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Samenvatting

In veel praktische situaties worden zogenaamde vervormbare glijlagers, dat wil
zeggen, glijlagers met een relatief elastisch loopvlak gebruikt. Een voorbeeld
van een vervormbaar glijlager is het watergesmeerde rubber glijlager dat wordt
gebruikt om de schroefas in schepen te ondersteunen. Vanwege het feit dat
glijlagers niet-lineaire elementen zijn, kunnen zij een significante invloed hebben
op de dynamica van een rotor-lager systeem. Echter, de dynamica van grote
rotor-lager systemen wordt in het algemeen bestudeerd met behulp van lineaire
modellen, waarbij de glijlagers zijn gelineariseerd rond een evenwichtspositie.
Voor een beter inzicht in de dynamica van een niet-lineair rotor-lager systeem
dient een niet-linear dynamische analyse te worden uitgevoerd.

In dit proefschrift zijn vervormbare korte en lange gewone glijlagermodel-
len voor rotordynamische toepassingen ontwikkeld. Deze modellen bestaan uit
ruimtelijk gediscretiseerde niet-lineaire partiële differentiaalvergelijkingen, wat
in feite grote stelsels niet-lineaire gewone differentiaalvergelijkingen zijn. Van-
wege de dimensie van deze stelsels, zijn de standaardmethodes om trillingen van
niet-lineair dynamische systemen te berekenen te inefficiënt. Derhalve is tevens
een efficiënte numerieke methode om trillingen van partiële differentiaalvergelij-
kingen te berekenen ontwikkeld.

De niet-lineaire dynamica van een rotor-lager syteem met een starre rotor
in twee vervormbare glijlagers is bestudeerd voor verschillende waarden van de
relatieve vervormbaarheid van het loopvlak, met gebruikmaking van zowel het
korte als het lange lagermodel. Het blijkt dat verhogen van de relatieve ver-
vormbaarheid van het loopvlak de stabiliteitsgrens van een gebalanceerde rotor
in vervormbare korte glijlagers verlaagt, terwijl het de stabiliteitsgrens van de-
zelfde rotor in vervormbare lange glijlagers verhoogt. Voor een ongebalanceerde
rotor in vervormbare korte glijlagers heeft de relatieve vervormbaarheid van het
loopvlak een significante invloed op de rotorsnelheden waarbij de tak van syn-
chrone trillingen van stabiliteit verandert en op de vorm van de tak van subsyn-
chrone trillingen. Voor dezelfde rotor in vervormbare lange glijlagers veroorzaakt
verhogen van de relatieve vervormbaarheid van het loopvlak een verhoging van
de rotorsnelheid waarbij de tak van synchrone trillingen instabiel wordt. Het
blijkt dat in tegenstelling tot starre glijlagermodellen de minimale filmdikte van
de vervormbare glijlagermodellen nul en zelfs negatief kan worden. Met andere
woorden, de vervormbare glijlagermodellen voorspellen de mogelijkheid van con-
tact tussen de as en het lager. Omdat contact niet is opgenomen in de modellen
kunnen fysisch onmogelijke trillingen met negatieve filmdiktes gevonden worden.
Voor starre glijlagermodellen kan contact helemaal niet optreden vanwege het
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feit dat ofwel een oneindig grote belasting ofwel een oneindig lange tijd nodig
zou zijn.

Tijdens experimenten aan een rotor-lager systeem met een flexibele as in een
watergesmeerd rubber glijlager is een niet-lineair fenomeen waargenomen. De
tak van synchrone trillingen bevat twee zogenaamde cyclic folds, waarbij de tak
van richting verandert. Als de rotorsnelheid gevarieerd wordt voorbij één van
deze cyclic folds, springt het systeem naar een afgelegen deel van de tak van
synchrone trillingen. Dit fenomeen wordt waarschijnlijk veroorzaakt door de
niet-lineaire elasticiteit van het rubber loopvlak van het watergesmeerde rubber
glijlager.



Summary

In many practical situations, so-called compliant journal bearings, that is, jour-
nal bearings with a relatively elastic bearing liner are used. An example of a
compliant journal bearing is the water-lubricated rubber-lined journal bearing
that is used to support the propeller shaft in ships. Because of the fact that
journal bearings are nonlinear elements, they can have a significant influence on
the dynamics of a rotor-bearing system. However, the dynamics of large rotor-
bearing systems are generally studied using linear models, where the journal
bearings are linearized about an equilibrium position. For a better insight in
the dynamics of a nonlinear rotor-bearing system, a nonlinear dynamic analysis
needs to be carried out.

In this thesis, compliant short and long plain journal-bearing models for
rotordynamic applications are developed. These models consist of spatially dis-
cretized nonlinear partial differential equations, which are in fact large systems of
nonlinear ordinary differential equations. Because of the dimension of these sys-
tems, the standard methods to calculate vibrations of nonlinear dynamic systems
are too inefficient. Therefore, also an efficient numerical method to calculated
vibrations of partial differential equations is developed.

The nonlinear dynamics of a rotor-bearing system with a rigid rotor in two
compliant journal bearings are studied for different values of the relative bearing-
liner compliance, using both the short and the long bearing models. It turns
out that increasing the relative bearing-liner compliance decreases the stabil-
ity threshold of a balanced rotor in compliant short journal bearings, while it
increases the stability threshold of the same rotor in compliant long journal
bearings. For an unbalanced rotor in compliant short journal bearings, the rel-
ative bearing-liner compliance has a significant influence on the rotor speeds at
which the branch of synchronous vibrations changes stability and on the shape
of the branch of subsynchronous vibrations. For the same rotor in compliant
long journal bearings, increasing the relative bearing-liner compliance causes an
increase in the rotor speed, at which the branch of synchronous vibrations be-
comes unstable. It appears that in contrast to rigid journal-bearing models the
minimum film thickness of the compliant journal-bearing models can become
zero and even negative. In other words, the compliant journal-bearing models
predict the possibility of contact between the journal and the bearing. Because
contact is not included in the models, physically impossible vibrations with neg-
ative film thicknesses can be found. For rigid journal-bearing models, contact
cannot occur at all because of the fact that either an infinitely large load or an
infinitely long time would be needed.
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During experiments on a rotor-bearing system with a flexible shaft in a water-
lubricated rubber-lined journal bearing, a nonlinear phenomenon is observed.
The branch of synchronous vibrations contains two so-called cyclic folds, at
which the branch changes its direction. If the rotor speed is varied past one of
these cyclic folds, the system jumps to a remote part of the branch of synchronous
vibrations. This phenomenon is probably caused by the nonlinear elasticity of
the rubber bearing liner of the water-lubricated rubber-lined journal bearing.



Notation

General Notation

a, A scalar
a (column) vector
A matrix
a(·) function (of one variable)

Operators

|a| absolute value of a
aT transpose of a

aTb inner product of a and b

a× b outer product of a and b

‖a‖ =
√

aTa, euclidian norm or length of a

∂a/∂b partial derivative of a with respect to b
ȧ total derivative of a with respect to t
a′ total derivative of a with respect to τ

Symbols

0 null vector

α angle from v∗s to ε

β1, β2 path-following angles
γ attitude angle
ε small number

= ‖ε‖, nondimensional eccentricity
ε = e/C, nondimensional eccentricity vector
θ angular coordinate
λ bifurcation parameter
Λ = L/D, length-diameter ratio
∆λ correction of λ
µ lubricant viscosity
ν Poisson’s ratio
σ path-following step size
τ = Ω0t, nondimensional time
τφ, τz shear stresses in the φ- and z-directions
φ angular coordinate
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φt flow
ω angular forcing frequency
ωH angular frequency at a primary Hopf bifurcation
ωw angular whirl frequency
Φt = ∂φt/∂u0|u0,λ, fundamental matrix
Ω angular rotor speed
Ω∗ = Ω/Ω0, nondimensional angular rotor speed
Ω0 = Ω, for stiffness and damping coefficients

=
√

F0/mC, for rotor-bearing system

a unbalance
a∗ = a/C, nondimensional unbalance
b damping
b∗ = (C/R)2Cb/µLD, nondimensional damping
bλ = ∂f/∂λ|u,λ

= ∂φT /∂λ|u0,λ

= ∂φ∆t/∂λ|ui,λ

bT = ∂φT /∂T |u0,λ

= ∂φ∆t/∂T |ui,λ

B = 6µΩ0d(1 + ν)(1− 2ν)/(C/R)2CE(1− ν),
nondimensional relative bearing-liner compliance

C radial clearance
d liner thickness
D journal diameter
e eccentricity
e eccentricity vector
E Young’s modulus
f vector field
F force
F ∗ = (C/R)2F/µΩ0LD, nondimensional force
g Runge-Kutta approximation of f

G = ∂φ∆t/∂ui|ui,λ

h = H/C, nondimensional film thickness
H film thickness
i index

imaginary unit
i unit vector
ii ith column of I

Ijk
m =

∫

sinj φ cosk φh−m dφ, the journal-bearing integral
I identity matrix
Ip p-dimensional identity matrix
ji ith column of J

J Jacobian matrix
k path-following point number

stiffness
k∗ = (C/R)2Ck/µΩLD, nondimensional stiffness
L bearing length



notation xv

m number of time intervals
mass

mi ith column of M

M = ΦT , monodromy matrix
n system dimension
npf maximum number of path-following points
O null matrix
p pressure
p̄ =

∫

p dz, average pressure
p∗ = (C/R)2p/6µΩ0, nondimensional pressure
p̄∗ =

∫

p∗ dz∗, nondimensional average pressure
pλ, pT , pu prediction-direction λ-, T -, and u-components
r radial coordinate
r residual vector
R journal radius
S = (C/R)2Fb/µΩLD, Sommerfeld number
t time
∆t = T/m, length of time interval
T period
∆T correction of T
u = U/C, nondimensional bearing-liner deformation
u state vector
δu perturbation of u

∆u correction of u

U bearing-liner deformation
U subspace of M

vs = ė− (0, 0, 1
2Ω)× e, pure-squeeze velocity vector

v∗s = ‖v∗s ‖, nondimensional pure-squeeze velocity
v∗s = ε′ − (0, 0, 1

2Ω∗)× ε, nondimensional pure-squeeze velocity vector
W impedance
x, y, z coordinate system
z∗ = z/L, nondimensional coordinate

Subscripts

0 constant

ε, γ parallel and normal to e

ξ, η parallel and normal to vs

b bearing
i at index i

at t = i∆t
p, q with regard to U and U⊥
x, y, z in the x-, y-, and z-directions
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Superscripts

⊥ orthogonal complement

(k) at path-following point k
short, long with regard to the short and long bearing models



Chapter 1

Introduction

In this chapter, the motivation of the research described in this thesis will be
summarized and a brief survey of some literature on journal bearings and rotor-
dynamics will be given. The objectives will be presented and an overview will
explain the organization of the rest of the text.

1.1 Motivation

This thesis deals with compliant journal bearings, that is, journal bearings with
a relatively elastic bearing liner. These bearings are frequently used and there is
a demand from practice for rotordynamic models. Other bearing configurations,
in which some kind of compliance is present, such as an elastically supported
rigid bearing will not be treated here. For the compliant journal bearings treated
in this thesis, the elasticity of the bearing liner is of the same order of magnitude
as that of the lubricant film. An example of such a compliant journal bearing
is the water-lubricated rubber-lined journal bearing with axial grooves which is
used in the stern tube of ships to support the propellor shaft, in dredge cutter
heads, and in continuously immersed centrifugal pumps. An advantage of this
bearing is the fact that abrasive particles such as sand can easily be rolled over
the rubber surface and washed out of the bearing via the axial grooves. In rigid
bearings, such particles would cause severe cutting and scoring of the metal
bearing components.

Because of the fact that journal bearings are nonlinear elements, they can
have a significant influence on the dynamics of an otherwise linear rotor-bearing
system. However, the dynamics of large rotor-bearing systems are generally
investigated using linear models, where the nonlinearities of the journal bear-
ings are linearized about an equilibrium position. Because of this linearization,
these models can only be applied for the analysis of small-amplitude period-1 (or
harmonic) solutions (also called synchronous vibrations) about the equilibrium
position and for the stability analysis of the equilibrium position (to determine
the stability threshold). In order to be able to calculate other possible solutions
of a nonlinear rotor-bearing system, such as period-k (or 1/k subharmonic) solu-
tions where k = 2, 3, . . . (also called subsynchronous vibrations), quasi-periodic
solutions, and chaotic solutions, but also to determine the stability of periodic
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2 chapter 1

solutions and to locate bifurcations, a nonlinear dynamic analysis needs to be
carried out. Because of the fact that with a nonlinear dynamic analysis more
aspects of the dynamics of nonlinear systems can be studied, such an analysis
provides a better insight in the behavior of a nonlinear rotor-bearing system
than a linear dynamic analysis of the linearized model.

The standard methods to calculate periodic solutions of nonlinear dynamic
systems, such as the shooting and finite-difference methods, are developed for
relatively small systems of ordinary differential equations. An efficient method
to calculate periodic solutions of large nonlinear systems, in which the nonlin-
earities are local, such as the journal bearings in rotor-bearing systems, uses the
so-called component mode synthesis technique (Fey et al., 1996; Fey, 1992). In
this method, the local nonlinearities are temporarily removed from the system
and the component mode synthesis technique is applied to reduce the number
of degrees of freedom of the components of the resulting linear system. Sub-
sequently, the local nonlinearities are replaced and a nonlinear model with a
reduced number of degrees of freedom results. The standard methods can then
be used to analyze the reduced nonlinear model.

1.2 Literature Survey

In this section, a brief survey of some literature on journal bearings and rotor-
dynamics with regard to the research described in this thesis is given.

Journal Bearings

Reynolds (1886) developed the two-dimensional partial differential equation,
known as the Reynolds equation, which governs the pressure in the lubricant
film of a journal bearing. For rigid journal bearings, the Reynolds equation
is a linear partial differential equation in the lubricant pressure; for compliant
journal bearings on the other hand, the Reynolds equation is a nonlinear partial
differential equation. This is caused by the fact that, in contrast to rigid bear-
ing, for compliant bearings the film thickness is not known as a function of the
eccentricity but is coupled to the pressure by way of the elasticity of the bearing
liner.

If an assumption is made about the length of the bearing, the Reynolds
equation can be simplified by reducing its dimension to one. The two assump-
tions that can be made are an (infinitely) short and an (infinitely) long (or
perfectly sealed) bearing. For rigid journal bearings, these simplifications cause
the Reynolds equation to degenerate into a linear ordinary differential equation,
which can be solved analytically; however, for compliant journal bearings, the
simplified Reynolds equation remains a nonlinear partial differential equation
(but only one-dimensional instead of two-dimensional). This is caused by the
fact that the Reynolds equation contains a term with the time derivative of the
film thickness. For the calculation of the static properties of compliant journal
bearings, the time derivative of the film thickness is set to zero, so that then
the simplified Reynolds equation degenerates into a nonlinear ordinary differ-
ential equation. Since for compliant journal bearings the Reynolds equation is
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nonlinear, it cannot be solved analytically.

The short-bearing solution of the Reynolds equation is known as the Ocvirk
solution (Ocvirk and DuBois, 1953); the long-bearing solution as the Sommerfeld
solution (Sommerfeld, 1904); Moes and Bosma (1981) introduced an analytical
approximate finite-length-bearing solution for rigid journal bearings, which is
based on the analytical short- and long-bearing solutions. The exact finite-
length-bearing solution for rigid bearings can be calculated numerically by dis-
cretization of the two-dimensional Reynolds equation with for example finite
differences of finite elements.

Booker (1971, 1969, 1965a) introduced the so-called mobility method for dy-
namically loaded rigid journal bearings and gave analytical expressions for the
short, long, and an approximate finite-length bearing. The mobility method is
developed for connecting-rod bearings in internal-combustion engines, in which
the dynamics of the rotor are negligible and the load on the bearing is known
as a function of time. Therefore, in the mobility method the journal velocity is
defined as a function of the applied load on the bearing and the journal posi-
tion, so that this method is unsuitable for rotordynamic applications. Another
method for dynamically loaded rigid journal bearings is the so-called impulse
method (Blok, 1975). This method is closely related to the mobility method
and can also not be applied in rotordynamics. A method for rotordynamic ap-
plications of rigid journal bearings is the so-called impedance method (Childs
et al., 1977). This method defines the bearing reaction force as a function of the
journal position and the journal velocity, so that it can be used as a dynamic
model of a journal bearing. Childs et al. (1977) demonstrate that impedance
vectors can easily be derived from mobility vectors. Therefore, existing mobility
descriptions of journal bearings can be converted into impedance descriptions,
so that they can indirectly be applied in rotordynamics. Moes and Bosma (1981)
published a list of mobility and impedance descriptions for the short, long, and
an approximate finite-length bearing.

In the theory of elastohydrodynamic lubrication (Gohar, 1988; Dowson and
Higginson, 1977, 1959), elastic deformations of lubricated bearing surfaces are
considered. However, this theory is developed for heavily loaded line and point
contacts, which can be found in for example gear teeth, cams, and rolling-element
bearings, where deformations are relatively small. Compliant journal bearings
on the other hand are relatively lightly loaded and their deformations are rel-
atively large (one or two orders of magnitude greater than those occurring in
elastohydrodynamic lubrication). Also, as for the mobility method, the load is
assumed to be known as a function of time, so that the elastohydrodynamic
contact model is unsuitable for rotordynamic applications.

A theoretical study of compliant journal bearings was carried out by Higgin-
son (1966), who calculated static properties of a long plain journal bearing with
an elastic bearing liner. The elasticity of the bearing liner is described by an
approximate model for a thin liner on a rigid backing. For the sake of simplicity,
the same approximation will be used for the compliant journal-bearing models
developed in this thesis. Conway and Lee (1975) treated a model similar to that
studied by Higginson (1966) but also considered pressure dependence of the lu-
bricant viscosity. In a later paper (Conway and Lee, 1977), they studied the
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compliant short plain journal bearing. Nilsson (1979) determined the dynamic
coefficients of a compliant plain journal bearing and observed the dependence
of these coefficients on the angular excitation frequency to angular rotor speed
ratio. The stiffness and damping coefficients were calculated for an angular ex-
citation frequency to angular rotor speed ratio of one, which is the value for
unbalance excitation.

Several publications (Goenka and Oh, 1986; Fantino and Frene, 1985; LaBouff
and Booker, 1985; Oh and Goenka, 1985; van der Tempel et al., 1985) present
methods for dynamically loaded compliant journal bearings. However, as for the
mobility method for rigid journal bearings, these methods assume the load on
the bearing to be known as a function of time, so that they are unsuitable for
rotordynamic applications. The rotordynamic model of a compliant short plain
journal bearing developed in this thesis was published before (van de Vrande
and de Kraker, 1999).

Rotordynamics

Generally, the dynamics of rotor-bearing systems are investigated using a finite-
dimensional linear model (Childs, 1993; Ehrich, 1992; Vance, 1988). To obtain
such a model, the continuous system is discretized by means of the lumped-
parameter, finite-difference, or finite-element method and the stiffness and damp-
ing coefficients of the journal bearings are determined by means of linearization
about an equilibrium position. Lund (1987) gives a review of the concept of
the dynamic coefficients of journal bearings. The resulting linear rotor-bearing
model can then be analyzed using standard software packages to calculate critical
rotor speeds and stability thresholds.

Fuller (1984) studied the dependence on the bearing stiffness of the critical
rotor speeds of a flexible shaft in two bearings, which were modeled as linear
springs. In this thesis, a somewhat similar but more complicated investigation
is done on a rigid rotor in two compliant journal bearings. Here, the dependence
of the nonlinear rotordynamics on the relative compliance of the bearing liner
is investigated. For the sake of simplicity, only plain journal bearings are con-
sidered, although in practice plain journal bearings are rarely used because of
the fact that the stability properties of these bearings are inferior to those of for
example multi-lobe and spiral-groove journal bearings. However, the results of
the compliant plain journal-bearing models can be considered as a first approxi-
mation of compliant journal bearings with more complicated geometries, such as
the water-lubricated rubber-lined journal bearing with axial grooves mentioned
before.

