

A conceptual model of a business transaction management
system
Citation for published version (APA):
Hofman, W. J. (1994). A conceptual model of a business transaction management system. [Phd Thesis 1
(Research TU/e / Graduation TU/e), Mathematics and Computer Science]. UTN Publishers.
https://doi.org/10.6100/IR421454

DOI:
10.6100/IR421454

Document status and date:
Published: 01/01/1994

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 16. Nov. 2023

https://doi.org/10.6100/IR421454
https://doi.org/10.6100/IR421454
https://research.tue.nl/en/publications/5e60aeb6-b71e-4456-a1e7-a4e1c4934c66

A conceptual model of a

Business Transaction

Management System

PROEFSCHRIFT

ter verkrijging van de graad van doctor aan de Technische Universiteit Eind
hoven, op gezag van de Rector Magnificus, prof.dr. J. H. van Lint, voor een

commissie aangewezen door het College van Dekanen in het openbaar te ver
dedigen op dinsdag 13 september 1994 om 14.00 uur

door

WAITE JELLE HOFMAN

Geboren te Bozum

Dit proefschrift is goedgekeurd door de promotoren

prof.dr. K.M. van Hee en
prof.ddr. J.A.E.E. van Nunen

CIP-DATA KONINKLUKE BffiLIOTHEEK, DEN HAAG

Hofman, W.J.

A conceptual model of a business transaction management system I W.J. Hofman. - Den. Bosch :
Thtein Nolthenius. m.
Thesis Eindhoven. - With index, ref.
ISBN 90-72194-39-X
NUGI855
Subject headings: EDI I workflow management.

© 1994 Wout Hofman, Graft

All rights reserved. No part of this book may be reproduced or transmitted in any form or by any
means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written per
mission of the publisher. For information contact:

UTN Publishers
Willem van Oranjelaan 5
5211 CN's-Hertogenbosch
The Netherlands

ISBN 9O-72194-39-X

However, as the fifth of December is a well known day in the Netherlands for giving
and receiving presents, my wife Desiree and I were also expecting a present. We
received it in the early morning of December sixth and called it Pieter Jelle. Now
this monograph has come to an end, I can hopefully spend more time with both
Jelle and Desiree.

Graft, 1994

Preface

Concipiating a monograph is a hard job. Concipiating it as a leisure interest is even
harder. Undoubtfully like others I have experienced that writing a monograph
requires a discipline in thinking and working. Using formal techniques like timed,
coloured, hierarchical Petri nets is certainly a help.

I would like to thank first of all Bakkenist Management Consultants in giving me
the opportunity and the time for concipiating this monograph. Without the time it
would certainly have taken another year to complete the monograph. I would also
like to thank all my colleagues at Bakkenist Management Consultants for their
comments to the work. Especially, I would like to thank Andries van Dijk for
realizing some of the ideas in the software product EDIT. The realization of those
ideas has given me the knowledge either to adjust them or to come with new ideas.
In building software, shifts of ideas can lead to frustration with the builders.
Fortunately for me, Andries had the patience to work with me. Furthermore, I would
like to thank Frits Cramer, who in the end found the spare time to correct my use
of the English language.

Secondly, I would like to thank my customers who gave me the opportunity to
apply the concepts in practice. Royal Nedlloyd bv gave me the opportunity to
specify a first prototype of the software. It was called the Chain Module and has
been tested successfully in practice. Stichting Uniform Transport Code which
currently applies the result of the ideas with success in extemallogistics. I would
like to thank the Board of Stichting Uniform Transport Code and its secretary that
gave me the confidence to work with them. Furthermore, Assurantie Data Network
bv. has taken over the concepts and applies them with good results in the insurance
industry. Also, a number of customers like Odette Europe for supply in automotive
and the Agricultural Telematics Centre in the Netherlands, have taken over some
of the concepts and are using the software product EDIT.

Thirdly, a number of students of the Technical University of Eindhoven has been
of great help. I would like to thank Bart Kersten, Maarten Elshout, Erik Suijs, Carlo
Koop, and Pieter Langereis for their contribution.

The Edispuut has been a forum to reflect my ideas. It has given me the opportunity
to see the strong and the weak points of the concepts. Also, Martin has done a hard
job in correcting my spelling and wording. I had to trouble him twice with this job.

I will still remember the day when I first started to write this monograph. It was on
December fifth 1990, when I was expected to give a presentation for Edispuut.

Contents

1 Introduction
1.1 Background .9
1.2 Problem definition 10
1.3 Research approach 11
1.4 Structure of the monograph 12

2 Conceptual modelling
2.1 Introduction . 15
2.2 Business systems 17

2.2.1 Examples of business systems 17
2.2.2 Concepts of business systems 18
2.2.3 Modelling business systems 22
2.2.4 Modelling an example of a business system and a service 24

2.3 Co-ordination levels of actors 25
2.3.1 An example of co-ordination levels 25
2.3.2 Concepts of co-ordination levels between actors 25
2.3.3 An example of applying the concepts of co-ordination levels . 27

2.4 Communicating information systems 27
2.4.1 Examples of communicating information systems 27
2.4.2 Concepts of communicating information systems 29
2.4.3 Modelling the concepts of communicating information systems 34
2.4.4 An example of a procedure 38

3 Data structures
3.1 Introduction 39
3.2 The business process data structure 39
3.3 The transaction and the message data structure . 42
3.4 The internal data structure 45
3.5 Data structures of the tokens of the BTMS . 47

4 Structure and behaviour of the BTMS
4.1 The components 53
4.2 The Procedure Designer. 54
4.3 The steps supporting the execution protocol 60

4.3.1 High level Petri net of the initiation and the confirmation processor 60
4.3.2 Decomposition of the initiation processor 61
4.3.3 Decomposition of the confirmation processor 69
4.3.4 Decomposition of the remaining processors of procedures 75

4.4 The Exception Handler . 77
4.5 The Procedure Selector . 80
4.6 Conclusion 82

5 Externallogistics
5.1 Introduction
5.2 An example of external logistics
5.3 Concepts of external logistics . .

5.3.1 A definition of extemallogistics
5.3.2 Generic tasks in extemallogistics
5.3.3 Objects and object types in external logistics
5.3.4 Actors .

5.4 The interorganizational information system in extemallogistics
5.5 Modelling the example
5.6 Application in general

5.6.1 Application to business systems .
5.6.2 Application to business processes

6 Other approaches
6.1 Introduction
6.2 Business opportunities
6.3 Business process related concepts in literature

6.3.1 Interorganizational !;ystems
6.3.2 Business process and transaction engineering
6.3.3 Workflow Management .

6.4 Technical related concepts in literature
6.4.1 Distributed databases
6.4.2 Available messages
6.4.3 Concepts of international message standardization .

7 Conclusions and further study
7.1 Conclusions
7.2 Achievements
7.3 Further research questions

Annex: Modelling techniques
Al Introduction
A2 Timed, coloured, hierarchical Petri nets
A3 Data modelling
A.4 Coloured Petri nets and functional data modelling
A5 Layered communication . .
A6 Other modelling techniques

Glossary

References

Index

. 83

. 83

.86
86
88
93
95

.95

.98
100

.101

.101

105
105
108

.108

.1l0

.113
114

.1l4

.117

.123

129
129
132

135
136
141
144
145
148

149

153

158

1 - Introduction 9

1 Introduction

1.1 Background
In their day-to-day operations, commercial companies as well as non-profit organ
izations provide their products to their clients. These products are goods, services,
money, or information. The clients are other companies and organizations, depart
ments of organizations, or private persons. To initiate and to control the product
provision process, information is exchanged. The information can be exchanged
e.g. by paper documents, telefax, telephone, and electronic messages.
The use of electronic messages, or EDI: Electronic Data Interchange (Hofman,
1989), can offer several improvements to the business processes of organizations.
Sokol (1989), for instance, argues that the opportunities of ED I can be found in the
improvement of trading relations and the elimination of key-entry errors. Accord
ing to Sokol, this leads to more accurate and timely shipments from suppliers to
their customers. Sadhwani (1987) gives examples of a cost reduction from $50 to
$14 for handling an order by using EDl. In the Netherlands, the advantages of the
use of ED I are discussed in a series of books (Hofman (1989), Van der VIist (1992».
Several aspects of EDl have been subject to research. Streng (1993) has tried to
develop a tool to support the assessment of the value of the introduction of ED I for
decision-makers. Schultz (1994) investigated the social aspects of ED I projects and
van Heck (1993) the design management of such projects.
Similar advantages as those mentioned for EDI are often mentioned for the
application of so-called Workflow Management Systems. These systems are to
control the document flow in organizations by formalizing work procedures (Ellis
and Nutt, 1992).
Information is also regarded as a factor that initiates changes in business processes.
Hammer (1993), for instance, mentions the costs savings by re-engineering the
business processes by making invoices redundant. The importance of information
to business processes is also stressed by Creemers (1993) and Davenport (1993).
New concepts are introduced for external integration of logistics, based on elec
tronic information exchange (Kreuwels, 1994). Others, like Van der VIist (1987),
stress the relation between organizational and technical networks for the develop
ment and implementation of EDI. This combination of networks, also known as
interorganizational systems (lOS), is also defined by Barret et al. (1982), Suomi
(1989), and Wierda (1991). Both Wierda (1991) and King et al. (1989) emphasize
the lack of an accepted theoretical framework for applying the concepts of interor
ganizational systems. In the area of EDI standardization, several initiatives have
been taken to develop the technical aspects of such a framework (UNIECE WP.4
GE.1, 1992, UNIEDIFACT, 1993, and ISOIIEC JTC 1IWG 3 N255, 1993).

10 1 - Introduction

The conclusion is that the electronically exchanged information and it's processing
is of major importance to organizations. The majority of the current information
systems performs an administrative task in merely recording activities carried out
by organizations. Data related to business activities can be stored and retrieved in
information systems. The functionality of these systems supports a limited number
of procedures that have to manage a number of well-known business activities.
However, there is a growing demand in offering a flexible response to the changing
requirements of the clients. Therefore, an increasing number of automated infor
mation systems of different organizations is being interconnected today (Ediforum,
1992). We have entered the paradigm of flexible communicating information
systems to manage changing business activities.

1.2 Problem definition
To be able to define the problem of this monograph, we introduce the following
concepts (figure 1.1):

Figure 1.1: Business and information systems

101; InterOrganlzationallnfonnation syslem
lOB: fnterOrganizalional Business system
lOS; InterOrganizatlonal System

• actors are commercial companies, non-profit organizations, private persons, or
even information systems;
an interorganizational information system (l01) is the union of two or more
flexible communicating information systems;

• an interorganizational business system (lOB) is the system that is to be control
led by the 101;

• an lOS is either the union of communicating actors, or the union of interorgan
izational information systems and interorganizational business systems;
external communication is the communication between information systems of
two actors;

• internal communication is the communication between the information system
and the business system of one actor.

1 - Introduction 11

Using these concepts, the problem definition of this monograph is the following:
Is it possible to develop a conceptual model for interorganizational business
systems?, and,
Is it possible to develop a conceptual model for interorganizational information
systems that control the execution of interorganizational business systems?

We will demonstrate that a part of an interorganizational information system can
be made generic. That part can be applied to different situations, e.g. industry,
transport, and health care. It also supports different procedures controlling a
business process in different situations, e.g. an assemble-to-order production of
personal computers and a transport service between Europe and the United States
of America. This generic part is a Business Transaction Management System
(BTMS). In this monograph, we look only at the construction of a conceptual model
of a BTMS. Generic software is parameterized software. An instance of generic
software is obtained by substitution of all parameters by possible values. One of
the parameters for a BTMS is a procedure.
A BTMS can be compared with generic software components like a DBMS
(Database Management System) or a UIMS (User Interface Management System).
The use of such generic components will lead to economic improvements, e.g. more
rapid application development and lower software cost. As a consequence, even
small organizations will be able to automate the management of their business
activities.
The process of defining the structure of a specific business system is business
engineering. Business engineering results in the specification of procedures that
are the parameters to the BTMS. Therefore, applying the concepts and the modell
ing of the concepts as described in this monograph will lead to the reduction of
costs in the adaptation of the information system to support a new definition of the
business process. Business engineering itself is outside the scope of this mono
graph, although the introduction of the BTMS might introduce redesign of business
processes.

1.3 Research approach
In this monograph, we make a distinction between the reality, the concepts, and the
modelling of the concepts. The concepts define the reality in words. Concepts are
either domain independent (e.g. messages and actors) or domain dependent (e.g.
vessels or patients). Modelling is a mathematical representation of the concepts by
assigning a modelling component to a concept. We use timed, coloured, hierarchi
cal Petri nets (Van Hee, 1994) to develop a theoretical basis for business processes.
Using timed, coloured, hierarchical Petri nets, we also make a conceptual model
of a flexible communicating information system. The parameters of a BTMS that
are tokens in a Petri net, are specified by a data model. Since a procedure can also
be modelled by a Petri net, this implies that one of the tokens of a Petri net can be
a Petri net itself.

12 1 - Introduction

We will start by defining our concepts and model those concepts. Based on these
concepts we specify the interorganizational information system. We will apply the
concepts to external logistics that is an instance of an interorganizational business
system. Finally, we will compare our concepts with other approaches and their
usefulness in practice. The concepts of interorganizational systems, Workflow
Management Systems, business process (re-) engineering, and the concepts de
veloped in EDI standardization are compared with our domain independent con
cepts. Furthermore, we will assess the value of the domain independent concepts
by comparing them with developments in EDI standardization. The value of the
concepts is already proven in practice, since we have developed a software product
to support message modelling (EDIT, 1993). This product has been used to model
messages in for instance external logistics, agriculture, insurance, and supply in
automotive.

1.4 Structure of the monograph
The structure of this monograph is as follows:
• chapter 2 presents the conceptual modelling of interorganizational business

systems and interorganizational information systems;
• chapter 3 and 4 specify the data and the process structure respectively of the

BTMS that is a component of the information system of one actor. The data
structures that are discussed in chapter 3, specify the structure of the tokens of
the Petri net of the process structure of the BTMS;
in chapter 5 the application of the conceptual model is given for external
logistics;

• in chapter 6 the relation is discussed between the concepts that are presented in
this monograph and the concepts that can be found in literature;
in chapter 7 some conclusions and recommendations are given with respect to
the usefulness of the BTMS and the possibility to realize such a system. Areas
for further research are indicated.

The structure of this monograph is shown in figure 1.2.
Annex 1 gives an introduction to functional data modelling and timed, coloured,
hierarchical Petri nets. These two modelling techniques are used to model the data
structures of the tokens of the BTMS and the process structure of the BTMS
respectively. As figure 1.2 shows, timed, coloured, hierarchical Petri nets are also
applied to model the concepts.

I - Introduction 13

functional

I
timed, hierarchical,

data modelling coloured Petri nets

annex 1 I

• conceptual
modelling
(chapter 2)

~
I

data structures
BTMS process

model
(chapter 3) (chapter 4)

instantion for
external logistics

(chapter 5)

Other approaches, conclusions, and recommendations
(chapter 6 and chapter 7)

Figure 1.2: Structure of this monograph

2 - Conceptual modelling 15

2 Conceptual modelling

2.1 Introduction
We have given an informal notion of an interorganizational system (lOS) in the
first part of chapter 1. An lOS can be decomposed and specified using the
frameworks introduced in 1.2.1 and 1.2.2. There are two ways in which we can
consider an lOS. Both approaches can be modelled using timed, coloured, hierar
chical Petri nets.
In the first approach, an lOS is a composition of an 101 and an lOB that communi
cate (figure 2.1). An 101 is a composition of infonnation systems (is) that communi
cate. An lOB can be decomposed in business systems (bs) that exchange objects.

£jj .. g:.~
~i _........ lOB ••... _ .• _J

- Inlormation objects

---... physlcaVabstracl objects

Figure 2.1: Decomposition of an lOS in an 101 and an lOB

In the second approach, an lOS is a composition of two or more actors that exchange
physical objects and information objects. An actor is an organization, an organiz
ational unit, or a person operating an information system or a business system, an
information system on its own, or an information system thatis operating a business
system by exchanging signals with that business system.

16 2 - Conceptual modelling

lOS

----i...... infomlation objects

_.......... physical/abstract objects

Figure 2.2: An lOS decomposed in actors

In general, actors try to minimize the uncertainty in their behaviour by making
agreements with other actors. These agreements relate to the services of an actor.
A service can be agreed at different co-ordination levels. Co-ordination levels
specify requirements on the communication between the information systems of
actors.
We make a distinction between the structure and the behaviour of interorganiza
tional systems. The structure of a system is the static part of that system and the
behaviour the dynamic part.

If appropriate, each section of this chapter starts with a description of the reality
that is to be conceptualized, followed by the concepts (i.e. the concepts and terms
that are used to describe interorganizational systems at an abstract level, inde
pendent of some specific application domain) and the modelling of the concepts.
We use timed, coloured, hierarchical Petri nets to model the concepts (modelling
is representing a concept as a model component).
In this chapter, we will present the concepts and the modelling of those concepts
for the first approach of an lOS. These concepts also describe the second approach
of an lOS. We will start by giving the concepts of business systems (section 2.2).
The concepts that describe flexible communicating information systems (section
2.4) depend on the concepts that describe business systems and co-ordination levels
of actors (section 2.3). The detailed specification of the information system is given
in the chapters 3 and 4.

2 - Conceptual modelling 17

2.2 Business systems

2.2.1 Examples of business systems
As an example, we consider a business system for the transport of products
packaged in containers, boxes, or pallets from a shipper in Europe to their final
destination in the United States and Asia. The containers, the boxes, and the pallets
are the objects to be transported. The shipper offers packages for transport and
determines the location at which they are available for transport, the time at which
they will be available, the location to which they have to be transported, and the
time at which they are required to be available at their final destination. For
example, the shipper offers his products for transport from three production units
in Europe. These production units are located in the Netherlands, Germany, and
Belgium.
For instance, we envisage a transport service operated by a forwarder on behalf of
this particular shipper. The forwarder can arrange the transport for all types of
packages offered by the shipper for transport. The transport service consists of two
stages: the first stage is the transport by road to a port, and the second stage is the
transport between two ports. The transport from the port of discharge to the place
of delivery in either the United States or in Asia is arranged by another forwarder.
Additionally, the forwarder is requested to arrange the transport from the port of
New Orleans in the United States to a destination in the state Louisiana. The ports
in Europe in this example could be Antwerp and Rotterdam. Packages from the
Netherlands, Germany, and Belgium can be transported to the United States and
Asia via both ports. The packages that are going to be transported via Rotterdam
have to be stuffed in containers by a container stuffing centre. Those containers
that are transported to the United States are transported back to Rotterdam (either
full or empty). Containers that are transported to Asia are re-used in Asia.
Figure 2.3 shows the business system of the shipper without using formal tech
niques. In figure 2.3 the stuffing centre is part of the port of Rotterdam.

Figure 2.3: Business system of the shipper

Sea transport is arranged by an agent of the carrier (a liner-agent). A liner-agent can
arrange the loading of the packages onto and the discharging of the packages from
the vessel. The actual loading and the actual discharging is executed by a stevedore.
Depending on, amongst others, the sailing schedule of vessels, the forwarder selects
a liner-agent.

18 2 - Conceptual modelling

Similar examples can be given for other business systems. The raising of cows from
birth to death can also be considered as an interorganizational business system,
where the cows are the objects that are exchanged between the business system of
a breeding farm and the business system of a slaughterhouse. Another example of
an interorganizational business system is the handling of documents by the tax
office. Documents are passed from one desk to another. The desks can be viewed
as (internal) business systems, whereas the documents are the objects that are
exchanged. The last example we consider is the handling of traffic fines. The police
issues fines to persons (e.g. for driving too fast). The fmes are passed to, for
instance, a central office that controls the payment of the fines. However, if the
payment is not received in time, the fine is passed to a legal authority. The actors
involved (the police, the central office, and the legal authority) each perform
specific activities in the business system for handling fmes. The traffic fines are
the objects that are passed between the business· systems of these actors.

2.2.2 Concepts of business systems
In some business systems, physical objects like containers are exchanged; in other
business systems, information that is present on documents, or the documents
themselves are exchanged. Furthermore, one business system can be used for many
objects, e.g. several containers of different types can be transported from a specific
place to another. Moreover, an actor can outsource part of its business system to
other actors.
As indicated in the introduction of this chapter, we make a distinction between the
structure of a business system and the behaviour of that system. The structure of a
business system is specified by the concepts business process, task, service, object
type, resource type, and their relations. The behaviour of a business system is
specified by the concepts of activity, action, object, and resource. We will define
these concepts in this section.

Definition task, service, business process
A task is an elementary unit of work that is capable of consuming clearly defined
input objects and producing clearly defined output objects on the basis of a
control signal, possibly using resources and producing a report signal. A unit of .
work that is elementary cannot be decomposed any further. Aservice is a specific
ordering of tasks that has a beginning and an end. A business process is the set
of services that a business system can provide. A business process can have many
services.

An example of a task is the lifting of a container into a vessel by a crane. The
definition of a task implies that the control signals that can be consumed by a
business process have to be distributed amongst the tasks that can be performed.
The report signals of a business process can be produced by one or more tasks.

2 - Conceptual modelling 19

Input and output objects can be physical objects (e.g. a container) or information
objects (e.g. the information that is present on a document or in a control signal).
In general, a business process or a task is capable of transforming input objects into
output objects. The objects that can be produced by a business process or a task
may differ from the objects that can be consumed by the business process. For
example, production of car doors is the transformation of steel plates and other
material. Special business processes or tasks are:

those that do not consume input objects (generation);
those that do not produce output objects (consumption);

• those that are only able to move object types from one location to another without
modifying them (movement);

• those that produce two or more output objects on the basis of one input object
(divergent production);

• those that produce one output object on the basis of two or more input objects
(convergent production).

A business process can be of physical nature (e.g. the transport of containers from
one location to another) or of abstract nature (e.g. the transfer of money from one
bank account number to another).
The business process of an actor is, in principle, specified for specific input and
output object types and is independent of the input or output objects, although the
behaviour may depend on the objects. There are two ways in which an actor can
execute his business process on behalf of other actors:
• its business process is a set of services;
• the services that an actor offers depend on the characteristics of the input objects

and the required output objects, e.g. products that are engineered to order
(Bertrand, 1990).

In both cases, time planning has to be performed. We base the specification of the
BTMS on services that are specified by an actor. Therefore, the business processes
that we consider in this monograph can also be viewed as the union of all services.
If the business process of an actor is of an abstract nature, the services are only
specified in the information system of that actor. A service of an actor can have an
identification in the information system of that actor. Besides our restriction to
services, we do not allow loops of the tasks in a service.

Definition action, activity
An action is the execution of a task. An activity is the execution of a service with
uniquely identified input and output objects.

Defmition superior, subordinate
i An actor is called a superior of another actor if the first actor can outsource the

execution of a task to that second actor. The second actor is called the subordinate
with respect to the first actor.

20 2 Conceptual modelling

Obviously, a subordinate can act as a superior for a third actor if he out sources
(part ot) the execution of the service that he is responsible for on behalf of the first
actor, to that third actor. So, the execution of a task of a superior actor can be the
execution of a service of a subordinate actor.
According to our definitions, an activity is an ordered set of actions. The same
business process can be executed one or more times, depending on the control
signals and the objects that are present. It is not necessary that all tasks of a business
process are executed when an activity takes place. An activity is only performed if
it can consume a sufficient number of objects and sufficient resources are available.
An activity may last some time, e.g. the transport of containers and the handling
of documents takes a certain amount of time. That time is called the duration of
that activity. The duration is, in principle, the same for all activities that refer to the
same business process. However, the duration of one activity of a business process
has a distribution with a minimum and a maximum. We distinguish between the
expected duration, the minimum duration, and the maximum duration of a service
and, therefore, of a task. While executing a service, the starting and the completion
time as required by a superior are known. To be able to compute the required start
and completion time of the execution of each task of a service, the start offset of a
task must be known with respect to the expected duration of a service:
• rSaction = rSactivity + SOtask

• rCaction = rSaction + edtask
where rs is the required start, so is the start offset, ed is the expected duration, and
rc is the required completion. This mechanism is commonly known as forward
control (Bertrand, 1990). It can be applied to, for instance, divergent and movement
business processes. A backward control mechanism must be applied to, for in
stance, convergent business processes. Such a control mechanism requires a delay
with respect to the expected completion time of a service. We will call this delay
the end-offset (eo). The backward control mechanism is as follows:
• reaction = reactivity - eotask
• rSaction = reaction - edtask
Figure 2.4 shows a forward and a backward control mechanism.

<Saction reaction rCactivity rs activity rs action rc action

I~ :1 1 · 1 ... ------=t:l_--... ..
edaction eo action so action ed action

backward control forward control

Figure 2.4: A forward and a backward control mechanism

In case of a forward control mechanism, the required completion time of an action
has a variation; in case of a backward control mechanism, the required starting time
has a variation. We assume that in practice this variation is the maximum duration

2 - Conceptual modelling 21

minus the minimum duration at the most. If otherwise, the action is to be handled
as an exception.
If the required starting and completion times of the activity and the start and the
end-offset of a task are known, either a backward or a forward control concept can
be applied (we will apply a forward control concept in chapter 4). If neither the
required starting nor completion time of the activity are known, three solutions are
possible:

it is not possible to compute the required starting or completion times of an
action;
the required starting time of an activity is assumed to be the time of reception
of the information regarding the input objects;

• actors have contractual agreements (section 2.3).

Definition object, object type, resource, bound resource
An object is a physical thing (e.g. a container), an abstract concept (e.g. a job),
or a piece of information (e.g. a message). An object type is the set of objects
with similar features. Objects can be either input to an action or activity or output
of an action or activity. A resource is an object that is used to facilitate an activity
or an action. A bound resource is a resource that is reserved by the information
system of an actor for an activity or an action.

Activities and actions consume and produce objects. A specific object that is either
produced or consumed by an activity or action is of a certain type, e.g. the
twenty-feet container with identification SEAU 1234567 is of the type twenty-feet
containers. Another example of an object and its type is: a fine dated July 6th 1993
for passing the speed limit with 20 kilometres per hour, which is of the type we
may call speeding traffic fines.
We make a distinction between an input and an output object. An input object is an
object of a specific type that is input to a business process or a task. An output
object is an object of a specific type that is output of a business process or a task.
For example, certain parts are, at a specific time, input objects to a production
action, whereas the products of that production action are the output objects. An
activity or an action may consume zero, one, or more input objects at the same time
and produce output objects after its duration. Output objects of an activity can be
input objects to another activity. More specifically, a container can be an output
object of a transport activity and an input object of a transshipment activity.
Resource types are for instance trucks, containers, machines, and persons. Resour
ces can have the following roles:
• if a resource is used by a task it can be used directly by the same or another task

after it has become available. For instance, a machine can be used for the
production of a specific article and is available to produce other articles after
that specific one has been produced;

• if a resource is used by a task, it cannot be used directly by that same task after
it has become available (e.g. a milk bottle and a container). These resources can

22 2 - Conceptual modelling

be used up by one task (filling them with milk or stuffing goods in a container)
and can be available after another task has been completed (after consumption
of the milk or after taking the goods out of the container);

• a resource can only be consumed and not produced again, e.g. oil burnt by an
engine.

The use of resources is limited by parameters such as availability and volume (e.g.
a limited number of containers can be loaded on one vessel at the same time).
If resources are reserved for an activity or an action by the information system of
an actor, we will call them bound resources. The binding of resources is a planning
function of the information process of an actor. It will be discussed in chapter 4.

Definition control signal, report signal
A control signal is an information object that initiates an activity or an action. It
contains information on the input objects, the output objects, and the resources
that are to be consumed or produced by an activity or an action. A report signal
is an information object that represent', the result of an activity or an action. It :
contains information on the input objects and the resources that are consumed i

by an activity or an action, and the availability of the output object.'> and the I
resources that are produced by an activity or an action. .

If the same resource or object can be consumed by two or more activities or actions
at the same time, it will only be consumed by the activity or action that receives
the control signal. A control signal of a task is produced by another task or by an
information process, which assigns the possibility to consume objects and resour
ces to activities or actions. Within a specific logistic application, such a control
signal is, for instance, an instruction to a person to load a container on a vessel. It
can only be given after sufficient capacity of the vessel is assigned to that action
by the information process. The person may give a report signal after discharging
the container.

2.2.3 Modelling business systems
As mentioned, we use the formalism of timed, coloured, hierarchical Petri nets to
model the concepts of business systems. This modelling technique is discussed in
more detail in annex 1. We will briefly discuss the basic components here. These
components are places, processors, connectors, and tokens. Processors can be
composed to nets of processors, they can be elementary, they can be time consum
ing, and they can fire. Nets consist of places connected with processors. When a
processor fires, it consumes at least one token from all its input places and can
produce tokens in one or more of its output places. A token is specified by its value,
its identity, the place in which it resides, and the time at which it may leave the
place.

2 Conceptual modelling 23

The concepts that define the structure are modelled as follows:
a business process is modelled as an open net that can be decomposed in
elementary processors, modelling the tasks of that business process;

• a task is modelled as an elementary processor that can be time consuming;
• a service is modelled as a open net;
• an object type is modelled by a complex (chapter 3);
• an actor, a superior, and a subordinate are modelled as non-elementary proces-

sors.
Because a business process can be decomposed in tasks, the connectors of the
processor modelling the business process are connected to one or more tasks. A
business process and a task have input and output connectors to consume and
produce respectively:
• objects;
• information (control and report);
• resources.
The concepts that define the behaviour of a business system are modelled as
follows:
• an activity is modelled as the firing sequence of a net;
• an action is modelled as the firing of an elementary processor;
• an object, a resource, a control signal, and a report signal are modelled by a

token. Therefore, they have a unique identification.
A control or a report signal contains the identifications of the objects and the
resources that are to be consumed or produced by a service or a task. Each activity
is triggered by an initial control signal and the input objects and resources that are
represented by that signal. The final report signal of an activity contains the result
of that activity. By formally modelling objects, signals, and resources as tokens,
they have the characteristics of tokens (value, identity, time stamp, and place). For
instance, in external logistics the token representing a container has the value
'container contents', the identity 'container number', and is ready to leave a
location at a certain time.

control reporl
connectors connectors

input object outpu1 object
connectors connectors

Figure 2.5: Modelling a business process

resource
connectors

Figure 2.5 shows a processor modelling a business process. The graphical repre
sentation of a task is similar to that of a business process, with the exception that

24 2 - Conceptual modelling

a task should be represented by an elementary processor. One or more of the output
resource connectors of figure 2.5 may be connected to a place to which also an
input resource connector is connected.

2.2.4 Modelling an example of a business system and a service
Figure 2.6 shows the business process of the forwarder as presented in section 2.2.1,
using the formalism of timed, coloured, hierarchical Petri nets. The figure only
shows the places that can contain objects and resources, and the connectors between
these places and the processors. The connectors at which the control and report
signals can be consumed or produced are omitted. Furthermore, the colour of the
objects is not shown and only one of the firing rules of one of the processors is
specified as an example. Therefore, the structure of this business process is not
completely modelled.
A possible firing rule for the processor for transport from the Netherlands is for
instance:

if

then

the containers that are identified by the control signal are available
at the time indicated in the control signal (pre-condition),
the containers are produced after a certain duration in the place
connected to the stuffing centre. A report signal is produced contai-
ning the identifications of the containers that have been produced in
that place and the time at which they have been produced (post
condition).

The report signal could for instance be the control signal for the stuffing centre.

--(;!::!::::::kt-------r United Slates

Belgium .~~;t------+ ... ASia

The Nelhe~ands ~~;;;t------I~ Asia

New Orleans

Louisiana

Figure 2.6: An example of the graphical representation of a business process using the modelling
technique

The business process of figure 2.6 has the ability to perform many activities in
parallel, according to the concepts we have described. One activity is for instance
the firing sequence of the transport task from the Netherlands via Antwerp and the
transport task from Antwerp to the United States for certain packages. Examples
of services are the transport from the Netherlands to the United States via the port

2 - Conceptual modelling 25

of Rotterdam and the transport from the Netherlands to the United States via the
port of Antwerp.

2.3 Co-ordination levels of actors

2.3.1 An example of co-ordination levels
A large multinational may decide to outsource its physical distribution and inter-
national transport to a carrier and a forwarder respectively. The multinational
requires accurate delivery times to its customers. In the case of physical distribu
tion, the multinational makes agreements with the carrier (who also operates a
warehouse) to exchange information concerning the articles that are to be delivered
to the customers. The information is exchanged by, for instance, delivery forecasts
and delivery orders.
In the case of international transport, the multinational has made agreements with
the forwarder. Contractually, the multinational and the forwarder have, for instance,
agreed upon the transport of containers specified in a number of Twenty feet
Equivalent Units (TEUs) per year from the Netherlands to the United States. In
more detail, the multinational gives information on the transport of a number of
TEUs from the south of the Netherlands to the northern part of the state of
Louisiana. The forwarder decomposes the transport service in three tasks: transport
to a transshipment place in the Netherlands (pre-carriage), transport from a trans
shipment place in the state of Louisiana to the final destination (on-carriage), and
transport between the two transshipment places (main transport). Because the main
transport is by sea, it is likely that the transshipment places are ports. During the
execution, the multinational and the forwarder exchange information on the exact
places, times, and containers that are to be transported. Depending on the place and
the time, the transport to and from the ports is either by road, by barge, or by train.
Sufficient resources have to be available.

