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Abstract

This paper is concerned with the discrete time, full-information Hoc control problem. It turns
out that, as in the continuous time case, the existence of an internally stabilizing controller which
makes the Hoc norm strictly less than 1 is related to the existence of a stabilizing solution to an
algebraic Riccati equation. However the solution of this algebraic Riccati equation has to satisfy
an extra condition. Moreover it is interesting to note that in general state feedbacks do not suffice
and we have to include the disturbance in our feedback.
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1 Introduction

In recent years a considerable amount of papers appeared about the, by now, well-known H 00 optimal
control problem (e.g. [1], [2], [3], [6], [7], [10], [11], [12], [13]. However all these papers discuss the
continuous time case. In this paper we will in contrast with the above papers discuss the discrete time
case.
In the above papers several methods were used to solve the H oo control problem, e.g. frequency
domain approach, polynomial aproach and time domain approach. Recently there appeared a paper
solving the discrete time Hoo control problem using frequency domain techniques ( [5] ). In contrast
with that paper this paper will use time-domain techniques which have a lot of familiarities with the
paper [12] which deals with the continuous time case.
We make the assumption that we deal with the special case that both disturbance and state are
available for feedback. The other assumptions we have to make are weaker than the assumptions in
[5]. We do not assume that the system matrix A is invertible. Moreover we replace the assumption
that the direct feedthrough matrix from control input to output is injective by the assumption that
the transfer matrix from control input to output is left invertible as a rational matrix which is weaker.
The only other assumption we have to make is, that a subsystem has no invariant zeros on the unit
circle.
As in the continuous time case the necessary and sufficient conditions for the existence of an internally
stabilizing controller which makes the closed loop transfer matrix have norm less than 1 involve a
positive semi-definite stabilizing solution of an algebraic Riccati equation. However, compared to
the continuous time case, P has to satisfy another assumption: a matrix depending on P should be
positive definite.
Another difference with the continuous time is, that in the discrete time, even if D2 = 0, we can
not always achieve our goal with a static state feedback. In general, we also need a static feedback
depending on the disturbance.
This paper gives the general outline of the proof. Some of the details however are not given.

The outline of the paper is as follows. In section 2 we will formulate the problem and give the
main results. In section 3 we will derive necessary conditions under which there exists an internally
stabilizing feedback which makes the Hoo norm less than 1. In section 4 we will show that these
conditions are also sufficient. We will end with some concluding remarks in section 5.

2 Problem formulation and main results

We consider the following system:

1:: { x(k + 1) = Ax(k) + Bu(k) + Ew(k)
z(k) = Gx(k) + D1u(k) + D2W(k)

(2.1)

where x(k) E n.n is the state, u(k) E 'Rm is the control input, w(k) E 'R,' the unknown disturbance and
z(k) E'R,P the, to be controlled, output. Moreover A, B, E,G, D1 and D2 are matrices of appropriate
dimensions. Our final objective is to find a static feedback u(k) =F1x(k)+F2W(k) such that the closed
loop system is internally stable and for the closed loop system the l2-induced norm from disturbance
w to the output z is minimized over all internally stabilizing static feedbacks. Here internally stable
means that A + BF1 is asymptotically stable, i.e. all eigenvalues lie inside the open unit disc. Denote
by GF the closed loop transfer matrix:

(2.2)
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The l'2-induced norm is given by:

=

IIzll2sup --
wel~ II w l12
w¢O

sup IIGF(ei8 )1I
8e[O,2..]

where the l'2-norm is given by:

and 11.11 denotes the Euclidian norm. In this paper we will derive necessary and sufficient conditions
for the existence of a feedback F =(Fl , F2 ) which is internally stabilizing and which is such that the
closed loop transfer matrix GF satisfies IIGF lloo < 1. In the formulation of our main result we will
need the concept of invariant zero. z is called an invariant zero of a system (A, B, C, D) if

(
z1 - A -B) (81 - A -B)rank < rank .