Different types of rigid journal bearings, which are frequently used in prac-
tice, including multi-lobe journal bearings and spiral-groove journal bearings, are
listed by Someya (1989). Glienicke and Walter (1980) studied the critical speeds
and stability boundaries of shafts in multi-lobe journal bearings. A method for
the accurate calculation of spiral-groove bearings was presented by Muijderman
(1967). The stability region of a rigid rotor in spiral-groove journal bearings
was investigated by Reinhoudt (1972). Muijderman (1986) presented algebraic
formulas for the first critical speed and the stability threshold of a flexibly sup-
ported rigid rotor in journal bearings considering both the cylindrical and the
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conical mode of the rotor.
Generally, the study of the dynamics of nonlinear rotor-bearing systems is

restricted to the calculation of transients by means of numerical integration.
Using the analytical short-bearing model, Kirk and Gunter (1976a,b) carried
out transient calculations for both balanced and unbalanced rigid rotors in rigid
short plain journal bearings. A systematic approach to analyze nonlinear dy-
namic systems is by means of the so-called path-following (or pseudo-arclength
continuation) method (Fey, 1992; Doedel et al., 1991; Seydel, 1988). A nonlin-
ear dynamic analysis of both balanced and unbalanced flexible rotors in a rigid
approximate finite-length plain journal bearing was carried out by van de Vorst
et al. (1996); van de Vorst (1996). Adiletta et al. (1997a,b) analyzed the nonlin-
ear dynamics of an unbalanced rigid rotor in rigid short plain journal bearings
both numerically and experimentally.

1.3 Objectives

The first objective of this thesis is to develop compliant plain journal-bearing
models for rotordynamic applications. These models can be obtained by extend-
ing the classical rigid plain journal-bearing models to journal bearings with an
elastic bearing liner. Because of the fact that the compliant plain journal-bearing
models consist of spatially discretized nonlinear partial differential equations,
which are in fact large systems of nonlinear ordinary differential equations, the
standard methods to calculate periodic solutions of nonlinear dynamic systems
are too inefficient. Therefore, the second objective is to develop an efficient nu-
merical method to calculate periodic solutions of general spatially discretized
nonlinear partial differential equations. This method will be obtained by ex-
tending the finite-difference method to partial differential equations using the
so-called NPGS approach (Lust, 1997). The method that uses the component
mode synthesis technique to reduce the number of degrees of freedom of large
nonlinear systems cannot be used for the compliant journal-bearing models be-
cause of the fact that the nonlinearity is not local. It is a nonlinearity in the
partial differential equation, which becomes global in the large system of ordi-
nary differential equations that follows from the spatial discretization.

1.4 Overview

In chapter 2, a brief introduction to the theory of nonlinear dynamics will be
given. In chapter 3, the standard steady-state solvers and the NPGS method
will be described, and the finite-difference method will be extended to spatially
discretized nonlinear partial differential equations. In chapter 4, the classical
rigid plain journal-bearing models will be described and compliant short and
long plain journal-bearing models for rotordynamic applications will be devel-
oped. Also stiffness and damping coefficients about an equilibrium position will
be calculated. Subsequently, in chapter 5 the different journal-bearing models
will be applied in a symmetric rotor-bearing system with a rigid rotor in two
plain journal bearings. For the rigid plain journal bearings, the influence of the
unbalance on the nonlinear dynamics of the rotor will be investigated; for the
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compliant plain journal bearings, the influence of the relative bearing-liner com-
pliance on the nonlinear dynamics of a balanced and an unbalanced rotor will
be studied. A nonlinear phenomenon observed during experiments on a rotor-
bearing system with a flexible shaft in a water-lubricated rubber-lined journal
bearing will be briefly described. Finally, in chapter 6, the conclusions of this
thesis will be drawn and a number of recommendations for further research will
be given.



Chapter 2

Nonlinear Dynamics

In this chapter, a brief introduction to the theory of nonlinear dynamics will
be given. First, it will be shown that both autonomous dynamic systems and
harmonically excited non-autonomous dynamic systems can be put into the so-
called autonomous state-space form, which is a set of autonomous nonlinear
first-order ordinary differential equations. Because of this, only one numerical
solution method needs to be developed for both autonomous and harmonically
excited non-autonomous dynamic systems, based on the autonomous state-space
form. Subsequently, the known steady-state solutions of an autonomous nonlin-
ear dynamic system will be given and approaches for determining the stability
of fixed points and periodic solutions will be presented. Finally, the so-called
co-dimension one bifurcations, at which the stability of a branch of steady-state
solutions changes qualitatively, will be listed. Generally, these are the only bi-
furcations that can be encountered if one parameter of the system is varied to
follow a branch of steady-state solutions.

2.1 Autonomous State-Space Form

A nonlinear dynamic system is called autonomous if it does not explicitly depend
on time. The so-called autonomous state-space form of such a system is given
by

u̇(t) = f(u(t), λ) (2.1)

which is an n-dimensional set of autonomous nonlinear first-order ordinary dif-
ferential equations. In this set of equations, u(·) ∈ R

n is the state vector,
f(·, ·) ∈ R

n is the vector field, λ ∈ R is the parameter of the system that will be
varied to follow a branch of steady-state solutions (also called the bifurcation pa-
rameter), t ∈ R is time, and an overdot denotes the total derivative with respect
to t. The set of equations (2.1) combined with the initial condition u(0) = u0

constitutes an initial-value problem. The solution of this initial-value problem
is written as φt(u0, λ) and is called the flow.

A nonlinear dynamic system is called non-autonomous if it explicitly depends
on time. The state-space form of such a system is given by

u̇(t) = f(u(t), t, λ)

7
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If the explicit time dependence of a non-autonomous system is caused by a
harmonical excitation, its state-space form can be rewritten as

u̇(t) = f(u(t), sin(ωt), cos(ωt), λ) (2.2)

where ω is the angular excitation frequency. This n-dimensional harmonically
excited non-autonomous state-space form can be put into an (n+2)-dimensional
autonomous state-space form by adding the following nonlinear oscillator (Doe-
del et al., 1998):

{

u̇n+1 = un+1 + ωun+2 − un+1(u
2
n+1 + u2

n+2)

u̇n+2 = −ωun+1 + un+2 − un+2(u
2
n+1 + u2

n+2)

The (asymptotically) stable solution of this oscillator is given by

{

un+1 = sin(ωt)

un+2 = cos(ωt)

To eliminate the explicit time dependence of the harmonically excited non-
autonomous set of equations (2.2), the sin(ωt) and cos(ωt) terms are replaced
by the extra state variables un+1 and un+2, respectively.

Because of the fact that both autonomous dynamic systems and harmonically
excited non-autonomous dynamic systems can be put into the autonomous state-
space form (2.1), only one numerical solution method needs to be developed for
both kinds of systems. Therefore, the numerical methods described in the next
chapter will all be based on the autonomous state-space form.

An example of a harmonically excited non-autonomous nonlinear dynamic
system is the symmetric rotor-bearing system with a rigid rotor that will be
studied in chapter 5. Figure 2.1 schematically shows a cross-section of one of
the bearings of this rotor-bearing system. The rotor with mass m and unbalance
a is supported by two plain journal bearings. In this chapter, the journal bearings
are assumed to be rigid and the bearing reaction force components in the x- and
y-directions are calculated using the classical short-bearing model, described in
chapter 4. The length-diameter ratio of the journal bearings is chosen equal
to one. The rotor rotates with a constant angular speed Ω about the z-axis
and a constant load F0 is applied to the rotor in the negative y-direction. The
nondimensional equations of motion of the rotor are given by

{

ε′′x = 2F ∗

x /F ∗

0 + Ω∗2a∗ cos(Ω∗τ)

ε′′y = 2F ∗

y /F ∗

0 + Ω∗2a∗ sin(Ω∗τ)− 1
(2.3)

where εx and εy are the nondimensional displacements of the rotor in the x- and
y-directions, respectively, F ∗

x and F ∗

y are the nondimensional bearing reaction
force components in the x- and y-directions, respectively, τ is nondimensional
time and a prime denotes the total derivative with respect to τ . The harmon-
ically excited non-autonomous rotor-bearing system (2.3) can be put into the
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Figure 2.1: Cross-section of one of the bearings of a symmetric rigid rotor in two
plain journal bearings

following 6-dimensional autonomous state-space form:



































u′1 = u2

u′2 = 2F ∗

x /F ∗

0 + Ω∗2a∗u6

u′3 = u4

u′4 = 2F ∗

y /F ∗

0 + Ω∗2a∗u5 − 1

u′5 = u5 + Ω∗u6 − u5(u
2
5 + u2

6)

u′6 = −Ω∗u5 + u6 − u6(u
2
5 + u2

6)

where u1 = εx, u2 = ε′x, u3 = εy, u4 = ε′y, and u5 and u6 are the extra state
variables of the nonlinear oscillator. If the rotor is balanced, so that a∗ = 0,
the rotor-bearing system is autonomous and the nonlinear oscillator, given by
the last two equations of the autonomous state-space form, can be removed.
Therefore, the dimension of the autonomous state-space form of the balanced
rotor-bearing system is 4.

2.2 Steady-State Solutions

The four known steady-state solutions of an autonomous nonlinear dynamic
system are: the fixed point, the periodic solution, the quasi-periodic solution,
and the chaotic solution. In contrast to the steady-state solutions of a linear
dynamic system, the steady-state solutions of a nonlinear dynamic system can
coexist for certain parameter sets. It is therefore generally impossible to find all
the steady-state solutions of a nonlinear dynamic system.
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Figure 2.2: Steady-state solutions of a rigid rotor in rigid short plain journal
bearings

A fixed point (u, λ) is an equilibrium position of the system, in which by
definition the time derivative of the state vector is equal to zero (u̇(t) = 0).
Therefore, fixed points can be found by solving the following set of equations,
resulting from the substitution of u̇(t) = 0 into (2.1):

f(u, λ) = 0 (2.4)

Note that harmonically excited non-autonomous systems do not possess fixed
points, so that this set of equations has no solutions. The upper-left panel
of figure 2.2 shows a fixed point of the (autonomous) rotor-bearing system for
Ω∗ = 0.5, a∗ = 0, and F ∗

0 = 1.
A periodic solution φt(u0, λ) with t ∈ [0, T ] is a solution, in which the system

returns to the same state after a certain minimum period T > 0. Therefore,
periodic solutions can be found by solving the following two-point boundary-
value problem:

{

u̇(t) = f(u(t), λ) t ∈ [0, T ]

u(0) = u(T )
(2.5)

For autonomous dynamic systems, the period of the periodic solution is an un-
known, whereas for harmonically excited non-autonomous systems, the period of
the periodic solution is an integer multiple of the excitation period: T = k2π/ω
(k = 1, 2, . . .). If k = 1, the period of the periodic solution is equal to the excita-
tion period and the periodic solution is called a period-1 or harmonic solution;
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if k > 1, the periodic solution is called a period-k or 1/k subharmonic solution.
The upper-right panel of figure 2.2 shows a period-2 solution of the rotor-bearing
system for Ω∗ = 6, a∗ = 0.2, and F ∗

0 = 1.
A quasi-periodic solution is a solution that possesses two or more incommen-

surate frequencies, that is, two or more frequencies with irrational ratios. For
autonomous systems, these frequencies are unknowns, whereas for harmonically
excited non-autonomous systems, one of these frequencies is equal to the excita-
tion frequency and the other frequencies are unknowns. Parker and Chua (1989)
describe two methods to calculate so-called 2-periodic solutions (quasi-periodic
solutions with two incommensurate frequencies). The lower-left panel of figure
2.2 shows a part of a quasi-periodic solution of the rotor-bearing system for
Ω∗ = 12, a∗ = 0.3, and F ∗

0 = 1.
A chaotic solution is a bounded solution which is “none of the above” and

the only available method to calculate such a solution is brute-force numerical
integration. The lower-right panel of figure 2.2 shows a part of a chaotic solution
of the rotor-bearing system for Ω∗ = 2.646, a∗ = 0.3, and F ∗

0 = 26.46 (these
parameters are taken from Adiletta et al., 1996).

2.3 Local Stability

The local stability of a fixed point or a periodic solution can be determined by
applying an infinitesimally small perturbation to the solution and examining the
evolution in time of this perturbation. The fixed point or the periodic solution
is (asymptotically) stable if the perturbation converges to zero; it is unstable if
the perturbation diverges.

For a fixed point (u, λ), the evolution of an initial perturbation δu(0) = δu0

of u at t = 0 is found from the linearization of (2.1):

δu̇(t) = J(u, λ)δu(t) (2.6)

where J = ∂f/∂u is the so-called Jacobian matrix. The stability of the fixed
point is determined by the eigenvalues of the Jacobian matrix: if all the eigenval-
ues have negative real parts, the fixed point is (asymptotically) stable; if there
is an eigenvalue with a positive real part, the fixed point is unstable.

For a periodic solution φt(u0, λ) with period T , the evolution of a perturba-
tion δu0 of u0 is governed by

δu(t) = Φtδu0 (2.7)

where the so-called fundamental matrix Φt = ∂φt/∂u0|u0,λ follows from the
variational equation

Φ̇t = J(φt(u0, λ), λ)Φt (2.8)

with the initial condition Φ0 = I. The stability of the periodic solution is deter-
mined by the eigenvalues of the so-called monodromy matrix M = ΦT . These
eigenvalues are called the Floquet multipliers. One of the Floquet multipliers,
called the the trivial Floquet multiplier, is equal to one because of the fact that
a perturbation δu0 in the direction of the vector field f(u0, λ) neither converges
nor diverges. If all the remaining Floquet multipliers have magnitudes less than
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flip bifurcations

super-critical sub-critical

A

λ

Figure 2.3: Appearance of co-dimension one bifurcations in bifurcation diagram

one, the solution is (asymptotically) stable; if there is a Floquet multiplier with
a magnitude greater than one, the solution is unstable.

2.4 Co-dimension One Bifurcations

If one parameter of the system is varied, a branch of steady-state solutions
can be followed by means of the path-following method. The (local) stability
of a branch of steady-state solutions can change qualitatively at so-called co-
dimension one bifurcations. Generally, these are the only bifurcations that can
be encountered if one parameter is varied. For fixed points, the co-dimension one
bifurcations are: the fold and the primary Hopf bifurcation; for periodic solu-
tions, the co-dimension one bifurcations are: the cyclic fold, the secondary Hopf
(or Neimark) bifurcation, and the flip (or period-doubling) bifurcation. From
some co-dimension one bifurcations, another branch of steady-state solutions
emanates.

Figure 2.3 shows the appearance of the co-dimension one bifurcations in a bi-
furcation diagram, where a scalar measure A of the solution is plotted against the
bifurcation parameter λ. In this figure, solid lines represent branches of stable
steady-state solutions, dashed lines represent branches of unstable steady-state
solutions, and dots represent bifurcation points. Depending on the bifurcation,
the branches contain fixed points or periodic solutions; however, the branch that
emanates from the secondary Hopf bifurcation contains quasi-periodic solutions.
It is possible that the branches that meet at a co-dimension one bifurcation are
all unstable. In that case, the unstable branches that are stable in figure 2.3
have less unstable eigenvalues or Floquet multipliers than the unstable branches
that are also unstable in the figure. (A stable/unstable eigenvalue denotes an
eigenvalue with a negative/positive real part; a stable/unstable Floquet mul-
tiplier denotes a Floquet multiplier with a magnitude less/greater than one.)
The different bifurcations depicted in figure 2.3 can also appear horizontally or
vertically mirrored.

At one side of a fold, two fixed points coexist, one with one unstable eigen-
value more than the other. At the fold, these fixed points coincide and one
eigenvalue is equal to zero. At the other side of the fold, there are (locally) no
fixed points.

At one side of a primary Hopf bifurcation, a fixed point and a periodic solu-



nonlinear dynamics 13

tion coexist. At the primary Hopf bifurcation, the fixed point and the periodic
solution coincide, the fixed point has a pair of complex conjugated eigenvalues
with zero real part (±iωH), and the periodic solution (with amplitude zero)
has an angular frequency ωH. At the other side of the primary Hopf bifurcation,
there is (locally) no periodic solution and the fixed point gained or lost two stable
eigenvalues. If the fixed point gained two stable eigenvalues, the primary Hopf
bifurcation is called super-critical; if the fixed point lost two stable eigenvalues,
the primary Hopf bifurcation is called sub-critical.

At one side of a cyclic fold, two periodic solutions coexist, one with one un-
stable Floquet multiplier more than the other. At the cyclic fold, these periodic
solutions coincide and, besides the trivial Floquet multiplier, a second Floquet
multiplier is equal to one. At the other side of the cyclic fold, there are (locally)
no periodic solutions.

At one side of a secondary Hopf bifurcation, a periodic solution and a quasi-
periodic solution coexist. At the secondary Hopf bifurcation, the periodic solu-
tion and the quasi-periodic solution coincide and the periodic solution has a pair
of complex conjugated Floquet multipliers with magnitude one. At the other
side of the secondary Hopf bifurcation, there is (locally) no quasi-periodic solu-
tion and the periodic solution gained or lost two stable Floquet multipliers. If
the periodic solution gained two stable Floquet multipliers, the secondary Hopf
bifurcation is called super-critical; if the periodic solution lost two stable Floquet
multipliers, the secondary Hopf bifurcation is called sub-critical.

At one side of a flip bifurcation, a period-1 and a period-2 solution coexist.
For autonomous systems, the period of the period-2 solution is only approx-
imately equal to twice the period of the period-1 solution. For harmonically
excited non-autonomous systems, this equality is exact. At the flip bifurcation,
the two periodic solutions coincide and the period-1 solution has a Floquet mul-
tiplier equal to −1. At the other side of the flip bifurcation, there is (locally)
no period-2 solution and the period-1 solution gained or lost one stable Floquet
multiplier. If the period-1 solution gained one stable Floquet multiplier, the
flip bifurcation is called super-critical; if the period-1 solution lost one stable
Floquet multiplier, the flip bifurcation is called sub-critical.





Chapter 3

Steady-State Solvers and

Path-Following

In this chapter, the standard steady-state solvers and the NPGS method will
be described. The standard periodic-solution solvers are developed for small
systems of nonlinear ordinary differential equations. To investigate the dynam-
ics of the compliant journal-bearing models developed in the next chapter, a
method to calculate periodic solutions of nonlinear partial differential equations
is needed. An existing numerical method for partial differential equations is
the shooting-based NPGS method. Since the shooting method is not as effi-
cient as the finite-difference method, the NPGS approach will be used to extend
the finite-difference method to partial differential equations. The path-following
method, which is used to follow branches of steady-state solutions by varying one
parameter of the system, will be described for the different steady-state solvers.
Approaches for locating co-dimension one bifurcations and branch switching to
branches emanating from co-dimension one bifurcations will also be given. Fi-
nally, the efficiency of the different periodic-solution solvers will be compared.

3.1 Standard Steady-State Solvers

Fixed points can be found by solving (2.4) using the Newton method. For peri-
odic solutions, the two-point boundary-value problem (2.5) needs to be solved,
for which several approaches are available. The shooting method uses numeri-
cal integration to repeatedly solve an initial-value problem until the periodicity
boundary condition is satisfied. Examples of software packages based on the
shooting method are CANDYS/QA (Jansen, 1995) and BIFPACK (Seydel, 1999).
In the multiple-shooting method, the period is divided into a number of in-
tervals and numerical integration is carried out for the initial-value problems
in all the intervals. A software package that implements the multiple-shooting
method is MUSN (Ascher et al., 1995). The finite-difference method replaces the
time derivative of the state vector by a finite-difference approximation to trans-
form the two-point boundary-value problem into a (large) system of nonlinear
algebraic equations, in which the periodicity boundary condition is substituted.
The finite element package DIANA (de Witte et al., 2000) offers a nonlinear

15
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dynamics module, which includes the shooting, multiple-shooting, and finite-
difference methods. The popular software package AUTO 97 (Doedel et al., 1998)
uses the adaptive-mesh orthogonal collocation method to calculate periodic solu-
tions of autonomous systems. This method, which resembles the finite-difference
method, will not be treated in this thesis.

Fixed Points

For a given parameter λ, a fixed point u of (2.1) can be found by solving (2.4)
using the Newton method with an initial guess for u, yielding the following linear
iteration system in the correction ∆u:

J(u, λ)∆u = −f(u, λ)

The columns ji(u, λ) (i = 1, . . . , n) of the Jacobian matrix J(u, λ) can be ap-
proximated by forward differences:

ji(u, λ) ≈ f(u + εii, λ)− f(u, λ)

ε

where ε is a small number and ii are the columns of the identity matrix. The
approximate solution is updated according to

u← u + ∆u

The stability of the fixed point can be determined from the Jacobian matrix,
which is available as a byproduct of the Newton method.

Shooting Method

A periodic solution of (2.1) can be found by solving the two-point boundary-
value problem (2.5). Using the shooting method, the two-point boundary-value
problem is reduced to

r = φT (u0, λ)− u0 = 0 (3.1)

where r is the residual and φT (u0, λ) is calculated by solving the initial-value
problem (2.1) with the initial condition u(0) = u0 from t = 0 to t = T using
numerical integration. A solution (u0, T ) of (3.1) is not unique; there are n
equations in n+1 unknowns (the n components of u0 and T ). This is caused by
the fact that the phase of a periodic solution of an autonomous system is free;
in other words, u0 can be any point on the periodic solution.

