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The generation of successive approximation methods for

Markov decision processes by using stopping times

J.A.E.E. van Nunen and J. Wessels

Summary

In this paper we will consider several variants of the standard successive

approximation technique for Markov decision processes. It will be shown

how these variants can be generated by stopping times.

Furthermore it will be demonstrated how this class of techniques can be

extended to a class of value oriented techniques. This latter class con­

tains as extreme elements several variants of Howard's policy iteration

method.

For all methods presented extrapolations are given in the form of MacQueen's

upper and lower bounds.

1. Introduction

In [lJ we introduced the standard successive approximation method for Markov

decision processes with respect to the total expected reward criterion.

In fact there exist some variants of this method. These variants differ in

the policy improvement procedure: the standard procedure may be replaced

by a Gauss-Seidel procedure (see e.g. Hastings [10J, Kushner and Kleinman

[13J), an overrelaxation procedure (see Reetz[7J and Schellhaas [9J) or

some other variants (see Van Nunen [4J). In [3J it has been shown that

such variants can be generated by stopping times. This approach has been

generalized in [2J. In section 2 we will introduce the main idea of this

approach.

Policy iteration -with its several variants- as introduced by Howard [12J

is usually not viewed upon as a successive approximation technique.

However, in [5J it has been shown to be an extreme element of a class of

extended successive approximation techniques, the so-called value-oriented

methods. This approach has been combined in [6J with the stopping time

approach. In [2J a further generalization has been given (mainly with

respect to the conditions). Value-oriented methods will be treated in

section 3.

Section 4 will be devoted to upper and lowerbounds for the techniques
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presented in the earlier section. Furthermore some remarks on numerical

aspects will be made.

In this paper we will use the same notations as in [lJ, however, in order

to keep the proofs simple, we will work under somewhat stronger assumptions.

In fact, our assumptions are the same as those in [2J. For details we will

refer repeatedly to [2J.

Assumptions. Our assumptions are the same as the assumptions in [lJ, with

assumption 2.3 (i) replaced by

00

(b) for all i EO S .

These stronger assumptions make the spaces V and W superfluous.

As remarked in [lJ (remark 5.1) one may replace r in the assumptions (and
-definition of V) by a vector b with b - r EO W. We will do so in this

paper in order to facilitate referring to [2J.

2. Stopping times and successive approximations

In this section we will show that each stopping time characterized by a
00

goahead function 0 for the sequence {X} a induces an operator Uf: on
n n= v

V, such that Uo is monotone and (usually) contracting.

Furthermore all these contracting operators on V have the same unique

*fixed point v • So we have for any va EO V and any 0:

for n = 1,2, •••

and v -+ v •
n

Definition 2.1. A (randomized) go ahead funation 0 is a function which

maps

G
00

:=

00

u Sk
k=l

into [O,lJ.
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By 6 we denote the set of all go ahead functions.

1 - o(sO,sl, ••• ,sn) will be interpreted as the probability to stop the

process at time n, given that Xo = sO""'Xn = sn and the process has

not been stopped earlier.

Definition 2.2.

(a) 0 E 6 is said to be nonrandomized if o(a) E {0,1} for all

(b) a E 6 is said to be nonzero if o(i) > € > 0 for some € and all i E S

(c) 0 E 6 is said to be transition memoryZess if a(a) only depends on

the last two entries of a, for those a with at least two entries

and satisfying a(sO, ••• ,sk) F 0 for all k < n, if a = sO, •.. ,sn'

So for a transition memoryless go ahead function the stopping probability

only depends on the most recent transition. The relevance of this notion

will become clear in the course of this section.

Examples 2.1 .• Below some examples of nonzero go ahead functions will be

given. These examples will be used repeatedly in this paper.

contains less

(a) Define the go

functions a
n

ahead function 0 (n = 1,2, ••• ) by a (a) := 1 if a
n n

than n + 1 entries, otherwise a (a) := O. The go ahead
n

are nonrandomized, a is only transition memoryless if
n

n = 1.

{b) define a
R

by a
R

(s,s, ••• ,s) := 1 for all s and all sequences of

finite length, aR(a) := 0 otherwise.

oR is nonrandomized and transition memoryless.

(e) 0H is defined by aH(sO"",sn) := 1 if So < 51 < , •• < sn (any n),

otherwise aH(a) := O.

0H is nonrandomized and transition memoryless.