'R C D 'R(3) C D

A system (A, B, C, D) is called left invertible if the transfer matrix C(s1 - A)-l B + D is left invertible
as a matrix with entries in the field of rational functions. We can now formulate our main result:

Theorem 2.1 : Let the system {2.1} be given with zero initial state. Assume {A, B, C, D I } has
no invariant zeros on the unit circle and is left invertible. The following statements are equivalent:

(i) There exists a feedback F =(Fl ,F2 ) such that A+BFl is asymptotically stable and the resulting
closed loop transfer matrix GF satisfies IIGFlloo < 1.

(ii) There exists a symmetric matrix P ? 0 such that

1. The matrix G{P} is invertible, where:

G(P) := [( DrD1 ~iD
2

) + ( B: ) P (B E)]
D2 D 1 D2 D2 - I E

2. P satisfies the following discrete algebraic Riccati equation:

P=ATpA CTC_ (BTPA+DiC)T G(p)-l (BTPA+Di C)
+ ~n+Mc ~n+Mc

9. The matrix A c1 is asymptotically stable, where:

A '=A- (BT)T G(p)-l (BTPA+DiC)
d • ET ETPA + DrC

4. We have

R >0

where

R:= 1 - DrD2 - ETPE + (ETPB +DrD1 ) (Di D1 + BTPBrl (BTPE + Di D2 )

The inverse in the above matrix always exists.
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Moreover, in case a P satisfies (ii), then the feedback F = (FI , F2 ) given by

FI ._ - (Dr DI + BTPB)-I (BTPA + Dre)

F2 .- -(DrDI +BTPB)-I (BTPE+DiD2 )

satisfies (i).

Remark:

(2.7)

(2.8)

(i) Necessary and sufficient conditions whether we can find an internally stabilizing feedback which
makes the Boo norm less than some a priori given upper bound I can be easily derived from
theorem 2.1 by scaling.

(ii) If we compare these conditions with the conditions for the continuous time case we note that
condition (2.6) is added. A simple example showing that this assumption is not superfluous is
given by the system:

{

x(k +1) =
z(k) = G) x(k) +

u(k) + 2w(k)

(~) u(k)
(2.9)

There doesn't exist a feedback F satisfying part (i) of theorem 2.1 but there does exist a positive
semidefinite matrix P satisfying (2.4) and such that Ad =0 and hence asymptotically stable,
namely P = 1. However for this P we have R = -1.

The general outline of the proof will be reminiscent of the proof given in [12] for the continuous time
case. The extra condition (2.6), the invertibility of (2.3) and the requirement ofleft invertibility instead
of assuming that D I is injective will give rise to a substantial increase in the amount of intricacies in
the proof. This paper will however only give the general outline of the proof. The detailed proof will
appear in a future paper.

3 Necessary conditions for the existence of suboptimal con­
trollers

In this section we assume that part (i) of theorem 2.1 is satisfied. We will show that the conditions in
(ii) are necessary. Consider system (2.1). For given disturbance wand control input u let xu,w,e and
Zu,w,e denote the resulting state and output respectively for initial value x(O) =e. If e=0 we will
simply write xu,w and zu,w' Note that it is easily seen that the following statement is a direct result
from theorem 2.1 part (i):

Assumption 3.1: (A,B) is stabilizable. Moreover, for initial state zero, there exists a 6 > 0 such
that for all w E l~ there exists u E tr for which xu,w E l2 and IIzu,wll~ $ (1- 62)lIwll~·

We will show that assumption 3.1 already implies that the conditions in part (ii) of theorem (2.1)
are satisfied. This implies that even if we allow more general feedbacks, e.g. dynamic feedbacks,
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we cannot achieve more. We will assume Dr [C D2 ] =°for the time being and we will derive the
more general statement later. In order to prove the conditions (ii) of theorem 2.1 we will solve the
following sup-inf problem:

sup inf {llzu,IU,(II~ -llwll~ I U E l2 such that XU,IU,( E 12 }
IUEt~ u

(3.1)

for arbitrary initial value {. Let L be such that DrDI +BTLB is invertible and let it be the positive
semi-definite solution of the following discrete algebraic Riccati equation:

such that

AL := A - B (DrD I + BTLB)-l BTLA

(3.2)

