) 

By (3.18), we have (B, 'Y) p ¢. Since, by the preciseness of ¢1 for FP, chan(¢>) ~ 
chan(FP), projection lemma 3.51(a) yields (Bl chan(FP), 'Y) p ¢, thus, once 
more by the preciseness of¢> for FP, Blchan(FP) E 1i[FPl By (3.17), 

(Blchan(FP),'Y) p ~- (3.19) 

By (3.18), we have (B ,"f) p hj(chan(~)- chan(FP)) = (). Consequently, 
Bl(chan(O - chan(FP)) = () and we may conclude that Blchan(FP) = 
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Oj(chan(FP) U (chan(O- chan(FP) )) = Oj(chan(FP) U chan(~)). Hence, we 
obtain from (3.19) that (Ol(chan(FP}Uchan(~}),-y) f= ~'and consequently, by 
projection lemma 3.51(a), (0,-y) f= {. 0 

Now we can establish relative network completeness. 

Theorem 3. 79 (Relative network completeness) The proof system given 
in Section 3. 7 is relatively network complete. 

Proof. Assume that for every process P there exists a precise specification ¢ 
with 1- P sat¢. Then, by preciseness preservation lemma 3.77, for any failure 
prone process FP there exists some assertion TJ which is precise for FP and 

1- FP sat TJ. (3.20} 

Assume f= FP sat~ · Since (chan(~)- chan(FP)) n chan(FP) = 0, we 
obtain, by invariance rule 3.62, 

1- FP sat hl(chan(O- chan(FP)) = () . (3.21) 

By (3.20) and (3.21), 1- FP sat TJ!\hl(chan(~)- chan(FP)) =(),and thus, 
by preciseness consequence lemma 3.78, relative completeness axiom 3.74, and 
consequence rule 3.60, 1- FP sat~· 0 

3.11 Discussion 

In this chapter a trace-based compositional proof theory for fault tolerant dis­
tributed systems has been defined. In this theory, the failure hypothesis of a 
process is formalized as a relation between the normal and acceptable observ­
able input and output behaviour of that process. Such a relation enables us to 
abstract from the precise nature of a fault and to focus on the abnormal be­
haviour it causes. This idea was first introduced in [Schepers93b]. Comparing 
our proof system with trace-based formalisms for normal behaviour (see e.g. 
[Zwiers89]}, only one new rule, viz. the failure hypothesis introduction rule, 
has been added to capture acceptable executions. 

We illustrated our method by proving safety of a triple modular redundant 
system and the alternating bit protocol, using only the specifications of the 
components. The triple modular redundant system example illustrated how 
the possibility of expressing the failure hypothesis of a subsystem allows us to 
formalize a fault hypothesis. The proof of correctness of the alternating bit 
protocol that appears in [PS91] is also based on traces. There, a less natural 
specification of the receiver, which contains the requirement that non-duplicate 
input messages have alternating bits, evades the necessity to prove the property 
of persistency. 

Motivated by the ease with which it can be assured that one process cannot 
access the channels of another, the failure hypothesis of a process refers only 
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to the channels of that process. This is, however, not imperative: the third 
failure hypothesis requirement can be dropped provided of course that we define 
chan(FPlx) = chan(FP)Uchan(x) and replace, in the definition ofrt[FPlx], 
the clause Ojchan(FP) = (J by the clause Ojchan(FPlx) = 0. In addition to 
this, we can specify for a process P a set base(P) of channels such that the 
failure hypothesis x of process P should satisfy chan(x) ~ base(P) and, hence, 
base(Plx) = base(P). 

The proof system for failure prone processes abstracts from the internal 
states of the processes. Instead of defining a full programming language and 
presenting a corresponding semantics and proof theory, we could have intro­
duced plain processes by just specifying their traces (as in [Schepers93b]). How­
ever, this would have been unfortunate, since a framework in which the basic 
building blocks have to be postulated is not complete. 



Chapter 4 

Compositional Refinement 
of Fault Tolerant 
Distributed Systems 

In the previous chapter we developed a trace-based compositional proof theory 
to verify safety properties of fault tolerant distributed systems. In this theory, 
a failure hypothesis x of a failure prone process FP is formalized as a relation 
between FP's normal behaviour (i .e., the behaviour that conforms to the spec­
ification) and its acceptable behaviour, that is, the normal behaviour together 
with the exceptional behaviour (i.e., the behaviour whose abnormality should 
be tolerated). To characterize the acceptable behaviour of a failure prone pro­
cess FP with respect to a failure hypothesis x, the following inference rule was 
given: 

FP sat 4> 
FPlx sat </>lx 

In practice, a designer is faced with the problem of constructing a system 
which, given a failure hypothesis that characterizes the circumstances assumed 
for the system, satisfies a given specification. Although the failure hypothesis 
introduction rule repeated above can be used to obtain a specification of the 
acceptable behaviour from the specification of the normal behaviour, it cannot 
be used to identify the normal behaviour specification that results in the de­
sired acceptable behaviour specification. Another problem one may encounter 
in practice concerns reusability: does a given system continue to satisfy its 
acceptable behaviour specification when the circumstances get worse? Then, 
failure hypothesis introduction rule 3.66 is again not of much use. 

Essentially, a failure hypothesis relates the abstract level at which a process 
behaves normally to a concrete level at which that process behaves accept­
ably. More precisely, the specification of the normal process behaviour can be 

53 
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seen as a refinement of the acceptable process behaviour because it is more 
restrictive. In this chapter we study the relationship between the composi­
tional proof theory of the previous chapter and the compositional refinement 
theory of [ZCdR91). One particular aim is to classify the processes that, given 
a particular failure hypothesis, satisfy a given specification. Also, we try to 
determine the least restrictive failure hypothesis under which a process still 
satisfies a given specification. 

In Section 4.1 we give an alternative interpretation of the assertions, fail­
ure hypotheses, and correctness formulae that were introduced in the previous 
chapter. Section 4.2 contains the compositional refinement theory. In Sec­
tion 4.3 we illustrate our refinement method by investigating a transmission 
medium that might corrupt messages and one that might be transiently stuck 
at zero. 

4.1 Assertions, failure hypotheses, and 
correctness formulae 

The syntactic construct FP l x that was introduced in the previous chapter 
mixes, in effect, process terms with failure hypotheses. In such a mixed terms 
formalism it is convenient to interpret an assertion, just as a process term, 
as a set of computations, rather than by means of truth values [Zwiers89, 
Olderog91) . In our case we interpret an assertion as a set of traces: 

• [<f>Dcset = { 0 I 0\cset = 0 1\ 3'Y · (O,'f') F 4> } . 

The reason for parameterizing the interpretation of an assertion with a set of 
channels will become clear after Example 4.4. 

Example 4.1 (Interpretation of an assertion) 

[hjc = OD{c,d} { o I o \ { c, d} = 0 A 3'~' · ( o, 1) F= hi c = 0 } 
{ o I o \ { c, d} = 0 1\ or c = 0 } 
{ 0 I Ojd=O }. 

A transformation expression is interpreted as a set of pairs of traces: 

• ['1/JDcset = { (Oo,O) I Oo \cset = 0 1\ 0\cset = 0 1\ 3'f'· (Oo,O,'Y) F '1/J }. 

Example 4.2 (Interpretation of a transformation expression) 

[hjc=holdic]{c,d}={(Oo,O)I Oo\{c,d}=O 1\ 0\{c,d}=O 
1\ 3'Y · ( Oo, (}, 'Y) F hi C = hold j C } 

= { (Oo,O) I Oo\{c,d} = 0 1\ 0\{c,d} = 0 
1\ 0 i c = Oo i c } . 
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We conclude this section by (re)defining the validity of a correctness formula 
FP sat¢. 

Definition 4.3 (Validity of a correctness formula) 

. FP sat¢ if, and only if, 'H[FPD ~ [cP]chan(FP)· 

<> 

Example 4.4 (Validity of a correctness formula) For some process FP 
which outputs value 2 along channel c we know 'that 'H[FP] = { (), ((c, 2)} }. 
Since [h l c = () V h l c = {( c, 2)) l = { (), {( c, 2))}, the correctness formula 
FP sat hie=() V h lc = ((c, 2)) is valid. b. 

Recall that if trace (} is an element of 'H[FPD then Ol chan(FP) = 0. How­
ever, as mentioned in the previous chapter, in a compositional approach the 
specification ¢ of failure prone process FP should not impose restrictions on 
communications along channels other than those of FP: it should be the 
case that chan(¢) ~ chan(FP). Consequently, the set [cPDcHAN contains, 
among others, every trace(} such that Olchan(FP) = (). Then, specifica­
tion 4> is precise for process FP in the sense of Definition 3.75 if, and only if, 
'H[FP] = [</>Dchan(FP)· 

4.2 Compositional refinement 

Compositional refinement can be defined in terms of the relational composi­
tion X~R, the weakest precondition [R]X, and the leads-to relation X~ Y 
(ZCdR91] . But this definition is complex due to its generality and its formula­
tion in terms of parameterized, that is, higher order, processes. In this chapter, 
we restrict the definition of these operators on the mixed terms formalism of 
CSP-like processes and first order assertional trace specifications. We only 
consider those cases which are needed to develop our refinement theory. 

Definition 4.5 (Composition operator) For a set X ~ TRACE and a 
set R ~ TRACE x TRACE the composition X~R is defined as follows: 

X~R = {(}I 30o · Oo EX I\ (Oo,O) E R } . 

<> 

Example 4.6 (Composition operator) Consider the sets X and R where 

• X= { (} E TRACE I Ol{c, d} = () }, and 

• R = { ((h,82) E TRACE x TRACE I 81 jc = 02ic }. 
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The composition X ~R conforms to 

X~R { 0 I 30o · Oo EX 1\ (Oo,O) E Y} 
{ 0 I 30o · Oo l{ e, d} = () 1\ Oo j e = Oj e } 
{ 0 I Ole=()}. 

Definition 4. 7 (Weakest precondition operator) For a set X such that 
X~ TRACE and a set R ~ TRACE x TRACE the weakest precondition for 
X with respect to R, notation [R]X, is defined as follows: 

[R]X = { 0 I VOo · (O,Oo) E R -+ Oo EX}. 

<> 

Example 4.8 (Weakest precondition operator) Consider the sets X and 
R where 

• X = { 0 E TRACE I 0 f; () }, and 

• R = { (01,02) E TRACE x TRACE I 01le = 02je }. 

The weakest precondition for X with respect toR follows from 

[R]X = { 0 I 'v'Oo · (O,Oo) E Y -+ Oo EX} 
{ 0 I 'v'Oo · 0 l e = Oo l e -+ Oo # () } 

= { 0 I Oje "# () }. 

Definition 4.9 (Leads-to operator) For sets X, Y ~ TRACE the leads-to 
relation X ~ Y is defined as follows: 

X ~ Y = { ( Oo, 0) I Oo E X -+ 0 E Y } . 

<> 

Example 4.10 (Leads-to operator) Consider the sets X andY where 

• X= { 0 E TRACE I Ole=() }, and 

• y = { 0 E TRACE I Old=() }. 

For the leads-to relation X~ Y we find 

X~ Y { (Oo, 0) I Oo EX -+ 0 E Y } 
= { (Oo,O) I Oole = () -+ Ojd = () }. 
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The following two lemmas relate the above defined operators. 

Lemma 4.11 Let X, Y ~ TRACE and R ~ TRACE x TRACE, then 

X ;n ~ Y if, and only if, X ~ [R]Y . 

Proof. 

x;R~Y 

¢} VB· ((30o · (Oo EX /\ (Oo,O) E R))-+ 0 E Y) 
{:} VB· (VBo · ((Oo EX /\ (Oo,O) E R)-+ 0 E Y)) 
¢} VB· (VBo · (8o EX-+ ((8o,8) E R-+ 0 E Y))) 
{:} VBo · (8o EX-+ VB· ((80 , 8) E R-+ 8 E Y)) 
¢} X~ [R]Y 

Lemma 4.12 Let X, Y ~ TRACE and R ~ TRACE x TRACE, then 

Proof. 

X ;n ~ Y if, and only if, R ~ X ~ Y. 

X~R~ Y 
¢} VB · (38o · (8o E X /\ (8o, 8) E R) -+ 8 E Y) 
{:} VB·(VBo · ((8oEX /\ (8o,8)ER)-+8EY)) 
{:} VB · (VBo · ((8o,8) E R-+ (8o EX-+ 8 E Y))) 
¢} R~X~Y 
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0 

0 

For assertions¢ and~' and transformation expression'¢, the above operators 
can be expressed in the first order assertion language given in Section 3.4 as 
follows: 

• [<PH['¢] is expressed by 3s · (</>(s) A 1/J(s, h)); 

• [['¢]][¢]is expressed by Vs · ('¢(h,s)-+ </>(s)); 

• [¢] ~ [~] is expressed by </>(hold) -+ ~(h). 

Previously, the assertion 3s · (</>(s) A 1/J(s, h)) was abbreviated as </>l'¢. 
The inference rule for introducing failure hypotheses that was given in Sec­

tion 3.7 is reformulated below as Theorem 4.13. Recall from Definition 3.53 
that a failure hypothesis only refers to a subset of the channels of the process. 

Theorem 4.13 (Failure hypothesis introduction) 

If FP sat</> then FPlx. sat </>lx.. 
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Proof. 

FP sat¢ 
¢> H[FP] ~ [</JDchan(FP) 
:::} H[FP] ~ [XDchan(FP) ~ [</JDchan(FP) ~ [XDchan(FP) 
<=> H[FPix] ~ [3s · (¢(s) tq(s, h))Dchan(FP) 
<=> FPix sat 3s · (¢(s) 1\ x(s, h)) 

0 

Next we investigate how, given a failure hypothesis x and an assertion ¢, 
we can find a specification for failure prone process FP such that FP I x sat ¢. 
In this context, observe that a trace h of FP is characterized by the fact that 
any trace s with x(h, s) conforms to ¢ . 

Theorem 4.14 (Failure hypothesis elimination) 

Proof. 

FPix sat¢ if, and only if, FP sat Vs · (x(h,s)--+ ¢(s)). 

FPix sat¢ 
<=> H[FPix] ~ [<PDchan(FP) 
¢> H[FP] ~ [XDchan(FP) ~ [</JDchan(FP) 
¢> H[FP] ~ [[xDchan(FP)][</JDchan(FP) 
<=> H[FP] ~ [Vs · (x(h,s)--+ </J(s))Dchan(FP) 
<=> FP sat Vs · (x(h, s)--+ ¢(s)) 

0 

Suppose ~FP is a (relatively) precise specification of process FP: it is the 
case that() E H[FP] if, and only if,() E [~FPDchan(FP)· The following theorem 
identifies the weakest, that is, the least restrictive, class x of failure hypothe­
ses is, such that FP I x sat ¢ for a suitable specification ¢. Remember that, 
like failure hypothesis x, the specification ¢ should only refer to a subset of 
chan(FP). 

Theorem 4.15 (Failure hypothesis isolation) 

Proof. 

FPix sat¢ if, and only if, x--+ (~FP(hotd)--+ ¢(h)). 

FPix sat¢ 
<=> H[FPix] ~ [¢]chan(FP) 
¢> H[FP]~[XDchan(FP) ~ [</JDchan(FP) 
¢> [~FP]~[X]chan(FP) ~ [</JDchan(FP) 
¢> [XDchan(FP) ~ [~FPLhan(FP) ~ [</JDchan(FP) 
¢> X--+ (~FP(hotd)--+ </J(h)) 

0 
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4.3 Examples 

In this section we illustrate the use of the failure hypothesis elimination and 
isolation theorems by investigating a transmission medium that might corrupt 
messages and one that might be transiently stuck at zero. 

4.3.1 A transmission medium that might corrupt 
messages 

Consider the transmission medium M introduced in Example 3.24 and the 
failure hypothesis Cor discussed in Example 3.47. Using failure hypothesis 
introduction theorem 4.13 we obtain: 

MlCor sat 3s · Val(sTout) ~ 1 Val(sTin) 
1\ len(hT{in,out}) = len(sT{in,out}) 
1\ Vi· 1 ::; i::; len(h T{ in, out}) 

-+ ch(h T{ in, out}( i)) = ch(s T{ in, out }(i)) 
1\ Vi ·1::; i::; len(hTin) -+ val(hTin(i)) = val(sTin(i)). 

Because there is no relationship any more between the values input and 
those output, the strongest property of M l Cor is: 

MlCor sat len(hTout)::; len(hTin)::; len(hTout) + 1, 

which no longer specifies a transmission medium. By failure hypothesis elimi­
nation theorem 4.14 we know that 

CMlCor sat Val(hTout) ~ 1 Val(hTin) 

if, and only if, 

CM sat Vs · ( len(sT {in, out})= len(h T {in, out}) 
1\ Vi· 1 ::; i ::; len(sT{ in, out}) 

-+ ch( sT{ in, out}( i)) = ch(h T{ in, out}( i)) 
1\ Vi· 1::; i::; len(sTin) -+ val(sTin(i)) = val(hTin(i)) ) 

-+ Val(s Tout) ~ 1 Val( s Tin) . 

However, this implication does not hold for arbitrary traces s as the premise 
may hold even if not Vi· 1::; i::; len(sTout) -+ val(sTout(i)) = val(sTin(i)). 
Hence, the assertion is equivalent to false, and therefore such a CM cannot 
be implemented. A possible way to deal with corruption is to use coding (see 
for instance Section A.4) . An encoding function transforms a dataword into 
a codeword which contains some redundant bits. Thus the set of datawords 
is mapped into only a small fraction of a much larger set of codewords. The 
codewords some dataword is mapped into are called valid, and the encoding 
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ensures that it is very unlikely that due to corruption one valid codeword is 
changed into another. 

Using the function Valid with the obvious interpretation we formalize the 
detectable corruption hypothesis as follows: 

DetCor = len( h l {in, out}} = len( hold l {in, out}} 
1\ Vi · 1 ~ i ~ len(hl{in, out}) 

--+ ch(hl{in, out}(i}) = ch(hozdl{in, out}(i}) 
1\ Vi · 1 ~ i ~ len(h lin} --+ val(h lin(i)} = val(hold l in(i)) 
1\ Vi ·1 ~ i ~ len(hlout) 

--+ val(h lout( i)} = val(hozd lout( i)} 
V--, Valid(val(hlout(i))). 

Now, we seek CM such that 

CM l DetCor sat Vi · 1 ~ i ~ len(h lout) 
--+ Valid(val(hlout(i))) 

--+ val(h l out(i)) = val(h lin( i) ). 

Using failure hypothesis elimination theorem 4.14 once more we obtain: 

CM sat Vs · ( len(sj{ in, out})= len(h l{ in, out}) 
1\ Vi · 1 ~ i ~ len( s l{ in, out}) 

--+ ch(sj{in, out}(i)) = ch(hl{in, out}(i)) 
1\ Vi ·1 ~ i ~ len(slin) --+ val(slin(i)) = val(hlin(i)) 
1\ Vi ·1 ~ i ~ len(slout) 

--+ (slout(i)) = val(hlout(i)) 
V •Valid(val(slout(i)))) 

--+ (Vi ·1 ~ i ~ len(slout) 
--+ Valid( val(s lout( i)}} 

--+ val(sl out(i)) = val(slin(i)) ). 

4.3.2 A transmission medium that might be transiently 
stuck at zero 

Suppose the medium M presented in Example 3.24 might be transiently stuck 
at zero. What is a suitable failure hypothesis StuckAtZero such that 

M l StuckAtZero sat Vi · 1 ~ i ~ len(h lout) 
--+ val(h lout( i)) = val(h lin( i)) 

V val(hlout(i)) = 0? 

Using failure hypothesis isolation rule 4.15 we can classify StuckAtZero as fol­
lows: 
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Stu.ckAtZero 
--+ ( Vi ·1 ~ i ~ len(holdjou.t) --+ val(holdjou.t(i)) = val(holdiin(i)) 

1\ len(holdjou.t) ~ len(holdiin) ~ len(holdjou.t) + 1 
--+ Vi · 1 $ i ~ len(hjou.t) --+ val(hjou.t(i)) = val(hjin(i)) 

V val(hjou.t(i)) = 0 ). 

A natural candidate is the predicate Stu.ckAtZero defined in Example 3.46. 

4.4 Discussion 
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Failure hypothesis introduction rule 3.66 is a so-called forward rule. A forward 
rule is characterized by the fact that the assertion appearing in the conclusion 
is constructed from the assertions appearing in the premises. Apart from side 
conditions, a forward rule has the following general form: 

... , P; sat¢;, 
0 0 0 ' ~i --+ 1Ji' 0 0 0 

A forward rule is useful for verification. However, when designing sys­
tems a so-called backward rule is required. A backward rule has the pro~ 
erty that a simple correctness formula can be concluded whenever the com­
plex premises hold. The difference between forward and backward rules is 
rather subtle: Psat¢ if Psatop8 pec(¢I, · · · ,¢n,6, ... ,~m,1Jl,···,1Jm) and 
O'pspec( cP1, ... , cPn, 6, .. . , ~m, 171, . . . , 17m) --+ ¢. The typical form of a backward 
rule is the following: 

... , P; sat¢; , 
0 0 0' ~i --+ 'f/i, 0 0 0 ' 

O'pspec(cPI, ··· ,¢n,6, ... ,~m,'f/1,···,1Jm)--+ cP 
opproc(PI, ... , Pn) sat ¢ 

Using failure hypothesis isolation theorem 4.15, we obtain the following 
backward failure hypothesis introduction rule: 

FP sat~ , (x(hold, h) 1\ ~(hold)) --+ ¢(h) 
FPix sat¢ 



Chapter 5 

Fault Tolerant Real-Time 
Distributed Systems 

In this chapter we extend the proof theory of Chapter 3 to reason about live­
ness, fairness, and real-time issues. To do so, we replace the underlying finite 
trace model by a model in which the timed, infinite traces of a process are 
decorated with timed refusal sets. The extended model enables timing failures 
and deadlock to be taken into account. To exclude unrealistic behaviour, it 
incorporates finite variability [BKP86], also called non-Zeno-ness (cf. [AL92] 
and Appendix D), by guaranteeing that each action has a fixed minimal dura­
tion. However, the introduction of time causes the importance of liveness and 
fairness to decrease, since many interesting properties become safety properties 
[Lamport83]. 

This chapter is organized as follows . Section 5.1 introduces the program­
ming language. In Section 5.2 we present the computational model. Section 5.3 
introduces the denotational semantics. In Section 5.4 we present the assertion 
language and associated correctness formulae. In Section 5.5 we once again 
incorporate failure hypotheses in our formalism. Section 5.6 presents a compo­
sitional network proof theory for fault tolerant real-time distributed systems. 
We illustrate our method by applying it, in Section 5.7, to a triple modular 
redundant system. In Section 5.8 we show that the proof system of Section 5.6 
is sound and relative network complete. 

5.1 Programming language 

To enable the programming of time-outs we extend the language of Section 3.1 
with a communication guarded command that contains, as one of the guards, 
a delay statement. Let Q denote the rationals, and 1R the reals. Let TIME be 
some ordered time domain ( oo E TIME) . For the scope of this thesis it is im­
material whether the time domain TIME is discrete, i.e., TIME= { urlr E 1N} 
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for some positive smallest time unit u, dense, i.e., TIME= { T E (Q IT 2: 0 }, or 
continuous, i.e., TIME= { T E 1RIT 2: 0}. The syntax of our programming lan­
guage is given in Table 5.1, with n EN, n 2: 1, x, x1, . .. , Xn E VAR, f..L E VAL, 
f E VALn--+ VAL, dE TIME, c,c1, ... ,en E CHAN, and cset ~CHAN. 

Table 5.1: Syntax of the programming language 

Expression e .. - f..L I X I f(el,· · ·•en) 
Boolean Expression b ·· - e1 = e2 I e1 < e2 I -.b I bl v b2 .. 
Guarded Command G ·· - [ Oi=I bi --+pi I I .. 

[ 0~1 ci?Xi--+ Pi 0 delay d--+ PI 

Process p ··- skip I x := e I c!e I c?x I P1;P2 .. 
G I *G I P1ll P2 I P\ cset 

We give the informal meaning of the new or modified statements. 

Atomic statements 

• skip terminates after K skip units of time, where constant Kskip > 0. 

Compound statements 

• The evaluation of the guards appearing in the Boolean guarded command 
[ Of= 1 bi __.. Pi 1 and the non-deterministic selection of one of the open 
guards requires K 9 time units. 

• Communication guarded command [ Oi=I ci?Xi --+Pi 0 delay d--+ PI · 
Wait for at most d time units for some input Ci ?xi to become enabled. As 
soon as one of the Ci communications is possible (before d time units have 
elapsed), it is performed and thereafter the corresponding Pi is executed. 
If two or more inputs become enabled at the same time, then one of these 
is non-deterministically chosen. If none of the inputs becomes enabled 
within d time units after the start of the execution of the communication 
guarded command, then P is executed. If d equals 0 then P is executed 
immediately. 

The set of variables that occur in process P, notation var(P) , is inductively 
defined as in Definition B.l with the extra clause: 

• var([ or=l Ci?Xi--+ pi D delay d--+ Po]) = Uf=dxi} u Uf=ovar(Pi). 

The set of observable channels of a process P, notation chan(P), is as 
defined in Chapter 3. The only new clauses are: 

• in([ or=l Ci?Xi--+ pi D delay d--+ Po]) = Uf=I {ci} u Uf=oin(Pi), and 

• out([ or=l Ci?Xi--+ pi D delay d--+ Po]) = Uf=oout(Pi) · 
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5.1.1 Syntactic restrictions 

In addition to the syntactic constraints mentioned in Section 3.1.1 we have the 
following restriction (for any n E 1N, x1, ... , Xn E VAR, c1, .. . , Cn E CHAN 
and d E TIME): 

• For communication guarded command [ 0 i= 1 Ci? Xi --+ Pi 0 delay d --+ Po ] 
we require that if P; contains c!e then Pj does not contain c?x, that 
is, out(Pi) n in(Pj) = 0, for all i,j E {O, ... ,n}, i i= j. We require 
furthermore that Pj does not contain c;!e, that is, {c;} n out(Pj) = 0, 
for all i E { 1, ... , n} and j E { 0, .. . , n}. 

5.1.2 Basic timing assumptions 

To determine the timed behaviour of programs we have to make assumptions 
about the time needed to execute atomic statements and how the execution 
time of compound constructs can be obtained from the timing of the compo­
nents. In our proof system the correctness of a program with respect to a 
specification, which may include timing constraints, is verified relative to these 
assumptions. 

We assume that the execution time of atomic statements, except for com­
munication statements, is given by fixed constants. By assumption, communi­
cation takes no time: conceptually a message is received at the same time it 
is sent. Apart from an assumed fixed constant overhead before and after the 
actual communication, the execution time of a (synchronous) communication 
statement consists of the time spent waiting for a partner. 

In this chapter we assume maximal parallelism, that is, we assume that each 
process has its own processor. Hence, a process executes a local, that is, non­
communication, command immediately. Since communication is synchronous, 
a process is forced to wait until a communication partner is available. In 
the case of maximal parallelism the communication occurs as soon as such a 
partner is ready: it is never the case that one process waits to perform c!e 
while another process waits to execute c?x. Thus, maximal parallelism implies 
minimal waiting. 

Observe that in the semantic model of Section 3.3 actions can be arbitrarily 
delayed, due to the abstraction from the timing of computations. Then, the 
input and output behaviour of process P1 II P2 is simply an interleaving of the 
communication sequences of processes P1 and P2 which respects the order of 
communications along the channels in chan(PI)nchan(P2) . The untimed trace 
semantics of process [ c?x --+ d?y 0 d?y --+ c?x ]II (c!O II (z := 1; d!z}), for 
instance, includes ((c,O},(d,1}) as well as ((d,1) , (c, O)). Taking the timing 
of computations into account, we notice that the d communication cannot 
be performed at the start of the program, since execution of the assignment 
z := 1 takes a positive amount of time. In the maximal parallelism case, 
the c communication can take place immediately, and, consequently, the c 
communication precedes the d communication. 
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For simplicity, we assume that there is no overhead for compound state­
ments and that execution of a delay d statement takes exactly d time units. 
Besides the constant Kskip, we assume that execution of each assignment state­
ment takes a constant Ka time units. A constant Ka denotes the overhead 
preceding a communication, and a constant Kw denotes the overhead following 
a communication. Furthermore, we assume that to evaluate the guards of a 
Boolean guarded command and non-deterministically select one of the open 
guards a constant Kg time units are required. 

5.2 Model of computation 

The events in the various processes of a distributed system are related to each 
other by means of a conceptual global clock (as in (RR86, KSdRGA88]). This 
global notion of time is introduced at a metalevel of reasoning and is not in­
corporated in the distributed system itself. In essence, to reason about the 
real-time behaviour of a process we observe for each communication the time at 
which it occurs. We represent a synchronous communication of value J1 E VAL 
on channel c E CHAN at time T E TIME by a triple ( r, c, J1), and define: 

(Timestamp) ts( ( T, c, J1)) = r; 
(Channel) 

(Value) 

ch((r, c,Jl)) = c; 

val((r,c,Jl)) = Jl · 

To denote the observable input and output communication behaviour of a pro­
cess P we use a timed trace () which is a possibly infinite sequence of the form 
((rl,cl,J11),(r2,cn,J1n), .. . ), where r;:? T;-1, c; E chan(P), and Jli E Val, for 
i :? 1; for all i and j such that T; = Tj we require Ci =/; c1. Such a history de­
notes the communications performed by P during an execution, and the times 
at which they occurred. 

Definition 5.1 (Timed traces) Let, for Obs 
TRACE be the set of timed traces, that is, 

TIME x CHAN x VAL, 

TRACE { () E Obs* U Obsw I Vi · ts(B(i)) ~ ts(B(i + 1)) 
1\ Vj =/; i · ts(B(i)) = ts(O(j)) 

-+ ch(B(i)) =/; ch(B(j)) }. 

<> 

Let () denote the empty trace, i.e. the sequence of length 0. The concatenation 
of two traces 01 and 02 is denoted B/'()2 (and equals (}1 if (}1 is infinite). We 
use first(B) and, if(} is finite, last(B) to refer to the first and last record of(}, 
respectively. 
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Example 5.2 (Timed traces) Let Ka = Ka =Kg = 1. Consider the pro­
cesses P1 = c?x and P2 = [ z = 0 - c!z 0 z -:f 0 - z := 0; c!z ]. Extending 
the function 1i of the previous chapter to generate a set of timed traces leads to 
1i[P1D = {(r,c,tt)lr ~ 1/\ IL E VAL} and 1i[P2D = {(r,c,O}Ir ~ 2 V T ~ 3}, 
that is, 1i[P2D = { (r, c, 0} IT~ 2 }. Doing so we also obtain that 1i[P1 II P2D = 
{ (r,c,O} IT~ 2 }. However, this is in conflict with our maximal parallelism 
assumption on the basis of which 1i[P1 II P2D = { (2, c, 0}, (3, c, 0} }. ~ 

The above example illustrates that a model based on merely timed traces is 
too abstract to define a compositional semantics, as has been argued in (RR86] 
and (GB87]. The model proposed there is the timed failures model; a confusing 
name for researchers in the fault tolerant systems community. The 'failure' 
refers to the fact that in this model not only the communications that take 
place are recorded but also the failed or refused attempts due to the absence 
of a communication partner. Henceforth, we will refer to this notion as timed 

. observation. 
A timed observation is a timed (trace, refusal) pair. A timed refusal is a set 

of (channel, instant) pairs. If the timed refusal of a process contains ( c, T) then 
this corresponds to the refusal of the process to participate in a communication 
on channel c at time T. 