Similar examples can be given in other business areas, e.g. a client and an insurance
company agree on an insurance contract for insurance against damage.

2.3.2 Concepts of co-ordination levels between actors
These examples show that actors try to optimize their use of resources by making
agreements with other actors. Thus they want to minimize their uncertainty in the
behaviour of their business process. In general, we distinguish three co-ordination
levels between two actors:

strategic level: actors make a long-term agreement on the object types to be
consumed or produced, and the resource types to be used during the execution
of that agreement. The long term agreement results in the specification of one
or more services of the subordinate.

26 2 Conceptual modelling

tactical level: actors have to agree in more detail on the object types to be
consumed or produced by the services specified at the strategic level, thus
allowing the subordinate to add more detail to its services. At the tacticallevet,
additional constraints are formulated for the operational level.

• operational level: the actual objects are consumed and produced. Co-ordination
concerns the processing of actual objects.

The strategic level is a higher level than the other levels, and the tactical level is a
higher co-ordination level than the operational level. The services specified at
strategic level are for instance an aggregation of the services at the tactical level.
In some cases, the tactical level is omitted. Sometimes, the operational level may
never be executed (e.g. in case of insurance against damage of object types like a
car for which a standard contract is valid).

Definition contractual relation, incidental relation
A contractual relation is a relation between two actors where they, first of all,
make agreements on the structure of an interorganizational business system at
strategic and tactical level, and, secondly, co-ordinate the behaviour of that
interorganizational business system at operational level. The relation lasts longer
than one execution of a task. An incidental relation is a relation between two
actors for the execution of a standard service of a subordinate. It requires on the
one hand the co-ordination between two actors concerning the specification of
the standard services of the subordinate, and on the other hand, the delivery by
the superior of information concerning the input objects, the output objects, or i

both. An incidental relation between two actors exists only during the .
of a task.

Prior to a contractual or an incidental relation, an actor may want to exchange
information with other actors regarding his services. These services may be stable
or may change in time. The difference between a contractual and an incidental
relation lies in the number of executions of the same task at operational level by a
subordinate: in a contractual relation a task is executed zero, one, or more times,
whereas in an incidental relation a task is executed at most once during the relation.
The incidental relation is a special type of the contractual relation.
In a contractual relation, the object types that are to be produced or consumed may
lead to the reservation of resource types by a subordinate. The business process
that is agreed at strategic level is decomposed at tactical level. For example, in a
yearly period the object types are expressed in terms of a product family (strategic
level), whereas in a given week specific articles are to be produced (tactical level).
In such a case, the actors have to agree on, for instance, product families and articles
in those families. Another example is a rough estimate of the number of containers
to be transported in a year, whereas in a given week the exact number of containers
and their identifications can be given.
Besides agreements on the services, other aspects such as the object quality can be
agreed upon by contract. Also, the information exchange can be part of the contract.

2 - Conceptual modelling 27

2.3.3 An example of applying the concepts of co-ordination levels
The example that is given in section 2.3.1 is modelled at all three levels (figure
2.7). The object types and the firing rules of the processors are not specified. The
figure shows only the connectors and places of the objects. The connectors and
places of the control and report signals are left out. The resources are internal to a
process.

Ihe Netherlands ~,-__ ,ra_ns_po_!l_--IF the Unfted States

south
Louisiana

Umburg

Brabant

Zeeland
1'g~~~~:~~~~:3~~::::~!~t: no!lhofLouisiana ~ ~=IIl'-" south of Louisiana

Figure 2.7: Services at different levels

The upper part of the figure shows the structure of the service at strategic level, the
middle part shows the tactical level, and the lower part the behaviour at the
operational level according to the structure at tactical leveL Each level is a
decomposition of the higher leveL At operational level, the transport service of the
tactical level consumes objects from three provinces in the south of the Netherlands
and produces those objects in two regions of the state of Louisiana. The transport
from the other regions in the Netherlands to the ports of Rotterdam and Antwerp
and the other states in the USA can be added.

2.4 Communicating information systems

2.4.1 Examples of communicating information systems
The shipper and the forwarder of the previous example exchange information in
order to co-ordinate. For example, the shipper exchanges a transport order with the
forwarder, referring to the contract they have. As a result of processing the transport
order, the forwarder submits his transport planning to the shipper. By means of the

28 2 Conceptual modelling

transport planning, the shipper can carry out his planning for the shipment of the
packages. Once the shipment has taken place and the packages are delivered, the
forwarder reports on the execution of his service to the shipper (figure 2.8).

shipper forwarder

instruction I

I
planning

report
l~'

Figure 2.8: Exchange of messages to execute a contractually agreed transport service

The time sequence shown in figure 2.8 can be refined. A shipper can send updates
to an earlier exchanged instruction and the forwarder can give updates of the
planning and is capable of reporting by several messages.
Sea transport is part of the service agreed by contract between the shipper and the
forwarder. If the shipper requires transport of packages, he initiates a transaction
with the forwarder that contains information to enable the execution of a service.
An instruction is the first message of the transaction. The forwarder selects the
proper service and initiates the execution of the tasks of the service by sending a
shipping instruction to a liner-agent for the transport of the cargo with a certain
vessel. The planning of the liner-agent tells him that he is able to arrange the
transport of the cargo using the particular vessel. He receives a report from the
liner-agent after the execution.
A possible time sequence of the messages that are exchanged to support the
execution of the service is shown in figure 2.9. Other actors than the ones mentioned
thus far are added (e.g. a carrier and a stevedore).

shipper forwarder carrier liner-agent stevedore agent

r-l-rt$lruc!ion ... ' instruction
I plannina
; Instruction

instruction

t---
instruction

f..,..-illal}!1illfL-
planning

i

planning

planning
plannina

reoort I report
report

report
reDort

I
Figure 2.9: A time sequence diagram of the messages of the example

2 - Conceptual modelling 29

Figure 2.9 shows one possible time sequence of the messages that are exchanged
between the actors involved. The sequence depends on the behaviour of the actors
involved. Another sequence is for instance the exchange of the report of the carrier
before the agent of the forwarder sends his planning. The forwarder can also offer
a service to the shipper by which every report received by the forwarder is passed
to the shipper. Another service of the forwarder is to exchange the report of the
carrier that performs the road transport, which is the report of the first action of the
service, and the final report of his agent, which is the report of the final action of
the service. Another option is that the forwarder wants to confirm the transactions
with the carrier, the stevedore, and the liner-agent, before he has received the report
of his agent. These are all options that support tracking and tracing.
Figure 2.9 shows that in time, first of all, the instruction and, secondly, the planning
messages are exchanged between the actors involved. Thirdly, all report messages
are exchanged. The sequence of the instruction and the planning messages can be
called the 'initiation of a transaction'. The exchange of report messages can be
called the 'confirmation'.
In this particular example, the forwarder arranges first of all the sea transport. It is
also possible that he starts by arranging transport to the premises of a stevedore
and waits on the reports of the road carrier and the stevedore before he arranges
sea transport. Therefore, the initiation of the execution of tasks can be interleaved
with the confirmation of the execution of those tasks.

2.4.2 Concepts of communicating information systems
To be able to execute a service. actors must be capable exchanging messages
containing information concerning a service and the input and the output objects
of that service, and must agree on rules for the sequence in which the messages can
be exchanged. The data structure of the messages is presented in the next chapter.
The rules are specified by the concept of a (business) transaction protocol. The
sequence in which the actions of an activity are controlled is specified by the
concept of a procedure. To allow the interleaving of the initiation and the confir
mation of actions, the rules for a transaction protocol are subdivided in the initiation
and the confirmation rules.
As indicated in section 2.2 we make a distinction between the structure and the
behaviour of communicating information systems. The structure is specified by the
concepts 'message type', 'transaction protocol', 'procedure', and 'step'. The beha
viour is specified by the concepts 'message', 'transaction', and 'job' respectively.
The concept 'step' has a relation with the concept 'transaction protocol' that we
discuss lateron.
We first define the concepts 'message', 'message type', 'transaction', and 'trans
action protocol'. Secondly, we define the concepts 'procedure', 'step', and 'job'.

30 2 Conceptual modelling

Definition message, message type, transaction, transaction protocol
A message is a unit of information exchanged between a sender and a recipient.
A message type is the set of messages that have the same characteristics. A
transaction is a sequence of messages. A transaction protocol is a set of allowed
sequences of message types.

A transaction protocol is decomposed in an initiation protocol and a confirmation
protocol. The initiation protocol supports a negotiating mechanism between a
superior and a subordinate with respect to (the execution of) a task. Depending on
the co-ordination level, the confirmation protocol supports either the willingness
to execute a task (strategic and tactical level) or the results of the execution of a
task (operational level).
To be able to support the co-ordination levels and the contractual or incidental
relations of actors, we distinguish between the following transaction protocols:
• contract protocol

The contract protocol is a specific transaction protocol used to reach agreement
on the specification of the tasks and the related services, and to bind resources
of a subordinate for the execution of the services. The contract protocol supports
the strategic level.
planning protocol
The planning protocol is a specific transaction protocol used to exchange more
detailed information regarding a task that is to be executed one or more times
and is agreed upon during the contract protocol. A transaction of the planning
protocol enables a subordinate to bind resources for the execution of one or more
services. The structure of the task and the matching service of the operational
level is specified. The planning protocol supports the tactictalleveL
execution protocol
The execution protocol is a specific transaction protocol by which a task of a
superior that is agreed upon as part of the contract or the planning protocol is
executed once by a subordinate. The execution protocol supports the operational
level.

A contractual relation is supported by the contract protocol, the planning protocol,
and the execution protocol. An incidental relation is only supported by the contract
and the execution protocol for a standard service. The execution protocol can also
be used to specify the communication between the information system of an actor
and a task in the business process of that actor.
A superior or a subordinate must be able to cancel an action or an activity
respectively. Therefore, we introduce the rollback protocol: a specific transaction
protocol used to cancel a transaction of another transaction protocol.

A transaction can be initiated both by a superior or a subordinate. Depending on
the role of the actor that initiates a transaction, the related transaction protocol is
different. For instance, if a subordinate initiates the execution of a task (i.e. he offers

2 - Conceptual modelling 31

to execute a task), he must execute that task if the response of the superior is
positive. If a superior initiates the execution of a task, he is allowed to cancel the
execution even after subordinate has given a positive response.
A transaction has to conform to the following properties (we use the term activity
of a transaction as the execution of a service by a subordinate):
• atomicity

A transaction has to be atomic from the viewpoint of a superior. This means that
the service that is controlled by that transaction is executed completely and
without any interference, or not at all. A complete execution of a service is
defined as the consumption of all input objects and the production of output
objects by that service. The input and the output objects are represented by the
information exchanged in the messages of a transaction. From the viewpoint of
the superior, a partial execution of the service is not allowed.

• consistency
The information concerning an activity has to be consistent for both the superior
and the subordinate. This means that after completion of the activity the
information related to the activity that is stored by the superior and the subordi
nate is exactly the same.

• isolation
The activity of a transaction between a superior and a subordinate has to be
isolated of other activities in other transactions between the same or other
superiors and the subordinate. This means that from the view of a superior its
result is independent of the result of other services that the subordinate executes
at the same time.

• durability
The activity of a transaction between a superior and a subordinate has to be
durable. This means that the result of an activity can only be altered by initiating
a new transaction. The result of an activity is the production of output objects
by that action.

By binding resources, a subordinate has the capability to execute the service of a
transaction in isolation of the execution of the execution of other services or the
same service. The allowed sequence of the message types of a transaction protocol
has to support the properties consistency, atomicity, and durability. Consistency of
information can be reached by allowing the exchange of updates to previously sent
information, e.g. one or more messages can be exchanged to report on the result of
an action.

32 2 - Conceptual modelling

Based on the properties of transactions and to allow the initiation of a transaction
by a superior or a subordinate, we specify the following basic message types:

response is

confirm c

Table 2.1: Basic message types

I
· a request is a message from an actor to another actor
requesting (the execution of) a task

a response is a message from an actor to another actor
negotiating the task or the action

a confirm is a message from an actor to another actor
. confirming the willingness to execute the task or the results of

execution of the task

We make these basic message types specific to a transaction protocol (table 2.2).

: request cr ipr ier I
response lcs ;ps es I
~.-.

confirm cc ipc ec rc

exception - - ee -
.~

exception resp. - - ep i-
I .

Table 2.2: Abbreviation of message types per protocol

I

I

I

I

I

Hereafter, the name of a message reflects the type of that message, e.g. a confirm
is a message of the type 'confirm'. An 'exception' and an 'exception response'
message type is added to the execution protocol to support the exchange of
information regarding changes in the action of a transaction that occur during the
execution of that action. Changes can occur due to disturbances in the business
process, e.g. a traffic jam or a flat tyre. The execution protocol can also be used for
the communication between the information system of an actor and a task in the
business process of that actor.
The message types listed in table 2.2 are generic in the sense that in practice they
have other names. For instance in external logistics, an execution request and an
execution confirm are identical to a shipping instruction and a proof of delivery
respectively.
The allowed sequence of messages in a transaction protocol is specified by the
following rules:
. a request can always be given before a transaction is completed;

2 - Conceptual modelling

• a response can only be given after a request has been received;
a response can refer to one or more requests;

33

a response always refers to the last request that is processed for constructing the
response;

• only a subordinate can send more than one confirm, independent of the transac
tion protocol;

• messages must be processed by the receiving actor in the sequence of sending;
· as part of the contract or the planning protocol, a confirm can be given by a

superior after either a response or a confirm to a former request has been received
from a subordinate;
a confirm of a superior in the execution protocol is the agreement of the superior
with the result of an action;
as part of the execution protocol, a superior can only give a confirm after the
execution of the task is completely confirmed by the subordinate;

• a confirm of a superior in the contract or the planning protocol is the agreement
of the superior with the response of a subordinate;
a confirm can only be given by a subordinate after either a request or a confirm
has been received from a superior;

• as long as the execution of a task of a superior is not completed, a subordinate
can exchange exceptions;

• a superior gives a response to each exception;
• a rollback confirm can follow a contract request, a planning request, or an

execution request.

Definition step, procedure, job
A step is an elementary uni t of work in an information system. A procedure is a
specific ordering of steps that has a beginning and an end, and is used to manage
the execution of a service. Ajob is the execution of a procedure.

A step in an information process is similar to a task in a business process. A
procedure is similar to a service. A business process can have many services, which
implies that an information process can have many procedures. Whereas actors
have to be flexible to offer new services, the information process has to be flexible
to support new procedures.

A procedure consists of steps. These steps have a relation with a transaction
protocol. A transaction protocol has to be executed by a superior and a subordinate.
A job executes a transaction protocol of a subordinate. The execution of steps is
the execution of a transaction protocol of a superior.
To be able to specify the relation between steps and a transaction protocol, we
introduce outgoing and incoming transactions. Outgoing transactions are transac
tions that are initiated by a superior to execute a service of a subordinate. We
distinguish two different steps to manage the action of an outgoing transaction: one
step to support the initiation of a transaction and another step to support the

34 2 - Conceptual modelling

confinnation of that transaction. Ajob is initiated by a transaction of a superior that
we call an incoming transaction of the subordinate. We distinguish two different
steps to manage the action of an incoming transaction: one step to send a response
and another step to send a final confirm. An incoming transaction that initiates a
job can only be confinned after all outgoing transactions have been confirmed by
their subordinates. In tenns of messages, a final confinn of the incoming transaction
can only be exchanged after the confmns of all outgoing transactions have been
received. Therefore, a procedure ends in this case with a final confirm step.
Examples, in which a procedure ends with a final confinn step are the ordering of
articles, the instruction for transport, and the handling of insurance claims. There
are other cases, where the final confinn step is not used, e.g. a request that is
received is only initiating a job. An example is the ordering of articles if the number
of articles is below a certain stock level. The incoming transaction consists only of
one request that can be generated by, for instance, an inventory control software
package. In such a case, the procedure does not contain a final confirm step.
A subordinate can send several confinn messages according to the rules of the
execution protocol. A choice must be made between the following options:
• only the final confirm of an outgoing transaction initiates a confinn of the

incoming transaction. This option is supported by the final confinn step;
• each confinn of a subordinate initiateS" the sending of a confmn of the incoming

transaction. This option is supported by the initiation step;
• if several confinns are exchanged, only the first and the last confinn of a

subordinate initiate the sending of a confirm of the incoming transaction. This
gives the superior infonnation of the incoming transaction at the starting and the
end of an action. This option is supported by the initiation step.

One of these options can be selected at the time a procedure is defined for a service.

A subordinate may for some reason cancel an action. If so, the superior must be
able to either initiate a new action instead of the cancelled action or cancel the job
and start a new job. If a new action cannot be initiated (the procedure does not
contain steps for the control of this new action), a new job has to be started. To be
able to cancel a job, none of the actions of the job may already be started or
completed. Starting a new job can give changes in the completion time of an
activity. These changed times have to be exchanged with the superior.

2.4.3 Modelling the concepts of communicating information systems
The concepts are modelled as follows:
• a procedure is modelled as an open net with a special structure;
• a job is modelled as the firing sequence of an open net;
· a step is modelled as a non-elementary processor. We distinguish between the

following non-elementary processors as steps: a start, an end, an initiation, a
confirmation, a final confirm, a response, a rollback, and an end-rollback
processor. The start and the end processor can be used as a start and an end of

2 - Conceptual modelling 35

parallel steps respectively. The rollback and the end-rollback processor support
the rollback protocol;
a transaction protocol of an incoming transaction is modelled by an open net
modelling a procedure and a transaction protocol of an outgoing transaction is
modelled by an initiation and a confirmation processor modelling a step.
Because we distinguish different transaction protocols, there are different initia
tion and confirmation processors per transaction protocol;

• an incoming transaction is modelled by one or more tokens in an open net
modelling a procedure. An outgoing transaction is modelled by a token in an
initiation or a confirmation processor. The data structure of these tokens is
specified in chapter 3;
a message type is modelled as an attribute in a data structure;
a message is modelled as a token of a complex class that models a message type
(chapter 3).

Thus, the structure of the initiation and the confirmation processor is specific to a
given transaction protocol. Because the processing of a message may take some
time, the response to that message will be received after some time. However, a
response must be received in time, because other actions of the same activity may
have to be initiated. Therefore, we specify that an initiation processor has the ability
to retransmit a request if a response has not been received within a time period that
we will call the retransmission time. Retransmission of the request can be repeated
a number of times. We call the maximum number of retransmissions of the same
message the retransmission count. If the maximum value of the retransmission
count is reached and the response is not yet received, the outgoing transaction
cannot be initiated and an alternative outgoing transaction is to be started. The
retransmission time and the retransmission count are parameters that can be set
during procedure design.

The set of allowed sequences of message types is a transaction protocol. Each
elementary processor of a step can produce a message of a specific type. Therefore,
we can define a function f from a processor of a step to a message type. A protocol
is the projection under f of all firing sequence of these elementary processors in
an initiation and a confirmation step. For instance, if a step consists of elementary
processors a, b, and c, and f(a)=ml, f(b)=m2, and f(c)=ml, then the firing sequence
'abbacbaac' is transformed in the transaction 'mlm2m2ffilmtm2mlml'.

The definition, the selection, and the execution of procedures is handled by the
Business Transaction Management System (BTMS). The BTMS is modelled as an
open net. Procedures that are also modelled as open nets, are tokens in the BTMS.
Thus an open net is a token in another open net.
Several instances of the BTMS can communicate with each other via a composite
place called network. They can also communicate with other processors of the
information system of an actor; we will call these latter processors the in-house
processors (figure 2.10). Their specification is outside the scope of this monograph.
Examples of in-house processors are resource planning software packages (e.g.

36 2 - Conceptual modelling

route planning) and object type engineering software packages (e.g. Computer
Aided Design (CAD) software).

BTMS

I information
s stem

BTMS

I in ~rmation
~stem

Figure 2.10: Two communicating Business Transaction Management Systems

The BTMS is decomposed as follows (figure 2.11):
• Service Designer

The Service Designer supports a person in the design of new services on the
basis of existing tasks. Those tasks can be services of other actors. The output
of the Service Designer is a token called 'service'.
The specification of the Service Designer is outside the scope of this monograph.
A tool that can support service design is ExSpect (1990).

• Transaction Protocol Designer
The Transaction Protocol Designer supports a person in the specification of the
steps of a procedure. The output is a token called 'step'. The specification of the
Transaction Protocol Designer is outside the scope of this monograph. We
specify the processors that support the execution protocol to illustrate protocol
design.

• Procedure Designer
The Procedure Designer supports a person in the design of procedures for a
particular service. The input to the Procedure Designer is a service and steps and
the output are tokens called 'procedure'.

• Procedure Selector
The Procedure Selector selects a procedure that is to be executed upon reception
of a request. The selected procedure may already be in execution for one or more
other incoming transactions. The input of the Procedure Selector is a message
and a procedure. The output is a token called 'selected procedure'.
Procedure Interpreter
The Procedure Interpreter executes procedures. The input of the Procedure
Interpreter is a selected procedure and a message. The output is a message.

2 - Conceptual modelling 37

• Exception Handler
The Exception Handler executes the rollback protocol either for the complete
job or for one action of a job, selects an alternative procedure to be executed,
and handles exceptions in the execution of an action. Alternative actions for an
action that is rolled back are part of a procedure. The rollback protocol is
supported by a rollback procedure for a service .

• Message Handler
The Message Handler consumes tokens from the composite place 'network' . If
the token is a request, it is produced for the Procedure Selector. If it is a rollback
request of the superior, an exception, or a response to an exception, the token is
produced by the Message Handler for the Exception Handler. Otherwise, the
token is produced by the Message Handler for the Procedure Interpreter. This
detail of specification of the Message Handler is sufficient for this monograph.

person

messages

messages

Figure 2.11: Decomposition of the BTMS

A detailed specification of the steps, the Procedure Selector, and the Exception
Handler is given in chapter 4 of this monograph. The procedures are tokens in the
store that is shown as 'procedures', or in the place 'selected procedures' if they are
selected for execution. The data structure of the tokens is specified in chapter 3.

38 2 - Conceptual modelling

2.4.4 An example of a procedure
An example of a procedure that supports a transport service from a region in the
south of the Netherlands to a region in Louisiana (see figure 2.7) is shown in figure
2.12. The start and the end processors are left out in this example.

Figure 2.12: An example of a procedure of a forwarder

Figure 2.12 shows the steps that initiate (initiation) and confirm (confirmation) an
outgoing transaction and with each step is indicated which actor can execute the
service of that outgoing transaction. For instance, an outgoing transaction for
pre-carriage to a port is managed by the initiation and the confirmation pre-carrier
processor.
The transport by sea of the actor shipping line 2 is an alternative action to the
transport by sea of the actor shipping line 1. Only one of these actors can give a
confirmation of the execution of its action. Therefore, if one of them is completed
successfully, it produces a token for its corresponding confirmation processor. The
pre-carriage requires information on the port of loading of the transport by one of
the shipping lines. Each of the steps of the procedure in the example can receive
messages from or send messages to other actors. The initiation shipping line 1 can,
for instance, send requests to the actor shipping line 1 and receive responses from
that actor.
The procedure shown in figure 2.12 can lead to several time sequence diagrams,
e.g. each outgoing transaction can be confirmed with one or more confirm mess
ages. Figure 2.12 also shows one procedure to manage the service. Other proce
dures are also possible, e.g. pre-carriage can be initiated before a transaction with
a shipping line is initiated. Thus, different procedures and different time sequence
diagrams per procedure are possible.

3 Data structures 39

3 Data structures

3.1 Introduction
In the previous chapter we have described the concepts of interorganizational
systems. Part of the information system of an actor is the BTMS. The BTMS is
modelled as an open net that can consume and produce tokens. Examples of these
tokens are messages that are handled by the BTMS, and procedures that describe
how to handle the messages. In general, tokens are complexes of a complex class
(annex 1). The data representation of a business process, which we call the business
process data structure, is the basis for the structure of the tokens that can be present
in the BTMS. From the business process data structure we derive the following
data structures:
• message data structure

The message data structure is the data structure of the input and the output tokens
oftheBTMS.
internal data structure
The internal data structure is the data structure of the tokens that can be in the
internal place 'selected procedures' of the BTMS.

We will call the rules for the derivation of the message data structure out of the
business process data structure the message modelling rules. We call the rules for
the derivation of the internal data structure from the business process data structure
the internal modelling rules. Additionally, we introduce the transaction data
structure meaning the data structure that encompasses all messages in a transaction
protocol.

We will start by specifying the generic part of the business process, the transaction,
the message, and the internal data structure (sections 3.2 unto 3.4 respectively). We
will end this chapter by specifying the data structures of the tokens that can be
contained in the BTMS (section 3.5).

3.2 The business process data structure

Definition business process data structure
The business process data structure is a data representation of the structure and
the behaviour of business processes.

40 3 - Data structures

Because our modelling is based on Petri nets, the business process data structure
is a data representation of a Petri net. The business process data structure is specific
to a business system (e.g. logistics and health care). We distinguish between
elements that are common to all business processes and elements that are specific
to certain business processes. We call the first set of elements the kernel of the
business process data structure. The kernel is described in this section. The second
set of elements is a specialization of the first set. A specialization for external
logistics is given in chapter 5.

The components of the data structure that specify the structure of a business process
are:

places are modelled by the entity 'place';
• business processes and tasks are modelled by the entity 'task';

the decomposition of a business process in its tasks is modelled by a function of
the task entity to itself;

• a connector of a place to a business process or task is modelled by an association
between the task entity and the place entity. One business process or task may
have connectors with several places, whereas each place may have connectors
with several business processes or tasks. A distinction is made between an input
and an output connector;

• the value and the identity of objects that can be present in a place are model1ed
by attributes of the entity 'object type'. There is a function from the place entity
to the object type entity to model the relation between the object types that can
be present in a place.

The behaviour of a business process is modelled as follows:
• activities and actions are modelled by the entity 'action'. Each activity and action

have a unique identification and an execution time. There is a function from the
action entity to the task entity;

• a specific object is modelled by the entity 'object'. There is a function from the
object entity to the place entity. The availability time and the identity of an object
is an attribute of the object entity.

The hierarchy between an activity and its actions is not modelled explicitly. It can
be derived via the hierarchy of a business process and its tasks and the function
from the activity entity to the business process entity. The entities, the associations,
the functions, and the attributes of the kernel of the business process data structure
that are common to all of its instances, are shown in figure 3.1.

One of the hierarchy functions between the task entity and the place entity
represents the decomposition of a composite place, whereas the other function
relates a place to a higher decomposition level.
To represent the real world, places and object types have attributes that specify
them in more detail. Examples of the identification of places are 'city name',
'region', 'bank account number', and 'in progress'. The latter identification of a
place is a stage in the processing of objects. Examples of the identification of objects
types are 'container size and type', 'article number', and 'product number'. An

3 - Data structures

(;:-
identity ~

produced

(identity

.. ,
business' business
process: process

behaviour' structure ,

Figure 3.1: Kernel of the business process data structure

41

..

object is either in a place or consumed by an activity or an action. Additional
information of the place in which the object actually is or has to be, can be specified
in more detail focussing on the behaviour, e.g. a place at which the goods are loaded
is a city in a certain region. Therefore, objects have an additional attribute 'addi
tional place information', giving more detail of a place specified by business
process structure.
In the real world, certain input objects that are to be consumed to be able to produce
certain output objects, e.g. a steel plate and an engine can be part of a car. In our
model, such a relation between object types is modelled by a firing rule of a task.
The concept task is modelled by an elementary processor that has one or more firing
rules (annex 1). A particular activity selects a specific firing rule of each task.
Resources are modelled in the same way as objects. A resource has a certain
capacity that is available in different time periods to one or more activities. The
amount of capacity that is required by an activi ty is modelled by a firing rule of the
corresponding business process or task.
The following constraints are given for the business process data structure:

an object that is consumed by an action or activity can only be of an object type
that can be present in a place that has an input connector to the business process
of the action or activity;

• an object that is produced by an action or activity can only be of an object type
that can be present in a place that has an output connector to the business process
of the action or activity.

42 3 - Data structures

3.3 The transaction and the message data structure

Definition transaction data structure, message data structure
The transaction data structure is the structure of the information that can be
exchanged between two actors regarding a service or the execution of that
service. The message data structure is the structure of the information that can
be exchanged between two actors as part of a transaction.

A processor of a procedure can consume and produce tokens that have the message
data structure. We derive the message data structure from the business transaction
data structure. We make a distinction between a business definition transaction data
structure, a business operation transaction data structure, a business definition
message data structure, and a business operation message data structure. Abusiness
definition transaction data structure models the exchange of information concern
ing the structure of a service; a business operation transaction data structure
models the exchange of information concerning the execution of a service. In a
contractual relation, a business definition transaction data structure is the data
structure of the information that can be exchanged by all messages of a transaction
of either the contract or the planning protocol and the business operation transaction
data structure is the data structure of the information that can be exchanged by all
messages of a transaction of the execution protocol. In an incidental relation, it is
the information that can be exchanged by all messages of a transaction of the
contract and the execution protocol.

The business definition transaction data structure is the structure part of the
business process data structure extended with an entity representing the charac
teristics of a transaction and replacing the task entity by a 'service' entity.
The business operation transaction data structure is the behaviour part of the
business process data structure, extended with an entity representing the charac
teristics of a transaction of the execution protocol, and replacing the functions
between the behaviour and the structure part of the business process data structure
with attributes.
The 'transaction' entity has the following attributes (the name of the attribute is
given in brackets):

the identification of the actor that initiates a transaction (init id);
the identification of the responding actor (resp id);

• the transaction identification (trans id);
the sequence of transfer of the superior and the subordinate (sup sequence and
sub sequence respectively).

A transaction is uniquely identified by the transaction identification and the actor
that initiates a transaction (key constraint).
To allow the exchange of information regarding one object that can be in different
places at different times, an 'availability' entity is inserted in the business operation

3 - Data structures 43

transaction data structure. It has a function to the 'obj~t' entity and a 'consumed'
and a 'produced' function to the 'activity' entity.
A transaction of the execution protocol contains one activity and zero, one, or more
actions (e.g. a logistic service from the Netherlands to the United States uses sea
transport from the port of Rotterdam to the port of New Orleans). An activity is
distinguished from an action by the function that an action has to the activity.
The input objects of a service can be contained in the output object of that service.
In a business process, objects can be distinguished from each other (e.g. packages
can be distinguished from a container in which they are packed). In an information
system, a relation between objects must be stored explicitly and a transaction is
used to exchange amongst others such a relation. Therefore, the object entity in the
business operation transaction data structure has a function to itself. This function
is of particular interest if a resource is to be used (e.g. packaging material like boxes,
crates, and containers). If a function between two objects exists, both objects have
to be in the same output place (constraint).
Figure 3.2 shows the business operation transaction data structure. The business
definition transaction data structure can be shown in a similar way.

action

(initid

(trans. id.

transaction

belongs to

Figure 3.2: The kernel of the business operation transaction data structure

We also make a distinction between a business definition and a business operation
message data structure. Both are derived from the business definition transaction
and the business operation transaction data structure respectively, by replacing the
transaction entity with a message entity. That entity has the following attributes:
• the role of the actor that is initiating the transaction (role). A superior or a

subordinate may both initiate a transaction (section 2.4);
• the identification of the sender that is either the superior or the subordinate

(sender);

44 3 - Data structures

the identification of the recipient that is either the superior or the subordinate
(recipient);

• the identification of the transaction to which the message belongs (trans id);
• the message type;
• the sequence of transfer, which is either the superior sequence or the subordinate

sequence depending on the message sender (my sequence);
• the sequence of transfer of the last message that has been received from the other

actor and has been processed (your sequence). This attribute only has a value
for a response message. It contains the sequence number of the request that has
been processed before sending the response.
the identification of the message (message id).

A message is uniquely identified by the sender, the recipient, the transaction
identification, and the message identification (key constraint). The sender or the
recipient is the identification of the actor that initiated the transaction. Therefore,
the transaction id is unique for a combination of the sender and a recipient. The
message id is unique per transaction id. Figure 3.3 shows the business operation
message data structure.

(trans id

(sender

message

Figure 3.3: The business operation message data structure

action

belongs to

3 - Data structures 45

3.4 The internal data structure

Definition internal data structure, business definition data structure, business
operation data structure
The internal data structure is the data structure of a token that can be present in
the place' selected procedures' of the BTMS. It consists of the business definition
data structure, the business operation data structure, and a data representation of
procedures. The business definition data structure is a data representation of the
services of an actor. The business operation data structure is a data representation
of the infonnation that an actor has concerning the execution of its services.