For a given parameter λ, a solution of (3.1) can be found using the Newton
method with initial guesses for u0 and T , adding a so-called phase condition to
fix the phase and, accordingly, make the linear iteration system in the corrections
∆u0 and ∆T solvable:

(

M − I bT

fT(u0, λ) 0

)(

∆u0

∆T

)

= −
(

r

0

)

(3.2)

In this set of equations, M is the monodromy matrix and

bT =
∂φT

∂T

∣

∣

∣

∣

u0,λ

= f(φT (u0, λ), λ)
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The columns mi (i = 1, . . . , n) of M can be approximated by forward differences:

mi ≈
φT (u0 + εii, λ)− φT (u0, λ)

ε

The phase condition fT(u0, λ)∆u0 = 0 forces the corrections of the state to
be orthogonal to the vector field; in this way, u0 does not move in the “free”
direction during the iteration process. The approximate solution is updated
according to

{

u0 ← u0 + ∆u0

T ← T + ∆T

The stability of the periodic solution can be determined from the monodromy
matrix, which is available as a byproduct of the shooting method. The free phase
of the periodic solution is the cause of the fact that one of the Floquet multipliers
(the trivial Floquet multiplier) is equal to one; the associated eigenvector is
f(u0, λ).

Multiple-Shooting Method

In the multiple-shooting method, the period is divided into m intervals of equal
length and the two-point boundary problem (2.5) is reduced to

{

ri = φ∆t(ui, λ)− ui+1 = 0 i = 0, . . . , m− 2

rm−1 = φ∆t(um−1, λ)− u0 = 0
(3.3)

where ∆t = T/m and φ∆t(ui, λ) is calculated by solving the initial-value prob-
lem (2.1) with initial conditions u(i∆t) = ui from t = i∆t to t = (i+1)∆t using
numerical integration.

For a given parameter λ, a solution of (3.3) can be found using the Newton
method with initial guesses for ui (i = 0, . . . , m − 1) and T , adding the phase
condition to make the linear iteration system in the corrections ∆ui and ∆T
solvable:

















G0 −I bT,0

G1 −I bT,1

. . .
. . .

...

−I Gm−1 bT,m−1

fT(u0, λ) 0T . . . 0T 0

































∆u0

∆u1

...

∆um−1

∆T

















= −

















r0

r1

...

rm−1

0

















(3.4)
In this set of equations,

Gi =
∂φ∆t

∂ui

∣

∣

∣

∣

ui,λ

and bT,i =
∂φ∆t

∂T

∣

∣

∣

∣

ui,λ

= 1
mf(φ∆t(ui, λ), λ)

By using the forward recursion

{

∆ui+1 = Gi∆ui + bT,i∆T + ri i = 0, . . . , m− 2

∆u0 = Gm−1∆um−1 + bT,m−1∆T + rm−1
(3.5)



18 chapter 3

the (mn + 1)-dimensional system (3.4) is condensed into the same (n + 1)-
dimensional system (3.2) as that of the shooting method, but where

M = Gm−1 · · ·G1G0

bT = bT,m−1 + Gm−1bT,m−2 + . . . + Gm−1 · · ·G2G1bT,0

r = rm−1 + Gm−1rm−2 + . . . + Gm−1 · · ·G2G1r0

In each iteration step, first the corrections ∆u0 and ∆T are calculated from (3.2),
after which ∆ui (i = 1, . . . , m − 1) can be found from (3.5). The approximate
solution is updated according to

{

ui ← ui + ∆ui i = 0, . . . , m− 1

T ← T + ∆T
(3.6)

The stability of the periodic solution can be determined from the monodromy
matrix, which is available as a byproduct of the multiple-shooting method.

Finite-Difference Method

In the finite-difference method, the period is divided into m intervals of equal
length and in the two-point boundary-value problem (2.5) the time derivative of
the state vector is replaced by a finite-difference scheme according to

{

(ui+1 − ui)/∆t = g(ui, λ, ∆t) i = 0, . . . , m− 2

(u0 − um−1)/∆t = g(um−1, λ, ∆t)
(3.7)

where the boundary condition has been substituted and g(ui, λ, ∆t) is an ap-
proximation of the average vector field for t between i∆t and (i + 1)∆t, as used
in an explicit Runge-Kutta integration scheme. For the improved Euler method
(which is a second-order Runge-Kutta scheme),

g(ui, λ, ∆t) = 1
2 (k1 + k2)

where
{

k1 = f(ui, λ)

k2 = f(ui + ∆tk1, λ)

A third-order scheme is given by

g(ui, λ, ∆t) = 1
6 (k1 + k2 + 4k3)

where










k1 = f(ui, λ)

k2 = f(ui + ∆tk1, λ)

k3 = f(ui + 1
4∆t(k1 + k2), λ)

For the classical fourth-order Runge-Kutta scheme,

g(ui, λ, ∆t) = 1
6 (k1 + 2k2 + 2k3 + k4)
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where


















k1 = f(ui, λ)

k2 = f(ui + 1
2∆tk1, λ)

k3 = f(ui + 1
2∆tk2, λ)

k4 = f(ui + ∆tk3, λ)

Subsequently, (3.7) is rewritten as

{

ri = ∆tg(ui, λ, ∆t)− ui+1 + ui = 0 i = 0, . . . , m− 2

rm−1 = ∆tg(um−1, λ, ∆t)− u0 + um−1 = 0
(3.8)

For a given parameter λ, a solution of these equations can be found using the
Newton method with initial guesses for ui (i = 0, . . . , m− 1) and T , adding the
phase condition to make the linear iteration system in the corrections ∆ui and
∆T solvable. The resulting iteration system is the same system (3.4) as that of
the multiple-shooting method, but where

Gi = ∆t
∂g

∂ui

∣

∣

∣

∣

ui,λ,∆t

+ I and bT,i =
1

m

(

g(ui, λ, ∆t) + ∆t
∂g

∂∆t

∣

∣

∣

∣

ui,λ,∆t

)

For the improved Euler method,

Gi = 1
2∆t{J(ui, λ) + J(ui + ∆tk1, λ)(I + ∆tJ(ui, λ))}+ I

bT,i = 1
2m (k1 + k2 + ∆tJ(ui + ∆tk1, λ)k1)

for the third-order scheme,

Gi = 1
6∆t{J(ui, λ) + J(ui + ∆tk1, λ)(I + ∆tJ(ui, λ))+

4J(ui + 1
4∆t(k1 + k2), λ)

(I + 1
4∆t{J(ui, λ) + J(ui + ∆tk1, λ)(I + ∆tJ(ui, λ))})}+ I

bT,i = 1
6m (k1 + k2 + 4k3 + ∆t{J(ui + ∆tk1, λ)k1+

J(ui + 1
4∆t(k1 + k2), λ)(k1 + k2)})

and for the classical fourth-order Runge-Kutta scheme,

Gi = 1
6∆t{J(ui, λ) + 2J(ui + 1

2∆tk1, λ)(I + 1
2∆tJ(ui, λ))+

2J(ui + 1
2∆tk2, λ){I + 1

2∆tJ(ui + 1
2∆tk1, λ)(I + 1

2∆tJ(ui, λ))}+
J(ui + ∆tk3, λ)(I + ∆tJ(ui + 1

2∆tk2, λ)

{I + 1
2∆tJ(ui + 1

2∆tk1, λ)(I + ∆tJ(ui, λ))})}+ I

bT,i = 1
6m{k1 + 2k2 + 2k3 + k4 + ∆t(J(ui + 1

2∆tk1, λ)k1+

J(ui + 1
2∆tk2, λ)k2 + J(ui + ∆tk3, λ)k3)}

As a simplification, the following approximations can be used:

{

bT,i = 1
mf(ui+1, λ) i = 0, . . . , m− 2

bT,m−1 = 1
mf(u0, λ)

which are inspired by the multiple-shooting method.
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Using the forward recursion (3.5), the (mn+1)-dimensional iteration system
(3.4) is condensed into the same (n + 1)-dimensional system (3.2) as that of
the shooting method. The corrections are found in the same way as in the
multiple-shooting method and the approximate solution is updated according to
(3.6).

The stability of the periodic solution can be determined from the monodromy
matrix, which is available as a byproduct of the finite-difference method because
of the choice of the finite-difference scheme.

3.2 NPGS Method

In this section, the shooting-based NPGS (Newton-Picard Gauss-Seidel) method
developed by Lust (1997) will be described. This method can efficiently calculate
periodic solutions of partial differential equations by exploiting the fact that such
solutions have only a small number of Floquet multipliers close to or outside the
unit circle. Since the shooting method is not as efficient as the finite-difference
method, the NPGS approach will be used to extend the finite-difference method
to partial differential equations.

Spatially Discretized Partial Differential Equations

Dynamic systems modeled by nonlinear partial differential equations can be
put into the autonomous state-space form (2.1) by spatial discretization with
for example finite differences. The standard periodic-solution solvers can then
be used to calculate periodic solutions of such systems, but are too inefficient
because of the fact that these solvers need the full monodromy matrix for the
Newton method. The computation time of the monodromy matrix increases
rapidly if the spatial discretization mesh is refined and, accordingly, the system
dimension increases.

In spite of the fact that partial differential equations are infinite-dimensional,
generally a periodic solution of a partial differential equation has only a few Flo-
quet multipliers close to or outside the unit circle. Moreover, for an accurate
discretization, the dynamics of the spatially discretized system must be indepen-
dent of the mesh. Therefore, refining the mesh will only result in small changes
in the Floquet multipliers close to and outside the unit circle and an increase in
the number of Floquet multipliers close to zero.

This will be illustrated for the so-called Brusselator (Holodniok et al., 1987),
which models a chemical reaction:

{

∂u/∂t = (Du/L2)∂2u/∂x2 + u2v − (B + 1)u + A

∂v/∂t = (Dv/L2)∂2v/∂x2 − u2v + Bu

The boundary conditions are given by u(0, t) = u(1, t) = A and v(0, t) =
v(1, t) = B/A. The spatial direction x ∈ [0, 1] is divided into equal intervals
of length ∆x and the second-order spatial derivatives are approximated by the
second-order finite-difference schemes

∂2u

∂x2
≈ ui+1 − 2ui + ui−1

∆x2
and

∂2v

∂x2
≈ vi+1 − 2vi + vi−1

∆x2
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Figure 3.1: Floquet multipliers of a periodic solution of the Brusselator for three
different meshes (×: ∆x = 1

8 , �: ∆x = 1
16 , and +: ∆x = 1

32 )

where ui and vi represent u and v at x = i∆x, respectively. Figure 3.1 shows
the complex plane with the Floquet multipliers of a (stable) periodic solution for
A = 2, B = 5.45, Du = 0.008, Dv = 0.004, and L = 1, using the three different
meshes with ∆x = 1

8 , 1
16 , and 1

32 . As expected, refining the mesh results in small
changes in the Floquet multipliers close to the unit circle and an increase in the
number of Floquet multipliers close to zero.

Shooting-Based NPGS Method

In the shooting-based NPGS method, the expensive Newton iteration is only
carried out in the small subspace spanned by the eigenvectors of the monodromy
matrix associated with the Floquet multipliers close to or outside the unit circle.
In the orthogonal complement of this subspace, an efficient Picard iteration
suffices. Therefore, the full monodromy matrix does not need to be calculated
and the computation time can be reduced considerably.

Let the column vectors of the (n× p)-matrix Vp define an orthonormal basis
for the subspace U spanned by the eigenvectors of M associated with the p
Floquet multipliers of greatest magnitude. The number p must be chosen such
that, of these p Floquet multipliers, the multiplier with least magnitude has
a magnitude (much) less than one, so that the Picard iteration converges. In
practice, a minimum magnitude of about 0.5 gives satisfactory results. Let the
column vectors of the (n × (n − p))-matrix Vq define an orthonormal basis for
U⊥, the orthogonal complement of U .

The orthogonal projectors P and Q onto U and U⊥, respectively, are given
by

P = VpV
T

p

Q = VqV
T

q = I − VpV
T

p
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Using these projectors, ∆u0 can be decomposed according to

∆u0 = P∆u0 + Q∆u0 = Vp∆p̄ + Vq∆q̄ = ∆p + ∆q (3.9)

where ∆p̄ and ∆q̄ are p-dimensional and (n − p)-dimensional vectors, respec-
tively. Substitution of (3.9) into (3.2) and premultiplication of the first n equa-
tions by [QT Vp]

T yields






Q(M − I) O 0

V T

p M V T

p MVp − Ip V T

p bT

fT(u0, λ) fT(u0, λ)Vp 0













∆q

∆p̄

∆T






= −







Qr

V T

p r

0






(3.10)

where use has been made of the fact that QMVp = O because U is an invariant
subspace of M , QVp = O, and V T

p ∆q = 0. The (1, 3)-term QbT is put equal
to zero because of the fact that bT evaluated at the periodic solution is the
eigenvector of M associated with the trivial Floquet multiplier. Therefore, bT

is a vector in the subspace U , so that QbT approaches zero as the iteration
converges.

Using the fact that Q∆q = ∆q, the first n equations of (3.10) can be rewrit-
ten as

(QM − I)∆q = −Qr

This set of equations is solved approximately by Picard iteration

∆q ← QM∆q + Qr

Using the initial guess ∆q = 0 and applying only one iteration yields

∆q = Qr = (I − VpV
T

p )r (3.11)

The corrections ∆p̄ and ∆T can then be solved from
(

V T

p MVp − Ip V T

p bT

fT(u0, λ)Vp 0

)(

∆p̄

∆T

)

= −
(

V T

p (r + M∆q)

fT(u0, λ)∆q

)

(3.12)

and the correction ∆u0 is given by

∆u0 = Vp∆p̄ + ∆q (3.13)

In the NPGS method, instead of using the monodromy matrix explicitly the
basis Vp needs to be determined and only p + 1 matrix-vector products with M

(MVp and M∆q) are necessary. The basis Vp is approximated by orthogonal
subspace iteration:

1. Vp ←MVp

2. orthonormalize Vp

The matrix-vector products with M are approximated by forward differences:

Mv ≈ φT (u0 + εv, λ)− φT (u0, λ)

ε

where ε is a small number.
The p Floquet multipliers of greatest magnitude, which determine the sta-

bility of the periodic solution, are the eigenvalues of the projected monodromy
matrix V T

p MVp.
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Finite-Difference-Based NPGS Method

Because of the choice of the finite-difference scheme in (3.7) and the forward
recursion (3.5), the NPGS approach can be used to extend the finite-difference
method to partial differential equations.

The only difference with the shooting-based NPGS method is that in the
finite-difference-based NPGS method the matrix-vector product w = Mv is
given in terms of matrix-vector products with the Jacobian matrix J :

{

w = v

w ← Giw i = 0, . . . , m− 1

where Gi is a function of J , which depends on the applied difference scheme
(the improved Euler scheme, the third-order scheme, or the classical fourth-order
Runge-Kutta scheme). The matrix-vector products with J are approximated by
forward differences:

Jw ≈ f(u + εw, λ)− f(u, λ)

ε
where ε is a small number.

3.3 Path-Following

With the path-following (or pseudo-arclength continuation) method (Fey, 1992;
Doedel et al., 1991; Seydel, 1988), the bifurcation parameter λ is varied to cal-
culate branches of fixed points or periodic solutions. Starting from a known
solution, this method follows a branch of solutions using a predictor-corrector
mechanism. The predictor generates an initial guess for the corrector part, in
which the Newton method is used to find the next solution on the branch. In
the corrector part, the bifurcation parameter λ is considered as an unknown
so that the path-following method is able to pass (cyclic) folds. Therefore, an
extra equation called a parameterizing equation is needed to make the iteration
system solvable.

A predictor can be found by extrapolation from the previous path-following
points. An advantage of such a predictor is its short computation time; disadvan-
tages are the start-up problem and the instability of higher-order extrapolating
polynomials. A better predictor is found by using the tangent to the branch of
steady-state solutions. This predictor can be calculated with little extra cost
because of the availability of the Jacobian matrix for fixed points and the mon-
odromy matrix for periodic solutions, respectively.

Fixed Points

In the first path-following step, the predictor direction (pu, pλ)(1) is calculated
from

1. J (1)p(1)
u

= −b
(1)
λ p

(1)
λ

2. normalize (pu, pλ)(1)
(3.14)

where

bλ =
∂f

∂λ

∣

∣

∣

∣

u,λ
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and the superscript (k) denotes evaluation at path-following point k. Initially,

p
(1)
λ is put equal to 1 if λ must be increased or to −1 if λ must be decreased. If

path-following point 1 was calculated using the Newton method, only one extra
back-substitution with the decomposition of the Jacobian matrix is needed to
solve the linear system in (3.14).

The predictor is calculated from

{

u(k) = u(k−1) + σp
(k−1)
u

λ(k) = λ(k−1) + σp
(k−1)
λ

where k = 2, . . . , npf is the number of the path-following point, npf is the maxi-
mum number of path-following points, and σ is the path-following step size.

In the corrector part, (2.4) is solved using the Newton method with the
predictor as the initial guess, adding a parameterizing equation to make the
linear iteration system in the corrections ∆u(k) and ∆λ(k) solvable:

(

J (k) b
(k)
λ

(p
(k−1)
u )T p

(k−1)
λ

)(

∆u(k)

∆λ(k)

)

= −
(

f (k)

0

)

(3.15)

The parameterizing equation (p
(k−1)
u )T∆u(k) + p

(k−1)
λ ∆λ(k) = 0 forces the cor-

rections to be orthogonal to the predictor direction. The approximate solution
is updated according to

{

u(k) ← u(k) + ∆u(k)

λ(k) ← λ(k) + ∆λ(k)

In subsequent path-following steps, the predictor direction is calculated from

1.

(

J (k) b
(k)
λ

(p
(k−1)
u )T p

(k−1)
λ

)(

p
(k)
u

p
(k)
λ

)

=

(

0

1

)

2. normalize (pu, pλ)(k)

needing only one extra back-substitution with the decomposition of the iteration
matrix. By demanding that the projection of the new predictor direction on the
previous predictor direction equals 1, the direction of the branch is preserved.

As implemented in AUTO 97 (Doedel et al., 1998), the adaptation of the path-
following step size is determined by the convergence history of the corrector. If
the number of iterations is equal to 0 or 1, σ is doubled; if it is equal to 2,
σ is increased by 50%; if it is equal to 3, σ is increased by 10%; and if it is
equal to 4, . . . , 7, σ is not changed. Furthermore, the step size is bounded by a
user-defined maximum.

If in the corrector part there is no convergence (the number of iterations is
more than 7), the norm of the residual ‖f‖ is not decreasing, or the norm of the
corrections ‖(∆u, ∆λ)(k)‖ is not decreasing, the predictor will be discarded and
a new predictor will be calculated after halving the step size.

According to Fey (1992), the path-following method may change the direc-
tion in which the branch of steady-state solutions is followed if the step size



steady-state solvers and path-following 25

is too large, which often occurs at sharp curves in the branch. This can be
avoided by monitoring the angle β1, between the predictor direction and the line
connecting the previous solution with the current approximate solution. The
possibility that the path-following method jumps to another branch or to a re-
mote part of the same branch can be diminished by also monitoring the angle
β2, between the projections on the hyperplane perpendicular to the λ-direction
of the predictor direction and the line connecting the previous solution with the
current approximate solution. If, during the corrector part, β1 or β2 becomes
greater than a user-defined maximum, the predictor will be discarded and a new
predictor will be calculated after halving the path-following step size.

If the step size becomes less than a user-defined minimum, the path-following
method fails.

Shooting Method

For the shooting method, the predictor direction (pu0
, pT , pλ)(1) is calculated

from

1.

(

M (1) − I b
(1)
T

(f (1))T 0

)(

p
(1)
u0

p
(1)
T

)

= −
(

b
(1)
λ

0

)

p
(1)
λ

2. normalize (pu0
, pT , pλ)(1)

(3.16)

where

bλ =
∂φT

∂λ

∣

∣

∣

∣

u0,λ

The predictor is calculated from











u
(k)
0 = u

(k−1)
0 + σp

(k−1)
u0

T (k) = T (k−1) + σp
(k−1)
T

λ(k) = λ(k−1) + σp
(k−1)
λ

In the corrector part, (3.1) is solved using the Newton method with the
predictor as the initial guess, adding a parameterizing equation to make the

linear iteration system in the corrections ∆u
(k)
0 , ∆T (k), and ∆λ(k) solvable:







M (k) − I b
(k)
T b

(k)
λ

(f (k))T 0 0

(p
(k−1)
u0

)T p
(k−1)
T p

(k−1)
λ













∆u
(k)
0

∆T (k)

∆λ(k)






= −







r(k)

0

0






(3.17)

The parameterizing equation (p
(k−1)
u0

)T∆u
(k)
0 + p

(k−1)
T ∆T (k) + p

(k−1)
λ ∆λ(k) = 0

forces the corrections to be orthogonal to the predictor direction. The approxi-
mate solution is updated according to











u
(k)
0 ← u

(k)
0 + ∆u

(k)
0

T (k) ← T (k) + ∆T (k)

λ(k) ← λ(k) + ∆λ(k)
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In subsequent path-following steps, the predictor direction is calculated from

1.