Definition 5.3 (Timed refusals) Let REF be the set of timed refusal sets, 
that is , 

REF = { 9tl9t ~CHAN x (O,oo} }. 

<> 

We usually define a timed refusal by a Cartesian product cset x /NT, where 
cset ~ CHAN is a set of channels and /NT an interval from TIME, that is, an 
element of P( TIME). 

Definition 5.4 (Projection on traces) For a trace 0 E TRACE and a set 
of channels cset ~ CHAN, we define the projection of 0 onto cset, denoted by 
01 cset, as the sequence obtained from 0 by deleting all records with channels 
not in cset. Formally, 

{ 

() if 0 = (), 
01 cset = Oo 1 cset if 0 = ( T, c, tt)"Oo and c ¢ cset, 

(r,c,tt)"(Oo1cset) if 0 = (r,c,tt)"Oo and c E cset. 

<> 

Example 5.5 (Projection on traces) 

((1, a., 3}, (2, c, 4}, (5, a, 2}, (7, a, 3}} l{ a} = ((1, a, 3}, (5, a, 2}, (7, a, 3}}. 
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Definition 5.6 (Hiding on traces) Hiding is the complement of projection. 
Formally, the hiding of a set cset of channels from a trace() E TRACE, notation 
() \ cset, is defined as 

0\cset = Ol(CHAN- cset). 

0 

Example 5.7 (Hiding on traces) 

((2, a, 3), (3, c, 4), ( 4, a, 2), (6, a, 3)) \ {a} = ((3, c, 4)). 

Definition 5.8 (Time shift on traces) For a timed trace () for which it is 
the case that ts(first(O)) 2': T we define the time shift operation .n as follows: 

O.nr = { (L " ~f 0 = (~ " 
(r-r,c,JL) (Oo.nr) If0=(r,c,JL) Oo. 

0 

Example 5.9 (Time shift on traces) 

((2, a, 3), (3, c, 4), ( 4, a, 2), (6, a, 3)) .n 1 = ((1, a, 3), (2, c, 4), (3, a, 2), (5, a, 3)) . 

Definition 5.10 (Channel projection on refusals) For refusal~ E REF 
and a set of channels cset ~ CHAN, we define the channel projection of ~ 
onto cset, denoted by ~i cset as follows: 

~jcset = ~ n (cset X [O,oo)). 

0 

Example 5.11 (Channel projection on refusals) 

{(a,1),(b,1),(a,2),(c,2)}i{a} = {(a,1),(a,2)}. 
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Definition 5.12 (Interval projection on refusals) For a refusal Vl E REF 
and an interval /NT E P( TIME), we define the interval projection of Vl onto 
/NT, denoted by Vlj /NT as follows: 

Vlj /NT = Vl n (CHAN x /NT). 

Example 5.13 (Interval projection on refusals) 

{(a,1),(b,1),(a,2),(c,2)}l[1,2) = {(a,1),(b,1)}. 

Definition 5.14 (Hiding on refusals) Hiding is the complement of projec­
tion. Formally, the hiding of a set cset of channels from a refusal Vl E REF, 
notation Vl\ cset, is defined as: 

Vt\cset = Vl n ((CHAN- cset) x [O,oo)). 

<> 

Example 5.15 (Hiding on refusals) 

{(a, 1), (b, 1), (a, 2), (c, 2)} \{a}= {(b, 1), (c, 2)}. 

Definition 5.16 (Time shift on refusals) For Vl E REF the time shift op­
eration Vl.nT is defined as follows: 

Vt.n T = { ( c, T- T) I ( c, 7) E Vl I\ T ~ T } . 

<> 

Example 5.17 (Time shift on refusals) 

{(a, 2), (b, 2), (a, 3), (c, 3)} .n 1 = {(a, 1), (b, 1), (a, 2), (c, 2)}. 

5.3 Denotational semantics 

In this section we define an - again - denotational semantics for the pro­
gramming language of Section 5.1. We use a special symbol T (T ¢ VAR) to 
denote the global time. 

Definition 5.18 (States) The set STATE of states is the set of mappings a 
which map a variable x E VAR to a value a(x) E VAL and which map T to an 
instant a(T) E TIME . <> 
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Thus, besides assigning to each program variable x a value a(x), a state a 
records the global time. For simplicity we do not make a distinction between 
the semantic and the syntactic domain of values and instants. In the sequel 
we assume that we have the standard arithmetical operators +, -, and x on 
TIME and VAL. 

As pointed out in Section 5.2 the concept of a timed refusal set helps to 
achieve compositionality. Consequently, in addition to the observable quantities 
mentioned in Chapter 3, we want to observe, for any execution of a process P, 

• the initial state of P including the starting time of the execution, 

• the sequence of communications performed by P and the times at which 
communications occur, 

• the times at which P refused to communicate and the names of those 
channels, and, 

• for a terminating computation of P, the final state of P including the 
termination time of the execution. 

Using the model of Section 5.2 we can describe both the terminating and the 
non-terminating computations of a program P, where a special state ..l indi­
cates an infinite execution. In general, whereas the semantics given in Chapter 3 
contained the behaviour that may be observed up to a particular point in an 
execution, the semantics of a program is now a set of denotations representing 
the maximal observations of the possible executions of the program. 

Let STATE1_ = STATE U {..l} . The semantic function M assigns to a 
process P a set of triples (ao,(B,9l),a) with ao E STATE, B E TRACE, 
9l E REF, and a E STATE1_ . A triple (a0 , (B,9l),a) E M[PD denotes a 
maximal observation of process P with the following informal meaning: 

• if a f. ..l then it represents a terminating computation which starts in 
state a0 , performs the communications as described in B while refusing 
those in 9l, and terminates in state a, and 

• if a = ..l then it represents a computation which starts in state a 0 , per­
forms the communications as described in 0 while refusing those in 9l, 
but never terminates. A computation does not terminate either because 
it is infinite or the process deadlocks. 

The semantic function M is inductively defined as follows. Notice that a termi­
nated process will indefinitely refuse to communicate on its channels. The vari­
ant of a state a with respect to a variable x and a value fJ, notation (a : x t-+ fJ), 
has been defined in Section 3.3. There we have also defined when a Boolean 
expression b holds in a state a, notation B[bD(a) . 
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• Execution of skip terminates after Kskip time units. Because the process 
skip has no channels, it does not refuse any communication. 

M[skipD = { ( uo , ((), 0) , (uo : T f-+ Kskip) ) I £[TD(uo) = 0 }. 

• Execution of the assignment x := e terminates after Ka time units, and 
in its final state x has the value that e had in its initial state. Since the 
process x := e has no channels, it does not refuse any communication. 

( {
Xf-+e[e)(uo)) M[x := eD = { ( uo , ((), 0) , O'o: Tf-+Ka ) I £[TD(uo) = 0 }. 

• In the execution of the synchronous output statement c!e there comes, 
after an initial period of Ko: time units during which a communication 
on channel c is refused, a waiting period for a communication partner to 
become available. From the start of this latter period a communication 
via channel c is not refused until after such a communication occurs. As 
channel c is the only channel of the process c!e, this process does not 
refuse any other communication. Execution of the output statement c!e 
either never terminates (in case no communication partner ever shows 
up) or terminates Kw time units after the c communication has occurred. 

M[c!eD = 
{ ( uo, ((),9'\), l_) I £[TD(uo) = 0 I\ 9'\= {c} x [O,Ko:)} 

U { ( uo , (((r,c,£[eD(uo))),9l), (uo :Tf-+T+Kw)) 
I £[TD(uo) = 0 I\ T ~ Ko: I\ 9l = {c} x ( [0, Ko:) U (r, oo) ) }. 

Recall that we allow at most one communication via channel c at time T. 

• Execution of the input statement c?x either never terminates (in case no 
communication partner is ever available) or terminates when the com­
munication on channel c has occurred and the received value is assigned 
to x, that is, Kw + Ka time units after that communication has occurred. 

M[c?xD = 
{ ( uo, ((),9'\), _i) I £[TD(uo) =0 I\ 9'\= {c} x [O,Ko:)} 

U { ( uo, (((r,c,JL)),9l), (uo : {~::~ + Kw + KJ ) 

I £[TD(uo) = 0 
I\ T ~ Ko: 
I\ JL E Val 
I\ 9l = {c} x ( [0, Ko:) U (r, oo) ) }. 
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• An execution of P1 ; P2 is either a non-terminating execution of P1 or 
a terminating execution of P1 followed by some execution of P2 . Under 
the convention that a process can only refuse communications on its own 
channels we must, in the case of sequential and similar compositions, 
expand the refusal sets of the respective components to be the union of 
the channels of those components. Assuming that the execution of P1 

terminates at 7 and that the execution of P2 starts at 7, process P1 ; P2 
refuses to communicate along the channels in chan(P2)- chan(P1 ) during 
the interval [0, 7), and along the channels in chan(PI)- chan(P2) from 
time 7 onwards. 

M[Pt; P2] = 

{ ( u0 ,(0,9tu (chan(P2)- chan(PI)) x [O,oo)),..l.) 
I ( uo, (B, 9t), ..1. ) E M[Pt] } 

U { ( uo,(Bt"B2,9t),u) 
I there exist an 9t1, an 9t2, a u1 =1- ..1. and a 7 > 0 such that 

t'[T](ui) = 7, 912 T[O, 7) = 0, 
( uo , ( 81 , 91t ) , 111 ) E M[Pt], 
( (u1 :T...-.0), ( 82, 912 ).n7, (u :T ...-.T-7)) E M[P2], 
and 91 91t j[O, 7) U (chan(P2)- chan(Pl)) x [0, 7) 

U 912 U (chan(Pl)- chan(P2)) x [7, oo) }, 

where (B,91).nt equals (B.nt,91.nt). 

• If no guard is open, that is, evaluates to true, the execution of the Boolean 
guarded command [ 0 ~1 b; ~ P; ] terminates after evaluating the guards, 
which takes Kg time units. Otherwise, the process corresponding to 
one of its open guards (non-deterministically chosen) is executed. Since 
chan([ Oi=I b; ~ P;]) = Uf= 1 chan(P;), communications on Uf=1 chan(P;) 
are refused while evaluating the guards; in case execution continues with 
the process Pb communications on Uf= 1 chan(P;)- chan(Pk) are refused. 

M[[ Oi=I b; ~ P; ]] = 

{ ( uo, ((),Uf= 1 chan(P;) x [O,oo)), (uo: T ....-.Kg)) 
I t'[T](uo) = 0 1\ •B[bt V ... V bn](uo) } 

U { ( uo,(8,91),u) 
I t'[T](uo) = 0 and there exist a k E {1, ... , n} and a 9l such that 

B[bk](uo), 

9lj[O,Kg) = 0, 
( uo , (B,6l)nKg, (u: T ....-. T- Kg)) E M[Pk], 
and 9t ~i=I chan(P;) x [0, Kg) 

U91 
U (Ui=I chan(P;)- chan(Pk)) x [Kg, oo) }. 
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• Inthecommunicationguardedcommand [Df:1Ci?Xi--+ PiDdelayd--+ Po], 
the first communication that occurs resolves the choice of which process 
to execute. If no communication occurs before d time units (0 ~ d ~ oo) 
have elapsed, the process Po is executed. 

M[ [ Di=t c;?x;--+ P; D delay d--+ Po] D = 
Uf=t { ( ao, ( (( T, C;, JL))"8, 9l), a ) 

I £[TD(ao) = 0, Ka ~ T < d, JL E VAL, and there exists an 6\ 
with 6\j[O, T + Kw + Ka) = 0, 
9l = (Uj=o chan(Pj) U Uj= 1 { Cj}) X [0, T + Kw + Ka) 

::::: {(c;,T)}- Uj=dcj} X [Ka,T) 
U9l 
U ((Uj= 0 chan(Pj) U Uj=dci})- chan(Pi)) 

X [r+Kw +Ka,oo), 
and ( (ao :X; ~---+ JL) , 

(8,6\).n(T + Kw + Ka), 
(a: T 1--+ T- T- Kw- Ka) ) E M[P;D } 

U { ( ao,(8,9l),a) 
I £[TD(ao) = 0, and there is a !R such that !Ri[O,d) = 0, 

(a0 , (8,!R).nd, (a: T ~---+ T- d)) E M[PD, and 
9l = Uj= 0 chan(Pj) x [O,d) U Uj= 1 {cj} x [O,Ka) 

U !R U (Uj= 1 (chan(Pj) U {cj})- chan(Po)) x [d,oo) }. 

• An execution of* G consists of either an infinite number of executions of 
G that terminate in a state in which at least one of its guards is open, or 
a finite number of executions of G such that the last execution does not 
terminate or terminates in a state in which no guard is open. 

M[*GD = 

{ ( ao,(8,9l),a) 
I £[T](ao) = 0 and there exists a k E 1N U {oo}, and for every i, 

0 S i < k, there exists a triple (a; , (8i+ 1 , 9li+t) , a;+t) such that 
a; f 1_, B[ba](a;), 
9l;+t j(O,£[T](a;)) =chan( G) x [O,E[TD(a;)), 
( (a; : T 1--+ 0) , 

(8i+t, 9l;+t ).n£[TD(a;) , 
(a;+t : T ~---+ T- £[T](a;)) ) E M[G], and 

if k = oo then 
for all j, 1 S j < k, 8t" ... "8i j 8, nf=t 9lz :J 9l, and a= l_, 

else 
8 = 8t" ... "8k, 9l = n7=1 9lz, a= ak, 
and if ak f l_ then B[-.ba](ak) }. 
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• Since communication is synchronous, a trace 0 of process P1 II P2 has the 
property that or chan(PI) and or chan(P2) match traces of P1 and P2 re­
spectively. As in Section 3.3, we further require that or chan(PtiiP2) = 0. 
Communications along the channels in chan(Pl) n chan(P2) are refused 
by P1IIP2 if, and only if, they are refused by P1 or P2. Since process P 
does not refuse to communicate on the channels in CHAN- chan(P), 
it is also the case that communications on the channels in CHAN -
(chan(Pl) n chan(P2)) are refused if, and only if, they are refused by P1 

or P2 . Observe that process P1 II P2 terminates if, and only if, both P1 

and P2 terminate. 

M[Pl II P2D = 

{ ( ao, (0, 9t), a ) 
I for i = 1, 2 there exist ( 0;, 9t;) and a; such that 

(ao, (0;, 9t;), a;) E M[P;D, 
if a1 = l_ or a 2 = l_ then a = l_, and, otherwise, 

{
a;(x) if x E var(P;), 

for all x E VAR, a(x) = ao(x) if x 't var(Pl II P2), 

and a(T) = max;(a;(T)), 
or chan(P;) = 0;, or chan(Pl II P2) = 0, and 9t = 9tl u 9t2 }. 

• The observations of P\ cset, where cset ~ in(P) n out(P), are character­
ized by the fact that the internal cset communications take place as soon 
as they become enabled. This means that such communications occur at 
the first instant that they are no longer refused. Recall that we allow only 
one communication per channel to occur at a particular instant. Further­
more, by our definition of the semantics it takes a non-zero period before 
such a taken communication can become enabled again. Hence, an obser­
vation of P \ cset is characterized by the fact that cset communications 
are continuously refused, except at particular instants. 

Definition 5.19 (As soon as possible) For a timed refusal set 9t and 
a set cset of channels: 

ASAP(9t,cset)=VcEcset· Vt1,t2·{c}x[tt,t2]n9t=0--+ t1=t2 . 

0 

Then , 

M[P\csetD { ( ao , ( 0 \ cset , 9t \ cset) , a ) 
I ( ao , (0 , 9t) , a ) E M[P] 1\ ASAP(9t, cset) }. 

Notice that this definition incorporates finite variability (also called non-Zeno­
ness). Having defined the meaning of processes we again abstract from the 
internal states. 
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Definition 5.20 (Timed observations) The timed observations of a pro­
cess P, notation O[P], follow from: 

{ ( () , !.Jt ) I there exist <To and u such that ( <To , ( () , !.Jt) , u ) E M [P] } . 

The set O[P] represents the normal behaviour of process P. In Section 5.5 we 
determine the set O[Plx] representing the acceptable behaviour of P under 
the failure hypothesis X· Besides the already mentioned finite variability, other 
important properties of the semantic function 0 are that if (B, !.Jt) E O[P] then 
Bi chan(P) = () and !.Jtj chan(P) = !.Jt. 

5.4 Assertion language and correctness 
formulae 

In this chapter the observable quantities are the communication history and 
the refusal set of the process. Similar to the semantic denotation of traces 
in Section 5.2, we use in assertions record expressions such as ( r, c, JL), with 
T E TIME, c E CHAN and JL E VAL. We use time expressions, e.g. using the 
function ts to obtain the timestamp of a record. We have channel expressions, 
e.g. using the operator ch which yields the channel of a record, and value ex­
pressions, including the operator val which yields the value of a communication 
record, and a number of n-ary functions which remain uninterpreted. To rea­
son about natural numbers, the assertion language includes the operator len. 
We use the empty trace, () , traces of one record, e.g. (( r, c, JL)), as well as the 
concatenation operator " and the projection operator j to create trace expres­
sions. Further, for a trace expression texp and an integer expression iexp we 
use texp( iexp) to refer a particular record of texp, provided iexp is a positive 
natural number less than or equal to the length of trace texp . Similar to the 
semantic denotation of refusal sets in Section 5.2, we use expressions such as 
cset x [r1 , r2 ) and the projection operator j to form refusal expressions. 

Let IVAR, with typical representatives i, j, k, l, and m, denote the set 
of logical value variables ranging over lN, let TIVAR, with typical representa­
tive t, denote the set of logical time variables ranging over TIME, let VVAR, 
with typical representative v, denote the set of logical value variables ranging 
over VAL, let TVAR, with characteristic element s, be the set of logical trace 
variables ranging over TRACE, and let RVAR, with typical element N, be the 
set of logical refusal variables ranging over REF. 

To refer to the timed observation of a process we use the special variables h 
and R to denote the trace and the refusal set of the process, respectively. Then, 
we can write specifications like c!2 sat hi{c} = () V 3t ~ 0 · hi{c} = ((t,c,2)) 
and x := e sat R = 0 . For an assertion </J we also write </J(h, R) to indicate 
that </J has two free variables h and R. We use </J( texp, rfxp) to denote the 
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assertion which is obtained from¢ by replacing h by trace expression texp, and 
R by refusal expression rfxp. 

Table 5.2 presents the language we use to define assertions, with i E N, 
r E TIME, t E IVAR, c E CHAN, J..t E VAL, v E VVAR, s E TVAR, 
N E RVAR, and cset ~ CHAN . Observe that an expression in the assertion 
language of Table 5.2 does not refer to program variables. 

Table 5.2: Syntax of the assertion language 

Integer expression iexp 

Time expression tixp 

Channel expression cexp 

Value expression vexp 

Record expression rexp 

Trace expression texp 

Interval expression inxp 

Refusal expression rfxp 

0 I 1 I i I iexp1 + iexp2 I iexp1 x iexp2 

len( texp) 

r I t I ts(rexp) I tixp 1 + tixp2 

c I ch(rexp) 

J..t I v I iexp I val( rexp) I 
f(vexp 1 , ... ,vexpn) 

( tixp , cexp, vexp) I texp( iexp) 

s I h I () I (rexp) I texp/'texp2 

texpl cset 

[ tixp 1 , tixp2 ) I { tixp} 

N I R I 0 I cset x inxp 
rfxp 1 U rfxp2 I rfxp l cset 

Assertion ¢ ··- iexp1 = iexp2 I iexp1 < iexp2 I 
tixp 1 = tixp2 I tixp 1 < tixp2 I 
cexp1 = cexp2 I vexp 1 = vexp2 I 
vexp 1 < vexp2 I texp 1 = texp2 I 
rfxpl = rfxp2 I tP1 1\ tP2 I .,¢ I 
3i · ¢ I 3t · ¢ I 3v · ¢ I 3s · ¢ I 3N · ¢ 

Definition 5.21 (Primitive predicates I) Primitive predicates have a free 
variable t , the current reference point of time (called the 'base time'). For a 
set cset of channels and a time expression tixp, a few typical examples are: 

• enable cset at tixp = ( cset x tixp) n R = 0; 

• enable cset for tixp = ( cset x [t, t + tixp]) n R 0; 

• refuse cset upto tixp = cset x [t, t + tixp) ~ R; 

• refuse cset precisely upto tixp = 
Vt· ( refuse cset upto t ..._. t:::; tixp ); 

• after tixp : ¢ = ¢[t + tixpft], 

where [t + iexpftJ denotes syntactic substitution oft+ iexp for t. This 
construct allows the base time to be updated. 
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plus obvious combinations, e.g. refuse cset precisely for iexp and using the 
connective and. 0 

It is sometimes convenient to refer to the willingness of the environment 
to communicate. For instance, as a communication does not occur until the 
environment stops refusing it, we can specify precisely for how long a com­
munication must be enabled by taking the willingness mentioned before into 
account. In particular, consider the case where messages are lost due to faults . 
The fact that, after an input to a transmission medium, output fails to oc­
cur may indicate either that the message was lost, or that no communication 
partner has yet come forward. Using assumptions about the readiness of the 
environment to receive a message elegantly resolves such issues. 

If P did not refuse a c communication at time r, then the fact that no c 
communication occurred at T, implies that the environment was not prepared 
to engage in a c communication at that time. On the other hand, a c communi­
cation that did occur at time T could not have been refused by the environment. 
Thus, we can define possible refusal sets of the environment. 

Definition 5.22 {Match) A timed refusal set N matches timed trace hand 
timed refusal set R, notation Match(h, R, N), if, and only if, 

Vc,t· ( (c,t) fl. R 1\ -,(3v · (t,c,v) E h))-+ (c,t) EN 
1\ Vc,t,v· (t,c,v) E h-+ (c,t) fl. N. 

0 

Definition 5.23 {Primitive predicates II) For a set cset of channels and 
a time expression tixp, a few typical examples of primitive predicates are: 

• cset enabled at tixp = 
VN. Match(h,R,N) -+ (cset X tixp) n N 0; 

• cset enabled for tixp = 
VN · Match(h,R,N) -+ (cset x [t,t + tixp]) n N 0; 

• cset refused for tixp = 
VN · Match(h, R, N) -+ cset x [t, t + tixp] C N; 

• cset refused upto tixp = 
VN · Match(h,R,N) -+ cset x [t,t + tixp) C N ; 

• cset refused precisely upto tixp = 
Vt· ( cset refused upto t +-+ t ~ tixp ). 

Observe that we use the present tense to refer to refusals of the process, and 
the past tense to refer to refusals of the environment. 0 
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Example 5.24 (Calculator) Consider the process C that accepts a value via 
in, applies a function f to it and produces the result via out. After an input it 
takes Kc time units before the corresponding output becomes enabled. Once 
an output has occurred, the next input becomes enabled after c: time units. We 
specify C as follows: 

C sat Vi ·1 ~ i ~ len(hjout) - val(hjout(i)) = f(val(hjin(i))) 
1\ h = (} - enable in and refuse out upto oo 
1\ Vt,v · (t, in,v) E h -

refuse {in, out} upto Kc 
1\ after Kc : Vt· out refused precisely upto t 

- enable out and refuse in for t 
1\ Vt,v · (t, out,v) E h -

refuse {in, out} upto c: 
1\ after c:: Vt· in refused precisely upto t 

- enable in and refuse out for t. 

Notice how references to the readiness of the environment to communicate are 
used to determine, for instance, the time Kc+t at which an out communication 
occurs after an input. t:::, 

For an assertion ¢ Definition E.l determines the set chan(¢) of channels 
such that c E chan(¢) if a communication along c might affect the validity of¢. 
As before, chan(¢) contains the history channels of ¢. Since, by the definition 
of the semantics, communications on a channel are refused for some time after 
a communication on that channel has occurred, the assertion Rj { c} = 0 is 
invalidated by a communication along c. This is also the case for the assertion 
Ri{c} = {c} x (O,oo), since a communication cannot occur when refused. 
Hence, chan(¢) consists of the channels to which references to h and R in ¢ 
are restricted, the so-called observation channels of ¢. 

We use an environment 'Y to interpret the logical variables of IVAR U 

TIVAR U VVAR U TVAR U RVAR. This environment maps a logical value 
variable ito a value 'Y(i) E IN, logical time variable t to a value 'Y(t) E TIME, 
a logical value variable v to a value 'Y(v) E VAL, a logical trace variable s 
to a trace 'Y(s) E TRACE, and a logical refusal variable N to a refusal set 
'Y(N) E REF. An assertion is interpreted with respect to a triple (0,9\,"f). 
Trace 0 gives h its value, and refusal set 9\ gives R its value, and the environ­
ment 'Y interprets the logical variables. We use the special symbol f to deal 
with the interpretation of texp( iexp) where index iexp is not positive, or greater 
than the length of texp. The value of an expression is undefined whenever a 
subexpression yields f. The meaning of assertions is given in Definition E.2. 

Definition E.3 expresses when an assertion¢ holds for trace 0, refusal9l, and 
an environment 'Y, notation ( 0, 9t, 'Y) f= ¢. Again, to avoid the complexity of a 
three-valued logic, an (in)equality predicate is interpreted strictly with respect 
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to f, that is, it is false if it contains some expression that has an undefined 
value. 

Example 5.25 (Satisfaction) In Example 5.24 we came across the assertion 

Vt, v · (t, in, v) E h - refuse {in, out} upto Kc, 

which is an abbreviation of 

Vt,v·(t,in,v)Eh- {in,out}x[t,t+Kc)~R. 

This assertion holds for the triple ( (}, !J\, 1) if, and only if, for any instant r 
and value J.L we have, for environment 9 = (1' : t t--t r, v t--t J.L) which maps the 
logical variables t and v to the respective values r and J.L, 

(0, !J\, 9) F= (t, in, v) E h - {in, out} x [t, t + Kc) ~ R. 

Since h and R obtain their value from (} and !J\, respectively, this implication 
holds for those traces(} and refusals!)\ for which it is the case that if(} contains 
a record (r, in, J.L) then !J\ contains {in, out} x [r, r + Kc ). ~::, 

Definition 5.26 (Validity of an assertion) An assertion 4> is valid, nota­
tion F= ¢, if, and only if, for all (}, !J\, and 1, ( (}, !J\, 1) f= ¢. 0 

As mentioned before, we use a correctness formula P sat 4> to express that 
process P satisfies property ¢ . Informally, since we abstract from the internal 
states of the processes and focus on communication, such a correctness formula 
expresses that any observation of P satisfies ¢. We conclude this section by 
defining when a correctness formula P sat 4> is valid. 

Definition 5.27 (Validity of a correctness formula) For process P and 
assertion 4> correctness formula P sat 4> is valid, notation f= P sat¢, if, and 
only if, for all1 and all (B,!J\) E O[PD, (B,!J\,1) F= ¢. 0 

5.5 Incorporating failure hypotheses 

As we have observed earlier, the set of observations that characterize a process 
must be expanded to take account of a particular failure hypothesis. To be 
able to formulate a nice proof rule, we follow the approach taken in Chapter 3 
and formalize failure hypothesis x of process P as a predicate, whose only 
free variables are h, hold, R and Rold, representing a relation between the 
normal and acceptable behaviours of P . Now, the interpretation is such that 
(hold, Rotd) represents a normal observation of process P, whereas (h, R) is 
an acceptable observation of P with respect to X· Such relations enable us 
to abstract from the precise nature of a fault and to focus on the abnormal 
behaviour it causes. Notice that the faults that affect a process do not influence 
the enabledness of its environment to communicate. If, for instance, due to a 
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failure some process is willing sooner than usual to receive new input, then this 
input will still not occur before the environment is able to provide it . 

We extend the assertion language to include the trace expression term hold 
and the refusal expression term Rold . Sentences of the extended language are 
called transformation expressions, with typical representative 7/J . To indicate 
that the transformation expression 7/J has free variables hold, h, Rold and R we 
also write 7/J( hold, h, Rold , R). Then, 7/J( texp 1 , texp2 , rfxp 1 , rfxp2 ) denotes the 
expression which is obtained from 7/J by substituting texp1 for hold, texp2 for h, 
rfxp1 for Rold, and rfxp2 for R. A transformation expression is interpreted with 
respect to a 5-tuple (Oo, 0, ~. 9t, -y) . Trace Oo gives hold its value, refusal ~ 
does so for Rold, and, in conformity with the foregoing, trace 0 and refusal 9t 
give h and R their values, and the environment 'Y interprets the logical variables 
of IVAR u TIVAR u VVAR u TVAR u RVAR. The meaning of transformation 
expressions can be obtained from Definition E .2 by adding the clauses: 

• T[hold](Oo,0,~,9t,-y) = Oo, and 

• RF[Rold](Oo,0,~,9t,-y) = ~. 

Let (Oo,0,~,9t,-y) I= 7/J denote that 7/J holds for 5-tuple (00 ,0,~,9t,-y). Since 
the terms hold and Rold do not occur in assertions, the following lemma is 
trivial. 

Lemma 5.28 (Correspondence) For assertion ¢, trace 00 , and refusal ~ 
it is the case that (B0 ,0,9t0 ,9t,-y) I=¢ if, and only if, (B,9t,-y) I=¢. 0 

The following lemma is easy to prove by structural induction. 

Lemma 5.29 (Substitution) For the transformation expression 7/J, 

(a) (Bo, B, ~. 9t, -y) I= 7/J( texp, h, Rold, R) 

if, and only if, (T[texp](B0 ,B,~,9t,-y),B,~,9t,-y) I= 7/J; 

(b) (Bo,B,~,9t,-y) I= 7/J(hold, texp,Rold,R) 

if, and only if, (Bo, T[texp](Oo, 0, ~. 9t, -y), ~. 9t, -y) I= 7/J; 

(c) (Bo, B, ~. 9t, -y) I= 7/J(hold, h, rfxp, R) 

if, and only if, (Bo, 0, R[rfxp](Oo, 0, ~. 9t, -y), 9t, -y) I= 7/J; 

(d) (Oo,B,~,9t,-y) I= 7/J(hold, h,Rold, rfxp) 

if, and only if, (Bo,B,~, R[rfxp](Oo,B,~,9t,-y),-y) I= 7/J. 0 

Definition 5.30 (Validity of a transformation expression) A transfor­
mation expression 7/J is valid, notation f= 7/J, if, and only if, for all 00 , 0, ~. 9t 
and 'Y, ( Bo, B, ~ , 9t, 'Y) I= 7/J. <> 
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The observation channels that appear in a transformation expression are as 
defined in Definition E.l with the extra clauses 

• chan(hold) =CHAN, and 

• chan(Rold) =CHAN. 

