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Abstract

Dynamic Half-rate is an optional feature that allows a GSM cell to switch new incom-
ing half-rate capable calls to half-rate speech coding, when the cell is nearly congested.
Since two half-rate speech calls can be put together in one single time slot, Dynamic
Half-rate has the potential to double the radio capacity of the cell. We develop a model
to analyze the performance of this feature. This model is based on a reduction of the
state space, which makes an efficient approximation possible. The developed approxima-
tion is a modification of the well-known Kaufman-Roberts recursion. It turns out to be
extremely accurate, computationally efficient and approximately insensitive with respect
to the holding time distribution. Finally, with the help of this approximation the benefits
of Dynamic Half-rate are shown.

keywords: Dynamic Half-rate, GSM, congestion, approximation, Kaufman-Roberts recur-
sion '

1 Introduction

Global System for Mobile communication (GSM) uses a combination of Frequency Division
Multiple Access (FDMA) and Time Division Multiple Access (TDMA) as multiple access
scheme. The FDMA scheme divides the GSM frequency band into a number of carrier fre-
quencies, which in their turn are split up into time slots by means of a TDMA scheme. A frame
consists of a number of consecutive time slots. The time slots in a frame are then assigned
to individual users (for a more detailed description see e.g. Rappaport [11]). Throughout
this paper, the assignment of time slots is often referred to as the allocation of channels. The
present paper aims to study Dynamic Half-rate (DHR), an optional feature in GSM.

DHR allows a GSM cell to switch new incoming half-rate capable calls to half-rate speech
coding, when the cell is nearly congested. This means that the half-rate call only requires its
allocated time slot every other frame. Hence, a channel is capable of supporting one full-rate
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Figure 1: System state at arbitrary time.

call or two half-rate calls. The feature DHR allocates half-rate capable mobiles to full-rate
or half-rate channels according to the existing traffic situation in the cell. When the number
of idle traffic channels in the cell is above a pre-defined threshold, half-rate capable mobiles
are allocated to full-rate channels. Otherwise, half-rate capable mobiles will be given a half-
rate channel. Mobiles that are not capable of half-rate will always be allocated to a full-rate
channel. This selection will be done both at cali set-up and at handovers into the cell. Once
a mobile has been allocated to a full/half-rate channel, the mobile will operate in this mode
until the call is terminated. Since half-rate calls have a lower voice-quality due to the half-rate
speech coding, it is not advisable that DHR is completely applied all the time.

This selection procedure can create so-called partially allocated time slots, which are time
slots occupied by only one half-rate call. To make an optimal use of resources, a re-packing
mechanism is applied. Firstly, when no idle time slots exist and there are two or more
partially allocated time slots, these time slots are merged together. Secondly, when a half-
rate call arrives, the system will always try to allocate it to a partially allocated time slot.
Figure 1 depicts an example of the system at an arbitrary time. We note that although DHR
clearly has the potential to double the radio capacity of the GSM radio network, the actual
benefit of DHR. depends on the amount of half-rate capable mobiles in the network.

Recently, a few papers (see e.g. Ivanovich et al. [6] or Lin and Lin [9]) have studied half-
rate allocation schemes. However, the schemes studied so far assume that half-rate capable
mobiles are always given half-rate channels independently of the traffic situation in the cell.
They only decide which time slot is allocated to a newly arriving call. The DHR. allocation
scheme studied in the present paper is an extension with an additional dynamic aspect that
decides when a half-rate capable mobile will use half-rate. The goal of our research is to get
more insight into the performance of a single isolated GSM cell deploying DHR in terms of
blocking probabilities. Furthermore, we want to measure the impact of aspects like the size
of the cell, the offered load and the holding time distribution.

In this paper we will develop an approximate one-dimensional recursion for computing the
blocking probabilities, which is comparable to the recursion used by Kaufman [8] for the more
general single-threshold model. Our recursion turns out to be extremely accurate, computa-
tionally efficient and approximately insensitive with respect to the holding time distribution.
With the help of this approximation, we will see that DHR has the potential to considerably



increase the capacity of a GSM cell without confronting many users with half-rate voice qual-
ity. With the expected increase of general packet radio service (GPRS) traffic in the coming
years, which is offered over the same bearer as GSM, DHR will therefore be a very useful
feature to free up time slots. Hence, the results of the present paper will be relevant for
network operators.

