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Abstract. One of the aims of process mining is to retrieve a process
model from a given event log. However, current techniques have prob-
lems when mining processes that contain non-trivial constructs and/or
when dealing with the presence of noise in the logs. To overcome these
problems, we try to use genetic algorithms to mine process models. The
non-trivial constructs are tackled by choosing an internal representation
that supports them. The noise problem is naturally tackled by the genetic
algorithm because, per definition, these algorithms are robust to noise.
The definition of a good fitness measure is the most critical challenge in a
genetic approach. This paper presents the current status of our research
and the pros and cons of the fitness measure that we used so far. Experi-
ments show that the fitness measure leads to the mining of process models
that can reproduce all the behavior in the log, but these mined models
may also allow for extra behavior. In short, the current version of the ge-
netic algorithm can already be used to mine process models, but future
research is necessary to always ensure that the mined models do not allow
for extra behavior. Thus, this paper also discusses some ideas for future
research that could ensure that the mined models will always only reflect
the behavior in the log.

Keywords: process mining, genetic mining, genetic algorithms, Petri nets, workflow

Petri nets.

1 Introduction

One of the aims of process mining is to automatically build a process model that
describes the behavior contained in an event log. The models mined by process
mining tools can be used as an objective starting point during the deployment of
systems that support the execution of processes and/or as a feedback mechanism
to check the prescribed process model against the enacted one. We illustrate
how process mining techniques work using an example. Consider the event log
shown in Table 1. This log shows the events for applying to get a license to ride
motorbikes or drive cars. Note that applicants for different types of licenses do
the same theoretical exam (task C) but different practical ones (tasks D or E).
In other words, whenever task B is executed, task E is the only one that can be
executed after the applicant has done the theoretical exam. This shows that there
is a dependency between tasks B and E, and also between tasks A and D. Based
on this log and these observations, process mining tools could retrieve the model
in Figure 1. In this case, we are using Petri nets to depict this model. We do so



ID Process instance ID Process instance ID Process instance

1 X, A, C, D, Y 3 X, A, C, D, Y 5 X, B, C, E, Y
2 X, B, C, E, Y 4 X, B, C, E, Y 6 X, A, C, D, Y

Table 1. Where: X = “Apply for license”, A = “Attend to classes on how to ride
motorbikes”, B = “Attend to classes on how to drive cars”, C = “Do theoretical exam”,
D = “Do practical exam to ride motorbikes”, E = “Do practical exam to drive cars”,
and Y = “Get result”.
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Fig. 1. Mined net for the log in Table 1

because Petri nets [5, 10] will be used to explain how the semantics of our internal
representation work.

Petri nets are a formalism to model concurrent processes. Graphically, Petri
nets are bipartite directed graphs with two node types: places and transitions.
Places represent conditions in the process. Transitions represent actions. Tasks
in the event logs correspond to transitions in Petri nets. The state of a Petri
net (or process for us) is described by adding tokens (black dots) to places. The
dynamics of the Petri net is determined by the firing rule. A transition can be
executed (i.e. an action can take place in the process) when all of its input places
(i.e. pre-conditions) have at least a number of tokens that is equal to the number
of directed arcs from the place to the transition. After execution, the transition
removes tokens from the input places (one token is removed for every input arc
from the place to the transition) and produces tokens for the output places (again,
one token is produced for every output arc). Besides, the Petri nets that we
consider have a single start place and a single end place. For the Petri net in
Figure 1, in the initial state there is only one token in place Start. This implies
that X is the only transition that can be executed in the initial state. When X
executes (or fires), one token is removed from the place Start and one token is
added to the place p1. In this marking, A or B are enabled to fire. If A fires, it
consumes the token in p1 and produces one token for p2 and another for p3. Note
that, although place p3 has now one token, transition D cannot fire yet because
the place p4 is not marked. The next transitions to fire are respectively C, D and
Y .