Definition 5.31 (Failure hypothesis) A failure hypothesis x is a transfor­
mation expression which, to guarantee that the normal behaviour is part of 
the acceptable behaviour, represents a reflexive relation on the normal be­
haviour. Formally, we require that F x(hold, hold, Rold, Rold)· Furthermore, a 
failure hypothesis of the failure prone process FP does not impose restrictions 
on communications along those channels that are not in chan(FP), that is, 
F X ~ x(holdlchan(FP),hlchan(FP),Roldlchan(FP),Rlchan(FP)). 0 

Care has to be taken that a failure hypothesis upholds the principle that com­
munications cannot occur while being refused, or must occur as soon as no 
longer refused. Also, a failure hypothesis must not allow communications via 
the same channel to follow each other arbitrarily fast, or to coincide. 

Example 5.32 Consider the process C introduced in Example 5.24. Examine: 

'1/J = hl{in, out}=() 
1\ Rl{in, out}= Roldl{in, out}. 

Observe that this transformation expression expresses that no communications 
along the channels in and out occur, but does not require Rl{ in, out} to be 
{in,out}x[O,oo). 6 

Example 5.33 {Corruption) Consider once more the process C. Assuming 
that corruption does not influence the real-time behaviour of C, we formalize 
corruption by asserting that 

• with respect to the number of recorded in and out communications hold 
and h are equally long, 

• the order of in and out communications as recorded by hold is preserved 
by h, 

• the ith input value as recorded by h equals the ith input value as recorded 
by hold, 

• as far as the timestamps of the out communications are concerned h 
conforms to hold, and 

• with respect to the refused attempts to communicate along in and out R 
equals Rold. 



82 5 Fault Tolerant Real-Time Distributed Systems 

Formally, 

Cor = len(h l{ in, out}) = len( hold l{ in, out}) 
1\ Vi ·1 ~ i ~ len(hl{in, out}) 

--+ ch(hl{in, out}(i)) = ch(holdi{in, out}(i)) 
1\ Vi· 1 ~ i ~ len(hfin) --+ hl{in}(i) = hotdl{in}(i) 
1\ Vi ·1 ~ i ~ len(hfout) --+ ts(hl{out})(i)) = ts(holdl{out}(i)) 
1\ Rl{in, out} = Roldl{in, out}. 

To specify failure prone processes we again use the construct PIx to indicate 
execution of process P under the assumption X· Using P to denote a process 
expressed in the programming language of Section 5.1, we define the syntax of 
our extended programming language in Table 5.3. 

Table 5.3: Extended syntax of the programming language 

Failure Prone Process FP P I FP1 II FP2 I FP\ cset I FPix 

From Definition 5.31 we obtain chan(x) ~ chan(FP). Hence, chan(FPix) = 
chan(FP) U chan(x) = chan(FP). As before, we define chan(FP1 II FP2) = 
chan(FP1) U chan(FP2), and chan(FP\ cset) = chan(FP)- cset . 

The timed observations of a failure prone process FP are inductively defined 
as follows: 

• Notice that failure prone processes FP1 and FP2 synchronize only on 
communications on the channels in chan(FPI) n chan(FP2). Hence, if 0 
is a trace of FP1IIFP2 then Of chan(FPI) and Of chan(FP2) are the cor­
responding traces of FP1 and FP2, respectively. As we already saw in 
Section 5.3, a communication is refused by FP1IIFP2 if, and only if, it is 
refused by FP1 or FP2. 

O[FP1IIFP2] = 
{ (0,9t) I there exist (OI,9tl) E O[FP1] and (02,9t2) E O[FP2] such 

that Of chan(FPi) = Oi, fori = 1, 2, Of chan(FP1IIFP2) = 0, 
and 9t = 9tl U 9t2 }. 

• The observations of FP \ cset are, as before, characterized by the fact that 
cset communications are continuously refused, except on single instants. 

O[FP\cset] = { (O\cset,9t\cset) I (0,9t) E O[FP] 1\ ASAP(9t, cset) }. 
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• The observations of failure prone process FPlx are those observations 
that are related, according to x, to the observations of FP. As in 
Section 3.6 we require that 8j chan(FP) = 8 and, for similar reasons, 
~j chan(FP) = ~. 

O[FPixll = { (8,~) I there exists a (8o,9lo) E O[FPll such that, for 
all"(, (8o,8,9lo,~,"f) f= x, 8jchan(FP) = 8, 
and ~j chan(FP) = ~ }. 

Definition 5.34 (Composite transformation expression) For the trans­
formation expressions 1/11 (hold, h, Rold, R) and 1/!2(ho1d, h, Rold, R), we define 
the composite transformation expression 1/1111/12 as follows: 

1/ld'l/12 = 3s,N·1/J1(hold,s,Rold,N) 1\ 1/!2(s,h,N,R), 

where s and N must be fresh. 0 

We will also use this operator to compose assertions and transformation ex­
pressions, e.g. ¢11/1 = 3s, N · ¢(s, N) 1\ 1/!(s, h, N, R). Observe that, since ¢ is 
an assertion, hold and Rold do not appear in ¢, and hence also the composite 
expression ¢1 x is an assertion. 

Since the interpretation of assertions has not changed, the validity of a 
correctness formula FP sat ¢ is defined as in Definition 5.27, with P replaced 
by FP. 

Definition 5.35 (Validity of a correctness formula) For process FP and 
assertion¢ correctness formula FP sat¢ is valid, notation f= FP sat¢, if, and 
only if, for all"( and all (8,~) E O[FPll, (8,~,"() f= ¢. 0 

5.6 A compositional network proof theory for 
failure prone processes 

In this section we give a compositional network proof system for the correctness 
formulae of Section 5.4. As in Section 3. 7 we do not give rules for atomic 
statements or sequential composition. The proof system contains the following 
two general rules. 

Rule 5.36 (Consequence) 

FP sat ¢1 , ¢1 -+ ¢2 
FP sat ¢2 

Rule 5.37 (Conjunction) 

FP sat ¢1 , FP sat ¢2 
FP sat ¢1 1\ ¢2 



84 5 Fault Tolerant Real-Time Distributed Systems 

From the definition of the semantics we get: 

Rule 5.38 {lnvariance) 

cset n chan(FP) = 0 
FP sat hjcset = () 1\ Rjcset = 0 

If h is a timed history of process FP1IIFP2 then we know that h restricted 
to chan(FPI) is the timed trace of communications performed by process FP1. 
Similarly, the restriction of h to chan(FP2) is the trace of communications 
performed by process FP2 . We also know that a communication is refused by 
FP1IIFP2 if, and only if, it is refused by FP1 or FP2. The following inference 
rule for parallel composition reflects this. 

Rule 5.39 (Parallel composition) 

FP1 sat <PI (h, R) , FP2 sat <P2(h, R) 
FP1IIFP2 sat 3NI, N2 · R = N1 j chan(FPI) U N2 j chan(FP2) 

1\ <P1 (h T chan(FPI), NI) 
1\ <P2(h T chan(FP2), N2) 

Observations of FP\ cset are characterized by the fact that cset commu­
nications occur as soon as possible. Then, the effect of hiding a set cset of 
channels is simply that records of communications via channels of that set dis­
appear from the history of the process, as do records of refused attempts from 
the refusal set of the process. Thus, FP \ cset satisfies an assertion <P if FP 
satisfies ASAP(R, cset) -+ </J, unless a reference to h orR in <P includes one or 
more channels from cset. 

Rule 5.40 (Hiding) 

FP sat ASAP(R, cset) -+ <P(h \ cset, R\ cset) 
FP \ cset sat <P(h, R) 

Lemma 5.41 (Hiding) With respect to hiding the following equalities are 
useful: 

(a) (FP1 \ cset)IIFP2 = (FPdlFP2) \ cset if, and only if, chan(FP2)ncset = 0; 

(b) (FP\cset1)\cset2 = FP\(cseh U cset2). 0 

Finally, for the introduction of a failure hypothesis we have: 

Rule 5.42 (Failure hypothesis introduction) 

FP sat <P 
FPlx sat <Plx 
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5. 7 Example : Triple modular redundancy 

Consider the triple modular redundant system of Figure 5.1. It consists of 
three identical components C1, j = 1,2,3, already discussed in Example 5.24, 
an input triplicating component In, and a component Voter that determines 
the ultimate output. We assume that each component needs exactly Kc time 
units to apply a function f to an input value. Further, we assume that a 
component may transiently fail to provide output. To guarantee that a failed 
component does not accept fresh input arbitrarily fast, and hence confuses 
Voter, usually a synchronization channel sync is added. In this section we give 
the main steps of the proof that failure of at most one component per round 
can be tolerated. 

in out 

Figure 5.1: Triple modular redundant system 

Definition 5.43 {Abbreviations) 

{ 

(} if texp = (} or ts(first( texp)) > t, 
until(tex t) = texp1 if texp = texp/'texp2 such that 

• p, ts(last(texp 1)) ~ t and 
ts(first(texp2 }} > t, 

to denote trace texp's prefix up to and including t. 

{ 

{) if texp =()or ts(last(texp)) < t, 
f ( t t) texp2 if texp = texp1"texp2 such that 

• rom exp, = ts(last(texp
1

}} ~ t and 
ts(first( texp2 }} > t, 

to denote trace texp's suffix starting at t . 0 
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In accepts a value from the environment via channel in and distributes 
that value via channels in1, in2 and in3 after Kin time units. To keep the 
proof concise we assume that In simultaneously enables the in1, in2, and in3 
communications. When these three communications have occurred In tries 
to communicate via sync. £ time units after the communication on sync has 
occurred, it enables in again. The specification of In only deals with the 
occurrence of in1, in2 , and in3 communications as far as they coincide. 

In sat Vi,j · 1:::; i :S len(hfinj) ---+ val(hfinj(i)) = val(hfin(i)) 
1\ h = () ---+ enable in and refuse U~=l { inj} U {sync} upto oo 
1\ \:It, v · (t, in, v) E h ---+ 

refuse chan(In) upto Kin 

1\~=l after Kin : Vt1 · inj refused precisely upto t1 
---+ enable inj for t 1 

1\ Vt,v · (/\~= 1 (t, inj,v) E h) ---+ 

refuse chan(In) upto £ 

1\ after £ : Vt1 · sync refused precisely upto t1 
---+ enable sync for t1 

1\ Vt,v · (t,sync,v) E h---+ 
refuse chan(In) upto £ 

1\ after £ : Vt1 · in refused precisely upto h 
---+ enable in for t 1 • 

Voter awaits a communication on any of the channels out1, out2 and out3. 
Upon the occurrence of such a communication it starts a timer and awaits 
the remaining communications: if they do not occur within Ll time units the 
timer expires, and Voter determines the output that is to be communicated to 
the environment on the basis of the values that are available. Thus, timing is 
essential as it makes it possible to avoid waiting for a value that will never be 
produced. £ time units after an output occurs, Voter tries to synchronize with 
In on sync. After this communication takes place, it enables channels out1, 
out2 and out3 again. The specification of Voter only deals with out1, out2 and 
out3 communications as far as at least two of them coincide. 
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Voter 

sat 

h = () --+ enable uJ=1 { outj} and refuse {out, sync} upto oo 
1\ Vk, l, m, t, v · k f. l 1\ k f. m 1\ l f. m --+ 

((t,outk,v)Eh 1\ (t,out1,v)Eh)--+ 
Vt1 · outm refused precisely upto t1 

--+ refuse out up to min( t1, Ll) + K Voter 

1\ after min(t1, Ll) + K Voter : 

Vt2 · out refused precisely upto t2 
--+ enable out for t2 

1\ Vv1 · (h, out,v1) E h --+ v1 = v 
1\ Vt,v · (t, out,v) E h--+ 

refuse chan( Voter) upto c: 
1\ after c: : Vt1 · sync refused precisely upto h 

--+ enable sync and refuse 
chan ( Voter) - {sync} for h 

1\ Vt, v · (t, sync, v) E h --+ 
refuse chan( Voter) up to c; 

/\~= 1 after c: : Vt1 · outj refused precisely upto t1 
--+ enable outj for t1. 
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Since C1 , C2 , and C3 do not share a single channel, we easily obtain, by 
parallel composition rule 5.39 and consequence rule 5.36, that 

sat 

Vi,j ·1:::; i:::; len(hfoutj) --+ val(hfoutj(i)) = f(val(hfinj(i))) 
1\ h = () --+ enable U~=I { inj} upto oo 
1\ Vt, v · (/\~= 1 (t, inj, v) E h) 

--+ refuse U~= 1 { outj} upto Kc 
1\ after Kc : 

Vt1 · U~=I { outj} refused precisely upto t1 
--+ enable U~= 1 { outj} for t1 

1\ uJ=1 { outj} enabled at t1 
--+ after t1 + c: : 

Vt2 · uJ=1 { inj} refused precisely upto t2 

--+ enable uJ=1 { inj} for b 
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Under the assumption that the environment offers input sufficiently far 
apart, faults do not change the rate at which a component accepts input. We 
formalize the hypothesis that on each round at most one of the components 
C1, C2, and C3 fails to provide output by asserting that 

• with respect to the channels in1, in2, and in3 h equals hold, 

• per round i at least two of the out1, out2, and out3 communications as 
recorded by hold also occur according to h, 

• with respect to the channels in1, in2, and in3 R equals Rold, and 

• whenever an outj communication (j = 1, 2, or 3) is omitted that com­
munication is refused from the preceeding to the succeeding inj. 

Formally, 

Loss5,1 = hl{int,in2,in3} = holdi{int,in2,in3} 
1\ Vi · 1 ~ i ~ llen( hold i{ out1, out2, out3}) /3 J 

--+ 3k f.l· holdfoutk(i) E h 
1\ hold l out1 ( i) E h 

1\ Rl{ in1, in2, in3} = Rold i{ in1, in2, in3} 
1\ Rl{ out1, out2, out3} 

= Rold l { out1, out2, out3} 
u:=l { { OtLtj} X [tl, t2) 

I 
3t,v · (t, OtLtj,V) E hold 1\ (t, OtLtj,V) f/_ h 

1\ t 1 = ts(last(until(hfinj,t))) 
1\ t2 = ts(first(from(hfinj, t))) }. 
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The failure hypothesis Loss9 means that per round only one output fails to 
occur, and, furthermore, that despite such a failure fresh input will be accepted 
as usual. Observe that it suffices to know that the environment did allow out­
put on out1, out2, and out3 to conclude that if a particular output does not 
occur it is due to a failure rather than to the unavailability of a communica­
tion partner. Hence, by applying failure hypothesis introduction rule 5.42 and 
consequence rule 5.36 we conclude that after synchronous input via the chan­
nels in1, in2, and in3 at least two of the components of failure prone process 
(CdiC2IIC3) l Loss~ 1 will provide output within Kc time units, and that if at 
the moment two such outputs occur the environment does not refuse the third, 
then all three components will accept fresh input c: time units thereafter. 

sat 

h = 0 -4 enable U~=l { in1} upto oo 
1\ Vt, v · (/\~=l (t, inj, v) E h) 

-4 refuse U~=l { outj} upto K c 
1\ after Kc : 

Vt1 · U~=l { out1 } refused precisely upto h 
-4 3k f. l· 

enable { outk, out1} for h 
1\ Vv1>v2 · ((t1, outk,vl) E h 1\ (t1, out1,v2) E h) 

-4 v1 = v2 = /( v) 
1\ U~=l { outj} enabled at t1 

-4 after t1 + c: : 

Vt2 · U~=l { inj} refused precisely upto t2 
-4 enable U~=l { inj} for t2. 

Observe that, due to the assumptions concerning the environment's enabledness 
to communicate, we only need the specifications of the components C1 , C2 , and 
C3 and the failure hypothesis Loss~ 1 to establish this non-blocking property. 
This property assures that if In simultaneously enables communication via in1, 
in 2 , and in3 then these communications indeed occur simultaneously. This 
justifies the incompleteness in the specifications of In, CdiC2IIC3, and Voter . 
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If the last communication of Voter relative to some instant t is a sync 
communication, or if Voter has not engaged in any communication up to and 
including timet, then we know that Voter does not refuse any outj, j = 1, 2, 3, 
at time t . Consequently, if an in communication occurs at time t then the 
readiness of Voter does not change until an outj communication, j = 1, 2, 3, 
actually takes place. Using h Voter = h l chan( Voter), we obtain, by parallel 
composition rule 5.39: 

sat 

ASAP(R, u~=d out1}) -... 

Vt,"v · ( /\~=I (t, inj, v) E h 
1\ until(hvoter.t) = (} 

V 3ti, VI · last( until(h Voter, t)) = (ti, sync, vi) ) 
__... 3ti . ti = 0 v h = ~ 

1\ refuse out upto Kc + h + K Voter 
1\ after Kc + ti + K Voter : 

Vt2 · out refused precisely upto t2 
-... enable out for t2 

1\ Vvi · (t2, out, vi) E h -... VI = v 
1\ after Kc + ~ : Vti · U~=l { inj} refused precisely upto t1 

-... enable U~=l { inj} for ti 
1\ Vt, v · (t, out, v) E h -... refuse sync upto ~ 

1\ after ~ : Vti ·sync refused precisely upto ti 
-... enable sync for t1. 

Note that if ( T, c, p,) E () and c fl. cset then also ( T, c, p,) E () l cset . Further note 
that if () = (} then () l cset = (}. 

Because In will not accept new input until a sync communication occurs, we 
may conclude that if at time t a sync communication occurs and there either 
has been no in I, in2 , or in3 communication, or the preceding in1, in2, and 
in3 communications all happened at the same time, then, for j = 1, 2, 3, Cj 
does not refuse to communicate via inj at time t . Again, this readiness does 
not change until an in1 communication, j = 1, 2, 3, actually occurs. By hiding 
rule 5.40, the specification of In, and parallel composition rule 5.39, 
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In II ( ((CIIIC2IIC3) l Loss9 )11 Voter) \ u~=doutj} 

sat 

ASAP(R, u~=I { inj} u {sync}) ..._.. 
Vt , v· ( (t,in,v) E h 

1\ until(h l U~=I { inj }, t) = 0 
V 3ti, VI · /\~=I last( until(hc;, t)) = (ti, inj, vi) ) 

..._.. 3ti . ti = 0 v ti = ~ 
1\ refuse out upto Kin+ Kc + ti + K Voter 

1\ after Kin+ Kc + ti + K Voter : 

Vt2 · out refused precisely upto t2 
..._.. enable out for t2 

1\ Vvi · (h, out, vi) E h ..._.. VI = f(v) 
1\ Vt , v · (t, out, v) E h ..._.. refuse in upto 2c 
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1\ after 2c : Vti · in refused precisely upto ti 
..._.. enable in for ti. 

If the first in communication occurs at time t then until( hc1 uc2 uc3 , t) = 0. 
Consequently, Cj does not refuse inj at t, j = 1, 2, 3. Since this willingness 
does not change until an inj communication, j = 1, 2, 3, actually occurs, the 
inductive structure above can easily be resolved under the assumption that 
communications on inj, j = 1, 2, 3, occur as soon as possible. Formally, by 
hiding rule 5.40 

sat 

Vt, v · (t, in, v) E h ..._.. 
3ti . ti = 0 v ti = ~ 

1\ refuse out upto Kin+ Kc + ti + K Voter 

1\ after Kin+ Kc + ti + K Voter : 

Vt2 · out refused precisely upto t2 
..._.. enable out for t2 

1\ Vvi · (t2,out,v1) E h..._.. VI= f(v) 
1\ Vt , v · (t, out, v) E h ..._.. refuse in upto 2E 

1\ after 2c : Vt1 · in refused precisely upto ti 
..._.. enable in for it. 

which shows that omission faults are tolerated. In practice, ~ is determined 
on the basis of the variations in the respective processing times; in the above 
expression the clause t1 = 0 V t1 = ~ then has to be replaced by 0 ~ ti ~ ~. 
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5.8 Soundness and relative network 
completeness 

In this section we show that the proof system of Section 5.6 is sound and 
relatively network complete. To do so, we follow the approach of Section 3.10. 

Theorem 5.44 (Soundness) The proof system of Section 5.6 is sound. 

Proof. See Appendix F.l. 

Axiom 5.45 (Relative completeness assumption) For an assertion¢, 

f- ¢ if F= ¢. 

0 

Definition 5.46 (Relative preciseness) An assertion¢ is relatively precise 
for failure prone process FP if, and only if, 

i) f= FP sat¢; 

ii) if Bjchan(FP) = B, 9\jchan(FP) = 9\, and, for some/, (B,9t,/) f= ¢, 
then (B,9t} E O[FPD; 

iii) ¢ -+ ¢(h j chan(FP), Rj chan(FP)). 0 

As in Chapter 3, an (absolutely) precise specification can be obtained from a 
specification which is only relatively precise by means of the invariance and 
conjunction rules. In the sequel, preciseness refers to relative preciseness. 

Let, as before, f- P sat ¢ denote that correctness formula P sat ¢ is deriv­
able. 

Definition 5.47 (Network completeness) Assume that for every process 
P there exists a precise assertion ¢ with f- P sat ¢. Then, for any failure prone 
process FP and assertion~. f= FP sat~ implies f- FP sat~- 0 

Lemma 5.48 (Preciseness preservation) Assume that for any process P 
there exists an assertion ¢ which is precise for P and f- P sat ¢. Then, for any 
failure prone process FP there exists an assertion rJ which is precise for FP and 
f- FP sat rJ . 

Proof. See Appendix F.2. 

Lemma 5.49 (Preciseness consequence) If assertion ¢ is precise for FP 
and f= FP sat~ then f= ( ¢ 1\ h j chan(FP) = h 1\ Rj chan(FP) = R ) -+ ~-
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Proof. Assume that ¢is precise for FP, and that 

f= FP sat~· (5.1) 

Consider any (), !n, and 1 . 
Assume (0, !n, 1) f= ¢1\ h j chan(FP) = h 1\ Rj chan(FP) = R 
Then, by the preciseness of¢ for FP, (O,!n) E O[FPD . By (5.1), for all ;:y, 

(O,!n,::Y) f= ~· Hence, (O,!n,1) f= ~· 0 

Theorem 5.50 (Relative network completeness) The proof system of 
Section 5.6 is relatively network complete. 

Proof. Assume that for every process P there exists a precise specification ¢ 
with I- P sat¢. Then, by preciseness preservation lemma 5.49, for every failure 
prone process FP there exists an assertion 1J which is precise for FP and 

I- FP sat ry. (5.2) 

Assume f= FP sat ~· By the definition of the semantics, 

I- FP sat h j chan(FP) = h 1\ Rj chan(FP) = R . (5.3) 

Then, by (5.2), (5 .3), preciseness consequence lemma 5.49, relative com-
pleteness axiom 5.45, and consequence rule 5.36, I- FP sat~· 0 

5.9 Discussion 

To enable the programming of time-outs the programming language includes a 
communication guarded command that contains, as one of the guards, a delay 
statement. This use of a delay statement, which is similar to its use in the 
select construct of Ada [ANSI83], also appears in [Hooman92] . 

The convention that a process can only refuse communications on its own 
channels differs from common practice. Usually (e.g. [RR86]), a process con­
stantly refuses to communicate on channels other than its own. Then, a com­
munication on a channel in chan(FPl)nchan(FP2) is still refused by FP1IIFP2 
if, and only if, it is refused by either FP1 or FP2 . However, a communication 
on a channel in CHAN- (chan(FPl) n chan(FP2)) is refused by FP1 II FP2 
if, and only if, it is refused by both FP1 and FP2: 

FP1 sat ¢1 (h, R) , FP2 sat ¢2(h, R) 
FP1 II FP2 sat 3Nl,N2 · Rj(chan(FPl) n chan(FP2)) 

= (N1 U N2)j(chan(FP1) n chan(FP2)) 
1\ R\ (chan(FPl) n chan(FP2)) 

= (N1 n N2) \ (chan(FPl) n chan(FP2)) 
1\ ¢1(hjchan(FPl),N1) 
1\ ¢2(h jchan(FP2), N2) 
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Thus, our convention results in a simpler rule for parallel composition. How­
ever, sequential and similar compositions become more complicated because 
the composite process typically has more channels than each of its components. 
Referring to the environment 's enabledness to communicate proved useful. 

It is very convenient to identify a communication record by referring to its 
timestamp. Unlike its index, which was used in Chapter 3 for identification, 
the timestamp is invariant under projection. 

Unlike parallel composition rule 3.64 parallel composition rule 5.39 does not 
have a side condition: obviously chan((/>I(hjchan(FP1),NI)) ~ chan(FPI) 
and chan(¢2(h j chan(FP2), N2)) ~ chan(FP2) . Observe that parallel com­
position rule 5.39 ensures, by R = N1 j chan(FPI) U N2 j chan(FP2), that 
the refusal set R of the process FPdiFP2 satisfies R\ chan(FP1IIFP2) = 0 . 
This is essential because ¢ 1 (h j chan(FPI), NI) does not necessarily imply that 
N1 \ chan(FPI) = 0 ; the clause R = N1 U N 2 would then easily lead to incon­
sistencies, e.g. in case N1 j chan(FP1) = 0 and N2 j chan(FP2) = 0. 



Chapter 6 

Fault Tolerant Real-Time 
Distributed Systems with 
Shared Resources 

The timing properties of a reactive real-time program must conform to the 
requirements of its environment. Given a specification of these timing require­
ments, one problem is then to construct a real-time program which can be 
shown to satisfy these timing requirements, despite the occurrence of faults. 
In the previous chapter we have studied this assuming maximal parallelism, 
that is, assuming that every process has its own resource. But real-time pro­
grams are typically executed on systems whose limited resources are shared 
according to some scheduling discipline. So another problem is to determine 
whether a real-time program which meets some timing requirements 'in isola­
tion' will continue to satisfy them when executed under a particular scheduling 
discipline. 

In this chapter we extend the proof theory of the previous chapter to rea­
son about multiprogramming, where several processes share a processor. We 
assume on-line preemptive dynamic priority scheduling where the priority is 
a function of the initial priority and the time spent waiting for the resource. 
We do not explicitly consider the scheduler but concentrate on its effect on the 
observable process behaviour. We introduce the notion of a multiprocess to 
conceptually capture the set of processes that share the same processor. Any 
(nested) parallelism within a multiprocess leads to interleaving the actions of 
the respective individual processes. This interleaving respects the (dynamic) 
priorities. 

In the previous chapters we discussed the acceptability of an abnormal 
behaviour with respect to a given failure hypothesis. Multiprogramming leads 
to a new notion of acceptability, as executions may be interrupted in favour 
of hig.her priority tasks and continued later. In essence, scheduling introduces 

95 
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breaks in an execution and the observable behaviour of a process in case of 
resource sharing is a straightforward extension of the observable behaviour in 
case of maximal parallelism. To extend the transformation-based compositional 
reasoning to include failure prone multiprocesses we decorate the timed, infinite 
traces used in Chapter 5 further with timed histories of both the processor 
occupation and the outstanding requests. Thus, as opposed to simulation, we 
can reason already at the specification level about implementability, e.g. in 
terms of numbers of processors. 

In the case of synchronous communication, processes that are communica­
tion partners are each dependent on the other for their respective completion. 
The timing of the actions illustrates how the need for synchronization can cause 
one partner process to be delayed until its counterpart is ready, and this may 
occur whether or not the processes are competing for computing resources. If 
communicating partner processes are scheduled on the same processor, at most 
one of them can be executed at any time; it would then be incorrect for a 
communicating process to occupy the processor by busy-waiting while waiting 
for its partner to be ready. Thus, we can no longer consider communication to 
be atomic and must assume that a process releases the resource when blocked 
in a communication. 

This chapter is organized as follows. Section 6.1 introduces the program­
ming language for multiprogramming. In Section 6.2 we present the com­
putational model. A denotational semantics is defined in Section 6.3. This 
semantics incorporates preemption. In Section 6.4 we present the assertion 
language and associated correctness formulae. In Section 6.5 we once more 
incorporate failure hypotheses in our formalism. Section 6.6 presents a by now 
straightforward compositional network proof theory for fault tolerant real-time 
distributed systems composed of failure prone multiprocesses. 

6.1 Programming language for 
multiprogramming 

To characterize scheduling we introduce the notion of a multiprocess in the 
programming language defined in Table 5.1. A multiprocess is a set of possibly 
parallel processes that share a processor. To distinguish parallel processes 
executing on a single processor and concurrent processes each having their 
own resource, we introduce the interleaving composition operator jj. This 
interleaving can be restricted by assigning priorities to processes. Priorities take 
values from lN", where a larger value implies a higher priority. The statement 
prio e (P) assigns the value of expression e as priority to the (multi)process P. 
By default, a process is assigned priority 0. We use the processor closure 
brackets « and » to express that the multiprocess that appears inside these 
brackets is executed on a single processor and that no other process executes on 
this processor; the communications via the internal channels of the multiprocess 
are hidden. The processor closure operator creates processes as defined in the 



6.1 Programming language for multiprogramming 97 

previous chapter. 
The syntax of the programming language for multiprogramming is given in 

Table 6.1, with n E :N, n 2: 1, x E VAR, J.L E VAL, c E CHAN, dE TIME, 
and cset ~ CHAN. 

Table 6.1: Syntax of the programming language 

Expression e 

Boolean Expression b 

Guarded Command G 

multiProcess P 

Network NP 

J.L I X I f(et, ... ,en) 

e1 = e2 I e1 < e2 I ...,b I b1 V ~ 

[0~1bi-+Pi] I 
( Of=l Ci?Xi-+ pi 0 delay d-+ p] 
x:=e I c!e I c?x I P1;P2 I 
G I *G I PI/IP2 I 'prio e (P) 

« P :» I NP1 II NP2 I NP\ cset 

Informally, the new statements have the following meaning: 

• P1 II P2 indicates the interleaved execution of the processes P1 and P2 on 
the same processor. 

• The statement prio e (P) assigns the value of expression e as priority to 
the (multi)process P. Nesting of priority assignments has a cumulative 
effect: the multiprocess prio 3 (PI/I(prio 1 (P2))) is equivalent with the 
multiprocess (prio 3 (PI))II(prio 4 (P2)) . 

• The processor closure « P :» denotes that the process P has its own 
processor and no process outside P executes on this processor. This 
operator hides P's internal channels. 

The sets var and chan are as defined in Section 5.1 with the extra clauses: 

• var(PI/1 P2) = var(PI) U var(P2) 

• var(prio e (P)) = var(e) U var(P) 

• var( « P :») = var(P) 

• in( PI/I P2) = in(PI) U in(P2) 

• out(PI/1 P2) = out( PI) U out(P2) 

• in(prio e (P)) = in(P) 

• out(prio e (P)) = out(P) 

• in(« P :») = in(P) - out(P) 

• out(« P :») = out(P) - in(P) 

Let io(P) denote the internal channels of process P, i.e, io(P) = in(P)nout(P) . 



98 6 Fault Tolerant Real-Time Distributed Systems with Shared Resources 

6.1.1 Syntactic restrictions 

To the syntactic restrictions of the previous chapter we add the following re­
strictions on interleaving composition to make sure that interleaved processes 
do not share variables and that channels are point-to-point: 

• For PI// P2 we require that var(Pt) n var(P2) = 0 . 