The rest of the paper is organized as follows. In Section 2, a two-dimensional model is
developed for the feature DHR based on a reduction of the state space. In Section 3, the
equilibrium distribution of this model is computed by the already mentioned approximate
one-dimensional recursion. The developed approximation is a modification of the well-known
Kaufman-Roberts recursion (see Kaufman [7] and Roberts [12]). Section 4 investigates the
accuracy of the developed approximation, the sensitivity of the system with respect to the
holding time distribution and the effect of the feature DHR on a single isolated GSM cell.
In particular, this section contains the results of a field study in the Vodafone-Netherlands
network. Section 5 presents an extension of the studied model, in which the arrival rates

depend on the state of the system. Finally, the last section contains the main conclusions of
our research.

2 Model

We start this section with the development of a three-dimensional model of DHR. Due to
the enormous state space of this model, numerically solving the balance equations causes
both calculation and memory problems for large cell configurations. Therefore, Subsection
2.2 develops an approximate two-dimensional model based on a reduction of the state space.
This latter model will be the basis of the performance analysis of Section 3.

2.1 Original re-packing

We consider a model of DHR with N parallel identical traffic channels and no waiting room.
An arriving call is admitted into the system when there is sufficient room and blocked oth-
erwise. Calls arrive according to a Poisson process with rate A. m; denotes the probability
that a call is made by a half-rate capable mobile. The holding times are assumed to be inde-
pendent, identically distributed exponential random variables with parameter u for both half
and full-rate calls. In Section 4, we investigate the sensitivity of the system with respect to
this exponential holding time assumption. The traffic for ordinary (py) and half-rate capable
(pr) mobiles is defined by:

Ay Ml=m)

pp = L2 1
f p p (1)

A AT,
Ph = Zh = _h’ (2)

TR

and the total traffic (p) is given by:
A

P=Pf+/7h=;- (3)

The variable K represents the threshold set by the operator, which decides when a half-rate
capable mobile will use half-rate or full-rate.

The state of the system X(t) at time ¢ can be described by the following three variables:



o X;(t) : the total number of full-rate calls;
e Xp(t) : the total number of half-rate calls;
e Y(t) : the number of partially allocated time slots.

The last variable is needed to distinguish between the state in which there are two partially
allocated time slots and the state in which one time slot supports two half-rate calls. It is
easily verified that the associated stochastic process {(Xs(t), Xx(t),Y (t)),t > 0} is a finite,
aperiodic and irreducible three-dimensional Markov process. The utilization U(t) at time ¢ is
given by:

U(t) Xe(t)+Y () + %(Xh(t) -Y(®))
= X;(0)+5(Xalt) + Y (0). @)

Half-rate capable mobiles are allocated to a half-rate channel only when U(t) > N — K. The
state space S is subject to the following conditions:

Ui) < N, (5)
Y(t) < Xa(t), (6)
Y(t)mod2 = Xj(t) mod?2, (7)
-(Ut)=N A Y()=>2). ®)

We define the equilibrium state probability p(n), n = (ng,np,np), for this finite-state
Markov process and the stationary utilization probability 7(u) as follows:

tE%P[(Xf(t),Xh(t),Y(t)) = n] = p(n), ne€ s, (9)
JmPU@® =y = 7@, u=g1L5..,N (10)

Of course, we can write down the balance equations of the Markov process { (Xf(t), Xx(t), Y (t)), t > 0}.
However, these equations provide little insight into the structure of the process. Instead, Table

1 sums up all the possible events starting from state n with the corresponding conditions for

the old state, the new state reached and the transition intensity. The corresponding balance
equations can in principle be solved numerically. However, the lack of a product-form struc-

ture and the size of the state space for realistic values of N make an explicit determination

of the equilibrium distribution usually prohibitive. Therefore, the next subsection proposes

an approximate two-dimensional model.