M (k) − I b
(k)
T b

(k)
λ

(f (k))T 0 0

(p
(k−1)
u0

)T p
(k−1)
T p

(k−1)
λ













p
(k)
u0

p
(k)
T

p
(k)
λ






=







0

0

1







2. normalize (pu0
, pT , pλ)(k)

needing only one extra back-substitution with the decomposition of the iteration
matrix.

Multiple-Shooting and Finite-Difference Methods

For the multiple-shooting and finite-difference methods, the predictor direction
(pu0

, pu1
, . . . , pum−1

, pT , pλ)(1) is calculated from

1.

(

M (1) − I b
(1)
T

(f (1))T 0

)(

p
(1)
u0

p
(1)
T

)

= −
(

b
(1)
λ

0

)

p
(1)
λ

2. p
(1)
ui+1

= G
(1)
i p

(1)
ui

+ b
(1)
T,ip

(1)
T + r

(1)
i i = 0, . . . , m− 2

3. normalize (pu0
, pu1

, . . . , pum−1
, pT , pλ)(1)

(3.18)

where
bλ = bλ,m−1 + Gm−1bλ,m−2 + . . . + Gm−1 · · ·G2G1bλ,0

and

bλ,i =
∂φ∆t

∂λ

∣

∣

∣

∣

ui,λ

or bλ,i = ∆t
∂g

∂λ

∣

∣

∣

∣

ui,λ,∆t

for the multiple-shooting or finite-difference methods, respectively.
The predictor is calculated from











u
(k)
i = u

(k−1)
i + σp

(k−1)
ui

i = 0, . . . , m− 1

T (k) = T (k−1) + σp
(k−1)
T

λ(k) = λ(k−1) + σp
(k−1)
λ

In the corrector part, (3.3) and (3.8) are solved using the Newton method
with the predictor as the initial guess, adding a parameterizing equation to make

the linear iteration system in the corrections ∆u
(k)
i (i = 0, . . . , m − 1), ∆T (k),

and ∆λ(k) solvable:
























G
(k)
0 −I b

(k)
T,0 b

(k)
λ,0

G
(k)
1 −I b

(k)
T,1 b

(k)
λ,1

. . .
. . .

...
...

−I G
(k)
m−1 b

(k)
T,m−1 b

(k)
λ,m−1

(f (k))T 0T . . . 0T 0 0

(p
(k−1)
u0

)T 0T . . . 0T p
(k−1)
T p

(k−1)
λ

















































∆u
(k)
0

∆u
(k)
1

...

∆u
(k)
m−1

∆T (k)

∆λ(k)

























=

−
(

r
(k)
0 , r

(k)
1 , . . . , r

(k)
m−1, 0, 0

)
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The parameterizing equation (p
(k−1)
u0

)T∆u
(k)
0 + p

(k−1)
T ∆T (k) + p

(k−1)
λ ∆λ(k) = 0

forces a part of the corrections to be orthogonal to the predictor direction. The
approximate solution is updated according to











u
(k)
i ← u

(k)
i + ∆u

(k)
i i = 0, . . . , m− 1

T (k) ← T (k) + ∆T (k)

λ(k) ← λ(k) + ∆λ(k)

In subsequent path-following steps, the predictor direction is calculated from

1.

























G
(k)
0 −I b

(k)
T,0 b

(k)
λ,0

G
(k)
1 −I b

(k)
T,1 b

(k)
λ,1

. . .
. . .

...
...

−I G
(k)
m−1 b

(k)
T,m−1 b

(k)
λ,m−1

(f (k))T 0T . . . 0T 0 0

(p
(k−1)
u0

)T 0T . . . 0T p
(k−1)
T p

(k−1)
λ

















































p
(k)
u0

p
(k)
u1

...

p
(k)
um−1

p
(k)
T

p
(k)
λ

























=

(0,0, . . . ,0, 0, 1)
2. normalize (pu0

, pu1
, . . . , pum−1

, pT , pλ)(k)

needing only one extra back-substitution with the decomposition of the iteration
matrix.

3.4 Locating Bifurcations and Branch-Switching

During path-following, bifurcations can be encountered. Generally, these can
only be co-dimension one bifurcations. Methods for locating such bifurcations
can be divided into two classes: direct methods and indirect methods. The direct
methods add one or more equations expressing the conditions for a bifurcation
to the two-point boundary-value problem. The extended system of equations
is then solved to locate the bifurcation. The methods described in this section
belong to the class of indirect methods, in which a zero of a scalar test function
is calculated to locate the bifurcation. The advantage of the indirect methods is
that the standard path-following method can be used because of the fact that no
equations are added to the two-point boundary-value problem. If during path-
following a bifurcation is passed, the number of unstable eigenvalues or Floquet
multipliers changes. By monitoring this number, the zero of the test function
can be bracketed, and the false position method can be used to find the zero as a
function of the path-following step size. For each co-dimension one bifurcation,
a separate test function needs to be defined.

After a co-dimension one bifurcation has been found, branch-switching can
be used to switch the direction of the path-following method and to calculate
the branch of steady-state solutions that emanates from the bifurcation.

Branches of Fixed-Points

At a fold, the tangent to the branch of steady-state solutions is vertical, so that
the predictor-direction parameter-component pλ is equal to zero. Therefore, this
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component is used as the fold test function. The number of unstable eigenvalues
changes by one if a fold is passed.

A primary Hopf bifurcation is characterized by a pair of complex conjugated
eigenvalues with zero real part (±iωH). Therefore, the value of the real part
of the pair of complex conjugated eigenvalues that crosses the imaginary axis
is used as the primary Hopf bifurcation test function. The number of unstable
eigenvalues changes by two if a primary Hopf bifurcation is passed.

The branch of periodic solutions that emanates from the primary Hopf bifur-
cation can be found by branch-switching: a predictor direction for this branch is
determined and the path-following method for periodic solutions is started from
the primary Hopf bifurcation.

The following is a slight modification of the method to determine a predictor
direction by Jansen (1995). At a primary Hopf bifurcation, the matrix J 2 +ω2

HI

has a double zero eigenvalue. If v + iw is the eigenvector of J associated with
the eigenvalue iωH, then v and Jv span the eigenspace of J2 + ω2

HI associated
with the zero eigenvalue. The vector v can be found from







J2 + ω2
HI w1 w2

wT

1 0 0

wT

2 0 0













v

φ1

φ2






=







0

1

1







where w1 and w2 are random vectors and the solution must have φ1 = φ2 = 0.
The eigenvector is normalized according to v ← v/‖v‖.

The periodic solution at the primary Hopf bifurcation coincides with the
fixed point and its period T = 2π/ωH. For the shooting method, the predictor
direction is given by (pu0

, pT , pλ)(1) = (v, 0, 0). For the multiple-shooting and
finite-difference methods, the predictor direction is calculated from

1.











p
(1)
ui

= v cos(2πi/m) + (Jv/‖Jv‖) sin(2πi/m) i = 0, . . . , m− 1

p
(1)
T = 0

p
(1)
λ = 0

2. normalize (pu0
, pu1

, . . . , pum−1
, pT , pλ)(1)

Branches of Periodic-Solutions

Similar to the fold for branches of fixed-points, the predictor-direction parame-
ter-component pλ is used as the cyclic fold test function. The number of unstable
Floquet multipliers changes by one if a cyclic fold is passed.

A secondary Hopf bifurcation is characterized by a pair of complex conju-
gated Floquet multipliers on the unit circle. Therefore, the difference between
the magnitude of the Floquet multiplier with positive imaginary part that crosses
the unit circle and one is used as the secondary Hopf bifurcation test function.
The number of unstable Floquet multipliers changes by two if a secondary Hopf
bifurcation is passed.

At a flip bifurcation, one of the Floquet multiplier crosses the unit circle
at −1. The flip bifurcation test function that is generally used is given by
det(M + I) and can be easily computed by adding one to all the Floquet mul-
tipliers and calculating the product of these values.
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To determine a predictor direction for the branch of double-period solutions
emanating from the flip bifurcation, the eigenvector v associated with the eigen-
value −1 is needed. This eigenvector can be calculated from

(

M + I w

wT 0

)(

v

φ

)

=

(

0

1

)

where w is a random vector and the solution must have φ = 0. The eigenvector
is normalized according to v ← v/‖v‖.

At the flip bifurcation, the double-period solution coincides with the single-
period solution and has a period that is equal to twice the period of the single-
period solution. For the shooting method, the predictor direction is given by
(pu0

, pT , pλ)(1) = (v, 0, 0). For the multiple-shooting and finite-difference meth-
ods, the predictor direction is calculated from

1.











p
(1)
ui

= v cos(2πi/m) i = 0, . . . , m− 1

p
(1)
T = 0

p
(1)
λ = 0

2. normalize (pu0
, pu1

, . . . , pum−1
, pT , pλ)(1)

3.5 Comparison of Periodic-Solution Solvers

In this section, the efficiency of the different periodic-solution solvers is compared
by carrying out a so-called homotopy calculation. In such a calculation, the
path-following method is started from a known solution and continued until the
bifurcation parameter reaches a desired value.

The calculations will be carried out on the symmetric rotor-bearing system
with a rigid rotor schematically depicted in figure 2.1 of the previous chapter,
using the compliant short journal-bearing model of the next chapter to calculate
the bearing reaction force components in the x- and y-directions. The compliant
short journal-bearing model adds a nonlinear partial differential equation to the
equations of motion of the rotor. This partial differential equation is spatially
discretized using finite differences, dividing the circumferential direction into 50
intervals of equal length. The resulting autonomous state-space form of the
rotor-bearing system has a dimension of 56 and is given by























































u′1 = u2

u′2 = 2F ∗

x /F ∗

0 + Ω∗2a∗u56

u′3 = u4

u′4 = 2F ∗

y /F ∗

0 + Ω∗2a∗u55

∂h

∂τ
= − 1

2

(

3h3p̄∗

(L/D)2
+ Ω∗

∂h

∂θ

)

u′55 = u55 + Ω∗u56 − u55(u
2
55 + u2

56)

u′56 = −Ω∗u55 + u56 − u56(u
2
55 + u2

56)

where u1 = εx, u2 = ε′x, u3 = εy, u4 = ε′y, p̄∗ = (h−1− εx sin θ+ εy cos θ)/B and
u55 and u56 are the extra state variables of the nonlinear oscillator. The spatial
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Total time Number of Time per
[s] pf-points pf-point [s]

Shooting 319. 4 79.8
Finite-difference 158. 4 39.5
Shooting-based NPGS 85.7 4 21.4
Finite-difference-based NPGS 16.3 4 4.08

Table 3.1: Results of the different path-following methods

discretization of the partial differential equation will yield the expressions for u5

to u54. Note that the term −1 in the fourth equation, which results from the
constant load F0, is put equal to zero to be able to start from a known solution.
By means of another homotopy calculation with an extra parameter, this term
can be decreased to −1 again.

Here, the nondimensional unbalance a∗ is used as the homotopy parame-
ter. For a∗ = 0, the known fixed point of the rotor-bearing system is given by
(u1, u2, u3, u4, h, u55, u56) = (0, 0, 0, 0, 1, sin(Ω∗τ), cos(Ω∗τ)). Using the different
path-following methods for periodic solutions, the nondimensional unbalance is
increased from 0 to 0.2.

The results of the shooting method, the finite-difference method, the shoot-
ing-based NPGS method, and the finite-difference-based NPGS method are given
in table 3.1. For the homotopy calculation of the rotor-bearing system, the
shooting-based NPGS method turns out to be almost four times faster than
the shooting method. The finite-difference-based NPGS method is even almost
ten times faster than the finite-difference method. Because of the fact that
the finite-difference method is already about two times more efficient than the
shooting method, the finite-difference-based NPGS method turns out to be more
than five times faster than the shooting-based NPGS method. However, the
finite-difference-based NPGS method has the same disadvantages as the stan-
dard finite-difference method, such as numerical instability for stiff systems and
inaccuracy for complicated periodic solutions containing higher harmonics. The
rotor-bearing systems dealt with in this thesis appear to be not stiff and their
periodic solutions to be relatively simple.
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Journal-Bearing Models

In this chapter, compliant journal-bearing models for rotordynamic applications
will be developed. First, the classical analytical rigid short (Ocvirk and DuBois,
1953) and long (Sommerfeld, 1904) journal-bearing models, on which the com-
pliant bearing models are based, will be described. In this description, new
exact results will be presented for the rigid long bearing. Also an analytical ap-
proximate finite-length model from literature and a numerical exact finite-length
model for the rigid journal bearing will be treated. Subsequently, new compliant
short and long plain journal-bearing models will be developed.

4.1 Rigid Journal-Bearing Models

Figure 4.1 schematically shows the geometry of a rigid plain journal bearing.
The origin of the the stationary x, y, z-coordinate system is located at the center
of the bearing. The angular coordinate φ is measured from the maximum film
thickness. The journal with radius R rotates with a constant angular speed Ω
about the z-axis. The position of its center is given by the eccentricity vector e

with attitude angle γ. The radial clearance is given by C and the film thickness
by H. The film thickness can be found using the cosine rule of triangles:

(R + H)2 = (R + C)2 + e2 + 2(R + C)e cosφ

where e = ‖e‖. Expanding this equation, dividing by R2, and discarding second-
order terms in H/R, C/R, and e/R yields

H = C + e cos φ

With the nondimensional quantities h = H/C and ε = e/C, this equation can
be rewritten as

h = 1 + ε cos φ (4.1)

where ε = ‖ε‖.
The pressure p in the lubricant film of a journal bearing is governed by the

Reynolds equation (see appendix A), given by

1

R2

∂

∂φ

(

H3 ∂p

∂φ

)

+ H3 ∂2p

∂z2
= 6µ

(

Ω
∂H

∂φ
+ 2

∂H

∂t

)
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bearing center

R Ω

journal center

e

H

R + C

x
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φ
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Figure 4.1: Geometry of a rigid plain journal bearing

where µ is the lubricant viscosity. For rigid journal bearings, the Reynolds
equation is a linear partial differential equation in p. With the nondimensional
quantities Ω∗ = Ω/Ω0 (Ω0 is a constant angular frequency which will be defined
in the next chapter, p∗ = (C/R)2p/6µΩ0, z∗ = z/L (L is the bearing length),
and τ = Ω0t, the Reynolds equation becomes

∂

∂φ

(

h3 ∂p∗

∂φ

)

+
h3

4(L/D)2
∂2p∗

∂z∗2 = Ω∗
∂h

∂φ
+ 2

∂h

∂τ
(4.2)

where D is the journal diameter. In literature, Ω is normally applied to scale
the equations; in this thesis, Ω0 is taken for that purpose because of the fact
that Ω (actually Ω∗) will be used as the bifurcation parameter. The boundary
conditions for p∗ are periodicity with respect to φ, symmetry at z∗ = 0, and p∗ =
0 at z∗ = − 1

2 and at z∗ = 1
2 . To model cavitation, negative values of the pressure

are put equal to zero. Although this approach causes discontinuities in the flow of
the lubricant, it is easy to implement as compared to the more realistic approach
in which continuity is imposed at the boundaries of the (unknown) cavitation
area. With the latter approach, the nondimensional pressure p∗ cannot be solved
directly from the Reynolds equation (4.2) because of the fact that the cavitation
area needs to be found by iteration.

After substitution of (4.1), the right-hand side of (4.2) becomes

2{ε′ cos φ + ε(γ′ − 1
2Ω∗) sin φ} (4.3)

where a prime denotes the total derivative with respect to τ . This expression
can be restated as

2v∗s cos(α + φ) (4.4)

(Childs et al., 1977), where v∗s = ‖v∗s ‖ and v∗s = vs/CΩ0. To see this, the so-
called pure-squeeze velocity vector vs is introduced and defined by the journal
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Figure 4.2: Angle between the pure-squeeze velocity vector and the eccentricity
vector

velocity relative to a coordinate system rotating with an angular speed of 1
2Ω

about the z-axis:
vs = ė− (0, 0, 1

2Ω)× e

The angle between vs and e is denoted by α as shown in figure 4.2. The ξ-axis and
the η-axis of the ξ, η-coordinate system depicted in this figure are chosen parallel
and normal to the pure-squeeze velocity vector, respectively. The unit vectors
iε and iγ are chosen parallel and normal to the eccentricity vector, respectively.
The nondimensional pure-squeeze velocity vector v∗s is given by

v∗s = ε′ − (0, 0, 1
2Ω∗)× ε = (ε′x + 1

2Ω∗εy, ε′y − 1
2Ω∗εx, 0) (4.5)

Because the components of ε′ parallel and normal to the eccentricity vector
are equal to ε′ and εγ′, respectively, according to (4.5) the components of v∗s
parallel and normal to the eccentricity vector are given by ε′ and ε(γ′ − 1

2Ω∗),
respectively. The latter components can be written as v∗s cos α and −v∗s sin α,
respectively, and substitution into (4.3) yields (4.4).

The bearing reaction force components Fε and Fγ parallel and normal to
the eccentricity vector, respectively, are found by integration of the pressure
according to

Fε = LR

∫ 2π

0

p̄ cos φ dφ and Fγ = LR

∫ 2π

0

p̄ sin φ dφ

where p̄ is the pressure averaged in the axial direction:

p̄ =
1

L

∫ 1
2
L

−
1
2
L

p dz (4.6)

With the nondimensional quantity F ∗

i = (C/R)2Fi/µΩ0LD (i = ε, γ), the equa-
tions for Fε and Fγ can be rewritten as

F ∗

ε = 3

∫ 2π

0

p̄∗ cos φ dφ and F ∗

γ = 3

∫ 2π

0

p̄∗ sin φ dφ (4.7)
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where p̄∗ is given by

p̄∗ =

∫ 1
2

−
1
2

p∗ dz∗ (4.8)

To eliminate the dependence on v∗s , the rigid journal-bearing models are
defined in terms of the so-called impedance vector, whose components Wi in
some coordinate system are related to the nondimensional bearing reaction force
components F ∗

i according to

F ∗

i = −v∗s Wi (4.9)

In the following subsections, analytical expressions will be derived for the
impedance components of the short, long, and approximate finite-length plain
journal-bearing models. An exact finite-length journal-bearing model is obtained
by discretization of the Reynolds equation by finite differences.

Short Bearing

For bearings with a length-diameter ratio L/D less than about 1
2 , the pressure

gradient in the circumferential direction can be neglected in comparison to the
pressure gradient in the axial direction, so that the first term on the left-hand
side of the Reynolds equation (4.2) can be discarded. Integration with respect
to z∗ using the boundary conditions p∗ = 0 at z∗ = − 1

2 and at z∗ = 1
2 yields

p∗ = −(1− 4z∗2)v∗s cos(α + φ)(L/D)2/h3

and

p̄∗ = − 2
3v∗s cos(α + φ)(L/D)2/h3 (4.10)

which is positive between the angles φ1 = 1
2π − α and φ2 = 3

2π − α.
The impedance components Wε and Wγ parallel and normal to the eccen-

tricity vector, respectively, can be found from substitution of (4.10) into (4.7)
using (4.9) and are given by

Wε = 2(I02
3 cos α− I11

3 sin α)(L/D)2

Wγ = 2(I11
3 cos α− I20

3 sin α)(L/D)2
(4.11)

where

Ijk
m =

∫ φ2

φ1

sinjφ coskφh−m dφ

is the so-called journal-bearing integral. A recursive table of the journal-bearing
integral is given by Booker (1965b). Evaluation of the integrals yields

I02
3 =

1

2(1− ε2)2

[

(1 + 2ε2)I00
1 +

2ε cos α{3 + (2− 5ε2) sin2α}
(1− ε2 sin2α)2

]

I11
3 = − 2ε sin3α

(1− ε2 sin2α)2

I20
3 =

1

2(1− ε2)

[

I00
1 +

2ε cos α{1− (2− ε2) sin2α}
(1− ε2 sin2α)2

]



journal-bearing models 35

0.6

0.75

1

1.5

2

5

10

25

100

1000
10000

PSfrag replacements

π

ξ

η

4.25
4.5

5

6

7.5

3

12.5

25

50
100
250

1000
PSfrag replacements

π

ξ

η

Figure 4.3: Short (L/D = 1) and long plain journal-bearing impedance plots

where

I00
1 =

arccos(−δA) + arccos(−δB)√
1− ε2

(4.12)

and

A =
ε + sin α

1 + ε sin α
B =

ε− sin α

1− ε sin α

δ = 1, cos α ≥ 0
−1, cos α < 0

The impedance components Wξ and Wη parallel and normal to the pure-squeeze
velocity vector, respectively, can be found from

Wξ = Wε cos α−Wγ sin α

Wη = Wε sin α + Wγ cos α
(4.13)

Like Wε and Wγ , these components are functions of ε, α, and L/D, but Wη

is symmetric about the ξ-axis. The left panel of figure 4.3 shows the short
plain journal-bearing impedance plot for L/D = 1 in the ξ, η-coordinate system,
where the magnitude and the direction of the impedance vector are indicated by
contour lines and arrows, respectively. Because of symmetry about the ξ-axis,
only half the impedance plot is shown.