• For PI// P2 we require in( PI) n in(P2) = 0 and out( PI) n out(P2) = 0. 

To guarantee that priorities are integers, we add the following: 

• For the priority assignment prio e (P) we require that e evaluates to a 
positive natural number. 

6.1.2 Basic timing assumptions 

We assume that atomic statements are executed as a single block, that is, 
without preemption, and that such a block has a fixed constant computation 
time. In the case of multiprogramming the execution of each statement starts 
with requesting the processor. Then, the execution time of atomic statements, 
except for communication statements, consists of a variable period of waiting 
for the resource and a fixed constant period of processor occupation. 

We assume special purpose hardware which manages the communications 
autonomously. We further assume minimal waiting with respect to communi­
cation: no process is blocked in the execution of c?x while another is blocked 
in the execution of c!e. By assumption, communication takes no time. The 
execution time of a (synchronous) communication statement consists of a vari­
able period of waiting for the resource and a fixed constant period of processor 
occupation both before and after the actual communication, and the time spent 
waiting for a partner, that is, the period the process is blocked in the commu­
nication . 

Besides when starting, a process is executable if it has been preempted in 
favour of a higher priority task, or if the blocking communication has occurred. 
Based on the priorities, the scheduler grants the processor to some executable 
process. The priority of a process is a function of the initial priority and the 
time spent waiting for the resource. More precisely, a function II : TIME -+ N 
indicates how the priority increases while being queued. In Section 5.1.2 we 
concluded that the c communication precedes the d communication in any 
execution of the process [ c?x -+ d?y 0 d?y -+ c?x ]II (c!O II (z := 1; d!z)) . 
Now consider« [ c?x -+ d?y 0 d?y -+ c?x] » II « c!O//(z := 1; d!z) » . 
It is very well possible that the execution of this network starts by executing 
the assignment z := 1. During this execution the processor request of the 
process c!O remains pending. Depending on II, the priority of the process c!O 
at the termination of the assignment may or may not exceed 0, the priority 
of the process d! z at that time. In the latter case it is possible that execution 
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continues with the process d!z . So, in the case of resource sharing, the d 
communication might precede the c communication. 

For simplicity, we assume that there is no overhead for compound state­
ments and for the scheduler. We assume that execution of each assignment 
statement takes a constant Ka time units, and assume given a constant Ka de­
noting the overhead preceding a communication, and a constant Kw denoting 
the overhead following a communication. 

6.2 Model of computation 

In the case of multiprogramming, we have to establish when the resource is 
taken. We use a triple of the form ( 7t, 1r, 72) to express that a process occupies 
the processor from 7t to 72 and that it's priority at time , 7t is 1r . In such 
an interval, which we refer to as a block, the process is never preempted. The 
processor occupation throughout an execution is given by a set D of such triples. 

Definition 6.1 (Timed occupation history) Let OCC be the set of timed 
occupation histories. 

0 

If a process does not have the resource, it is requesting it, unless it is 
blocked in a communication. However, if processes are merged then so are their 
respective refusal sets. In order to keep track of which requests are pending at 
some point in time we represent the request history separately. To denote that 
at time 71 a request is issued with priority 1r and that the request is granted 
at 72 we use a triple of the form ( 71, 1r, 72 ). The history of requests throughout 
an execution is given by a set 0 of such triples. 

Definition 6.2 (Timed request history) Let REQ be the set of timed re­
quest histories. 

REQ = { 0 c TIME X 1N X TIME I V(7t,7r,72) E 0. 7t ~ 72 } . 

0 

Henceforth, we will refer to a 4-tuple {0, !R, D, 0), that is, a timed trace 
decorated with a timed refusal set, a timed occupation history, and a timed 
request history, as timed observation. 

Definition 6.3 (Projection on occupation histories) Given the occupa­
tion history D we define the projection of D onto interval [7t, 72], denoted by 
Dl [7t, 72] as follows: 
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<> 

Definition 6.4 (Time shift on occupation histories) For an occupation 
history D the time shift operation .n is defined as follows: 

These operations are defined likewise for request histories. 

6.3 Denotational semantics 

In this section we define a - once more - denotational semantics, in terms of 
the model of Section 6.2, for the programming language of Section 6.1. For a 
multiprocess P we want to observe: 

• the initial state of P including the starting time of the execution, 

• the sequence of communications on P's channels performed by the special 
purpose hardware used by P and the times at which communications 
occur, 

• the times at which the special purpose hardware used by P refused to 
communicate on P's channels and the names of those channels, 

• P's occupation of the resource, 

• when P is requesting the processor, and, 

• for a terminating computation of P, the final state of P including the 
termination time of the execution. 

Consider the set STATE 1. of states defined in Section 5.3. In this chap­
ter, the semantic function M assigns to a multiprocess P a set of triples 
(ao,(0,9l,D,.Q),a) with ao ESTATE, 0 E TRACE, 9l E REF, DE OCC, 
.Q E REQ and a E STATE.1_. Informally, a triple (CTo, (0,9l,D,.Q),e7) E M[P] 
has the following meaning: 

• if CT f. ..l then it represents a terminating computation of P which per­
forms the communications as expressed by 0, refuses those in 9'\, occupies 
the processor as described in D, requests the resource as reflected by .Q 
and terminates in state CT, and 

• if CT = ..l then it represents a non-terminating computation of P which 
performs the communications given by 0, refuses those in 9'\, occupies the 
processor as described in D, and requests the resource as reflected by .Q. 
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For a multiprocess P, the semantic function M is inductively defined as follows. 
Observe that the execution of any statement starts by requesting the processor, 
and during this period communications along its channels are refused. 

• Execution of the assignment x := e terminates Ka time units after being 
granted the processor (time T in Figure 6.1), all the while refusing no 
communication. In its final state x has the value e had in its initial state. 

l~ ___ n ________ D----~-----------------· T 
0 T T + Ka 

Figure 6.1: Request and occupation for an assignment 

M[x:=e]= 

( {
X14£[eD(O'o)) { (O'o,((),0,{(r, II(r),r+Ka)},{(O,O,T)}), O'Q: T~4r+Ka ) 

I £[TD(O'o) = 0 1\ T ~ 0 }. 

• In the execution of the synchronous output statement c!e there comes, Ka 
time units after the processor has been granted (time r 1 in Figure 6.2), 
a waiting period for a communication partner to become available. At 
the start of this period the processor is released and as soon as the com­
munication occurs (time T2 in Figure 6.2) the processor is requested a 
second time. Execution of the output statement c!e terminates Kw time 
units after the processor has been granted this second time (time TJ in 
Figure 6.2). In case there is no communication partner the execution 
never terminates (and the processor is not requested again). 

l~ __ n ______ D----~--~-n ___ I ___ D--~~---· T 
TJ + Ka T2 T3 T3 + Kw 

Figure 6.2: Request and occupation for a synchronous output 

M[c!e] = 

{ (O'o,((),{c} X [O,r1 +Ka),{(ri,II(ri),rl +Ka)},{(O,O,rl)}),.i) 
I £[T](O'o) = 0 1\ r1 ~ 0 } 

U { (O'o,(((r2,c,£[e](O'o))},~,D,{(O,O,ri),(r2,0,r3)}),0') 
I £[T](O'o) = 0 1\ TJ ~ 0 1\ T3 ~ T2 ~ TJ + Ka 

1\ ~ = {c} x [O,r1 + Ka) U {c} x (r2, oo) 
1\ D = { (TI, II(ri), TJ + Ka), (r3, II(T3 - T2), T3 + Kw)) } 
1\ 0' = (O'o : T 14 T3 + Kw) }. 
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• Execution of the input statement c?x either never terminates (in case of 
no communication partner) or terminates Kw + Ka time units after the 
processor has been obtained th esecond time (time r 3 in Figure 6.3). The 
received value is assigned to x. 

I D .... I _D _ _... 
D 

D I 
0 1"1 

: • T 
1"3 +Kw +Ka 

Figure 6.3: Request and occupation for a synchronous input 

M[c?x] = 

{ (0'0 ,((),{c} x [O,r1 +K,),{(r1,II(ri),r1 +K,)},{(O,O,rl)}),l_) 
I £[T](O'o) = 0 

1\ 1"1 2: 0 } 
U { (O'o, ( (( T2, c, JL)), Vt, D, { (0, 0, r1 ), ( r2, 0, r3)} ), 0') 

I £[T](O'o) = 0 
1\ 1"1 2: 0 
1\ 1"3 2: 1"2 2: 1"1 + K a 

1\ JL E VAL 
1\ 9t = {c} x [0, r1 + K,) U {c} x (r2 , oo) 
1\ D = { (r1, II(rl), 1"1 + K 0,), (r3, II(r3 - T2), 1"3 + Kw)) } 

- ( . {Xf-+JL ) 
1\ 0' - O'o . Tf-+T3 + Kw + Ka }. 

• An execution of P1 ; P2 is either a non-terminating execution of P1 or a 
terminating execution of P1 followed by some execution of P2 . 

M[P1; P2] = 

{ ( O'o , (0 , 9t, D,D),l_) 
I there exists an 9t such that ( O'o, (0, Vt,D,D), j_ ) E M[P1] 

and 6l = 9t U (chan(P2)- chan(PI)) x [O,oo)} 
u { ( O'o,(0/'02,9t,D,D),O') 

I there exist an 9t1, an 9t2, a 0'1 =f. j_ and a r > 0 such that · 
£[T](O'I) = T, 

Vl2l[O,r) = 0, 
(O'o , (81 , Vl1 , Dl[O, r] , Dl[O, r]) , O'I) E M[P1], 
( (0'1 : T f-+ 0), (02,Vt2,D,D).nr, (0' : T f-+ T- r)) E M[P2], 
and 9t = Vt1l[O, r) U (chan(P2)- chan(PI)) x [0, r) 

U Vl2 U (chan( PI)- chan(P2)) x [r, oo) }, 
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• If no guard is open, the Boolean guarded command [ 0 ~1 bi -+ Pi ] ter­
minates after evaluating the guards (Kg time units after being granted 
the processor). Otherwise, the process corresponding to one of its open 
guards (non-deterministically chosen) is executed, possibly after preemp­
tion in favour of a higher priority task. While evaluating the guards, 
communications on chan([ 0~ 1 bi-+ Pi ]) are refused. 

M [ [ 0 f= 1 bi -+ Pi] ] = 

{ (<To, ((),9-l,{(T,Il(T),T+Kg)},{(O,O,T)}), (<To :Tt--+T+Kg)) 
I £[T](<To) = 0, 

•B[bt V ... V bn](<To), and 
9-l = Uf=t chan( Pi) x (0, oo) } 

u { ( <To,(B,9-l,D,.Q),<T) 
I £[T](<To) = 0, 

Di[O,T+Kg] = {(T,II(T),T+Kg)}, 
.Qj(O,T+Kg] = {(0,0,7)} 
and there exist an 6l and a k E { 1, ... , n} such that 
6li[o, T +Kg) = 0, 
B[bk](<To), ( <To , 

(0,6l,D,.Q).r.T +Kg, 
(<1: T t-+ T- T- Kg)) E M[Pk],and 

9-l = ~.f=t chan(Pi) x [0, T +Kg) 
U9-l 
U (U~1 chan( Pi)- chan(Pk)) x [T +Kg, oo) }. 
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• K"' time units after the processor is granted, a waiting period commences 
for one of the Ci communications that appear in the communication 
guarded command [ Of= 1 Ci?Xi -+ P; 0 delay d -+ Po ] to occur. At 
the start of this period, which is at most d time units long, the proces­
sor is released. The first communication that occurs resolves the choice 
of which process to execute. Upon occurrence of this communication the 
resource is requested and Kw + Ka time units after it is granted execution 
continues with the appropriate Pi. If no communication occurs before d 
time units (0 ~ d ~ oo) have elapsed, the processor is requested and 
when granted the process Po is executed. 

M[[ Oi= 1 ci?x;-+ P; 0 delay d-+ Po]]= 
Uf=1 { ( ao,(((72,c;,J.L))"0,9l,.O,.Q),a) 

I £[T](ao) = 0, 
J.LE VAL, 
and there exist a 71 ~ 0, a 72, a 73 and an 6i with 
71 + K "' ~ 72 < 71 + K"' + d, 72 ~ 73' 
!Rl[O, 73 + Kw + Ka) = 0, 
.Ol[O, 73 + Kw + Ka] 
= {(71,Il(71), 71 + Ka), (7J,Il(7J- 72), 73 + Kw + Ka)}, 
.Ol[O, 73 + Kw + Ka] = {(0, 0, 71}, (72, 0, 7J)}, 
( (ao : Xi 1--4 J.L) , 

(0, !R, .0, .Q) +\ ( 73 + Kw + Ka) , 
(a: T 1--4 T- 73- Kw- Ka) ) E M[Pi], and 

9\ (U'J=o chan(Pj) U U'J=d Cj}) X [0, 73 + Kw + Ka) 
::::: {(ci, 72)}- U'J=1 {cj} X [71 + Ka, 72) 

U9l 
U ((U'J= 0 chan(Pj) U U'J=dcj})- chan(Pi)) 

X 

[TJ+Kw+Ka,oo)} 
U { ( ao, (0, 9\, .0, .Q), a ) 

I £[T](a0 ) = 0, and there is a 71 ~ 0 and a 6i such that 
!Rr[o, 71 + K"' +d)= 0, 
.Ol[O, 71 + K"' + d] = {(71, Il(71), 71 + Ka)}, 
.Ql[O, 71 + K"' + d] = {(0, 0, 71)}, 
( ao , 
(0,6i,.O,.Q)+'~(71 + K"' +d), 
(a: T 1--4 T- 71 -I<"'- d) ) E M[Po] , and 

9\ U'J= 0 chan(Pj)x[0,71+Ka+d) 
U ~'J= dcJ} X (0,71 + Ka) 
U9\ 
U (U'J= 1(chan(Pj) U {cj})- chan(P0 )) 

X 

[71 + K"' + d, oo) } . 
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• After each execution of the body G the execution of * G may be pre­
empted. 

M[*GD = 
{ ( O"o,(O,!n,D,O),O") 

I £ [TD ( O"o) = 0 and there exists a k E 1N U { oo}, and for every i, 
0 ~ i < k, there is a triple (O";, (O;+t,!n;+l,Di+t,Oi+I), £7;+1) 

such that O"; f. ..1., B[bcD(O";), 
!ni+t j[O,£[T](O";)) = chan(G) x [O,£[T](O";)), 
Di+t j[O,£[T](O";)] = 0, 
oi+l r [o, £[T](O"i)J = 0 , 
( ( O"; : T r+ 0) , 

( O;+t, !n;+t , Di+t, O;+t) n£[T]( O";) , 
(O"i+t : T r+ T- £[T](O";)) ) E M[G], and 

if k = oo then 
for all j, 1 ~ j < k, Ot'' ... "Oi ~ 0, n{= 1 !n1 :J !n, 
u{= 1 D1 ~ D, uf=1 01 ~ 0, and O" = ..1. , 

else if k < oo then 
0 = Bt" . . . "Ok, !n = n~= t !n1 , 
D = u{= 1.D1, 0 = u{=1 01 , (7 = O"k , 
and if O"k f. ..1. then B[--,bc ](O"k) }. 

• The executions of Pt II P2 are obtained by interleaving executions of Pt 
and P2 that do not conflict in their occupation of the shared processor 
and that respect the priorities. 

Definition 6.5 (Absence of conflict) The requirement that the pro­
cessor occupation D 1 of process P1 and the processor occupation D2 of 
process P2 do not conflict can be formalized as follows: 

NoConfiict(Dt,D2) - 'V(7t,7rt,72) E Dt,(73,7r2,74) E D2 · 74 < 7t 

v 72 < 73 . 

0 

Definition 6.6 (Respect) A particular processor occupation D is said 
to respect the priorities of a history of pending requests 0, notation 
Respect(D, 0), if, and only if, the priority with which each block starts 
equals the maximal priority at that point in time. 

Respect(D,O) = 'V(7t,7r,72)ED·7r = max7rl"3(73,7r2,74)EO· 

73 ~ 71 < 74 

1\ 1r1 = 1r2 + II(7t - 73). 

0 
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M[PI//P2] = 
{ (uo, (O,!Jt,D,O),u) 

I for i = 1, 2 there exist (0;, 9\;, D;, 0;) and u; such that 
NoConfiict(Dt,D2), D = Dt u D2, 0 = Ot u 02 
Respect(D,O), (uo,(0;,9\;,D;,O;),u;) E M[P;], 
and if <11 = ..L or <12 = ..L then u = ..L else, 

{
u;(x) if x E var(P;), 

for all x E VAR, u(x) = uo(x) if x (/. var(PI//P2), 

and u(T) = max;(u;(T)), Ojchan(P;) = 0;, 
Ojchan(Pd/P2) = 0, and 9t = !Jt1 U !Jh }. 

• The effect of assigning a priority 1r to a process is that the priorities with 
which the resource is requested are increased by 1r . Since we define the 
semantics of P regardless of its environment, the priorities with which 
the resource is occupied must, consequently, also be increased by 1r . 

Definition 6. 7 (Increase of priority) For a 1r E 1N and a processor 
occupation D E OCC, 

The operation IncPr( 1r, 0) is defined likewise. 0 

M[prio e (P)] = { (uo, (0, !Jt, IncPr(£[e]uo, D), IncPr(£[e]uo, 0)), u) 
I (uo,(O,!Jt,D,O),u) E M[P] }. 

Notice that this definition incorporates, besides finite variability, preemption, 
since the processor has to be requested for each atomic statement. 

Having thus defined the meaning of a multiprocess we can abstract from its 
internal state. 

Definition 6.8 (Timed observations) The timed observations of the mul­
tiprocess P, notation O[P], follow from: 

O[P] = { ( 0, !Jt, D, 0 ) I there exist uo and u such that 
( uo, (O,!Jt,D,O), u) E M[P] }. 

0 

The set O[P] represents the normal behaviour of process P . In Section 6.5 we 
determine the set O[Plx] representing the acceptable behaviour of P under 
the failure hypothesis X· Note that if (O,!Jt,D,O) E O[P] then Ojchan(P) = 0 
and !Jtj chan(P) = !Jt. 
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The timed observations of the network« P »are defined as follows (notice 
how we abstract from the information concerning processor occupation and 
pending requests): 

• Since the processor closure « P » denotes that no process outside P ex­
ecutes on the processor, the observations of« P » are the observations 
of P corresponding to the case where the processor is idle if, and only if, 
there are no tasks to execute. Recall that the processor closure operator 
hides the internal communications. Hence, an observation of « P » is 
characterized by the fact that io(P) communications occur as soon as 
possible. 

Definition 6.9 (No strike) 

NoStrike(D,D.) = '1(71, 1r, 72) ED.· 
'171 ~ 7 ~ 72 · 3(73,7i',74) ED · 73 ~ 7 ~ 74 . 

0 

0[« p »] = 

{ (0\io(P),!>l\io(P)) 
I (O,!>l,D,D.) E O[Pll 1\ ASAP(!>l,io(P)) 1\ NoStrike(D,D.) }. 

The timed observations of NP 1 II NP2 and NP\ cset follow from the definitions 
given in Chapter 5. 

6.4 Assertion language and correctness 
formulae 

At the network level the occupation and request histories are irrelevant. There­
fore we distinguish in this chapter between specifications of multiprocesses, 
typically represented by cp, and specifications of networks, with typical repre­
sentative ¢, already discussed in Chapter 5. 

Besides the expressions introduced in Section 5.4 we have expressions like 
( 7 1 , 1r, 7 2 ), with 7 1 , 72 E TIME and 1r E N, to create occupation and request 
history expressions. To refer to the timed observation of a multiprocess we use 
the special variables h, R, 0, and Q to denote the trace, the refusal set, the . 
occupation history and the request history of the process, respectively. 

For an assertion cp we also write cp(h, R, 0, Q) to indicate that cp has free 
variables h, R, 0, and Q. We use cp(texp, rjxp, ohxp, rhxp) to denote the as­
sertion which is obtained from cp by replacing h by trace expression texp, R 
by refusal expression rfxp, 0 by occupation history expression ohxp, and Q by 
request history expression rhxp. 

Let IVAR, with typical representative i, denote the set of logical value 
variables ranging over N, let TIVAR, with typical representative t, denote 
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the set of logical time variables ranging over TIME, let VVAR, with typical 
representative v, denote the set of logical value variables ranging over VAL, 
let TVAR, with characteristic element s, be the set of logical trace variables 
ranging over TRACE, let RVAR, with typical element N, be the set of logical 
refusal variables ranging over REF, let PRVAR, with characteristic element 
p, be the set of logical priority variables ranging over JN, let OVAR, with 
typical element K, be the set of logical occupation history variables ranging 
over OCC, and let Q VAR, with typical element L, be the set of logical request 
history variables ranging over REQ. Then, we can write specifications such as 
prio 3 (c!2) sat 3t · (0, 3, t) E Q I\ (t, 3 + II(t), t + Ka) E 0. 

Table 6.2 summarizes the assertion language, with r E TIME, t E IVAR, 
c E CHAN, 1L E VAL, v E VVAR, s E TVAR, N E RVAR, 1r E JN, p E PRVAR, 
K E OVAR, L E QVAR, and cset ~ CHAN. As a reminder, a specification <P 
of a network of multiprocesses is a sentence of the language defined in Table 5.2 
and has the form <P(h , R) . 

We use the primitive predicates defined in Definitions 5.21 and 5.23. Ob­
serve that the ability to refer to the willingness of the environment to commu­
nicate allows us to specify a deadline not only relative to the point in time at 
which a communication occurs, but even in relation to the instant at which the 
environment started to offer it. 

Example 6.10 (Calculator) Consider the process C that accepts a value via 
in, applies a function f to it and produces the result via out. To specify that 
an input is always taken within Kd time units after it was first offered we write: 

C sat Vt, t· in enabled fort-+ t ~ Kd . 

When verifying a time-critical system it is often crucial to be able to express a 
lower bound on the frequency at which the environment will be offering input. 

Example 6.11 (Calculator) To specify that inputs are offered at least K1 
time units apart we write: 

C sat Vt,i· in enabled precisely fort-+ after t : in refused forK,. 

We define a third category of primitive predicates. 

Definition 6.12 (Primitive predicates III) For time expression tixp, 

• occupiedattixp = 3(t 1 ,p,t2)EO·t1~tixp~t2; 

• pending at tixp = 3(t1 , p, t2) E Q · t 1 ~ tixp ~ t2; 

• busy upto tixp 
= Vt · t < t < tixp -+ occupied at t V pending at i. 0 
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Table 6.2: Syntax of the assertion language 

Integer expression 

Time expression 

Channel expression 

Value expression 

Record expression 

Trace expression 

Interval expression 

Refusal expression 

Priority expression 

Block expression 

Occupation expression 

Queue expression 

Request expression 

Assertion 

iexp 

tixp 

cexp 

vexp 

rexp 

texp 

inxp 

rfxp 

prxp 

blxp 

ohxp 

quxp 

rhxp 

o 1 1 1 i 1 iexp1 + iexp2 
iexp 1 x iexp2 I len( texp) 

r I t I ts( rexp) I tixp1 + tixp2 
c I ch(rexp) 

JL I v I val(rexp) I 
f(vexp 1 , ..• ,vexpn) 

( tixp, cexp, vexp) I texp( iexp) 

s I h I 0 I (rexp) I 
texp 1" texp2 I texp i cset 

[tixp 1 , tixp2 ) I {tixp} 

N I R I 0 I cset x inxp 
rfxp 1 U rfxp2 

1r I p I II(tixp) 

( tixp1 , prxp, tixp2 ) 

K I o I 0 I { blxp} I 
ohxp1 U ohxp2 
( tixp1 , prxp, tixp2) 

L I Q I 0 I {quxp} I 
rhxp1 U rhxp2 
iexp1 = iexp2 I iexp1 < iexp2 I 
tixp1 = tixp2 I tixp1 < tixp2 I 
cexp 1 = cexp2 I vexp1 = vexp2 I 
vexp 1 < vexp2 I texp 1 = texp2 I 
rfxpl = rfxp2 I prxpl = prxp2 I 
ohxp1 = ohxp2 I rhxp 1 = rhxp2 I 
1P1 1\ 1P2 I ...,cp I 
3i . cp 1 3t · cp 1 3v · cp 1 3s · cp I 

3N . cp I 3p . cp I 3K . cp I 3£ . cp 

We are primarily interested in the accumulative processor occupation of the 
process. 

Definition 6.13 (Accumulative processor occupation) Counting from 
base time t, the accumulative processor occupation of the process at time t, 
notation APO( t), is defined as follows: 

APO(t) = sum t2- t1 ·it 2:: t 1\ t2 ~ t 1\ 3p · (tt,p,t2) E 0. 

0 
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Definition 6.14 (Abbreviation) The instant, relative to base time t, at 
which the processor has accumulatively been occupied for K time units, nota­
tion RO(K), follows from: 

RO(K) = mint· (APO( t) = K). 

0 

Example 6.15 (Calculator) After an input it takes RO(Kc1 ) time units of 
execution before the corresponding output becomes enabled. Once an out­
put has occurred, a next input becomes enabled after RO(Kc2 ) time units of 
resource occupation. We specify C as follows: 

C sat Vi · 1 ~ i ~ len(hlout) --+ val(hlout(i)) = f(val(hlin(i))) 
1\ h = (} --+ enable in and refuse out upto oo 
1\Vt,v · (t,in,v)Eh--+ 

busy upto RO(Kc1 ) 

1\ refuse {in, out} upto RO(Kc1 ) 

1\ after RO(Kc1 ) : 

Vt· out refused precisely upto t 
--+ enable out and refuse in for t 

1\ Vt,v · (t, out,v) E h --+ 

busy upto RO(Kc2 ) 

1\ refuse {in, out} upto RO(KcJ 
1\ after RO(Kc2 ): 

vf. in refused precisely upto t 
--+ enable in and refuse out for i. 

Notice how references to the readiness of the environment to communicate 
are used to determine, for instance, the time RO(KcJ +tat which an out 
communication occurs after an input . 6 

For an assertion cp the set chan( cp) of observation channels is defined in Def­
inition G.l. An assertion is interpreted with respect to a 5-tuple (0, !:R, D, .Q, -y). 
Trace 0 gives hits value, refusal set !:R gives R its value, occupation history 0 
obtains its value from D, request history Q does so from .Q and the environ­
ment 'Y interprets the logical variables. The meaning of assertions is given in 
Definition G.2. When an assertion cp holds for trace 0, refusal !:R, occupation his­
tory D, request history .Q and an environment -y, notation (O,!:R,D,.Q,-y) f= cp, 
is a straightforward extension of the definition given in Definition E .3. 

Example 6.16 (Satisfaction) In Example 6.15 we came across assertion 

Vt,v·(t,in,v) E h--+ refuse {in, out} upto RO(Kc1 ) , 

which is an abbreviation of 

Vt,v·(t,in,v) E h--+ {in, out} x [t,t+RO(KcJ) ~ R . 
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This assertion holds for 5-tuple (0,~,.0,0,')') if, and only if, for any instant T 

and value J.L we have, for environment 9 = (1' : t ~--+ T, v 1--+ J.L) which gives 
logical variables t and v the value of T and J.L respectively, 

(0, ~ • .0, 0, 9) f= (t, in, v) E h -+ {in, out} x [t, t + RO(KcJ) ~ R. 

Since h and R obtain their value from 0 and ~. respectively, this implication 
holds for those traces 0 and refusals ~ for which it is the case that if 0 contains 
a record ( T, in, J.L) then~ contains {in, out} x [T, T + 7), where 7 is the smallest 
instantwithKc1 =sumT2-71'71~7 1\ T2~7 1\ 37r·(T1,1l',T2)E.0. !:::,. 

Definition 6.17 (Valid assertion) An assertion cp is valid, notation f= cp, if, 
and only if, for all 0, ~ • .0, 0 and all')', (0,~,.0,0,')') f= cp. 0 

Prompted by the observation that a fault is tolerated only if it does not cause 
abnormalities in any execution and that an on-line scheduler cannot backtrack, 
correctness formula P sat cp expresses that all executions of multiprocess P 
satisfy cp. 

Definition 6.18 (Valid correctness formula) For multiprocess P and as­
sertion cp the correctness formula P sat cp is valid, notation f= P sat cp, if, and 
only if, for all 1' and all (0,~,.0,0) E O[P], (0,~,.0,0,')') f= cp. 0 

The validity of the correctness formula NP sat ¢is as defined in Definition 5.27. 

6.5 Incorporating failure hypotheses 

To take account of a particular failure hypothesis, the set of observations that 
characterize a multiprocess must again be expanded. This time, a predicate 
that is used to formalize a failure hypothesis has free variables h, hold, R, Rold, 
G, Gold, Q and Qold· 

We extend the assertion language to include the trace expression term hold, 
refusal expression term Rold, occupation history expression term Gold and re­
quest history expression term Q old. Sentences of this extended language are 
again called transformation expressions, with typical representative 1/J. We 
also write 1/J(hold, h, Rold, R, Gold, G, Qold, Q) to indicate that transformation 
expression 1/J has free variables hold, h, Rold, R, Gold, G, Qold and Q. Then, 
1/J( texp 1 , texp2 , rfxp 1 , rfxp2 , ohxp 1 , ohxp2 , rhxp1, rhxp 2 ) denotes the expression 
which is obtained from 1/J by substituting texp 1 for hold, texp2 for h, rfxp 1 

for Rold, rfxp2 for R, ohxp1 for Gold, ohxp2 for G, rhxp 1 for Qold and rhxp2 

for Q. Notice that at the network level a transformation expression has the 
form 1/J( hold, h, Rold, R). A transformation expression is interpreted with re­
spect to a tuple (Oo,O,!Jto,~,.Oo,.O,Oo,O,')'). Trace Oo gives hold its value, 
refusal!Jlo, occupation history .0, and request history 0 does so for Rold, Gold, 
and Q old, respectively. In conformity with the foregoing, trace 0 gives h its 
value, refusal set~ gives R its value, .0 and 0 do so for G, respectively Q, and 
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the environment 1 interprets the logical variables. The meaning of assertions 
defined in Definition G.2 can easily be adapted for transformation expressions 
by adding the clauses 

• T[hold](Oo,O,!no,~,Do,D,.Qo,.O,I) = Oo, 

• RF[Rold](Oo,O,!no,~,Do,D,.Qo,.O,I) =!no, 

• OC[Oold](Oo,O,!no,~,Do,D,.Qo,.O,I) =Do and 

• R.Q[Qo!d](Oo,O,!no,~,Do,D,.Qo,.O,I) = .Oo. 

We write (00 ,0,9lo,~,D0 ,D,.Q0 ,.Q,I) f= 1/J to denote that 1/J holds for 9-tuple 
(Oo,O,!no,~,Do,D,.Qo,.O,I). Since the terms hold, Rold, Oold, and Qold do 
not occur in assertions, the following lemma is trivial. 