2.2 Complete re-packing

We modify the model by assuming that whenever there are two partially allocated time slots,
these are merged into one time slot (complete re-packing). Since the number of half-rate and
full-rate calls will now give us all information about the allocation of the time slots, the state
of the system X(t) at time ¢ is described by the two-dimensional vector (X(t), Xn(t)). We
now approximate the utilization U(t) at time t as follows:

U(t) = Xp(0) + 50 (0). (1)

4



Events

Events Condition New state Intensity

Arrival ordinary mobile
Re-packing (u=N-1)A(np > 2) (ny +1,np,mp—2) | (1 —7p)A
No re-packing (u<N-2)V(u=N-1An,<1) (ny +1,np,np) (1—mp)A

Arrival half-rate mobile
Half-rate allocation

Re-packing (u>N-K)A(n, >0) (ng,np +1,np — 1) TR
No re-packing (N-K<u<N-1)A(n,=0) | (ng,nn+1,np+1) ThA
Full-rate allocation u<N-K (ny +1,n4,np) Th
Departure full-rate call
ng >0 (ny —1,np,np) sl
Departure half-rate call
Channel was fully allocated
Re-packing (u=N)A(n,=1) (ng,np —1,0) (ny—Dp
No re-packing (np#1)V(u=N) (ngy,np —1L,n,+1) | (nf—np)u
Channel was partly allocated np >0 (ng,np—1,n,—1) Tp it

Table 1: Possible events starting from state n = (nyz,np,np).

The balance equations of the finite, aperiodic and irreducible Markov process {(X(t), Xi(t)),t > 0}
are given by:

(A + (n5 + np)u)p(ng, ng)

Ap(ns —1,nn) + (ny + Lpp(ns + 1,mn) + (na + Lup(ng,na + 1),
u<N-K, (12)

(A + (ng + na)u)p(ng, nn) Ap(ng —1,np) + maAp(ng, np — 1) + (ng + 1pp(ns + 1,na) +

(nh+1)l"p(nfanh+1)’ u=N—K+§1 (13)
A+ (ng +na)u)p(ng,ne) = (L=ma)dp(ng —1,nn) + 7aAp(ng,ne — 1) + (ng + Dpp(ng +1,ma) +
(nn + Dpp(ng,np + 1), N-K+1<u<N-1, (14)
(e + (ng +np)p)p(ng,nn) = (1—m)Ap(ng — 1,mp) + mpdp(ng, np — 1) + (nn + Dup(ng, na + 1),
1
u=N-— 5, (15)

(ns +np)up(ng,nn) = (1—ma)Ap(ng — 1,na) + mrAp(ng, ne — 1), u=N,

where the terms p(—1,n¢) and p(np,—1) are zero.

The complete re-packing model also has in general no product-form structure. Nevertheless,
it is possible to derive exact analytic expressions in two extreme cases. Firstly, if the operator
decides not to use DHR (K = 0), the system reduces to the well-known Erlang loss system
(see Subsection 3.1). Secondly, if DHR is completely activated (K = N), the model is a
multidimensional generalization of this Erlang loss system (see Subsection 3.2). If DHR is
activated only partially (0 < K < N), an algorithmic procedure appears to be necessary.
Fortunately, the reduction of the state space due to complete re-packing makes an efficient
approximation possible (see Subsection 3.3). We close this section with two remarks.

Remark 1. It is noted here that there exists a small difference in performance between the
original system and the complete re-packing system. In the latter, the threshold is reached
later, because all time slots are fully utilized all the time. Hence, we allocate fewer half-rate
channels and this leads to a slightly higher blocking probability. ]



Remark 2. For simplicity, we have assumed that the mean holding times are equal for
both half-rate and full-rate calls. However, half-rate calls have a lower bit rate and are thus
expected to have a lower speech quality. In its turn, this would probably lead to smaller call
lengths for half-rate calls. Fortunately, the analysis in this paper fully applies for the case, in
which every type has its own temporal requirements, mutatis mutandis. O

3 Performance analysis

This section will first analyze the two extremes cases of no and full use of DHR, for which
there exist explicit expressions of the blocking probabilities. In Subsection 3.3, we study an
approximate one-dimensional modification of the Kaufman-Roberts recursion, that can be
used to predict the blocking probabilities in a cell in the case of partial use of DHR.

3.1 DHR not used.

If one decides not to use DHR (K = 0), a half-rate capable mobile will always be allocated
to a full-rate channel (X = 0). Because there is now no difference between ordinary and
half-rate capable mobiles - they have the same spatial and temporal service requirements - we
are only interested in the utilization at an arbitrary time and not in the exact state vector.