The components in the x, y-coordinate system can be found from

Wx = Wε sin γ + Wγ cos γ

Wy = −Wε cos γ + Wγ sin γ
(4.14)

which are functions of ε, α, L/D, and γ. The nondimensional bearing reaction
force components F ∗

x and F ∗

y in the x-direction and in the y-direction, respec-
tively, can be found from (4.9).

Moes and Bosma (1981) give simplified expressions for the impedance compo-
nents of the short plain journal bearing parallel and normal to the pure-squeeze
velocity vector.
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Long Bearing

For bearings with a length-diameter ratio greater than about 2 and bearings that
are perfectly sealed, the pressure can be assumed constant in the axial direction,
so that the second term on the left-hand side of the Reynolds equation (4.2) can
be discarded. Integration with respect to φ yields

p∗ = p̄∗ = −v∗s (cosα cos φ− b sin α sin φ)(2 + ε cos φ)/h2 (4.15)

(Childs et al., 1977), where b = 2/(2 + ε2). The boundary conditions used to
obtain (4.15) are periodicity with respect to φ and the requirement that p∗ is
positive over π radians. The positive pressure sector is located between the
angles φ1 and φ2, defined by

b tanφ1 = 1/ tanα and φ2 = φ1 + π

Solving φ1 from the first equation yields

φ1 = 1
2π − α + arctan

ε2 sin(2α)

4 + ε2(1 + cos(2α))

The impedance components parallel and normal to the eccentricity vector
can be found from substitution of (4.15) into (4.7) using (4.9) and are given by

Wε = 3{(2I02
2 + εI03

2 ) cosα− b(2I11
2 + εI12

2 ) sin α}
Wγ = 3{(2I11

2 + εI12
2 ) cos α− b(2I20

2 + εI21
2 ) sin α} (4.16)

Evaluation of the integrals yields the following new exact expressions:

2I02
2 + εI03

2 =
1

1− ε2

[

I00
1 +

2ε sin φ1{1 + (1− ε2) cos2φ1}
1− ε2 cos2φ1

]

2I11
2 + εI12

2 = − 2ε cos3φ1

1− ε2 cos2φ1

2I20
2 + εI21

2 = I00
1 −

2ε sin φ1 cos2φ1

1− ε2 cos2φ1

where I00
1 is given by (4.12) and

A =
ε + cos φ1

1 + ε cos φ1
B =

ε− cos φ1

1− ε cos φ1

δ = 1, sin φ1 ≥ 0
−1, sin φ1 < 0

The right panel of figure 4.3 shows the long plain journal-bearing impedance
plot.

Moes and Bosma (1981) give approximate expressions for the impedance
components of the long plain journal bearing, which exhibit considerable devia-
tions for moderate to large ε and α > 1

2π from the exact impedance components
given here.
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Figure 4.4: Approximate and exact finite-length plain journal-bearing impedance
plots (L/D = 1)

Approximate Finite-Length Bearing

For small values of ε the short-bearing impedance components correspond well
to the exact finite-length solution of the Reynolds equation, while the long bear-
ing impedance components are too large. On the other hand, for large values
of ε the long-bearing impedance components correspond well to the exact finite-
length solution, while the short-bearing impedance components are too large.
Using these facts, Moes and Bosma (1981) proposed an approximate finite-length
bearing model by combining the short and long journal-bearing impedance com-
ponents as follows:

1/Wε = 1/W short
ε + 1/W long

ε

1/Wγ = 1/W short
γ + 1/W long

γ

(4.17)

The left panel of figure 4.4 shows the approximate finite-length plain journal-
bearing impedance plot for L/D = 1.

Exact Finite-Length Bearing

Exact finite-length-bearing impedance components can be found numerically by
solving q∗ = p∗/v∗s from the rewritten Reynolds equation

∂

∂φ

(

h3 ∂q∗

∂φ

)

+
h3

4(L/D)2
∂2q∗

∂z∗2 = 2 cos(α + φ) (4.18)

using discretization with finite differences. Because of symmetry, only half the
bearing (0 ≤ φ < 2π, 0 ≤ z∗ < 1

2 ) needs to be modeled. This area is discretized
using a uniform mesh with intervals ∆φ = 2π/nφ and ∆z∗ = 1/2nz, where nφ
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and nz are the number of intervals in the φ-direction and in the z∗-direction,
respectively. The derivatives are approximated by the finite-difference schemes

∂

∂φ

(

h3 ∂q∗

∂φ

)

≈
h3

i+ 1
2

q∗i+1,j − (h3
i+ 1

2

+ h3
i− 1

2

)q∗i,j + h3
i− 1

2

q∗i−1,j

∆φ2

∂2q∗

∂z∗2 ≈
q∗i,j+1 − 2q∗i,j + q∗i,j−1

∆z∗2

(4.19)

where q∗i,j and hi represent q∗ and h at (φ, z∗) = (φi, z
∗

j ) = (i∆φ, j∆z∗), re-
spectively. The boundary conditions for q∗ are periodicity with respect to φ
and q∗ = 0 at z∗ = − 1

2 and at z∗ = 1
2 . Because of symmetry, it follows that

∂q∗/∂z∗ = 0 at z∗ = 0, and the central-difference scheme yields q∗i,−1 = q∗i,1.
Negative values of q∗i,j are put equal to zero.

The impedance components parallel and normal to the eccentricity vector
are given by

Wε = −3

∫ 2π

0

q̄∗ cos φ dφ and Wγ = −3

∫ 2π

0

q̄∗ sin φ dφ (4.20)

where

q̄∗ = 2

∫ 1
2

0

q∗ dz∗

The integrals are approximated using Simpson’s rule. The right panel of figure
4.4 shows the exact finite-length plain journal-bearing impedance plot for L/D =
1 with nφ = 200 and nz = 16.

4.2 Compliant Journal-Bearing Models

Figure 4.5 schematically shows the geometry of a compliant plain journal bearing
with an elastically deformed bearing liner, where the dashed circle represents the
undeformed situation. The origin of the stationary x, y, z-coordinate system is
located at the center of the undeformed bearing. For the compliant journal-
bearing models, the angular coordinate θ is used which is measured from the
positive y-axis. The journal with radius R is assumed to be rigid and rotates
with a constant angular speed Ω about the z-axis. The position of its center is
given by the eccentricity vector e with attitude angle γ. The radial clearance
of the undeformed bearing is given by C, the film thickness by H, and the
bearing-liner deformation is measured by U . Because of the necessity of two
boundary conditions, for the long-bearing solution a lubricant inlet at the top
of the bearing is assumed.

The film thickness can be found using the cosine rule of triangles:

(R + H)2 = (R + C + U)2 + e2 + 2(R + C + U)e cos(θ − γ)

Expanding this equation, dividing by R2, and discarding second-order terms in
H/R, C/R, e/R, and U/R yields

H = C + e cos(θ − γ) + U = C + ex sin θ − ey cos θ + U
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Figure 4.5: Geometry of a compliant plain journal bearing

where ex and ey are the eccentricity components in the x-direction and in the
y-direction, respectively. With the nondimensional quantity u = U/C this equa-
tion can be rewritten as

h = 1 + εx sin θ − εy cos θ + u (4.21)

In the Reynolds equation (4.2), θ is substituted for φ. For compliant jour-
nal bearings, the Reynolds equation is a nonlinear partial differential equation
because of the fact that the film thickness is coupled to the pressure by way of
the the bearing liner elasticity. Choosing the nondimensional film thickness h as
the degree of freedom in the model, (4.2) becomes a nonlinear partial differential
equation in h and can be rewriting as

∂h

∂τ
= 1

2

{

∂

∂θ

(

h3 ∂p∗

∂θ

)

+
h3

4(L/D)2
∂2p∗

∂z∗2 −Ω∗
∂h

∂θ

}

(4.22)

where p∗ can be expressed in terms of εx, εy, and h using the elasticity equation
given below.

Assuming plain strain and Poisson’s ratio not close to 0.5, the deformation
of a thin elastic liner on a rigid backing can be approximated by

U =
pd(1 + ν)(1− 2ν)

E(1− ν)

(Hlaváček and Vokoun, 1993; Armstrong, 1986; Higginson, 1966), where d, E,
and ν are the thickness, Young’s modulus, and Poisson’s ratio of the bearing
liner, respectively. This equation can be rewritten as

u = Bp∗ (4.23)

(Higginson, 1966), where B is the nondimensional relative bearing-liner compli-
ance, given by

B =
6µΩ0d(1 + ν)(1− 2ν)

(C/R)2CE(1− ν)
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which can be regarded as the ratio of lubricant-film to bearing-liner stiffness or
as the ratio of bearing-liner to lubricant-film deformation. For rigid bearings, B
is equal to zero. Note that for simplicity damping of the bearing liner has been
neglected. The nondimensional pressure p∗ can be expressed in terms of εx, εy,
and h by substitution of (4.23) into (4.21) and solving for p∗:

p∗ = (h− 1− εx sin θ + εy cos θ)/B (4.24)

To include the compliant journal-bearing model in the model of a rotor-
bearing system, the nonlinear partial differential equation (4.22) in the film
thickness is added to the equations of motion of the system. By means of spatial
discretization with finite differences, the partial differential equation is trans-
formed into a (large) set of ordinary differential equations in the discretized film
thicknesses.

The bearing reaction force components Fx and Fy in the x-direction and in
the y-direction, respectively, are found by integration of the pressure according
to

Fx = LR

∫ 2π

0

p̄ sin θ dθ and Fy = −LR

∫ 2π

0

p̄ cos θ dθ

where p̄ is the pressure averaged in the axial direction according to (4.6). The
nondimensional bearing reaction force components F ∗

x and F ∗

y in the x-direction
and in the y-direction, respectively, are given by

F ∗

x = 3

∫ 2π

0

p̄∗ sin θ dθ and F ∗

y = −3

∫ 2π

0

p̄∗ cos θ dθ (4.25)

where p̄∗ is given by (4.8). As an approximate cavitation model negative pres-
sures are put equal to zero in the evaluation of these integrals, whereas in the
nonlinear partial differential equation (4.22) negative values are allowed. This
approach provides a smooth approximation to the more accurate discontinuous
cavitation model, in which constraints are used to prevent the discretized film
thicknesses from causing negative pressures. The nonlinear dynamics of discon-
tinuous systems that are not approximated by smoothing are treated by Leine
et al. (2000). This work is based on previous research on dry friction models by
van de Vrande et al. (1999, 1997).

Spatial discretization of the two-dimensional nonlinear partial differential
equation (4.22) yields a compliant exact finite-length journal-bearing model.
This model will not be treated in this thesis because of the fact that the re-
sulting system of ordinary differential equations is very large. In the following
subsections, the partial differential equation will be simplified for the short- and
long-bearing approximations.

Short Bearing

Neglecting the first term on the left-hand side of the Reynolds equation (4.2),
integration of this equation with respect to z∗, and using the boundary conditions
p∗ = 0 at z∗ = − 1

2 and at z∗ = 1
2 yields

p∗ = − (1− 4z∗2)

2h3

(

Ω∗
∂h

∂θ
+ 2

∂h

∂τ

)(

L

D

)2
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so that

p̄∗ = − 1

3h3

(

Ω∗
∂h

∂θ
+ 2

∂h

∂τ

)(

L

D

)2

(4.26)

Rearranging the terms in this equation yields the following nonlinear partial
differential equation in the film thickness:

∂h

∂τ
= − 1

2

(

3h3p̄∗

(L/D)2
+ Ω∗

∂h

∂θ

)

(4.27)

Assuming that the bearing-liner deformation is a function of the average pressure
(u = Bp̄∗), it is not a function of z but only of θ and it follows that

p̄∗ = (h− 1− εx sin θ + εy cos θ)/B

and the partial differential equation (4.27) becomes one-dimensional. The deriva-
tive of the nondimensional film thickness with respect to the angular coordinate
is discretized by the second-order backward-difference scheme

∂h

∂θ

∣

∣

∣

∣

i

≈ 3hi − 4hi−1 + hi−2

2∆θ
(4.28)

using periodicity as the boundary condition. This finite-difference scheme is
used because of its numerical stability.

Long Bearing

Neglecting the term with the derivative with respect to z∗ in (4.22) yields

∂h

∂τ
= 1

2

(

∂

∂θ

(

h3 ∂p∗

∂θ

)

−Ω∗
∂h

∂θ

)

(4.29)

where p∗ is given by (4.24). For the long bearing, by definition p∗ is a function
only of θ, so that (4.29) is one-dimensional. The first derivative in the right-hand
side of (4.29) is discretized by the finite-difference scheme

∂

∂θ

(

h3 ∂p∗

∂θ

)∣

∣

∣

∣

i

≈
h3

i+ 1
2

p∗i+1 − (h3
i+ 1

2

+ h3
i− 1

2

)p∗i + h3
i− 1

2

pi−1

∆θ2

where hi+ 1
2

is approximated by − 1
8hi−1 + 3

4hi + 3
8hi+1. The derivative of h

with respect to θ is discretized by (4.28). Because of the fact that the boundary
conditions used for the rigid long journal-bearing model cannot be used for the
compliant long journal-bearing model, a lubricant inlet at the top of the bearing
is assumed. In this case the two boundary conditions, necessary for the second-
order partial differential equation (4.29), are periodicity with respect to θ and
p∗ = 0 at θ = 0.
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Figure 4.6: Compliant short-bearing (L/D = 1, S = 2.5, right panel) and long-
bearing (S = 5.0, left panel) pressure distributions, respectively (dotted line:
B = 0, dashed line: B = 0.01, dash-dotted line: B = 0.1, solid line: B = 1)

Pressure Distributions

The influence of the nondimensional relative bearing-liner compliance B on the
nondimensional pressure distribution p∗0 evaluated at the equilibrium position is
depicted in the left and right panels of figure 4.6 for the compliant short and
long plain journal-bearing models, respectively. In this figure, p∗0 is plotted as
a function of the circumferential coordinate for the Sommerfeld numbers S =
2.5 and S = 5.0 for the short- and long-bearing models, respectively, and for
different values of B. The dotted lines in the figure represent the results of
the corresponding rigid journal bearings, for which B is equal to zero. For the
calculations, Ω∗ is put equal to 1. For the short bearing, the influence of the
bearing-liner compliance on the peak pressure is considerable.

4.3 Rigid Bearing Stiffness and Damping Coefficients

In linear rotordynamics, stiffness and damping coefficients are used to model
the journal bearings. With these coefficients, small-amplitude synchronous vi-
brations about an equilibrium position can be calculated and the stability of
the equilibrium position can be analyzed (to determine the stability threshold).
In this section, these coefficients will be derived for the rigid journal-bearing
models.

It is assumed (without loss of generality) that a constant load of magnitude
F0 is applied to the bearing in the negative y-direction. Furthermore, Ω0 is
chosen equal to Ω, so that Ω∗ = 1. The equilibrium position of the journal is
given by ε = ε0(sin γ0,− cos γ0), whereas by definition ε′ = 0. From (4.5) it
follows that v∗s,0 = 1

2 (− cos γ0,− sin γ0, 0), so that α0 = 1
2π. The stiffness and

damping coefficients are defined by

kij = −∂Fi

∂ej
and bij = −∂Fi

∂ėj
(4.30)

where i, j = x, y and the derivatives are evaluated at the equilibrium position.
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With the nondimensional quantities

k∗ =
(C/R)2C

µΩLD
k and b∗ =

(C/R)2C

µLD
b

(4.30) can be rewritten as

k∗ij = −∂F ∗

i

∂εj
and b∗ij = −∂F ∗

i

∂ε′j
(4.31)

To express the nondimensional stiffness and damping coefficients in terms of the
impedance components, (4.9) is used to expand (4.31) according to

k∗ij =

(

∂v∗s
∂εj

Wi,0 + v∗s,0
∂Wi

∂εj

)

and b∗ij =
∂v∗s
∂ε′j

Wi,0 + v∗s,0
∂Wi

∂ε′j
(4.32)

Using the definition v∗2s = (ε′x + 1
2 εy)2 + (ε′y − 1

2 εx)2, it follows that v∗s,0 = 1
2 ε0

and the derivatives of v∗s evaluated at the equilibrium position are given by

∂v∗s
∂εx

= 1
2 sin γ0

∂v∗s
∂ε′x

= − cos γ0

∂v∗s
∂εy

= − 1
2 cos γ0

∂v∗s
∂ε′y

= − sin γ0

From (4.14) it follows that

Wx,0 = Wε,0 sin γ0 + Wγ,0 cos γ0

Wy,0 = −Wε,0 cos γ0 + Wγ,0 sin γ0

so that the derivatives of Wx and Wy with respect to εi and ε′i are given by

∂Wx

∂εi
=

(

∂Wε

∂ε
sin γ0 +

∂Wγ

∂ε
cos γ0

)

∂ε

∂εi
+ (Wε,0 cos γ0 −Wγ,0 sin γ0)

∂γ

∂εi

∂Wy

∂εi
=

(

−∂Wε

∂ε
cos γ0 +

∂Wγ

∂ε
sin γ0

)

∂ε

∂εi
+ (Wε,0 sin γ0 + Wγ,0 cos γ0)

∂γ

∂εi

∂Wx

∂ε′i
=

(

∂Wε

∂α
sin γ0 +

∂Wγ

∂α
cos γ0

)

∂α

∂ε′i
∂Wy

∂ε′i
=

(

−∂Wε

∂α
cos γ0 +

∂Wγ

∂α
sin γ0

)

∂α

∂ε′i

where i = x, y. Using the definitions

ε =
√

ε2x + ε2y γ = − arctan
εx

εy
α = arctan

εy

εx
− arctan

ε′y − 1
2 εx

ε′x + 1
2 εy

it follows that the derivatives of ε, γ, and α with respect to εi and ε′i are given
by

∂ε

∂εx
= sin γ0

∂γ

∂εx
=

1

ε0
cos γ0

∂α

∂ε′x
= − 2

ε0
sin γ0

∂ε

∂εy
= − cos γ0

∂γ

∂εy
=

1

ε0
sin γ0

∂α

∂ε′y
=

2

ε0
cos γ0
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Figure 4.7: Rigid bearing nondimensional eccentricity versus Sommerfeld num-
ber and equilibrium locus for L/D = 1 (dotted line: short, dashed line: long,
dash-dotted line: approximate finite-length, solid line: exact finite-length)

The attitude angle at the equilibrium position can be found from

γ0 = − arctan
Wγ,0

Wε,0

In the following subsections, analytical expressions will be derived for the
stiffness and damping coefficients of the short, long, and approximate finite-
length plain journal-bearing models. The stiffness and damping coefficients of
the exact finite-length plain journal-bearing model will also be given.

Short Bearing

The impedance components of the short journal bearing parallel and normal to
the eccentricity vector evaluated at the equilibrium position (ε = ε0 and α = 1

2π)
are given by

Wε,0 =
4ε0

(1− ε20)
2

(

L

D

)2

and Wγ,0 = − π

(1− ε20)
3/2

(

L

D

)2

(4.33)

Using these expressions, the Sommerfeld number S = F ∗

0 = 1
2 ε0W0 and the

attitude angle evaluated at the equilibrium position are given by

S =
ε0
√

16ε20 + π2(1− ε20)

2(1− ε20)
2

(

L

D

)2

and γ0 = arctan
π
√

1− ε20
4ε0

(4.34)

The dotted lines in the left and right panels of figure 4.7 show the nondimensional
eccentricity versus the Sommerfeld number and the equilibrium locus of the short
journal bearing for L/D = 1, respectively.