In the real world, a service can be supported by one or more procedures. We restrict
ourselves in this monograph to one procedure per service. A task that is part of a
service of an actor, can be a service of another or the same actor. If the latter is true,
a job of an actor initiates another job of the same actor.
The relation between the business definition structure and the business operation
structure is identical to the relation between the structure and the behaviour of the
business process as modelled in the business process data structure.
Infonnation regarding the same objects can be exchanged by messages that belong
to one or more business operation transactions. The status of the objects can differ
per business operation transaction (the status of a particular object is the value, the
identity, and the availability of that object (annex 1»). We make a distinction
between the following three types of 'availability' entities:
• the 'required' entity that represents the required status of objects, which specifies

that certain objects are required to be available at a certain place and time. The
required status is given by the superior;
the 'planned' entity that represents the planned status of objects, which specifies
that certain objects are going to be available at a certain place and time. The
planned status is given by the subordinate;

• the 'confirmed' entity that represents the confirmed status of objects, which
specifies that certain objects are actually available at a certain time and place.
The confinned status is given by the subordinate after execution of a service.
The confirmed status is represented by the 'confinned' entity.

If the objects are specified in tenns of a quantity (e.g. number of objects of a type
and the weight and the volume of objects), then quantity is part of the status
infonnation. The status infonnation is modelled by the three entities mentioned
before, that have a function with an activity or an action and a function with objects.
Whereas in the business process data structure the object entity has a function to
the place entity, that function is via the required entity in the business operation
structure. The planned and the confirmed entity do not contain a function with a
place. The functions between an object and a transaction is via the action.

46 3 - Data structures

Both in the real world and in our model of the real world, there is a difference
between the availability time and the execution time. Therefore, we also differen
tiate the following execution intervals:

the required execution interval;
. the planned execution interval;
. the confirmed execution interval.
These intervals are attributes of the 'action' entity. They are not shown in figure
3.4.

An actor entity is part of the internal data structure to store the identity of superior
and subordinate actors once for all transactions in which a particular actor has a
role. The 'service' entity has also a function to the 'actor' entity to store information
concerning the actor that is able to execute a task of the service, and information
concerning the actor that offers a service. .
The business operation and the business definition data structure of the internal
data structure are shown in figure 3.4. The procedure data structure is shown
separately in figure 3.5. The function between the business definition structure and
the procedure data structure is shown in figure 3.4.

I
i ~-"MI!:<=:;:-~~
lC trans, id.

I
i business operation
! structure

belongs
to

Figure 3.4: The kernel of the internal data structure

business definition
structure

The 'rollback' attribute of the 'transaction' entity is used to store whether a
transaction is in execution (the value of this attribute is false) or is in rollback (the
value of this attribute is true).
Outgoing transactions are related to an incoming transaction by means of the
selected procedure of a service. We specify a tree constraint (a tree constraint is
explained in Van Hee (1994)) for the internal data structure. The incoming trans-

3 - Data structures 47

action is the root simplex. All outgoing transactions can be reached via the incoming
transaction.
The structure of the tokens that can be consumed and produced by and can be
present in a procedure, is given by the message data structure and the data types
respectively. The data types can be derived from the business operation structure
of the internal data structure.

decomposition

data types inlernalloken message

Figure 3.5: Data structure modelling structure and behaviour of procedures

A procedure is uniquely identified by the service and the value of the 'procedure
id.' attribute. The start and the end offset are specific to a step in a procedure. The
'type' attribute is a composite attribute that can represent whether it is a normal or
a rollback procedure for the strategic level, the tactical level, or the operational
level (N for normal procedure, R for rollback procedure, S for strategic level, T for
tactical level, and 0 for operational level).

3.5 Data structures of the tokens of the BTMS
The data structures of the tokens that can be present in the BTMS are derived from
the data structures that we have specified thus far. The places of the BTMS are
shown in figure 2.11. The data structures of the tokens that can be in those places
are:

48 3 Data structures

step procedure data structure (without the decomposition function)

service business definition data structure

procedure business definition data structure and procedure data structure

selected procedures intemal data structure

p message data structure in which the 'type' attribute can have a value of
the set {cr, pr, er}

q message data structure with (type rr and role = superior) or (type has a
value of the set (ee, ep})

message data structure where type has a value that is not in the set
{cr, pr, er, ee, ep, rr}

data

Table 3.1: Places and data structure of tokens of the BTMS

The internal tokens of a procedure and the tokens that can be in the places s and t
are of a data type. We distinguish two data types:
• a data type that represents one or more keys of a transaction. One of these keys

identifies an incoming transaction, whereas the other keys identify outgoing
transactions in the 'selected procedures' place. Tokens of this data type can only
be in the places to which the processors modelling the steps of a procedure are
connected with the exception of those places that can contain messages. There
can be zero, one, or more tokens with the key of an incoming transaction in a
procedure. If the key of an incoming transaction is not present as part of a token
in a procedure, one or more steps of the procedure are in execution for outgoing
transactions;

• a data type that represents the key of a transaction. A token of this type identifies
an outgoing transaction and can only be in the internal places of the processors
modelling the steps of a procedure. There is only one token with the key of an
outgoing transaction in a procedure if a token with that key is present in the place
'selected procedures' of the BTMS.

The state of an incoming transaction is represented by a set of tokens. This set
consists of the tokens in the places between the steps of a procedure containing the
key of the incoming transaction, and the tokens in the internal places of the steps
containing a key of an outgoing transaction that has a function to the particular
incoming transaction. The state of an outgoing transaction is represented by the
place of a step that contains the token representing the key of the particular outgoing
transaction. In, for instance, the example of section 2.4.4 tokens with the key of an
incoming transaction can be in both places between the 'initiation of shipping line
l' and the 'initiation pre-carrier' and the 'initiation on-carrier' processors.

4 - Structure and behaviour of the BTMS 49

4 Structure and behaviour of the BTMS

4.1 The components
Chapter 2 presents the concepts of business systems and communicating informa
tion systems. The behaviour of the information system of an actor is realized by
the execution of procedures. The basic elements of procedures are steps that are
modelled by non-elementary processors. The BTMS supports the definition, the
selection, and the execution of procedures. The decomposition of the BTMS is
already shown in figure 2.11 of chapter 2. The data structures of the tokens that can
be contained in the places of the BTMS are specified in chapter 3.
We restrict ourselves in this chapter to the specification of the processors of
procedures and of the BTMS that support the execution protocol initiated by a
superior. The processors to support the other protocols can be specified in a similar
way. The structure of procedures can be different for the other protocols, e.g. a
protocol initiated by a subordinate is supported by procedures that support only the
execution of one protocol. The structure and the behaviour of the BTMS will also
be different for the other protocols, e.g. the Message Handler has to process
'request' messages with the role of 'subordinate'.

First of all, we specify the Procedure Designer (section 4.2). Secondly, we specify
the steps of procedures (section 4.3). The other sections give a specification of the
other components of the BTMS:

section 4.4: the Exception Handler.
section 4.5: the Procedure Selector.

At the end of this chapter we will present some conclusions with respect to the
verification and validation of the specification, the realization and the implemen
tation, and the visualization of protocols (section 4.6).

A detailed specification of the Message Handler and the Procedure Interpreter is
not described in this monograph. The functionality of the Message Handler is
briefly discussed in section 2.4.3. The Procedure Interpreter has to execute one or
more procedures, whereas one procedure can be executed for one or more incoming
transactions. If the Procedure Interpreter can consume a token, it selects a procedure
from the 'selected procedure' place. The token is offered at one or more connectors
of the procedure and zero, one, or more processors of the procedure are executed.
Functionality of the Procedure Interpreter to execute one procedure at a time is
already implemented by the software product called ExSpect (Executable Specifi-

50 4 - Structure and behaviour of the BTMS

cation Tool, ExSpect (1990), Van der Aalst (1992). and Van Hee (1994». Therefore,
we will not specify the Procedure Interpreter in more detail.

In this monograph, we present a specification of the components of the BTMS and
the steps of a procedure in structured English. Each processor is specified by a pre
condition and a post condition. A pre condition specifies the conditions under which
a processor fires and a post condition specifies the result of firing. Pre conditions
are printed in italics, whereas post conditions are printed in a normal font (Times
Roman).
We will specify the pre and post conditions of the elementary processors of the
initiation processor in more detail than we will specify the pre and post conditions
of the other processors. The specification that we give can be translated in a formal
specification language like Z (Spivey, 1988).

4.2 The Procedure Designer
We make a distinction between two types of procedures: a normal procedure and
a rollback procedure (we will use 'procedure' to refer to 'normal procedure' in this
monograph). A rollback procedure supports the rollback of the actions of a service.
The Procedure Designer supports a person in the design of procedures for a specific
service by selecting and structuring the steps of that procedure. Both a service and
a procedure are Petri nets. Figure 2.7 shows an example of a Petri net of a service,
whereas figure 2.12 shows the corresponding procedure. The basic functionality
of the Procedure Designer is the transformation of a Petri net that represents a
service into a Petri net that represents a procedure.
The decomposition of the Procedure Designer is shown in figure 4.1.

person

services

procedures

steps

transfor
mation

steps

Figure 4.1: Decomposition of the Procedure Designer

person

Procedure Designer

procedures

The labels of the connectors of the Procedure Designer represent the name of the
place to which they are connected. The data structure of the tokens that can be
contained in place q is identical to the structure of the tokens that can be contained
in the place 'procedures'.

4 - Structure and behaviour of the BTMS 51

The data structure of the tokens that can be contained in place p is identical to the
data structure of a service extended with one or more additional attributes per task.
Each of these attributes consists of a sequence number that identifies a leaf in a
tree, has a reference to a step to be used in a procedure, and has a reference to a
node in a tree. The tree represents a sequence of steps in a procedure. The nodes
are aggregations of the tasks of a service. Each node has a sequence number and a
reference to a higher parent node, with the exception of the root of a tree. The root
does not have a sequence number nor a reference to another node. The steps that
are referred to by leaves that are children of the same node can be executed in
parallel in a procedure if these leaves have the same sequence number. If leaves
that are children of the same nodes have a different sequence number, the steps can
be executed in sequence in a procedure.

An example. Figure 4.2 shows a service. The tasks of the service can be aggregated.
At the highest level of aggregation, a sequence number is given by a person to the
aggregated tasks. Subsequently, the sequence number is given to all tasks of an
aggregated task, and a person assigns a reference to a step of each task. The value
of the sequence number and the corresponding tree are shown in figure 4.2. The
sequence number is shown in brackets behind a character that identifies a task. The
reference to a parent node is given by the structure of the tree. The reference to a
step is not shown. Furthermore, the places between the processes are not shown.

start servi end service

Figure 4.2: An example of a service and its tree

52 4 - Structure and behaviour of the BTMS

The tree structure is only presented in figure 4.2 to show the hierarchy of the leaves.
A token with a tree structure is never available as a token in the Procedure Designer.
In the example, nodes or leaves that have identical parents can have identical or
different sequence numbers. For instance, leaves h, m, and n have the same
sequence number. Therefore, their corresponding steps can be executed in parallel.
The leaf g and the node h have different sequence numbers, which means that their
corresponding steps can be executed consecutively.

The begin processor of figure 4.1 is to support a person in setting up a procedure
in reality. This means that a sequence is determined in which the tasks of a service
have to be initiated and conflfmed in a procedure. The pre-condition for the
initiation of procedure design is a service in the place 'services' and specific
procedures are available. The service is available, because it is selected by a person.
One or more of the following combinations of pre and post conditions are valid:
• the procedure has to support the strategic level, a relation with a subordinate

actor is contractual, the initiation and the confirmation of the contract protocol
are present in the place 'steps', and each task in the procedure has received at
least one identification of a leaf and a the type of step that is to be used
a token is produced in place p

• the· procedure has to support the tactical level of a contractual relation, a
procedure to support the strategic level is present, the initiation and the confir
mation processors of the planning protocol are present in the place 'steps', and
each task in the procedure has received at least one identification of a leaf and
a the type of step that is to be used
a token is produced in place p

• the procedure is to support the operational level of a contractual relation, a
procedure to support the tactical level or a procedure to support the strategic
level is present, the initiation and the confirmation processors of the execution
protocol are present in the place 'steps', and each task in the procedure has
received at least one identification of a leaf and a the type of step that is to be
used
a token is produced in place p

• the procedure has to support the operational level of an incidental relation, the
initiation and the confirmation processors of the contract and the execution
protocol are present in the place 'steps', and each task in the procedure has
received at least one identification of a leaf and a the type of step that is to be
used
a token is produced in place p

The transformation processor has to transform a net of a service into a net of a
procedure by using the value of the attributes that are present with a task:
• there is a token available in place p, where each task has at least one value of

the attribute discussed earlier, and the steps that are referenced to by the token
in place p, are available in the 'step' place
a token is produced in place q

4 - Structure and behaviour of the BTMS 53

A token in place q can be constructed in several steps. A brief description of an
algorithm for the transformation processor is given hereafter. A procedure can be
initialized with a start and a final confirm connector that are connected via a place.
Each node in a tree can be initialized with a start and an end processor connected
via a place. If the procedure is initialized, a processor is inserted for every child of
the root of a tree between the start and the final confirm processor. If this child is
a leaf, the processor is the step that is referred to by that leaf. If this child is a node,
the node is initialized and serves as the root of a new tree. The sequence of the
processors that are inserted has been discussed earlier. The procedure that is
produced by this algorithm can be optimized further by deleting combinations of
start and end processors that have only one output and one input connector
respectively.

The completion processor is used to complete the procedure by inserting one or
more response processors, selecting confirm options, inserting the steps to support
the execution of alternative tasks, and generating a rollback procedure:

a token is present in place q, the response, the rollback, and the end-rollback
processors are present in the place 'steps " and one or more locations of the
response processor are known
two tokens are produced in the procedures place and related to the service for
which they have been designed

A person can insert a response processor to the procedure after an end processor,
after all initiation processors, or after both. It is not useful to add a response
processor in-between the confirmation processors, unless it is preceded by one or
more initiation processors.
A person may decide to send the result of the execution of a service by several
confirms. The following options are possible:
• the confirmation processor of each task produces one confirm for a superior of

an incoming transaction after having completed its execution;
• all confirms that are received from a subordinate are reproduced for a superior

of an incoming transaction by the confirmation processors;
• the confirmation processor of the first task in the service produces one confirm

for a superior of an incoming transaction after having completed its execution.
The initiation processor of an alternati ve task is connected to the same output places
in which the initiation processor of the task can produce a token. An initiation
processor of a task can produce a token that can be consumed by the initiation
processor of an alternative task. An initiation processor can also produce a token
that can be consumed by the confirmation processor of the same task. The
confirmation processor of the alternative task can consume a token from and
produce a token in the same place out of which and in which respectively the
confirmation processor of the task can consume and produce a token.

A rollback procedure is generated on basis of the previously designed procedure.
A rollback procedure is initialized with the 'start' and the 'end-rollback' processor.
Per subordinate that can execute a task of a service, a 'rollback' processor is inserted

54 4 - Structure and behaviour of the B1MS

between the 'start' and the 'end-rollback' processor. These 'rollback' processors
can be executed at the same time (the 'start' processor is able to produce a token
in the input place of each 'rollback' processor). A 'rollback' processor can produce
a token in either a 'reject' or a 'confirm' place that serve as the input places of the
'end-rollback' processor. An example of the structure of a 'rollback' procedure that
can support the rollback of the execution of two tasks is shown in figure 4.3.

IT rs

Figure 4.3: An example of a rollback procedure

An example. We will illustrate the design of the procedure that is shown in section
2.4.4. We will show the value of the tokens for a given service in place p and q and
the output of the Procedure Designer in the place 'procedures'. Figure 4.4 shows
the service and the tree that is constructed by a person via the begin processor.

Rotterdam ~~eans J" } ~
Maasl~l!:!pr::e-{;::.:a:rr::...J' __ ""'~~Sh.line 1~_ on-{;arr·~Monroe.

~~Sh. line 2y LA

Figure 4.4: Service and the tree of that service

4 - Structure and behaviour of the BTMS 55

The tree shown in figure 4.4 can be read as follows. Initiate first of all sea transport
by shipping line 1. Secondly, initiate pre- and on-carriage. Thirdly, wait for
confinuation of pre-carriage and sea transport and send an update of the initiation
to the actor executing on-carriage. Finally, wait for the confinuation of the
on-carriage.
Figure 4.5 shows the value of the token in place q that is generated on the basis of
the tree shown in figure 4.4. Each processor of a procedure and a rollback procedure
has a connector to a store. This store and these connectors are not shown in this
section. Furthermore, all connectors of the initiation and the confirmation processor
are specified in section 4.3. We do not show all connectors in this section.

Figure 4.5: The value of the token in place q generated on basis of the value of the input token of
figure 4.4

The value of the token that is produced by the completion processor depends on
the decision made by a person and is determined by the alternative tasks. In this
example, we assume that a person inserts a response processor in the structure of
the procedure after the initiation processors of the pre-carriage and the on-carriage.
The value of the token that is produced by the completion processor is shown in
figure 4.6.

Figure 4.6: The procedure of the service shown in figure 4.5

56 4 • Structure and behaviour of the B1MS

As one may see, the example of a procedure shown at the end of chapter 2 is
simplified with respect to the example given here. The start and the end processors
are not shown in chapter 2.

4.3 The steps supporting the execution protocol

4.3.1 High level Petri net of the initiation and the confirmation processor
As we have explained in section 4.2, the initiation and the confirmation processor
that support the execution of a transaction of a specific task, are connected to each
other via places and have connectors to the environment and to other initiation and
confirmation processors in a procedure. Figure 4.7 shows the high level Petri net
of the initiation and the confirmation processor of the superior initiated execution
protocoL The names that are given to each connector, identify the places to which
these connectors are connected. The initiation and the confirmation processors are
decomposed further in subsection 4.3.2 and 4.3.3 respectively.

trigger
initiation ---to-I

trigger
confirm

request response trigger pernon sup update rollback
person request request

initiation processor

confirmation processor

environment

initiation
1---- complete

1--__ altemative
action

1--__ complete
1-___ confirm

enabled

environment

response exc. trigger result request excepfion confirm sup trigger update
(exc.) handler person response confirm sup update request

Figure 4.7: High level Petri net of the initiation and the confirmation processor

The places identified as 'request', 'response', 'exception', and 'confirmation' can
contain tokens with the message data structure of the corresponding message type.
The place identified as 'trigger initiation' can contain tokens with the data type
identifying an incoming transaction. All other places can contain a token with the
data type identifying an incoming transaction and an outgoing transaction.

4 - Structure and behaviour of the BTMS 57

The places identified as 'trigger initiation', 'initiation complete', 'alternative
action', 'confirm enabled', and 'complete' are connected to other processors of a
procedure at procedure design. The 'confirm enabled' place is connected to the
final confirm processor. The Exception Handler and a person have input connectors
with the 'person' and the 'result' place. The Exception Handler has output connec
tors to the places 'rollback request', 'response (exc.)', and 'exc. handler'. A person
has also input connectors to the 'trigger person' place. The Procedure Selector (see
figure 2.11) is the environment that produces tokens in the other places of the
initiation and the confirmation processor. The tokens that are produced in the
remaining places of an initiation or a confirmation processor can be consumed by
the composite place called 'network' (see figure 2.10).

4.3.2 Decomposition of the initiation processor
The functionality that is specified in this section, is based on message tokens
produced by a superior that contain only information concerning one activity. An
incoming message token can also contain information concerning actions of an
activity. The specification can be easily adjusted to support both the processing of
an activity and one or more actions in message tokens produced by a superior. A
processor of the initiation processor can only fire if the attribute 'rollback' has the
value 'false'.
The structure of an initiation processor is shown in figure 4.8.

req. enable
update update

I---fl'" enable update request

update request request

trigger initiation

::n~-..,,~1Jo<i e rollback request
triggar person

response

12345671

Figure 4.8: Structure of an initiation processor

58 4 - Structure and behaviour of the B1MS

One token can be left in the place 'enable update request', after the transaction has
been completed. The confirmation processor can have produced a token in the
'complete' and the 'confirm enabled' place already, whereas the initiation processor
is still trying to send an update to a request. This request can never be send. It will
be consumed by a local error detection process that does not communicate with
another information system.

Instances of the 'required' and the 'object' entity and functions between these
instances have to be computed by an initiation processor. It concerns the compu
tation of the value of the 'required time' attribute of the instances of the 'required'
entity, the function of the 'required' entity to the 'place' entity, and the instances of
the 'object' entity (figure 3.4). This computation is supported by several processors
of the initiation processor. Therefore, we specify it once. We first specify the
computation for the values of the 'required time' ,secondly for the function between
the 'required' and the 'place' entity, and finally for the instances of the 'object'
entity.

There are several firing rules for performing this computation. The condition for
firing is printed in italic and we will identify each condition by a character and a
digit. If a condition is decomposed, a digit is added (e.g. condition A.3.2). If a
condition is the same for the 'required time', function between 'required' and
'place' entity, and instances of 'object' entity, the condition is not repeated. It is
referred to by the character and the digit. For instance, condition B.l appears several
times. This prevents us from repeating the condition several times.

Computation of 'required times '.
We use the 'starting time' and 'completion time' to refer to the availability time for
consumption and production respectively of objects. The required times are com
puted by one of the following firing rules:
Alf the initiation processor is the first processor of the procedure

the starting and the completion time are computed either by a backward or a
forward control concept (chapter 2).

B. If the initiation processor is preceded by one or more initiation processors and
B.l the preceding processors initiate the execution of tasks that precede the

task triggered by this particular initiation processor.
The fact that the tasks are preceding this task, is retrieved from the internal
store on basis of the structure of the service. The planned completion times
of the preceding actions are retrieved via the identifications of the outgoing
transactions of the previous actions and the one with the highest value is
the required starting time of the particular action. The required duration is
used to compute the required completion time.

B.2 the preceding processors initiate the execution of tasks that are to be
executed just after the task that is triggered by this particular processor.
This information is again retrieved via the structure of the service. The
planned starting times of the succeeding actions are retrieved via the

4 Structure and behaviour of the BTMS 59

identification of the outgoing transactions and the one with the lowest value
is the required completion time of the particular action. The required
duration is used to compute the required starting time.

B.3 the tasks of the preceding processors do not precede or succeed the task of
the initiation processor directly.
This information is again retrieved via the structure of the service. Firing
rule A is applied.

C. The initiation processor is preceded by one or more confirmation processors.
The confirmed completion times of the outgoing transactions that were executed
by these processors, are retrieved from the internal store and the one with the
highest value is assumed to be the required starting time of the incoming
transaction for this particular initiation processor. Firing rule A is applied.

Computation offunction between 'required' and 'place' entity.
The functions between the instances of the 'required' entity and the 'place' entity
are computed by one of the following firing rules. The character and the digit in
this list refer to the condition given by the same character and digit in the list given
for the computation of the times. In some cases, the condition is further refined:
A.l The task of which the execution is initiated, is the first task of the service.

The input places of the incoming transaction that are retrieved via the
identification of the incoming transaction, are the input places of the outgoing
transaction. The input places have to be places that can serve as input places
of the task of which the execution is initiated by this processor. The output
places of the outgoing transaction are the output places of the task of which
the execution is initiated by this processor.

A.2 The task of which the execution is initiated, is the final task of the service.
The output places of the incoming transaction that are retrieved via the
identification of the incoming transaction, are the output places of the out
going transaction. The output places have to be places that can serve as output
places of the task of which the execution is initiated by this processor. The
input places of the outgoing transaction are the input places of the task of
which the execution is initiated by this processor.

A.3 The tasks of which the execution is initiated, is neither the first nor the last
task of the service.
Both the input and the output places of the outgoing transaction are the input
and the output places respectively of the task of which the execution is
initiated by this processor.

B.l The input places are the output places of the preceding actions. The input
places have to be places that can serve as input places of the task of which the
execution is initiated by this processor. The output places of the outgoing
transaction are the output places of the task of which the execution is initiated
by this processor.

B.2 The output places are the input places of the succeeding actions. The output
places have to be places that can serve as output places of the task of which
the execution is initiated by this processor. The input places of the outgoing

60 4 - Structure and behaviour of the B1MS

transaction are the input places of the task of which the execution is initiated
by this processor.

B.3 Both the input and the output places of the outgoing transaction are the input
and the output places respectively of the task of which the execution is
initiated by this processor.

C. The output places of the task of which the execution is confirmed, are handled
as the input places of an incoming transaction for this particular initiation
processor. Firing rule A.I, A2, or A3 can be applied.

Computation of instances of the 'object' entity.
The instances of the 'object' entity are computed by one of the following firing
rules. The reference to the condition is the same as before:
Al The input objects of the incoming transaction are the input objects of the

outgoing transaction. The instance of the 'required' entity that contains the
required starting time and the input places, receives a function with the input
objects of the incoming transaction. These objects must be of a type that can
be present in the input places of the task of which the execution is initiated
by this processor. The output objects are computed on basis of the firing rule
of the task of which the execution is initiated.

A2 The output objects of the incoming transaction are the output objects of the
outgoing transaction. The instance of the 'required' entity that contains the
required completion time and the output places, receives a function with the
output objects of the incoming transaction. These objects must be of a type
that can be present in the output places of the task of which the execution is
initiated by this processor. The input objects are computed on basis of the
firing rule of the task of which the execution is initiated.

A3 This option is only valid if, at the design of the service, one of the following
options is selected:
A. 3. 1 the action of the initiation processor is part of the incoming trans

action.
Firing rule Al is applied if the incoming transaction has a function
between the 'required' entity for the input to the action. Firing rule
A2 is applied if the incoming transaction has a function between
the 'required' entity for the output of the action.

A.3.2 all preceding tasks are of the type 'movement' and the action of this
initiation processor has to consume all input objects of the incoming
transaction.
Firing rule Al is applied.

A.3.3 all succeeding tasks are of the type 'movement' and the action of
this initiation processor has to produce all output objects of the
incoming transaction.
Firing rule A2 is applied.

B.1 The input objects are the union of the output objects in a particular output
place of the preceding tasks.

4 - Structure and behaviour of the BTMS 61

B.2 The output objects are the union of the input objects in a particular input place
of the succeeding tasks.

B.3 This option is identical to firing rule A3.
C. The union of the output objects of the task of which the execution is

confirmed, is seen as the input objects of an incoming transaction for this
particular initiation processor. Firing rule AI, A2, or A3 is applied.

The behaviour of each processor of an initiation processor is specified as:
processor a
Processor a consumes a token from the 'trigger initiation' place.
One of the options listed before for the computation of the estimated times, the
places, and the objects is executed and an instance of a 'transaction' and an
'action' entity is inserted in the internal store. The 'action' entity has a function
to the task to which the initiation processor of the procedure has a function. An
identification of the transaction is generated and a 'sup' function is inserted from
the new instance of the 'transaction' entity to the instance of the 'actor' entity
that has a 'sub' function with the incoming transaction. A 'sub' function is
inserted from the instance of the 'transaction' entity of the outgoing transaction
to the instance of the 'actor' entity that has a function with the task selected by
the function of the executed initiation processor. The value of the attributes
'request sequence', 'response sequence' , and 'confirm sequence' of the instance
of the 'transaction' entity of the outgoing transaction is set to zero.
The 'retransmission count' of the outgoing transaction in the store 'retrans
mission count' is set to zero. The availability time of the outgoing transaction is
set to the current time.

• processor b
Processor b consumes a token from the 'trigger person' place.
The token contains an instance of an outgoing transaction. The identification of
the outgoing transaction is used to retrieve the value of the retransmission count
from the 'retransmission count' store. One ofthe following cases occurs:
· if the value of the retransmission count is 0

the consumed token at the trigger person connector is deleted (the first request
is not yet send)

· if the retransmission count is not yet present
the consumed token is also deleted

· if there is a retransmission count with a value that is greater than 0 and a
token is present in place t for the outgoing transaction
those attributes of the token that is consumed at the trigger person connector
and have a value, overwrite the value of the attributes of the instances of the
entities that are part of the complex 'transaction' of the outgoing transaction
in the internal store

In all cases, the value of the retransmission count is set to zero and the availability
time is set to the current time.

62 4 Structure and behaviour of the BTMS

. processor c
Processor c consumes a token from place q and place r if the transaction
identification of the outgoing transaction in place r is identical to a transaction
identification in place q and both transaction identifications are identical to a
transaction identification in place t.
The instance of the 'required' entity of the outgoing transaction that is selected
by the transaction identification in the internal store, is updated according to the
rules that are executed by processor a. The value of the retransmission count
selected by the transaction identification in the 'retransmission count' store is
set to zero. The availability time is set to the current time.

. processor d
The 'retransmission count' store contains a token of which the availability time
is equal to the current time, the value of the retransmission count is less than the
maximum allowed value, and place t contains a token that is selected by the
transaction identification of the token in the 'retransmission count' store.
The result is:
• the value of the attribute 'request sequence' of the selected instance of the

'transaction' entity is increased with one;
• a token is produced in the 'request' place. It consists of an instance of the

'action' entity and the instances of the 'object' entity that have a function with
the instance of the 'transaction' entity selected by the transaction identification
of the token in place t. The instances of the 'action' and the 'object' entity in
the token have a function with an instance of the 'message' entity. The value
of the attributes 'service/task identification', 'execution time', 'place', and
'type' of the instances of the 'action' and the 'object' entity of the 'message'
entity are copied from the functions that these instances have in the internal
store. The value of the attributes 'time' and 'place' of the instances of the
'availability' entity of the message token are the value of the attributes 'time'
and 'place' respectively of the 'required' entity. The functions of the instances
ofthe 'availability' entity are copied from theinstances of the 'required' entity.
The attributes of the instance of the 'message' entity are computed as follows.
A value of the attribute 'message id' is generated. The value of the attribute
'trans id' is the value of the transaction identification. The value of the attribute
'sender' is the value of the actor identification that is identified by the
'superior' function of the selected instance of the 'transaction' entity. The
value of the attribute 'recipient' is the value of the actor identification that is
identified by the 'subordinate' function of the selected instance of the 'trans
action' entity. The value of the attribute 'role' is superior. The value of the
attribute 'my sequence' is the value of the attribute 'request sequence' of the
selected instance of the 'transaction' entity. The attribute 'your sequence' does
not have a value.

• the value of the retransmission count is increased with one;
the availability time is set to the current time increased with the retransmission
time.

4 - Structure and behaviour of the B1MS 63

processore
There is a token for a particular outgoing transaction in place t of which the
retransmission count has reached its maximum value and the retransmission
count is available again.
A token is produced in the 'rollback request' place.
processorf
A token is available in the 'response' place of which the value of the attribute
'trans id' selects an instance of a transaction in place t and a retransmission
count in the 'retransmission count' store with a value larger than zero, the value
of the attribute 'my sequence' is one higher than the value of the attribute
'response sequence' of the selected instance of the 'transaction' entity, and the
value of the attribute 'place' of each instance of the 'availability' entity of the
message token is equal to the function between each instance of the 'required'
entity that has a function with the instance of the 'object' entity identified by the
function of the instance of the 'availability' entity with an instance of the 'object'
entity of the message token. Furthermore, if the value of the attribute 'your
sequence' of the message token is equal to the value ot'the attribute 'request
sequence' of the selected instance of the 'transaction' entity to which the
instances of the 'required' entity have a function, also have instances of the
'planned' entity that have a function with these instances of the 'object' entity
and:

for all input objects: (required starting time - starting boundary) ~ planned
starting time) ~ (required starting time + starting boundary), and
for all output objects: (required completion time - completion boundary))
~ planned completion time) ~(required completion time + completion
boundary).
(The value of the starting and the completion boundary are the values of
internal parameters of processor f)

The result is:
first of all, the instances and the functions of the 'availability' entity are copied
to instances of the 'planned' entity. Secondly, the value of the attribute
'response sequence' of the selected instance of the 'transaction' entity is equal
to the value of the attribute 'my sequence' of the message token;
the starting and completion times of instances of the 'object' entity in the
response message are stored in instances of the 'planned' entity that have a
function with those instances of the 'object' entity. A token with the identifi
cation of the incoming and the outgoing transaction is produced in the
'initiation complete' and the 'ready to confirm' place. If the 'sup' place exists,
a message token is produced in the 'sup' place. The instances of the 'action',
the 'planned', and the 'object' entity and their functions of the outgoing
transaction are copied to the message token. The instance of the 'activity'
entity of the outgoing transaction is copied with a function to the instance of
the 'action' entity of the incoming transaction. The latter instance is also
copied. An instance of the 'message' entity is created with the value of the
attributes similar as specified for processor d (e.g. 'my sequence' is equal to

64 4 - Structure and behaviour of the B1MS

the 'response sequence' that is increased and the value of the 'sender' and the
'recipient' attribute are selected via the 'sub' and the 'sup' function respec
tively between the instance of the 'transaction' entity of the incoming trans
action and the 'actor' entity).
If a token is produced in the 'sup' place, the value of the attributes 'response
sequence' of the incoming transaction is increased with one and a token with
the identification of the outgoing transaction is produced in place p.

Otherwise, if the planned times are not within the boundaries
An error occurs and a token with the identification of the incoming and the
outgoing transaction is produced at the 'person' connector.
If the value of the attribute 'your sequence' of the message token is not equal to
the value of the attribute 'request sequence'
A token is produced in place t and the availability time of the token in the
'retransmission count' store identified by the identification of the outgoing
transaction is set to the current time plus the retransmission time.
If the 'places' of the message token differ from the 'required' places
An error occurs and a token is produced at the 'person' connector.

· processor g
A token is consumed from the 'request confirm' place with a transaction
identification that selects a token in place t.
The token selected in place t is produced in the 'enable confirm' place.