The system reduces to the Erlang loss system with the following equilibrium distribution (see
e.g. Ross [14]):

u=0,1,...,N. (16)

g =7N)=—"L_. (17)

3.2 Full use DHR.

If DHR is completely activated in a cell (K = N), a half-rate capable mobile will always be
given a half-rate channel. Obviously, the system is a product-form type network (see e.g.
Ross [14]) and the equilibrium distribution is given by:

pntf PP

nglny!

p(n) = —W, nes. (18)
Znes Rﬁ

An exact one-dimensional recursion for calculating the utilization probabilities 7(u) was
independently published by Kaufman [7] and Roberts [12]. This recursion was originally
developed for the multidimensional generalization of the classical Erlang loss model, of which

our model is a special case. The modified version of their recursion runs as follows (cf.
Kaufman [7] and Roberts [12]):

1 3
u7r(u)=pf7r(u-1)+%ph7r(u—§), u= ,1,5,...,N. (19)
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This relation can be proved by using the following local balance equations (cf. Kaufman [7]):

Apm(u—1) = E(Xjlu)pr(u), u= .., N, (20)

Anrr(u — %) E(Xnlwun(u), u= N, (21)

where E(Xy|u) and E(Xp|u) represent the conditional expected value of the number of full-
rate and half-rate calls, respectively, given that the utilization U is equal to u. Multiplying
Equation (21) with %, dividing both equations by u and summing them yields the desired
Equation (19). In this derivation we use the following obvious identity:

E(Xf'}‘%Xh'“):U, u=3,1,5,..., N, (22)

N =
N w

Now, we can give an explicit expression for the total blocking probability IIg (cf. Ross [14]):

My = (1—m)m(N— %) + 7(N)] + mam(N)

= (A= m)(N - %) + (M), (23)

The local balance equations defined by Equations (20) and (21) will be, in a modified form,
the basis of the approximation developed in the next subsection.

Remark 3. It is noticed here that several other authors have used the local balance equa-
tions defined in Equations (20) and (21) in order to approximate utilization probabilities
in non product-form variants of the generalized Erlang loss model (see e.g. Kaufman [8],
Moscholios et al. [10], Roberts [13] or Chapter 3 of Ross [14]). O

3.3 Partial use DHR.

As mentioned before, in the case of partial use of DHR (0 < K < N) there exists no closed-
form expression for the equilibrium distribution. Hence, we approximate the complete re-
packing model. Thereto, we make the following assumptions:

1. Below the threshold, we consider the original system.

2. Above or at the threshold, we assume that, unlike the original system, half-rate capable
mobiles are still allocated to half-rate channels. We correct this by multiplying the
mean holding times for both half-rate and full-rate calls with a correction factor c.

The key approximation idea is that we adjust the original system by decreasing the spatial
requirements of the half-rate capable customers and compensate this by an increment of the

holding times. On average customers require less channels, but they will occupy them for a
longer time.



All half-rate capable mobiles are now allocated to half-rate channels and we can define the
following state-dependent parameters:

g l<u<N-K
_ ) 2 —= — )
wo) = { g 3EENTNN (24)
As 1.3
= —i ==1,-... 2
pf(u) ljl(u), u 271’27 ’N’ ( 5)
Ah 1 3
pr(u) = wlw)’ u_§’1’§""’N' (26)

It remains to compute an appropriate value of the correction factor ¢. Therefore, we take
a closer look at the subsystem above the threshold in the original system. In isolation, this
subsystem is an Erlang loss system with N — K servers with blocking probability as given
by the Erlang loss formula (see Equation 17). On the other hand, the subsystem above
the threshold of the approximation is a two-dimensional Erlang loss system, of which the
blocking probability can be obtained with the help of Recursion (19). Now, we numerically
compute that value of the correction factor ¢, for which the blocking probabilities of the
original subsystem and the approximation are equal.