Current research in process mining [1–4, 7, 8, 11] still has problems to discover
process models with certain structural constructs and/or to deal with the presence
of noise in the logs. The problematic constructs are: non-free-choice, invisible tasks
and duplicate tasks [8]. Non-free-choice constructs combine synchronization and
choice. The example in Figure 1 illustrates a non-free-choice construct involving
the tasks D and E. The current techniques do not capture the dependency between
the tasks A − D and B − E. Invisible tasks are only used for routing purposes
(for instance, to skip the execution of another task) and do not appear in the log.
The current techniques do not mine models with unlabelled tasks. Duplicate tasks
mean that multiple transitions have the same label in the original process model.



The problem here is that most of the mining techniques treat these duplicate tasks
as a single one. Noise can appear in two situations: event traces were somehow
incorrectly logged or event traces reflect exceptional situations. Either way, most
of the techniques will try to find a process model that can parse all the traces in
the log. However, the presence of noise will hinder the correct mining of the most
common behavior.

One of the reasons why the current techniques cannot completely cope with the
above mentioned problematic constructs and/or with noisy logs is because their
search is based on local information in the log. For instance, the α-algorithm (see
[2] for details) uses only information about which tasks directly succeed or precede
one another in the process instances. As a result, this algorithm does not capture
the dependency in non-free-choice constructs. For example, the α-algorithm will
never discover the Petri net in Figure 1 for the log in Table 1 because none of
the process instances has the sub-trace “A,D” or “B,E”. Consequently, the α-
algorithm will not link these tasks. To overcome these problems, our research
uses genetic algorithms [6] to mine process models. The main motivation is to
benefit from the global search that is performed by this kind of algorithms.

Genetic algorithms are adaptive search methods that try to mimic the process
of evolution. These algorithms start with an initial population of individuals (in
this case process models). Every individual is assigned a fitness measure to indicate
its quality. In our case, an individual is a possible process model and the fitness
is a function that evaluates how good the individual expresses the behavior in
the log. Populations evolve by selecting the fittest individuals and generating new
individuals using genetic operators such as crossover (combining parts of two of
more individuals) and mutation (random modification of an individual).

When using genetic algorithms to mine process models, there are three main
concerns. The first is to define the internal representation. The internal represen-
tation defines the search space of a genetic algorithm. The internal representation
that we define and explain in this paper supports all the problematic constructs,
except for duplicate tasks. The second concern is to define the fitness measure.
In our case, the fitness measure evaluates the quality of a point (individual or
process model) in the search space against the event log. A genetic algorithm
searches for individuals whose fitness is maximal. Our fitness measure makes sure
that individuals with a fitness that is equal to 1 will parse all the process instances
(traces) in the log. The third concern relates to the genetic operators (crossover
and mutation) because they should ensure that all points in the search space de-
fined by the internal representation may be reached when the genetic algorithm
runs. This paper presents a genetic algorithm that addresses these three concerns.

The rest of the paper is organized as follows. Section 2 explains the internal
representation that we use and its semantics. Section 3 explains how the genetic
algorithm works. Section 4 discusses the experiments and results. This section
also shows the results when the genetic algorithm uses some heuristics during the
building of the initial population. Section 5 presents the current ideas to make
sure that the returned model is “minimal”. Section 6 presents the conclusions and
future work.