(d) a (i) = ~ for all i E S, ° (a) := 0 elsewhere.r r° is transition memoryless.r
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Since we introduced a probabilistic go ahead concept, we have to incorporate

it in the probability space and measure. Therefore we extend the space

(S x A)~ (see [lJ section 2) to (S x E x A)~, with E := {a,l}. Furthermore
~ ...

the stochastic process {xt,Zt}t=a to {xt,yt,Zt}t=O' where Yt = a as long

as the process may go ahead.

Now any starting state i, any go ahead function 0, and any decision rule
...

~ determine a probability measure on (S x E x A) with the required pro-

perties in an obvious way (see [2J for details). This probability measure

will be denoted by JP ~, O. Expectations will be denoted by :IE ~, a. Note
~ ~

that :II? ~, 0 and 1I?~ are equal for events which do not depend on the variables
~ ~

Yt ·

In fact the go ahead concept induces a stopping time

Definition 2.3. The random variable t taking values in {0,1,.~.,... } is

defined by

t = n ~ Yo = ••• = Y = a and Y = 1n-1 n

• Yt = 0 for all t = 0,1, .••

t is a randomized stopping time with respect to XO,X1' ••••

Now we will introduce our operators.

Definition 2.4. For each 0 E ~ and each strategy (= nonrandomized decision
~rule) ~ the operator La on V is defined by

for v E V, with v(X) := a
t

if t = ....

Lemma 2.1. L6 is monotone and (for nonzero 0) strictly contracting on V.

Therefore L~ possesses a unique fixed point v~ in V.
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TI TIProof. The contraction factor of L6 is II P 6 (TI) II =: p 6 ' where P 6 (TI) is

the matrix with (i,j) entry JP~,6('r <ao,x. = j). P~<l if and only if

6 is nonzero.

Examples. Take for TI an arbitrary stationary strategy (f,f, ••• ).

(a)

(b)

TI
(L6 v) (i)

1

TI
(L6 v) (i)

R

= r(i,f(i» + Lpf(i) (i,j)v(j) ;
j

= [1 - pf(i) (i,i)]-l[r(i,f(i» + 2pf(i) (i,j)v(j)]
j7'i

(c)
TI

(Lo v) (i) = r(i,f(i»
H

+ L pf(i) (i,j) (L; v) (j) + 2pf(i) (i,j)v(j)
jj<i H j~i

(d)
TI

(Lo v) (i)

r
= ~v(i) + ~[r(i,f(i» + 2 pf(i) (i,j)v(j)J •

j

(e)
TI

let 6 be nonzero, then v
6

= v(TI), independent of 6.

Remark 2.1. If TI is a nonstationary strategy then there exist values for

{pa(i,j), r(i,a)} and go ahead functions 6' and 0" such that v~, 7' v~"

(see lemma 5.1.7 in [2J).

We now come to the operators U
6

Definition 2.5. The operator Uo on V is defined by

TI
:= sup Lov ,

TI

where the supremum is taken componentwise.

Note that L has only been defined for strategies TI, so the supremum is

only taken over the strategies (= nonrandomized decision rules). Extension

to the randomized decision rules would not affect the value of Uov •

Theorem 2.1. Let 0 E A, then Uo is monotone and (only for nonzero 0) strictly

contracting with contraction radius 'V 0 := sup P~ • Therefore Uo possesses
TI



- 6 -

*(for nonzero 0) a unique fixed point. v is fixed point for all Uo with

o nonzero.

Proof. For details we refer to the proof of theorem 5.2.1 in [2J. With

respect to the last statement we remark:

if 7T = (f, f , ••• ) •

then it would be possible to

*Since f may be chosen such that V(7T) ~ v

* * * *we obtain Uov ~ v • If we had Uov > v I

*construct a strategy 7T' with V(7T 1
) > v •

- £j.l ([lJ theorem 3.1 (ii)),

This theorem serves as the basis for a o-based succes.sive approximation

*algorithm, since vn := U
o
v

n
_1 converges in norm to v if va C V.

In the definition of U
o

we take the supremum over all strategies. One

would naturally prefer to restrict oneself to Markov strategies and

even use the algorithm for constructing £-optimal stationary strategies.

The following theorem (for the proof we refer to [2J theorem 5.2.2 and

5.2.3X shows that the concept of transition memoryless go ahead functions

plays a crucial role in this problem.

Theorem 2.2.

(a) Let 0 be transition memoryless, £ > 0, V C V.