(3.3)

is asymptotically stable. The existence of such an L is guaranteed if (A, B) is stabilizable and moreover
(A, B, c, Dd has no invariant zeros on the unit circle and is left invertible ( see [9] ). The assumption
that (A, B) is stabilizable is made in assumption 3.1. Moreover (A, B, c, Dd has no invariant zeros
on the unit circle and is left invertible by the original assumptions of theorem 2.1. We define

where

00

r(k) := - L [XIAT]i-k Xl (LEw(i) + CTD 2w(i + 1))
i=k

(3.4)

(3.5)

Note that r is well-defined since AL =X[A asymptotically stable implies that XIAT is asymptoticall~'

stable. Next we define

y(k) = (Dr D 1 + BTLB)-l BT [ATr(k + 1) - LEw(i) - CTD2w(i + 1)]

i(k + 1) = ALi(k) + By(k) + Ew(k), i(O) =e
'7(k) = -XILAi(k) + r(k)

(3.6)

(3.7)

(3.8)

for k =0,1, .... It can be checked straightforwardly that r, X, '7 E £2' Moreover '7 satisfies the following
backwards difference equation:

(3.9)

This can be checked by deriving a backwards difference equation for r and some calculations.

Lemma 3.2: Let the system (2.1) be given. Moreover let wand ebe fixed. Then
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Proof: This can be shown using the sufficient conditions for optimality in [8, Section 5.2]. It has to
be adapted for the infinite horizon case but it still works. In [12] a similar method is used. Uniqueness
of the optimizing u can be shown using the left invertibility of (A, B, C, D1 )· •

Define .1"(e, w) =(x, ii, '7) and Q(e, w) =Cx + D1ii + D2W. It is clear from the previous lemma that
.1" and Q are bounded linear operators. Define

IIwlle := (-C(O, W))1/2

(3.10)

(3.11)

It can be easily shown that 11.lle defines a norm. Using our assumption 3.1 it can be shown straight­
forwardly that

(3.12)

where fJ is such that assumption 3.1 is satisfied. Hence 11.11e and 11.112 are equivalent norms. Define

C·(e) = sup C(e,w)
wEl~

We can derive the following properties of C·:

Lemma 3.3

(i) For all eE nn we have

where fJ is such that (3.12) is satisfied.

(ii) For all e E nn there exists a unique w. E f~ such that C· (e) =C(e, w.)

(3.13)

(3.14)

Proof: Part (i) is shown by using that the cost of the discrete time linear quadratic problem
with internal stability ( which is e Le, see [9] ) is an underbound for C·(O and we can make some
estimations, using assumption 3.1, to obtain an upper bound for C·(e).
Part (ii) can be proven in the same way as in [12]. It strongly depends on the formula:

which is true for arbitrary eE nn.

Define 'H : 'Rn
-+ f~, e-+ w•.

Lemma 3.4: Let eE 'Rn be given. w. ='He is the unique f 2-function w satisfying:

5
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where (z.,u.,'7.) =.r(e,w) .

Proof: Define (z., u., '7.) = .r(e, w.). Moreover define Wo := -ET'7(W.) + DrD2W. + DrCz. and
(zo, uo, '70) := .r(e, wo). It can be shown that:

(3.17)

Since w. was maximizing C(e, w) over all w, this implies Wo =w•. That w. is the unique solution of
the equation (3.16) can be shown in a similar way. Assume that besides w. also WI satisfies (3.16).
Let (Zl,Ul,'7I):= .r(e,wI). It can be shown that:

Since w. was maximizing, we find Ilw. - WIlle =0 and hence w. =WI. q.e.d.