• processor h
All tokens are consumedfrom the 'update request' place.
These tokens are produced in the places q and r.
processori
A token is present in both place p and q with the same identification.
A token is produced in the 'request update' place with the identification of the
tokens consumed from the places p and q, the token consumed from place q is
produced in place s, and a timer is set for waiting for the enable update token
(the timer token is a data type that can contain a value of an identification of an
outgoing transaction and a waiting time).
processorj
The timer for an 'enable update' token is exceded and a token is available in
place s, that is identified by the transaction identification of the timer.
The token consumed from place s is produced in the 'enable update request'
place.

· processor k
A token with a transaction identification is available in the 'enable update' place
and a token with the same identification is present in place s.
The timer identified with the transaction identification of the token consumed
from place s, is deleted, the value of the transaction that is identified with the
transaction identification of the token consumed from place s in the internal
store, is updated with the value of the token consumed from place s according
to one of the rules given earlier, and the value of the retransmission count selected

4 - Structure and behaviour of the BTMS 65

by the transaction identification in the 'retransmission count' store is set to zero
and the availability time is set to the current time.

4.3.3 Decomposition of the confirmation processor
A confirmation processor is capable of processing incoming confirmation mess
ages. The structure of the confirmation processor is shown in figure 4.9.

request update
enable update

ready 10 confirm
trigger conlirm

update request

trigger update

trigger person

exception

response

result

person sup axe.
handl.

req. enable
confirm confirm

person

exception
processor

sup

confirm

~--_+_- update request

~--_+_-trigger update

~--_+_-Irigger person

I----_+_-exception

I-----j--response

~---+-- result

exc.
handl.

response request t •. 4 response request
(exception) (exception)

Figure 4.9: Structure of the confirmation processor

The connectors 1 to 4, shown in figure 4.9 as '1..4', are connected to the 'complete'
place, the 'confirm sup' place, the 'confirm enabled' place, and the 'exception
handler' place respectively. Tokens consumed from the 'exception' place are
produced by a person in this place. Depending on the result of the processing of
these tokens, either a response is given to the subordinate or a token is produced
in the 'exception handler' place. A processor of the confirmation processor can only
fire if the attribute 'rollback' has the value 'false'.
We distinguish between three situations for the processing of a confirm message:
• the initiation processor has requested the possibility to process an update of a

request. This situation is supported by processors a, c, and d;
• the first confirm message can be processed (the value of the attribute' confirma

tion sequence' is zero), This situation is supported by processor e;
• an update to a confirm is to be processed (the value of the attribute' confirmation

sequence' is greater than zero), This situation is supported by processor f.

66 4 Structure and behaviour of the BTMS

If processors d, e, and f process the final confinnation, a token is produced in either
the 'complete' place, the 'confinn sup' place, the 'confinn enabled' place, or a
combination of these places. The production of a token in these places is specified
by the structure of the procedure as described before. An overview of the function
ality of the processors d, e, and f is given below. There are two possibilities:
• The confirm message is the final confirm message (a confirm message is the final

confirm message, if all objects of the outgoing transaction are consumed and
produced according to the requirements and the firing rule of the task to which
the action is related).
For all objects that are present in the token consumed from place q, s, or u, an
instance of the 'confirmed' entity is constructed in the internal store with a
function to the action and the concerning object. The time and the place of the
object in the token of place q, s, or u is stored in the instance of the 'confirmed'
entity.
A token is produced in one or more of the following places: the 'complete', the
'confinn sup', and the 'confinn enabled' place.
Additionally,

the confirmed starting or completion time is not in the interval ((planned
starting or completion time starting or completion boundary) S; confirmed
starting or completion time S; (planned starting or completion time + starting
or completion boundary)).
A token is produced in the 'exception handler' place.
the value of the place of the 'confirmed' entity is not equal to the value of the
place of the 'required' entity.
A token is produced in the 'exception handler' place.

The confirm message is not the final one.
For all objects that are present in the token consumed from place q, s, or u, an
instance of the 'confinned' entity is constructed in the internal store with a
function to the action and the concerning object. The time and the place of the
object in the token of place q, s, or u is stored in the instance ofthe 'confinned'
entity.
A token is produced in place w by processors e and f and in place v by processor v.

As long as a token is in place w of the confirmation processor, an update of a request
or an exception can be processed by the update initiation and the exception
processor respectively. The behaviour of these processors is explained lateron in
this section.

The functionality of each elementary processor of a confirmation processor is
briefly specified. If two tokens are consumed from two places, they have the same
identifications.
• processor a

A token is available in place t and in the 'request update' place.
A token is produced in the 'enable update' place and in place p. Thus processor
a enables the initiation processor to process an update of a request.

4 Structure and behaviour of the BTMS 67

• processor b
A token is available in the 'trigger confirm' and the 'ready to confirm' place.
A token is produced in place t with the identification of the tokens that are
consumed.
processorc
Place p and place r contain a token and the value of the attribute 'my sequence'
of the token in place r has the value 1.
The token that is consumed from place r is duplicated to place q, and a token is
produced in the 'request confinu' place.
processord
A token is available in the 'enable confirm' place and in the places q, s, and u.
The processing is as indicated before.

• processor e
A token is available in the places r, s, t, and u and the value of the attribute 'my
sequence'is one for the token available in the places r, s, and u.
The processing is as indicated before.

• processor f
A token is available in the places w, r, s, and u, the value of the attribute 'my
sequence'is identical to the value of the attribute 'confirmation sequence' plus
one.
The processing is as indicated before and the value of the attribute' confinuation
sequence' of the outgoing transaction is increased with one.

· processor g
A token is available in the 'confirm' place.
The token is copied completely to places r, s, and u.

The decomposition of the update initiation processor is shown in figure 4.10.

update initiation processor

confirm -+---~rhJ~~~~~~~~~~E 1 .. 4
update request request

place v 1-+--------+- request

placew
trigger update

trigger person

exception
handling 2
processor

update request
response
trigger person
exception
result

l000i--+1---1---+---+---+--1-1---+- response

person sup response lace w ques

place w person person sup exc.
hand!.

Figure 4.10: Structure of the update initiation processor

68 4 • Structure and behaviour of the BTMS

Processor h of the update initiation processor can produce a result at the connectors
1 unto 4, according to the behaviour of processor d, e, and f of the confIrmation
processor (see before). The functionality of the other processors, with the exception
of processor a, is identical to processors of the initiation processor. However, the
place from which the input token is consumed, has a different name. Table 4.1 lists
the functionality of the initiation processor that is supported by the update initiation
processor. Note that a rollback is not given after the retransmission count reaches
its maximum (there is not a connector with the 'cancel' place). In that case, only a
message is given to a person.

a b

b c

c d

d e

e g

Table 4.1: Similar behaviour of processors of the initiation and the update initiation processor

Processor a can consume a token from place v of the initiation processor. If so, a
request has been given and the superior is waiting for a response. The retrans
mission count and the retransmission timer are set to their initial value (see the
specifIcation of the initiation processor).

The decomposition of the exception handling 2 processor of figure 4.10 is shown
in figure 4.11.

exception handling 2 processor
r.:1-----------+-- place p, upd. inij. proc.

result -I--~ response
(exception)

'""'""----1-- trigger person
~----+-- refransm. count

.... ---1--- update request
1-----+--- request

t;===:t== retransm. count
response

result -I------..! : ~==t=~=--w.-_l_--+-~ place w conI. proc.

exception

person

""""'--1-----++--+--+-- response
(exception)

aJ-______ -++--+ __ + response
(exception)

exc.
hand!.

e c.
and!.

person sup

place p, upd. init. proc.

Figure 4.11: Structu re of the exception handling 2 processor

4 - Structure and behaviour of the BTMS 69

The functionality of a number of processors of the exception handling 2 processor
is similar to the functionality of processors of the initiation processor (table 4.2).
However, the input and the output places have different names.

c e

b d

Table 4.2: Similar behaviour of processors of the initiation and the exception handling 2 processor

The main functionality of exception handling is given by processor a. Its function
ality is similar to the functionality of the processors ct, e, and f of the confirmation
processor. If an exception does not cause changes in the execution of an action in
comparison with the planning, the response can be given directly. Otherwise, the
exception is either handled by a person or by the Exception Handler .. At the
implementation of the confirmation processor, the choice can be made to send
exceptions either to a person or to the Exception Handler. If a person handles the
exception, the result is processed by processor b or c, depending on the state of the
execution protocol (a token with the proper identification is either in place p or in
place q of the exception handler 2 processor), and a response is given to the
exception. The result can never cause the rollback of the transaction, because the
subordinate did already start the execution of the action. It can only give changes
in times and possibly also in places.

The decomposition of the exception handling processor of figure 4.9' is shown in
figure 4.12.

trigger person

place w coni. proc.
exception

~ h."""" P"''''''''' - bl

r- update - :ja --.::: - .. J=;- initiation 2
processor

person exc. request sup placew coni
hand!.

place w conf. proc. person response
(exception)

Figure 4.12: Structure 01 the exception handling processor

place w conI. proc.
response
(exception)
update request
response
trigger person
trigger update
result

response
(exception)

. proc.

70 4 - Structure and behaviour of the B1MS

The exception handling processor consumes exception messages and produces
responses to these exceptions. The functionality of processor a and b is similar to
the functionality of processor a and b, respectively, of the exception handling
processor 2.

The decomposition of the update initiation 2 processor of figure 4.12 is shown in
figure 4.13.

update request

place p, exc. hand!. proc.
trigger update

trigger person

result

!update initiation 2 processor

request

request

response
_+-__ -f+f-t_1"~-...-"-c-------+--(eXcePtiOn)

.... -'I-+-----'~rt---+-- response

response

person sup

place P. exc. handl. proc. person person sup

place w. conf. proc.

Figure 4.13: Structure of the update initiation 2 processor

The functionality of the processors of the update initiation 2 processor is similar to
the functionality of the processors of the initiation processor (table 4.3). However,
the place from which the input token is consumed, has a different name. Note, that
a rollback is not given after the retransmission count reaches its maximum. In that
case, only a token is produced that can be consumed by a person.

,a a

b b

!c c

jd
i
d

e e

Table 4.3: Similar behaviour of processors of the initiation and update initiation 2 processor

4 - Structure and behaviour of the BTMS 71

The functionality of processor g is similar to the functionality of processor b of the
exception handling processor, with the exception of the input connectors at which
the tokens are consumed, and the output connectors, at which the tokens are
produced.

4.3.4 Decomposition of the remaining processors of procedures
The remaining processors of procedures are the 'start', the 'end', the 'response',
the 'final confirm', the 'rollback', and the 'end-rollback' processors.

The 'start' processor is an elementary processor that is able to consume an input
token and produce the same input token in one or more output places.

The 'end' processor is also an elementary processor that is able to consume one
token from each input place, whereas these tokens all have the same identification
of an incoming transaction, and produce one token in its output place with the union
of the value of the consumed tokens.

The 'response' processor is capable of consuming a token in the 'end complete I'
place and produce that same token in the 'end complete 2' place after having
produced a token in the 'sup response' place. The latter token contains the instances
of the 'activity' and the 'object' entity of the incoming transaction and their
functions. The instances of the' availability' entity are the instances of the 'planned'
entity of the first and the last actions of the activity of the incoming transaction,
that have a 'consumed' and a 'produced' function respectively with their instance
of the 'activity' entity. If there are more actions that are the first of the activity of
the incoming transaction, all instances of the 'planned' entity that have a 'con
sumed' function with these actions, are given in the token that is produced. The
same is applicable to the instances of the 'planned' entity of the last actions. An
action is the first action of an activity, if one or more instances of the 'required'
entity that has a 'consumed' function with the action, have a function to a place
that is an input place of the activity of the incoming transaction. A similar rule can
be given to identify the last actions of an activity.

complete -+--IOol
confirm enabled -+-_...1

end complete -f--fIoj
confirm enabled -+--IOol

sup confirm -t--IOol

J----+JIoo- final report

1----\:--.- final report

J----~ sub confirm

final confirm processor

Figure 4.14: Decomposition of the final confirm processor

72 4 - Structure and behaviour of the BTMS

The 'final confinu' processor is decomposed in two elementary processors and an
internal place (figure 4.14).

Depending on the structure of a procedure, a 'final confirm' processor has either
an 'end complete' or a 'complete' place. If a token is available in one of these places
and a token can be consumed from all 'confirm enabled' places, a token is produced
in the 'final report' place. The value of the token is specified in the same way as
the value of the token that is produced by the 'response' processor in the 'sup
response' place.

The structure of the 'rollback' processor is shown in figure 4.15.

initiate rollback -+--.j 1--------+--- rollback request

1--------+--100- person

1-01----'--'------1-- rollback response

rollback processor

reject confirm

Figure 4.15: Structure of the 'rollback' processor

All tokens that can be consumed and produced by processors a and b of the
'rollback' processor contain at.}east the transaction identification of the action that
is to be rolled back. On the consumption of a token from the 'initiate rollback'
place, a token is produced in place p and a timer is set with a retransmission time
equal to the current time and a retransmission count equal to zero. If the value of
the retransmission time is equal to the current time and the retransmission count is
not equal to a maximum, processor c produces a token in the 'rollback request'
place. Furthermore, processor c sets the value of the retransmission time to the
current time increased with the waiting time and increases the retransmission count
with one. Processor b fires if it can consume a token from the 'rollback response'
place that identifies a token in place p. If the rollback is confinued, processor b
produces a token in the 'confirm' place. Otherwise, processor b produces a token
in the 'reject' place.

The structure of the 'end-rollback' processor is shown in figure 4.16.

4 - Structure and behaviour of the BTMS

rs(sup) rc(sup)

confirm

reject
confirm
rc(sup) -1--.

reject -I-----illl-l

t---I--I'- re (sub)

--------+_ error
--------+- re (sub)

end-rollback processor

rs(sup)

Figure 4.16: Structure of the 'end-rollback' processor

73

As soon as processor c can consume a token from the 'reject' place, a token is
produced in the 'rs(sup)' place with a rejection of the rollback_ Furthermore,
processor c produces a token in place q with an availability time that is the
retransmission count times the retransmission time. Processor c sets the value of
the 'rollback' attribute of the incoming transaction to 'false'. This allows all other
subordinates to reject or to confirm the rollback within the agreed time. If the token
in place p is available to processor b, that processor is able to consume all remaining
tokens from the 'confirm' or 'reject' place that refer to the incoming transaction. If
the number of tokens consumed by processor b at these two connectors is not equal
to the number of outgoing transactions, that were rolled back, minus one, a token
is produced in the 'error' place. Processor a can only fire if it is capable of
consuming a given number of tokens from each 'confirm' place. The number is
equal to the number of outgoing transactions that is to be rolled back. After firing,
processor a has produced a token in the 'rs(sup)' place with a confirm of the
rollback, and a token in place p. Processor d waits for the confirm of the rollback
by the superior (a token is available in the 'rc(sup)' place), produces a confirm of
the rollback to each subordinate that had confirmed the rollback, and consumes the
identification of the incoming transaction and the identification of all its outstand
ing outgoing transactions from the 'normal' procedure. The token in place p
contains the identifications of all outgoing transaction that have confirmed the
rollback.

4.4 The Exception Handler
The Exception Handler can be triggered by tokens that are produced by:

a superior. These tokens are messages of the type 'rollback request'; or
an initiation processor. These tokens are produced when the retransmission count
reaches its maximum value and the retransmission timer is expired; or

74 4 - Structure and behaviour of the BTMS

• a confirmation processor. These tokens are produced if the confinned times are
not within the boundaries of the planning, the confinned places are not the
required places, an exception is reported by a subordinate and the planned times
are not in the boundaries, or an exception is reported by a subordinate and the
planned places are not equal to the required places.

These three cases are specified separately.

A 'rollback request' token of a superior either triggers a rejection or selects the
'rollback' procedure for execution. The structure shown in figure 4.17 supports the
processing of a 'rollback request' token.

rr(sup)

selected
procedures

rc(sup) ----I~

rs(sup)

Figure 4.17: Structure 10 process a superior rollback request

If processor a consumes a token from the 'rr(sup)' place, the 'nonnal' procedure
that is identified via the identification of the incoming transaction and is in
execution, is inspected. If a token is in one of the 'confinn enabled' places of the
procedure and the token has an identification of an outgoing transaction referring
to the particular incoming transaction, processor a produces a token in place p and
in the 'rs(sup)' place. The latter token contains the rejection of the rollback.
If there is not a token in one of the 'confinn enabled' places and one of the
'confirmation' processors has a token either in place w, in place p of the 'update
initiation' processor, in the place p or q of the 'execution handling 2' processor, in
place p of the 'exception handling' processor, or in places p or q of the 'update
initiation 2; processor and th~ token has an identification of an outgoing transaction
referring to the particular incoming transaction, processor a produces a token in
place p and in the 'rs(sup)' place.
Otherwise, the value of the 'rollback' attribute of the incoming transaction is set to
'true', the 'rollback' procedure is selected for execution, and the identification of
the incoming transaction is offered to the 'start' processor of the 'rollback' proce
dure.
The 'rollback' procedure contains a 'rollback' processor to support the rollback of
the execution of each task of the service supported by the 'normal' procedure.
However, only those tasks are to be rolled back, of which the execution is already

4 - Structure and behaviour of the BTMS 75

initiated. These task can be selected by querying the places p and t of the 'initiation'
processors and place t of the 'confirmation' processors. If these places contain a
transaction identification of an outgoing transaction with a reference to the incom
ing transaction that is to be rolled back, those outgoing transactions have to be
rolled back. Therefore, the 'rollback' procedure of the selected service is duplicated
from the 'procedures' store to the 'selected procedures' place. Those outgoing
connectors of the 'start' processor of the 'rollback' procedure are removed, that are
connected to a place out of which a 'rollback' processor that is not to be executed,
can consume a token. The number of outgoing transactions of which a confirm or
reject is to be received, is entered as the value of an internal parameter of the
processors a and c of the 'end-rollback' processor.

If the 'initiation' processor produces a token in the 'rollback request' place, this
token can be consumed by the following net.

~------- rr(sub)

~----------~pereon

~-----------re(sub)
1",411----------_ .. rc(sub)

Figure 4.18: Net structure for processing a cancel request of a subordinate

The firing of these processor is identical to the behaviour of the processors of the
'rollback' processor with the exception of processor b (section 4.3). We will not
specify them in further detail.

If the 'confirmation' processor produces a token in the 'exception handler' place,
two situations occur that are processed by the same net structure. The situations
are:
• there is a difference in confirmed and required times and places;
• there is a difference in planned and required times and places.

selecled
procedures

exe. hand!. -----4~ a 1---.... exception
(conf.) person

response _---j b 1------400- person

(coni.) ~ ~=~~~n)
t

selected
procedures

Figure 4.19: Net structure for processing an exception of a confirmation processor

76 4 - Structure and behaviour of the BTMS

We specify only the processing for the differences in the confirmed and the required
times and places. The processing of the differences in the planned and the required
times and places is basically the same. An exception is in the rollback.
If processor a consumes a token from the 'exception handler (conf.)' place, two or
bothe options are possible:
• There is a difference in completion times.

In this case, the planned completion time of the incoming transaction is com
puted on the basis of the duration of the other tasks. The planned completion
times of the incoming transaction is the planned completion time of the concern
ing task plus the duration of the succeeding tasks. The latter duration is the
summation of the maximum duration of each sequential task succeeding the
concerning task. If the planned completion time of the incoming transaction is
within a defined boundary and the next tasks in sequence did not yet confirm
their execution, the changes in the completion time has to be exchanged with
actors that execute the remaining tasks of the service. If the planned completion
time of the incoming transaction is not within the defined boundary, a token is
produced in the 'exception' place.

• There is a difference in places.
This can only be a difference in output places. In this case, the execution of the
succeeding tasks that are already initiated, is to be rolled back and a token is
produced in the 'person' place. The 'rollback' procedure is duplicated in the
'selected procedures' place. Those outgoing connectors of the 'start' processor
of the 'rollback' procedure are removed, that are connected to a place out of
which a 'rollback' processor that is not to be executed, can consume a token.
The number of outgoing transactions of which a confirm or reject is to be
received, is entered as the value of an internal parameter of the processors a and
c of the 'end-rollback' processor.

4.5 The Procedure Selector
The Procedure Selector is able to consume message tokens with the value of the
attribute 'message type' being 'request' and the value of the attribute 'role' being
'superior' . We make a distinction between processing first request messages (value
of the attribute 'my sequence' is one) and updates to this first request message
(value of the attribute 'my sequence' is greater than one).

First request message.
In case of a first request message, a procedure is to be selected from the internal
store. The instance of the 'activity' entity of the request becomes a function with a
service that is identified by the value of the attribute 'service/task identification'.
In a similar way, the instances of the 'availability' and the 'object' entity become
a function with instances of the 'place' and the 'object type' entity respectively
(instances of the 'availability' entity become instances of the 'required' entity). The
instances of the 'service' entity selected by instances of the 'activity' entity in the

4 Structure and behaviour of the ElMS 77

request message that have a function with another instance of the 'activity' entity
(the 'main-activity'), must have a function with another instance of the 'service'
entity that is selected by the 'main-activity'. If this is not the case, a cancel confirm
token is produced with the superior as a recipient. Also, a new instance of the
'transaction' entity is created with a 'sup' and a 'sub' function to instances of the
'actor' entity. The 'sup' function must be with that instance of the 'actor' entity,
that has a function from the instance of the 'service' entity selected by the
'main-activity'. The value of the attribute 'request sequence' is set to one. Only one
procedure has a function with the selected instance of the 'service' entity of the
'main-activity'. If that procedure is not in the place 'selected procedures', it is
copied to this place together with all the information of the incoming transaction
and the selected instances of the 'service' entity. A procedure is not in the place
'selected procedures', if that place does not contain a token with a processor that
has an identification of the selected procedure. A token with the identification of
the incoming transaction is produced in a place of the procedure that is connected
to the first processor of that procedure. The latter action is executed as soon as a
procedure is in the place 'selected procedures'. The Procedure Interpreter will
execute the procedure.

Updates of request messages
Updates of request me.>sages are tokens of which the value of the attribute 'my
sequence' is greater than one. The value of this attribute has to be equal to the value
of the attribute 'request sequence' of the incoming transaction incremented with
one. Furthermore, the 'sup' and the 'sub' functions of the instance of the 'transac
tion' entity selected by the transaction identification of the request message in the
internal store have to be equal to the value of the attributes 'sender' and 'recipient'
respectively, and the value of the attribute 'rollback' of the incoming transaction
has to be 'false'.
First of all, a procedure is selected as described before. Secondly, the following
conditions have to be met:

the selected procedure must have a function with an instance of the 'service'
entity that is selected by the 'main-activity' of the incoming transaction;

• the input and the output places of the 'main-activity' of the incoming request
have to be identical to those of the incoming transaction in the internal store;

• the instances of the 'object' entity of the request have to be identical to the
instances of the 'object' entity in the internal store;

• the completion times minus the starting time of the request has to be greater than
or equal to the duration of the instance of the 'service' entity that is selected by
the 'main-activity';

• if the request contains actions that are already present in the internal store with
a function to the 'main-activity', the input and the output places, the instances
of the 'object' entities, and the difference between completion and starting time
is checked.

If these conditions are met, the starting and the completion time of the instances of
the 'required' entity with a function to the 'main-activity' and the actions are

78 4 - Structure and behaviour of the BIMS

updated. If the request contains actions that are not yet present in the internal store,
those actions, their object instances, and the availability instances of these object
instances are inserted in the internal store.
If one of these conditions is not met, an error occurs. The following actions are
taken:
• different procedure selected: the 'old' procedure is rolled back and the 'new'

procedure is activated. The 'old' procedure can only be rolled back if the
confirmation processors in the procedure either do not contain a token or have
a token in place t, and the confirmation processors that do not contain a token,
have not yet produced a token in the 'confirm enabled' place of the 'confirma
tion' processor. Otherwise, the 'old' procedure cannot be cancelled and a person
has to get in touch with the superior;

• different places: the 'confirmation' processors of the procedure are inspected. If
the condition of cancellation of the 'old' procedure given under the error
'different procedure' is met, the incoming transaction is updated and a token with
the identification of the incoming transaction is put in a place of the processor
that is connected to the first processor of that procedure. If the condition is not
met, a person has to contact the superior to solve the error;

• different duration: the selected service is not capable of supporting the required
activity. Another service between the same input and output places with the
proper duration is to be selected. If such a service is not available, a person has
to handle the error;
differences in the actions: the above mentioned solutions are given for the places
and the duration of the action.

If updates of requests have to be given, only those subordinates have to receive an
update, that have not yet completed their confirmation (they have not yet produced
a token in the 'confirm enabled' place). If none of the subordinates has completed
its confirmation, a token is offered to the start of the procedure. If one or more of
the subordinates has completed its confirmation, the following actions are invoked:
• the procedure of the selected service is completely duplicated (it receives a new

identification). Only those internal tokens of the procedure are put in the new
procedure, that contain the identification of the incoming transaction or refer to
the identification, that is to be updated;

• those connectors, that are connected to places out of which the initiation or the
confirmation processors of the outgoing transactions that have completed their
confirmation, can consume a token, are not duplicated;

· a token is offered to the start of this duplicated procedure.

4.6 Conclusion
Aspects that require further study are:
• validation

The validation of the specification of the BTMS. Validation can be carried out
by making a prototype. A prototype can be developed using tools that are

4 - Structure and behaviour of the BTMS 79

available in, for instance, a PC environment, or by using a Petri net prototyping
tool like ExSpect (Executable Specification Tool). The first type of prototype
can be presented to potential users of the software, demonstrating the function
ality. The second type of prototype can also be used to simulate the functionality.

• verification
The specification needs can be formally verified in terms of correctness and
completeness. Rambags (1993) has given an algorithm to formally verify a
specification of regular protocols (annex 1). The verification uses the concepts
of 'regular expression' and 'deterministic automaton'.

• realization and implementation
The specification can be realized either by developing software to support a
specific business system or by generating (part of) the specification. Implemen
tation is concerned with the acceptance of the functionality by persons.

Validation using ExSpect requires a more formal specification of the BTMS and
the steps of procedures. An example is given by Koop (1992).

Verification by means of an algorithm like the one presented by Rambags (1994)
requires a representation of the protocols by specifying a deterministic automaton
of the steps that support a protocol. Figure 4.20 shows a finite automaton of the
initiation and the confirmation processors that support the superior initiation
execution protocol.

r~; r=~~~:----l
I

c; confirm
ee; exception

. ep; excepijon resp.

I
, f: first

I; las!
! u: update
i sup: superior ;
! sub: subordinate I

inij: initiation processor
conI: conlirmaflon processor

, ui: update ininalion processor
, ui2: update initiation 2 processor
, eh; exception handling processor
I eh2: excepflon handling 2 processor

Figure 4.20: A state transition diagram of a finite automaton to support the superior initiation protocol

80 4 Structure and behaviour of the B1MS

The finite automaton shown in figure 4.20 is non-deterministic. It can be made
deterministic by, for instance, specifying each firing rule of a processor as a state
or by assigning a unique message type to each non-deterministic state transition.
The latter approach is most often taken in practice. The states of the finite automaton
shown in figure 4.20 are identical to the places of the initiation and the confirmation
processor, with the exception that retransrnissioning cannot be modelled by the
finite automaton and the places that are required to model the communication
between the initiation and the confirmation processor. State 1 of the state transition
diagram of figure 4.20 is part of the Petri net of a procedure.
Although we are able to transform a protocol into a deterministic automaton, the
application of a verification algorithm like the one of Rambags is subject to further
study.

Regarding realization, two considerations are of importance:
• realization versus generation;
• process approach versus data approach.

It is possible to realize the BTMS for a specific business system. Another approach
is to realize generic components that can be configured to support a specific
business system. In fact, the Transaction Protocol Designer (TPD), the Service
Designer (SD), and the Procedure Designer (PD) can be realized independently of
any business system. We have already realized a part of the Transaction Protocol
Designer in a software product call~d EDIT (1993). EDIT can support the modell
ing of messages on the basis of the concepts that we have specified, and the mapping
of these models to the EDIFACT syntax (EDI For Administration Commerce and
Transport).

The TPD, the SD, and the PD are the components that configure the BTMS. In this
way, the BTMS can also be made generic and software is generated by the TPD to
support steps in procedures. Additionally, a user interface and an interface to
in-house processors can be generated for the BTMS to improve acceptance of the
software by persons.

We have taken a process approach to the specification of the BTMS, which means
that procedures that are modelled by a Petri net are the parameters to the BTMS.
However, we could have taken also a data approach for realizing the BTMS. The
steps of a procedure can, for instance, be realized by a data structure that supports
state transition diagrams. Each time a transition can be executed, a process will be
executed. The internal data model as shown in figure 3.4 is extended with an
attribute 'state' of a transaction. A functional data model of a state transition
diagram is shown in figure 4.21.

4 - Structure and behaviour of the BlMS 81

I I

(B
Iram I to

I I

message ~ _ transi- }----..-.J
type! tion ____ ..

Figure 4.21: Data structure of a state transition diagram

As a transaction is in a certain state, a message type can trigger a transition that has
a function with a process. To be deterministic, each transition must uniquely
identify the 'from' and the 'to' state and the message type. A data structure of a
procedure can be given by a set or rules similar to a script in Workflow Systems
(Ellis and Nutt, 1992). A rule can activate a certain outgoing transaction, can wait
for the result of the initiation and the confirmation respectively of an outgoing
transaction, and can send a response and a final confirm.

Implementation aspects of the BTMS are related to the acceptance of the function
ality by persons. The acceptance has to do with, for instance, the (presentation of
the) functionality, the flexibility that is offered, and the costs of the software.
Acceptance may be improved by offering different software products that help to
solve specific problems of actors. Examples of such products are, for instance, the
automatic handling of routine transactions and the ability to interface different
in-house processors with each other. We believe that the costs of the software can
be less than the costs of conventional soft\\1are, because the software can be easily
adapted to different business systems and different business processes.
Implementation aspects of the other components are related to the actors that
provide the configuration services of the BTMS. One may distinguish actors that
develop messages and actors that support business process (re-)engineering. A
distinction can be made between management domains as discussed in the Open
EDI Reference Model (ISO, 1993). To be able to support these management
domains, the configuration software products have to communicate with each other.

5 - Extemallogistics 83

5 External logistics

5.1 Introduction
In the previous chapters we have presented the concepts of interorganizational
systems and have given a specification of the components of the information system
and the steps of procedures. The concepts can be applied to various business
systems and the information system can support procedures of several business
systems. The selection of a procedure by the BTMS and the steps of procedures
can be made specific to a particular business system. This chapter describes the
application of the concepts and the information system to external logistics. First
of all, an example of external logistics is presented in section 5.2. This example
will be used to clarify the concepts of external logistics that are given in section
5.3. Section 5.3 also models the concepts of external logistics. Section 5.4 specifies
the interorganizational information system to support external logistics and in
section 5.5 the modelling is applied to the example of section 5.2. Finally, section
5.6 discusses the application of the concepts in general.

5.2 An example of external logistics
COSY (Computer Supply) is a non existing world-wide supplier of computers,
instruments, and medical equipment. COSY has a number of production units all
over the world, national sales offices, and three warehouses. The warehouses serve
as the inventory function for products that are to be delivered to customers located
in a certain continent, Europe, Asia, etc. They have separate organizational units
that control the stock level, co-ordinate the delivery to the warehouse, and sell to
customers. The products of COSY are subdivided in four groups. The logistics and
the information exchange is different for each group. We will specify the logistics
of printers and PC (Personal Computer) configurations in detail. The other groups
are briefly described. COSY can make a distinction between different packaging
types, e.g. small boxes for the spare parts and larger boxes for the computers. The
logistics are specified as follows:
• printers and PC configurations

Printers and screens for PCs are produced by two production units, one of them
in North America and the other in Asia. They are transported from the production
units to the warehouses and are stored in those warehouses. The transportation
from North America to the warehouse in Europe is by air and takes at least 8
hours and at most 9 hours. Printers and screens are transported in ULDs (Uniform
Load Devices) from the production units to the warehouses. Those ULDs are

84 5 - Extemallogistics

stripped and their contents is stored in a warehouse.
Printers that are part of a PC configuration consist of the following parts: a laser
writer, a specific cable to connect to the computer, a diskette with fonts and
printer drivers, and a manual in a specific language. PC configurations can be
of several types, depending on the CPU (Central Processing Unit). One PC
configuration may, for example, consist of: 1 printer, 3 cables, 2 manuals, 1
keyboard, 1 mouse, 1 SVGA screen, 1 CPU (586, 66 MHz, 4Mb, 240 Mb),
MS-DOS 6.0, and MS Windows 3.1. The PC configurations are not tested before
shipping. The despatching of a complete PC configuration takes at least 15
minutes and at most 30 minutes. The transport from the warehouse to a destina
tion in one of the EC countries takes at most 24 hours. The transport to other
destinations takes at least 24 hours.
computers
The computers, and also other expensive products like medical equipment, are
produced on the basis of a customer order. They are transported either directly
to the customer or through one of the warehouses. If the delivery is through the
warehouse, the warehouse assembles the main product with other products, e.g.
special cables, a printer and its manuals, and specific manuals for the operating
system of the product. Furthermore, each installation that is sold to a customer
is tested in the warehouse during assembly.