2 Internal Representation and Semantics

When defining the internal representation to be used by our genetic algorithm,
the main requirement was that this representation should express the dependen-
cies between the tasks in the log. In other words, the model should clearly express
which tasks would enable the execution of other tasks. Additionally, it would be
nice if the internal representation would be compatible with a formalism to which
analysis techniques and tools exist. This way, these techniques could also be ap-
plied to the discovered models. Thus, one option would be to directly represent the
individual (or process model) as a Petri net [10]. However, such a representation
would require determining the number of places in every individual and this is
not the core concern. It is more important to show the dependencies between the
tasks. So, we defined an internal representation that is as expressive as Petri nets
(from the task dependency perspective) but that focusses only on the dependen-
cies between tasks. This representation is called causal matrix. Figure 2 illustrates
in (i) the causal matrix1 that expresses the same task dependencies that are in the
“original Petri net”. The causal matrix shows which tasks enable the execution
of other tasks via the matching of input (I) and output (O) condition functions.
The sets returned by the condition functions I and O have subsets that contain
the tasks in the model. Tasks in a same subset have an OR-split/join relation.
Sets in different subsets have an AND-split/join relation. Thus, every I and O set
expresses a conjunction of disjunctions. Additionally, a task may appear in more
than one subset in a same set. As an example, for task D in the original Petri
net in Figure 2 the causal matrix states that I(D) = {{F,B,E}, {E,C}, {G}}
because D is enabled by an AND-join construct that has 3 places. From top to
bottom, the first place has a token whenever F or B or E fires. The second place,
whenever E or C fires. The third place, whenever G fires. Similarly, the causal
matrix has O(D) = {} because D is executed last in the model. The following
definition formally defines these notions.

Definition 1 (Causal Matrix). A Causal Matrix is a tuple CM = (A,C, I,O),
where

- A is a finite set of activities,

- C ⊆ A × A is the causality relation,

- I ∈ A → P(P(A)) is the input condition function,2

- O ∈ A → P(P(A)) is the output condition function,

such that

- C = {(a1, a2) ∈ A × A | a1 ∈
⋃

I(a2)},
3

- C = {(a1, a2) ∈ A × A | a2 ∈
⋃

O(a1)},

- C ∪ {(ao, ai) ∈ A × A | ao
C

•= ∅ ∧
C

• ai = ∅} is a strongly connected graph.

1 Due to space limitations, Figure 2 shows a compact representation of this causal
matrix.

2 P(A) denotes the powerset of some set A.
3

⋃
I(a2) is the union of the sets in set I(a2).



Any Petri net without duplicate tasks and without more than one place with the
same input tasks and the same output tasks can be mapped to a causal matrix.
Definition 2 formalizes such a mapping. The main idea is that there is a causal
relation C between any two tasks t and t′ whenever at least one of the output
places of t is an input place of t′. Additionally, the I and O condition functions
are based on the input and output places of the tasks. This is a natural way of
mapping because the input and output places of Petri nets actually reflect the
conjunction of disjunctions that these sets express.

(ii)(i)

A E

B

C

D

Original Petri net Mapped Petri net

F

G
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F
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E
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D

Compact representation of the causal matrix

TASK  I(TASK)   O(TASK)  
A  {}   {{F,B,E},{E,C},{G}}  
B  {{A}}   {{D}}  
C  {{A}}   {{D}}  
D  {{F,B,E},{E,C},{G}}   {}  
E  {{A}}   {{D}}  
F  {{A}}   {{D}}  
G  {{A}}   {{D}}  
 

Fig. 2. Mapping of a PN with more than one place between two tasks (or transitions).

Definition 2 (ΠPN→CM). Let PN = (P, T, F ) be a Petri net. The mapping of
PN is a tuple ΠPN→CM (PN ) = (A,C, I,O), where

- A = T ,

- C = {(t1, t2) ∈ T × T | t1 • ∩ • t2 6= ∅},

- I ∈ T → P(P(T )) such that ∀t∈T I(t) = {•p | p ∈ •t},

- O ∈ T → P(P(T )) such that ∀t∈T O(t) = {p • | p ∈ t•}.

The semantics of the causal matrix can be easily understood by mapping them
back to Petri nets. This mapping is formalized in Definition 3. Conceptually, the
causal matrix behaves as a Petri net that contains visible and invisible tasks. For
instance, see Figure 2. This figure shows (i) the mapping of a Petri net to a causal
matrix and (ii) the mapping from the causal matrix to a Petri net. The firing rule
for the mapped Petri net is very similar to the firing rule of Petri nets in general.
The only difference concerns the invisible tasks. Enabled invisible tasks can only
fire if their firing enables a visible task. Similarly, a visible task is enabled if all
of its input places have tokens or if there exits a set of invisible tasks that are
enabled and whose firing will lead to the enabling of the visible task. Conceptually,
the causal matrix keeps track of the distribution of tokens at a marking in the
output places of the visible tasks. Every causal matrix starts with a token at
the start place. We point out that, in Figure 2, although the mapped Petri net