Lemma 3.5 There exist constant matrices Kl ,K2 and K3 such that

(3.18)

•

Proof: This can be shown by first looking at time zero and deriving the existence of K 1, K 2 and
K 3 for time zero. Then using time-invariance it can be shown that K l ,K2 and K 3 satisfy lemma 3.5
for all t ? O. •

Lemma 3.6: There exists a P ? 0 such that '7. (k) =-Px.(k + 1) k =-1,0,1, .... where '7(-1)
is defined by (3.9). Moreover for this P we find

(3.19)

Proof: The existence of a P satisfying '7.(k) = -pz.(k + 1) k = -1,0,1, ... can be derived
straightforwardly from the backwards difference equation 3.9 and lemma 3.5. Here (3.19) is then
proven by deriving the equation:

Since C(e,w.) = C·(e) and '7.(-1) = -pe we find (3.19). •
Lemma 3.7: Assume (A, B, c, Dl) has no invariant zeros on the unit circle and is left invertible.
Moreover assume that Df[C D2] = O. If part (i) of theorem 2.1 is satisfied then there exists a
symmetric matrix P ? 0 satisfying part (ii) of theorem 2.1.

Proof: By using lemma 3.4 it can be shown that the matrix Z := I - DrD2 - ET X1LE is
invertible. Using this we find after some tedious calculations that

{I + [B (Dr Dl + BTLB)-l BT - xrEZ- lETXl] (P - L)} x.(k + 1) =
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Since u.(k) and w.(k) are uniquely determined by x.(k) also x.(k+l) is uniquely determined by x.(k).
This is the main reasoning to show that the matrix on the left is invertible. This is equivalent to the
invertibility of the matrix (2.3). Moreover if we define Ael by (2.5) then we find z.(k + 1) =Ae/x.(k).
Since x. E l2 for all initial values ewe know that Ae/ is asymptotically stable. Next we show that P
satisfies the discrete algebraic Riccati equation (2.4). From (3.9) combined with lemma 3.6 it can be
derived that:

(3.21 )

By some extensive calculations this turns out to be equivalent to the discrete algebraic Riccati equation
(2.4). Next we show that P is symmetric. Note that both P and p T satisfy the DARE. Using this we
find that:

Since Ae/ is asymptotically stable this implies that P = PT. P can be shown to be positive semi
definite by combining lemma 3.3 and (3.19). Remains to be shown (2.6). Since the matrix G(P)
defined by (2.3) is invertible it can be shown using the Schur complement that R is invertible. We will
use a homotopy argument to prove that in fact we have R> O. Assume we replace E by E(o) =oE
and D 2 by D2(o) =oD2 . It can be easily checked that for all 0 E [0,1] assumption 3.1 is satisfied.
Moreover it can be shown that R(o) is a continuous function in o. Since R(O) > 0 and R(o) is
invertible for all 0 E [0,1] by a homotopy argument we find R =R(I) > O. This is exactly (2.6) and
hence the proof is completed. . •

Corollary 3.8 : Assume (A, B, C, D l ) has no invariant zeros on the unit circle and is left
invertible. If part (i) of theorem 2.1 is satisfied then there exists a symmetric matrix P ~ 0 satisfying
part (ii) of theorem 2.1.

Proof: We first apply a preliminary feedback u = Flz + F2w + v such that

Denote the new A, C, D2 and E by A, C, D2 and E. For this new system part (i) of theorem 2.1 is
satisfied. Hence since for this new system Dna D2] =0 we find conditions in terms of the new
parameters. Rewriting in terms of the original parameters gives the desired conditions as given in
part (ii) of theorem 2.1. •

4 Sufficient conditions for the existence of suboptimal con­
trollers

In this section we will show that if there exists a P satisfying the conditions of theorem 2.1 then the
feedback as suggested by theorem 2.1 satisfies condition (i). In order to do this we first need a number
of preliminary results.
A system is called inner if the transfer matrix of the system, denoted by G satisfies:
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(4.1)

We now formulate a generalization of [5, lemma 5]. The proof is a slightly more complicated since if
G has a pole in zero then GT(z-l) is not proper any more. Nevertheless it can be shown by simply
writing out (4.1).