• spare parts
The spare parts are meant for servicing the products installed at the site of a
customer. Spare parts are kept in stock in the warehouses. They are produced if
the stock is below a minimum stock level. The service people pick up the parts
they need to perform certain repairs. They order the products from the ware
house.
small parts or consumables
The small parts or consumables are products that are used by other products and
have to be replaced regularly (e.g. plotter pens). These products are kept in stock
and are produced if the stock is below a minimum stock level. On the basis of a
customer order, different parts can be delivered in one consignment to that
customer.

The logistics control of each of these product groups is different and the way of
exchanging information between the actors involved is different for each product
group. The actors involved are the organizational units of COSY, the suppliers, and
the customers. As mentioned, we will only illustrate the information exchange for
the PC configurations. We make a distinction between the supply to the warehouse
and the delivery to the final destination.
Each national sales unit of COSY receives its customer orders. These orders are
passed on to the stock control unit of a warehouse out of which the PC configura
tions are delivered to a specific location. The information that is contained in the
customer order is checked against reference information of COSY, and the follow
ing information is added to the order by the national sales organization: •

5 - Extemallogistics 85

• the details of the customer are validated against the customer reference tables
(e.g. name and address);
the details of the product are validated against !he product reference table that
contains all types of products that can be sold;

• allowances and charges that are applicable to the specific customer are added;
• other relevant reference information is added to the order.
A final check is made on the financial position of the customer and relevant contract
information is added to the order by the sales unit (e.g. restriction on delivery dates).
If these checks are positive, the delivery process can be started. The order is given
to the stock control unit, which produces an order response to the sales unit if the
amount in stock for delivery is sufficient. The stock controlling unit passes a
despatch instruction to the warehouse. After receipt of the despatching schedule, a
transport instruction is transmitted to a carrier that produces a transport plan as a
response. The transport plan can invoke updates to the despatch instruction. The
stock control unit produces a delivery schedule to the sales unit that is passed on
to the customer.
PC configurations can be delivered if there are sufficient parts in stock. If the stock
of certain parts of a PC configuration is below a certain level, extra parts have to
be supplied. The order is sent by the stock controlling unit and passed on to the
production unit that produces the parts. After production, the parts are shipped in
boxes with a unique identification number for each box. A box list shows all the
identification numbers of a shipment from the production unit to a warehouse. The
production unit sends an invoice to the stock controlling unit. The invoice is entered
in the ordering system and the forwarding system of the stock controlling unit. The
box list is used by the warehouse to accept the boxes.
The message flow or scenario for the supply and the delivery of PC configurations
through a warehouse is shown in figure 5.1. The invoices are left out in figure 5.1.

production
unit canier 1 warehouse

stock control
unit carrier 2 national sales

unit buyer

order
order

production order
1--....

order response
box list --~sponse .ICalm>o 0 r box liSt. --plm

.~

box list

Proof of Delivery
accept report

desp. instr. order response - desp. --~response -. sche<lule ... lI:1m",,-ort order -~

plan -desp. report delivery schedule -- Proof of Deliv'ill!. _ ..l1Qxlisl ~ Jll!!!very schedule
~ - - :----..

Figure 5.1: Scenario to support the supply and the delivery of PC configurations

86 5 - Extemallogistics

Figure 5.1 shows the exchange of messages if the parts are out-of-stock and a
production order is to be given to a production unit. In case there are sufficient parts
in stock, the messages to support the supply of parts are not exchanged for a specific
customer order.

5.3 Concepts of external logistics

5.3.1 A definition of external logistics
The example of COSY shows both the external logistics interorganizational busi
ness system and the interorganizational information system. The external logistics
interorganizational business systems consists for instance of transport, acceptance
of boxes in a warehouse, and despatch of the products from the warehouse by a
carrier to the customer. Other forms of the external logistics business system can
be envisaged. To be able to specify them, we need a description of external logistic
processes.
Several definitions of logistics in general are found in literature:

Bowersox (1986) defines a logistical process as a system that links an enterprise
with its customers and suppliers. A distinction is made between a requirements
information flow from customer to supplier and a value-added inventory flow
from supplier to customer. The logistical processes between supplier and cus
tomer are subdivided into purchasing, manufacturing support, and physical
distribution (figure 5.2).

value added inventory flow

requirements information flow

Figure 5.2: Logistics system according to Bowersox

• Ballou (1987) uses the term business logistics: business logistics deals with all
move and store facilities that facilitate product flow from raw material to final
consumption. as well as with the information flows that set the product in motion
for purposes of providing adequate levels of customer service at reasonable cost.
Ballou subdivides business logistics into material management and physical
distribution. Physical distribution is further subdivided in transportation, inven-

5 - Extemallogistics 87

tory maintenance, order processing, production scheduling, protective packa
ging, warehousing, materials handling, and infonnation maintenance.

• Van Goor et al. (1989) define logistics as the business function that controls the
goods flow and the related infonnation flow. Logistics comprises material
management and physical distribution, whereas physical distribution in its tum
comprises transport, groupage/degroupage, transshipping, storage, and hand
ling.

These definitions of external logistics differ from each other. Bowersox defines for
instance three subsystems (physical distribution, manufacturing support, and pur
chasing), whereas Ballou and Van Goor define two subsystems (physical distribu
tion and material management). Furthennore, Bowersox introduces an enterprise
that perfonns the subsystem, but he does not defme an enterprise. We assume that
an enterprise can have the role of both a customer in purchasing products and a
supplier in selling other products, performing manufacturing support in between
(figure 5.3). Van Goor et al. further specify material management as purchasing
and production, which is also done by Ballou. However, Ballou does not discuss
production any further, whereas Van Goor et al. do. Tilanus (1990) points out that
purchasing and physical distribution have great similarities and, therefore, may be
defined as external logistics (figure 5.3).

customer

producer customer

customer

bUSiness logistics

<III material management .. ofhys. diS,," BaliouNan Goor

purchasin~ manufact. sUIje' phys. distr. Bowersox

... ext. log. internal log... ... ext. log,. Tilanus

Figure 5.3: Definitions of logistics

At this point, we will present our definition of external and internal logistics.
External logistics is the interorganizational business system that consists of busi
ness processes mainly of the type movement (chapter 2) including handling, that
consume and produce objects of a certain type, and the interorganizational infor
mation system that stores the structure and controls the behaviour of that interor
ganizational business system.

Internal logistics is the business system with business processes of the other types
(e.g. transfonnation) consuming or producing the same object types that are

88 5 - Extemallogistics

produced or consumed respectively in external logistics, and the interorganizational
information system that stores the structure and controls the behaviour of that
business system.

Amongst others the object types define external logistics. Object types in external
logistics are, for instance, articles, container types, and packaging material. If we
define also persons as object types in external logistics, the business system is
extended.
According to these definitions, production (or manufacturing support as it is called
by Bowersox) is part of internal logistics. External logistics also includes physical
distribution and purchasing. External logistics may include the transport of cargo,
but also the handling of articles in a public warehouse (Bowersox, 1986). Based
on these definitions, the boundaries of external logistics are defined by:

generic tasks (e.g. transporting, arrival, or assembling). The same generic task
can appear in different business processes with different values of certain
parameters, e.g. transporting can be present in the business process of several
carriers with a different value of the maximum weight that can be transported;
the object types (e.g. packaging types, container types, or product types). The
object types are common to the business processes of different actors;
the actors involved.

Based on these boundaries, payment is not part of external logistics. Payment can
be modelled in a similar way as external logistics. However, a model of payment
will be based on other object types with other generic tasks and other actors
involved. Regulations (e.g. customs clearance regulations, agricultural regulations,
and port authority regulations) may have consequences for the behaviour of the
interorganizational business system, e.g. certain types of dangerous cargo are not
allowed to be transported together. Other regulations require a view of the objects
that differs from the view defined in external logistics (for instance an object in
external logistics may be split into several objects for customs clearance, depending
on the material of which the object is made, and the customs clearance procedures).
Only those regulations that influence the behaviour of external logistics are
specified with attributes in this monograph.

5.3.2 Generic tasks in external logistics
The example in section 5.2 illustrates the use of some of the generic tasks of the
business system of external logistics. For instance, transport of boxes is a task in
this example. Other tasks in the example are the storage of printers in a warehouse
and the packaging of a printer together with a manual and other products prior to
despatch to a customer. In other examples, the same tasks may occur, possibly with
different naming and different values of certain parameters. We specify the follow
ing generic tasks in external logistics:

loading
Loading is transferring objects into another larger object. Normally, the larger
object is an object that can move by itself (e.g. a vessel).

5 Extemallogistics 89

• discharging
Discharging is transferring objects from another larger object. Normally, the
larger object is an object that can move by itself.
accepting
Accepting is the arrival of objects at a certain location. The location may be a
warehouse or a transshipping location.

• storing
Storing is putting objects at a certain location. The objects are said to be in stock.
When objects are stored, they may be broken down into smaller objects.

• picking
Picking is taking objects out of a certain location. The objects can only be picked
if they are stored at the location from which they have to be picked.

• despatching
Despatching is grouping objects and putting those objects at a specific place to
have them available as a group of objects.

• handling
Handling is reshaping objects in such a way that the input objects of handling
can be obtained again out of the output objects. Examples of handling in external
logistics are assembling, packaging, and marking of articles. A large number of
synonyms is available for handling, e.g. customization, kitting, packaging,
reconditioning, and value-added services.

Please note that we define handling different from the way it is used in literature.
Normally, handling is known as those tasks that are performed in a warehouse
(Bowersox, 1986). In the example in section 5.2, handling is, for instance, the
packaging of a printer, the cables, and the proper manual before despatching.
The generic tasks are the basis for generic composite tasks. These generic compo
site tasks reflect reality and are not exclusive. Both a definition of each generic
composite task and its modelling are presented:

• transporting
Transporting is the physical movement of objects from one
location to another in an agreed period of time.

• transshipping
Transshipping is accepting objects at a location and des
patching the same objects, in principle, from the same
location.

90

• receiving
Receiving is accepting objects at a given time and storing
those objects at a location in a warehouse.

shipping
Shipping is picking objects and despatching those objects.

• supplying
Supplying is transporting objects from a location to another
location and receiving those objects at that other location.

• delivering
Delivering is shipping objects and transporting these ob
jects to another location.

warehousing
Warehousing is a specific order of accepting, storing,
picking, despatching, and handling. The order is
given by a Petri net. We call the place in-between
storing and picking a decoupling point.

5 - External logistics

A decoupling point is defined in literature as a location at which the articles or
products are not client specific (van Goor, 1989). Using timed, coloured, hierarchical
Petri nets, the articles of products still can be client specific in a decoupling point.
In principle, with a transshipping task all objects that are accepted at the same time
have to depart all at once at a different time. Therefore, transshipping is a
specialization of the combination of accepting and despatching. During transship
ment, several objects can also be grouped together in a resource like a container (a
task type that is generally known as stuffing). Resources and their contents can be
the output objects of a task. They can be separated from each other by another task
(a task that is generally known as stripping). Stuffing and stripping are known as
the tasks that are performed for grouping objects into a larger object and taking

5 Externallogistics 91

smaller objects out of a larger one respectively (e.g. the stuffing of pallets into a
container and the stripping of that container). We use the generic tasks loading and
discharging to represent stuffing and stripping respectively. However, the larger
object is not able to move by itself in case of stuffing and stripping.
Up to this part, we have defined the (composite) generic tasks that can be used to
structure business processes. We will now give the definition of a consignment as
part of the behaviour.

A consignment consists of one or more objects that are at the same time offered by
one actor to another actor for the execution of a service, and will be together at
another time the output objects of that service. Consignments are not known
between accepting and despatching.

In the example of COSY, several parts are used to make up a PC configuration.
These parts are not assembled, but are packed together. This is called consolidation
in the literature (Bowersox, 1986). There are other services that can be executed in
a warehouse. Using the definition of a consignment, we can define services like
breakbulk, consolidation, distribution assortment, in transit mixing, and manufac
turing support (Bowersox, 1986, page 239). For visualization, the figures show one
place per consignment and one task for consuming or producing a consignment. In
practice, one task may of course consume or produce many consignments.

• breakbulk
Breakbulk is accepting objects of an incoming
consignment and despatching the same objects
in two or more outgoing consignments.

• consolidation
Consolidation is accepting objects of two or
more incoming consignments and despatching
the same objects in an outgoing consignment.

• in transit mixing
In transit mixing is a combination of breakbulk
and consolidation.

• manufacturing support
Manufacturing support is accepting objects of
one or more incoming consignments and de
livering those objects in a specific sequence to
a production unit.

92 5 - Extemaiiogistics

An example of breakbulk is accepting an incoming consignment of meat that is
split into several outgoing consignments that have to be delivered to customers.

Using the generic tasks, external logistics can now be modelled by a Petri net (figure
5.4). Figure 5.4 shows a generic model of external logistics. Figure 5.4 does not
show that several incoming consignments can be combined into one outgoing
consignment, nor that one incoming consignment can be split into several outgoing
consignments. In practice this model can be applied by several actors by assigning
a value to parameters.

arehousing 1' ~==::::.¥..-L.,¢iI

Figure 5.4: A generic model of external logistics

The generic model of the interorganizational business system of external logistics
is a composite place, thus showing that external logistics can be viewed upon as a
pipeline or a 'logistical channel' according to Bowersox (1986).

Additional to the parameters of a task as specified in chapter 3, a task in external
logistics is characterized by the value of the following parameters:

minimum and maximum number, weight, and volume
These are the minimum and the maximum number, the weight, and the volume
of objects of a certain type that can be consumed or produced by a service or a
task. The value of these parameters is specific for both the input and the output
objecttypes. In case of transport and transshipment, the value of these parameters
is identical for the input and the output object types. The cost of a service or a
task can be related to the value of these parameters, e.g. parcels below 5 kilogram
have another tariff than heavier parcels for transport.
Only one of these parameters has a value for a specific task, e.g. only the
minimum and maximum weight are specified in the example of parcels below
5 kilogram.
physical characteristics and regulations
An object type may require special handling, for instance, a container is to be
stored at a certain temperature or dangerous cargo is not to be grouped with
harmless cargo. If an object of the particular type is to be produced or consumed,

5 - Extemallogistics 93

the value of temperature or a dangerous cargo identification has to be exchanged
between actors.
Regulations in countries will have impact on the mode of transport and/or the
time required for transportation. For instance, heavy transport through Switzer
land is limited by government regulations. Combinations of modes of transport
may also have to be used, e.g. huckepack transport (road vehicle transported by
a train).
Other types of regulations are for instance customs regulations and agricultural
regulations .

• cost
The cost is the amount of money that is to be paid by a superior for the execution
of a task. We will relate the cost onl y to a task. In practice, the cost can be related
to both a task and to object types. However, the costs related to object types are
the costs for consuming or producing objects of these types.
The cost will determine the resources to be used and thus, for instance, the mode
of transport to be applied, e.g. air transport will be more costly as compared with
sea transport. In relation to cost, the duration of a task is also of importance .

• season
The season of the year may influence the regions to be reached or crossed by a
means of transport, e.g. a region with mountains is difficult to cross during
winter. Therefore, the execution of a task can depend on the time of the year.

Each task is connected to at least two places: the place of acceptance and the place
of delivery. Those are the places at which the objects can be accepted or delivered
respectively. A place may be a location, a postal code range (begin and end range),
a state, a province, a region, or a country. Synonyms of place of acceptance and
place of delivery are the port ofloading and the port of discharge respectively, the
pick-up place and the delivery place respectively, and the railway station of
acceptance and the railway station of delivery respectively.
Delivery conditions like 'ex works' or 'free delivered' determine the role of actors
with respect to the interorganizational business system. They are specific to a
consignment and are not part of the structure of a business process of an actor.

5.3.3 Objects and object types in enemallogistics
In practice, the objects can have a variety of appearance in extemallogistics (see
before). Objects are for instance products, packaged cargo, containerized cargo,
and bulk cargo. Products can be packaged for transporting and transshipping in for
instance boxes, pallets, or containers. Bulk cargo is a product that is not packaged
for transporting or transshipping. Examples of products are the printers and the
computers of COSY. In general, cargo is defined as products packaged in such a
way that they facilitate (physical) transport (Royal Nedlloyd N.V., 1989). In case
the packaging material is a container, the cargo is known as containerized cargo,
otherwise it is known as packaged cargo or bulk cargo, depending on the charac
teristics of the products (Royal Nedlloyd N. V., 1989). The distinction between

94 5 - Extemallogistics

containerized and packaged cargo is made because the packaging material 'contai
ners' is owned by an actor and has to be tracked by that actor. They are identifiable
resources of that actor that can be re-used. Other packaging material like trays and
boxes are resources that can be consumed and not reproduced. These resources may
not be identifiable separately. Objects have to be transported from one place to
another by using a resource that can move autonomously (a definition of such a
resource is given in for instance Royal Nedlloyd N.V., 1989, and TDID, 1991).
Examples of these resources are a vessel and a truck. We call these resources
self-moving units. A self-moving unit can also be loaded onto another self-moving
unit, e.g. a truck can be loaded on a train. In the latter case, the truck is the cargo
of the train. Depending on the view of an actor, an object is either a resource or part
of the cargo.

We define the following object types and objects in extemallogistics:
• product type and product

A product type is an object type that can be exchanged between a buyer and a
seller. A product is an object of a certain product type. A product type is for
instance specified by its weight, description, and components. A product type is
identified by a product identification (e.g. in case of consumer products an article
number and in case of bulbs a combination of 'measure' and 'cultivar'). A
specific product is either identifiable or not, e.g. consumer products and bulbs
cannot be identified separately, whereas cars as products can be identified by
their chassis number (for other purposes, cars can be identified by their licence
plate).

• packaging type and cargo
Packaging type is an object type that can be used to facilitate transporting and
transshipping of products of a certain type or cargo of a packaging type. Cargo
is an object of a packaging type either with or without any contents. Container
types and pallet types are examples of packaging types. A specific container or
a specific pallet is cargo, although it can also be a product for the actor producing
and selling it. A packaging type can be a resource type.
Packaging types are for instance specified by their size and type (e.g. a Europal
let, a Uniform Load Device, and a twenty foot container), their (tare) weight,
their maximum gross weight, and their volume. Cargo refers to a packaging type
by the size and type. Cargo is specified by for instance the number of objects,
their weight, and their volume. A packaging type is uniquely identified by its
size and type. Cargo is either identified by the unique identifications of the
packaging material (e.g. a container number) or by other readable information
like shipping marks.
self-moving unit type and self-moving unit
A self-moving unit type is an object type that is able to move from one place to
another autonomously with or without the use of an engine. A self-moving unit
is an object of a self-moving unit type. A self-moving unit is specified by, for
instance, a size and type (e.g. a truck, a vessel, and a barge), the mode of transport
for which it can be used, the (tare) weight, the maximum gross weight, and the

5 - Extemallogistics 95

volume. A self-moving unit type is uniquely identified by its size and type. A
self-moving unit is identified by, for instance, a licence place (trucks) or a Radio
Call Sign (vessels).

In external logistics we distinguish between the time of acceptance and the time of
delivery: the time stamp of the objects at the place of acceptance is known as the
time of acceptance, the time of delivery specifies the availability time of the objects
at the place of delivery.
Objects can be packaged into other objects. We have called stuffing a task that can
perform packaging (see before). In general, not all objects can be packaged in other
objects. The following constraint can be formulated: objects can only be contained
in other objects if those objects have a larger volume, have sufficient free volume,
and if the total gross weight is less than or equal to the allowed maximum gross
weight. Additional constraints relate to, for instance, physical characteristics like
the temperature setting (reefer cargo, for which sufficient reefer facilities have to
be available) or dangerous types (e.g. chemical products may not be packaged with
flammable products). It is beyond the scope of this monograph to list all these
characteristics.

5.3.4 Actors
In this monograph, we distinguish only two roles for each actor: superior and
subordinate. In external logistics, the actor type is related to the activity to be
performed or to the regulations to be taken care of. Examples of actor types are a
shipper, a consignee, a carrier, a stevedore, a liner-agent, a forwarder, and a
warehouse operator. The actor type is usually specific to a mode of transport, e.g.
liner-agent is specific to sea transport. Each of these actor types can be mapped to
the two roles that we distinguish.
The transactions between actors can control the execution of tasks or composite
tasks, which means that a service can be identical to a (composite) task. For
instance, a principal and a warehouse operator can have a transaction for each
(composite) task that can be executed by that operator.

5.4 The interorganizational information system in external
logistics

We have presented a generic model of external logistics, the parameters that
determine the execution of a task, and the object types of external logistics. The
parameters are either related to an object (e.g. weight and physical characteristics)
or are specific to a country or area (regulations and season). The value of these
parameters is exchanged during the behaviour of a business process to select a firing
rule of a task. The parameters are modelled as attributes of the association entities
that model the input and the output connectors. For instance, the minimum and the
maximum weight specify the minimum and the maximum weight of the objects

96 5 - Extemallogistics

that can be consumed for an input connector. Because external logistic consists
mainly of movement tasks, the value of these parameters is not given at the output
connectors.
The constraints of object types (e.g. a smaller object cannot contain a larger object)
are also part of the firing rules of a task. The place of acceptance and the place of
delivery are the input place and the output place respectively. In the real world, the
place of acceptance can for instance differ from the place at which the goods have
to be loaded (normally called the pick-up place). The information concerning the
difference between the place of acceptance and the pick-up place, and between the
place of delivery and the delivery location can be exchanged between actors by
exchanging information concerning an activity and one or more actions. The time
of acceptance is the availability time for consumption of objects by a task, and the
time of delivery is the time of production of objects.

The specification of the data structures of the tokens, the process model of the
Procedure Selector, and the steps of procedures as given in the chapters 3 and 4
must be detailed to support external logistics.
The data structure of the tokens is based on the kernel of the business process data
structure. The kernel is extended by modelling the object types and the objects of
external logistics (figure 5.5).

hierarchy

Figure 5.5: Business system data structure of extemallogistics

As figure 5.5 shows, only the object types and the objects are further specialized.
The physical attributes of the objects that are relevant for the selection of a service
of the business process are shown by the attributes 'weight', 'volume', 'number',
and 'temperature'. To be able to arrange the execution of a service, actors have to

5 - Extemallogistics 97

exchange more information. Additions to the business system data structure for
arrangement of the execution are for instance:

dangerous goods
A special object type called 'dangerous goods types' and a special object called
'dangerous goods' can be added as specializations of object type and object
respectively. The 'dangerous goods types' object type models the dangerous
goods classifications of a product type. The classification is specific to a certain
mode of transport (sea, air, rail, and road).
customs procedures
A special object type called 'commodity type' and a special object called
'customs item' can be added as specializations of object type and object
respectively. The 'commodity type' object type models the commodity code of
a product type for customs purposes.
cost
The value of the objects can be of relevance to the selection of a service (see
before).
resource ownership
A relation between an actor and a packaging type can be used to store the
ownership relation of a resource.

A product type can have an association with a dangerous goods type and a
commodity type. In the interorganizational information system the dangerous
goods and the commodity type is related to cargo by the function 'belongs to' with
a product.
A resource type and a resource, e.g. a container type and a container, are modelled
as an object type and an object respectively.

The data structures of the other tokens in the BTMS and procedures to support
external logistics can be derived from the business system data structure of external
logistics (chapter 3).

The specification of the processors of the steps in chapter 4 is to be extended to
support external logistics. The value of the attributes that are specific to objects in
external logistics has to be processed. For instance, one of the conditions to check
completeness of an action or an activity is specified as follows:

Lperf. number = Lreq. number
Lperf. weights = Lreq. weights
Lperf. volumes = Lreq. volumes

This condition is part of the pre condition of, for instance, the processors d, e, and
f of the confirmation processor (section 4.3.3, figure 4.9). These conditions are
depending on the value of other parameters, e.g. when it rains, the weight of sand
in an open inland barge increases.

98 5 - External logistics

Furthermore, the conditions to select a procedure in the Procedure Selector of the
BTMS are extended with the following:
• min. numberservice :::; L number of objects related to the activity:::;

max. numberservice, and
min. wei.ghtservice :::; L weight of objects related to the activity :::;
max. welghtservice, and

• min. volumeservice :::; L volume of objects related to the activity:::;
max. volumeservice.

5.5 Modelling the example
Section 5.2 gives an example of external logistics. In this example we distinguish
between the following actor types: sales units, stock control units, warehouses,
carriers, customers, and production units. We will model the supply of parts for PC
configurations to a warehouse, the delivery of PC configurations to a customer, and
the procedures of the stock control unit for the supply of parts and the delivery of
PC configurations.

The business process of COSY can be modelled by the tasks of external logistics.
We will model the transport to the warehouse, the acceptance of computer parts by
the warehouse operator, the despatch of PC configurations, and their transport to
the final destination. The transport to the warehouse is by air transport. The
transport to the final destination is by road transport. Figure 5.6 shows the tasks for
the supply of parts to a warehouse and the delivery of PC configurations to their
final destination. Figure 5.6 does not show that the small parts and the printers can
also be used for other purposes than PC configurations. Nor does figure 5.6 show
that several warehouses are used by COSY. Furthermore, the transport from the
production units to the warehouses and from the warehouses to the customers may
be decomposed into several transporting processes that are interconnected through
a composite place for transshipping. This is also excluded from figure 5.6.

CPl.JS. screens, - ~ransportlng ~ acceptIng

small parts - ~SUpplying .n

"e5patgr-1
___ -'1, ftransporung!-- '-- :;'I'9u<atiOns

printers - ----rsupplying

manualS - --...r. supplying

Figure 5.6: External logistics of COSY for delivering PC configurations via a warehouse

5 - Extemallogistics 99

In principle, the transporting and accepting of CPUs and screens shown in figure
5.6 can also be combined to supplying. However, we decompose supplying for
these products, because we want to illustrate the value of the parameters for
transporting and accepting.
In the example of COSY, a PC configuration is for instance a product type and the
boxes are the packaging types. Other product types of COSY are printers, small
parts, computers, and spare parts. The places out of which the input objects can be
consumed by the external logistics of COSY are the production units. For instance,
CPUs and screens are consumed from a production unit in North America. The
places at which the PC configurations are produced are locations in the BC
countries. The internal place, e.g. between transporting and accepting, are places
inside the warehouse. The associations that represent the input and the output
connectors of the tasks are specified by the objects that can be consumed and
produced respectively.
The value of the parameters of the tasks and the input and the output connectors
for the supply of parts to the warehouse and the delivery of a certain PC configu
ration to the final destination is given in table 5.1.

type of service flight KLM accepting despatching 24 hours
number 123 delivery

minimum duration 8 hours 15 minutes

maximum duration 9 hours 30 minutes 30 minutes 24 hours

consumed object types ULDs 1 ULD 1 laserprinter, 3 cables, pallets, PC
2 manuals, 1 keyboard, configuration
1 mouse, 1 SVGA screen,
1 CPU (586, 66 MHz,
4Mb, 240 Mb), DOS 6.0,
Windows 3.1 (all in boxes)

produced object Iypes ULDs 10SVGA 1 PC configuration type 20 pallets
screens,
1 emply ULD

min. weight consu 25 kg
produced

max. weight consumed! 50 kg
produced

Table 5.1: The parameter values of the tasks and the connectors for COSY to deliver PC configurations

The procedure of the stock control unit of COSY to support the delivery of a certain
PC configuration in the BC is shown in figure 5.7. The procedure to support the
other tasks of COSY and the other actors involved can also be specified.

100 5 - EXfernallogisfics

initiation processor t--........ ~-tOO'j
transporting

Figure 5.7: Procedure to deliver PC configurations

The 'initiation stock control' processor is to bind sufficient objects to constitute the
required PC configuration. If there are sufficient objects, a response is given to the
sales unit and the despatch and transportation task can be initiated. Once the
responses of despatching and transporting are received, a response can be given
again to the sales unit. The contents of the messages and the business operation
transactions can be derived from the value of the object types and the characteristics
of the tasks and the service.
If there are no sufficient resources that can be bound by the initiation stock control
processor, the production is to be initiated and sufficient parts have to be supplied
to the warehouse (figure 5.1). This part of the procedure is not shown in figure 5.8.

5.6 Application in general
In this chapter, we have applied the generic concepts to external logistics by
specifying the business system in more detail. We have shown the application of

5 - Extemallogistics 101

this generic model of external logistics to a part of the business process of COSY.
In this section, we will discuss the following:
• the application of the concepts to different business systems (subsection 5.6.1);
• the application of the concepts to different business processes in a business

system (subsection 5.6.2).

5.6.1 Application to business systems
We can learn from the previous sections that the application of the concepts to
external logistics requires modelling by the following components of the business
system of external logistics:

tasks that can be executed in external logistics (e.g. loading, discharging, and
accepting);

• places for the physical locations. Places can have different names, e.g. an input
place can be called a place of acceptance and an output place a place of delivery;

• object types that can be consumed and produced by the tasks;
• parameters that determine the fIring rules of the tasks.
The ftring rules that we have modelled in external logistics are the consumption of
input objects and the production of the same objects as output objects. Therefore,
the parameters that specify the firing rules are deftning the object types that can be
consumed and produced. In other business systems, the relation between the input
and the output object types can be more complex, e.g. several steel plates, an engine,
and other object types are used to produce a car.
These rules can also be applied to other business systems. For instance, in health
care a task can be a cure, an object type can be a patient, and a place a stage in the
recovery of a patient. The parameters that determine the ftring rules of a cure, are
speciftc to that cure.
Another example is the application to ftnance. A task in ftnance is, for instance,
payment, a place is a bank account number, and money is an object type. The
parameters that determine the firing rules are for instance the minimum number of
objects that is allowed at a certain bank account number and the interest that is paid
by the bank or the customer that uses the bank account number.
In a similar way, other business systems can be specifIed. By specifying those
business systems, we also specify the steps that can be used to construct procedures
and the message data structure that is used to exchange information between actors.
We can conclude that the concepts deftned in this monograph can be applied to
different interorganizational systems.

5.6.2 Application to business processes
Within a given business system, each actor has engineered or is engineering its
business process. This includes the determination of the sequence in which the
messages can be exchanged for the supply of parts to a warehouse and the delivery
of PC configurations to a customer.

102 5 - Extemallogistics

The business process and the scenario as specified for COSY can serve as an
example to modelling the processes of other actors. In fact, certain business
processes that serve as a reference to business process (re-)engineering are given
in literature (e.g. lean production as for example specified by Womack et aI., 1991).
These business processes can be applied by many actors. They have to be made
specific to the business process of an actor. Examples of such business processes
are, for instance, the following in logistics (Bertrand, 1990):
• assemble-to-order

Assemble-to-order (figure 5.8) usually refers to the situation where one or more
product families (a product is identical to an object) exist with a considerable
variety of final products in each family. The customer is offered a variety of
choices leading to a unique identification of a desired object which is to be
assembled from standard parts. The standard parts may be available in stock or
have to be supplied by an actor. If they are available in stock, an internal
procedure may have to be started by the seller to keep the stock level above a
minimum. If there is no stock of parts, the procedure for processing a customer
order includes the supply of parts.

I control
, signal

Figure 5.8: An example of a business system modelling assemble-to-order

Figure 5.8 shows that the information system of the superior has to produce the
control signal of the last process of its business process. This control signal is
produced on using information exchanged between a buyer and a supplier.