Although the system is not product-form, we will use the following local balance equations:

Apm(u — 1) = E(Xf[u)p(u)m(u), U= %,1, ,o-., N, (27)

1
Ap7(u — —2-) = E(Xp|u)pu(u)r(u), u = yeees V. (28)
Similar to the derivation of Recursion (19), we can obtain the following one-dimensional
recursion:

1 1 1.3
U‘ﬂ-(u) = pf(u)g(u - 1) + 'iph(u)g(u - '5)’ u= 53 1: ’2'1 vy

N. (29)
The total blocking probability can be computed with the help of Equation (23).

Notice that the exact probabilities are computed in the extreme cases of no and full use
of DHR (cf. Subsections 3.1 and 3.2). In the former, there exists no subsystem below the
threshold. For the subsystem above the threshold, we compute that value of ¢, for which
the blocking probability and the Erlang loss probability are equal. If DHR is completely
activated, there exists no subsystem above the threshold and we do not need the correction
factor. The subsystem below the threshold is equal to the system with full use of DHR. In
Subsection 4.1, we shall study the accuracy of this approximation. We close this section with
a remark.

Remark 4. In order to evaluate large cell configurations, the time required to compute
the blocking probabilities in a cell is of high importance. Furthermore, to make full use of
the dynamical aspect offered by DHR, it is favorable to dynamically adjust the value of the
threshold parameter to the (expected) traffic situation in the GSM cell. One can think, for
example, of a more aggressive use of DHR in high traffic situations such as events and traffic
jams. This online monitoring and scheduling also requires an efficient algorithm to predict
the blocking probabilities. It is easily verified (see e.g. Ross [14]) that the computational
complexity, the number of executions needed to evaluate a problem instance, of Recursion



| Cell conﬁgurations |

TRUs | Traffic channels (N)
1 6
2 14
3 21
4 29

Table 2: Cell configurations.

(29) is O(N) (the number of steps to compute the correction factor c¢ is negligible). This
should be compared with the O(N®) effort to numerically solve all balance equations of the
original three-dimensional Markov process described in Subsection 2.1. d

4 Numerical results

In this section, we present numerical results in order to investigate the accuracy of the devel-
oped approximation. Furthermore, we study the sensitivity of the system with respect to the
holding time distribution and the effect of the feature DHR on a single isolated GSM cell. A
GSM cell consists of a number of transceiver units (TRUs). Each TRU has eight channels.
However, a certain number of these channels cannot be used for traffic, but is reserved for
signaling. In Table 2, the most common cell configurations are summarized.

4.1 Accuracy of the approximation.

Tables 3 and 4 show the total blocking probabilities for a variety of traffic values. The exact
blocking probabilities are marked E. These numerically computed values are those for the
system under the original re-packing scheme (see Subsection 2.1). The approximate values
are denoted by A. As can be seen, the approximate values closely approximate the exact
values for all cell configurations. It is seen that the approximation becomes less accurate,
when the fraction of half-rate capable mobiles in the network increases. This decrement
in accuracy can be explained as follows. When the fraction of half-rate capable mobiles in
the network is small, the system approximates the Erlang loss system, for which the exact
blocking probabilities are known (see Subsection 3.1). As mentioned before, the exact blocking

| Blocking probability (%) | [ Blocking probability (%) |
7 = 0.2 wp =04 7n = 0.8 7n = 0.2 mn =04 wp = 0.8
E A E A E A E A E A E A
5.22 | 5.22 | 5.22 | 5.22 | 5.22 | 5.22 8.56 | 8.56 | 8.56 | 8.56 | 8.56 | 8.56
4.87 | 4.73 | 4.10 | 3.95 | 2.12 | 2.04 6.38 | 6.42 | 4.01 | 4.25 | 0.89 | 0.97
4.49 | 4.36 | 3.20 | 3.10 | 0.94 | 0.88 530 | 5.36 | 2.50 | 2.64 | 0.17 | 0.18
4.17 | 4.09 | 2.59 | 2.55 | 0.46 | 0.44 490 | 4.93 | 1.99 | 2.05 | 0.05 | 0.06
3.96 | 3.93 | 2.23 | 2.23 | 0.26 | 0.26 481 | 481 | 1.86 | 1.88 | 0.03 | 0.03
3.86 | 3.85 | 2.07 | 2.08 | 0.20 | 0.20 4.80 | 480 | 1.85 | 1.85 | 0.03 | 0.03
3.84 | 3.84 | 2.04 | 2.04 | 0.18 | 0.18 480 | 4.80 | 1.85 | 1.85 | 0.03 | 0.03