Lemma 4.1: Assume we have a system

I:,t: { z(k + 1) = Az(k) + Bu(k)
z(k) = Cz(k) + Du(k)

Assume A is stable. The system I:at is inner if there exists a matrix X satisfying:

2. DTC+BTXA=O

3. DT D + BTX B =I

We define the following system:

Eu {

zu(k + 1) = Auzu(k) + Buuu(k) + Euw(k),
yu(k) = C,.uzu(k) + + D'2.U w(k),
zu(k) = C2.uzu(k) + D2,.uuu(k) + D22.Uw(k),

where

(4.2)

(4.3)

Au .-
Bu .-
Eu .-

C"u .-
C2.U .-

D .-12 1U

D .-2'.U
D .-22.U

A - BW-1(BTPA + DiC)
BW- 1/ 2

E - BW-1(BTPE + Di D2)

_R-1/2 (ETPA +D~C - [ETPB + D~D1J W- 1[BTPA + DiC])

C - D1W- 1(BTPA+ DiC)

R1/ 2

D 1W- 1/ 2

D2 - D1W- 1(BTPE + DrD2)

Lemma 4.2: The system I:u as defined by (4.3) is internally stable and inner. Denote the transfer
matrix ofI:u by U. We decompose U:

compatible with the sizes of w, uu, zu and Yu' Then U21 is invertible and its inverse is in Hoo .
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Proof: It can be easily checked that P as defined by theorem 2.1 (a)-(d) satisfies the conditions
(a)-(c) oflemma 4.1. (a) of lemma 4.1 turns out to be equal to the discrete algebraic Riccati equation
(3.2). (b) and (c) follow by simply writing out the equations in the original system parameters of
system (2.1).
Next we note that P ~ 0 and

er ) ( C1,u )
2,U C

2,U

(4.4)

Using standard Lyapunov theory it can then be shown that Au is asymptotically stable.
To show that U2i1 is an H 00 function we write down a realization for U2i1 and note that
Au - EuD- 1 C

1
u· The proof is then trivial.

12.U J

Ad =
•

Lemma 4.3: Assume there exists a P satisfying the conditions in (ii) of theorem 2.1. In that
case the feedback tI =F1z + F2w where F1 , F2 are given by (2.7) and (2.8) satisfies condition (i) of
theorem 2.1.

Proof: First note that GF as given by (2.2) for this particular F is equal to Un and moreover
A+ EF1 is equal to Au' This implies that F =(F1 , F2) is internally stabilizing and GF as a submatri.x
of an inner matrix satisfies IIGFII :::; 1. Using the fact that Un is invertible in Boo it can be shown
that the inequality is strict. •

Note that theorem 2.1 is simply a combination of corollary 3.8 and lemma 4.3. Therefore the main
result has been proven.

5 Concluding remarks

In this paper the discrete time full information case Hoo control problem has been investigated. As
in the continuous time case the solvability is related to an algebraic Riccati equation. However, in
contrast to the continuous time case, it turns out that, even in case D 2 =0 the feedback we find is
in general not a state feedback but also an disturbance feedback. Another interesting feature is the
extra condition R > O.
The assumptions made in this paper are exactly the discrete time versions of the two main assumptions
which are often made in the continuous time.
This paper is naturally a preliminary step towards the measurement feedback case which will be
elaborated in an future paper. Another interesting item for future research is finding algorithms to
calculate stabilizing solutions of the discrete algebraic Riccati equation (2.4) and discuss issues like
uniqueness of stabilizing solutions. I have only been able to reduce this problem to a generalized
eigenvalue problem and prove uniqueness in case D1 and D2 satisfy certain prerequisites.

Acknowledgment: As always it was a joy discussing my problems with Barry Trentelman and
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