• capacity selling (make-to-order):
In the make-to-order situation (figure 5.9), the product families and the products
have to be produced completely by a supplier on the basis of the incoming parts
of that supplier. Production and assembly is triggered by an order of a customer.
In fact, the supplier sells capaCity. Extemallogistics is an example of capacity
selling.

~~~~--L' production 

i control i signal 

Figure 5.9: An example of a business system modelling make-to·order 



5 - Extemallogistics 103 

Figure 5.9 shows that information is exchanged between a customer and a seller 
to produce the control signal of the fIrst process of the production process of the 
supplier. 

• engineer-to-order: 
In engineer-to-order, the production process (i.e. the tasks and their fIring rules) 
are known. However, the service that can be performed on the basis of the 
production process of the seller is not yet known. As part of engineer-to-order, 
the product types that are produced by a supplier have to be engineered on the 
basis of the existing production process. The rules presented in the GARM 
(General Architecture, Engineering, and Construction Reference Model) can be 
applied to specify the characteristics of the product types. As part of the request 
of a customer, the functional specifIcation can be given; as part of the response 
or confIrm, a technical solution is presented. The technical solution can be 
confirmed by the customer. Nieling (1988) describes the rules for the GARM, 
whereas N ederveen (1991) presents the application of these rules to compose a 
data model for building purposes. 

Assemble-to-order and make-to-order are modelled by a technique that can be 
mapped to timed, coloured, hierarchical Petri nets (annex 1). The distinction 
between assemble-to-order and make-to-order is vague. In practice, assemble-to
order consists of one process that produces the required products, whereas make
to-order consists of two or more processes (fIgure 5.8 and 5.9). 
The production process of engineer-to-order is similar to the production process 
shown for make-to-order. Each of these examples can be supported by a standard 
scenario and standard procedures. The message types can be specific to a scenario, 
however, they can be mapped to the message types that we have defined in chapter 
2. For instance, a box list that is exchanged between a production unit and a stock 
control unit in the example of COSY (see section 5.2) is a confIrmation of delivery. 
Thus the reference business processes, the scenarios, the message types, and the 
procedures can be mapped to our concepts. Such a reference situation has to be 
made specifIc to certain actors, which means that the business system, the scenarios, 
the message types, and the procedures have to be made specific. 
Both the generic and specifIc scenarios can be visualized by a tree. The root of the 
tree is the superior that has transactions with several subordinates. Each node is an 
actor that is both subordinate and superior and the leafs are subordinates. We will 
call such a tree a transaction tree. Two transaction trees can for instance be given 
for the example of supply and delivery of COSY. 
In a similar way, reference business processes and scenarios can be specified for 
other business systems. 

We can conclude that given a (reference) business process, the procedures, the 
steps, and the BTMS can be used to support these business processes. Once a 
business process is engineered, our concepts can be applied to the information 
system. 



6 - Other approaches 105 

6 Other approaches 

6.1 Introduction 
In the previous chapters of this monograph, we have presented a conceptual 
approach of interorganizational systems and transaction management, and have 
specified a component of the information system of an actor that manages transac
tions. Furthermore, we have given an instance of the concepts, the steps, and the 
BTMS for external logistics. 

The basic concept of the BTMS is a 'procedure'. Automation of procedures is the 
primary objective of Workflow Management Systems (WFMS). The business 
opportunities of EDI and WFMS seem to be similar. They can be found in, for 
instance, the EDI literature. We will first discuss the business opportunities of ED! 
(section 6.2). Secondly, we take a closer look at the underlying concepts of 
interorganizational systems, business process and transaction engineering, and 
Workflow Management Systems (section 6.3). Finally, technical aspects of dis
tributed transaction processing and EDI are discussed (section 6.4). 

6.2 Business opportunities 
"Levi Strauss & Company is a $3 billion manufacturer of apparel, with headquar
ters in San Francisco, California. It is best known for its denim trouser, or blue 
jeans, which it has made for over 100 years. Levi Strauss sells its clothing products 
to approximately 17,000 retailers operating over 200,000 stores. In 1986, Levi 
Strauss recognized that their business was serving the retailer, and that service could 
be improved. They found that rapid, accurate replenishment of merchandise was 
not happening, and that relationships were sometimes termed adversarial. So Levi 
Strauss, using available computer technology, developed what is named a quick 
response program to maintain a competitive edge, improve the way it does business, 
and develop better trading relationships." 

The liS Analyzer of August 1989 starts with this example of applying cOminuni
cation between different organizations. The article mentions that the lead time of 
products of Levi Strauss has been cut from 9 days to 3 to 5 days after having 
automated the ordering and the shipment. Inventories are replenished almost daily. 
Levi Strauss is able to maintain lower inventories, while avoiding that popular 
products are out of stock. Other examples of the advantages of applying interor-



106 
6 - Other approaches 

~anizational com:nunication can be found in, for instance, van der VIist et al. (EDI 
m trade and ED! m industry). 
Technically, this communication concerns the computer-to-computer exchange of 
structured data, normally known as EDI (Gillins et al., 1988, Sokol, 1989, Stone, 
1988, and Hofman, 1989). 

The most important business opportunity of interorganizational systems lies in the 
improvement of trading partner relations (Sokol, 1989). The process of structuring 
the information and reaching agreement on the semantics of the information 
requires much co-operation between trading partners. Sokol mentions that in order 
to reach agreement between parties with respect to providing accurate information, 
information processing, and acting on data received, it is important to agree on 
business procedures, data requirements and usage, communication methods, and 
testing schedules. 

Another opportunity mentioned by for instance Sokol is that receiving more 
accurate and complete information will eliminate key-entry errors. Suppliers can 
be assured of making more accurate and timely shipments to their customers, as 
well as eliminating the need for charges associated with return shipments of rejected 
products and reducing emergency orders. 
Furthermore, Sokol divides the business opportunities of ED! into opportunities 
that are a direct result of implementing interorganizational systems, and oppor
tunities that are derived from making effective use of interorganizational systems. 
According to Sokol, the business opportunities of interorganizational systems are 
the following: 

reduced order cost associated with handling of business transactions: key entry 
of information and errors due to rekeying may be eliminated; 

• reduced cost for materials and services to support paper transactions; 
reduced order-pay-cycle period: the time needed to process an order will be 
reduced, the buying company may order new products later and can reduce its 
stock; 
improved planning and forecasting. 

Other authors (Gillins et aI., 1988) describe the early benefits of interorganizational 
systems as being efficiency benefits. The benefits are primarily cost savings 
associated with automating highly repetitive tasks. However, some authors mention 
that interorganizational systems should be of strategic importance to organizations 
(Stone, 1988). Stone also notes that few interorganizational system's efforts today 
have strategic focus; most organizations approach interorganizational systems 
tactically. 
Another reason for introducing interorganizational systems of which the potential 
benefits are doubtful (EDP Analyzer, 1987), is being forced to introduce these 
systems. For example, in 1984, General Motors sends a letter to most of its 
suppliers, urging them to do business with GM via computer communication: 'No 
ED!, no business'. Forcing trading partners is, in general, only possible for 
companies with a large market share. Companies can also be forced to use 



6 Other approaches 107 

interorganizational systems if their competitors, having enough market share, 
decide to use interorganizational systems. 

Other potential business opportunities can be as follows (Hofman, 1989): 
• the acquisition of new markets, the retention or enlargement of existing market 

shares; 
• offering a better customer service by decreasing the delivery time of products. 

This can also reduce the stock if supplier and buyer mutually adjust their stocks; 
• improvement of the customer service by reducing errors in handling the infor

mation and by direct access to the (status of the processing of the) information. 
For example, an intermediary, which provides a service for tax declaration, can 
improve its customer service by applying external communication with the Tax 
Department; 

• faster delivery of goods or services can lead to more timely invoicing and 
payment by customers; 

• faster delivery can be achieved because errors in rekeying or processing the 
information are reduced. Delays and cost caused by handling those errors can 
thus be avoided; 
misunderstandings concerning the meaning (the semantics) of information will 
be avoided, because the structure and the meaning of the information is known 
to both the sender and the recipient of the information; 
availability and processing of information will be improved; 

• the handling of information internally in a company (or process) can be im-
proved, because the information is received more accurately. 

Strategic business opportunities can be found in larger market shares, reduced 
stock, improved planning, forecasting, and improved trading partner relations. 
Ideally, an organization should strive for an enterprise-wide interorganizational 
system to support flows that are required for the organizational processes. The 
information systems department (Porter, 1985) can be seen as the department which 
is able to see the link between various departmental systems accounting, engin
eering, manufacturing, and so forth and is thus well positioned to develop a useful 
strategy with respect to interorganizational systems (liS Analyzer, 1989). Com
panies like Levi Strauss created a new department, EDI Services, positioned 
between the information systems department and the user organizations. Such a 
department can be charged with providing strategic directions for interorganiza-
tional systems. . 

In general, it can be said that using interorganizational systems helps to improve 
'customer service' (Stone, 1988). Customers can reduce their inventory position 
and shipments can be delivered faster. Highly automated computer communication 
systems have high fixed cost and relatively low variable cost. They can provide 
competitive advantage to those businesses having such systems. Opportunities as 
mentioned by for instance Sokol will be common to all organizations once standard 
software components like the BTMS are available. With the aid of interorganiza
tional systems, business transactions that are processed according to procedures 



108 6 - Other approaches 

can be handled automatically by means of the BTMS. For example, a payment can 
be made without reception of an invoice. Efficiency can be gained by automating 
highly repetitive tasks and making information available to other departmental 
systems in an organization. The contribution of employees can be shifted from 
administrative to more value-adding services. 
Increase of productivity and enhancement of customer service in information 
processing companies is seen as the most important advantages of WFMS (see for 
instance documentation on existing WFMS products). 

6.3 Business process related concepts in literature 
In this section, we will relate the concepts introduced in this monograph to the 
concepts of interorganizational systems, business process engineering, and Work
flow Management. First, theory on interorganizational systems is discussed and 
secondly, the underlying concepts of business process engineering are described. 
Finally, Workflow Management concepts are discussed. 

6.3.1 Interorganizational systems 
A number of definitions of interorganizational systems is given in other publica
tions, such as: 

Barret et al.(1982) and Cash et al.(l985): 
"In the broadest term, an interorganizational system consists of a computer and 
a communication infrastructure that permits the sharing of an application, such 
as programs for making reservations or for ordering supplies. The players in a 
system are either participants or facilitators. An interorganizational system 
participant is an organization that develops, operates, or uses an interorganiza
tional system to exchange information that supports a primary business process. 
Participants can be competitors, organizations in the buyer-supplier chain, or a 
combination of these. An interorganizational systems facilitator is an organiza
tion that aids in the development, operation, or use of a network for the exchange 
of information among participants. The supporting products or services are a 
part of the primary business of the facilitator." 
Suomi (1989): 
" .. a system in which two or more independently managed organizations com
municate in a computer memory-to-memory fashion without the transfer of 
physical media." 
Wierda (1991): 
"Interorganizational information systems are information systems that are joint
ly developed, operated, and/or used by two or more organizations that have no 
joint executive." 

Barret et al. and Cash et al. identify on the one hand a computer and a communi
cation infrastructure, and on the other hand participants and facilitators. They even 



6 - Other approaches 109 

describe the sharing of applications, thus implying that one application is central 
to the actors. Furthermore, Barret et al. and Cash et al. do not say anything about 
the boundaries between the primary businesses of the participants and the facilita
tors. They only state that the products or services used to support the development, 
operation, or use of the interorganizational system are part of the primary business 
of the facilitators. Therefore, the primary business of the facilitators differs from 
the primary business of the participants. 
The components that are distinguished can be provided by separate facilitators, e.g. 
an actor may operate a network, whereas another actor provides the conversion 
software. To apply the separate components in an interorganizational system, it is 
either required to have standard interfaces between the different components or to 
have one actor monitoring the development, the realization, and the implementation 
of the components. Actors that have a multi-national nature like mM can be capable 
of performing such a monitoring role in their interorganizational system. Other 
actors like banks can have outsourced such a role to a third party. The third party 
performs the monitoring on behalf of these other actors. To create an open 
environment where every actor can communicate with another actor using compo
nents provided by different actors, standardization of the protocols and the inter
faces between those components is required. 
The definition of Suomi is a technical definition, defining an interorganizational 
system as the communication between computer memories. In this definition, the 
physical aspect of an interorganizational system is emphazised, whereas the 
conceptual aspect is lacking in the definition. However, Suomi does not say 
anything about the use of software and computers in an organization. 
The definition of Wierda focuses on the absence of 'joint executives' of the 
organizations involved, which is the same as the 'independently managed organ
izations' of Suomi. Therefore, this definition is similar to the other definitions. 

With respect to interorganizational systems, the lack of an accepted or validated 
theoretical framework or structure for applying the concepts of interorganizational 
systems is stressed by King et al. (1989) and Wierda (1991). The definitions of 
interorganizational systems only tell us about the components of an interorganiza
tional system. However, they do not teach us the protocols and the interfaces 
between these components. The protocols and the interfaces specify the function 
of each component, they do not describe other aspects like the organizational, the 
cultural, or the social aspects of interorganizational systems. 
We have given a theoretical framework of the technical aspects of interorganiza
tional systems by conceptually modelling business processes and specifying the 
BTMS. A distinction between actors using and providing the BTMS, and the 
network by which the BTMS implementations can communicate, is as mentioned 
earlier outside the scope of this monograph. 



110 6 - Other approaches 

6.3.2 Business process and transaction engineering 
We investigate the literature of business process and transaction engineering, 
because it may offer concepts of business processes and activities. Business process 
engineering is discussed by various authors like Davenport (1993) and Hammer 
(1993). Creemers (1993) looks at linking business processes of different organiz
ations by defining transaction and he defines transaction engineering instead of 
business process engineering. 

Davenport (1993) gives the following definition of a business process: a business 
process is a specific ordering of work activities across time and place, with a 
beginning, an end, and clearly identified inputs and outputs. According to Daven
port, a business process is a structure for action. Davenport distinguishes between 
the following aspects: 
• the responsibility and the reporting relationships (hierarchy), and a dynamic 

view on how the organization delivers value (vertical structure); 
• a process approach focuses on how work is done instead of focusing on which 

specific products or services are delivered to customers. Successful organiza
tions must do both; 

• product versus process innovation should occur; 
• a process approach implies adopting the customer's point of view. Processes are 

the structure by which an organization does what is necessary to produce value 
for its customer; 

• a clearly defined owner must be identified to be responsible for design and 
execution and for ensuring that customer needs are met (process ownership); 

• there are cross-functional processes e.g. Research and Development, marketing, 
and manufacturing. 

Hammer (1993) gi ves another definition of a business process: "a business process 
is a collection of activities that takes one or more kinds of inputs and creates an 
output that is of value to the customer". 

Creemers (1993) combines the value chain approach of Porter (1985) and transac
tion cost economics (Williamson, 1975) as a basis for business process design. He 
identifies three chains within one actor: 
• a direct chain representing transaction-oriented ordering; 
· two side chains, one for planning and another for collecting. These are the 

group-oriented actions. 
Furthermore, he identifies four points where the different types of chains interfere. 
Two of those points have to do with the connection and the disconnection of the 
planning and the collection side chain and are named (Group Connection and Group 
Disconnection Point respectively). The other two points have to do with communi
cation between chains and are the Interaction Connection and the Interaction 
Disconnection Point. 
A number of direct chains of several actors in cascade supports client specific 
actions that provides input to a planning side chain. The input is either physical or 



6 - Other approaches III 

is abstract. Creemers shows examples of these cascades in which the actor that 
executes the actions of the planning chain, triggers the first direct chain in the 
cascade. It seems as if there is no communication between the actors executing the 
direct chains or between the actor executing the side chain and other actors than 
the one executing the first direct chain. 
The basic concept of transaction engineering is the 'transaction' itself. A transaction 
is defined in two domains: 
• the governance domain 

A transaction is an agreement between parties concerning the transfer of goods 
or the delivery of services. The structural aspect is the governance structure 
(contract organization) and the process aspect is the actual observance of the 
agreement; 

• the business administration domain 
A transaction is a sequence of client-specific actions. The structural aspect is the 
description of the actions that have to be taken, and the process aspect is the 
performance of these actions. 

These two definitions use amongst others the following concepts: 
· a service is an effort, a sequence of actions, to the delivery of which a person or 

organization(al unit) can commit himlher/itself; 
an action is a predetermined task, that contributes to the production and transfer 
of a good or the delivery of a service; 

• a business process is an ordering of actions to achieve a defined result. 

Whereas Davenport and Hammer focus on an approach to business process 
engineering, Creemers gives a number of concepts before giving an approach to 
transaction engineering. The definitions of 'business process' given by these three 
authors are a mixture of structure and behaviour. 
Using the definition of 'business process' given by Davenport implies that a process 
can only be executed once with specific inputs and producing specific outputs. 
Davenport makes a distinction between a hierarchy of responsibilities and a vertical 
structure of the business system. In this monograph the hierarchy is supported by 
the procedures that can be processed by the BTMS. The vertical structure of the 
business system is not clearly specified by Davenport. It can be seen as the service 
that is added by an actor to the underlying tasks. We explicitly specify the process 
ownership by the actor that is able to execute a service. 
Mapping the definition of 'business process' given by Hammer to our concepts, 
we come to the following conclusion: one or more object types are consumed by 
a collection of actions to produce a specific object that has value to the customer. 
As we can see, the definition is a mixture of structure and the behaviour. Whereas 
Davenport defines a beginning and an end of a business process, this is not 
mentioned by Hammer. Hammer, however, explicitly adds the value of the output 
object to a customer, whereas this value is mentioned by Davenport only as an 
aspect. 



112 6 - Other approaches 

A business process as defined by Creemers can be decomposed in actions. Such a 
business process achieves a defined outcome. Creemers does not specify a 'defined 
outcome'. It seems as if the outcome is achieved only once (behaviour). Implicitly, 
the outcome is 'the production and the transfer of a good or the delivery of a 
service'. The definition of 'action' given by Creemers contains both structural and 
behavioural elements. 
Similar to these definitions of 'business process', one can say that a service is also 
a behavioural element. However, a service can be used more than once, thus it 
becomes a structural element. 

In addition to Davenport (1993), Hammer (1993), and Creemers (1993) we 
distinguish between the information system and the business system. This distinc
tion allows us to define clear concepts of interorganizational information systems. 
These concepts reflect the interorganizational business system that is to be control
led. Once business process re-engineering or transaction engineering has been 
completed, our concepts can be applied. 
Let us give an example. For instance, Creemers distinguishes between two inter
action points. The Interaction Connection Point as defined by Creemers can be 
identical to the control signal of a business process or a task as defined in this 
monograph. The Interaction Disconnection Point can be identical to the report 
signal. In our approach, several messages can be exchanged to control the execution 
of business processes or tasks and the control and the report signal are internal to 
an actor. After transaction engineering has been completed, the interaction points 
can be replaced with these internal signals. Furthermore, the new structure of the 
business system is supported by new procedures that can be entered in the BTMS. 
If the business system that is re-engineered, is the information system, the actions 
performed by persons are possibly reduced to specifying the procedures and 
executing those tasks that cannot be supported by procedures of the BTMS. The 
latter is exactly what happened in the mM Credit example given by Hammer. 

We have discussed some of the definitions given by Creemers already. Creemers 
gives two definitions of a transaction that contain structural and process aspects. 
The structural aspect of the governance domain seems identical to the contract and 
the planning protocol. In this monograph, we have not specified a process aspect 
for observing the behaviour of the agreement. The structural and the process aspect 
of the business administration domain are identical to our concepts 'task' and 
'action' respectively. Regarding transactions, we make a distinction in 'protocol' 
(structure) and 'transaction' (behaviour). Furthermore, we define the concept 
'transaction' in the interorganizational information system, whereas Creemers 
defines it as part of the interorganizational business system. 
As we can learn from literature, different aspects of the same problem are dealt 
with. There are similarities between the approaches, but also differences. Differen
ces can occur if one wants to describe aspects of the current situation that cannot 
be changed easily. Such aspects are for instance organizational structures or 
existing information systems. In the latter case, one has to convert between, for 



6 - Other approaches 113 

instance, the software that can be developed using our concepts and the existing 
information system. However, these differences can give problems when one wants 
to develop new software that is to manage business processes. In such a case, clear, 
unambiguous definitions are required. Because communication between these 
systems is becoming of great importance, our concepts can be used to come to 
flexible communicating information systems. 

6.3.3 Workflow Management 
Within document processing environments like the inland revenue and insurance 
companies, the control of the flow of documents is becoming a major issue. If an 
actor is required to provide the status to the customer of its document, that actor 
has to have possibilities to track the document. Workflow Systems provide such 
insight. Workflow Systems can give advantages in environments, where the custo
mers are private persons. These private persons are mostly not automated and are, 
therefore, not capable of giving structured information. However, one can also see 
that for instance insurance companies can receive structured information if they 
work with agents. Also the inland revenue is capable of getting the information in 
a structured way by providing low cost software to private person. 

According to Ellis and Nutt (1992), Workflow Systems are intended to assist groups 
of people in executing work procedures. They have defined the following concepts: 
• procedure 

A procedure is a set of work steps and a partial ordering of these steps. A step 
consists of a header and a body. 

• activity 
An activity is the body of a work step. An activity is either an elementary activity 
or a compound activity. A compound activity contains another procedure. 

• workflow system 
A workflow system contains a computerized representation of the structure of 
procedures and activities. 

• script 
A script is a specification of a procedure, an activity, or an automatic part of a 
manual activity. The composition or building of this script from available 
building blocks is called scripting. 
job 
A job is the locus of control for a particular execution of a procedure. In some 
contexts, the job is called a work case. If a procedure is modelled by a Petri net, 
then a job can be considered as a token flowing through the net. 

Others define the following concepts (van der Aalst et al., 1993): 
• task 

A task is a piece of work to be done by one or more resources in a pre-determined 
time interval. A task is atomic, which means that it cannot be split into smaller 
tasks. 



114 6 - Other approaches 

• procedure 
A procedure is a (partially) ordered set of control activities, pairs of tasks and 
sets of resource classes, and (sub)procedures. A control activity specifies the 
routing of the work within the procedure and the synchronization of tasks. 

• job 
A job is a process modelling the execution of an amount of work according to a 
given procedure. 

• workjlow 
Workflow is a partially ordered set of jobs. A Workflow Management System is 
a computer system (or a software package) that manages workflows. 

As we can see from the definitions, there is a large similarity with our concepts. A 
WFMS as defined by Ellis and Nutt (1992) and Van der Aalst et al. (1993) can be 
considered a specialization of our BTMS for two reasons. First of all, the objects 
are documents. In existing applications ofWfMS, the concept of a dossier is added: 
a dossier is a number of related documents. A dossier is identified by for instance 
a dossier number and the identification of the initiator of the first document of the 
dossier. Each document is identified with a dossier number, an initiator identifica
tion, and a document type. We have made a distinction between dossier and 
document, thus allowing several documents of the same type in one dossier. In our 
concepts, a dossier is similar to an incoming transaction and is an implementation 
of ajob. 
Secondly, the tasks that are to be executed are part of the procedures contained in 
a WFMS in van der Aalst. Therefore, there is a difference with the way we treat 
tasks. In van der Aalst (1993), the concept of the control of actions and the concept 
action are part of a procedure in a WFMS. Ellis and Nutt (1992) did not treat the 
concept of a task separately. 

6.4 Technical related concepts in literature 
Technical aspects of interorganizational systems refer to the concepts that are used 
to develop, realize, implement, and operate the software components. There are 
different approaches to the communication between computer systems: 
• distributed databases: a number of databases that communicate with each other 

are viewed as one large distributed database. 
• international standardization of messages (UNSMs: United Nations Standard 

Messages). The relation between the conceptual approach and the current and 
future message development is investigated and existing UNSMs are related to 
the conceptual approach. 

6.4.1 Distributed databases 
We have introduced the concept of a business transaction. In this section, we will 
compare this with a database transaction. Definitions of a database transaction 



6 - Other approaches 115 

mention a unit of work, e.g. Date (1983) specifies a database transaction as"a unit 
of work", the ISO (ISOIDP 10026-1,2,3, 1989) specifies a transaction as "a unit of 
work characterized by four properties: atomicity, consistency, isolation, and du
rability", and Encarnacao et al. (1987) specify a database transaction as a "com
prehensive unit of work characterized by the properties consistency, atomicity, 
persistency, and separability". A database transaction is further specified in Date 
(1983) as consisting of the execution of an application-specified sequence of 
operations, beginning with a special 'begin transaction' and ending with either a 
'commit' operation or a 'rollback' operation. Each separate database transaction 
can be specified by a standard sequence of operations. When a database transaction 
is implemented, the standard sequence of operations can be made application 
specific, whereas each transaction may involve the execution of only a limited set 
of the chosen operations. If this is the case, various options have to be specified to 
reach either a successful ('commit') or unsuccessful ('rollback') ending of a 
database transaction. 
Ozsu et al. (1991) present an overview of definitions of a transaction (page 259). 
Intuitively, they claim that a transaction takes a database, performs an action on it, 
and generates a new version of the database. They maintain that a transaction is 
made up of a sequence of read and write operations on the database, together with 
computation steps. Their formal definition of a transaction is a partial ordering over 
its operations together with a termination condition (the operations are either read 
or write). 

Ozsu et al. define three dimensions for specifying different types of transactions: 
application areas, duration, and structure. With respect to the application area they 
make a distinction between local and distributed data. With respect to duration they 
distinguish between conversational, short-life, and long-life transactions. We must 
note that conversational transactions tell us something about the actor performing 
the database transaction, whereas short-life and long-life transactions can be 
performed by a person or a software program. With respect to the structure, they 
make a distinction between a flat and a nested transaction. 

Based on these concepts, both Ozsu et al. and Encarnacao et al. present an 
architecture for distributed databases. The architecture of Ozsu et al. is shown in 
figure 6.1 (next page). 

The Transaction Manager is responsible for co-ordinating the execution of database 
operations on behalf of the application, and the scheduler is responsible for the 
implementation of a specific concurrency control algorithm. A third part, which is 
not shown, is the local recovery manager that exists at each site. As the figure shows, 
communication between Transaction Managers is not allowed. This is based on the 
concepts of concurrency control. They can be based on locking, on time stamp 
ordering, or a combination of both. The locking mechanisms are as follows: 



116 

with other 
TMs 

Begin_transaction, 
read,write, 
commit, abort 

Distributed 
Execution 
Monitor 

result 

to data 
processors 

Figure 6.1: Architecture of distributed databases (Ozsu et al.) 

6 - Other approaches 

with other 
SCs 

with other 
data processors 

centralized locking: one of the sites is the primary site where tables are locked 
for the entire distributed database. One of the Transaction Managers is a 
co-ordinating TM; 
primary copy locking: if a lock unit is replicated at several sites, one of the sites 
is selected as the primary site. All database transactions that desire to access that 
lock unit obtain a lock unit at the primary site. The primary site is the co-ordi
nating TM for a specific lock unit; 
decentralized locking: the lock management duty is shared by all the sites of the 
distributed database. Each site is the co-ordinating TM for its lock units. 

In locking-based concurrency control, the scheduler is a lock manager. Ozsu et at. 
have extended the locking to two phases (two-phase locking or 2PL) to allow the 
serialization of transactions. 

Let us discuss these concepts briefly. The unit of work of a business transaction is 
an action from the view of a superior. That action is supported by a procedure of 
the subordinate of the business transaction. The concept of a 'database operations' 
is identical to the concepts of a 'step' . A Transaction Manager as specified by Ozsu 
has similar functionality as the BTMS and the Scheduler can be seen as a special 
type of an in-house processor (e.g. a Resource Manager defined by van der Aalst 
et al., 1993). Ozsu specifies different ways of locking. In our case, locking is 
identical to binding resources. One of Ozsus locking mechanisms is called two 
phase locking. This concept is in our description two phase binding of resources to 
support the action of a business transaction in an incidental relation. The first phase 
is the execution of the contract protocol and the second phase is the execution of 



6 Other approaches 117 

the execution protocol. It seems as if the concepts of distributed databases can be 
considered as a specialization of the concepts specified in this monograph: resour
ces in distributed databases are tables and in business processes they are physical 
or abstract objects. Steps in a procedure are similar to database operations of a 
standard sequence of operations. 

6.4.2 Available messages 
We have presented the kernel of the business operation message data structure in 
chapter 3. Amongst others, messages to support trade and transport have already 
been standardized internationally. These messages are documented in the EDI
FACT syntax (EDI For Administration Commerce and Transport, see ISO 9735, 
1988). This syntax specifies the structure in which information can be exchanged. 
It consists of so-called steering and control segments that are generic to all 
messages, and segments that have a meaning per message. A new version of the 
syntax makes a distinction between batch- and interactive EDI (ISO CD 
9735: 1993(E), 1993). We will first map the message attributes specified in this 
monograph to EDIFACT, and secondly discuss the structure of the trade and 
transport messages. 

The relation between the message attributes and the EDIFACT elements is given 
in table 6.1. 

transaction id. message header common access reference 

message id. message header message reference 

sender I interchange header sender 

recipient interchange header 'recipient 

message type header message type 

role 

mysequence header of transfer 

sequence 

Table 6.1: Message attributes in EDlFACT (-: no element available) 

The attributes 'role' and 'your sequence' that are required to exchange the initiator 
of a transactions and the request sequence number respectively, cannot be mapped 
to existing data elements of the EDIFACT service segments. They have to be 
exchanged by segments between a message header and a message trailer segment. 



118 6 Other approaches 

An interchange is a set of messages from one sender to one recipient. Therefore, 
the sender and recipient attributes can be mapped to the interchange steering 
segment (interchange header). The message types that we have specified have to 
be mapped to existing values of the data element 'message type'. Besides these 
elements, the steering segments of batch EDI contain additional data elements, e.g. 
data elements specifying the syntax version and a test indicator. The steering 
segments of interactive ED! (ISO CD 9735:1993(E), 1993) contain a dialogue 
reference, a dialogue identifier, a transaction reference that is identical to our 
attribute 'transaction id', and a scenario identifier. We do not have a requirement 
to use the data elements for dialogues and scenarios (section 6.4.3). 

The following table shows a number of the standard trade messages: 

order messages 

delivery messages 

Table 6.2: Trade messages 

purchase order 

I order change 
! 

. order response 

!despatch service 

delivery just in time 

delivery schedule 

execution request 

execution request 

execution response 

execution confirm 

execution request 

planning request 

The order messages can be used after the price/sales catalogue has been exchanged. 
Actors do not have to conclude a contract as long as they adhere to the standard 
conditions exchanged by a catalogue. The despatch advice can be given as a 
response to the order messages, whereas the other delivery messages are requests 
of the superior. 

The basic structure of the order messages contains the following elements: 
• dates and times, e.g. despatch and delivery dates and times; 
· locations at which the products are to be delivered or are going to be delivered; 
• means of transport to be used; 

packaging of the products; 
• equipment that is used as packaging; 
• the products that are ordered, with for each product the possibility to specify 

dates and times, locations, packaging, means of transport, and equipment. 
Equipment, products, packaging, and means of transport are object types. The 
functions between these object types are implicitly specified in the message by the 
nesting of the EDIFACT representation of the object types. The function between 



6 - Other approaches 119 

packages and equipment, between packages and means of transport, and between 
equipment and means of transport cannot be exchanged by the order messages. 