1= W I U e

e
® Ot © O wolX

Table 3: Blocking probability (N = 6, p = 3). Table 4: Blocking probability (N = 21, p = 18).



| Blocking probability (%) |

7 =0.2
K | exponential(10) | deterministic(10) | uniform(0,20)
3 4.29 4.33 :0.08 4.31 £0.04
6 3.52 3.53 £ 0.09 3.55 £ 0.04
9 3.30 3.30 £ 0.08 3.324+0.04
12 3.28 3.28+0.09 3.30 £ 0.05
7 =04
K | exponential(10) | deterministic(10) | uniform(0,20)
3 2.64 271 +£0.08 2.70 £ 0.04
6 1.60 1.61 +0.06 1.62+0.03
9 1.33 1.30+0.05 1.36 - 0.03
12 1.30 1.28 £ 0.05 1.33+£0.03
7p = 0.8
K | exponential(10) | deterministic(10) | uniform(0,20)
3 0.54 0.65 + 0.05 0.59 £ 0.04
6 0.09 0.10 £ 0.02 0.10+0.01
9 0.04 0.04 £0.01 0.04 £0.01
12 0.03 0.03 £0.01 0.03+£0.01

Table 5: Blocking probability and 5% confidence intervals (N = 14, A = 1).

probabilities are computed in the two extreme cases of no and full use of DHR. Finally, there
exists no indication that the errors increase as the number of channels grows.

4.2 Insensitivity property.

So far, we have assumed that the holding times are exponentially distributed. However, it is
well-known that the system possesses an insensitivity property in the two extreme cases of no
and full use of DHR, i.e. the corresponding equilibrium distributions, and thus the blocking
probabilities, depend only on the mean holding times and not on their actual distribution
(see e.g. Chapter 2 of Ross [14]). Table 5 shows the blocking probabilities corresponding
to erponentially, deterministic and uniformly distributed holding times, respectively. The
values for the latter two distributions are obtained via a discrete-event simulation. Therefore,
these values are shown with an approximate 95% confidence interval. As can be seen, the
insensitivity property remains approximately valid for all threshold values. In turn, this
observation implies that the accuracy of the developed approximation is hardly dependent on

| Statistics of the sample | | Accumulated probability (%)
Quantity - Value Time (seconds) | Sample | Exponential
Sample size 904964288 15 26.4 13.4
Range (seconds) [0, 222486] 30 42.0 25.0
Mean (seconds) 104.5 60 61.0 43.7
Mode (seconds) 2.0 120 78.4 68.3
Standard deviation (seconds) 220.7 240 89.7 90.0
Coefficient of variation 2.1 480 96.1 99.0

Table 6: Statistics of the sample. Table 7: Accumulated probability (%).
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Figure 2: Histogram of the holding times.

the actual holding time distribution.

To further investigate this insensitivity property, data for the holding times collected in
the Vodafone-Netherlands network are used as input for our simulation. Table 6 lists the
statistics of these data. It is noticed here that the coefficient of variation is significantly
larger than 1. This observation, together with the values in Table 7, suggests that the sample
deviates considerably from the exponential distribution, which is used in the development of
the approximate recursion. The histogram of the holding times in the range 0 — 150 seconds
is shown in Figure 2. Our data follow on the whole the same patterns as the samples for the
holding times in (mobile) telephony of Bolotin (2], Chlebus [4], Barcel6 and Jordén [1], and
Bolotin et al. [3]. For approaches to fit probability distributions on holding time data we
refer to these papers and the references therein. Moreover, Bolotin [2] gives a psychophysical
explanation for the shapes of the fitted distribution functions based on Weber’s Law.