Lemma 6.19 (Correspondence) For an assertion t.p(h, R, 0, Q) and for all 
00 , !no, D0 , and .00 it is the case that (00 ,0,9lo,~,Do,D,.Qo,.O,I) f= t.p if, and 
only if, (O,~,D,.Q,I) f= t.p. 0 

The following lemma is easy to prove by structural induction. 

Lemma 6.20 (Substitution) For the transformation expression 1/J, 

(a) (Oo,O,!no, ~,Do,D,.Oo,.O,I) f= ,P(texp, h, Rold, R, Oold, 0, Qold, Q) 

iff (T[texp](Oo, 0, !no,~' Do, D, .Oo, .Q, 1), 0, !no,~' Do, D, Do, .Q, 1) f= 1/J; 

(b) (Oo,O, !no,~,Do,D,.Oo,.O,I) F ,P(hold, texp, Rold, R, Oold, 0, Qold, Q) 

iff (Oo, T[texp](Oo, 0, !no,~' Do, D, .Oo, .Q, 1), !no,~' Do, D, .Oo, .Q, 1) f= 1/J; 

(c) (Oo,O,!no,~,Do,D,.Qo,.O, I) f= ,P(hold, h, rfxp, R, Oold, 0, Qold, Q) 

iff (Oo, 0, R[rfxp](Oo, 0, !no,~' Do, D, .Oo, .0, 1), ~'Do, D, .Oo, .0, 1) F= 1/J; 

(d) (Oo, 0, !no,~' Do, D, .Oo, .Q, 1) F ,P(hold, h, Rold, rfxp, 0 old, 0, Q old, Q) 

iff (Oo, 0, ryto, R[rfxp] (Oo, 0, !no,~' Do, D, .Oo, .Q, 1 ), Do, D, .Oo, .Q, 1) f= 1/J; 

(e) (Oo,O,ryto,~,Do,D,.Qo,.O,I) f= 1/J(hold,h,Rold,R, ohxp,O,Qold,Q) 

iff (Oo, 0, ~o, ~, OC[ohxp](Oo, 0, !no,~, Do, D, .Oo, .Q, 1), D, .Oo, .Q, 1) f= 1/J; 

(f) (Oo, 0, ryto, ryt, Do, D, Do, .0, 1) f= ,P(hold, h, Rozd, R, Oold, ohxp, Q old, Q) 

iff ( Oo, 0, ~o, ryt, Do, OC[ ohxp] (Oo, 0, !no,~, Do, D, .Oo, .Q, 1 ), .Oo, .0, 1) f= 1/J; 

(g) (Oo, 0, !no, ryt, Do, D, Do, .0, I) F 1/J(hold, h, Rold, R, Oold, 0, rhxp, Q) 

iff (Oo, 0, !no,~, Do, D, RQ[rhxp](Oo, 0, !no,~' Do, D, .Oo, .Q, 1), .Q, 1) f= 1/J; 

(h) (Oo,O,!no,~,Do,D,.Oo,.O,I) f= ,P(hold,h,Rold,R,Oold,O,Qold,rhxp) iff 

(Oo, 0, !no, ryt, Do, D, .Oo, RQ[rhxp](Oo, 0, !no, ryt, Do, D, .Oo, .0, 1 ), 1) f= 1/J. 0 
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Definition 6.21 (Validity of a transformation expression) A transfor­
mation expression 1/J is valid, notation f= 1/J, if, and only if, for all 80 , 8, 9lo, !Jl 
and"(, (8o, 8, 9lo, !Jl, "!) f= 1/J. 0 

The observation channels that appear in a transformation expression are as 
defined in Definition G.l with the extra clauses 

• chan(hold) = CHAN, 

• chan(Rotd) =CHAN, 

• chan(Oold) = 0, and 

• chan(Qold) = 0. 

Definition 6.22 (Failure hypothesis) A failure hypothesis x is a transfor­
mation expression which represents a reflexive relation on the normal be­
haviour, to guarantee that the normal behaviour is part of the acceptable 
behaviour: 

Furthermore, a failure hypothesis of failure prone multiprocess FP does not 
impose restrictions on communications along channels not in chan(FP): 

• chan(x) ~ chan(FP) . 0 

As already mentioned in the previous chapter a failure hypothesis should be 
handled with care. Note that for networks of multiprocesses, for which the 
occupation and request history are irrelevant, a failure hypothesis has the form 
x(hold, h, Rold, R). 

Example 6.23 (Reset) Consider the process C introduced in Example 6.15. 
Suppose that, due to a reset, C does not complete its current task but starts 
processing the next input. Then, where hold recorded an out communication, h 
does not. Such a reset typically coincides with the conclusion of the execution 
of an atomic statement, that is, it occurs at the end of a block. After a reset 
occurs, the resource is only needed to prepare for a subsequent in communi­
cation - a single block with length K 0 • Assuming that the environment does 
not offer input too frequently, the timing of this input does not differ from the 
one recorded in hold. 
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Reset = hi{ in, out} ~ hold i{ in, out} 
1\ hi{in} = holdi{in} 
I\Vt·3v · (t,out,v)Ehold 1\ (t,out,v)Eh 

-+ 3tt,t2 · t1 =max t3 < t · 3v · (t3,in ,v) E h 
1\ t2 =min t3 > t · 3v · (t3, in, v) E h 
1\ 0 l[t1, t2] = 0 old l[t1, t2] 
1\ Qj[tt, t2] = Qoldj[tt,t2] 
1\ Rj [tt, t2] = Rold i [tt, t2] 

1\ Vt · 3v · (t, out, v) E hold 1\ (t, out, v) (/. h 
-+ 3tt,t2,t3,t4,t5,t6 · 

t1 =max t1 < t · 3v · (t7, in,v) E h 
1\ t2 = min t1 > t · 3v · ( t1, in, v) E h 
1\ t3 = min t1 > tt · 3p, ts · ( ts, p, t1) E 0 old 
1\ t4 =max t1 < t · 3p,ts · (t7,p,ts) E Oold 
1\ t3 ~ ts < t4 1\ 3p, t1 · (t1, p, ts) E Oold 
1\ t5 ~ t6 < t2 - K a 

1\ Oi[t1, t2] = Oold j[tt, t5] U { (t6, II(t6 - t5), t6 + K,)} 
1\ Qj[t1,t2] = Qoldj[t1,t5] U {(t5,t6)} 
1\ Rj [tt, t2] 

= Rold i[tt, ts] U [t5, t6 + K,] x {in} U [ts, t2] x {out} . 

In this expression tis the timestamp of the output (as recorded in hold) under 
discussion; t 1 and t2 are the timestamps of the inputs preceding, respectively 
succeeding, that output. In the last of the four conjuncts t3 is the end of the 
first block after t 1 , and t4 is the start of the last block before t. The reset 
occurs at t5 • At t6 the resource is obtained to prepare for the input. !::;. 

The construct PIx enables us to specify failure prone multiprocesses, with 
typical representative FP . Using P to denote a multiprocess as defined in 
Table 6.1, Table 6.3 gives the syntax of our extended programming language. 
Since we have abstracted from the internal state of a process, we allow only 
constants in priority assignments. 

Table 6.3: Extended syntax of the programming language 

Failure prone multiProcess FP 

Failure prone Network FN 
P I FPI// FP2 I prio 1r (FP) I FPix 

«: FP ~ I 
FN1 II FN2 I FNix I FN\cset 

From Definition 6.22 we obtain chan(x) ~ chan(FP). Then, chan(FPix) = 
chan(FP) U chan(x) = chan(FP). Also, chan(FNlx) = chan(FN). As be­
fore, define chan(FPI// FP2 ) = chan(FP1) U chan(FP2), chan(prio 1r (FP)) = 
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chan(FP), chan(FN 1IIFN 2) = chan(FN I)uchan(FN 2) and chan(FN \ cset) = 
chan(FN)- cset . 

The timed observations of a failure prone multiprocess process FP are in­
ductively defined as follows: 

• From the definition of M[Ptf/P2 ] given in Section 6.3 we obtain: 

O[FPtf/ FP2] = 
{ (O,!R,D,.Q) I fori= 1,2 there exist (0,,9\,D,,.Q,) E O[FP,] such 

that NoConfiict(D1,D2), D = D1 UD2, .Q = .01 U.02, 
Respect(D, .Q), Oj chan(FP,) = 8,, 
Oj chan(FPI// FP2) = 0, and !R = !R1 U !R2 }. 

• From the definition of M[prio e (P)] given in that section we obtain: 

O[prio 7r (FP)] = 
{ (O,!R,IncPr(7r,D),IncPr(1l',.Q)) I (8,!R,D,.Q) E O[FP] }. 

• The observations of failure prone multiprocess FPlx are those observa­
tions that are related, according to x, to the observations of FP. 

O[FPlx] = 
{ (O,!R,D,.Q) I there exists a (Oo,!Ro,Do,.Oo) E O[FP] such that, 

for all/, (Oo,O,!Ro,!R,Do,D,.Qo,.O,/) f= x, 
Oj chan(FP) = 0, and !Rj chan(FP) = !R }. 

The timed observations of the failure prone network FN are as defined in 
Section 5.5 with the extra clause: 

• From the definition of 0[« P »] given in Section 6.3 we easily obtain: 

0[« FP »] = { (0\io(FP),!R\io(FP)) I (O,!R,D,.Q) E O[FP] 
11. NoStrike(D, .Q) 
/1. ASAP(!R, io(FP)) }. 

Definition 6.24 (Composite transformation expression) For transfor­
mation expressions 'lj;1 and 'lj;2, the composite transformation expression 1/J1l 1/J2 
is defined as follows: 

1/J1l1/J2 = 3s,N,K,L· 1/JI(hotd,s,Rotd,N,Ootd,K,Qotd,L) 
/1. 1/J2(s,h,N,R,K,O,L,Q), 

where s, N, K, and L must be fresh. 0 

We will also use this operator to compose assertions and transformation expres­
sions, e.g. r.pl'I/J = 3s,N,K,L ·r.p(s,N,K,L)II.'Ij;(s,h,N,R,K,O,L,Q). Observe 
that, since <p is an assertion, hold, Ootd, Qold, and Rotd do not appear in <p, 
and hence also the composite expression r.plx is an assertion. 
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Since the interpretation of assertions has not changed, the validity of the 
correctness formula FP sat cp is as defined in Definition 6.18, with P replaced 
by FP . 

Definition 6.25 (Validity of a correctness formula) For process FP and 
assertion cp correctness formula FP sat cp is valid, notation f= FP sat cp, if, and 
only if, for all 1 and all (O,!Jt,D,.Q) E O[FPD, (O,!Jt,D,.O,/) f= ¢. 0 

The validity of the correctness formula FN sat ¢ follows from Definition 5.35. 

6.6 A compositional network proof theory 

In this section we give a compositional network proof system for our correctness 
formulae . 

6.6.1 A proof theory for failure prone multiprocesses 

The proof system for failure prone multiprocesses contains the following two 
general rules. 

Rule 6.26 (Consequence) 

FP sat C/)1 , C/)1 --+ CfJ2 

FP sat C/)2 

Rule 6.27 (Conjunction) 

FP sat cp1 , FP sat C/)2 

FP sat C/)1 1\ C/)2 

For interleaving we have the following inference rule. 

Rule 6.28 (Interleaving) 

FP1 sat CfJ1 (h, R, 0, Q) , FP2 sat cp2(h, R, 0, Q) 
FPtf/ FP2 sat 3K1, K2, L1, L2, N1, N2 · NoConjlict(K1, K2) 

1\0 = K1 U K2 
1\ Q = L1 U L2 
1\ Respect(O, Q) 
1\ R = N1Tchan(FPt) u N2Tchan(FP2) 
1\ CfJ1 (h T chan(FP1 ), N1, K1 , L1) 
1\ cp2(h Tchan(FP2), N2, K2, L2) 

The following rule characterizes priority assignment. 

Rule 6.29 (Priority assignment) 

FP sat cp(h, R, IncPr(1r, 0), IncPr(1r, Q)) 
prio 1r (FP) sat cp(h, R, 0, Q) 
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For the introduction of a failure hypothesis we have 

Rule 6.30 (Failure hypothesis introduction) 

FP sat r.p 

FPlx sat r.plx 

Example 6.31 (Calculator) In Example 6.15 we saw that after each input 
C does not accept subsequent input for RO(Kc1 + Kc2 ) time units. Conse­
quently, if failure prone process C l Reset refuses in communications during the 
RO(Kc , + Kc 2 ) time units following a previous input, then we can conclude 
that no reset has occurred while processing that previous input and, hence, 
output must have been produced. 

ClReset sat Vt ,v · (t , in,v) E h 
-t in refused for precisely RO(Kc, + Kc2 ) 

-t 3t1 · RO(Kc,)::::; t1 < RO(Kc, + Kc2 ) 

A (t1, out , f(v)) E h. 

6.6.2 A proof theory for failure prone networks 

The following rule establishes the correspondence between the model for mul­
tiprocesses and that for networks. Internal channels are hidden. 

Rule 6.32 (Processor closure) 

FP sat (NoStrike(O, Q) A ASAP(R, io(FP))) -t c/>(h \ io(FP), R\ io(FP)) 
~ FP » sat c/>(h, R) 

Example 6.33 (Processor closure) Provided the environment offers subse­
quent inputs at least 2Kc, time units apart, C enables output within 2Kc, 
time units after the environment started offering input. 

~ CI/fC2 » sat Vt, t · in1 enabled precisely fort 
-t after t : in1 refused for 2Kc, 

A in2 enabled precisely for t 
-t after t : in2 refused for 2K c, 

Vt, t · in1 enabled for t -t t::::; 2Kc, 
A in2 enabled fort -t t::::; 2Kc,, 
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and because a process that was reset requires the resource even less we still 
have: 

« (CdReset)jj(C2lReset) » 
sat 
Vt,i· in1 enabled precisely fort-+ after t: in1 refused for 2Kc1 

1\ in2 enabled precisely for t -+ after t: in2 refused for 2K c 1 

Vt, 'f. in1 enabled fort -+ t ~ 2Kc1 

1\ in2 enabled fort -+ t ~ 2Kc1 • 

Once at the network level, we can use the proof theory of Section 5.6. 

6. 7 Soundness and relative network 
completeness 

In this section we show that the proof system of Section 6.6 is sound and 
relatively network complete. 

Theorem 6.34 (Soundness) The proof system of Section 6.6 is sound. 

Proof. See Appendix H.l. 

Axiom 6.35 (Relative completeness assumption) For an assertion cp, 

f- cp if F= cp. 

0 

For multiprocesses we need an adapted notion of (relative) preciseness. 

Definition 6.36 (Relative preciseness) An assertion cp is relatively precise 
for failure prone multiprocess FP if, and only if, 

i) f= FP sat cp; 

ii) if chan(B) ~ chan(FP), if chan(9t) ~ chan(FP), and if, for some "(, 
(B,9t,D,.Q,"f) f= cp, then (0,9t,D,.Q) E O[FP]; 

iii) cp(h, R, 0, Q) -+ cp(h l chan(FP), Rl chan(FP), 0, Q). 0 
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Lemma 6.37 (Preciseness preservation) Assume that for any multipro­
cess P there exists an assertion cp which is precise for P and f- P sat cp. Then, 
for any failure prone multiprocess FP there exists an assertion 11 which is precise 
for FP and f- FP sat "'· 

Proof. See Appendix H.2. 

Completeness is proved by analogy with Section 5.8. 

Theorem 6.38 (Relative network completeness) The proof system of 
Section 6.6 is relatively network complete. 

6.8 Discussion 

The programming language for multiprogramming, especially the construct 
prio e (P) and the processor closure operator « », was inspired by Hooman 
[Hooman92] . The same goes for the special purpose communication hardware 
assumption. In Hooman 's theory, the priority of a process is determined by 
the closest surrounding priority assignment. Consequently, priority assign­
ments may not be nested, since such a nesting might alter the relative pro­
cess priorities. For instance, by assigning the priority 2 to the multiprocess 
PI/fprio 1 (P2 ) the process P1 becomes the most important component. In 
our model the nesting of priority assignments has a cumulative effect. Further­
more, the model presented in this chapter enables us to take the time spent 
waiting for the resource into account. 

We have not explicitly considered the scheduler. Instead we have concen­
trated on the effects of a scheduler on the observable process behaviour. Con­
sequently, failures of the scheduler have been ignored. However, the case that 
the scheduler does not grant the resource to a requesting process as soon as it 
becomes available corresponds to not applying the processor closure rule. Also, 
the case that the scheduler does not respect the priorities can be considered 
using a version of the interleaving rule in which the Respect(O, Q) clause does 
not appear. 
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Concluding remarks 

In a fault tolerant system, three forms of behaviour are distinguished: normal, 
exceptional and catastrophic. Normal behaviour is the behaviour that conforms 
to the specification. The discriminating factor between exceptional and catas­
trophic behaviour is the failure hypothesis which stipulates how faults affect 
the normal behaviour. The exceptional behaviour together with the normal be­
haviour constitutes the acceptable behaviour. Another important fault tolerant 
system feature is the fault hypothesis which, in fact, determines the collection 
of components that must function correctly during any interval of operation. 

In this thesis we develop formal frameworks to specify and verify fault 
tolerant real-time distributed systems. In these theories, the failure hypothesis 
of a process is formalized as a relation between the normal and acceptable 
observable input and output behaviour of that process. Such a relation enables 
us to abstract from the precise nature of a fault and to focus on the abnormal 
behaviour it causes. We abstract from the sequential details of programs and 
formalize fault tolerance in relation to concurrency. 

The formalisms are compositional to support top-down program design 
where, to master the complexity, a program is decomposed into a number of 
smaller ones. In a compositional theory the specification of a composite process 
can be inferred from the specifications of its components without reference to 
the internal structure of those parts. Consequently, each design step can be 
individually verified. Our approach allows a general treatment of paradigms 
for fault tolerance because it supports a modular treatment of acceptable be­
haviour: the acceptable behaviour of the process P under the failure hypothesis 
xis the normal behaviour of the failure prone process Plx. The possibility of 
expressing the failure hypothesis of a subsystem enables the formalization of a 
fault hypothesis. 

The basic formalism is the untimed trace-based approach presented in 
Chapter 3. Two interesting applications, namely the classification of the pro­
cesses that, given a particular failure hypothesis, satisfy a given specification, 
and the determination of the least restrictive failure hypothesis such that a 
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given process still satisfies a given specification, are illustrated in Chapter 4. 
To describe the real-time behaviour of distributed systems we introduce 

in Chapter 5 a primitive to express when a process refuses to communicate. 
The resulting formalism, which assumes maximal parallelism, is generalized in 
Chapter 6 for systems whose limited resources are shared by several processes 
and scheduling takes place on the basis of dynamic priorities. This is achieved 
using primitives to denote when a process occupies the resource and when it is 
requesting to do so. 

Comparing our proof system with trace-based formalisms for normal be­
haviour (see e.g. [Zwiers89)), only one new rule, viz. the failure hypothesis 
introduction rule, has been added to capture acceptable executions. Apart 
from a number of smaller examples, we illustrate our method by proving the 
correctness of a triple modular redundant system (in Chapters 3 and 5) and 
the alternating bit protocol (in Chapter 3), using only the specifications of the 
components. An analysis, purely in terms of the model presented in Section 3.2, 
of a stable disk can be found in [Schepers93b). 

The formalization of a failure hypothesis as a relation does not hang on our 
particular representation of the process behaviour. Consider, for instance, a 
system S whose state consists of two integers x and y, that is, STATEs = 
{ u I u : { x, y} ~ lN } . Assume that in a sequence s of states a new 
state is recorded whenever the value of x or y changes. If we allow transient 
memory faults to occur, then it is easy to formalize that we might observe 
the sequence s = (0, 0), (3, 0), (10, 0), ... instead of some intended sequence 
Sold = (0, 0), (10, 0), . .. 

Finding a logic to express failure hypotheses more elegantly, e.g. using 
the classification of failures that appears in [Cristian91), is a subject of future 
investigation . It is advisable to investigate whether there is any benefit in 
relating an acceptable observation to a number of normal observations instead 
of just one. This will certainly be the case when taking the sequential details of 
programs into account, which is another continuation of the research described 
in this thesis. 

An interesting subject of future investigation is the incorporation of failure 
rates in our formalisms. The qualitative theories presented in this thesis do 
not allow us to express that a transmission medium corrupts a message in only 
5% of the cases, or at most once every hour. The fault tolerance of a system is 
also a quantitative matter, for instance because some failure hypothesis holds 
in only 99.9% of the cases. 

A system is adaptive fault tolerant if it continues to provide its specified 
service even when the circumstances, for instance the weather, change. To 
reason about adaptive fault tolerance our theories need to be extended with 
a mechanism to weave failure hypotheses. Finally, note that our formalisms 
are very suitable to reason about (multi-level) security where most properties 
are expressed purely in terms of the observable behaviour (e.g. [SMcD93)) . Of 
particular interest is the determination of the least restrictive failure hypothesis 
such that a given system is still secure. 



Appendix A 

Paradigms for fault 
tolerance 

A.l Consistency check 

Consistency check paradigms apply to those cases where the output of a com­
ponent is checked with respect to its specified functionality. Such paradigms 
are used especially when a component performs a mathematical function, for 
instance by verifying whether the result conforms to the specified format (syn­
tax checking), by verifying whether the result lies in the specified range (range 
checking) or by verifying whether the application of the reverse function to the 
result yields the input again (reversal checking) . 

A.2 Duplication with comparison 

If consistency checks are not feasible, then the most rigorous way to detect 
the failure of a component is to duplicate that component. Both components 
receive the same input and perform the same tasks. Their output is compared 
and only passed on if there is a match (see Figure A.l). Such a design leads 
to a fail-silent system: if one component fails the system does not output 
anything. The (subtle) difference with a fail-stop system [SS83] is that the 
components do not halt, i.e., still accept input . Under the fault hypothesis 
that if both components fail they do not output identical erroneous values, 
the system always delivers correct output or none at all. When this paradigm 
is used to design fault tolerant hardware, for which it is very popular, the 
components are usually synchronized. This synchronization is less stringent 
when used to design fault tolerant software. 
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Output 

Input 

Figure A.l: Duplication with comparison 

A.2.1 Analysis of duplication with comparison 

This method requires the use of an extra component, a comparator, and an 
output driver . Since a component sends its output via one link only, there is 
no distinction between the failure of a link and the failure of the component 
using it. Furthermore, the failure of the comparator or the output driver results 
in the failure of the system. It may seem as if the system has become merely 
less reliable because of the larger number of components, but because of the 
relative simplicity of both the comparator and the output driver, their failure 
is far less likely than the failure of one of the duplicated components. 

A.3 Triple modular redundancy 

Duplication with comparison is capable of preventing the failure of a system, 
but if one of the duplicated components fails the system outputs nothing. If the 
component is triplicated and another component acts as a voter, which passes 
the majority vote of the outputs of the individual components, the system can 
still produce correct output even when one of the triplicated components fails: 
its failure can be masked. This is known as the triple modular redundancy 
paradigm which is illustrated in Figure A.2. Again, the synchronization is less 
stringent when used to design fault tolerant software (for instance the SIFT 
system [WL+ 78]) . 

The triple modular redundancy paradigm can be generalized toN-modular 
redundancy (N ;::: 3). In case the output of an N-modular redundant system is 
used as input for an M-modular redundant system, M voters process theM­
fold output of the N components. The class of faults that cause a component 
to send conflicting output to the M voters is the well-known class of Byzantine 
faults [LSP82]. 

It should be noted that instead of N identical components, N similar com­
ponents can be used. Using N different implementations of the same spec­
ification is a popular method to protect against faults in the software. The 
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Figure A.2: A triple modular redundant component 

recovery block scheme [HLMR74] is a well-known paradigm to minimize the 
consequences of programmer faults. The reasonableness of the result calculated 
by the primary version, or module, is checked by an acceptance test. If the 
result is unacceptable, an alternate module is executed. The result returned by 
this alternate module is checked by the same acceptance test, and if the test is 
negative yet another module is executed. Typically, a checkpoint is established 
and recorded before executing the primary module. A major strength of the 
recovery block paradigm is that graceful degradation can easily be incorporated 
by invoking ever simpler modules. A major weakness is the acceptance test. 
If all versions are invoked then voting can determine the presumably correct 
result calculated by the majority of the modules - the N-version program­
ming paradigm [CA78]. However, especially in case of real number arithmetic, 
different algorithms can lead to small discrepancies between valid results. To 
identify a consensus in such a case so-called inexact voting is needed. 

A.3.1 Analysis of triple modular redundancy 

Here the redundancy consists of the two replicas of the given component, plus 
the voter. The voter uses a majority vote on the outputs of the three compo­
nents; this is possible as long as the outputs of at least two components are 
identical. The voter is usually designed to output nothing if no two of its inputs 
are identical. Clearly, when two components produce identical incorrect values, 
incorrect output is produced. Hence, the fault hypothesis typically stipulates 
that "the voter does not fail and no two components fail in similar fashion". 
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A.4 Coding 

A popular and effective method to protect data against corruption during trans­
mission is the use of coding: a dataword is transformed into a codeword which 
contains some redundant bits. Besides its application for reliable communica­
tion, coding has been used for decades to realize fault tolerant data storage. 

For two (binary) codewords of the same length, the Hamming distance 
[Hamming50] is the number of bit positions in which the two codewords differ, 
i.e., the number of single bit errors that are needed to convert one codeword 
into another. For example, the Hamming distance between the codewords 
0000000000 and 1111111111 is ten. The Hamming distance of a complete code 
is equal to the minimum Hamming distance of all pairs of codewords in the code. 
For example, the Hamming distance of the code consisting of the codewords 
0000000000, 0000011111, 1111100000 and 1111111111 is five . 

Now, if a code has Hamming distance h, h - 1 single bit errors cannot 
transform one codeword into another codeword. This code is thus capable of 
detecting up to h -1 single bit errors. Furthermore, if no more than lt(h -1)J 
single bit errors occur, the original codeword is still closer than any other 
codeword. Hence, up to lt(h- 1)J single bit errors can be corrected. For the 
above given code, up to 4 single bit errors can be detected, and up to 2 single 
bit errors can be corrected. 

The following sections present Hamming coding, the well-known error cor­
recting coding paradigm, and cyclic redundancy coding, which is a very popular 
error detecting coding paradigm, especially to detect corruption of data stored 
on disks. 

A.4.1 Hamming coding 

The positions of the bits in a codeword can be numbered, where the leftmost bit 
position has number 1. To be able to correct a single bit error in a codeword, 
the code bits at the positions with numbers that are powers of 2 are used as 
check bits. A dataword is converted into a codeword by inserting the data bits 
at the remaining positions [Hamming50] . 

Every bit position can be written as a sum of powers of 2, e.g. 5 = 2° + 22 . 

The check bit at position 2; ensures the parity of those code bits whose position 
contains a term 2i, thus including itself, to be odd or even. For example, the 
dataword 11011011 is converted into the codeword 1c1c11c1011c1011, where 
the subscript c denotes a check bit and even parity is used. 

A.4.1.1 Analysis of Hamming coding 

As mentioned before, Hamming coding can only be used to correct single bit 
errors. In ann-bit Hamming codeword there are r2log(n + 1)1 redundant bits, 
that is, the relationship between the number m of data bits and the n bits of the 
codeword is n = m + r2log( n + 1 )l. To correct single bit errors, the Hamming 
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distance of the code must be 2, or, in other words, the n-bit bit strings at 
Hamming distance 1 from a legal codeword are illegal. Since there are n such 
bit strings, there are n + 1 n-bit bit strings 'dedicated' to each m-bit dataword. 
Because there are 2m m-bit datawords and there are 2n n-bit bit strings, it is 
necessary that 2n ~ ( n + 1 )2m. Thus, the Hamming coding method achieves 
the lower bound. 

Now, assume that a single bit error has occurred. The check bits at the 
positions that occur as a term of the position of the corrupted bit disagree 
with the parity. For instance, the corruption of the bit at position 5 results in 
incorrect check bits at positions 1 and 4. It can easily be seen that the sum 
of the positions of the incorrect check bits equals the position of the corrupted 
bit. 

A.4.2 Cyclic redundancy coding 

An n-bit dataword can be regarded as the list of coefficients, where the coeffi­
cients are 0 or 1, of a polynomial M(x) with n terms, ranging from xn-l to x0 • 

The basic idea of cyclic redundancy coding is to append a checksum to the 
end of the dataword, such that the polynomial C(x) represented by the check­
summed dataword is divisible, using modulo 2 arithmetic, by a generator poly­
nomial G(x) [PB61]. 

Let g be the degree of G(x). The algorithm for computing the checksummed 
dataword consists of three steps: 

1. Append g zero bits to the end of the dataword, resulting in a bit string 
of n + g bits which represents the polynomial x9 M(x). 

2. Divide the bit string from Step 1 by the generator polynomial G{x) using 
modulo 2 division. This can easily be implemented in hardware, i.e., by 
repeatedly shifting and exclusive or-ing. The remainder is a bit string 
consisting of at most g bits. 

3. Subtract the remainder generated in Step 2 from the bit string of Step 
1 using modulo 2 subtraction. Again, this can easily be implemented 
in hardware, i.e., by exclusive or-ing. The result is the checksummed 
dataword which is divisible by the generator. 

Consider the dataword ll010 and the generator 101. Step 1 produces the bit 
string llOlOOO. Step 2 yields the remainder 01. Subtracting 01 from 1101000 
results in ll01001 being transmitted. 

A.4.2.1 Analysis of cyclic redundancy coding 

Suppose that instead of a bit string representing C{x), a bit string representing 
C(x)+E(x) is received, where E(x) is the error polynomial. E(x) has the same 
degree as C(x) and a coefficient equal to 1 means that the corresponding bit is 
inverted, that is, incorrect . 
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In the case of a single bit error, E(x) =xi , where i determines which bit 
is in error. If G(x) contains more than one term, it does not divide E(x) and 
hence it does not divide C(x) + E(x). Thus, if G(x) contains more than one 
term, a single bit error is always detected. 

In the case of a double bit error, E(x) = xi + xJ (i > j), or E(x) = 
xJ(xi-j + 1). If we assume that G(x) does not contain a factor x - which is 
simply satisfied if the lowest order bit of the generator is 1 - all double bit 
errors are detected if G(x) does not divide xi-j + 1 for any i- j, i.e., fori- j 
up to the length of C(x). 

In the case of an odd number of errors, E(x) contains an odd number of 
terms. Evaluating E(1) thus yields 1 (modulo 2) . Since E(1) would be zero if 
E(x) contained a factor (x + 1), an odd number of errors is detected if G(x) 
has a factor x + 1. 