does not have the same structure of the original Petri net, these two nets are
behaviorally equivalent. In other words, given that these two nets initially have a
single token and this token is at the start place (i.e., the input place of A), the set
of traces the two nets can generate is the same. Additionally, the invisible tasks
in the mapped Petri net show that the causal matrix supports the representation
of invisible tasks that are used, for instance, to skip tasks. A detailed explanation
and formalization about the mappings in this section can be found in [9].

Definition 3 (ΠN
CM→PN). Let CM = (A,C, I,O) be a causal matrix. The naive

Petri net mapping of CM is a tuple ΠN
CM→PN = (P, T, F ), where

- P = {i, o} ∪ {it,s | t ∈ A ∧ s ∈ I(t)} ∪ {ot,s | t ∈ A ∧ s ∈ O(t)},

- T = A ∪ {mt1,t2 | (t1, t2) ∈ C},

- F = {(i, t) | t ∈ A ∧
C

• t = ∅} ∪ {(t, o) | t ∈ A ∧ t
C

•= ∅} ∪ {(it,s, t) | t ∈
A ∧ s ∈ I(t)} ∪ {(t, ot,s) | t ∈ A ∧ s ∈ O(t)} ∪ {(ot1,s,mt1,t2) | (t1, t2) ∈
C ∧ s ∈ O(t1) ∧ t2 ∈ s}∪{(mt1,t2 , it2,s) | (t1, t2) ∈ C ∧ s ∈ I(t2) ∧ t1 ∈ s}.

3 Genetic Algorithm

In this section we describe the main building blocks of our genetic algorithm.

3.1 Initial Population

The initial population is randomly built by the genetic algorithm. As explained in
Section 2, individuals are causal matrices. When building the initial population,
we roughly follow Definition 1. Given a log, all individuals in any population of the
genetic algorithm have the same set of activities (or tasks) A. This set contains the
tasks that appear in the log. However, the causality relation C and the condition
functions I and O are randomly built for every individual in the population. As a
result, the initial population can have any individual in the search space defined
by a set of activities A. Note that the higher the amount of tasks that a log
contains, the bigger this search space.

3.2 Fitness Calculation

Our fitness is based on the parsing of the event traces by individuals. For a noise-
free log, the perfect individual should have fitness 1. For a noisy log, the perfect
individual should have fitness close to 1 (since it would be able to parse most of the
traces but it would have problems to parse the noisy traces). From this discussion,
a natural fitness for an individual to a given log seems to be the number of properly
parsed event traces4 divided by the total number of event traces. However, this
fitness measure is too coarse because it does not give indication about how many
parts of an individual are correct when the individual does not properly parse an
event trace. So, we defined a more elaborate fitness function: when the task to be
parsed is not enabled, the problems (e.g. number of missing tokens to enable this

4 An event trace is properly parsed by an individual if, for an initial marking that
contains a single token and this token is at the start place of the mapped Petri net
for this individual, after firing the visible tasks in the order in which they appear in
the event trace, the end place is the only one to be marked and it has a single token.



task) are registered and the parsing proceeds as if this task would be enabled. This
continuous parsing semantic is more robust because it gives a better indication
of how many tasks do or do not have problems during the parsing of a trace. The
fitness function that our algorithm uses is in Definition 4. The notation used in
this definition is as follows. allParsedActivities(L,CM) gives the total number of
tasks in the event log L that could be parsed without problems by the causal
matrix (or individual) CM . numActivitiesLog(L) gives the number of tasks in
L. allMissingTokens(L,CM) indicates the number of missing tokens in all event
traces. allExtraTokensLeftBehind(L,CM) indicates the number of tokens that
were not consumed after the parsing stopped plus the number of tokens of the
end place minus 1 (because of proper completion). numTracesLog(L) indicates
the number of traces in L. numTracesMissingTokens(L,CM) and
numTracesExtraTokensLeftBehind(L,CM) respectively indicate the number of
traces in which tokens were missing or tokens were left behind during the parsing.