Table 8 lists the blocking probabilities corresponding to the exponentially distributed hold-
ing times with mean 104.5 and the empirical holding times collected in the Vodafone-Netherlands
network, respectively. The latter values are shown with an approximate 95% confidence in-
terval. Although Table 7 and Figure 2 show that the exponential distribution severely un-
derestimates the actual holding time distribution for both short and long holding times, it
can be concluded from Table 8 that via this distribution one still can extremely accurately
predict the empirical blocking probabilities. The developed approximation can, therefore, be
directly used by network operators in the performance evaluation and in the determination

| Blocking probability (%) |

wn =0.2 =04 7 = 0.8
K | Exponential Data Exponential Data Exponential Data
3 4.29 4.30 £ 0.03 2.64 2.63 £0.02 0.54 0.50£0.01
6 3.52 3.54 £0.03 1.60 1.60 £ 0.02 0.09 0.09 + 0.00
9 3.30 3.32+0.03 1.33 1.35 £ 0.02 0.04 0.04 £0.00
12 3.28 3.30+0.03 1.30 1.32+£0.02 0.03 0.03 +£0.00

Table 8: Blocking probability and 5% confidence intervals (N = 14, p = 10).
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Figure 3: Maximal traffic (K = 0.15N, IIg = 0.02). Figure 4: Maximal traffic (N = 21, IIg = 0.02).

of the required parameter values of a GSM cell.

4.3 Benefits of DHR.

Figure 3 shows the maximal traffic as a function of the number of traffic channels N, when
a blocking rate of 2% is maintained. For each N, the threshold K is set equal to 0.15N. As
can be seen, an increment of the fraction of half-rate capable mobiles in the network leads
to a more pronounced effect of DHR. The same conclusion can be drawn from Figure 4, in
which the maximal traffic is shown as a function of the threshold K in a cell consisting of 3
TRUs, when again a blocking probability of 2% is allowed. In the case of an increase of the
fraction of half-rate capable mobiles, the same amount of traffic, while maintaining a blocking
probability of 2%, requires a lower threshold. On the other hand, it is seen that increasing
the threshold makes not much sense, when the threshold is almost equal to the number of
channels in the cell.

Finally, Table 9 shows the possible increment in capacity if the threshold is increased from
zero to one traffic channel under the condition that the blocking probability does not exceed
2%. In computing these values we assume that the penetration degree of half-rate capable
mobiles equals 100%. The last column of this table shows the fraction of half-rate capable
users that are actually allocated to half-rate channels. We can conclude that by deploying
DHR large increases in radio capacity are possible without confronting many users with the
lower half-rate voice quality.

| Effect of DHR

N | Capacity increase (%) | Half-rate allocation (%)
(compared to K = 0)

6 63.6% 22.4%
14 34.0% 17.4%
21 29.3% 16.9%

Table 9: Effect of DHR (K =1, 7, =1, I = 0.02).
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5 Extension

Throughout this paper we have assumed that calls arrive according to a Poisson process. This
means, among other things, that the arrival process is independent of the state of the system.
A natural extension would be to let the arrival rates depend on the state of the system. We
assume that these state-dependent arrival rates for ordinary and half-rate capable mobiles,
respectively, admit the following linear form (cf. Delbrouck [5]):

Aj(n) = ay + Byny, (30)
An(n) = ap + Bpnn- (31)

Besides the Poisson process, examples of arrival processes that satisfy Conditions (30) and
(31) are the Bernoulli and the Pascal process (see Delbrouck [5]). The former represents
a finite-source arrival process, whereas the latter is an accurate approximation of overflow
traffic (see Roberts [13]).

Now, the following recursion can be derived in the system with full use of DHR (cf. Del-
brouck [5]):

um(u) = & %(&)i'lﬂ'(u -1+ i %(@L—)i‘lw(u - —1—1) u=—,1 N. (32)
/1’ P Fl, 2“ — /_L 2 ? e A ]

In the case of partial use of DHR, it is natural to try approximating the corresponding blocking
probabilities by modifying Recursion (32) along the lines of Subsection 3.3. This more general
model is a current research topic of the authors.

6 Conclusions

In this paper, an analytic model for the feature DHR has been created. The equilibrium
distribution of this model has been computed by an approximate one-dimensional recursion.
The benefit of this approximation is that it can handle large cell configurations, while the
differences between the exact and approximate values are small within a reasonable margin.
Furthermore, it turned out that the accuracy of the developed approximation is almost inde-
pendent of the actual holding time distribution. With the help of this approximation, we have
studied the impact of DHR on the performance of a GSM cell. We can conclude that DHR has
the potential to considerably increase the capacity of a GSM cell without confronting many
users with half-rate voice quality. Therefore, in the near future it will be a useful feature to
improve GPRS throughput.
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