In the case of a burst error of length b, E(x) = xi+b- 1 + .. . +xi, or E(x) = 
xi(xb- 1 + .. . + 1). Under the assumption that G(x) does not contain a factor x 
and that the coefficient of its lowest order term, x0 , is 1, G(x) cannot divide 
E(x) if the degree of G(x) is greater than the degree of E(x), i.e., if g > b- 1, 
or b < g + 1. If b = g + 1 then G(x) can only divide E(x) if E(x) = G(x). 
The most and the least significant bit of a burst are 1 by definition, so that, 
assuming that 0 and 1 have equal probability, the probability that a burst error 
of length g + 1 is not detected is ~ 9- 1 . If b > g + 1 then G(x) can only divide 
E(x) if E(x) = A(x)G(x). Because the least significant bit of both E(x) and 
G(x) is 1, the least significant bit of A(x) is 1. Since the degree of A(x) is 
b - 1 - g, there are 2b-2-g different undetectable burst errors. Because the 
total number of different burst errors of length b is 2b-2 , the probability that 
a burst error of length b is not detected is 2-g. Thus, if G(x) does not contain 
a factor x and the coefficient of x0 is 1, the fraction of burst errors of length b 

that is not detected is 0 if b < g + 1, ~ 9 -
1 

if b = g + 1 and ~ 9 if b > g + 1. 



Appendix B 

Definitions from Chapter 3 

Definition B.l (Variables of a process) The set of variables occurring in 
process P, notation var(P), is defined inductively as follows: 

• var(J.L) = 0; 
• var(x) = {x}; 

• var(f(e1, ... ,en))=Ui=1var(ei)i 

• var(e1 = e2) = var(e1 < e2) = var(ei) U var(e2); 

• var(•b) = var(b); 

• var(b1 V b2) = var(b1) U var(b2); 

• var(skip) = 0; 

• var(x :=e)= {x} U var(e); 

• var(c!e) = var(e); 

• var(c?x) = {x}; 

• var(P1; P2) = var(PI) U var(P2); 

• var([ 0~ 1 bi--+ Pi])= Uf=1 var(bi) U Uf=1 var(Pi)i 

• var( *G) = var(G); 

• var(P1 II P2) = var(PI) U var(P2); 

• var(P\cset) = var(P). 0 

Definition B.2 (Observable input channels of a process) The set of 
visible, or observable, input channels of process P, notation in(P), is defined 
inductively as follows: 

• in(skip) = in(x :=e)= in(c!e) = 0; 

• in(c?x) = {c}; 

• in(P1; P2) = in(PI) U in(P2); 
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• in([ 0f:1 bi-+ Pi])= Uf= 1 in( Pi); 

• in(*G) = in(G); 

• in(P1 II P2) = in(Pl) U in(P2); 

• in(P\ cset) = in(P)- cset. 0 

Definition B.3 (Observable output channels of a process) The set of 
visible, or observable, output channels of process P, notation out(P), is induc­
tively defined as follows: 

• out(skip) = out(x :=e)= 0; 

• out(c!e) = {c}; 

• out(c?x) = 0; 

• out(P1; P2) = out(Pl) U out(P2); 

• out([ Oi=l bi-+ Pi])= Uf:1 out( Pi); 

• out( *G) = out( G); 

• out(P1 II P2) = out(P1) U out(P2); 

• out(P\ cset) = out(P)- cset . 0 

Definition B.4 (History channels of an assertion) For assertion ¢the 
set chan(¢) is inductively defined as the union of the sets of channels used to 
restrict references to h in ¢. 

• chan(O) = chan(!) = chan(i) = 0; 

• chan(iexp1 + iexp2 ) = chan(iexp1 x iexp2) = chan(iexp1) U chan(iexp2); 

• chan(len(texp)) = chan(texp); 

• chan(c) = 0; 

• chan( ch( rexp)) = chan( rexp ); 

• chan(J.L) = chan(v) = 0; 

• chan(val(rexp)) = chan(rexp); 

• chan(!( vexp1, . . . , vexpn)) = Uf= 1 chan( vexpi); 

• chan((cexp, vexp)) = chan(cexp) U chan(vexp); 

• chan(texp(iexp)) = chan(texp) U chan(iexp); 

• chan(s) = 0; 
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• chan(h) =CHAN; 

• chan(())= 0; 

• chan((rexp)) = chan(rexp); 

• chan(texp/'texp2) = chan(texp1 ) U chan(texp2 ); 

• chan ( texp l cset) = chan ( texp) n cset; 

• chan(texp[iexp]) = chan(texp) U chan(iexp); 

• chan(iexp1 = iexp2) = chan(iexp1 < iexp2) = chan(iexp.}U chan(iexp2); 

• chan( cexp 1 = cexp2) = chan( cexp 1 ) U chan( cexp2); 

• chan(vexp1 =vexp2) = chan(vexp1 <vexp2 ) = chan(vexp1)Uchan(vexp2); 

• chan(texp1 = texp2) = chan(texp1 ) U chan(texp2); 

• chan(¢1 1\ ¢2) = chan(¢1) U chan(¢2); 

• chan(-.¢)= chan(3i · ¢) = chan(3v · ¢) = chan(3s ·¢) =chan(¢). 0 



Appendix C 

Proofs from Chapter 3 

C.l Proof of the prefix closedness lemma 

By induction on the structure of FP. (Base Step) Since the semantic function 
M generates prefix closed sets, the theorem holds for 1i[P] . (Induction Step) 
Assume that the lemma holds for 1i[FPl 

(a) Assume that 0 E 1i[FP1 II FP2], that is, assume that, fori= 1, 2, 

Ojchan(FP;) E 1i[FP;] (C.1) 

and 

Oj chan(FP1 II FP2) = 0. (C.2) 

Consider any 0' ~ 0. Since 0' ~ 0, we have O'jchan(FP;) ~ Ojchan(FP1), 

fori= 1, 2. By (C.1) and the induction hypothesis, we conclude that, for 
i = 1, 2, 

O'jchan(FP;) E 1i[FP,]. (C.3) 

By (C.2), chan(O) ~ chan(FP1 II FP2). Since 0' ~ 0, chan(O') ~ chan(O). 
Consequently, chan(O') ~ chan(FP1 II FP2) from which we infer that 

O'jchan(FPt II FP2) = 0' . (C.4) 

From (C.3) and (C.4) we conclude that 0' E 1i[FP1 II FP2]. 

(b) Assume 0 E 1i[FP\ cset], that is, assume there exists a 00 E 1i[FP] such 
that 00 \ cset = 0. Consider any 0' ~ 0. Obviously, there exists a Oh ~ Oo 
such that Oh \ cset = 0'. By the induction hypothesis, Oh E 1i[FP]. Hence 
(}' E 1i[FP\ cset]. 
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(c) Assume 0 E 1i[FPlx], that is, assume that there exists a 00 E 1i[FP] 
such that, for all")', (00 ,0,/') f= X· ConsiderO' ~ 0. Using9 = (1' : sf--+ 0'), 
s fresh, we have (Oo, 0, 9) f= X· Since 0' ~ 0, we have (Oo, 0, 9) f= s ~ h. 
Consequently, (Oo, 0, 9) f= x 1\ s ~ h. By the syntactic restriction on x, we 
obtain (Oo,0,9) f= 3sold ~hold · x[sjh,sold/hold]· Thus there exists a 0" 
such that (Oo,0 , (9: Sold f--+ 0")) f= Sold~ hold 1\x[sjh,sold/hold]· Con­
sequently, 0" ~ Oo and hence (Oo, 0, (9 : Sold f--+ 0")) F= x[sjh, Sold/hold]· 
Then, by substitution lemma 3.50, (0",9(s),(9: Sold f--+ 0")) f= X· Since 
9(s) = 0' and sand Sold do not occur in x, we obtain (0",0',/') f= X· As 
Oo E 1i[FP] and 0" ~ Oo, the induction hypothesis yields 0" E 1i[FP], 
which proves 0' E 1i[FPlx]. 

0 

C.2 Proof of the composite failure hypothesis 
lemma 

Assume that 0 E 1i[FPl(x1 lx2)], or, equivalently, assume that there exists 
a 00 E 1i[FP] such that, for any/', (00 ,0,/') F= (xdx2)· By Definition 3.57, 
(Oo, 0, I') f= 3s ·XI [sjh]l\ X2[s/hold], that is, there exists a 01 such that, for 9 = 
(1' : sf--+ OI), (Oo,0,9) f= xt[sjh]I\X2[s/hold]· Observe that T[s](Oo,0,9) = 01. 
By substitution lemma 3.50, (Oo, 0, 9) f= xt[sjh]l\ X2[s/hold] iff (Oo, 01, 9) F XI 
and (Ot,0,9) f= X2· Then, 0 E 1i[FPl(xdx2)] iff there exists a Oo E 1i[FP] 
such that, for any 1', there exists a 01 with ( Oo, 01, 1') f= XI and ( 01, 0, 1') f= X2. 
Hence, 0 E ?t[FPl(xdx2)] iff there exists some 01 E 1i[FPlxt] such that 
(Ot,O,/') f= X2· Equivalently, 0 E 1i[FPl(xdX2)] iff 0 E 1i[(FPlxi)lx2] · 

C.3 Proof of the persistency lemma 

By induction on the length of h. (Base Step) The case h 
(Induction Step) Assume that the lemma holds for s, that is, 

Val(RDAck(slaout)) ~ 1 Val(RDAck(sla;n)) 

and 

0 

() is trivial. 

(C.5) 

Dat(RDMsg(slm 0 ,.t)) ~ 1 Dat(RDMsg(slm;n)). (C.6) 

Four cases need examination: 

1. h = s"( m;n, ( v, b)), where b f:. bit( val( last(s lmin)) ). 

By (3.10), len(RDAck(hlaout)) ~ 1 len(RDMsg(hlm;n)). Since s -< h, 
(3.10) yields len(RDAck(slao,.t)) ~ 1 len(RDMsg(slm;n)). Then, be­
cause in this case h = s" ( m;n, ( v, b)), we may conclude t~at 
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len(RDAck(siaout)) = len(RDMsg(sjmin)). (C.7) 

Since s ~ h, (3.12) yields Val(RDAck(sjain)) ~ 1 Bit(RDMsg(simout)). 
Then, by (C.5), Val(RDAck(siaout)) ~ Bit(RDMsg(simout)). Conse­
quently, len( Val(RDAck(siaout))) ~ len(Bit(RDMsg(simout))), from 
which we conclude 

len(RDAck(sjaout)) ~ len(RDMsg(simout)). (C.8) 

By (C.6), len(RDMsg(sjmout)) ~ 1 len(RDMsg(sjmin)), i.e., by (C.8), 
len(RDAck(sja0 ut)) ~ len(RDMsg(simout)) ~ 1 len(RDMsg(sjmin)). 
Finally, by (C.7), len(RDMsg(simout)) = len(RDMsg(sjmin)), which, 
by (C.6), yields Dat(RDMsg(sjm 0 ut)) = Dat(RDMsg(sjmin)). Then, 
obviously, Dat(RDMsg(himout)) ~ 1 Dat(RDMsg(hfmin)), from which 
the lemma follows. 

2. h = s"(mout, (v, b)), where b '# bit( val(last(sfmout))). 

Since s ~ h, (3.12) yields Val(RDAck(sfain)) = Bit(RDMsg(sjmout)) . 
Then, by (C.5), Val(RDAck(sfaout)) ~ 1 Bit(RDMsg(simout)), from 
which we conclude 

len(RDAck(sfaout)) ~ 1 len(RDMsg(sfmout)). (C.9) 

Since s ~ h, we infer, using (3.10), that 

len(RDAck(sfaout)) ~ 1 len(RDMsg(sjmin)). (C.lO) 

Since s ~ h, (3.13) yields len(RDMsg(simout)) ~ len(RDMsg(sjmin)). 
By (C.9) and (C.10), 

len(RDMsg(sjmout)) ~ 1 len(RDMsg(sfmin)). (C.ll) 

Suppose that len(RDMsg(sjm 0 ut)) = len(RDMsg(sjmin)). Since in this 
case h = s"(mout, (v, b)), with b '# bit( val(last(sjm 0 ut))), we obtain 
len(RDMsg(himout)) = len(RDMsg(hjmin)) + 1, which conflicts with 
(3.13). Then, by (C.ll), len(RDMsg(sfmout)) <1 len(RDMsg(sjmin)), 
which, by (C.6), yields Dat(RDMsg(simout)) ~ 1 Dat(RDMsg(sjmin)) . 
By (3.14), we obtain that v = msg(val(last(h[len(h)]jmin))), or, equiv­
alently, v = msg(val(last(sjmin))). Hence, Dat(RDMsg(himout)) = 
Dat(RDMsg(h fmin)), from which we conclude that the lemma holds. 
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3. h = s"(a;n,b), where b -:f. val(last(sja;n)). 

By (3.12), len(RDAck(hja;n)) :=; 1 len(RDMsg(hfmout)). Since s ~ h, 
we obtain, by (3.12), that len(RDAck(s ja;n)) ::;1 len(RDMsg(sfmout)). 
Then, we conclude 

len(RDAck(sja;n)) <1 len(RDMsg(sfmout)) . (C.12) 

By (C.6), len(RDMsg(sfmout)) ::;1 len(RDMsg(sjm;n)); i.e., by (C.12), 
we conclude that 

len(RDAck(sja;n)) < len(RDMsg(sjm;n)). (C.13) 

Since s ~ h, (3.15) yields len(RDAck(sfaout)) ::; len(RDAck(sja;n)), 
which leads, using (C.13), to 

len(RDAck(sja 0 ut))::; len(RDAck(sja;n)) < len(RDMsg(sjm;n)) 
(C.14) 

Since s ~ h, (3.10) yields len(RDAck(sfaout)) ::;1 len(RDMsg(sjm;n)), 
which, by (C.14), leads to len(RDAck(sfaout)) = len(RDAck(sja;n)). 
Hence, by (C.5), we obtain Val(RDAck(sfaout)) = Val(RDAck(sja;n)). 
Then, we have, obviously, Val(RDAck(hfaout)) ~ 1 Val(RDAck(hja;n)), 
from which we conclude that the lemma holds. 

4. h = s"(aout, b), where b -:f. val(last(sfaout)). 

Since s ~ h, (3.10) yields Val(RDAck(sja 0 ut)) j 1 Bit(RDMsg(sjm;n)). 
Hence, Val(RDAck(sfaout)) ~ 1 Bit(RDMsg(sjm;n)), from which we can 
conclude that 

len(RDAck(sfaout)) <1 len(RDMsg(sjm;n)) . (C .15) 

By (C.6), we have len(RDMsg(sfmout)) ::; 1 len(RDMsg(sjm;n)). Then, 
by (C.15), we conclude 

len(RDAck(sfaout)) ::; 1 len(RDMsg(sfmout)). (C.16) 

Since s ~ h, we obtain, using (3.12), that 

len(RDAck(sja;n)) ::; 1 len(RDMsg(sfmout)). (C.17) 

Since s ~ h, (3.15) yields len(RDAck(sja0 ut)) ::; len(RDAck(sja;n)) . 
Then, by (C.16) and (C.17), we conclude 

len(RDAck(sfaout)) ::; 1 len(RDAck(sja;n)). (C.l8) 
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Suppose len(RDAck(siaout)) = len(RDAck(sja;n)). Since in this case 
h = s"(aout,b) , where b ::f: val(last(sja0 ut)), we may conclude that 
len(RDAck(hja 0 ut)) = len(RDAck(hjain)) + 1, conflicting with (3.15). 
Then , by (C.18) , len(RDAck(sja0 ut)) <1 len(RDAck(sja;n)), which, 
using (C.5), yields Val(RDAck(sja 0 ut )) -<1 Val(RDAck(sja;n)) . Fi­
nally, since, by (3.16), we have that b = val(last(h[len(h)Jja;n)), or, 
equivalently, b = val(last(sja;n)), we obtain Val(RDAck(hiaout)) = 
Val(RDAck(hjain)) , from which we conclude that the lemma holds. 

0 

C.4 Proof of the soundness theorem 

C.4.1 Soundness of the consequence and conjunction rules 

Trivial. 

C.4.2 Soundness of the invariance rule . 

Follows from the fact that if () E 'H[FP] then chan(B) ~ chan(FP) . Thus, 
cset n chan(FP) = 0 implies chan(B) n cset = 0 . 0 

C.4.3 Soundness of the parallel composition rule 

Assume that 

chan(¢!) ~ chan(FPI) , chan(¢2) ~ chan(FP2). (C.19) 

Assume further 

(C.20) 

We prove f= FP1IIFP2 sat ¢1/\¢2 . Consider any 'Y· Let() E 'H[FP1IIFP2]. 
By the definition of the semantics, fori= 1,2, Bjchan(FPi) E 'H[FP;] and 
()j chan(FP1IIFP2) =B. Hence, by (C.20) , we obtain (Bj chan(FP;), "!) f= ¢;. 
By projection lemma 3.5l(a) , we have ((Bj chan(FPi))j chan(¢;) ,"!) f= ¢;,thus 

(C.21) 

By (C.19), (Bj chan( <Pi),"!) f= ¢i, and hence, by projection lemma 3.51(a), 
( (), 'Y) f= <Pi . This establishes that f= F P 1!1 F P 2 sat ¢1 1\ ¢2 . 0 
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C.4.4 Soundness of the hiding rule 

Assume 

f= FP sat¢ (C.22) 

and 

chan(¢) n cset = 0. (C.23) 

We show FP \ cset sat¢. Consider any 'Y· Let 8 E 'H[FP \ cset]. Then there 
exists a 81 E 'H[FP] with 8 = 81\ cset. By (C.22), we conclude (81, -y) f= ¢. By 
{C.23), chan(¢) ~ CHAN- cset, and, hence, projection lemma 3.51{a) leads to 
{81 j(CHAN- cset),-y) f= ¢,and consequently, by definition, {81 \cset,-y) f= ¢. 
Hence, (8, -y) f= ¢ . D 

C.4.5 Soundness of the failure hypothesis introduction 
rule 

Assume 

f= FP sat¢. (C.24) 

Consider any 'Y · Let 8 E 'H[FPlx]. Then there exists a 80 E 'H[FP] such 
that, for all-y, (8o,8,-y) f= X· By (C.24), for any 8~, (8~,8o,'Y) f= ¢,thus also 
(8o,8o,'Y) f= ¢ . Let, for fresh s, 9 = ('Y : s ...... 8o). Since s does not occur in¢, 
(8o, 8o, 9) f= ¢ . Note that T[s](8o, 8, 9) = 8o, thus {8o, T[s](8o, 8, 9), 9) f= ¢. 
By substitution lemma 3.50(a) we obtain (80 , 8, 9) f= ¢[s/ h], or, by correspon­
dence lemma 3.49, 

(8,9) f= ¢[s/h] . (C.25) 

Since (8o,8,9) f= x, we have (T[s](8o,8,9),8,9) f= X· Applying substitu­
tion lemma 3.50(b) leads to (8o, 8, 9) f= x[s/hotd] · Since hold does not occur in 
x[s/hold], correspondence lemma 3.49 leads to 

(C.26) 

From (C.25) and (C.26) we obtain (8 , ('Y : s ...... 8o)) f= ¢[s/h]A x[s/hotd], 
from which we may conclude that (8, -y) f= 3s · ¢[s/h]l\ x[s/hotd] D 
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C.5 Proof of the preciseness preservation 
lemma 
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By induction on the structure of FP. (Base Step) By assumption, the lemma 
holds for P. (Induction Step) Assume that the lemma holds for FP: 

(a) Assume f- FPt sat <Pt and f- FP2 sat ¢2, with ¢1 and </J2 precise for FP1 

and FP2, respectively. By the preciseness of ¢1 for FP1 , we have 

chan(</Jt) ~ chan(FPt): (C.27) 

Similarly, 

(C.28) 

Thus, by applying parallel composition rule 3.64, we obtain 

(C.29) 

We show that <Pt /1. <P2 is precise for FPt II FP2. 

(i) By (C.29) and soundness, we obtain f= FPt II FP2 sat <Pt A ¢2. 

(ii) Let 

chan(O) ~ chan(FPt II FP2), (C.30) 

and assume ( 0, ')') f= <Pt A </J2 . By ( C.27) and projection lemma 
3.51(a), (Ofchan(FPt),f') f= <Pt· Consequently, by the preciseness 
of ¢1 for FPt, we conclude 

(C.31) 

Similarly, 

(C.32) 

Finally, by (C.30), 

(C.33) 

Then, by (C.31)- (C.33), we conclude that 0 E H[FPt II FP2]. 

(iii) By (C.27) & (C.28), chan(</lt}Uchan(¢2) ~ chan(FPt)Uchan(FP2)· 
Hence, by definition, we have chan(<Pt A ¢2) ~ chan(FPt II FP2). 
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(b) Assume 

f- FP sat¢>, (C.34) 

with ¢> precise for FP . Define 

¢ = 3s · if>[s/h] 1\ hj(chan(FP)- cset) = sl(chan(FP)- cset) 

We show that f- FP \ cset sat ¢, and, furthermore, that ¢ is precise for 
FP\ cset. 

Lemma C.l ~ ¢> -+ ¢ 

Proof. Assume (0,/) ~ ¢>and, for fresh s, 9 = (r : s t-t 0) . Then, 
trivially, (0, 9) ~ if>[s/h]l\ hl(chan(FP)- cset) = sj(chan(FP)- cset). 
Hence, (0, 1) ~ 3s · if>[s/h]l\ hj(chan(FP)- cset) = sj(chan(FP)- cset) . 

0 

By Lemma C.l and relative completeness axiom 3.74, f- ¢> -+ ¢. By 
(C.34) and consequence rule 3.60, we obtain f- FP sat ¢ . Note that, by 
definition, chan(3s · ¢>[s/h]) = 0, thus chan(¢) = chan(FP)- cset, and 
hence chan(¢) n cset = 0. Then, hiding rule 3.65 leads to 

f- FP \ cset sat ¢. (C.35) 

It remains to be shown that ¢is precise for FP \ cset. 

(i) By (C.35) and soundness, we have ~ FP\ cset sat¢. 

(ii) Let 

chan(O) ~ chan(FP\ cset), (C.36) 

and, for some/, (8,1) ~ ¢. There exists a 9 = (r: s t-t 0)) with 

(0, 9) ~ if>[s/h]l\ hj(chan(FP)- cset) = sj(chan(FP)- cset). 
(C.37) 

Then, by substitution lemma 3.50(a), (0, (r : s t-t 0)) ~ ¢>, and 
thus (0,/) ~¢>.By projection lemma 3.5l(a), (Ojchan(¢>),1) ~ ¢>. 
Since, by the preciseness of¢> for FP, chan(¢>) ~ chan(FP), we have 
(thchan(FP),/) ~ ¢>. Obviously, chan(Ojchan(FP)) ~ chan(FP), 
so, by the preciseness of¢> for FP, we have Oj chan(FP) E 1i[FP]. 
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As we have, by (C.36}, that chan(O) ~ chan(FP} - cset, and, by 
(C.37}, that Oj(chan(FP)- cset) = Oj(chan(FP}- cset}, we ob­
tain that 8 = Ofchan(FP\cset}, and thus 8 = (Ofchan(FP))\cset. 
Consequently, 8 E 1i[FP\ cset]. 

(iii) Since chan(¢) = chan(FP} - cset, we conclude that, by definition, 
chan(¢)= chan(FP\ cset). 

(c) Assume 

1- FP sat¢, (C.38} 

with ¢precise for FP . Define¢ = ¢lx, that is 

¢ = 3s. ¢(s/h] 1\ x[s/hold] 

Then, by failure hypothesis introduction rule 3.66, 

1- FPlx sat¢. (C.39} 

We show that¢ is precise for FPlx. 

(i) By (C.39} and soundness, we have f= FPlx sat¢. 

(ii) Let 

chan(O) ~ chan(FPlx}, (C.40} 

and assume, for some 'Y, ( 8, 'Y) f= ¢. Consequently, there exists a 0 
such that 

(8, ('Y : sf--+ 0)) F ¢(s/h]A x[s/hold]· (C.41} 

Then, by substitution lemma 3.50(a}, (0, ('Y : sf--+ 0}} f= ¢,and thus, 
since s does not occur free in ¢, (0, 'Y) f= ¢. Since, by the preciseness 
of ¢ for FP, chan(¢) ~ chan(FP), by projection lemma 3.51{a), 
(Of chan(FP}, 'Y) f= ¢ . Trivially, chan(Of chan(FP}} ~ chan(FP}, 
and hence, because of the preciseness of¢ for FP, we obtain that 

Of chan(FP) E 1i[FP]. (C.42} 

By correspondence lemma 3.49 and substitution lemma 3.50(b}, 
(C.41} leads to (O,O,('Y : sf--+ 0)) F x, thus, since s does not oc­
cur free in x, (O,O,'Y) f= X· Since chan(x) ~ chan(FP}, projection 
lemma 3.51(b) leads to 
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(Ojchan(FP),O,-y) F= X· 

Finally, by definition, (C.40) leads to 

chan(O) ~ chan(FP). 

Consequently, by (C.42)- (C.44), (} E ?t[FPlx]. 

(iii) By definition, 

(C.43) 

(C.44) 

chan(¢)= chan(l/>[s/h]) U chan(x[s/hold]). (C.45) 

Clearly, 

chan(x[s/hold]) ~ chan(x). {C.46) 

It is also obvious that chan(l/>[sjh]) ~ chan(!/>), and, since, by the 
preciseness of 4> for FP, we have that chan(!/>) ~ chan(FP), we 
conclude 

chan(l/>[sjh]) ~ chan(FP). (C.47) 

By (C.45) - (C.47), we have chan(¢) ~ chan(FP) U chan(x), that 
is, chan(¢)~ chan(FPlx). 

0 



Appendix D 

The Influence of the 
Ancient Greek 
Philosophers on the 
Modern Computer Science 
Community 

What struck already the pre-Socratic philosophers was the contradiction be­
tween the variety and the mutability of the world of appearances (<paLV6f-l£va) 
and the stability and unity required by reason (Myoc;). Consequently, they 
tried to find a basic element or a principle of unity beneath the apparent change 
of the world . 

The Ionian philosopher Heracleitus ('HplixA£L-coc;, ca. 53o-470 B.C.) claimed 
that nothing is definite: everything is coming into being or passing away. The 
nature of the world consists of a continuous process of becoming, in a con­
stant flux: Jtav-ca pe:i: (everything flows). Meanwhile, Parmenides (Ilapf.LE'IIl~Y)<;. 
ca. 540- 480 B.C. ), the Eleatic philosopher, rejected motion and change as 
an illusion of the senses and claimed that the world consists in an eternal and 
immutable being (ov). Every substance must be unitary, ungenerated, inde­
structible, immutable, eternal and indivisible: lo"CL'II ElvaL (being is). 

The Parmenidean being and the Heracleitean becoming are the two op­
posing principles of unity. The doctrine of Parmenides has greatly influenced 
Archimedes ('ApXL!-l~8T)c;, 287-212 B.C.), whose On the Equilibrium of Planes 
is considered the first important work on statics. In statics one reasons in 
terms of laws of equilibrium in which temporal aspects play no part. The best 
known exponent of the doctrine of Heracleitus is Aristotle ('ApLmo-ct>..Y)<;, 384-
322 B.C.) . His Physics is seen as the first important work on dynamics. In 
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dynamics, reasoning is governed by principles of motion and change which can 
not be understood without an analysis of time. 

Zeno (Z~vwv, ca. 490-430 B.C.), a student of Parmenides, has become 
famous for the paradoxes that illustrate his teacher's doctrine. The best known 
paradox is that of Achilles and the tortoise. Before the runner Achilles catches 
up with the slower tortoise he must first cover the distance already traversed 
by the tortoise. While doing so, the tortoise advances a yet further distance. 
Extending this argumentation ad infinitum leads to the conclusion that Achilles 
will never catch up with the tortoise. Accepting the divisibility of magnitudes 
thus results in unacceptable consequences because in reality Achilles easily 
overtakes the tortoise. 

A compositional framework allows us to reason with the specification of a 
process. Using a discrete notion of time, a smallest time unit has to be cho­
sen in such a specification. Consequently, when two independently developed 
processes are combined it is possible that a new smallest time unit must be 
defined and that the respective specifications have to be modified accordingly. 
Therefore, in modern computer science the use of dense and even continuous 
time domains is popular. Characteristic of such domains is the fact that it is 
always possible to find a point in between two other points: time is infinitely 
divisible. Consider, for instance, an infinite loop where the nth execution of 
the body takes (~)n (n ~ 1). During the execution of this loop time does not 
progress a single unit! 

To be able to reason about progress properties, finite variability [BKP86], 
also called non-Zeno-ness (cf. [AL92]), has to be enforced. In this thesis this is 
accomplished by ensuring that every action has a fixed minimal duration and 
that there are only finitely many different actions. 



Appendix E 

Definitions from Chapter 5 

Definition E.l {Observation channels of an assertion) For assertion ¢ 
the set chan(¢) is inductively defined as the union of the sets of channels 
used to restrict references to h and R in ¢. 