Taking the derivatives of Wε and Wγ given by (4.11) with respect to ε and
α and evaluation at the equilibrium position yields

∂Wε

∂ε
=

4(1 + 3ε20)

(1− ε20)
3

(

L

D

)2
∂Wε

∂α
= − π(1 + 2ε20)

(1− ε20)
5/2

(

L

D

)2

∂Wγ

∂ε
= − 3πε0

(1− ε20)
5/2

(

L

D

)2
∂Wγ

∂α
=

4ε0
(1− ε20)

2

(

L

D

)2 (4.35)
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Figure 4.8: Rigid bearing stiffness coefficients for L/D = 1 (dotted line: short,
dashed line: long, dash-dotted line: approximate finite-length, solid line: exact
finite-length)

Substitution of (4.33) and (4.35) into (4.31) and using (4.34) yields the nondi-
mensional stiffness and damping coefficients given in appendix B. The dotted
lines in figures 4.8 and 4.9 show the stiffness and damping coefficients of the
short journal bearing as functions of the eccentricity, respectively. As known,
the cross stiffness and damping coefficients are mostly negative.

Long Bearing

The impedance components of the long journal bearing parallel and normal to
the eccentricity vector evaluated at the equilibrium position are given by

Wε,0 =
12ε0

(2 + ε20)(1− ε20)
and Wγ,0 = − 6π

(2 + ε20)
√

1− ε20

The Sommerfeld number and the attitude angle evaluated at the equilibrium
position are given by

S =
3ε0
√

4ε20 + π2(1− ε20)

(2 + ε20)(1− ε20)
and γ0 = arctan

π
√

1− ε20
2ε0

The dashed lines in the left and right panels of figure 4.7 show the nondimensional
eccentricity versus the Sommerfeld number and the equilibrium locus of the long
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Figure 4.9: Rigid bearing damping coefficients for L/D = 1 (dotted line: short,
dashed line: long, dash-dotted line: approximate finite-length, solid line: exact
finite-length)

journal bearing, respectively.
Taking the derivatives of Wε and Wγ given by (4.16) with respect to ε and

α and evaluation at the equilibrium position yields

∂Wε

∂ε
=

12(2 + ε20 + 3ε40)

(2 + ε20)
2(1− ε20)

2

∂Wε

∂α
= − 3π

(1− ε20)
3/2

∂Wγ

∂ε
= − 18πε30

(2 + ε20)
2(1− ε20)

3/2

∂Wγ

∂α
=

6ε0
1− ε20

The resulting nondimensional stiffness and damping coefficients are given in
appendix B. The dashed lines in figures 4.8 and 4.9 show the stiffness and
damping coefficients of the long journal bearing as functions of the eccentricity,
respectively.

Approximate Finite-Length Bearing

The impedance components of the approximate finite-length journal bearing par-
allel and normal to the eccentricity vector evaluated at the equilibrium position
are given by

Wε,0 =
12Λ2ε0

A(1− ε20)
and Wγ,0 = − 6πΛ2

B
√

1− ε20
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where A = 2Λ2 + 3 + (Λ2 − 3)ε20, B = 2(Λ2 + 3) + (Λ2 − 6)ε20, and Λ = L/D.
The Sommerfeld number and the attitude angle evaluated at the equilibrium
position are given by

S =
3Λ2ε0

√

4B2ε20 + π2A2(1− ε20)

AB(1− ε20)
and γ0 = arctan

πA
√

1− ε20
2Bε

The dash-dotted lines in the left and right panels of figure 4.7 show the nondi-
mensional eccentricity versus the Sommerfeld number and the equilibrium locus
of the finite-length journal bearing for L/D = 1, respectively.

Taking the derivatives of Wε and Wγ given by (4.17) with respect to ε and
α and evaluation at the equilibrium position yields

∂Wε

∂ε
=

12Λ2{2Λ2 + 3 + (Λ2 + 6)ε20 + 3(Λ2 − 3)ε40}
A2(1− ε20)

2

∂Wγ

∂ε
= −18πΛ2ε{6 + (Λ2 − 6)ε20}

B2(1− ε20)
3/2

∂Wε

∂α
= −3πΛ2{(4Λ2 + 3)(1 + ε20) + (Λ2 − 6)ε40}

A2(1− ε20)
3/2

∂Wγ

∂α
=

6Λ2ε0{4(Λ2 + 6) + 4(Λ2 − 6)ε20 + Λ2ε40}
B2(1− ε20)

The stiffness and damping coefficients can be obtained by substitution of these
terms into (4.32). Because of the fact that the resulting expressions for the stiff-
ness and damping coefficients cannot be easily simplified, they are not explicitly
given here. The dash-dotted lines in figures 4.8 and 4.9 show the stiffness and
damping coefficients of the approximate finite-length journal bearing as functions
of the eccentricity, respectively.

Exact Finite-Length Bearing

The impedance components of the exact finite-length journal bearing parallel
and normal to the eccentricity vector evaluated at the equilibrium position are
given by

Wε,0 = −3

∫ 2π

0

q̄∗0 cos φ dφ and Wγ,0 = −3

∫ 2π

0

q̄∗0 sin φ dφ (4.36)

where

q̄∗0 = 2

∫ 1
2

0

q∗0 dz∗

The quantity q∗0 is solved numerically from the rewritten Reynolds equation
evaluated at the equilibrium position

∂

∂φ

(

h3 ∂q∗0
∂φ

)

+
h3

4(L/D)2
∂2q∗0
∂z∗2 = −2 sin φ (4.37)

using the finite-difference schemes given by (4.19). The solid lines in the left
and right panels of figure 4.7 show the nondimensional eccentricity versus the
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Sommerfeld number and the equilibrium locus of the exact finite-length journal
bearing for L/D = 1, respectively.

Taking the derivatives of Wε and Wγ given by (4.20) with respect to ε and
α yields

∂Wε

∂ε
= −3

∫ 2π

0

∂q̄∗

∂ε
cos φ dφ

∂Wγ

∂ε
= −3

∫ 2π

0

∂q̄∗

∂ε
sin φ dφ

∂Wε

∂α
= −3

∫ 2π

0

∂q̄∗

∂α
cos φ dφ

∂Wγ

∂α
= −3

∫ 2π

0

∂q̄∗

∂α
sin φ dφ

where
∂q̄∗

∂ε
= 2

∫ 1
2

0

∂q∗

∂ε
dz∗ and

∂q̄∗

∂α
= 2

∫ 1
2

0

∂q∗

∂α
dz∗

Taking the derivatives of the rewritten Reynolds equation (4.18), the following
equations are found for ∂q∗/∂ε and ∂q∗/∂α evaluated at the equilibrium position:

∂

∂θ

(

h3 ∂

∂θ

(

∂q∗

∂ε

))

+
h3

4(L/D)2
∂2

∂z∗2

(

∂q∗

∂ε

)

= 3 sin θ

(

12 cos θ

h
+ h

∂q∗0
∂θ

)

∂

∂θ

(

h3 ∂

∂θ

(

∂q∗

∂α

))

+
h3

4(L/D)2
∂2

∂z∗2

(

∂q∗

∂α

)

= −2 cos θ

(4.38)
These equations are discretized by the finite-difference schemes given by (4.19).
Because of the fact that the left-hand sides of these equations are similar to the
left-hand side of (4.37), ∂q∗/∂ε and ∂q∗/∂α can be found by back-substitution.
The derivative ∂q∗0/∂θ in the right-hand side of the first equation in (4.38) is
approximated using the central-difference scheme. The solid lines in figures 4.8
and 4.9 show the stiffness and damping coefficients of the exact finite-length
journal bearing as functions of the eccentricity, respectively.

4.4 Compliant Bearing Stiffness and Damping Coefficients

In this section, the stiffness and damping coefficients of the compliant journal-
bearing models will be derived. A constant load of magnitude F0 is applied
to the bearing in the negative y-direction and Ω0 is chosen equal to Ω, so that
Ω∗ = 1. Harmonic perturbations with excitation frequency ω are imposed on the
nondimensional eccentricity and the attitude angle at the equilibrium position
according to

ε = ε0 + δε

γ = γ0 + δγ
(4.39)

The second total derivatives of these perturbations with respect to τ are given
by δε′′ = −(ω/Ω)2δε and δγ′′ = −(ω/Ω)2δγ. The nondimensional film thickness
reacts to the perturbations according to

h = h0 +
∂h

∂ε
δε +

∂h

∂γ
δγ +

∂h

∂ε′
δε′ +

∂h

∂γ′
δγ′ (4.40)

Substitution of this equation into (4.22) yields a set of ordinary differential equa-
tions in h0 and in the derivatives of h. The stiffness and damping coefficients can
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be expressed in terms of these derivatives and depend on the angular excitation
frequency to angular rotor speed ratio ω/Ω.

Short Bearing

For the short journal bearing, the angular coordinate φ = θ − γ is used instead
of θ and the stiffness and damping coefficients are derived in the ε, γ-coordinate
system. The coefficients in the x, y-coordinate system can be determined from
these coefficients by means of a rotation. Equation (4.27) becomes

∂h

∂φ
= − 3h3p̄∗

(L/D)2
− 2

∂h

∂τ

where p̄∗ = (h − 1 − ε cos φ)/B. Substitution of (4.39) and (4.40) into this
equation yields the following boundary-value problem:

∂h0

∂φ
= − 3h3

0p̄
∗

0

(L/D)2

∂

∂φ

(

∂h

∂ε

)

= − 3

(L/D)2

{

h3
0

B

(

∂h

∂ε
− cos φ

)

+ 3h2
0p̄

∗

0

∂h

∂ε

}

+ 2
( ω

Ω

)2 ∂h

∂ε′

∂

∂φ

(

∂h

∂γ

)

= − 3

(L/D)2

{

h3
0

B

(

∂h

∂γ
− ε sin φ

)

+ 3h2
0p̄

∗

0

∂h

∂γ

}

+ 2
( ω

Ω

)2 ∂h

∂γ′

∂

∂φ

(

∂h

∂ε′

)

= − 3

(L/D)2

(

h3
0

B
+ 3h2

0p̄
∗

0

)

∂h

∂ε′
− 2

∂h

∂ε

∂

∂φ

(

∂h

∂γ′

)

= − 3

(L/D)2

(

h3
0

B
+ 3h2

0p̄
∗

0

)

∂h

∂γ′
− 2

∂h

∂γ

where p̄∗0 = (h0 − 1 − ε0 cos φ)/B and the boundary condition for h0 and the
derivatives of h is periodicity with respect to φ. This boundary-value problem
can be solved by the shooting method.

The nondimensional bearing reaction force components parallel and normal
to the eccentricity vector evaluated at the equilibrium position are given by

F ∗

ε,0 = 3

∫ 2π

0

p̄∗0 cos φ dφ and F ∗

γ,0 = 3

∫ 2π

0

p̄∗0 sin φ dφ

The Sommerfeld number and the attitude angle evaluated at the equilibrium
position are given by

S =
√

F ∗2
ε,0 + F ∗2

γ,0 and γ0 = − arctan
F ∗

γ,0

F ∗

ε,0

The left and right panels of figure 4.10 show the nondimensional eccentricity
versus the Sommerfeld number and the equilibrium locus of the compliant short
journal bearing, respectively, for L/D = 1 and different values of B. The dotted
lines in this figure represent the results of the rigid short journal bearing, for
which B is equal to zero. Higginson (1966) shows that the range of B for metal
bearings is 0.001–0.1 and for plastic bearings is 0.1–100.
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Figure 4.10: Compliant short-bearing nondimensional eccentricity versus Som-
merfeld number and equilibrium locus for L/D = 1 (dotted line: B = 0, dashed
line: B = 0.01, dash-dotted line: B = 0.1, solid line: B = 1)

The stiffness and damping coefficients in the ε, γ-coordinate system are de-
fined by

k∗εε = −3

∫ 2π

0

∂p̄∗

∂ε
cos φ dφ k∗εγ = − 3

ε0

∫ 2π

0

∂p̄∗

∂γ
cos φ dφ

k∗γε = −3

∫ 2π

0

∂p̄∗

∂ε
sin φ dφ k∗γγ = − 3

ε0

∫ 2π

0

∂p̄∗

∂γ
sin φ dφ

and

b∗εε = −3

∫ 2π

0

∂p̄∗

∂ε′
cos φ dφ b∗εγ = − 3

ε0

∫ 2π

0

∂p̄∗

∂γ′
cos φ dφ

b∗γε = −3

∫ 2π

0

∂p̄∗

∂ε′
sin φ dφ b∗γγ = − 3

ε0

∫ 2π

0

∂p̄∗

∂γ′
sin φ dφ

where

∂p̄∗

∂ε
=

1

B

(

∂h

∂ε
− cos φ

)

∂p̄∗

∂γ
=

1

B

(

∂h

∂γ
− ε0 sin φ

)

∂p̄∗

∂ε′
=

1

B

∂h

∂ε′
∂p̄∗

∂γ′
=

1

B

∂h

∂γ′

The derivatives of p̄∗ are put equal to zero at negative values of p̄∗0. The stiffness
and damping coefficients in the x, y-coordinate system can be calculated from
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Figure 4.11: Compliant short-bearing stiffness coefficients for L/D = 1 and
ω/Ω = 1 (dotted line: B = 0, dashed line: B = 0.01, dash-dotted line: B = 0.1,
solid line: B = 1)

the stiffness and damping coefficients in the ε, γ-coordinate system according to

(

k∗xx k∗xy

k∗yx k∗yy

)

= RT

(

k∗εε k∗εγ
k∗γε k∗γγ

)

R

(

b∗xx b∗xy

b∗yx b∗yy

)

= RT

(

b∗εε b∗εγ
b∗γε b∗γγ

)

R

where the rotation matrix R is defined by

R =

(

sin γ0 − cos γ0

cos γ0 sin γ0

)

Figures 4.11 and 4.12 show the stiffness and damping coefficients of the compliant
short journal bearing for L/D = 1, ω/Ω = 1, and different values of B. The
dotted lines in these figures represent the coefficients of the rigid short journal
bearing.

If the nondimensional relative bearing-liner compliance is increased, the di-
rect stiffness coefficients do not decrease for all values of the Sommerfeld number.
For Sommerfeld numbers less than about one, these coefficients increase. This
can be explained by the fact that the direct stiffness coefficients of a rigid jour-
nal bearing approach zero if the Sommerfeld number is decreased, whereas a
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Figure 4.12: Compliant short-bearing damping coefficients for L/D = 1 and
ω/Ω = 1 (dotted line: B = 0, dashed line: B = 0.01, dash-dotted line: B = 0.1,
solid line: B = 1)

compliant bearing liner adds extra stiffness to the bearing. Therefore, if the
Sommerfeld number is small the direct stiffness coefficients can increase when
the nondimensional relative bearing-liner compliance is increased.

Long Bearing

For the long journal bearing, (4.29) is rewritten as

∂

∂θ

(

h3 ∂p∗

∂θ

)

− ∂h

∂θ
− 2

∂h

∂τ
= 0 (4.41)

where p∗ = (h− 1− ε cos(θ− γ))/B. First, h0 is solved from the stationary part
of this equation given by

∂

∂θ

(

h3
0

∂p∗0
∂θ

)

− ∂h0

∂θ
= 0

where p∗0 = (h0 − 1− ε0 cos(θ − γ0))/B, using the finite-difference method. The
boundary conditions for p∗0 are periodicity with respect to θ and p∗0 = 0 at θ = 0.
The attitude angle γ0 evaluated at the equilibrium position must be determined
by iteration. The nondimensional bearing reaction force components in the x-
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Figure 4.13: Compliant long-bearing nondimensional eccentricity versus Som-
merfeld number and equilibrium locus (dotted line: B = 0, dashed line:
B = 0.01, dash-dotted line: B = 0.1, solid line: B = 1)

and y-directions evaluated at the equilibrium position are given by

F ∗

x,0 = 3

∫ 2π

0

p∗0 sin θ dθ and F ∗

y,0 = −3

∫ 2π

0

p∗0 cos θ dθ

The Sommerfeld number evaluated at the equilibrium position is given by

S =
√

F ∗2
x,0 + F ∗2

y,0

The left and right panels of figure 4.13 show the nondimensional eccentricity
versus the Sommerfeld number and the equilibrium locus of the compliant long
journal bearing, respectively, for different values of B. The dotted lines in this
figure represent the results of the rigid long journal bearing model with a lubri-
cant inlet at the top of the bearing, for which B is equal to zero. This bearing
will be described later.

The remaining set of second-order ordinary differential equations in the
derivatives of h, which follows from the substitution of (4.39) and (4.40) into
(4.41), is given by

∂

∂θ

(

3h2
0

∂h

∂ε

∂p∗0
∂θ

+ h3
0

∂

∂θ

(

∂p∗

∂ε

))

− ∂

∂θ

(

∂h

∂ε

)

+ 2
( ω

Ω

)2 ∂h

∂ε′
= 0

∂

∂θ

(

3h2
0

∂h

∂γ

∂p∗0
∂θ

+ h3
0

∂

∂θ

(

∂p∗

∂γ

))

− ∂

∂θ

(

∂h

∂γ

)

+ 2
( ω

Ω

)2 ∂h

∂γ′
= 0
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∂

∂θ

(

3h2
0

∂h

∂ε′
∂p∗0
∂θ

+ h3
0

∂

∂θ

(

∂p∗

∂ε′

))

− ∂

∂θ

(

∂h

∂ε′

)

− 2
∂h

∂ε
= 0

∂

∂θ

(

3h2
0

∂h

∂γ′
∂p∗0
∂θ

+ h3
0

∂

∂θ

(

∂p∗

∂γ′

))

− ∂

∂θ

(

∂h

∂γ′

)

− 2
∂h

∂γ
= 0

where

∂p∗

∂ε
=

1

B

(

∂h

∂ε
− cos(θ − γ0)

)

∂p∗

∂γ
=

1

B

(

∂h

∂γ
− ε0 sin(θ − γ0)

)

∂p∗

∂ε′
=

1

B

∂h

∂ε′
∂p∗

∂γ′
=

1

B

∂h

∂γ′

This set of equations is solved by means of the finite-difference method, using
the boundary conditions periodicity with respect to θ and the derivatives of p∗

are equal to zero at θ = 0.

The stiffness and damping coefficients are defined by

k∗xj = −3

∫ 2π

0

∂p∗

∂εj
sin θ dθ

k∗yj = 3

∫ 2π

0

∂p∗

∂εj
cos θ dθ

and

b∗xj = −3

∫ 2π

0

∂p∗

∂ε′j
sin θ dθ

b∗yj = 3

∫ 2π

0

∂p∗

∂ε′j
cos θ dθ

where j = x, y and

∂p∗

∂εx
= sin γ0

∂p∗

∂ε
+

1

ε0
cos γ0

∂p∗

∂γ

∂p∗

∂εy
= − cos γ0

∂p∗

∂ε
+

1

ε0
sin γ0

∂p∗

∂γ
∂p∗

∂ε′x
= sin γ0

∂p∗

∂ε′
+

1

ε0
cos γ0

∂p∗

∂γ′
∂p∗

∂ε′y
= − cos γ0

∂p∗

∂ε′
+

1

ε0
sin γ0

∂p∗

∂γ′

The derivatives of p∗ are put equal to zero at negative values of p∗0. Figures
4.14 and 4.15 show the stiffness and damping coefficients of the compliant long
journal bearing for ω/Ω = 1 and different values of B. The dotted lines in
these figures represent the coefficients of the rigid long journal-bearing model
with a lubricant inlet at the top of the bearing.