Then there exists a policy f, such that

(b) Let 0 be not transition memoryless, then there exist values for the

parameters {pa(i,j), r(i,a)}, such that for some v c V and some £

there is no f c F with

f
L0v ~ U0v - £j.l •

Hence, if 0 is transition memoryless we have



- 7 -

where the sup is not necessarily componentwise. Whereas if 0 is not

transition memoryless

f
sup LoV

may not be defined.

For nonzero and transition memoryless go ahead functions we now obtain

the following iteration procedures

(a) (if sup L~V is attained for some f) •
f

Choose V
o

€ V, define v
n

:= U
o
v

n
_

l
and choose f n such that vn

then

Ilvn
* n *(i) - v II s; \)011 v0 - v II

(ii) Ilvn - v (f ) II s;
-1

- v II(1 - \)0) vollvnn n-l

(iii) v(f ) *if Vo satisfies UovO ~ vo' then v 1 s; v s; s; v
n- n n

(b) Choose e > 0 and Vo € V with V
o

s; Uov
O

- ev.

Choose f (n = 1, ••• ) such that
n

f
L

o
nV

n
_

1
~ max{v

n
_

l
, U

o
v

n
_

l
- e(l - \)o)V}

define

then

(i) IIv
n

*- v II < e for n sUfficiently large

(ii) v 1 s; v s; v(f )n- n n
*s; v •

In fact, as in the case of 0
1

, more efficient lower and upperbounds can be

obtained (see section 4).
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Examples 2.3. The examples 2.2 (a)-(b) induce numerically well-executable

policy improvement procedures. In fact 01 induces the standard successive

approximations technique based on Gauss-Jordan-iteration; oR induces

Jacobi iteration (compare Porteus [14J); 0H yields Gauss-Seidel iteration;

other choices of °yield overrelaxation and combinations of overrelaxation

and Gauss-Seidel iteration (in this respect lemma 7.2.3 in [2J has inter­

esting consequ,ences).

3. Value oriented methods

In the foregoing section we developed a whole class of policy improvement

procedures or successive approximations techniques. As we saw in section

2, at the n-th stage of any policy improvement procedure the best esti­

mate for the optimal strategy is the stationary strategy f • This makes the
n

next policy improvement more efficient if L~e value v is nearer to v(f ).n n
In fact policy iteration techniques owe their high efficiency in the

policy improvement part to the fact that they have v = v (f ). A dis-. n n
advantage of policy iteration is in fact the computation of these vn •

However, there is an arbitrary way combining the advantages of policy

iteration and successive approximations. Namely suppose that f is chosen
n

such that

then define

v
n

Note that

O. € {1,2, ••• ,co}) •

f
lim(L.1'n/'V

n
_

1
= v(f ) ,

A~ u n

so by the choice of A we in fact determine how good v approximates v(f ).
n n

The choice A = 1 gives the successive approximation of se9tion 2, whereas

the choice A = co gives for any transition memoryless and ~nzero go ahead

function a variant of the policy iteration technique.

Below we give a more formal treatment.
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Definition 3.1. Let 0 be nonzero and transition memoryless and suppose

that the sup L~v is attained for some policy if v E V. Furthermore we
f

assume that we have a unique way of designating such a policy. We define

the operators U~A) on V for A = 1,Z, ••• ,~ by

U
(A)
o v

if the sup in Uov is attained for f.

Note that

(~) f n
U

o
v = lim (Lo) v = v(f) •

n-+-o>

().)
It does not seem revolutionary to conjecture that vn := Uo v

n
_1 converges

*to v if Vo E V. aowever, one becomes somewhat more prudent as soon as one

real ;zes that U;A) ;s neJ.'ther '1 t '1• u. necessarJ. y mono one, nor necessarJ. y con-

tracting as one can see in the following simple example fpr 0 = 01 ' S = {l,Z},

II :: 1, A = {l,Z}: pl(i,Z) =p2(i,1) =0.99, r(i,l) =1, other probabilities

and rewards being zero.

Now one obtains for v := (O,O)T, w

whereas lim U~A)W = (O,a)T.
).-+-0>

We will now prove that the proposed iteration step leads to a converging

algorithm.