Definition 4 (Fitness). Let L be an event log. Let CM be a causal matrix. Then
the fitness F : L × CM → (−∞, 1] is a function defined as

F (L,CM) = allParsedActivities(L,CM) − punishment

numActivitiesLog(L) , where

punishment = allMissingTokens(L,CM)
numTracesLog(L) − numTracesMissingTokens(L,CM)+1 +

allExtraTokensLeftBehind(L,CM)
numTracesLog(L) − numTracesExtraTokensLeftBehind(L,CM)+1

The fitness F gives a more detailed indication about how fit an individual is to a
given log. The function allMissingTokens penalizes (i) nets with OR-split where
it should be an AND-split and (ii) nets with an AND-join where it should be an
OR-join. Similarly, the function allExtraTokensLeftBehind penalizes (i) nets with
AND-split where it should be an OR-split and (ii) nets with an OR-join where
it should be an AND-join. Note that we weigh the impact of the allMissingTo-
kens and allExtraTokensLeftBehind functions by respectively dividing them by
the number of event traces minus the number of event traces with missing and
left-behind tokens. The main idea is to promote individuals that correctly parse
the more frequent behavior in the log. Additionally, if two individuals have the
same punishment value, the one that can parse more tasks has a better fitness
because its missing and left-behind tokens impact fewer tasks. This may indicate
that this individual has more correct I and O condition functions than incorrect
ones. In other words, this individual is a better candidate to produce offsprings
for the next population (see Subsection 3.4).

3.3 Stop Criteria
The mining algorithm stops when (i) it finds an individual with fitness equals 1;
or (ii) it computes n generations, where n is the maximum number of generation
that is allowed; or (iii) the fittest individual has not changed for n/2 generations
in a row.

3.4 Genetic Operators
We use elitism, crossover and mutation to build the individuals of the next gener-
ation. A percentage of the best individuals (the elite) is directly copied to the next



population. The other individuals in the population are generated via crossover
and mutation. Two parents produce two offsprings. To select parents, a tourna-
ment is played in which five individuals in the population are randomly drawn
and the fittest one always wins. The crossover rate determines the probability
that two parents undergo crossover. Crossover is a genetic operator that aims at
recombining existing material in the current population. In our case, this material
is the set of current causality relations in the population. The crossover operation
should allow for the complete search of the space defined by the existing causal-
ity relation in a population. Given a set of causality relations, the search space
contains all the individuals that can be created by any combination of a subset
of the causality relations in the population. Thus, our crossover operator allows
an individual to: lose tasks from the subsets in its I/O condition functions (but
not necessarily causality relations because a same task may be in more than one
subset of an I/O condition function), add tasks to the subsets in its I/O condition
functions (again, not necessarily causality relations), exchange causality relations
with other individuals, incorporate causality relations that are in the population
but are not in the individual, lose causality relations, decrease the number of sub-
sets in its I/O condition functions, and/or increase the number of subsets in its
I/O condition functions. The crossover point of two parents is a randomly chosen
task. Note that, after crossover, the number of causality relations for the whole
population remains constant, but how these relations appear in the offsprings may
be different from the parents.

After the crossover, the mutation operator takes place. The mutation oper-
ator aims at inserting new material in the current population. In our case, this
means that the mutation operator may change the existing causality relations of
a population. Thus, our mutation operator performs one of the following actions
to the I/O condition functions of a task in an individual: (i) randomly choose a
subset and add a task (in A) to this subset, (ii) randomly choose a subset and
remove a task out of this subset, or (iii) randomly redistribute the elements in
the subsets of I/O into new subsets. For example, consider the input condition
function of task D in Figure 2. I(D) = {{F,B,E}, {E,C}, {G}} can be mu-
tated to (i) {{F,B,E}, {E,C}, {G,D}} if task D is added to the subset {G},
(ii) {{F,B,E}, {C}, {G}} if task E is removed from the subset {E,C}, or (iii)
{{F}, {E,C,B}, {G}, {E}} if the elements in the original I(D) are randomly re-
distributed in a random chosen number of new subsets. Every task in an offspring
may undergo mutation with the probability determined by the mutation rate.