In case of a lubricant inlet at the top of the bearing, the boundary conditions
are periodicity with respect to θ and p∗ = 0 at θ = 0. Using the long-bearing
solution given by Gross (1962), the nondimensional pressure distribution in the
lubricant film of the rigid long journal bearing with an inlet at the top can be
expressed as

p∗ =
1

(1 + ε cos γ)2

[

(1− 2γ′)ε sin γ(2 + ε cos γ)

2 + ε2
− ε′

ε

]

+

1

(1 + ε cos(θ − γ))2

[

(1− 2γ′)ε sin(θ − γ)(2 + ε cos(θ − γ))

2 + ε2
+

ε′

ε

]

(4.42)
From this equation, the nondimensional pressure and its derivatives evaluated
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Figure 4.14: Compliant long-bearing stiffness coefficients for ω/Ω = 1 (dotted
line: B = 0, dashed line: B = 0.01, dash-dotted line: B = 0.1, and solid line:
B = 1)

at the equilibrium position can be calculated and are given by

p∗0 =
ε0

2 + ε20

[

sin γ0(2 + ε0 cos γ0)

(1 + ε0 cos γ0)2
+

sin(θ − γ0)(2 + ε0 cos(θ − γ0))

(1 + ε0 cos(θ − γ0))2

]

∂p∗

∂ε
=

2− ε20
(2 + ε20)

2

[

sin γ0(2 + ε0 cos γ0)

(1 + ε0 cos γ0)2
+

sin(θ − γ0)(2 + ε0 cos(θ − γ0))

(1 + ε0 cos(θ − γ0))2

]

−

ε0
2 + ε20

[

sin γ0 cos γ0(3 + ε0 cos γ0)

(1 + ε0 cos γ0)3
+

sin(θ − γ0) cos(θ − γ0)(3 + ε0 cos(θ − γ0))

(1 + ε0 cos(θ − γ0))3

]

∂p∗

∂γ
=

ε0
2 + ε20

[

3ε0 + (2 + ε20) cos γ0

(1 + ε0 cos γ0)3
− 3ε0 + (2 + ε20) cos(θ − γ0)

(1 + ε0 cos(θ − γ0))3

]

∂p∗

∂ε′
=

1

ε0

[

1

(1 + ε0 cos(θ − γ0))2
− 1

(1 + ε0 cos γ0)2

]

∂p∗

∂γ′
= − 2ε0

2 + ε20

[

sin γ0(2 + ε0 cos γ0)

(1 + ε0 sin γ0)2
+

sin(θ − γ0)(2 + ε0 cos(θ − γ0))

(1 + ε0 cos(θ − γ0))2

]

The influence of the nondimensional relative bearing-liner compliance on the
direct stiffness coefficients of the compliant long journal bearing is more com-
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Figure 4.15: Compliant long-bearing damping coefficients for ω/Ω = 1 (dotted
line: B = 0, dashed line: B = 0.01, dash-dotted line: B = 0.1, solid line: B = 1)

plicated than for the compliant short journal bearing, but for most values of
the Sommerfeld number less than about six, these coefficients increase if the
nondimensional relative bearing-liner compliance is increased. However, if the
nondimensional relative bearing-liner compliance is increased to one, the direct
stiffness coefficient in the vertical direction decreases again.



Chapter 5

Nonlinear Rotordynamic Analysis

In this chapter, the compliant journal-bearing models developed in the previous
chapter will be applied in the model of a symmetric rotor-bearing system with
a rigid rotor in two plain journal bearings. First, the nonlinear dynamics of
the rigid rotor in rigid journal bearings will be investigated for different values
of the unbalance. The results of this investigation will be used as the basis
for the subsequent study of the nonlinear dynamics of the compliant journal-
bearing models. The influence of the relative bearing-liner compliance on the
nonlinear dynamics of both a balanced and an unbalanced rotor will be investi-
gated. Some preliminary experiments were done on a rotor-bearing system with
a flexible shaft in a water-lubricated rubber-lined journal bearing. A nonlinear
phenomenon observed during these experiments will be briefly described.

5.1 Rotor-Bearing System

Figure 5.1 schematically shows a cross-section of one of the bearings of a sym-
metric rotor-bearing system with a rigid rotor. The rotor with mass m and
unbalance a is supported by two plain journal bearings. The rotor rotates with
a constant angular speed Ω about the z-axis and a constant load F0 is applied
to the rotor in the negative y-direction. The equations of motion of the rotor
are given by

{

mëx = 2Fx + mΩ2a cos(Ωt)

mëy = 2Fy + mΩ2a sin(Ωt)− F0

where ex and ey are the displacement components of the rotor in the x- and
y-directions, respectively, Fx and Fy are the nonlinear bearing reaction force
components in the x- and y-directions, respectively, t is time, and an overdot
denotes the total derivative with respect to t. With the nondimensional quanti-
ties εi = ei/C (i = x, y and C is the radial clearance), F ∗

i = (C/R)2Fi/µΩ0LD
(i = x, y, 0, R is the journal radius, µ is the lubricant viscosity, L is the bearing
length, and D is the journal diameter), Ω∗ = Ω/Ω0, a∗ = a/C, and τ = Ω0t,
these equations can be rewritten as

{

ε′′x = 2F ∗

x /F ∗

0 + Ω∗2a∗ cos(Ω∗τ)

ε′′y = 2F ∗

y /F ∗

0 + Ω∗2a∗ sin(Ω∗τ)− 1
(5.1)

57
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Figure 5.1: Cross-section of one of the bearings of a symmetric rigid rotor in two
plain journal bearings

where a prime denotes the total derivative with respect to τ . The constant
quantity Ω0 is defined by

√

F0/mC.

5.2 Rigid Bearings

First, the nonlinear dynamics of the rigid rotor in rigid journal bearings is stud-
ied for different values of the nondimensional unbalance. Two journal-bearing
models will be considered: the short journal-bearing model and the long journal-
bearing model. The bearing reaction force components can be found from the
impedance components given by (4.11) for the short bearing and by (4.16) for
the long bearing, respectively. As demonstrated in chapter 2, the autonomous
state-space form of (5.1) has a dimension of six and is given by



































u′1 = u2

u′2 = 2F ∗

x /F ∗

0 + Ω∗2a∗u6

u′3 = u4

u′4 = 2F ∗

y /F ∗

0 + Ω∗2a∗u5 − 1

u′5 = u5 + Ω∗u6 − u5(u
2
5 + u2

6)

u′6 = −Ω∗u5 + u6 − u6(u
2
5 + u2

6)

where u1 = εx, u2 = ε′x, u3 = εy, u4 = ε′y, and u5 and u6 are the extra state
variables of the nonlinear oscillator. If the rotor is balanced, so that a∗ = 0, the
last two equations of the autonomous state-space form can be removed.
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Figure 5.2: Bifurcation diagrams of rigid rotor with a∗ = 0 (balanced), 0.1, 0.2,
and 0.3 in rigid short journal bearings (L/D = 1, F ∗

0 = 1)

Short Bearings

Figure 5.2 shows the bifurcation diagrams of the rigid rotor with different values
of the nondimensional unbalance a∗ in rigid short journal bearings with L/D = 1
and F ∗

0 = 1. In the bifurcation diagrams, solid lines represent branches of
stable solutions, dashed lines represent branches of unstable solutions, and dots
represent bifurcation points. The nondimensional angular rotor speed Ω∗ is
used as the bifurcation parameter and the maximum nondimensional eccentricity
max ε is chosen as the scalar measure of the solutions that is plotted on the
vertical axis.

The diagram for the balanced rotor with a∗ = 0 in the upper-left panel of
figure 5.2 contains a branch of fixed-points that becomes unstable at a primary
Hopf bifurcation near Ω∗ = 2.74, known as the stability threshold.

This point can also be found by linearizing about the equilibrium position
ε = ε0(sin γ0,− cos γ0) and determining the stability of the resulting system.
The linearized system is given by

δu′ =









0 1 0 0
−k∗xx/S −2b∗xx/F ∗

0 −k∗xy/S −2b∗xy/F ∗

0

0 0 0 1
−k∗yx/S −2b∗yx/F ∗

0 −k∗yy/S −2b∗yy/F ∗

0









δu
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Figure 5.3: Angular whirl frequency to angular rotor speed ratio for balanced
rigid rotor in rigid short journal bearings (L/D = 1, F ∗

0 = 1)

where Ω∗ = F ∗

0 /2S was used, since the bearing load Fb is equal to 1
2F0, so that

S = F ∗

0 /2Ω∗. The characteristic equation of the linearized system is given by
s4 + a3s

3 + a2s
2 + a1s + a0 = 0, where

a0 = (k∗xxk∗yy − k∗xyk∗yx)/S2

a1 = 2(k∗xxb∗yy − k∗xyb∗yx − k∗yxb∗xy + k∗yyb∗xx)/SF ∗

0

a2 = (k∗xx + k∗yy)/S + 4(b∗xxb∗yy − b∗xyb∗yx)/F ∗2
0

a3 = 2(b∗xx + b∗yy)/F ∗

0

The equilibrium position is stable if the roots of the characteristic equation have
negative real parts. According to the Routh criterion, this holds if the coefficients
of the characteristic equation satisfy the following conditions:

1. ai > 0
2. a1a2a3 − a0a

2
3 − a2

1 > 0

The first condition is satisfied for all equilibrium positions. For L/D = 1 and
F ∗

0 = 1, the second condition is satisfied for ε0 < 0.11297, so that the stability
threshold is given by Ω∗ = 2.7353, which validates the previously found value.

From the primary Hopf bifurcation, an unstable branch of periodic solutions
emanates, which becomes stable at a cyclic fold near Ω∗ = 2.61. The periodic
solutions are known as 1

2Ω-whirl because of the fact that the angular whirl
frequency ωw of these vibrations is approximately equal to half the angular rotor
speed Ω. Figure 5.3 demonstrates this by showing the angular whirl frequency to
angular rotor speed ratio for a part of the branch of periodic solutions. To avoid
large amplitude vibrations and the possibility of contact between the journal
and the bearing, in practice the maximum angular rotor speed is limited by the
stability threshold, or more precisely by the cyclic fold in the branch of 1

2Ω-whirl
solutions if it is located below the stability threshold.

The diagrams of the unbalanced rotors with a∗ = 0.1 and with a∗ = 0.2 in
the upper-right and lower-left panels of figure 5.2, respectively, contain a branch
of period-1 solutions which contains two flip bifurcations. For a∗ = 0.1, these
flip bifurcations are located near Ω∗ = 2.47 and near Ω∗ = 3.41. From the left
flip bifurcation, a stable branch of period-2 solutions emanates, which becomes
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unstable at a cyclic fold near Ω∗ = 18.8. From the right flip bifurcation, an
unstable branch of period-2 solutions emanates and seems to be connected to
the first branch of period-2 solutions at a point with max ε ≈ 1. The branches
of period-2 solutions cannot be continued to this point because of convergence
problems caused by the singularity in the impedance components at ε = 1.
At the right flip bifurcation, the branch of period-1 solutions remains unstable
because of the fact that one Floquet multiplier has a magnitude greater than 1,
while another multiplier crosses the unit circle at −1. The branch of period-2
solutions that emanates from this flip bifurcation is also unstable, so that three
unstable branches meet at this point. For a∗ = 0.2, the two flip bifurcations are
located near Ω∗ = 2.87 and near Ω∗ = 5.76, as shown in the lower-left panel of
figure 5.2. A branch of period-2 solutions connects these flip bifurcations and
contains a cyclic fold near Ω∗ = 19.8.

The diagram for the unbalanced rotor with a∗ = 0.3 in the lower-right panel
of the figure contains a branch of period-1 solutions, which becomes unstable at
a secondary Hopf bifurcation near Ω∗ = 10.4. This secondary Hopf bifurcation
results from the two flip bifurcations, present for smaller values of the unbalance,
which coincide if the nondimensional unbalance is increased. The point at which
the two flip bifurcations coincide is a so-called co-dimension two bifurcation at
which two Floquet multipliers are equal to −1.

In the regions where no stable periodic solutions are found, the rotor-bearing
system shows stable quasi-periodic behavior. A part of the quasi-periodic solu-
tion for the unbalanced rotor with a∗ = 0.3 at Ω∗ = 12 is given in the lower-left
panel of figure 2.2 in chapter 2.

Influence of Load

The influence of the nondimensional constant load F ∗

0 on the nonlinear dynamics
of the rotor-bearing system is investigated by repeating the calculations for F ∗

0 =
0.5 and for F ∗

0 = 2. The bifurcation diagrams for F ∗

0 = 0.5 and F ∗

0 = 2 are shown
in figures 5.4 and 5.5, respectively.

For the balanced rotor, the primary Hopf bifurcation is located near Ω∗ =
2.76 for F ∗

0 = 0.5 and near Ω∗ = 2.67 for F ∗

0 = 2. The stability threshold
found using the linearized system is given by Ω∗ = 2.7563 for F ∗

0 = 0.5 and
by Ω∗ = 2.6712 for F ∗

0 = 2. For the unbalanced rotor with a∗ = 0.1, the two
flip bifurcations in the branch of period-1 solutions are located near Ω∗ = 2.47
and near Ω∗ = 3.81 for F ∗

0 = 0.5, and near Ω∗ = 2.49 and near Ω∗ = 3.11
for F ∗

0 = 2. For F ∗

0 = 0.5, the branch of period-2 solutions emanating from
the left flip bifurcation contains a cyclic fold near Ω∗ = 23.2 (not visible in the
figure). For F ∗

0 = 2, the branch of period-2 solutions emanating from the left
flip bifurcation starts unstable and contains two cyclic folds, one near Ω∗ = 2.45
and one near Ω∗ = 15.6, and the branch of period-2 solutions that emanates
from the right flip bifurcation remains unstable at a cyclic fold near Ω∗ = 3.14
because one Floquet multiplier has a magnitude greater than 1, while another
multiplier crosses the unit circle at +1. For a∗ = 0.2, the two flip bifurcations in
the branch of period-1 solutions are located near Ω∗ = 8.88 and near Ω∗ = 10.1
for F ∗

0 = 0.5, and near Ω∗ = 2.40 and near Ω∗ = 3.96 for F ∗

0 = 2. The branch of
period-2 solutions connecting these flip bifurcations contains a cyclic fold near
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Figure 5.4: Bifurcation diagrams of rigid rotor with a∗ = 0 (balanced), 0.1, 0.2,
and 0.3 in rigid short journal bearings (L/D = 1, F ∗

0 = 0.5)

Ω∗ = 13.8 for both F ∗

0 = 0.5 and F ∗

0 = 2. For a∗ = 0.3, the branch of period-1
solutions becomes unstable at a secondary Hopf bifurcation near Ω∗ = 20.7 (not
visible in the figure) for F ∗

0 = 0.5. For F ∗

0 = 2, the branch of period-1 solutions
contains two flip bifurcations, located near Ω∗ = 4.70 and near Ω∗ = 6.37. The
branch of period-2 solutions connecting these flip bifurcations contains a cyclic
fold near Ω∗ = 9.63.

For the balanced rotor and the unbalanced rotor with a∗ = 0.1, the influence
of F ∗

0 on the bifurcation diagrams is small. For a∗ = 0.2, the angular rotor speed,
at which the branch of period-1 solutions becomes unstable, seems to decrease if
the load is increased. This contradicts with the expectation that increasing the
load increases the stability, as for balanced rotors. But because of the scaling, the
angular rotor speed Ω is proportional to Ω∗F ∗

0 , so that indeed the angular rotor
speed, at which the branch of period-1 solutions becomes unstable, increases
when the load is increased. However, for a∗ = 0.3 the angular rotor speed, at
which the branch of period-1 solutions becomes unstable, is not monotonically
increasing if the load is increased. It increases slightly from F ∗

0 = 0.5 to F ∗

0 = 1,
but then decreases for F ∗

0 = 2, where the instability is caused by a flip bifurcation
instead of a secondary Hopf bifurcation. Therefore, for an unbalanced rotor in
rigid short journal bearing, the angular rotor speed, at which the branch of
period-1 solutions becomes unstable, does not necessarily increase if the load is
increased.
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Figure 5.5: Bifurcation diagrams of rigid rotor with a∗ = 0 (balanced), 0.1, 0.2,
and 0.3 in rigid short journal bearings (L/D = 1, F ∗

0 = 2)

Long Bearings

Figure 5.6 shows the bifurcation diagrams of the rigid rotor with different values
of the nondimensional unbalance a∗ in rigid long journal bearings for F ∗

0 =
2. The diagram for the balanced rotor in the upper-left panel of this figure
contains a branch of fixed-points, which becomes unstable at a primary Hopf
bifurcation near Ω∗ = 1.97. The stability threshold found using the linearized
system is given by Ω∗ = 1.9594. The branch of periodic solutions that emanates
from the primary Hopf bifurcation is stable. The diagrams of the unbalanced
rotors contain a branch of period-1 solutions which contains two flip bifurcations.
For a∗ = 0.1, the two flip bifurcations are located near Ω∗ = 1.84 and near
Ω∗ = 2.20, as shown in the upper-right panel of figure 5.6. From the left
flip bifurcation, a stable branch of period-2 solutions emanates, which becomes
unstable at a cyclic fold near Ω∗ = 16.3 (not visible in the figure). From the right
flip bifurcation, an unstable branch of period-2 solutions emanates and seems to
be connected to the first branch of period-2 solutions at a point with max ε ≈ 1.
This point could not be found because of the same convergence problems as those
encountered with the rotor in rigid short journal bearings. For a∗ = 0.2, the two
flip bifurcations are located near Ω∗ = 1.76 and near Ω∗ = 2.76, as shown in the
lower-left panel of figure 5.6. A branch of period-2 solutions connects these flip
bifurcations and contains a cyclic fold, which is located near Ω∗ = 9.08. The
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Figure 5.6: Bifurcation diagrams of rigid rotor with a∗ = 0 (balanced), 0.1, 0.2,
and 0.3 in rigid long journal bearings (F ∗

0 = 2)

diagram for the unbalanced rotor with a∗ = 0.3 in the lower-right panel of figure
5.6 contains two flip bifurcations, which are located near Ω∗ = 1.76 and near
Ω∗ = 3.81. The cyclic fold in the branch of period-2 solutions that connects
these flip bifurcations is located near Ω∗ = 4.12.

As for the rotor in rigid short journal bearings, in the regions where no sta-
ble periodic solutions are found, the rotor-bearing system exhibits stable quasi-
periodic behavior.

5.3 Compliant Bearings

In this section, the nonlinear dynamics of a rigid rotor in compliant journal
bearings is studied. The influence of the nondimensional relative bearing-liner
compliance B on the nonlinear dynamics of both the balanced and an unbalanced
rotor with a∗ = 0.2 is investigated. Both the compliant short journal-bearing
model and the compliant long journal-bearing model developed in the previous
chapter are considered. The nonlinear partial differential equations that need to
be added to the equations of motion of the rotor are given by (4.27) for the short
journal bearing and by (4.29) for the long journal bearing, respectively. These
partial differential equations are spatially discretized using finite differences with
50 mesh intervals in the circumferential direction of the bearings.
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The autonomous state-space form of the rotor in compliant short journal
bearings has a dimension of 56 and is given by
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where u1 = εx, u2 = ε′x, u3 = εy, u4 = ε′y, p̄∗ = (h − 1 − εx sin θ + εy cos θ)/B
and u55 and u56 are the extra state variables of the nonlinear oscillator. Spatial
discretization of the partial differential equation yields the expressions for u5 to
u54. For the balanced rotor, the rotor-bearing system is autonomous and the
nonlinear oscillator given by the last two equations of the autonomous state-
space form can be removed, so that the dimension of the system becomes 54.

The autonomous state-space form of the rotor in compliant long journal
bearings has a dimension of 55 because of the fact that the long journal-bearing
model needs one boundary condition more than the short journal-bearing model
and is given by
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u′54 = u54 + Ω∗u55 − u54(u
2
54 + u2

55)

u′55 = −Ω∗u54 + u55 − u55(u
2
54 + u2

55)

where u1 = εx, u2 = ε′x, u3 = εy, u4 = ε′y, p∗ = (h − 1 − εx sin θ + εy cos θ)/B
and u54 and u55 are the extra state variables of the nonlinear oscillator. Spatial
discretization of the partial differential equation yields the expressions for u5 to
u53. For the balanced rotor, the nonlinear oscillator can be removed and the
dimension of the system becomes 53.

Short Bearings

Figure 5.7 shows the bifurcation diagrams of the balanced rotor in compliant
short journal bearings with different values of B and with L/D = 1 and F ∗

0 = 1.
The branch of fixed-points becomes unstable at a primary Hopf bifurcation
near Ω∗ = 2.74, 2.72, 2.71, and 2.22, for B = 0, 0.01, 0.1, and 1, respec-
tively. Therefore, the stability threshold decreases when the relative bearing-
liner compliance is increased. As a practical example, consider a rigid rotor
with m = 1 [kg] in two water-lubricated compliant plain journal bearings, with
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Figure 5.7: Bifurcation diagrams of balanced rigid rotor in compliant short jour-
nal bearings with B = 0 (rigid bearings), 0.01, 0.1, and 1 (L/D = 1, F ∗

0 = 1)

L = D = 0.01 [m], C/R = 0.005, and µ = 0.001 [Ns/m2]. Solving F0 from the
definition of F ∗

0 , substituting into the definition of Ω0, and solving for Ω0 yields
Ω0 = µLDF ∗

0 /mC(C/R)2. For this example, Ω0 = 160 [rad/s], so that the sta-
bility threshold decreases according to Ω = 438, 435, 434, and 355 [rad/s], for
B = 0, 0.01, 0.1, and 1, respectively. The unstable branches of periodic solutions
emanating from the primary Hopf bifurcations become stable at cyclic folds near
Ω∗ = 2.61, 2.62, 2.50, and 1.97, for B = 0, 0.01, 0.1, and 1, respectively. For
B = 0.1, the branch of periodic solutions starts stable and becomes unstable at
another cyclic fold near Ω∗ = 2.72.