The despatch and the delivery locations and the times can also be given for each 
product or for all products Thus an actor has the possibility either to group the 
products per location and time, or give for each product the locations and the times. 
The basic structure of the price/sales catalogue message is similar to the structure 
of the order messages. All details can now be given for a complete pricing group 
or for an individual pricing item of a pricing group. Also, the basic structure of the 
despatch advice is similar, giving the ability to exchange equipment details and a 
consignment packing sequence. The relation between the consignment packing 
sequence and the equipment is implicitly given by the message structure. Within a 
consignment packing sequence, packaging and product information can be ex
changed. Per product, packaging information can be given. The consignment 
packing sequence is used to distinguish between hierarchical packaging levels (e.g. 
a pallet with boxes containing printers). 
The just-in-time delivery message gives the ability to specify a sequence in which 
products have to be available at a certain time at a location. The delivery schedule 
message allows a sender to specify either per location the delivery of products, or 
per product the locations and times at which they have to be delivered. 

The following table shows a number of transport messages that have been stand
ardized: 

multi~onsignment 

,resource related messages 

Table 6.3: Transport messages 

""h,.,r1I1I., and availability 

multi-consignment 

multi-modal status report 

occupied and empty 

contract request 

contract response/confirm 

execution request 

execution response 

execution request 

planning request 

execution request 

execution confirm 



120 6 - Other approaches 

A single consignment message is used to exchange information of one activity and 
a multi-consignment message to exchange information of one or more activities. 
Therefore, the multi-modal status message can also indicate the status of one 
activity. The single and the multi-consignment messages have the following basic 
structure: 

equipment 

latlon to means of transport 
equipment 

single consignment message structure 

Figure 6.2: Basic structure of single and multi consignment messages 



6 Other approaches 121 

The means of transport in a single or in a multi-consignment message can also be 
a part of a total transport activity, e.g. the road transport part. In this case, the road 
transport is an action of an activity. The bayplan messages can contain infonnation 
of the physical means of transport and, for each location of that means of the 
transport, the cargo or the equipment. 

We will discuss the following aspects regarding the mapping of the kernel message 
data structure to the standard trade and transport messages: 
• the representation of the entities of the kernel message data structure in the 

EDIFACT messages; 
the representation of associations in the EDIFACT messages; 

• the representation of sub- and supertypes in the EDIFACT messages. 
We will not go into details of mapping an entity or an attribute to segments or 
(composite) data elements ofEDIFACT. Such details can be found in EDIT (1993). 

In most messages the kernel message data structure is present as follows (figure 
6.3). 

Figure 6.3: Message data model as in existing trade and transport messages 

Figure 6.3 shows the entities in a hierarchic message structure. The mapping to 
EDIFACT segment is not shown. Only the transport messages contain instances of 
the 'action' entity. In the single consignment messages, an action is represented by 
the so-called 'transport details' segment group. The multi-consignment message 
can contain several instances of the 'action' entity with their availability and the 
objects. One of these instances of an action is the 'transport details' segment group. 
Other instances represent single consignments. 

An association can be represented in the EDIFACT messages by association 
segments or by a hierarchic nesting of objects. The following transfonnation 
options are possible to represent an association (figure 6.4): 
• association segments 

Associations or entities, which are a domain with two or more non-exclusive 
functions with one or more ranges, are transformed in association segments at 
the message leveL The functions are data elements of the association segment. 



122 6 - Other approaches 

• hierarchic nesting 
Each association or entity that has two or more non-exclusive functions is 
becoming part of the segments representing one of the entities to which it has a 
function. The foreign key of the other entity is represented by a data element of 
the segment group representing the entity under which it is nested. 

~m~e~s~sa~g~e:JI~~----C:~ob~je:cIt::~ 

part of the message data structure 

I message I I object I I ass. 

association segments hierarchic nesting 

Figure 6.4: Transforming associations in an EDIFACT structure 

The association segment approach shows that each association in the message data 
structure is transformed to one segment or a group of segments. Using the 
association segment approach, the segments can be exchanged in arbitrary order if 
the condition is valid that a unique relation exists between entities or between 
associations and segments. However, in the existing trade and transport messages 
the hierarchic nesting approach is taken. A reference segment can be used in the 
trade messages to represent foreign keys of objects. The representation of the 
association segment in the transport messages depends on the object type which 
can be referenced (e.g. split goods placement represents an association between 
cargo and containers). 

We use the specialization rules of functional data modelling to specify obj ect types. 
We identify two possibilities for mapping super- and sUbtypes (figure 6.5): 

Figure 6.5: Mapping of super- and subtypes 



6 - Other approaches 123 

each subtype is mapped to a separate segment group; 
· each supertype is mapped to a separate segment group, in which the segments 

of the subtypes are nested. 

In the trade and transport messages standardization bodies have taken the approach 
to create a segment group per sub type. 

We can conclude that although the specification of the EDIFACT trade and 
transport messages is not unambiguous, they contain the elements of the kernel 
message data structure. Furthermore, realization options have been selected when 
mapping of functional requirements to the EDIFACT syntax is done. It seems better 
to make these options explicit and select an option when mapping to the EDIFACT 
syntax. 

6.4.3 Concepts of international message standardization 
Currently, messages are specified using the EDIFACT syntax. There are three 
developments that start with modelling the functional requirements and map these 
requirements to the EDIFACT syntax: 
• Interactive EDI (UNIECE WP.4 GE.I, 1992); 
• Business and Information Modelling Guidelines (UNIEDIFACT, 1993); 

Open-EDI Reference Model Standard - Working Draft (ISOIIEC JTC I/WG 3 
N255, 1993). 

The development of interactive EDI and the Business and Information Modelling 
Guidelines is an activity of the United Nations. The specification of the Open-EDI 
Reference Model Standard is an activity of the ISO. We will discuss these three 
developments in more detail. 

"Interactive EDI is a series of exchanges of information between the applications 
of independent parties in order to accomplish a joint task, where subsequent 
exchanges may depend upon the results of previous exchanges. Strict timing 
requirements frequently apply. Applications which are inherently interactive, in
clude airline reservation systems and remote automated teller machines of banks" 
(UN/ECE WP.4 GE.I, 1993). The following concepts are defined to support 
interactive EDI (UNIECE WP.4 GE.l, 1993): 
• scenario 

The document on interactive EDI presents three definitions of a scenario: 
L a scenario is a model of a set of real-world rules governing a real-world 

task - called a transaction - to be accomplished by independent organiza
tions working together. 

2. a scenario is a formal description of a class of business activities which 
defines, among other things, the roles which can be played by role players 
(including the events which need to take place) to achieve a particular 
business objective. 



124 6 Other approaches 

3. a scenario is a formal description of all business rules and information flows 
of a type of business transaction among two or mo;:e- parties. 

• transaction 
A transaction is an instance of a scenario. 
dialogue 
A dialogue is a two-way conversation between co-operating role players within 
a transaction. It is formally composed of a pair of interchanges and is an instance 
of a dialogue type. 

• dialogue type 
A dialogue type describes a set of actions between two role players within the 
context of a scenario. It is implicitly defined by the pair of roles and the scenario. 

• interchange 
An interchange has the property of being an instance of the information flow in 
one direction within a dialogue. 

We have already referred to a syntax ,to support interactive EDI (ISO CD 
9735:1993(E), 1993). This syntax specifies the establishment of a connection and 
disconnection by means of the interchange header and the interchange trailer 
respectively. In-between, several messages can be exchanged (figure 6.6). 

InHlalor 

Interchange header 
messa 8 s 

responder 

Figure 6.6: An example of a time sequence of messages in interactive ED! 

The objective of the BIM Guidelines is to give certain rules for the application of 
modelling techniques to support message design (UNIEDIFACT, 1993). The 
guidelines specify three phases and their deliverables. Two of these phases consist 
of 'information models' and 'activity models' that seem to be similar to data 
modelling and process modelling respectively. The third phase consists only of 
'information models'. It is the realization of messages in the EDIFACT syntax 
using standard ED IFACT elements that are present in the so-called EDIFACT 
repository (figure 6.7). 



6 - Other approaches 

i EDIFACT 

LSitOry -" 

information 
modelling 

data model 

messages 

UNSMs 

Figure 6.7: The so-called BIM-boxes (UN/EDIFACT, 1993) 

activity 
modelling 

business 
functions 

scenarios 

125 

The deliverables of the phases one and two, business analysis phase and EDI 
requirements phase respectively, are based on the following concepts (we only 
include the concepts of 'activity models'; the concepts of 'information models' are 
similar to the ones we have presented in annex 1 of this monograph concerning 
functional data modelling): 

party 
A party is a participant in an EDI transaction. 

• ED! transaction 
An EDI transaction is a set of information flows between parties wanting to 
perform business processes with common goals. An EDI transaction is initiated 
by a specific party and terminated upon recognition of one of the agreed 
conclusions by any party involved. 
scenario 
A scenario is a formal specification of a class of EDI transactions which are 
identified from the functions defmed in the business analysis phase. 

The Open-ED! Reference Model Standard aims at providing a framework for 
standardization of scenarios and creating a so-called Open-EDI environment. Such 
an Open-EDI environment is required to reduce the costs of corning to an agreement 
in short-term partnership. 
The model consists of the following two views (figure 6.8): 
• Business Operational View 

This view addresses the business aspects of interoperability between the Open
EDI systems, including business conventions, agreements, and rules between 
business participants. Standards related to this view provide a specification of 
how to model an Open-EDI scenario. There is a requirement for generic and 
specific scenarios. 



126 6 - Other approaches 

• Functional Service View 
This view addresses the information technology aspects of interoperability 
between Open-EDI systems. Several physical and organizational configurations 
have to be supported by standards called the Open-EDI Support Services 
(OeSS). The OeSS is a component that identifies groups of functions, each of 
which has been separately distinguished for the purpose of service, protocol, and 
API (Application Programming Interface). OeSS may include one or more OSI 
Application Service Elements. Several Management Domains can be recognized 
that use the OeSS components. 

Business 
Processes view 

as 

Open-EDI Reference Model 

Business 
Operational 
View 

Functional 
Service 
View 

Business rules and 
semantics 

require 1 rupport 

Functional capabilities 
and support service 

i" .................. ,""'" .. '""'''' ... " ... " ... " ... " ... ,"'''" .... , ............ " .. " .... ", ...... ".""" ... ,"',,.J implemente 

Figure 6.8: The Open-ED I Reference Model Standard views 

standard 

Open-ED I 
system 

conforms 
to 

These three documents present concepts that we also use, e.g. transaction and 
scenario. Furthermore, a number of concepts presented in these documents seem 
similar to our concepts. We will discuss them in more detail. 
With respect to interactive ED! and the BIM Guidelines, we can distinguish 
between structure and behaviour elements in the concepts. The structure elements 
of interactive EDI are scenario, dialogue type, and role. The corresponding beha
viour elements are transaction, dialogue, and role player respectively. The concept 
'interchange' is also a behaviour element. The concepts 'dialogue' and 'dialogue 
type' are identical to the concepts 'transaction' and 'transaction protocol' respec
tively as defined in this monograph. The business objective that is to be achieved 
is specified to be supported by a scenario. Intuitively, a business objective seems 
to be identical to the concept 'activity'. However, there is no explicit definition 
given in UNIECE WPA GE.l (1992). In general, structure elements are defined in 
the BIM Guidelines by adding 'class' to a concept. 



6 - Other approaches 127 

The definitions of 'transaction', 'EDI transaction', and 'scenario' are not the same 
in both documents. There are three different definitions of a scenario in interactive 
EDI. The first and the third definition of a scenario and the definition of a 
transaction refer to each other. The second definition is not complete and refers to 
business activities and business objectives that are not defined. The definition of 
'scenario' in the BIM Guidelines refers to functions that are identified in the 
business analysis phase and is a class of EDI transactions. Therefore, a scenario is 
a structure element. 
In this monograph, the concept of scenario is only used as a visualization of the 
time sequence of messages in a transaction. Therefore, in this monograph a scenario 
is a behaviour element. Because we focus on the concepts that model an information 
and a business system, we do not require 'scenario' as a separate concept. 
Whereas a transaction is simply an instance of a scenario in interactive EDI, the 
definition of an EDI transaction given in the BIM Guidelines is more complex. The 
latter definition contains elements that are part of the concept 'scenario' of inter
active ED!. The definition of 'EDI transaction' leaves us with some questions: 
• how are the common goals defined and by whom are they defined; 
. how is a conclusion defined, how is it agreed upon, and which of the parties 

involved may recognize it as a valid conclusion. 
In both interactive EDI and the BIM Guidelines, a scenario can include two or more 
functions (or roles in interactive EDl). The sequence of events (interactive ED I) or 
the information flow (BIM Guidelines) is defined as a structure element. According 
to our concepts, the sequence of events or the information flow is given by the 
structure concept 'transaction protocol' . In this monograph, each actor specifies its 
own role by its services and its corresponding procedures. Therefore, depending 
on the procedures of all actors involved in the execution of their business processes, 
an instance of an '(EDI) transaction' is given. 
With respect to interactive EDI, we can also make an analogy between distributed 
databases and the sequence of messages. The interchange header and trailer are 
identical to the begin and the end transaction respectively. The messages are the 
database operations. A difference is that the messages can be exchanged in two 
directions, which means that an initiator and a responder can perform operations 
at each others database in a transaction. The concepts of interactive EDI are also 
similar to the concepts of the ISO/OSI Basic Reference Model (section 1.2.4). The 
interchange header is used for connection establishment and the interchange trailer 
for orderly connection release. The messages are the data-PDUs. However, by 
layering the communication (annex 1) the ISO has specified that several transaction 
can exist during one connection, whereas interactive EDI specifies one transaction 
per interchange. 

Regarding interactive EDl, the BIM Guidelines, and the Open-EDl Reference 
Model, our main conclusion is that the aim of these approaches is to standardize 
the behaviour in terms of scenarios. These approaches can be used to solve 
problems, where there is for instance no clear hierarchy between actors. An 
example is that a transaction passes several actors, whereas the last actor reports to 



128 6 - Other approaches 

the actor that initiated that transaction. It may also be feasible to standardize 
behaviour that serves as a reference for a specific interorganizational system. Actors 
of such a specific lOS have to adapt the standard scenarios to their specific situation, 
because the interorganizational business system will also be specific. If these 
standard scenarios do not fit a business process, new scenarios can be specified 
using the concepts defined in this monograph. Additionally, we can conclude: 
• there is a distinction between structure and behaviour in the document on 

interactive EDI; 
• the concepts contain intuitive elements. Some of these concepts seem to be 

identical to the concepts defined in this monograph; 
• the concepts do not focus on infonnation systems of actors. Consequently, they 

do not give actors flexibility to specify, select, and change their internal proce
dures; 

• the Open-EDI Reference Model adds the concept of management domains to 
support standardisation by different actors; 

• concepts in these three documents are similar to concepts of distributed data
bases and of the ISO/OSI Basic Reference Model. 



7 - Conclusions and further study 129 

7 Conclusions and further study 

7.1 Conclusions 
In this book we have defined concepts that can be used to specify interorganiza
tional systems. We have made a distinction in concepts that specify the structure 
and concepts that specify the behaviour. We have decomposed interorganizational 
systems in an interorganizational business system and an interorganizational infor
mation system and given concepts that can be used to specify both systems. An 
interorganizational business system itself can be decomposed in different business 
systems and an interorganizational information system in different information 
systems. Table 7.1 shows an overview of the concepts that specify a business system 
and an information system. 

business process/service 
task 
object type 

Table 7.1: Overview of the concepts 

job 
transaction 
message 

We have used timed, coloured, hierarchical Petri nets to model the concepts of 
business systems. Furthermore, we have specified a generic software component 
of the information system of an actor. We have called this generic component the 
Business Transaction Management System (BTMS). Procedures, transaction 
protocols, and message types are parameters of the BTMS. The BTMS is modelled 
as a timed, coloured, hierarchical Petri net and its parameters are modelled with a 
functional data model. In concrete practical situations verification of the conceptual 
model is still to be performed. 

7.2 Achievements 
Regarding our problem definition, we can first of all conclude that we have been 
able to develop a conceptual model for interorganizational business systems. The 



130 7 - Conclusions andfurther study 

conceptual model can be applied in practice for several types of business systems, 
like health care, transport and insurance. Based on the performed research, we can 
conclude that we have succeeded in giving a conceptual model of a BTMS that 
controls the execution of interorganizational business systems and that the software 
for such a BTMS can be realized. Furthermore, achievements can be found in 
business process engineering, message development, and message implementa
tion. We will discuss these achievements in more detail. 

There are a number of parameters that influence business process engineering. Such 
parameters are, for instance, information systems, business systems, and organiz
ational structure. 

We can say that the availability of the BTMS makes it possible to re-engineer 
business processes independent of information systems. Business process re-en
gineering results, for instance, in changes in the physical lay-out of the business 
processes and the organizational structure of an actor. The output of business 
process re-engineering is a set of procedures that can be a parameter to the BTMS. 
Thus, the BTMS is generic software capable of processing information independent 
of the structure of business processes. The BTMS can easily be adapted to a 
business system and, consequently, an actor can easily and less costly change his 
business system. 
This means that actors are capable of reacting flexible to changing requirements of 
their customers by offering new services. Such flexibility is of great importance in 
every industry sector. Especially in industry sectors, where one is capable of 
changing its business system rapidly, the implementation of the result of business 
process re-engineering can be performed fast. Such industry sectors are, for 
instance, transport, finance, and insurance. These industry sectors have in common 
that the business system is either of an abstract nature, or they make use of an 
infrastructure like a network of roads offered by other actors. In other industry 
sectors, where the business system can not be changed rapidly and the most 
important aspect of the output of the business system is a physical object, e.g. in 
production, husiness process re-engineering will still take some time. When, 
however, in such cases an actor combines its products with services of an abstract 
nature, re-engineering can be less time consuming, like in the example of a lease 
contract with the possibility to lease a car of a car manufacturer, with or without 
an insurance contract and with or without the option to buy the car after the lease 
contract has ended. 

Regarding organizational structures, Womack (1994) looks at organizations as a 
set of autonomous units. Each of these units can offer its services to other units. In 
this monograph, we have called these units 'actors'. Current information systems 
reflect the organizational structure. Thus, it is costly and time consuming to change 
the organizational structure. The BTMS, however, is process oriented and in that 
sense independent of an organizational structure. It requires a specification of a 
business process and it can support several organizational structures, especially 



7 - Conclusions and further study 131 

autonomous units. Organizational structures can change without having effect on 
the information system. 

Let us discuss message development and implementation in more detail. Currently, 
EDI message development and implementation is a costly and time consuming 
activity. There are special groups developing standard messages for their own use 
and the use of others. These standard messages are documented in the syntax in 
which the information is going to be exchanged (the EDIF ACT syntax). Actors that 
are going to implement these messages, have to interpret them and have to make 
choices with respect to the elements they are going to use. The interpretation can 
lead to different usage of the same message, thus leading to closed EDI environ
ments. To come to a common interpretation, actors have raised so-called EDI 
organizations (Hofman, 1989) that have to come to a standard interpretation aligned 
with interpretations made in other countries. However, these EDI organizations 
make specific EDI implementation guides for specific groups of actors that have a 
common business system. It is our experience, amongst others in the transportation 
industry, that these aspects still prevent actors from implementing EDI. Another 
aspect of message implementation is the mapping of the messages to internal 
applications. One can use so-called EDI translation software for the translation 
between EDIFACT messages and database instances. Not all of these translators 
offer the functionality required by the actors and most of them a,re still costly. 

In this book we have used functional data modelling and have specified a kernel 
business process data structure that serves as a basis for message development. 
First of all, we, and also others (UNIEDIFACT, 1993) are of the opinion that data 
modelling for EDI message development has several advantages. For instance, it 
improves the quality of the standard messages, it is less time consuming, and one 
can develop consistent sets of related messages. Secondly, using the kernel business 
process data structure and specializing the object types, has the advantage that one 
has a common view on the business system. Using this approach, the actors that 
are going use the messages in practice, do not have to be involved heavily during 
message development. Message development can be performed by specialized 
persons. Thus, because only a limited number of persons with special skills is 
involved in message development, it can be performed faster and cheaper. Standard 
messages can be seen as products that have to be sold. The result of message 
development will be better documented messages that are faster available for 
implementation (EDIT, 1993). 
We have practical experience by developing a complete set of messages to support 
claims management in insurance within a period of half a year. In a similar way, 
we have developed message data models to support external logistics within a very 
limited time scale and with limited resources in comparison with resources used 
for message standardization. 

We have mentioned two aspects that are of importance to message implementation: 
message interpretation and translation. Using the business process data structure 



132 7 . Conclusions and further study 

makes message interpretation easier. It does not lead to different interpretations and 
the actors do not require know ledge of the EDIF ACT syntax. They can focuss more 
on aspects of their business that have to be represented by a business process data 
structure. Regarding translation, an actor can implement a complete business 
process data structure, map between this data structure and the internal database 
structure, and make its services known to others. In this way, an actor is able to 
communicate with other actors that have done the same, without having to make 
specific message implementation guides. The messages have to be seen as carriers 
of information. The information that is to be carried, depends on the service that is 
to be executed. One does not necessarily require a BTMS for this purpose. In 
practice a software product that translates on the basis of data structures will be 
adequate. However, a BTMS can offer additional advantages like offering flexi
bility in doing business. When our concepts are implemented, EDI organizations 
can focuss more on selling ED I messages and developing new messages if required. 

7.3 Further research questions 
The following aspects are for further research: 

internal structure of organizations 
Womack (1994) looks at organizations as a set of autonomous units. Current 
software cannot support these separate units. Introduction of the BTMS provides 
the same software to each of these units. The feasibility of such autonomous 
units using the BTMS and the effects on organizations and skills of persons needs 
further study. 
trading relations 
Using the kernel business process data structure, it is not required to make 
agreements on the usage of messages. This can reduce transaction costs between 
actors. The real benefits of this approach for trading relations are for further 
research. 
engineer -to-order 
The term 'engineer-to-order' is most often used in production. It means that the 
routing through a business process is determined per order. Similar situations 
can also be found in other business processes, for instance in health care. 
Selecting services on basis of parameters in messages can be also seen as some 
sort of engineer-to-order. The specification of the BTMS that we have given only 
supports the selection of services. Engineer to order is still a subject for further 
research. 
tools 
Business process engineering, message development, and message implemen
tation can be improved if the proper tools are used by all interested actors. These 
tools have to communicate with each other. The development and stand
ardization of the intetfaces between those tools are a subject for further research. 
Furthermore, the realization of the concepts in existing tools like ExSpect 
(ExSpect, 1990) and EDIT (EDIT, 1993) is of interest. 



7 Conclusions andfurther study 133 

Other aspects like the use of a relational syntax instead of a hierarchical syntax are 
subject for further research. 
We have also discussed achievements that can be obtained for business process 
engineering. Actual cases are required to illustrate these achievements. 



Annex: Modelling techniques 135 

Annex: Modelling techniques 

A.1 Introduction 
We require modelling techniques to model the concepts of the interorganizational 
business system and the data and process structure of the BTMS that is part of the 
interorganizational information system. In general, a system can be decomposed 
into smaller parts, which can be called components (Aerts, 1991). Each component 
may be a system in itself. The environment of a system can be seen as a component 
as well. A system is called closed if the environment is a component of the system. 
In that case, the environment is specified as a black box. If the environment is not 
part of the system, the system is called open. Every open system can be closed by 
adding the environment as a component to the system. The components of a system 
can have a relation with each other and with the environment. This relation is 
modelled by the objects that are exchanged between two components. Objects in 
a model are, for instance, containers or messages. 
A system is specified by its input and outputs, a set of states, and the possible state 
transitions. An input can trigger a state transition producing one or more outputs. 
The set of states of a system is called the state space of that system. The state space 
of an information system, which is the static part of that system, is specified by a 
data model. Aprocess model describes the behaviour of a system by specifying the 
state transitions or sequences of states that are allowed. 
Various specification methods exist for both data modelling, e.g. the entity-rela
tionship model (Chen, 1976), the binary relationship model (Nijssen, 1989), and 
the functional data model (Aerts, 1989), and process modelling (Van Hee, 1991). 
In this monograph we have chosen the functional data model for data modelling 
(section 2) and the timed, coloured, hierarchical Petri net theory (Jensen (1990) and 
Van der Aalst (1992» for process modelling (section 3). Timed, coloured, hierar
chical Petri nets have been chosen because the theory is supported by diagramming 
techniques for description, analyzing techniques for evaluation, and tools for 
prototyping and simulation. A fonnal definition of the concepts of Petri nets as 
described in the next pages is derived from Van Hee (1994). The theory of timed, 
coloured, hierarchical Petri nets is an extension to the original theory of Petri 
(1962). Principles of Petri nets are discussed by Reisig (1985). 
The concepts of layered communication are introduced in this annex to explain the 
concept of 'service' and 'protocol' and to show how these concepts can be specified 
by Petri nets. 



136 Annex: Modelling techniques 

A.2 Timed, coloured, hierarchical Petri nets 
The basic structure of a Petri net is a directed bipartite graph with two kinds of 
nodes called places and processors. Usually, 'processors' are called 'transitions', 
however we prefer the first term because the term 'transitions' is already used for 
state transitions. The nodes are connected by directed labelled arcs, called connec
tors. A connector can only connect a place to a processor or a processor to a place. 
One or more connectors are possible between one place and one processor. Places 
can contain tokens and processors can consume and produce tokens. Each place is 
shown as a circle and each processor as a rectangle (figure 1). 

Figure 1: A net structure 

place 
c 

Figure 1 shows a net structure of two processors, three places, and six connectors. 
Place a is called an input place of processor p since there exists a connector from 
a to p and place b is called an output place of processor p since there exists a 
connector from p to b. Place c is only an output place and the places a and bare 
both in- and output places. Places can represent locations or stages (we will not use 
the word 'state', because that word already has a specific meaning). For example, 
in transport a place can represent a location and in sales a place can represent the 
stage of the sales process of an article. The possibility that a place can represent a 
location or a stage provides us with a powerful theory to model both physical 
systems (e.g. external logistics) and abstract systems (e.g. finance and insurance). 
A processor is used to model the transformation of physical or information tokens, 
or the occurrence of an event. A transformation of physical tokens may alter the 
location or these stage of tokens. An example of such a transformation is the 
transport of containers from one location to another. A transformation of informa
tion tokens is, for example, the computation of a volume of a package on basis of 
the length, the width, and the height of that package. An occurrence of an event is 
for example the arrival of an aeroplane or the reception of a message. Processors 
are the system components. The communication between two processors is mod
elled by the places that are connected to both of them. 

In hierarchical Petri nets, processors and places can be decomposed in other 
processors or can be aggregated to form a new processor. A Petri net as shown in 
figure 1 is called aflat net if the processors and the places of that net cannot be 
decomposed into other nets. A processor that cannot be decomposed and is without 



Annex: Modelling techniques 137 

memory is called an elementary processor. Consequently, the processors of a flat 
net are only elementary processors. An elementary processor is a function that can 
produce output tokens by consuming input tokens. In the classical theory of Petri 
nets, all processors are elementary (Petri, 1962). A processor that can be decom
posed is called a non-elementary or composite processor. Such a processor is a net 
in itself and may contain memory in the form of places with tokens. A processor 
with memory can always be decomposed in places and processors. 
A flat net is formally defined by a finite set of places (L), a finite set of processors 
(P), a finite set of connectors (C), a function I that assigns to a processor a set of 
input connectors, a function 0 that assigns to a processor a set of output connectors, 
and a function M that assigns connectors to places. A processor does not necessarily 
require an output connector (function 0 is not specified for such a processor) and 
processors may have unconnected connectors (function M is not specified for one 
or more connectors). If the latter is true, such a net is called an open net. If Mis 
specified for all connectors (they are said to be connected), the net is called a closed 
net, 
A decomposition of a net creates a hierarchy of decomposition levels, called a 
hierarchical net. A net at a lower level specifies further detail of a processor that 
is one level above. The aggregation of lower level nets to a higher level net can be 
represented by a function that assigns lower level processors to a higher level 
processor until no further aggregation is possible. The lowest level of a hierarchical 
net is a flat net. At the top only one processor exists. At all levels, with the exception 
of the lowest level, at least one processor can be decomposed into another net. A 
processor that can be decomposed and is not the top level processor is called a 
subnet. 
Places can also be decomposed in more detailed subnets. These subnets eventually 
produce all previously consumed tokens and the connectors of these subnets with 
the environment are connected to places in the subnet. These subnets are called 
composite places. Composite places are useful to represent large networks or to 
structure a large number of places, connecting one or more processors. Composite 
places are modelled by an ovaL 
Figure 2 (see next page) shows an example of a hierarchical net, in which processor 
p of figure 1 is decomposed, and an example of a composite place. Processor p of 
figure 1 is the top level processor in figure 2. It is a subnet in figure I. 

As mentioned before, a place can contain tokens. A token can represent a physical 
object (e.g. an article or a person), an abstract object (e.g. ajob), or an information 
object that refers to either a concrete or an abstract object (e.g. a message). In Petri 
nets, each token has the following characteristics: 

a place in which it resides; 
• an identity. 

In timed Petri nets, each token has also a time stamp that tells when the token may 
leave a place. In coloured Petri nets, each token also has a value which in itself can 
be a complex data structure. The value of a token is called its colour. 



138 Annex: Modelling techniques 

'--_____ --=c.=om=pe>sile processor 

composite place 

Figure 2: Examples of decomposition 

The state of a net is specified by the set of all tokens in that net. The initial state 
of a net is defined as the state in which that net starts. The state space of a net is 
the set of possible states, including the initial state. A processor may produce output 
tokens on the basis of input tokens. An elementary processor executes by consum
ing one token via every input connector. In Petri net terminology, the execution of 
an elementary processor is called afiring. Afiring sequence is a sequence of firings. 
A processor has one or more firing rules. A firing rule has the following properties: 
• a firing rule is executed as soon as one token can be consumed at every input 

connector; 
• the pre-conditions for consumption of those tokens are satisfied; 
· the maximum time stamp of the consumed tokens is minimal under all possible 

firings; 
• for every output connector one token is produced at most with the following 

characteristics: 
• the newly produced tokens have an identity that differs from that of all tokens 

that remain; 
the time stamp of the produced tokens is greater than or equal to the time 
stamp of the consumed tokens; 

• the value of a produced token is a function of the values of the consumed 
tokens. 

Firing rules may be executed simultaneously or consecutively. If two firing rules 
are executed at the same time, they will be executed in sequence at that time. The 
sequence is non-deterministic. If two firing rules can be executed by consuming a 
token from the same input place and that place does not contain sufficient tokens, 
one of the firing rules is executed. The firing rule that is executed, is chosen in a 
non-deterministic way. 
The execution of a firing rule changes the state of a net. The state of a net is changed 
by all firing rules that execute at the same time. A state transition is the change of 
the state of a net. A sequence of states starting at an initial state is called a trace, 



Annex: Modelling techniques l39 

e.g. a possible trace is 0, S}, S2, S3, S4, S5 in which Sj represents the i-th state and so 
the initial state. A process is the set of all possible traces. 
Firing rules are only specified for elementary processors. However, a non-elemen
tary processor will have the behaviour of an elementary processor, if it has one 
input processor, one output processor, and is only able to fire its input processor 
again after having fired. We will call such a non-elementary processor a complex 
processor. A complex processor can have one or more input connectors, zero, one, 
or more output connectors, and memory. By means of a feed-back mechanism, no 
firing rule of the input processor is enabled before an output token is produced. We 