Theorem 3.1. Let the situation be such that U(A) is defined and choose
o

va E V with Uova ~ va •
(A) *Then v := U~ v 1 converges in norm to vn u n-

and

*v 1 ~ v ~ v(f ) ~ vn- n n

where f is the policy (unique, possibly after tie breaking) which maximizes
f n

Lovn_
1

•



v
n

- 10 -

Proof. By assumption we have

Hence

Since U
o
v

l
= L

o
(f

2
)v

l
~ L

o
(f

1
)v

l
, one obtains v

l
S V z S v(f2).

*By induction this gives v 1 S v :s; v (f ) :s; v • On the other hand
n- n n *

~ u~vo' which tends to v* for n + ~. Therefore vn + v and

IIvn
n *:s; V o IIv

O
- v II •

In the same way as in [lJ for the standard algorithm one may obtain Fore

sophisticated bounds (see section 4). Furthermore the assumption that the

sup in Uov is attained can be weakened as in [lJ by introducing approximations

(in norm) of the sup. This can be extended in several ways. For a detailed

description of these possibilities see [2J.

As already stated, the case A = ~ represents a variety of policy iteration

procedures. In fact the procedures (for any nonzero transition memoryless 0)

generate sequences of policies with increasing value. Hence an optimal

policy is obtained after a finite number of iterations if the state and

action spaces are finite.

If 0 = 01, then we have the standard policy iteration algorithm as intro­

duced by Howard in [12J for the finite state, finite action discounted

case. If 0 = 0H' then we have the Gauss-Seidel variant as introduced by

Has tings E1 0J•

4. Some remarks on numerical and other aspects

For the algorithms based on the operators

we proved geometric convergence. However,

(A)
Uo (section 2) and Uo (section 3)

the extrapolation based on the

convergence rate only are usually not very good. As in the case of Uo
1

(see [lJ) one can obtain better bounds rather easily. For the case the

sup in Uovn is attained and exactly computed in the algorithm based on

U~A) (A = 1, 2, ••• , ~) we obtain, if U0v0 ~ v0 :
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-1 *v +(1- Pf ) 1IL.r(f 1)V -v lI$v(f 1)$v::;
n 1 \) n+ n n - n+n+

where

Pf : = inf II-1 (i) L p f (i) (i, j hd j), II v "- : = inf ].I -1 (i) v (i) .
f j f

For a more detailed description we refer to [2J. The proof in this case

is completely similar to the proof in the case <5 = 01,

For numerical experience it appears that value oriented methods can give

a considerable gain in computational efficiency. This is especially true

if the policy improvement procedure requires many operations. Generally

speaking one may say that Uo-based successive approximations methods only

need a small number of iterations to reach a near-optimal policy, however,

the proof of this near-optimality requires relatively many additional

iterations. So in quite a lot of iterations f does not change substantially.
n

Therefore it is efficient to choose A greater than one. In fact it is

still more profitable to increase the value of A in subsequent situations.

To give an idea of the gain in computational efficiency we mention that

we found in a number of examples with 0 = 0
1

a saving in computing time

of 20 - 40% when we took A= 5 instead of A = 1 (in both situations we

used a suboptimality test; the numbers of states ranged between 40 and

1000), see [4J ~

In all procedures (all 0 and all A) the standard suboptimality test is

allowed and also the more sophisticated and more efficient suboptimality

test which is described in the paper by Hastings and Van Nunen [10J in

this volume.

Instead of defining o-based operators U
o

one may transform the data in

the problem and solVing the transformed problem by the standard successive

approximation methods. This approach has been presented by Porteus in

[14J. In our notation the transformation is

r (f)
T-l

:= lEf,o L r(X ,Z )
n=O n n
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(see proof of lemma 2.1) •

By introducing the matrices Q(f) with Q(f) (i,j) := pf(i,j)O(i,j) we ob-

tain

co

P (f) = L Qk (f)[P (f) - Q(f) J ,
k=O

'"ref) =
co

L
k=O

k
Q (f)r(f) ,

being exactly Porteus' preinverse transformation. In fact we showed in

section 2, that the transformed problem possesses the same optimal value

vector as the original problem.

In fact some extension is possible with respect to the conditionsunde
. (A)
which the UO- and Uo -based procedures converge. We mentioned already

the kind of conditions of [1J. Another approach is in considering a

fixed 0 and require strict or N-stage contraction for Uo on V or W.

In [8J Reetz chooses such an approach for 0 = 0a' One might conjecture

that -as in the case of 01 (see [1J) - N-stage contraction implies 1-stage

eontraction with respect to a different norm.
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