• chan(O) = chan(l) = chan(i) = 0; 

• chan(iexp1 + iexp2 ) = chan(iexp1 x iexp2 ) = chan(iexp1 ) U chan(iexp2 ); 

• chan(len(texp)) = chan(texp); 

• chan(r) = chan(t) = 0; 

• chan(ts(rexp)) = chan(rexp); 

• chan(tixp1 + tixp2 ) = chan(tixpd U chan(tixp2 ); 

• chan(c) = 0; 

• chan( ch( rexp)) = chan( rexp ); 

• chan(J.L) = chan(v) = 0; 

• chan(val(rexp)) = chan(rexp); 

• chan(!( vexpl, . .. , vexpn)) = ur=l chan( vexpi); 

• chan((tixp, cexp, vexp)) = chan(tixp) U chan(cexp) U chan(vexp); 

• chan(texp(iexp)) = chan(texp) U chan(iexp); 

• chan(s) = 0; 
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• chan(h) =CHAN; 

• chan(())= 0; 

• chan((rexp)) = chan(rexp); 

• chan(texp/'texp2) = chan(texp1 ) U chan(texp2); 

• chan(texplcset) = chan(texp) n cset; 

• chan([tixp1 , tixp1 )) = chan(tixp1 ) U chan(tixp2); 

• chan( { tixp}) = chan( tixp ); 

• chan(N) = 0; 

• chan(R) =CHAN; 

• chan(0) = 0; 

• chan( cset x inxp) = chan( inxp ); 

• chan(rfxp 1 U rfxp2) = chan(rfxp 1 ) U chan(rfxp2); 

• chan(rfxplcset) = chan(rfxp) n cset; 

• chan(iexp1 = iexp2) = chan(iexp1 < iexp2) = chan(iexp1 )Uchan(iexp2); 

• chan(tixp 1 = tixp2) = chan(tixp1 < tixp2) = chan(tixp1 ) U chan(tixp2); 

• chan(cexp1 = cexp2) = chan(cexp1 ) U chan(cexp2); 

• chan( vexp1 = vexp2) = chan( vexp1 < vexp2) = chan( vexp1 )Uchan( vexp2); 

• chan(texp1 = texp2) = chan(texpd U chan(texp2); 

• chan(rfxp1 = rfxp2) = chan(rfxp1 ) U chan(rfxp2); 

• chan(<Pt 1\ <P2) = chan( <PI) U chan(¢2); 

• chan(-.¢)= chan(3i · ¢) = chan(3t · ¢) = chan(3v · ¢) = 
chan(3s · ¢) = chan(3N ·¢)=chan(¢). 0 

Definition E.2 {Meaning of assertions) We define the value of an inte­
ger expression iexp in the trace(), refusal !R, and an environment -y, denoted 
by I[iexpD(O,!R,-y), as yielding a value in 1N U { t}; the value of a time ex­
pression tixp in the trace (), refusal !R, and an environment -y, denoted by 
TI[tixp](O,!R,-y), as yielding a value in TIME U { t}; the value of a channel 
expression cexp in the trace (), refusal !R, and an environment -y, denoted by 
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C[cexp](0,9l,')'), as yielding a value in CHAN U { f}; the value of a value ex­
pression vexp in the trace 8, refusal 9l, and an environment ')', denoted by 
V[vexp](0 ,9l,')'), as yielding a value in VALU {f}; the value of a record ex­
pression rexp in the trace 8, refusal 9l, and an environment ')', denoted by 
R[rexp](8,9l,')'), as yielding a value in (TIMEx CHAN x VAL) U {f}; the 
value of a trace expression texp for trace 8, refusal 9l, and an environment ')', 
denoted by T[texp](8,9l,')') , as yielding a value in TRACE U { f}; the value 
of an interval expression inxp for trace 8, refusal 9l, and an environment ')', 
denoted by IN[inxp](8, 9l, ')'), as yielding a value in P( TIME) U { f}; and the 
value of a refusal expression rfxp for trace 8, refusal9l, and an environment ')', 
denoted by RF[rfxp](8, 9l, '/'), as yielding a value in REF u { f}, 

• I[0](8,9l,'i') = 0; 

• I[l](0,9l,')') = 1; 

• I[i](0,9l,')') = 'l'(i) ; 

• I[iexp 1 + iexp2 ](8, 9l, 1') = 

{ 

f if I[iexp1](8,9l,')') =for 
I[iexp 2 ](8, 9l, 1') = f, 

I[ iexp 1] ( 8, 9l, ')') + I[ iexp2 ] ( 8, 9l, ')') otherwise; 

• I[iexp 1 x iexp 2](8,9l,')') = 

{ 

f if I[iexp1](8,9l,')') =for 
I[ iexp2D( 8, 9l, 'i') = f, 

I[ iexp 1 D( 8, 9l, ')') x I[ iexp2D( 8, 9l, ')') otherwise; 

I[l (t )](8 9l ) { f ifT[texpD(8,9l,')') = f, 
• en exp ' ,')' = len(T[texp](8,9l,')')) otherwise; 

• TI[T](8, 9l, 1') =T; 

• TI[t](8 ,9l, ')') = 'i'(t); 

{ 

f if R[rexp](8, 9l, 1') = f, 
• TI[ ts ( rexp)] ( 8, 9l, ')') = T if there exist c and 1£ such that 

R[rexp](8,9l,')') = (T,c,ft); 

• TI[iexp1 + iexp2 ](8,9l, ')') = 

{ 

f if I[iexp 1](8,9l,')') =for 
I[ iexp2D( 0, 9l, 'i') = f, 

I[ iexp 1] ( 8, 9l, ')') + I[ iexp2 ] ( 8, 9l, ')') otherwise; 

• C[c](8,9l,')') = c; 

{ 

f if'R[rexp](8,9l,')') = f, 
• C[ ch( rexp )](8, 9l, ')') = · c if there exist T and 1£ such that 

R[rexpD(8,9l,')') = (r,c,ft); 
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• V[J.L](0,9t,l} = J.Li 

• V[vD(0,9t,l) = 1(v}; 

{ 

f iff'R[rexp](0,9t,l} = f, 
• V[val(rexp)](O, 9t, 1) = J.L if there exist 7 and c such that 

'R[rexp](0,9t,l} = (7,c,J.L}; 

• V[f( vexp 1 , ... , vexpn)](O, 9t, 1) = 

{ 

f if V[vexp1](0,9t,l} = f, 
or ... , or 
V[vexpn](0,9t,l) = f, 

f(V[vexp 1](0, 9t, 1}, ... , V[vexpnD(O, 9t, 1)) otherwise; 

• 'R[(iexp, cexp, vexp)D(0,9t,l} = 
f if I[iexp](0,9t,l} = f, 

C[cexp](0,9t,l} = f, or 
V[vexp](O, 9t, 1) = f, 

( I[ iexp] (0, 9t, 1 ), 
C[ cexp] (0, 9t, 1 }, 
V[ vexp] ( 0, 9t, 1) ) otherwise; 

• 'R[ texp( iexp )] ( 0, 9t, 1) = 

{ 

( 7, c, J.L) if there exist 01 and 82 such that 
len(OI) = I[iexp](0,9t,l) -1 
and T[texp](0,9t,l} = 0/'(7,C,J.L)A02, 

i otherwise; 

• T[s](0,9t,l) = 1(s); 

• T[h](0,9t,l) = 0; 

• T[()](0,9t,l) = (); 

T[( )](O 9t ) { f if'R[rexp](0,9t,l) = f, 
• rexp ' ,1 = ((7,c,J.L)) if'R[rexp](0,9t,l) = (7,c,J.L); 

• T[texp/' texp2](0, 9t, 1) = 

{ 

f ifT[texp 1](0,9t,l) =for 
T[texp 2 ](0,9t,l) = f, 

T[ texp 1](0, 9t, 1 )AT[ texp2](0, 9t, 1} otherwise; 

• T[texpjcset](0,9t,l) = 

{ 
f if T[texp](0,9t,l} = f, 
T[ texp] ( 0, 9t, 1) i cset otherwise; 
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• IN[[iexp 1 , iexp2 )](8, !.1\, "f) = 

{ 
f if I[iexp 1](8, !.1\, "f) = f or 

I[ iexp 2 ] ( 8, !.1\, 1) = f, 
[I[ iexp 1] { 8, !.1\, 'Y), I[ iexp2 ] { 8, !.1\, 'Y)) otherwise; 

IN[{ · }](8 !.1\ ) _ { f if I[iexp](8, !.1\, 'Y) = f, 
• ~exp ' ,"(- {I[iexp](8,!.1\,"()} otherwise; 

• 'RF[N](8,!.1\,"f) = "f(N); 

• 'RF[ R] ( 8, !.1\, 'Y) = !.1\; 

• 'RF[0](8,!.1\,"f) = 0; 

• 'RF[ cset x inxp] (8, !.1\, 'Y) = 

{ 
f if IN[ inxp](8, !.1\, 'Y) = f, 
cset x IN[inxp](8, !.1\, 'Y) otherwise; 

• 'RF[rfxp 1 U rfxp2 ](8,!.1\,"f) = 

{ 
f if 'RF[rfxp 1](8, !.1\, 'Y) = f 

or 'RF[rfxp2]{8, !.1\, 'Y) = f, 
'RF[ rfxp 1] ( 8, !.1\, 'Y) u 'RF[ rfxp2 ] ( 8, !.1\, 'Y) otherwise; 

• 'RF[rfxpjcset](8,!.1\,"f) = 

{ 
f if 'RF[rfxp] (8, !.1\, "f) = f, 
'RF[ rfxp] ( 8, !.1\, 'Y) i cset otherwise. 0 

Definition E.3 (Satisfaction) We inductively define when an assertion tjJ 
holds for trace 8, refusal !.1\, and an environment 1 , denoted by ( 8, !.1\, 1 ) F= ¢: 

• ( 8, !.1\, 1) F= iexp 1 = iexp2 if, and only if, 

I[iexp 1](8,!.1\,"()"= I[iexp2](8,!.1\,"f) and I[iexp 1](8,!.1\,"f) # f; 

• (8,!.1\,"f) f= iexp 1 < iexp2 iffi[iexp1](8,!.1\,"f) <I[iexp2]{8,!.1\,"f), 

I[iexp 1](8,!.1\,"f) # f and I[iexp2](8,!.1\,"f) # f; 
• ( 8, !.1\, 1) F= tixp 1 = tixp2 iff 

TI[ tixp 1] { 8, !.1\, 'Y) = TI[ tixp2 ] ( 8, !.1\, 'Y) and TI[ tixp 1] { 8, !.1\, 'Y) # f; 

• (8, !.1\, "f) f= tixp 1 < tixp2 iff TI[tixp 1 ](8, !.1\, "f)= TI[tixp 2 ](8, !.1\, "f), 

TI[tixp 1](8,!.1\,"f) # f, and TI[tixp2](8,!.1\,"f) # f; 
• (8, !.1\, "f) f= cexp1 = cexp2 iff 

C[ cexp1] ( 8, !.1\, 'Y) = C[ cexp2] ( 8, !.1\, 'Y) and C[ cexp1] ( 8, !.1\, 'Y) # f; 

• (8,!.1\,"f) f= vexp1 = vexp2 iff 

V[vexp 1](8,!.1\,"f) = V[vexp 2 ](8,!.1\,"f) and V[vexp 1](8,!.1\,"f) # f; 
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• (O,!Jl,'f') f= vexp 1 < vexp 2 iffV[vexp1](0,9l,'f') < V[vexp 2 ](0,9l,'f'), 

V[vexp 1](0,9l,'f') I{, and V[vexp2D(0,9l,'f') If; 

• (O,!Jl,'f') f= texp 1 = texp2 iff 

T[texp 1](0, !R, "Y) = T[texp2 D(O, !R, "Y) and T[texp 1D(O, !R, "Y) I f; 

• ( 0, !R, "Y) f= ¢1 1\ ¢2 iff ( 0, !R, "Y) f= ¢1 and ( 0, !R, "Y) f= ¢2; 

• ( 0, !R, "Y) f= -.¢ iff not ( 0, !R, "Y) f= ¢; 

• ( 0, !R, "Y) f= 3i · ¢ iff there exists an integer j for which it is the case that 
(0, !R, ("Y: i ...... j)) F= ¢; 

• ( 0, !R, "Y) f= 3t · ¢ iff there exists an instant 7 such that it is the case that 
(0, !R, ("Y: t ...... 7)) F= ¢; 

• (0, !R, "Y) f= 3v ·¢iff there is a value JL such that (0, !R, ("Y : v .._.. JL)) f= ¢; 

• ( 0, !R, "Y) f= 3s · ¢ iff there exists a trace 0 such that ( 0, !R, ("Y : s .._.. B)) f= ¢; 

• ( 0, !R, "Y) f= 3N · ¢ iff there exists some refusal set ~ for which it is the 
case that (O,!R, ("Y : N .._.. ~)) f= ¢ . 0 
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Proofs from Chapter 5 

F .1 Proof of the soundness theorem 

F .1.1 Soundness of the consequence and conjunction rules 

Trivial. 

F .1.2 Soundness of the invariance rule 

If (8, 91) E O[FP~ then, by definition, Bj chan(FP) =Band 91j chan(FP) = 91. 
Thus, cset n chan(FP) = 0 implies Bj cset = () and 91j cset = 0. 

F .1.3 Soundness of the parallel composition rule 

Assume 

(F.l) 

Consider any f. Let (B, 91) E O[FP1IIFP2]. By the definition of the semantics 
there exist, fori= 1, 2, 91i such that 

(F.2) 

and 

91 = 911 u 912. 

By the definition of the semantics,~\ chan(FPi) = 0. Hence, 

(F.3) 

Let, for fresh N1 and N2, ;:y = ('y: (N1,N2) t-+ (~1,~2)). By (F.3), we obtain 
(8, 91, 9) I= R = N1 j chan(FPI) U N2 j chan(FP2), or 
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(0, ~, "Y) f= 3Nt, N2 · R = Nt Tchan(FPI) u N2 Tchan(FP2). (F.4) 

By (F.l) and (F.2), we have, for all 1', (OTchan(FPi),~,"Y') f= ¢i, i = 1,2. 
As a result, (OTchan(FPi), ~, ::Y) f= ¢i· Observe that RF[Ni](O, ~, ::Y) = ~ 
and that T[hTchan(FPi)](O,~,::Y) = OTchan(FPi) . Consequently, we have 
(T[hTchan(FPi)](O,~,::Y), RF[Ni](O,~,::Y), ::Y) f= ¢i· Then, by substitution 
lemma 5.29(b) and (d), we obtain (O,~,::Y) f= ¢i[ (hTchan(FPi))/h, Ni/R ], 
from which we conclude 

(O,~,"Y) f= 3Nt,N2 · ¢i[ (hTchan(FPi))/h, Ni/R ]. (F.5) 

By (F.4) and (F.5) we conclude that parallel composition rule 5.39 is sound. 

F .1.4 Soundness of the hiding rule 

Assume that 

f= FP sat ASAP(R, cset) --+ ¢(h \ cset, R\ cset). (F.6) 

Consider any "Y· Let (0,~) E O[FP\cset]. Then, by the definition of the 
semantics there exists a 

(0, §l) E O[FP] (F.7) 

for which 

ASAP(§t, cset) (F.8) 

such that 

0 = 0\ cset (F.9) 

and 

~ = 6l\cset. (F.lO) 

By (F.7) & (F.6), for all "Y, (0,6l,"Y) f= ASAP(R,cset)--+ ¢(h\cset,R\cset). 
Then, by (F.8), (0,6l,"Y) f= ¢(h\cset,R\cset) . By substitution lemma 5.29(b) 
and (d), we obtain (O\cset,6l\cset,"Y) f= ¢. Hence, by (F.9) and (F.lO), 
( 0, ~, "Y) f= ¢, from which we conclude that hiding rule 5.40 is sound. 

F.1.5 Soundness of the failure hypothesis introduction 
rule 

Assume that 

f= FP sat¢. (F.ll) 
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Consider any -y . Let (0,9t) E O[FPlx]. By the definition of the semantics, 
there exists a (00 ,9to) E O[FP], such that, for all-y, 

{F.12) 

Let, forfresh sand N , 1 = (-y : (s, N) 1-+ (00 , 9to)). Since (00 , 9to) E O[FP], we 
know, by (F.ll) , that , for all-y, (00 ,9tQ,-y) f= ¢. Consequently, (00 ,9to,9) f= ¢. 
As, for all if and~. T[s](O, ~. 1) = Oo and 'RF[N]{O, ~. 9) = 9to , we conclude 
(T[s](O, 9t, 1), 'RF[N](O, 9t, 1), 1) f= ¢. Hence, by substitution lemma 5.29(b) 
and (d), 

(0,9t,1) f= ¢[ slh, NIR ]. (F.13} 

By (F.12), (Oo, 0, 9tQ, 9t, 1) f= X or (T[s](O, 9t, 1), 0, 'RF[N](O, 9t, 1), 9t, 1) f= X· 
By substitution lemma 5.29(a) and (c), (Oo,0,9tQ ,9t,1) f= x[slhold, NIRold]· 
Since hold and Rold obviously do not appear in x[s I hold , N I Rold] we may 
conclude that 

(0,9t,1) f= x[slhold, NIRold] · (F.l4} 

By (F.l3) and (F.14), (0,9t,1) f= ¢[ slh , NIR] 1\ x[ ·slhold , NIRold ], from 
which we conclude (0,9t,-y) f= 3s,N · ¢[ slh, NIR] 1\ x[ slhold, NIRold ]. 
Hence, failure hypothesis introduction rule 5.42 is sound. 

F.2 Proof of the preciseness preservation 
lemma 

By induction on the structure of FP. (Base Step) By assumption, the lemma 
holds for P . (Induction Step) Assume the lemma holds for FP : 

a) Assume I- FP 1 sat ¢1 and I- FP2 sat ¢2, with <P1 and <P2 precise for FP1 
and FP2 , respectively. By applying parallel composition rule 5.39, we 
obtain 

I- FP1 II FP2 sat 3 N1, N2 · (F.15) 
R = N1fchan(FPI) U N2fchan(FP2) 

1\ <P1 (h l chan(FPI), N1) 
1\ <P2(hfchan(FP2),N2). 

We show that the above specification is precise for FP1 II FP2. 

i) By (F.l5) and soundness, we obtain 
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f= FP1 II FP2 sat 3N1, N2 ° R = N1l chan(FPI) U N2l chan(FP2) 
1\ </>1 (h l chan(FPI), NI) 
1\ </>2(h l chan(FP2), N2)o 

ii) Let 

chan(B) ~ chan(FP1IIFP2), (Fol6) 

and 

(Fol7) 

Assume, for some "Y, 

(O,!R,"'f) f= 3N1,N2 ° R = N1lchan(FP1) U N2lchan(FP2) 
1\ <l>1(hfchan(FPI),NI) 
1\ </>2(h l chan(FP2), N2)o 

In other words, there exist some !R1 and some !R2 such that, using 
9 = ("Y: (N1,N2) f-+ (!R1,!R2)), 

(8, !R, 9) f= R = N1l chan(FP1) U N2l chan(FP2) (Fol8) 
1\ </>1(hfchan(FPI),NI) 
1\ </>2(h l chan(FP2), N2)o 

Then, by substitution lemma 5o29(b) and (d), 

or, since N1 and N2 do not occur free in </>1, 

By the preciseness of </>1 for FP1, 

(Of chan(FPI), !R1, "f) f= </>1 [h l chan(FP1 )/ h, Rl chan(FPI)/ R)o 

By applying substitution lemma 5o29(b) and (d), and using the fact 
that (Bl chan(FPI))l chan(FPI) =Of chan(FPI), we obtain 

(Ofchan(FPI),!R1fchan(FPI),"'f) f= </>10 (Fol9) 

Trivially, 
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chan(Ol chan(FPl)) ~ chan(FPl), (F.20) 

and 

chan(9l1fchan(FP1)) ~ chan(FPI). (F.21) 

By (F.20), (F.21), and (F.l9), the preciseness of 4>1 for FP1 leads to 

(Olchan(FP1),9l1lchan(FP1)) E O[FP1l (F.22) 

Similarly, 

(Ol chan(FP2), 9l2l chan(FP2)) E O[FP2D· (F.23) 

By (F.l6), trivially, 

(F.24) 

By (F.l8), 

9l = (9ldchan(FP1)) U (9t2lchan(FP2)). (F.25) 

By (F.22) - (F.25), (0, 9l) E O[FP1IIFP2l 

iii) Consider any 0, 9l, and 1 such that 

(0, 9l, 1) p 3N1, N2 · R = N1l chan(FPl) U N2l chan(FP2) 
1\ 4>1(hfchan(FPl),Nl) 
1\ 4>2(h l chan(FP2), N2), 

which is, obviously, equivalent to 

(0,9l,l) p 3Nl,N2 · Rlchan(FP11iFP2) = Ndchan(FP1) 

b) Assume 

U N2l chan(FP2) 
1\ 4>1 ((h l chan(FP1IIFP2))l chan(FPI), NI) 
1\ 4>2((h l chan(FPdiFP2))l chan(FP2), N2). 

I- FP sat 4>, (F.26) 

with 4> precise for FP . Define ¢(h,R) = 3s,N · 4>(s,N) 
1\ ASAP(N, cset) 
1\ h = s\ cset 
1\ R = N\ cset. 

We show that I- FP\ cset sat¢, and, furthermore, that ¢is precise for 
FP\ cset. The following lemma is trivial . 
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Lemma F.l f= ¢ -.. (ASAP(R, cset) -.. (/;(h \ cset, R\ cset)) 0 

By Lemma F.l and relative completeness axiom 5.45, 

I-¢ -.. (ASAP(R,cset) -.. (/;(h\cset,R\cset)). 

Hence, by (F.26) and consequence rule 5.36, 

I- FP sat ASAP(R, cset) -.. (/;(h \ cset, R\ cset). 

Then, by hiding rule 5.40, 

I- FP\ cset sat'¢. 

It remains to be shown that '¢is precise for FP \ cset. 

i) By (F.27) and soundness f= FP \ cset sat'¢. 

ii) Let 

chan(B) ~ chan(FP\ cset), 

!Rfchan(FP\cset) = !R, 

(F.27) 

(F.28) 

(F.29) 

and assume that, for some 1, ( {}, !R, 1) f= '¢. Then, there exist 0 and 
~such that 

(B,!R,(r : (s,N) t--+ (0,~))) f= ¢(s,N) (F.30) 
1\ ASAP(N, cset) 
1\ h = s \ cset 
1\ R = N\ cset. 

Then, 

ASAP(~, cset), (F.31) 

{} = 0\ cset, (F.32) 

and 

!R = ~\ cset . (F.33) 

By (F.30), 

(F.34) 
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By (F.28), chan(8) ~ chan(FP\ cset). Consequently, by (F.32), 

chan(B) ~ chan(FP). {F.35) 

By (F.29) and (F.33), and the fact that cset ~ chan(FP), we obtain 
that 

!Rt chan(FP) = !R. {F.36) 

By (F.35), (F.36), and {F.34), and the preciseness of¢ for FP, we 
have that 

(B,!R) E O[FP] . (F.37) 

By {F.37) and (F.31)- (F.33), (8,~) E O[FP\cset]. 

iii) Assume (8,~,')') f= ¢ . Then, there exist fi and §t such that 

(8,~,(1': (s,N) .._.. (B,!R))) f= ¢(s,N) (F.38) 
A ASAP(N, cset) 
1\ h = s \ cset 
1\ R = N\ cset 

By the preciseness of¢ for FP, 

¢(s,N) --. ¢(sfchan(FP),Nfchan(FP)). (F.39) 

It is obvious that 

ASAP(N, cset) --. ASAP(N\ chan(FP), cset). {F.40) 

Note that 

h = s\cset --. hfchan(FP\cset) = (sfchan(FP))\cset. {F.41) 

By (F.38), R = N\ cset, that is, 

Rl chan(FP\ cset) = (Nf chan(FP)) \ cset. {F.42) 

By {F.38) - (F.42), we obtain, using 9 ={I': (s, N) .._.. (B, !R)), 

{8,~,9) f= ¢(sfchan(FP),Nfchan(FP)) 
A ASAP(Nl chan(FP), cset) 
1\ hfchan(FP\cset) = (sfchan(FP))\cset 
1\ Rfchan(FP\cset) = (Nfchan(FP))\cset, 

from which we may conclude 

(0, ~.I') f= ¢(h T chan(FP \ cset), RT chan(FP\ cset)). 
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c) Assume 

I- FP sat</>, 

with 4> precise for FP. Define'¢= </>lx, that is 

'¢ ::: 3s,N · </>[ s/h, N/R] A X[ s/hotd, N/Rotd ]. 

Then, by (F.43) and failure hypothesis introduction rule 5.42, 

I- FPlx sat¢. 

We show that '¢ is precise for F P l X. 

i) By (F.44) and soundness, we have I= FPlx sat'¢. 

ii) Let 

chan(B) ~ chan(FPlx), 

9\jchan(FPlx) = 9\, 

(F.43) 

(F.44) 

(F.45) 

(F.46) 

and assume, for some "', ( (}, 9\, "') I= '¢. Hence, there exist 0 and !Jt 
such that 

(B, 9\, ("!: (s, N) f-+ (0, !Jt))) I= </>[ sjh, N/ R] (F.47) 
A X[ s/hotd,N/Rotd ]. 

By substitution lemma 5.29(b) and (d) , 

(0, !Jt, ("! : (s, N) f-+ (0, !Jt))) I=</>, 

and thus, since s and N do not occur free in </>, (0, !Jt, "') I= ¢. Since 
4> is precise for FP, we may conclude that 

(0, !Jt, "!) I= </>[(hi chan(FP))/ h, (Ri chan(FP))/ R]. 

Hence, by substitution lemma 5.29(b) and (d), 

(Ojchan(FP) ,!Jtjchan(FP),"f) I=</>. (F.48) 

Trivially, 

chan(Ojchan(FP)) ~ chan(FP), (F.49) 
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and 

chan(!Rl chan(FP)) ~ chan(FP) . (F.50) 

By results (F.49), (F.50), (F.48), and the fact that ¢ is precise for 
FP, we may conclude that 

(Olchan(FP),!Jtlchan(FP)) E O[FP]. (F.51) 

By (F.47) and correspondence lemma 5.28, for all Oo and 9lo 

(Oo,6,9lo,9l,(l': (s,N) f--t (O,!R))) F x[ sfhold,N/Rold ]. 

By substitution lemma 5.29(a) and (c), we obtain 

and thus, since s and N do not occur free in x, 

Since x is a failure hypothesis, we may conclude that 

(0, (}, !1\, 9\, I) F x[(hold l chan(FP))/hold, (Rold l chan(FP))/ Rold]· 

By substitution lemma 5.29(a) and (c) 

(Ol chan(FP), 6, !Rr chan(FP), 9\, 1) F= X· (F.52) 

By (F.51), (F.52), (F.49), and (F.50), (6,9\) E O[FPlx]. 

iii) Follows from the fact that, since¢ is precise for FP, 

¢---+ ¢[(hlchan(FP))/h,(Rlchan(FP))/R], 

the fact that, since x is a failure hypothesis, 

X---+ x[(hlchan(FP))/h,(Rlchan(FP))/R], 

and the fact that chan(FPlx) = chan(FP). 
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Definitions from Chapter 6 

Definition G.l (Observation channels of an assertion) For assertion cp, 
the set chan( cp) of channels that might affect the validity of cp is as defined in 
Definition E.1 with the extra clauses: 

• chan(1r) = chan(p) = 0; 

• chan(TI(tixp)) = chan(tixp); 

• chan((tixp 1 ,prxp, tixp2 )) = chan(tixp1 ) U chan(tixp2 ); 

• chan(K) = chan(O) = 0; 

• chan( { blxp}) = chan( blxp ); 

• chan(ohxp 1 U ohxp2 ) = chan(ohxp 1 ) U chan(ohxp2 ); 

• chan((tixp1 ,prxp; tixp2 )) = chan(tixp1 ) U chan(tixp2 ); 

• chan(L) = chan(Q) = 0; 

• chan( { quxp}) = chan( quxp ); 

• chan(rhxp 1 U rhxp2 ) = chan(rhxp 1 ) U chan(rhxp2 ). 0 

Definition G.2 (Meaning of assertions) The assertion cp is interpreted 
with respect to a 5-tuple (0,9t,D,O,-y). Trace 0 gives hits value, refusal set 9t 
gives R its value, D and 0 do so for 0, respectively Q, and environment -y 
interprets the logical variables of IVAR u VVAR u TVAR u RVAR u PRVAR U 
OVAR U QVAR. The value of an expression that already appears in Table 5.2 
is easily obtained from the corresponding definition in Section 5.4, e.g., the 
value of a time expression tixp in the trace 0, refusal 9t, occupation history D, 
request history 0 and an environment -y, follows from TI[tixpD(0,9t,D,O, -y) = 
TI[tixp](O, 9t, -y). 
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The value of a priority expression prxp in the trace (), refusal 9l, occupation 
history D, request history 0 and an environment -y, denoted PR[prxp](B, 9l, -y), 
is defined as yielding a value in N U { f }; the value of a block expression blxp 
in the trace B, refusal 9l, occupation history D, request history 0, and an 
environment -y, denoted by B[blxp](B,9l,-y), as yielding a value in (TIMEx 
1N x TIME) U { f}; the value of an occupation expression ohxp in the trace(), 
refusal 9l, occupation history D, request history 0, and an environment -y, 
denoted by oc [ ohxp] ( ()' 9l, "()' as yielding a value in ace u { f} j the value of a 
queue expression quxp in the trace(), refusal 9l, occupation history D, request 
history 0, and an environment -y, denoted by Q[quxp](B,9l,-y), as yielding a 
value in (TIME x 1N x TIME) U { f}, and the value of a request expression 
rhxp in the trace B, refusal 9l, occupation history D, request history 0, and an 
environment -y, notation RQ[rhxpD(B, 9l, -y), as yielding a value in REQ U { f }. 

• PR[p](B,9l,D,O,-y) = -y(p); 

• PR[IT(tixpD(B,9l,D,Q,-y) = IT(I[tixp](B,9l,D,Q,-y)); 

• B[(tixp1 ,prxp, tixp2 )](B,9l,D,Q,-y) = 

f if I[tixp1](8,9l,D,O,-y) = f, 
PR[prxp](B,9l,D,Q,-y) = f, or 
I[tixp2](B,9l,D,O,-y) = f, 

( I[tixp1](B,9l,D,O,-y), 
PR[prxp](B, 9l, D, 0, -y), 
I[tixp 1](8,9l,D,Q,-y) ) otherwise; 

• OC[K](B,9l,D,O,-y) = -y(K); 

• OC[O](B,9l,D,O,-y) = D; 

• OC[{blxp}](B,9l,D,Q,-y) = 

{ 
f if B[blxp](B,9l,D,Q,-y) = f, 
{B[blxp](B, 9l, D, 0, -y)} otherwise; 

• OC[ohxp 1 U ohxp2 ](0,9l,D,Q,-y) = 

{ 

f if OC[ohxp1](0,9l,D,Q,-y) =for 
OC[ohxp2 ](0,9l,D,Q,-y) = f, 

OC[ohxp1](0, Vl, D, .0, -y) 
U OC[ohxp2](0,9l,D,O,-y) otherwise; 
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• Q[(tixp1,prxp, tixp2)](0,9t,D,O,-y) = 

f if I[tixp 1](0,9t,D,O,-y) = f, 
PR[prxp](0,9t,D,O,-y) = f, or 
I[tixp2](0,9t,D,.Q,-y) = f, 

( I[tixp1](0,9t,D,O,-y), 
PR[prxp](O, 9t, D, 0, -y), 
I[tixp 1 ](0,9t,D,O,-y) ) otherwise; 

• RQ[L](0,9t,D,O,-y) = -y(L); 

• RQ[Q](0,9t,D,O,-y) = 0; 

• RQ[{quxp}](0,9t,D,O,-y) = 

{ 
f ifRQ[quxp](0,9t,D,O,-y) = f, 
{RQ[quxp](O, 9t, D, 0, -y)} otherwise; 

• RQ[rhxp 1 U rhxp2](0,9t,D,O,-y) = 

{ 

f if RQ[rhxp 1](0,9t,D,O,-y) =for 
RQ[rhxp 2](0,9t,D,O,-y) = f, 

RQ[rhxp1](0, 91, D, 0, -y) 
U RQ[rhxp2](0,9t,D,O,-y) otherwise; 
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Proofs from Chapter 6 

H.l Proof of the soundness theorem 

H.l.l Soundness of the consequence and conjunction rules 

Trivial. 

H.1.2 Soundness of the interleaving rule 

Assume 

f= FP1 sat <p1 , f= FP2 sat <p2 . (H.1) 

Consider any 'Y· Let (0, 9l, .0, .Q) E O[FPI// FP2l By the definition of the 
semantics there exist, fori = 1, 2, 9li, .Oi, and .Qi such that 

(Oichan(FPi),9li,.Oi,.Qi) E O[FPi], (H.2) 

NoConflict(.01, .02), (H.3) 

.0 = .01 u .02, (H.4) 

.Q = .01 u .02, (H.5) 

Respect ( .0, .Q) (H.6) 

and 

9l = 9l1 u 9l2. 

By the definition of the semantics, ~ \ chan(FPi) = 0. Hence, 
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(H.7) 

By (H.3) - (H.7), 

(8,9l,D, .Q,-y) F 3Kl,K2,Lt,L2,Nl,N2· (H.8) 
NoConftict(Kl, K2) 

1\ 0 = K1 U K2 
1\ Q = £1 U £2 
1\ Respect(O, Q) 
1\ R = N1l chan(FPI) U N2l chan(FP2). 