For B = 0.1 and B = 1, the branch of periodic solutions is not contin-
ued because of the fact that at a certain point the minimum film thickness
becomes negative. The fact that the minimum film thickness can become zero
and even negative suggests that the compliant journal-bearing models predict
the possibility of contact between the journal and the bearing. To exclude nu-
merical inaccuracies, the path-following calculations are repeated with both a
refined mesh in the circumferential direction and a refined mesh in time. Be-
cause these calculations yield the same result, it is concluded that, in contrast to
rigid journal-bearing models, for the compliant journal-bearing models contact
between the journal and the bearing is possible. For rigid journal-bearing mod-
els, contact cannot occur because of the fact that either an infinitely large load
or an infinitely long time would be needed. Since contact is not included in the
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Figure 5.8: Bifurcation diagrams of unbalanced rigid rotor (a∗ = 0.2) in compli-
ant short journal bearings with B = 0 (rigid bearings), 0.01, 0.1, and 1 (L/D = 1,
F ∗

0 = 1)

compliant journal-bearing models, physically impossible periodic solutions with
negative film thicknesses can be found. Because of the fact that the minimum
film thickness does not become positive again if the branch of periodic solutions
is continued, the path-following calculations are stopped when the minimum film
thickness becomes negative. Past the point at which the minimum film thick-
ness becomes zero, contact between the journal and the bearing will occur. This
contact causes increased bearing friction and wear of the journal and bearing
surfaces, which must be avoided in practice.

Figure 5.8 shows the bifurcation diagrams of the unbalanced rotor with a∗ =
0.2 in compliant short journal bearings with different values of B and with
L/D = 1 and F ∗

0 = 1. The branch of period-1 solutions contains two flip
bifurcations. The left flip bifurcation is located near Ω∗ = 2.87, 3.02, 4.31, and
2.36, for B = 0, 0.01, 0.1, and 1, respectively; the right flip bifurcation is located
near Ω∗ = 5.76, 5.88, 5.95, and 3.10, for B = 0, 0.01, 0.1, and 1, respectively.
It turns out that the nondimensional angular rotor speed, at which the branch
of period-1 solutions becomes unstable, first increases and then decreases below
the value for B = 0, when the nondimensional relative bearing-liner compliance
is increased. For the practical example mentioned before, the point of instability
changes according to Ω = 459, 483, 690, and 378 [rad/s] for B = 0, 0.01, 0.1,
and 1, respectively. The cyclic fold in the branch of period-2 solutions is located
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Figure 5.9: Bifurcation diagrams of balanced rigid rotor in compliant long jour-
nal bearings with B = 0 (rigid bearings), 0.01, 0.1, and 1 (F ∗

0 = 2)

near Ω∗ = 19.8, 9.06, and 6.87, for B = 0, 0.01, and 0.1, respectively. For B = 1,
there are the two branches of period-2 solutions which are not continued because
of the fact that the minimum film thickness becomes negative. The left branch
of period-2 solutions contains a cyclic fold near Ω∗ = 2.61.

Long Bearings

Figure 5.9 shows the bifurcation diagrams of the balanced rotor in compliant
long journal bearings with different values of B and with F ∗

0 = 2. The diagram
for B = 0 is obtained using the rigid long journal-bearing model with a lubricant
inlet at the top of the bearing, described in the previous chapter. The reaction
force components of this bearing are calculated by integration of the pressure
distribution given by (4.42). The branch of fixed-points becomes unstable at a
primary Hopf bifurcation near Ω∗ = 0.405, 0.413, 0.494, and 1.10, for B = 0,
0.01, 0.1, and B = 1, respectively. Therefore, in contrast to the compliant
short journal bearing, the stability threshold increases if the relative bearing-
liner compliance is increased. For the practical example mentioned before, Ω0 =
320 [rad/s], so that the stability threshold increases according to Ω = 130, 132,
158, and 352 [rad/s], for B = 0, 0.01, 0.1, and B = 1, respectively. The branch
of periodic solution emanating from the primary Hopf bifurcation is stable. For
B = 0.1 and B = 1, the branch of periodic solutions is not continued because of
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Figure 5.10: Bifurcation diagrams of unbalanced rigid rotor (a∗ = 0.2) in compli-
ant long journal bearings with B = 0 (rigid bearings), 0.01, 0.1, and 1 (F ∗

0 = 2)

the fact that the minimum film thickness becomes negative.
Figure 5.10 shows the bifurcation diagrams of the unbalanced rotor with

a∗ = 0.2 in compliant long journal bearings with different values of B and with
F ∗

0 = 2. The branch of period-1 solutions becomes unstable at a secondary
Hopf bifurcation near Ω∗ = 0.405, 0.414, 0.507, and 1.16, for B = 0, 0.01,
0.1, and 1, respectively. Therefore, the nondimensional angular rotor speed,
at which the branch of period-1 solutions becomes unstable, increases if the
nondimensional relative bearing-liner compliance is increased. For the practical
example mentioned before, the point of instability increases according to Ω =
130, 132, 162, and 371 [rad/s], for B = 0, 0.01, 0.1, and 1, respectively.

For both the compliant short journal-bearing model and the compliant long
journal-bearing model, in the regions where no stable periodic solutions are found
using the path-following method, the minimum film thickness becomes negative
if the system is integrated numerically.

5.4 Experiments

Some preliminary experiments were done on a rotor-bearing system with a flex-
ible shaft in a water-lubricated rubber-lined journal bearing (Bongers, 2000).
During these experiments a nonlinear phenomenon was observed, which is briefly
described here.
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Figure 5.11: Water-lubricated rubber-lined journal bearing

The experiments were carried out on a commercially available test rig, con-
taining a flexible steel shaft, with a diameter of 0.625” and a length of about
0.551 m, and two disks of about 0.525 kg each. The shaft is driven by an electric
motor by way of a rubber coupling and the amount of unbalance can be adjusted
by screwing small bolts into threaded holes in the disks. In the original test rig,
the shaft is supported by two ball bearings. For the experiments, one of the ball
bearings is replaced by a water-lubricated rubber-lined journal bearing with a
diameter of 1”, a length of 2”, and a radial bearing clearance of about 0.04 mm.
Figure 5.11 shows a schematic cross section of this bearing, which consists of
a metal shell to which a rubber bearing liner is attached containing a number
of axial grooves. This bearing is mounted into an aluminum bearing house, in
which four proximity probes are positioned to measure the whirl of the shaft
at both sides of the bearing. The rotor-bearing test rig is placed vertically to
minimize the stabilizing effect of a constant load in the radial direction of the
journal bearing by gravity. Figure 5.12 schematically shows the modified test
rig.

During the experiments, a nonlinear phenomenon was observed. No extra
unbalance was added to the disks, so that the rotor was excited by the ini-
tial amount of unbalance present in the system. The rotor speed was both
slowly increased and slowly decreased between 55 and 75 Hz. The results of
these measurements are depicted in figure 5.13, where the amplitude of the
shaft whirl measured below the water-lubricated rubber-lined journal bearing is
plotted against the rotor speed. The figure shows the resonance peak near 65 Hz,
which is the first critical rotor speed. Between about 62 and 66.5 Hz, a nonlinear
phenomenon can be observed. If the rotor speed is increased, the system jumps
from large-amplitude vibrations to small-amplitude vibrations between about
65 and 66.5 Hz. If the rotor speed is decreased, the system jumps from small-
amplitude vibrations to large-amplitude vibrations between about 64 and 62 Hz.
This behavior is caused by two cyclic folds in the branch of periodic solutions,
one near 66 Hz and one near 63 Hz. Between these cyclic folds, the branch of
periodic solutions is unstable and can therefore not be found in the experiments.
If the rotor speed is increased past the first cyclic fold or decreased past the
second cyclic fold, there is locally no periodic solution, so that the system jumps
to a remote part of the branch of periodic solutions.
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This nonlinear phenomenon is known from the so-called Duffing equation and
is caused by a nonlinear stiffening spring. In the water-lubricated rubber-lined
journal bearing, the stiffening behavior is probably caused by the rubber bearing
liner. The maximum amplitude of the shaft whirl is about four times greater
than the radial clearance of the bearing, so that the deformation of the rubber
bearing liner is considerable. Because of the fact that for large compressions the
stiffness of rubber increases, the bearing liner can behave as a stiffening spring.

The compliant journal-bearing models developed in this thesis use linear
elasticity for the bearing liner, so that they cannot describe the experimen-
tally observed nonlinear phenomenon. To correctly model the water-lubricated
rubber-lined journal bearing for large bearing-liner deformations, the bearing-
liner model needs to be extended to nonlinear elastic behavior.

5.5 Conclusions

The path-following calculations show that increasing the relative bearing-liner
compliance decreases the stability threshold of the balanced rotor in compliant
short journal bearings, while it increases the stability threshold of the same rotor
in compliant long journal bearings. For the unbalanced rotor with a∗ = 0.2 in
compliant short journal bearings, the relative bearing-liner compliance has a
significant influence on the location of the flip bifurcations at which the branch
of period-1 solutions changes stability and on the branches of period-2 solutions
that emanate from these flip bifurcations. For the same rotor in compliant long
journal bearings, increasing the relative bearing-liner compliance increases the
rotor speed of the secondary Hopf bifurcation, at which the branch of period-1
solutions becomes unstable.
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In contrast to rigid journal-bearing models, during the path-following calcu-
lations with the compliant journal-bearing models, the minimum film thickness
can become zero and even negative for certain branches of periodic solutions.
In other words, the compliant journal-bearing models developed in this thesis
predict the possibility of contact between the journal and the bearing. However,
because contact is not included in the models, the calculations are stopped when
the minimum film thickness becomes negative.

Experiments on a rotor-bearing system with a flexible shaft in a water-
lubricated rubber-lined journal bearing demonstrate a nonlinear phenomenon,
which is known from the Duffing equation. This nonlinear phenomenon cannot
be described using the compliant journal-bearing models developed in this thesis
because of the fact that linear elasticity is used for the bearing liner, whereas the
observed phenomenon is probably caused by the nonlinear stiffening behavior of
the rubber.



Chapter 6

Conclusions and Recommendations

In this chapter, the conclusions of this thesis will be drawn and a number of
recommendations for further research will be given.

6.1 Conclusions

Compliant short and long plain journal-bearing models for rotordynamic ap-
plications have been developed. These models consist of spatially discretized
nonlinear partial differential equations, which are in fact large systems of non-
linear ordinary differential equations. Because of the fact that the standard
periodic solution solvers for nonlinear dynamic systems are developed for rela-
tively small systems of ordinary differential equations, they are too inefficient
for spatially discretized partial differential equations. Therefore, an efficient nu-
merical method to calculate periodic solutions of general spatially discretized
nonlinear partial differential equations has been developed by extending the
finite-difference method using the NPGS approach. The finite-difference-based
NPGS method proves to be more efficient than both the standard methods and
the shooting-based NPGS method. However, the finite-difference-based NPGS

method has the same disadvantages as the standard finite-difference method,
such as numerical instability for stiff systems and inaccuracy for complicated
periodic solutions containing higher harmonics. The rotor-bearing systems dealt
with in this thesis appear to be not stiff and their periodic solutions to be rela-
tively simple.

The compliant short and long plain journal-bearing models are based on the
classical rigid short journal-bearing model and on a rigid long journal-bearing
model with a lubricant inlet at the top, respectively. The stiffness and damping
coefficients of the compliant journal-bearing models are calculated for different
values of the relative bearing-liner compliance. It turns out that if the relative
bearing-liner compliance is increased, the direct stiffness coefficients do not de-
crease for all values of the Sommerfeld number. The direct stiffness coefficients
of the compliant short journal-bearing model increase for Sommerfeld numbers
less than about one. For the complaint long journal-bearing model, the influence
of the relative bearing-liner compliance on the direct stiffness coefficients is more
complicated but for most values of the Sommerfeld number less than about six,
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these coefficients also increase. However, if the relative bearing-liner compliance
is increased to one, the direct stiffness coefficient in the vertical direction of the
compliant long journal-bearing model decreases again. The phenomenon that
the direct stiffness coefficients increase when the relative bearing-liner compli-
ance is increased can be explained by the fact that the direct stiffness coefficients
of a rigid journal bearing approach zero if the Sommerfeld number is decreased,
whereas a compliant bearing liner adds extra stiffness to the bearing. Therefore,
if the Sommerfeld number is small the direct stiffness coefficients can increase
when the relative bearing-liner compliance is increased.

The compliant journal-bearing models developed in this thesis have been
applied in the model of a symmetric rotor-bearing system with a rigid rotor
in two plain journal bearings. The nonlinear dynamics of this system have
been studied for different values of the relative bearing-liner compliance. It
turns out that increasing the relative bearing-liner compliance decreases the
stability threshold of a balanced rotor in compliant short journal bearings, while
it increases the stability threshold of the same rotor in compliant long journal
bearings. For an unbalanced rotor in compliant short journal bearings, the
relative bearing-liner compliance has a significant influence on the rotor speeds
at which the branch of synchronous vibrations changes stability and on the shape
of the branch of subsynchronous vibrations. For the same rotor in compliant
long journal bearings, increasing the relative bearing-liner compliance causes
an increase in the rotor speed, at which the branch of synchronous vibrations
becomes unstable.

In contrast to rigid journal-bearing models, during the path-following calcu-
lations with the compliant journal-bearing models the minimum film thickness
can become zero and even negative for certain branches of vibrations. In other
words, the compliant plain journal-bearing models developed in this thesis pre-
dict the possibility of contact between the journal and the bearing. However,
because contact is not included in the models, the calculations are stopped when
the minimum film thickness becomes negative.

Experiments on a rotor-bearing system with a flexible shaft in a water-
lubricated rubber-lined journal bearing demonstrate a nonlinear phenomenon.
The branch of synchronous vibrations contains two so-called cyclic folds, at which
the branch changes its direction. If the rotor speed is varied past one of these
cyclic folds, the system jumps to a remote part of the branch of synchronous
vibrations. This phenomenon is probably caused by the nonlinear elasticity of
the rubber bearing liner of the water-lubricated rubber-lined journal bearing.

6.2 Recommendations

In the compliant plain journal-bearing models developed in this thesis, a sim-
plified linear elasticity description for a thin liner on a rigid backing is used
to describe the behavior of the elastic bearing liner. This can be improved by
applying a more accurate linear elasticity description with for example finite
elements. From the experiments on a rotor-bearing system with a flexible rotor
in a water-lubricated rubber-lined journal bearing, it turned out that the rubber
bearing liner exhibits nonlinear elastic behavior because of large compressions.
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Therefore, to correctly model the water-lubricated rubber-lined journal bearing
for large bearing-liner deformations, the bearing-liner model needs to be ex-
tended to nonlinear elasticity. Another possible extension of the bearing-liner
model is to include damping.

The compliant plain journal-bearing models can be extended to journal
bearings with more complicated geometries such as journal bearings with ax-
ial grooves and of finite length, so that more journal bearings that are used in
practice can be modeled. From calculations on a rigid rotor in compliant plain
journal bearings, it follows that in contrast to rigid journal-bearing models the
film thickness of compliant journal-bearing models can become zero. There-
fore, contact must be included in the compliant journal-bearing models, so that
the path-following calculations can be continued past the points at which the
minimum film thickness becomes zero.

For a verification of the numerical results presented in this thesis, experiments
must be done on a rigid rotor in compliant plain journal bearings. Experiments,
in which the film thickness of the journal bearings is measured, can be done to
verify the numerical observation that the film thickness of compliant journal-
bearings can become zero.





Appendix A

Derivation of the Reynolds Equation

Figure A.1 shows two projections of an infinitesimally small volume in the lu-
bricant film of a journal bearing. In this figure, τφ and τz are the shear stresses
in the φ- and z-directions, respectively, and the radial coordinate r is measured
from the bearing surface. Neglecting inertial forces, the force balances for the
infinitesimally small volume in the φ- and z-directions are given by

δpδr = δτφRδφ and δpδr = δτzδz

The differential forms of these equations are given by

1

R

∂p

∂φ
=

∂τφ

∂r
and

∂p

∂z
=

∂τz

∂r
(A.1)

Assuming a Newtonian fluid for the lubricant, it follows that

τφ = µ
∂vφ

∂r
and τz = µ

∂vz

∂r

where vφ and vz are the velocities in the φ- and z-directions, respectively. Sub-
stitution of these expressions into (A.1) yields

1

R

∂p

∂φ
= µ

∂2vφ

∂r2
and

∂p

∂z
= µ

∂2vz

∂r2

Solving vφ and vz from these equations, using the boundary conditions vφ = 0
at r = 0 and vφ = ΩR at r = H, and vz = 0 at r = 0 and at r = H, yields

vφ =
1

2µR

∂p

∂φ
r(r −H) +

ΩR

H
r and vz =

1

2µ

∂p

∂z
r(r −H)
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Figure A.1: Infinitesimally small volume
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The volume transports in the φ- and z-directions are given by

qφ =

∫ H

0

vφ dr = − H3

12µR

∂p

∂φ
+ 1

2ΩRH and qz =

∫ H

0

vz dr = −H3

12µ

∂p

∂z

Substitution of these expressions into the equation of mass conservation, given
by

1

R

∂qφ

∂φ
+

∂qz

∂z
+

∂H

∂t
= 0

yields the Reynolds equation:

1
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H3 ∂p
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+ H3 ∂2p

∂z2
= 6µ

(

Ω
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Appendix B

Rigid Bearing Stiffness and

Damping Coefficients

In this appendix the analytical nondimensional stiffness and damping coefficients
of the rigid short and long plain journal-bearing models will be listed.

B.1 Short Bearing

The nondimensional stiffness coefficients of the rigid short plain journal-bearing
model are given by

k∗xx =
2ε0{16ε20 + π2(2− ε20)}

(1− ε20)
2{16ε20 + π2(1− ε20)}

(

L

D

)2

k∗xy = − π{16ε40 − π2(1− ε20)
2}

2(1− ε20)
5/2{16ε20 + π2(1− ε20)}

(

L

D

)2

k∗yx = −π{32ε20(1 + ε20) + π2(1− ε20)(1 + 2ε20)}
2(1− ε20)

5/2{16ε20 + π2(1− ε20)}

(

L

D

)2

k∗yy =
2ε0{32ε20(1 + ε20) + π2(1− ε20)(1 + 2ε20)}

(1− ε20)
3{16ε20 + π2(1− ε20)}

(

L

D

)2

The nondimensional damping coefficients of the rigid short plain journal-bearing
model are given by

b∗xx =
π{π2(1 + 2ε20)− 16ε20}

(1− ε20)
3/2{16ε20 + π2(1− ε20)}

(

L

D

)2

b∗xy = b∗yx = − 4ε0{π2(1 + 2ε20)− 16ε20}
(1− ε20)

2{16ε20 + π2(1− ε20)}

(

L

D

)2

b∗yy =
π{48ε20 + π2(1− ε20)

2}
(1− ε20)

5/2{16ε20 + π2(1− ε20)}

(

L

D

)2
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B.2 Long Bearing

The nondimensional stiffness coefficients of the rigid long plain journal-bearing
model are given by

k∗xx =
6ε0{4ε20 + π2(2− ε20)}

(2 + ε20)(1− ε20){4ε20 + π2(1− ε20)}

k∗xy = − 3π{4ε40 − π2(1− ε20)
2}

(2 + ε20)(1− ε20)
3/2{4ε20 + π2(1− ε20)}

k∗yx = −3π{8ε20(2 + ε40) + π2(1− ε20)(2− ε20 + 2ε40)}
(2 + ε20)

2(1− ε20)
3/2{4ε20 + π2(1− ε20)}

k∗yy =
6ε0{8ε20(2 + ε40) + π2(1− ε20)(2− ε20 + 2ε40)}

(2 + ε20)
2(1− ε20)

2{4ε20 + π2(1− ε20)}

The nondimensional damping coefficients of the rigid long plain journal-bearing
model are given by

b∗xx =
3π(π2 − 4ε20)

√

1− ε20{4ε20 + π2(1− ε20)}
b∗xy = − 6ε0(π

2 − 4ε20)

(1− ε20){4ε20 + π2(1− ε20)}

b∗yx = − 6ε0{π2(2 + 2ε20 − ε40)− 8ε20}
(2 + ε20)(1− ε20){4ε20 + π2(1− ε20)}

b∗yy =
6π{2ε20(6− 2ε20 − ε40) + π2(1− ε20)

2}
(2 + ε20)(1− ε20)

3/2{4ε20 + π2(1− ε20)}
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