4 Experiments and Results

As a first test for our genetic algorithm (GA), we applied it for noise-free event
logs and checked if it could mine process models that contain all the behavior in
these logs. In other words, the mined model should have the fitness F = 1. During
the experiments, the genetic algorithm mined event logs from nets that contain
5, 7, 8, 12 and 22 tasks. These nets contain short loops, parallelism and/or non-
free-choice constructs. Every event log has 1000 random executions of the nets.
For each noise-free event-log, 10 runs of the genetic algorithm were executed. The
populations had 500 individuals and were iterated for at most 100000 generations.



The crossover rate was 1.0 and the mutation rate was 0.01. The elitism rate was
0.01. The initial population might contain duplicate individuals. All the experi-
ments were run using the ProM framework, our tool set that can be obtained via
www.processmining.org. We implemented the genetic algorithm described in this
paper as a plug-in for this framework. This framework also supports a mapping
from the internal representation to Petri nets (cf. Definition 3).

# Tasks Figure # Runs BFE WFE MBF Mean Original
F = 1 # Generations Found

5 3.a 9 1 0.989 0.998 5016 0

7 2 6 1 0.987 0.997 29259 0

7 (nfc) 1 10 1 1 1 511 0

8 3.b 10 1 1 1 5145 0

12 3.c 10 1 1 1 1831 0

22 – 0 0.931 0.537 0.739 249 0

Table 2. Results of the mining for 10 runs. “#” means “number of”. The columns BFE,
WFE and MBF respectively show the Best Fitness Ever, the Worst Fitness Ever (i.e.
the best one in the worst run) and the Mean Best Fitness (i.e. average over 10 runs).

The results in Table 2 show that the GA could find an individual that can
parse all log traces in most of the runs 5. However, none of these individuals
are equal to the original nets that were used to generate the event logs. This
happens because, although the requirements that the fitness F captures are all
necessary to ensure that the GA mines a process model that can parse all traces
in the log, these requirement are not sufficient to ensure that the mined model
will always give a good insight about what is happening in the log. The reason
is that different models are able to parse all event traces and these models may
allow for extra behavior that does not belong to the class of traces in the log. A
class of traces defines all possible combinations of task orderings for a given set
of tasks. For instance, the traces “a,b,c,d” and “a,c,b,d” belong to the same class
because they involve the same set of tasks {a, b, c, d} and show that these tasks
can be interleaved probably because they are in parallel or they are short loops.

A E

B

C

D

(a)

A

B

D
E

C

F
G

H

(b)

Fig. 3. The original nets with 5, 8 and 12 tasks.

Thus, the challenge we have now for our GA is: “How to ensure that the
retrieved model that can parse all the traces does not allow for extra undesired

5 Note: The experiments for the log of the net with 22 tasks were run for at most 250
generations because they take too much time to complete. However, the obtained
results suggest that the population was evolving towards the right direction. Due to
space limitation, the net 22 is not presented here. This net can be found in [9], Figure
8.



behavior as well?”. To illustrate this we consider the nets shown in Figure 4. These
models can also parse the traces in Table 1, but they allow for extra behavior. For
instance, both models allow for the applicant to take the exam before attending
to classes. To define a fitness measure to punish models that express more than it
is in the log is especially difficult because we do not have negative examples. The
logs show the allowed (positive) behavior, but they do not express the forbidden
(negative) one.

X

A

B

YC

E

D

X

A
B

Y

C E
D

(a) (b)

Fig. 4. Example of nets that can also reproduce the behavior for the log in Table 1. The
problem here is that these nets allow for extra behavior that is not in the log.