By (H.l) and (H.2), we obtain (8lchan(FPi),!R;,Di,.Qi,9) F 'Pi · Bysubstitu­
tionlemma6.20(b), (d), (f), (h), (8,9l,D,.0,9) F 'Pi(hlchan(FPi),Ni,Ki,Li): 

By (H.8) and (H.9) we conclude that interleaving rule 6.28 is sound. 

H.1.3 Soundness of the priority assignment rule 

Assume 

F FP sat cp(h, R, IncPr(1r, 0), IncPr(1r, Q)) . (H.lO) 

Consider any 1'· Let (8, 9l,D,.Q) E O[prio 1r (FP)l By the definition of the 
semantics there exist D and .Q such that 

(8,9l,D,D) E O[FP], (H.ll) 

D = IncPr(1r,D), (H.12) 

and 

.Q = IncPr(7r,D) . (H.l3) 

By (H.lO) and (H.ll), (8 , !Jl, D, .Q, -y) F cp(h, R, IncPr(1r, 0), IncPr(1r, Q)), i.e, 
(8,9l,IncPr(7r,D),IncPr(7r ,.Q) , -y) F cp(h,R,O,Q), by substitution lemma 
6.20(f) and (h) . By (H.12) and (H.13), (8, !Jl, D, .Q, -y) F cp(h, R, 0 , Q). Hence, 
priority assignment rule 6.29 is sound. 
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H.1.4 Soundness of the failure hypothesis introduction 
rule 

Assume that 

f= FP sat cp. (H.14) 

Consider any I · Let (0,9l,D,.Q) E O[FPix]. By the definition of the seman­
tics, there exists a(00 ,9tQ ,D0 ,.00 ) E O[FP], such that, for all 1, 

(H.15) 

Let, for fresh s, K, L and N, :Y = (r : (s,K,L , N) ~---+ (Oo,Do,.Oo,9lo)). 
Since (00 ,9lQ,D0 ,00 ) E O[FP], we know, because of (H.14), that, for all 'Y, 
( Oo, 9lo, Do, .Oo, 1) f= cp. Consequently, ( Oo, 9lo, Do, Do, :Y) f= cp, that is, 

( T[s](0,9l,D,O,:Y), 
RF[N](0,9l,D,.O,:Y), 
OC[K](O, 9l, D, .0, :Y) , 
RQ[L](0,9l,D,.Q,:Y) , 
:y ) F= cp. 

Hence, by substitution lemma 6.20(b) , (d), (f) and (h), 

(0,9l,D,.O,:Y) f= cp(s,N,K,L). 

By (H.15), (00 ,0,9lQ,9l,D0 ,D,.Qo,.O,:Y) f= x, that is, 

( T[s](0,9l,D,.O,:Y), 
0, 
RF[N](0,9l,D,.Q,:Y), 
9l, 
OC[K](0,9l,D,.O,:Y), 
D, 
'RQ[L](0,9l,D,.Q,:Y), 
.0, 
:y ) F X· 

By substitution lemma 6.20(a), (c), (e) and (g), 

(Oo, 0, 9tQ, 9l, Do, D, .Oo, .0, :Y) f= x(s, h, N , R, K, 0, L, Q). 

(H.16) 

Since hold and Rold obviously do not appear in x(s, h, N, R, K, 0, L, Q), corre­
spondence lemma 6.19 leads to 

(0,9l,D,.O,:Y) f= x(s,h,N,R,K,O,L,Q). (H.17) 

By (H.l6) and (H.17), we conlude 
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(6,9\,.0,0, 7) I= 3s, N, K, L · c.p(s, N, K, L) 1\ 1/J(s, h, N, R, K, 0, L, Q). 

Hence, failure hypothesis introduction rule 6.30 is sound. 

H.1.5 Soundness of the processor closure rule 

Assume that 

I= FP sat (NoStrike(O, Q) 1\ ASAP(R, io(FP))) (H.18) 
~ ¢(h \ io(FP), R\ io(FP)). 

Consider any T Let (0,9\) E 0[« FP »]. Then, by the definition of the 
semantics there exists a 

(0, !it, D, 0) E O[FP] (H.19) 

with 

NoStrike(D, 0), (H.20) 

ASAP(!it, io(FP)), (H.21) 

0 = 0\ io(FP) (H.22) 

and 

9l =!it\ io(FP). (H.23) 

By (H.l9) and {H.l8), for all"'(, 

(O,!it,.O,.Q,"'f) I= (NoStrike(O,Q) 1\ ASAP(R,io(FP))) 
~ <P(h \ io(FP), R\ io(FP)). 

Then, by {H.20) and {H.21), (O,!it,D,O,/') I= ¢(h\io(FP),R\io(FP)) . By 
substitution lemma 6.20{b) and {d), (0\ io(FP), !it\ io(FP), .0, .6, I') I= <P(h, R) . 
Hence, by {H.22) and (H.23), (0,9\,D,O,/') I= <P(h,R). Since 0 and Q do not 
appear in ¢(h, R), we conclude (0, 9\, I') I= <P(h, R). Hence, processor closure 
rule 6.32 is sound. 
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By induction on the structure of FP. (Base Step) By assumption, the lemma 
holds for P . (Induction Step) Assume the lemma holds for FP: 

a) Assume 1- FP1 sat cp1 and 1- FP2 sat cp2, with cp1 and t.p2 precise for FP1 
and FP2 , respectively. By applying interleaving rule 6.28, we obtain 

1- FPI/jFP2 sat 3Kl,K2,Ll,L2,Nl,N2· 
NoConftict(KI, K2) 

1\ 0 = K1 U K2 
1\ Q = L1 U L2 
1\ Respect(O, Q) 
1\ R = N1 Tchan(FPI) u N2Tchan(FP2) 
1\ cp1 (h l chan(FPI), N1, K1 , LI) 
1\ cp2(h l chan(FP2), N2, K2, L2). 

We show that the above specification is precise for FPI// FP2. 

i) By (H.24) and soundness, we obtain 

~ FPI//FP2 sat 3Kl,K2,Ll,L2,N1,N2· 
NoConftict(Kl, K2) 

1\ 0 = K1 U K2 
1\ Q = L1 u L2 
1\ Respect(O, Q) 

(H.24) 

1\ R = N1 Tchan(FP1) u N2Tchan(FP2) 
1\ cp1 (h l chan(FPI), N1, K1, LI) 
1\ cp2(h l chan(FP2), N2, K2, L2). 

ii) Let 

chan(O) <;;; chan(FP1IIFP2) (H.25) 

and 

(H.26) 

Assume, for some "(, 
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(O,!>l,D,.O,')') F 3Kl,K2,Ll,L2,Nl,N2' 
NoConjlict(K1,K2) 

/1.0 = K1 UK2 
/1. Q = £1 U £2 
/1. Respect(O, Q) 
/1. R = N1 j chan(FPl) U N2 j chan(FP2) 
/1. cpl(hjchan(FPl),Nl,Kl,Ll) 
/1. cp2(hj chan(FP2), N2, K2, £2). 

In other words, there exist D1, D2, .01, .02, !>l1 and !>l2 such that, for 
9 = ('Y: (Kl,K2,L1,L2,Nl,N2) ~---+ (Dl,D2,.Ql,.Q2,!>ll,!>l2)), 

(O,!>l,D,.0,9) F NoConjlict(K1,K2) (H.27) 

Consequently, 

/1.0 = K1 U K2 
/1. Q = £1 u £2 
/1. Respect(O, Q) 
/1. R = N1 j chan(FP1) U N2 j chan(FP2) 
/1. 1P1 (h j chan(FPl), N1, K1, Ll) 
/1. cp2(h j chan(FP2), N2, K2 , £2) . 

Respect ( 1), .Q), 

!>l = !>l1 j chan(FPl) U !>l2 j chan(FP2) 

and, by substitution lemma 6.20(b), (d) , (f) and (h), 

By the preciseness of tp1 for FP1, 

(H.28) 

{H.29) 

(H.30) 

(H.31) 

(H.32) 
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(Ol chan(FPt), !R1 , D1, 01, 'Y) 
f= 'Pl (h l chan(FP1 ), Rl chan(FP1 ), 0, Q) . 

By applying substitution lemma 6.20(b) and (d), and using the fact 
that (Olchan(FPt))lchan(FPt) = Olchan(FPt), we obtain 

(OTchan(FPl),!Rllchan(FPl),Dl,Ol,'Y) F= 'Pl · (H.33) 

'Ifivially, 

chan(Olchan(FPl)) ~ chan(FPt) (H.34) 

and 

chan(!R1lchan(FPt)) ~ chan(FP1) . (H.35) 

By (H.34), (H.35), and (H.33), the preciseness of 'Pl for FP1 leads to 

(Ol chan(FPt),!Rllchan(FPt) ,Dl ,Ot) E O[FP1D · (H.36) 

Similarly, 

(H.37) 

Hence, by (H.28) - (H.32), (H.36) and (H.37), we conclude that 
(O,!R,D,O) E O[FP1//FP2l 

iii) Consider any 0, !R, D, 0 and 'Y such that 

(O,!R,D,O,'Y) f= 3Kl,K2,Ll,L2,Nl,N2· 
NoConftict(Kl, K2) 

A 0 = K1 u K2 
A Q = £1 U £2 
1\ Respect(O, Q) 
A R = N1l chan(FPt) U N2l chan(FP2) 
A 'Pl (h l chan(FPt), N1, K1, Ll) 
A cp2(h l chan(FP2), N2, K2, £2) . 

Since chan(FP,) ~ chan(FPd/ FP2) , i = 1, 2, we may conclude 
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(0, !Jl, D, 0, 1) 
F 3Kl,K2,Lt,L2,Nl,N2· 

NoConfiict(Kl, K2) 
1\ 0 = K1 U K2 
1\ Q = L1 U L2 
1\ Respect(O, Q) 

H Proofs from Chapter 6 

1\ Rj chan(FPI// FP2) = N1 i chan(FPI) 
U N2 i chan(FP2) 

1\ 1P1 ((hi chan(FPI// FP2))i chan(FPI), N1, K1, L1) 
1\ cp2((hj chan(FPI// FP2))i chan(FP2), N2, K2, L2). 

Hence, f= cp--+ cp(hjchan(FPI//FP2),Rjchan(FPI//FP2),0,Q). 

b) Assume 

1- FP sat cp, (H.38) 

with cp precise for FP . Define cp(h, R, 0, Q) = 3K, L · cp(h, R, K, L) 
1\ 0 = IncPr(7r, K) 
1\ Q = IncPr(7r, L). 

The following lemma is trivial. 

Lemma H.l f= cp(h, R, 0, Q) --+ cp(h, R, IncPr(7r, 0), IncPr(7r, Q)) 0 

By lemma H.l and relative completeness axiom 6.35, 

1- cp(h, R, 0, Q) --+ cp(h, R, IncPr(7r, 0), IncPr(7r , Q)) . 

Hence, by (H.38) and consequence rule 6.26, 

1- FP sat cp(h, R,IncPr(7r, O),IncPr(7r, Q)). 

Then, by priority assignment rule 6.29, 

1- prio 71" (FP) sat cp. (H.39) 

It remains to be shown that cp is precise for prio 71" (FP). 

i) By (H.39) and soundness, we obtain 

f= prio 7r (FP) sat cp. 
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ii) Let 

chan(B) ~ chan(FP) (H.40) 

and 

91f chan(FP) = 91. (H.41) 

Assume, for some 'Y, 

(8,91,D,0,"f) ~ rp. 

Then, there exist D and .6 such that 

(8,91,D,O,(r: (K,L) ~-t (D,O))) ~ tp(h,R,K,L) (H.42) 
II. 0 = lncPr(1r, K) 
1\ Q = IncPr(1r, L) 

Consequently, by substitution lemma 6.20(f) and (h), we obtain that 
(8,91,D,O,(r: (K,L) ~-t (D,O))) ~ tp. Sine~ K and L do not occur 
in tp, 

(B,91,D,.6,"/) ~ tp. (H.43) 

By (H.40), (H.41), and (H.43), the preciseness of tp for FP yields 

(8,91,D,O) E O[FPD. 

By (H.42), 

D = IncPr(1r,D) 

and 

0 = IncPr(1r,O). 

Hence, by (H.44)- (H.46), (8,91,0,0) E O[prio 1r (FP)]. 

iii) Consider any 8, 91, D, 0 and 'Y such that 

(8,91,D,0,'Y) ~ 3K,L · tp(h,R,K,L) 

By the preciseness of I{J for FP, 

II. 0 = lncPr(1r,K) 
1\ Q = IncPr(1r,L) 

(H.44) 

(H.45) 

(H.46) 
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(0,9\,D,O,-y) f= 3K,L · cp(hjchan(FP),Rjchan(FP),K,L) 
/1. 0 = IncPr(1r, K) 
/1. Q = IncPr(1r,L) 

Since chan(prio 1r (FP)) = chan(FP), 

(0,9\,D,O,-y) 
f= 3K,L · cp(hjchan(prio 1r (FP)),Rjchan(prio 1r (FP)),K,L) 

/1. 0 = IncPr(1r, K) 
/1. Q = IncPr(1r, L) 

Hence, f= cp--+ cp(h j chan(prio 1r (FP)), Rj chan(prio 1r (FP)), 0, Q). 

c) Assume 

I- FP sat cp, 

with cp precise for FP. Define cp = cplx, that is 

cp = 3s,K,L,N·cp(s,N,K,L) /1. x(s,h,N,R,K,O,L,Q) 

Then, by (H.47) and failure hypothesis introduction rule 6.30, 

I- FPlx sat cp. 

We show that cp is precise for F PIx. 

i) By (H.48) and soundness, we have f= FP l x sat cp. 
ii) Let 

chan(O) ~ chan(FPix), 

9\j chan(FPix) = 9\, 

(H.47) 

(H.48) 

(H.49) 

(H.50) 

and assume, for some -y, ( 0, 9\, D, 0, -y) f= cp. Hence, there exist 0, 6t, 
D and D such that, for 9 = (1': (s,K,L,N) ~--+ (O,D,D,6t)), 

(0,9\,D,O,::Y) f= cp(s, N, K, L) /1. x(s, h, N, R, K, 0, L, Q) (H.51) 

By substitution lemma 6.20(b), (d), (f) and (h), 
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-- - --(8,9\,D,.Q,-y) f= <p. 

Since s, K, L and N do not occur free in <p, (0,6\,.0,.Q,-y) f= <p. 
Because <p is precise for FP, we may conclude that 

(0, 6\, .0, .0, -y) f= <p(h l chan(FP), Rl chan(FP), 0, Q). 

Hence, by substitution lemma 6.20(b) and (d), 

(Ofchan(FP),6\fchan(FP),D,Q,-y) F <p. (H.52) 

Trivially, 

chan(Ol chan(FP)) ~ chan(FP) (H.53) 

and 

chan(6\fchan(FP)) ~ chan(FP). (H.54) 

By (H.53), (H.54), (H.52), and the fact that <pis precise for FP, we 
may conclude that 

(Ofchan(FP),6\fchan(FP),D,Q) E O[FP]. (H.55) 

By (H.51) and correspondence lemma 6.19, 

(Oo,0,9\o,9\,Do,D,.Qo,.O,::Y) F x(s,h,N,R,K,O,L,Q), 

for any 00 , 9\o, Do and .00 . By substitution lemma 6.20(a), (c), (e) 
and (g), we obtain 

(o,o,!R,9t,D,D,.6,.o,7) F x, 

and thus, since s, K, Land N do not occur free in x, 

(0,0,6\,9\,D,D,.O,.o,-y) F X· 

Since x is a failure hypothesis, we may conclude that 

(0, 0, 6\, 9\, Do, D, .Oo, .0, -y) 
F x(hold l chan(FP), h, Rold l chan(FP), R, Oold, 0, Qold, Q). 

By substitution lemma 6.20(a) and (c) 

(Ofchan(FP),8,6\fchan(FP),9\,Do,D,.Oo,.O,-y) F X· (H.56) 

By (H.55), (H.56), (H.53) and (H.54), (0,9\,D,.Q) E O[FPlx]. 
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iii) Follows from the fact that, since cp is precise for FP, 

cp-+ cp(hjchan(FP),Rjchan(FP),O,Q), 

the fact that, since x is a failure hypothesis, 

X -+ x(hold, h j chan(FP), Rold, Rj chan(FP), Oold, 0, Qold, Q), 

and the fact that chan(FPlx) = chan(FP). 

d) Assume 

f-- FP sat cp, (H.57) 

withcppreciseforFP. Definecp(h,R) = 3s,K,L,N · cp(s,N,K,L) 
1\ NoStrike(K, L) 
1\ ASAP(N, io(FP)) 
1\ h = s\io(FP) 
1\ R = N\io(FP) 

The following lemma is trivial. 

Lemma H.2 f= cp(h,R,O,Q) -+ (NoStrike(O,Q) 1\ ASAP(R,io(FP)) 
-+ cp(h \ io(FP), R\ io(FP))) 0 

By lemma H.2 and relative completeness axiom 6.35, 

f-- cp(h, R, 0 , Q) -+ (NoStrike(O , Q) 1\ ASAP(R, io(FP)) 
-+ cp(h \ io(FP), R\ io(FP))). 

Hence, by (H.57) and consequence rule 6.26, 

f-- FP sat NoStrike(O,Q) 1\ ASAP(R, io(FP)) 
-+ ¢(h\io(FP),R\io(FP)) . 

Then, by priority assignment rule 6.29, 

f-- « FP :» sat cp. 

It remains to be shown that cp is precise for « FP :». 

i) By (H.58) and soundness, we have f= « FP :» sat cp. 

(H.58) 
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ii) Let 

chan(O) ~ chan( <€;:. FP » ), (H.59) 

chan(~) ~ chan( <€;:. FP » ), (H.60) 

and assume, for some "' , ( 0, ~. "') f= ij5. Since 0 and Q do not occur 
in ij5, for all D and .0, (O,~,D,.Q,"f) f= ij5. Hence, there exist 0, 9\, iS 
and .6 such that, for 9 = ("': (s,K,L,N) ~---+ (O,iS,.Q,9\)), 

(O,~,D,.Q,9) f= cp(s,N,K,L) (H.61) 
1\ NoStrike(K,L) 
1\ ASAP(N, io(FP)) 
1\ h = s \ io(FP) 
1\ R = N\ io(FP) . 

By substitution lemma 6.20(b), (d), (f) and (h), 

By (H.61), 

0 = 0\ io(FP). 

Hence, chan(O) = chan(O) U io(FP), that is, by (H.59) 

chan(O) ~ chan(FP) . 

By (H.61), 

~ = 9\\ io(FP). 

Hence, chan(9\) = chan(~) U io(FP), that is, by (H.60) 

chan(9\) ~ chan(FP). 

(H.62) 

(H.63) 

(H.64) 

(H.65) 

(H.66) 

By (H.64), (H.66), and (H.62), the preciseness of cp for FP yields 

(0,9\,iS,O) E O[FP] . (H.67) 

By (H.61), 

NoStrike(D, D) (H.68) 

and 
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ASAP(~, io(FP)). (H.69) 

By (H.67) - (H.69), (H.63) and (H.65), 

(9, !>t) E 0[« FP »]. 

iii) Assume (9, !>t, -y) f= cp. Then, there exist 0, D, .Q and~ such that, for 
::Y = ('Y: (s,K,L,N) ~ (O,D,O,~)), 

(9, !>t, ::Y) f= r.p(s, N, K, L) (H.70) 
1\ ASAP(N, io(FP)) 
1\ h = s\io(FP) 
1\ R = N\ io(FP). 

By the preciseness of r.p for FP, 

r.p(s,N,K,L) ~ r.p(sTchan(FP),NTchan(FP),K,L). (H.71) 

It is obvious that 

ASAP(N, io(FP)) ~ ASAP(N\ chan(FP), io(FP)). (H.72) 

Note that 

h = s\io(FP) ~ hTchan(«FP») = (sTchan(FP))\io(FP). (H.73) 

By (H.70), R = N\io(FP), that is, 

RTchan( « FP ») =(NT chan(FP)) \ io(FP). (H.74) 

By (H.70) - (H.74), we obtain 

(9,!>t,::Y) f= </>(sTchan(FP),NTchan,(FP)) 
1\ ASAP(NTchan(FP), io(FP)) 
1\ hTchan(« FP ») = (sTchan(FP))\io(FP) 
1\ RT chan(« FP ») = (NTchan(FP)) \ io(FP), 

from which we may conclude 

(9,!>t,-y) f= cp(hTchan(« FP »),RTchan(« FP »)). 
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end of proof 
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min 

max 
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the failure hypothesis introduction operator 
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input 
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the processor closure operator 
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the assertion ¢ is valid 
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the correctness formula P sat ¢ is valid 

the assertion ¢ is derivable 

the correctness formula P sat ¢ is derivable 
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if, and only if 

minimum 

maximum 
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Samenvatting 

Het is niet eenvoudig om eigenschappen te bewijzen van gedistribueerde sys­
temen bestaande uit componenten die mogelijkerwijs defect raken. Immers, 
dergelijke bewijzen moeten er rekening mee houden dat een onbetrouwbare 
component op ieder willekeurig moment mankementen kan vertonen. Nu gedis­
tribueerde systemen steeds meer gebruikt worden voor kritieke toepassingen, 
zoals het besturen van vliegtuigen en het bewaken van paW\nten, worden de 
betrouwbaarheidseisen echter zwaarder en zwaarder. 
Een component die niet aan zijn specificatie voldoet, dat wil zeggen faalt, 
veroorzaakt fouten. Een systeem wordt foutentolerant genoemd als het aan 
zijn specificatie voldoet ook al falen er componenten: Omdat het falen van 
willekeurig veel componenten in het algemeen niet getolereerd kan worden, 
geeft een fouthypothese aan van welke componenten het falen te tolereren is. 
In dit proefschrift formuleren we een bewijsmethode voor foutentolererende 
gedistribueerde systemen. Deze methode is compositioneel in de zin dat de 
specificatie van een samengesteld systeem afgeleid kan worden uit de specifi­
caties van de componenten, zonder dat daarbij de interne structuur van die 
componenten bekend hoeft te zijn. Een dergelijke methode maakt het mogelijk 
dat delen van een systeem afzonderlijk ontworpen worden. 
We modelleren een gedistribueerd systeem als een netwerk van processen. Pro­
cessen hebben geen gemeenschappelijke variabelen maar communiceren via 
kanalen. Voor het formaliseren van foutentolerantie abstraheren we van de 
interne toestand van processen en concentreren ons op het van buitenaf te ob­
serveren communicatie gedrag. Om te specificeren dat een proces P aan een 
eigenschap 4> voldoet gebruiken we formules van de vorm P sat ¢. 
In het geval van foutentolerantie worden drie soorten gedrag onderscheiden: 
normaal, exceptioneel en catastrofaal. Normaal gedrag is het gedrag dat vol­
doet aan de specificatie. Een faalhypothese, die stipuleert hoe fouten het 
gedrag be'invloeden, verdeelt het abnormale gedrag in exceptioneel en catas­
trofaal gedrag. In tegenstelling tot catastrofaal gedrag vertoont exceptioneel 
gedrag afwijkingen die getolereerd dienen te worden. Het normale en het ex­
ceptionele gedrag vormen het acceptabele gedrag. 
In dit proefschrift formaliseren we de faalhypothese van een proces als een 
relatie tussen zijn normale en zijn acceptabele gedrag. We introduceren de 
constructie Plx (lees "Ponder x") om aan te geven dat we voor het proces P 
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de faalhypothese X beschouwen. Deze constructie stelt ons in staat onbetrouw­
bare processen te specificeren. Op deze manier kunnen we oak onbetrouwbare 
netwerken specificeren en zodoende fouthypotheses formaliseren. Onze aanpak 
is geschikt voor het bestuderen van willekeurige foutentolerantietechnieken om­
dat deze het mogelijk maakt modulair te redeneren over acceptabel gedrag: het 
abnormale gedrag van proces P dat acceptabel is voor wat betreft de faalhy­
pothese X is het normale gedrag van het onbetrouwbare proces Plx. 
Het basisformalisme is het formalisme van Hoofdstuk 3. Om de essentie van 
onze formalisatie van foutentolerantie te benadrukken, laten we voor deze the­
orie de factor tijd buiten beschouwing. In Hoofdstuk 4 laten we zien hoe deze 
theorie gebruikt kan worden om het proces te classificeren dat, gegeven een faal­
hypothese, aan een zekere specificatie voldoet. Oak leiden we af onder welke 
faalhypotheses een gegeven proces nag steeds aan zijn specificatie voldoet. 
In Hoofdstuk 5 breiden we de bewijstheorie van Hoofdstuk 3 uit ani over het 
gedrag in de tijd te redeneren. Dit is nodig omdat voor tijdkritische, zoge­
naamde real-time, systemen betrouwbaarheid oak inhoudt dat een systeem ti­
jdig reageert. Het uitgebreide formalisme gaat uit van maximaal parallellisme, 
dat wil zeggen, de aanname dat elk proces een eigen processor heeft. 
In de praktijk hebben we vaak te maken met meerdere processen per processor. 
De executievolgorde wordt in zo'n geval bepaald door de prioriteiten van de 
diverse acties. In Hoofdstuk 6 generaliseren we het model van Hoofdstuk 5 naar 
de situatie waarin meerdere processen op een processor uitgevoerd worden. In 
dit formalisme hoeven prioriteiten niet constant te zijn; in het bijzonder mogen 
ze afhangen van de tijd gedurende welke een proces al op zijn beurt wacht. 
We bewijzen de geldigheid en de volledigheid van de diverse bewijstheorH~n. 
Een bewijstheorie is geldig als elke afleidbare formule waar is; een bewijstheorie 
is volledig a.ls elke ware formule afleidbaar is. Vergelijken we ons formalisme 
met formalismen voor louter normaal gedrag, dan valt op dat er slechts een 
bewijsregel, te weten de faalhypothese introductie regel 

FP sat¢> 

FPlx sat ¢>lx 

nodig is om het acceptabele gedrag van het onbetrouwbare proces FP te karak­
teriseren. 
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1. Voor fouteutolerantie zijn drie soorten gedrag van belang: normaal, ex­
ceptioneel en catastrofaal. Normaal gedrag is het gedrag dat voldoet aan 
de specificatie. Een faalhypothese, die stipuleert hoe fouten het gedrag 
belnvloeden, verdeelt het abnormale gedrag in exceptioneel en catastro­
faal gedrag. In tegenstelling tot catastrofaal gedrag vertoont exceptioneel 
gedrag afwijkingen die getolereerd dienen te worden. Het normale en het 
exceptionele gedrag vormen het acceptabele gedrag. 

De in dit proefschrift voorgestelde methode is geschikt voor het formali­
seren van foutentolerantie technieken in het algemeen omdat het accep­
tabele gedrag op een modulaire manier gespecificeerd kan worden: het 
abnormale gedrag van proces P dat acceptabel is voor wat betreft de 
faalhypot.hese x is het normale gedrag van het onbetrouwbare proces P l x. 

2. Het is een bekend gegeven dat, als men het gedrag van een systeem in de 
tijd beschouwt, een compositionele semantiek alleen gedefinieerd kan wor­
den als het onderliggende model informatie bevat omtrent de bereidheid 
van een proces tot communiceren. Als men gelnteresseerd is in fouten­
tolerantie is het cruciaal dat men ook kan redeneren over een dergelijke 
bereidheid van de omgeving van een proces. Hiervoor hoeft het on­
derliggende model echter niet uitgebreid te worden. 

Hoofdst.uk 5 en 6 van dit proefschrift. 

3. In [PS91] wordt de correctheid van het Alternating Bit Protocol bewezen 
in het geval de factor tijd buiten beschouwing gelaten wordt. Door een 
onnatuurlijke specificatie van de ontvanger, waarin ervan wordt uitgegaan 
dat de reeks van ontvangen berichten aan zekere condities voldoet, hoeft 
in [PS91] de persistentie eigenschap van het Alternating Bit Protocol 
niet bewezen te worden. In Hoofdstuk 3 van dit proefschrift wordt deze 
eigenschap expliciet bewezen. 

[PS91] K. Paliwoda and J.W. Sanders. An incremental specification 
of the sliding window protocol, Distributed Computing 5 (1991) 
83- 94. 



4. In [Hooman92] wordt, in het geval een processor meerdere processen ex­
ecuteert, de prioriteit van een actie bepaald door de direct omvattende 
prioriteitstoekenning. Omdat zodoende de toekenning van een prioriteit 
aan een samengesteld proces de relatieve belangrijkheid van de delen kan 
verstoren mogen dergelijke toekenningen in [Hooman92] niet worden ge­
nest . 

Deze onpraktische beperking is niet nodig als het nesten van prioriteits­
toekenningen een cumulatief effect heeft , zoals in Hoofdstuk 6 van dit 
proefschrift beschreven is. 

[Hooman92] J. Hooman. Specification and compositional verification of 
real-time systems, Lecture Notes in Computer Science 558 
(Springer-Verlag, 1992). 

5. Vee! producenten menen nog steeds foutentolererende apparatuur te kun­
nen leveren zonder een bewijs van correctheid te overleggen. 

6. Het veiligheidsverhogende effect van een anti-blokkeer remsysteem gaat 
in vee! gevallen verloren doordat de bestuurder krappere marges in acht 
neemt. Helaas is dit vaker het geval met betrouwbaarheidsverhogende 
maatregelen. 

7. Het door het International Standardization Organization (ISO) gedefini­
eerde Basic Reference Model voor Open Systems Interconnection (OSI) 
staat relaying hoven de Network Layer niet toe. Dat ISO zichzelf niet 
serieus neemt blijkt uit bet feit dat zij in het kader van OSI twee niet­
compatibele Network Services tot standaard verheven heeft, te weten 
de Connection-Oriented Network Service en de ConnectionLess Network 
Service. 

H. Schepers, 0. Rikkert de Koe, G. Havermans and D. Hammer. 
LAN/WAN interworking in the OSI environment, Computer Networks 
and ISDN Systems 23 (1992) 253-266. 



8. Op de Kluizerweg in Leende staan een aantal autowerende obstakels. Het 
levensverlengende effect dat hiervan voor fietsers uitgaat wordt echter 
grotendeels teniet gedaan door de misleidende waarschuwingsborden. 

9. De stilte random het Europees Monetair Systeem doet vermoeden dat 
het inderdaad voornamelijk profijtelijk was voor de valutahandelaren. 

10. Zolang de naslagwerken bier definieren als alcoholhoudende drank is al­
coholvrij bier een contradictio in terminis. 

1 r. In het belang van het milieu client bij het kopen van nieuwe autobanden 
het inleveren van de versleten exemplaren niet Ianger op vrijwillige basis 
te geschieden . 

12. Om te voorkomen dat van de digitale supersnelweg slechts een digitaal 
karrespoor overblijft is het noodzakelijk dat de politieke besluitvorming 
op technisch inzicht gebaseerd wordt en niet hopeloos achter de ontwikke­
lingen aanloopt. 