A possible way to increase the probability that the GA will mine models that
allow for none or little extra behavior is to use a hybrid version of evolutionary
algorithm that uses heuristics in the search [6]. In our case, the hybrid version
uses some heuristics to build the initial population. In short, the more often a
task t is directly followed by a task t′ (i.e. the subtrace “t, t′” appears in traces
in the log), the higher the probability that individuals are built with a causality
relation from t to t′. Details about the heuristics can be found in [9]. With this
setting, the genetic algorithm could also find, most of the time, an individual that
could parse all traces in the log. Furthermore, the genetic algorithm sometimes
found an individual that is equal to the original net (see Table 3). Note that the
hybrid genetic algorithm performed better for nets with few or no parallelism.
Additionally, the use of heuristics hindered the discovering of the non-free-choice
construct. This happens because the heuristics are based on local relations in the
log. Note that there is no direct relation between tasks A − D and B − E, and if
we remove the places p3 and p5 from the net in Figure 1, the resulting net can
also parse all traces that the net in Figure 1 can parse.

# Tasks Figure # Runs BFE WFE MBF Mean Original
F = 1 # Generations Found

5 3.a 10 1 1 1 2 2

7 2 9 1 0.999 0.999 16323 4

7 (nfc) 1 10 1 1 1 0 0

8 3.b 10 1 1 1 2 9

12 3.c 10 1 1 1 1 10

22 – 1 1 0.972 0.989 192 0

Table 3. Results of the mining for 10 runs when heuristics are used to build the initial
population.

Another possible solution is to improve the fitness function to make sure that
the mined model is not only complete (parses all traces in a log) but it is also



minimal (does not allow for classes of traces that cannot be derived from the log).
The next section presents some ideas on how to do so.

5 Challenges and Some Ideas

Although our fitness measure F (see Subsection 3.2) punishes individuals with
wrong AND/OR-split/join constructs and individuals with missing arcs, it does
not punish individuals that allow for additional behavior not present in the log.
Thus, our challenge is to include in the fitness function F a measure that punishes
for extra behavior.

One possible solution to punish an individual that allows for undesirable be-
havior could be to build the coverability graph [10] of the mapped Petri net for
this individual and check the fraction of event traces this individual can generate
that are not in the log. The traces that express different paths of execution for
parallelism are not considered as extra behavior. The main idea in this approach
is to punish the individual for every extra event trace it generates. Unfortunately,
building the coverability graph is not very practical and it is unrealistic to assume
that all possible behavior is present in the log.

Another possibility is to check, for every marking, the number of visible tasks
that are enabled. Individuals that allow for extra behavior tend to have more
enabled tasks than individuals that do not. For instance, the nets in Figure 4
have more enabled tasks in most reachable markings than the net in Figure 1.
The main idea in this approach is to punish more the individuals that have more
enabled visible tasks during the parsing of the log.

6 Conclusions and Future Work

In this paper we presented a genetic algorithm to mine process models. The inter-
nal representation allows for the mining of process models that contain non-free-
choice and invisible tasks. The current version can search the space defined by the
set of tasks in the log and return a process model (individual) that can parse all
event traces, regardless of how the initial population is built. This means that our
genetic operators (crossover and mutation) are working as expected. However, the
fitness measure needs to be improved to make sure that the mined models only
express the behavior in the log. Our main challenge here is how to cope with the
lack of negative examples. We do not have logs that show the forbidden (negative)
behavior. Thus, the genetic algorithm has to work with what actually happened
(positive examples), but it still should punish the individuals that allow for extra
behavior that does not comply with the log. Some ideas to improve the fitness
measure include (i) computing all the traces that an individual can produce (its
coverability graph) or (ii) checking the amount of tasks that are enabled at ev-
ery marking during the parsing of event traces. Our future work will focus on
developing metrics to mine process models that are not only complete (express
the behavior in the log), but are also minimal (do not allow for extra undesired
behavior).
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