can use complex processors for modelling services (section 5). An example of a 
complex processor is shown in figure 3. 

complex processor 

Figure 3: An example of a complex processor 

A place is called a store if it is both an input and an output place of the same 
processor and has always a token available. Figure 3 shows one store that is 
connected to the processor in the middle only. A store may be connected to two or 
more processors. 
In practice, processing will take time, which means that the execution of a firing 
rule takes a certain time. In Petri nets, all elementary processors fire timeless and 
we must simulate the duration of processing via the time stamp of a token. A 
processor with a simulated duration is called a time-consuming processor. Such a 
processor consists of an input processor, an output processor, and one internal 
token. The input processor can produce the internal token for the output processor 
after having consumed input tokens. The output processor can only produce output 
tokens if the internal token is available. After having produced its output tokens, 
the output processor produces the internal token for the input processor. The value 
of the time stamp of the internal token specifies the duration of a time consuming 
processor. Figure 4 shows the structure of a time consuming processor. Initially, 
place q contains a token. 

time consumin rocessor 

Figure 4: A time consuming processor 



140 Annex: Modelling techniques 

A special type of Petri net is a finite automaton. In this type of nets, besides the 
connections to the environment, every processor is connected to only one input 
place and only one output place. The number of tokens in the net is only one; 
initially the token is in a certain place, thus representing the initial state of that finite 
automaton, and after execution the token returns to that place (figure 5). 

Input connectors 

output connectors 

Figure 5: An example of a Petri net of a finite automaton 

Place q may initially contain the token. Because a finite automaton contains only 
one token, the state of a finite automaton can be represented by the place in which 
that token resides. Therefore, a trace of a finite automation is a sequence of places 
in which the token resides. All traces can be represented by a state transition 
diagram, in which each place is represented by a state and each processor by a state 
transition. A state is shown as a circle and each state transition as a directed labelled 
arc. State q in figure 6 can be the initial state of the state transition diagram 
representing the Petri net of figure 5. The label of each arc in figure 6 refers to an 
input and an output connector of the finite automaton of figure 5, thus showing all 
the information of a finite automaton that is also shown in the figure of the 
corresponding Petri net. 

Figure 6: A state transition diagram of the Petri net of figure 5 



Annex: Modelling techniques 141 

We will use the following conventions for the graphical representation of a net: 

place 

store o processor 

o elementary processor 

o finite automaton 

Figure 7: Graphical conventions for Petri nets 

A.3 Data modelling 

D 
~ 
o 

composite place 

time consuming 
processor 

processor with a private 
store 

complex processor 

A functional data model consists of objects. We make a distinction between simple 
objects, called simplexes, and complex objects, called complexes. An example of 
a simplex is a specific person 'Jelle' or a specific job 'consultant' that are of the 
type 'person' or 'job' respectively. An example of a complex is a message of the 
type 'order'. 
A simplex has the following characteristics: 

it is atomic, i.e. we do not consider any internal structure in them; 
it is distinguishable; 
it belongs to a type, called class; 
the classes can be named by a noun, e.g. 'person' and 'job'. 

A simplex is called an instance of a simplex class. Simplexes are mutually related 
by functions, e.g. Jelle can be a consultant. The simplex classes and the functions 
are graphically represented by a schema. In a schema, a rectangle denotes a simplex 
class and a directed arc denotes a function f from one simplex class to another 
(figure 8). 

IA ~ B 

Figure 8: A schema with two simplex classes and one function 

In general we do not consider all possible instances of a schema, but only instances 
that satisfy specific constraints. There are constraints that occur frequently and 
others that occur less frequently. The less frequently occurring constraints can be 



142 Annex: Modelling techniques 

specified by predicates that should be true for every instance. Frequently occurring 
constraints are characterized by properties of functions. They also should be true 
for every instance. To be able to specify the properties of functions, we use the 
following conventions. Let f be a function defined on a subset Df of simplex class 
A where for every simplex in Df the image is in simplex class B. Df is called the 
domain of f and the set of all images in B of all simplexes in Df is called the range 
of f (Rf). Clearly, Rf is a subset of class B. Both the range and the domain may be 
subsets of the same class. 
We distinguish the following three properties of functions and use a graphical 
notation to represent them: 

· total 
A function f is said to be total if Df is equal to A. I A ~ B 

· surjective 
A function f is said to be surjective if Rf is equal to B. I A ~ B 

· injective 
A function f is said to be injective if every element of I A H--1 B 

Rf is an image of exactly one element of Df. 

Combinations of these properties may also appear, e.g. a total injective function 
between the simplex class 'employees' and the simplex class 'person', which 
specifies that every employee is a person and that every person can be at most one 
employee. Other constraints that are not necessarily properties of functions can 
occur frequently and have a graphical notation. Those are key constraints, exclusion 
constraints, and inheritance (is_a) constraints. They are defined for two or more 
functions, but are only shown for two functions: 
• key 

A key is a set of total functions ft, .. , fn with Dfi 
identical for all i, such that every element of Dfi is 
uniquely determined by these functions, i.e. if fl, .. , fn 
form a key for simplex class A then in every instance 
we have for all pairs of simplexes al and a2 of A that 
if h(al)=fi(a2) for i an element of {I, .. ,n} then al=a2. 

• exclusion 
Two or more functions ft, .. , fn with their domain in 
simplex class A form an exclusion if the intersection 
of the domains of ft, .. , fn is empty. 

• is_a relation 
An is_a relation is a total, injective function. Simplex 
class A is called a subtype and simplex class B a 
supertype. 

B 

B 

B 



Annex: Modelling techniques 143 

A complex class C of a schema S is a schema that is obtained from S by deleting 
some of the simplex classes and the functions. An instance of a complex class is 
called a complex (note that simplexes are unique within a complex). Figure 9 shows 
an example of a schema with a complex class called 'cargo'. 

Figure 9: An example of a schema with a complex class 

Up to this point, each simplex class is represented by a rectangle. Those simplexes 
that only occur as range are called attributes. In figure 9, attributes are for instance 
'no. of units' , 'length', and 'gross weight'. Simplexes that occur only as a domain 
and have functions that are the key of such a simplex are called associations. An 
example of an association is 'component' in figure 9. The remaining simplexes are 
usually called entities, e.g. 'cargo', 'self moving unit', and 'logistic unit'. We will 
use the following graphical notation in the rest of this book: 

--<>-attribute entily association 

Figure 10: The graphical notation of simplexes 

Using this notation, we will not show the key constraints of an association in a 
schema. Figure 11 shows the schema of figure 9 using the notation shown in figure 
10. 



144 Annex: Modelling techniques 

Figure 11: The schema of figure 9 using the notation of figure 10 

A.4 Coloured Petri nets and functional data modelling 
In the description of coloured Petri nets we have noticed that one of the charac
teristics of a token is its value, i.e. its value. The value of a token in a Petri net that 
models an information system is a complex, i.e. has a data structure. A state of a 
net is a set of tokens. It is allowed that in one state a simplex (i.e. an instance of an 
entity, an association, or an attribute) occurs in two tokens. The relation between 
the state space, a state, a token, and a complex is shown in figure 12. 

state space 

I \ 
I \ 

I \ 
I \ 

token 

I 
I \ 

~ ~complex 

Figure 12: States, tokens, and complexes according to Van Hee (1994) 



Annex: Modelling techniques 145 

A.5 Layered communication 
The ISOIOSI Basic Reference Model presents a layered approach to the modelling 
of the communication between two computer systems (we will use the notation of 
the ISOIOSI Basic Reference Model in this monograph). The principle of layering 
aims at hiding functionality provided by a lower layer to a higher layer. Two basic 
concepts are of importance (ISO 7498): 
• service 

The service of layer N is the capability of that layer and the layers beneath it, 
that is provided to (N+l)-entities at the boundary between the (N)-layer and the 
(N+ 1 )-layer . 

• protocol 
The protocol of layer N is the set of rules and formats which determines the 
communication behaviour of (N)-entities in the performance of (N)-functions. 

(N) stands for the number of the layer in the ISOIOSI Basic Reference Model (ISO 
7498). In this context, an entity is defined as an active element in a subsystem, 
whereas peer-entities are entities in different information systems in the same layer. 
An entity as defined by the ISOIOSI Basic Reference Model can be modelled as a 
processor in Petri nets. In figure 13 tbe OSI layering concept has been modelled 
with Petri nets. 

(N-l) service provider 

(N)-service provider 

Figure 13: Service and protocol 

(N)-service 

(N)-processor 

(N-l )-service 

Figure 13 shows that the (N-I)-service is provided to the processors in layer N. A 
service provider of layer N is modelled as a (N-l )-service provider and two finite 
automata (note that this is defined as a specially structured processor) that are 
communicating with the (N-I)-service provider. Each (N)-processor is in its tum 
a finite automaton. The places between an (N)-processor and an (N+ I)-processor 
are called service access points_ The realization of those places in software is called 
an inteiface by ISO. The interfaces between an (N)-processor and an (N+ I)-pro
cessor may be different for each software supplier. However, the service offered at 
a certain interface must be the same for each software product. 



146 Annex: Modelling techniques 

According to the conventions of the ISOIOSI Basic Reference model, a service 
consists of four basic primitives: 

request 
An (N)-processor sends a request to its service provider, requesting a service. 

• indication 
An (N)-processor receives an indication from its service provider as the result 
of a request of its peer-processor. 

• response 
An (N)-processor reacts to a received indication by sending a response to the 
service provider. 

• confinn 
An (N)-processor receives a conflrm from its service provider as the result of a 
response of its peer-processor. 

(N-l I-interface (N-l I-interface 

X.request--.Jo+ 

X.confirm ...... -....., 
(N-l )-service 

provider 

Figure 14: Conceptual primitives of a service 

f----I.... X.indication 

..f<of-- X.response j-
Figure 14 shows the time sequence diagram of the exchange of the service 
primitives of type 'X' between two (N)-processors. X stands for the service 
primitives defined for the service offered by layer N. Examples of X are the connect, 
the disconnect, and the data service primitives of a speciflc layer. Not all service 
primitives use the basic primitives, e.g. a data service primitive only uses the 
request and the indication. The time sequence diagram of flgure 14 can be 
transformed into a processor by replacing the two lines by the processor of the 
service provider. The rules by which the sequence of service primitives is specified, 
are part of the service provider (figure 15). 

l<.request -\----110-1 1-----IJIio> l<.indication 

X.confirmation ....... ---1 BoII----I-X.response 

(N·l I-service provider 

Figure 15: A processor to represent a simple service 



Annex: Modelling techniques 147 

In case each request is to be confIrmed before a next request can be exchanged, the 
places p and q together contain not more than one token. In the initial state only 
place p holds a token. A service primitive is represented by a connector that is 
connected to a place that can hold that service primitive. The value of the token 
consists of a command with parameters and data. The data is transparent to a service 
provider and is a complex. 
An (N)-service provider consists of two time consuming processors. According to 
the concepts of layered communication, an (N)-service provider and two processors 
of layer N+ 1 that communicate with the (N)-service provider, compose an (N+ 1)
service provider (fIgure 16). 

X.confirmation Kre uest X.indication X.response 

a2 

b2 

Figure 16: Composition of an (N+ 1 )-service provider 

The (N+l)-service provider can be composed oftwo processors a' and b' like the 
(N)-service provider, where a' is a composition of al, a2, and a3, and b' is a 
composition of b l, b2, and b3. 
Figure 16 shows that the processors in layer N+ 1 pass each service primitive from 
layer N to layer N+ 2, or vice versa. However, one service primitive from layer N+ 2 
may result in one or more service primitives to layer N. Such is specified by the 
(N+ 1 )-protocol between two (N+ I )-processors. The processors in a layer and their 
communication may be more complex than assumed thus far. An example is given 
by the flow control mechanism of the transport layer (N=4): an acknowledgement 
of receipt of data is to be received if for example the number of data requests is 
equal to a given number (in ISOIOSI terminology called the window size). If, for 
example, the window size is four, a processor can send at maximum four protocol 
data units to its peer-processor, wait for an acknowledgement, and send again four 
protocol data units. 



148 Annex: Modelling techniques 

The proof of the fact that two peer-processors in a layer and their underlying service 
provider compose a new service provider is outside the scope of this book. Protocol 
verification of regular protocols in Petri nets is discussed by Rambags (1993 and 
1994). Whereas most literature discusses the verification of specific protocols, e.g. 
Suzuki (1990) and Genrich and Shapiro (1992), Rambags (1994) and Bochmatm 
(1977) discuss unified methods for protocol verification. Rambags defines a 
protocol as a regular protocol if a set of strings over an alphabet can be described 
by a regular expression or if it can be accepted by a finite automaton. He specifies 
two algorithms to verify such a regular protocol. We will show that the protocols 
specified in this monograph, can be described by deterministic automata. There
fore, the algorithms of Rambags can be used for automatic verification. 

A.6 Other modelling techniques 
We will use timed, coloured, hierarchical Petri nets and functional data modelling 
to model the concepts and to specify the BTMS. Other modelling techniques can 
also be used. More informal techniques are most often used to show business 
processes (Bertrand, 1990). These informal techniques are primarily drawing 
techniques for the visualization of the structure of business processes. They can be 
mapped to existing formal techniques like timed, coloured, hierarchical Petri nets. 
Figure 17 shows the elements of a modelling technique, using triangles, rectangles, 
and arrows. 

.. 

Figure 17: Elements of a modelling technique 

A triangle is normally used to represent stock. It can be mapped to a place of a 
timed, coloured, hierarchical Petri net. A rectangle is used to represent a process 
and can be mapped to a processor. An arrow is identical to a connector. 

We have discussed the relation between timed, coloured, hierarchical Petri nets and 
state transition diagrams and their application to the specification of protocols. A 
specification techriique based on state transition diagrams and data modelling 
techniques is given by for instance the ISO (Estelle, 1988). State transition 
diagrams are a means to visualize protocols before they are specified in more detail 
using a formal technique. 



Glossary 149 

Glossary 

This glossary contains the concepts and their modelling components of timed, 
coloured, hierarchical Petri nets. The definition of the modelling components is 
given in Van Hee (1994). 

concept description modelled as 

action an action is the execution of a task firing of an elemen-
tary processor 

activity an activity is the execution of a service firing sequence of a 
with uniquely identified input and out- net 
put objects 

actor an actor is an organization, an organiz- non-elementary 
ational unit, or a person operating an processor 
information system or a business sys-
tem, an information on its own, or an 
information system that is operating a 
business system by exchanging signals 
with that business system 

bound a bound resource is a resource that is 
resource reserved by the information system of 

an actor for an activity or an action 

business a business process is the set of services open net 
process that a business system can provide 

business a business system is a synonym for an 
system interorganizational business system 

business the business process data structure is a data structure 
process data data representation of the structure and 
structure the behaviour of business processes 

business a business transaction is a synonym of 
transaction transaction 



150 

concept description modelled as 

business trans- the business transaction data structure is data structure 
action data the data structure of the information that 
structure 

contractual 
relation 

can be exchanged between two actors 
regarding a service or the execution of 
that service 

a contractual relation is a relation be
tween two actors where they, first of all, 
make agreements on the structure of an 
interorganizational business system at 
strategic and tactical level, and, second
ly, co-ordinate the behaviour of that in
terorganizational business system at 
operational level 

control signal a control signal is an information object token 
that is used to initiate an activity or an 

incidental 
relation 

action 

an incidental relation is a relation be
tween two actors for the execution of a 
standard service of a subordinate 

internal data the internal data structure is the data data structure 
structure structure of a token that can be present 

in the place 'selected procedures' of the 
BTMS 

interorganiza- an interorganizational business system non-elementary 
tiona I busi- is the aggregation of the business pro- processor 
ness system cesses of two or more actors 

interorganiza- an interorganizational information sys- non-elementary 
tional informa- tern is the aggregation of two or more processor 
tion system information systems 

Glossary 

interorganiza
tiona I system 

an interorganizational system is defined 
in two ways: 

non-elementary pro
cessor 

job 

it is the aggregation of an interorganiz
ational information system and an inter
organizational business system; 
it is the aggregation of two or more 
actors 

a job is the execution of a procedure firing sequence of an 
open net 



Glossary 151 

concept description modelled as 

message a message is a unit of information ex- token 
changed between a sender and a reci-
pient 

message data the message data structure is the struc- data structure 
structure ture of the information that can be ex-

changed between two actors as part of a 
transaction 

message type a message type is the set of messages attribute 
that have the same characteristics 

object an object is a physical thing (e.g. a con- token 
tainer), an abstract concept (e.g. 
beauty), or a piece of information (e.g. 
a message) 

object type an object type is the set of objects with complex 
similar features 

procedure a procedure is a specific ordering of open net 
steps that has a beginning and an end, 
and is used to manage the execution of 
a service 

report signal a report signal is an information object token 
that is used to represent the result of an 
activity or an action 

resource a resource is an object that can be used token 
to facilitate an activity or an action 

service a service is a specific ordering of tasks open net 
that has a beginning and an end 

step a step is an elementary unit of work in non-elementary pro-
an information system cessor 

subordinate an actor is called a subordinate with non-elementary pro-
respect to another actor if the first actor cessor 
is able to execute a service on behalf of 
that second actor 

superior an actor is called a superior of another non-elementary pro-
actor if the first actor can outsource the cessor 
execution of a task to that second actor 



152 

concept 

task 

transaction 

transaction 
protocol 

description 

a task is an elementary unit of work that 
is capable of consuming clearly defined 
input objects and producing clearly 
defined output objects on the basis of a 
control signal, possibly using resources, 
and producing a report signal 

a transaction is a sequence of messages 

a transaction protocol is a set of allowed 
sequences of message types 

Glossary 

modelled as 

elementary processor 

two tokens: one of the 
superior and the other 
of the subordinate 

four communicating 
non-elementary pro
cessors 



References 153 

References 

Aalst W.M.P. van der, Time coloured Petri nets and their application to logistic 
systems, Master thesis Eindhoven University of Technology, 1992. 

Aalst W.M.P. van der, Hee KM. van, Houben GJ., Modelling workflow manage
ment systems with high-level Petri nets, internal note Technical University of 
Eindhoven, 1993. 

Aerts AT.M., Hee, KM. van, Modelling with a Functional Datamodel, Informatie 
31,12, p. 941 - 956,1989 (in Dutch). 

Aerts AT.M., Alblas G., Hee K.M. van, Conceptual modelling of systems, Aca
demic Service, 1991 (in Dutch). 

Ballou RH., Basic business logistics: transportation, materials management, 
physical distribution, Prentic Hall Inc., New Jersey, 1987. 

Barret S., B.R Konsynski, Interorganizational Information Sharing Systems, MIS 
Quarterly, Special Issue, pp. 93 - 104, Fall 1982. 

Bertrand J.W.M., Wortmann J.C., Wijngaard J., Production control: A structured 
and design oriented approach, series Manufacturing research and technology 
volume 11, Elsevier Science Publishers B.V., 1990, ISBN 0-444-88122-0 (VoL 
11). 

Bochmann G.Y., Gecsei J., A unified methodfor the specification and verification 
of protocols, in B. Gilchrist, ed., Information Processing, volume 77, pages 
229-234, IFIP, North-Holland, 1977. 

Bowersox D.1., Closs D.J. and Helferich O.K., Logistical management, A systems 
integration of physical distribution, manufacturing support and materials pro
curement, third edition, Macmillan Publishing Company, 1986. 

Cash n., Konsynski B.R, IS redraws competitive boundaries, Harvard Business 
Review, pp. 134 - 142, march-april 1985. 

Chen P.P., The Entity-Relationship Model - towards a Unified View of Data, ACM 
Transactions on Database Systems 1 p. 9 - 36, 1976. 

Creemers M.R, Transaction Engineering: process design and information tech
nology beyond interchangeability, 1993 (ISBN 90-9006253). 

Date c.J., An introduction to database systems, volume 2, Addison-Wesley Pub
lishing Company, 1983. 



154 References 

Davenport T. H., Process innovation: reengineering work through Information 
Technology, Harvard Business School Press, Boston Massachusetts, 1993. 

Ediforum, National EDI-guide 199211993, Ediforum, Leidschendam, 1992 (in 
Dutch). 

EDIT, EDI Development and Implementation Tool, version 2.4, User Manual, 
Bakkenist Management Consultants, 1993. 

EDP Analyzer, The rise of 'cooperative' systems, Volume 25, No.6, june, 1987. 

Ellis c.A., Nutt GJ., Modelling and Enactment of Workflow Systems, in Proceed
ings Petri Net conference, Springer Verlag, 1992. 

Encarnacao J.L., Lockemann P.C. (Eds.), Engineering databases, connecting is
lands of automation through databases, Springer-Verlag, 1987. 

Estelle, ISO 9074, Information Processing Systems - Open Systems Interconnection 
- Estelle - Aformal description technique based on an extended state transition 
model, ISO, 1988. 

ExSpect, User Manual, Technical University of Eindhoven, 1990. 

Genrich RJ., Shapiro R.M., Formal verification of an arbiter cascade, in K 
Jensen, ed., Application and theory of Petri nets, volume 616 of Lecture Notes 
in Computer Science, pages 205-223, Springer-Verlag, June 1992. 

Gielingh ir W.E, General AEC Reference Model (GARM), TNO Building and 
Construction Research, BI-88-150, okt. 1988. 

Gifkins M., Hitchcock D., The EDI Handbook, Trading in the 1990s, Blenheim 
Online, 1988. 

Goor A.R. van, Ploos van Amstel M.l, Ploos van Amstel W., Physical distribution, 
Stenfert Kroese. Leidenl Antwerpen, 1989 (in Dutch). 

Hammer M., Champy J .• Reengineering the corporation, a manifesto for business 
revoLution, Nicholas Brealy Publishing Limited, 1993. 

Heck H.W.G.M. van, Design management of EDI systems, Samsom Bedrijfsinfor
matie, 1993. 

Hee KM. van, Verkoulen P.A.c., Data, Process and Behaviour Modelling in an 
Integrated Specification Framework, Technical University of Eindhoven, con
cept, february 21, 1991. 

Hee KM. van, Information Systems Engineering: aformal approach, Cambridge 
University Press, 1994. 

Hofman, W.J., EDI handbook, electronic data exchange between organizations, 
Tutein Nolthenius, Amsterdam 1989 (in Dutch). 



References 155 

ISO 7498 Information Processing systems Open Systems Interconnection - Basic 
Reference Model, ISO, 1984. 

ISO 9735, Electronic Data Interchange for administration, commerce and trans
port (EDIFACT) - Application level syntax rules, ISO, 1988. 

ISO CD 9735: 1993(E), Electronic Data Interchange for administration, commerce 
and transport (EDIFACT) - Application level syntax rules, United Nations, 1993. 

ISOIDP 10026-1,2,3, Information Processing Systems - Open Systems Intercon
nection - Distributed Transaction Processing (part 1: model, part 2: service 
definition, part 3: protocol specfication), 1989. 

ISO/IEC ITC I/WG 3 N255, Open-EDI Reference Model Standard - Working Draft 
1993. 

IfS analyzer (formerly EDP Analyzer), The strategic value of EDI, Volume 27, No. 
8, August 1989. 

Jensen K., Coloured Petri Nets: a high level language for system design and 
analysis, published in: G. Rozenberg (Ed.): Advanced Petri Nets 1990, Lecture 
Notes in Computer Science, Springer-Verlag. 

King W.R., Grover V., Hufnagel E.H., Using information and information technol
ogy for sustainable competitve advantage, Information and Management, 17 
(1989), pp. 87-93, 1989. 

Koop c., ExSpect prototype of an actor in external logistics, Technical University 
Eindhoven, december 1992 (in Dutch). 

Kreuwels C.M.A., Integration of external logistics based on EDI, to a multi-level 
supply control between supplier and buyer, Kluwer Techniek, Deventer, 1994 
(in Dutch). 

Nederveen ir. G.A. van, A building data model excercise using the GARM ap
proach, A contribution to COMBINE Report, Working Draft, TNO Building and 
Construction Research, May 1991. 

Nijssen G.M., Halpin T.A., Conceptual Schema and Relational Database Design, 
Prentice Hall, 1989. 

Ozsu M.T., Valduriez P., Principles of distributed database systems, Prentice-Hall 
International Editions, 1991. 

Petri c.A., Kommunikation mit Automaten, PhD thesis, Institut fUr Instrumentelle 
Mathematik, Bonn, Germany, 1962. 

Petri C.A., Introduction to general net theory, in W. Brauer, editor, Net theory and 
applications: Proceddings of the Advanced Course on General Net Theory, 
Processes and Systems, volume 84 of Lecture Notes in Computer Science, pages 
1-20, Springer-Verlag, 1980. 



156 References 

Porter M., Competitive advantage: creating and sustaining superior performance, 
The Free Press, New York, 1985. 

Rambags P.M.P., Automatic verification of Regular Protocols in PIT Nets, Com
puting Science Note 93142, Eindhoven, December 1993. 

Rambags P.M.P., Decomposition and Protocols in High-level Petri nets, PhD 
thesis, Eindhoven University of Technology, 1994. To be published. 

Reisig W., Petri Nets: An introduction, Prentice-Hall, 1985. 

Royal NedUoyd N.v., Nedlloyd Transport and Logistic Glossary, Bureau NedUoyd 
Standards, version 1, 1989. 

Sad whani A. T., Electronic systems enhance JIT operations, Management Account
ing,1987. 

Schultz 1.F.R, EDI; game of chance, game of power, or cooperation, Research to 
the influence of environmental and group processes on EDI development 
projects, Samsom Bedrijfsinfonnatie, 1994 (in Dutch). 

Sokol P.K., EDI, the competitive edge, Intertext Publications, McGraw-Hill Book 
Company New York, N.Y., 1989. 

Spivey I.M., Understanding Z: A specification language and itsformal semantics, 
Cambridge Universtity Press, 1988. 

Stone B.K., One to get ready, How to prepare your company for EDI, Published 
by The CoreStates Banks Philadelphia National Bank, Hamilton Bank and New 
Yersey National Bank, 1988. 

Streng RA.G.J., Dynamic modelling to asses the value of EDI, A study in the 
Rotterdam port community, 1993. 

Suomi R., What to take into account when building an interorganizational infor
mation system, Turku School of Economics and Business Administration, Turku, 
1989. 

Suzuki I., Formal analysis of the alternating bit protocol by temporal Petri nets, 
IEEE Transactions on Software Engineering, 16(11):1273-1281, November 
1990. 

TDID, Trade Data Interchange Directory, version 91.1, United Nations, 1991. 

Tilanus C.B., External logistics and external constraints, reprint Bdkl31O, Trans
port, jrg. 3,7 en 21 juli, 2 en 18 augustus, 1990 (in Dutch). 

UNIECE WPA GRl, Recommendation on Interactive EDI, version 3.1, October 
1992. 

UNIEDIFACT, Business and Information Modelling Guidelines, Working draft 
version 2.2a, july 1993. 



References 157 

Vlist P. van der, Telematic Networks, Tutein Nolthenius, Amsterdam, 1987 (in 
Dutch). 

Vlist P. van der, et al., EDI in trade, Samsom Bedrijfsinformatie, Alphen aan den 
Rijn, 1992 (in Dutch). 

Vlist P van der, et al., EDI in industry, Samsom Bedrijfsinformatie, Alphen aan den 
Rijn, 1992 (in Dutch). 

Wierda F.W., Developing Interorganizational Information Systems, Delft, 1991. 

Williamson O.E., Markets and Hierarchies: analysis an antitrust implications, 
Free Press, New York, 1975. 

Womack J.P., Jones D.T., Roos D., The machine that changed the world: the story 
of lean production, Harper Perennial, New York, 1991. 

Womack J.P., Jones D.T., From lean production to the lean enterprise, Harvard 
Business Review, March-April 1994. 



158 

Index 

A 
accepting 89 
accurate information 106 
action 19, 22 23, 29, 31,40,46, III - 112, 
116, 121 

completeness 97 
group oriented 11 0 

activity 19,22 24,29,31,40,110,113-
114,123 

completeness 97 
activity model 125 
actor 10, 15 - 16,23,46,88 

role 30,43 
agreement 

long term 25 
Application Programming Interface 126 
assemble-to-order 102 
association 121, 143 
attribute 35, 143 
autonomous unit 130 
availability 22,42, 121 
availability time 40,62,65 - 66, 69, 96 

B 
behaviour 16,26 - 27, 29,40, 126, 135 
breakbulk 91 
business activity 10 
business administration domain III 
Business and Information Modelling 123-
124,127 
business definition 42 

data structure 45 46 
business logistics 86 
business objective 126 
business operation 42 

data structure 45 - 46 
Business Operational View 125 
business process II, 18, 23, 26, 32 - 33,40, 
43, 110 III 

data structure 39 - 40 
kernel 96 

business process engineering 11,85, 102, 
105, 110, 130, 132 
business rule 124 
business system 15, 17 - 18, 101, 112 
business transaction 114, 116, 124 

Index 

Business Transaction Management System 
1I,35 

C 
capacity selling 102 
cargo 93 - 94 

bulk 93 
containerized 93 
dangerous 95, 97 
packaged 93 

carrier 95 
centralized locking 116 
claims management 131 
closed net 137 
co-ordination level 16,25,30 
collecting chain 110 
commit operation 115 
commodity type 97 
completion time 62,67, 80 81 

confirmed 70 
planned 67,70 
required 67 

complex 23, 141, 143 144 
complex class 143 
component 135 
Computer Aided Design 36 
concurrency control algorithm U5 
confirmation processor 69 
connector 22,27,40,136 
consignee 95 
consignment 91 

packing sequence 119 
consolidation 91 
constraint 142 

exclusion 142 
inheritance 142 
key 142 

consumption 19 
control 

backward 20 
forward 20 

control signal 18,22 23, 1I2 
cost 93,97 
cost savings 106 
cross-functional processes 110 



Index 

customer service 107 
customs item 97 
customs procedure 97 

D 
dangerous goods types 97 
data approach 84 
data model 135 
data structure 96 
data type 48 
database operation 116, 127 
database transaction 114 
decentralized locking 116 
decomposition 27,40 
decoupling point 90 
delivering 90 
delivery conditions 93 
delivery location % 
delivery place 93 
despatching 89 
deterministic automaton 83 
dialogue 124, 126 

identifier 118 
reference 118 

dialogue type 124, 126 
discharging 89 
distributed databases 114, 127 

architecture 115 
distributed transaction processing 105 
document type 114 
domain 142 
domain dependency 11 
domain independency 11 
dossier 114 
duration 20, 80 

E 

expected 20 
maximum 20 
minimum 20 

EDI 105 
batch 117 
interactive 117 - 118, 123, 127 
transaction 125 

EDI organization 131 
EDI translation software 131 
EDIFACT 84, 117, 121, 131 

data element 121 
repository 124 
segment 121 
segment group 123 
service segment 117 

EDIT 12,84, 121 
efficiency benefits 106 

Electronic Data Interchange 9 
advantages 9 
design management 9 
social aspects 9 

end offset 20 
engineer-to-order 103, 132 
entity 121, 143 
equipment 118 
error 82 
Exception Handler 37, 77 
execution interval 

confirmed 46 
planned 46 
required 46 

ExSpect 53,83 
external communication 10 
external logistics 86 - 87, 131 

generic model 92 

F 
final confirm 70 
finance 101 
finite automaton 84, 140 

non-deterministic 84 
firing 138 
firing rule 96, 101, 138 
firing sequence 138 
flat net 136 
forecasting 107 
forwarder 95 
function 122,141 

injective 142 
property 142 
surjective 142 
total 142 

functional data model 141 
functional data modelling 122, 135 
Functional Service View 126 

G 
generation 19,84 
goods flow 87 
governance domain 111 
Group Connection Point 110 
Group Disconnection Point 110 

H 
handling 89 
health care 101 
hierarchic nesting 122 
hierarchical net 137 
hierarchy 110 

159 



160 

implementation 83, 85 
improved forecasting 106 
improved planning 106 107 
improved trading partner relations 107 
in transit mixing 91 
indication 146 
informal techniques 148 
information flow 87,124, 127 
information system 15,112 
instance 11, 141 
Interaction Connection Point 110 
Interaction Disconnection Point 110, 112 
interchange 118, 124, 126 
interface 145 
internal communication 10 
internal data structure 39,45 - 46 
internal logistics 87 
internal modelling rules 39 
interorganizational business system 10, 26, 
129 
interorganizational information system 10, 
129 
interorganizational system 9, 105, 108, 129 

business opportunities 106 - 107 
theoretical framework 109 

Interraction Connection Point 112 
ISO/OSI Basic Reference Model 145 

J 
job 33 - 34, 37, 113 114 

K 
key-entry errors 106 

L 
larger market shares 107 
layer 145 
layered communication 127 
lean production 102 
liner-agent 95 
loading 88 
local recovery manager lIS 
location 

delivery 119 
despatch 119 

logistical process 86 

M 
make-to-order 102 
management domain 85, 126, 128 
manufacturing support 86,91 
mapping 121 
material management 86 

message 28, 30, 35 - 36 
time sequence 28 
allowed sequence 30 - 31, 35 
attribute 117 
basic type 31 
data structure 39,42 - 43 
delivery 118 
despatch advice 118 
exception 32 
exception response 32 
final confirm 34 
hierarchic structure 121 
identification 44 
instruction 28 
just-in-time delivery 119 
kernel message data structure 121 
modelling rules 39 
multi-consignment 120 
order 118 
planning 29 
price/sales catalogue 118 
recipient 30, 44 
report 29 
request 32 
response 34 
sender 30,43 
sequence 29 
single consignment 120 - 121 
standardization 114 
structure 119 
type 30 

message design 124 
message development 130 131 
Message Handler 37 
message implementation 130 - 131 
message type 35,44, 118 
mode of transport 95,97 
modelling 11 
modelling technique 135 
movement 19 

N 
net 22 

firing sequence 23,34 
network 35,37 
new markets 107 

o 
object 21,23,27,40,64, 121 

confirmed status 45 
consumption 26 
identity 40 
information 15,22 
input 21-22,31,43,64 

Index 



Index 

output 21 - 22, 31,43,64 
physical 15, 18 
planned status 45 
production 26 
required status 45 
value 40 

object type 21,23,26,88,101,118,122 
open net 23, 34 35, 137 
Open-EDI environment 125 
Open-ED! Reference Model 85, 123, 125 
Open-ED! Support Service 126 
operational level 26 27,30 
organizational network 9 
organizational structure 130 

p 

packaging 118 
packaging type 94, 97 
parameters 92 
party 125 
Petri net 

data representation 40 
Petri nets 

coloured 137,144 
hierarchical 136 
timed 137 
timed, coloured, hierarchical 135 

physical characteristics 92, 95 
physical distribution 86 
physical location 101 
pick-up place 93,96 
picking 89 
place 22 - 23, 27, 40, 63, 101, 136 137 

composite 35, 137 
input 63,101, 136 
output 63,80, 101, 136 

place of acceptance 93, 95 - 96, 10 I 
place of delivery 93,95 - 96, 101 
planning chain 110 
port of discharge 93 
port of loading 93 
pricing group 119 
primary copy locking 116 
procedure 9 - 11,29,33 - 34, 36, 42, 45, 47, 
96,99, Ill, 113 -114,116,127 

example 38 
normal 54 
rollback 54, 57, 78 

Procedure Designer 36, 54 
Procedure Interpreter 36 
Procedure Selector 36, 80, 96 
process 139 
process approach 84, 110 
process innovation 110 

process model 135 
processor 22, 136 

begin 56 
completion 57 
complex 139 
composite 137 
confirmation 60,78 79 
elementary 22 - 23,137, 139 
end 75 
end-rollback 58, 76 
exception handling 73 
exception handling 2 72 
final confirm 76 
firing rule 24,41 
in-house 35, 116 
initiation 57, 60 61, 77, 79 
non-elementary 23,34, 137 
response 75 
rollback 57, 76, 78 
start 58,75 
time consuming 23,139, 147 
transformation 56 
update initiation 71 
update initiation 2 74 

product 9,94, 118 
product innovation 110 
producttype 94,97 
production 

convergent 19 
divergent 19 

protocol 112,126 127,135,145 
contract 116 
execution 117 
regular 83, 148 
superior initiated execution 60 

protocol verification 148 
prototype 82 
purchasing 86 

R 
range 142 
read operation 1I5 
realization 83 - 84 
receiving 90 
recipient 118 
reduced material cost 106 
reduced order cost 106 
reduced order-pay-cycle period 106 
reduced stock 107 
regular expression 83 
regulations 88, 92, 95 
relation 

contractual 26,30,42 
incidental 26, 30,42 

161 



162 

report signal 18, 22 - 23, 112 
request 146 
request sequence 66 
required completion 20 
required start 20 
resource 21 - 23, 41, 94,114 

bound 21,30 - 31, 116 
Resource Manager 116 
resource ownership 97 
resource type 26 
response 146 
response sequence 67 
retransmission count 35,65 - 66, 69, 76 - 77 
retransmission time 35, 76 - 77 
role 123, 126 - 127 
role player 126 
rollback operation 115 
route planning 36 

S 
scenario 85,123,125 - 127 

identifier 118 
Open-EDI 125 

scheduler 115 
schema 141 
script 113 
self-moving unit 94 
self-moving unit type 94 
sender 118 
sequence of transfer 42, 44 
service 9,16,18,23 - 24,26 - 28, 30 - 31, 
33, 36,42 - 43, 45, 47, 111, 127, 145 

standard 26, 30 
service access point 145 
Service Designer 36 
service primitive 147 
service provider 146 
shipment 

return 106 
timely 106 

shipper 95 
signal 15 
simplex 141 
simplex class 141 
simulation 83 
specialization 122 
specification method 135 
start offset 20 
starting time 62,67,81 

confirmed 70 
planned 67, 70 
required 67 

state 135, 138, 140, 144 
initial 138 

Index 

state space 135,138,144 
state transition 135, 138, 140 
state transition diagram 84, 140, 148 
step 33 - 34, 36, 96, 105, 113, 116 

confirmation 34 
end 34 
end-rollback 34 
final confirm 34 
initiation 34 
response 34 
rollback 34 
start 34 

stevedore 95 
store 139 
storing 89 
strategic level 25 27, 30 
stripping 90 
structure 16, 27, 29, 40, 42, 126 
stuffing 90, 95 
subnet 137 
subordinate 19, 23, 26, 30, 95 
subtype 121 - 122, 142 
superior 19,23,30,77,95,116 
supertype 121 122,142 
supplying 90 
syntax 117 
system 135 

T 

closed 135 
open 135 

tactical level 26 - 27, 30 
task 18,23,26,28,30,33,36,40 41,88, 
101, III 114, 123 

alternative 57 
technical network 9 
time of acceptance 95 - 96 
time of delivery 95 96 
time sequence diagram 28, 146 
token 11,22 - 23, 35, 39, 42, 47,96,136 

colour 137 
data structure 35 
identity 23, 137 
place 23 
time stamp 23, 137 
value 23,137, 144 

trace 138 
tracking and tracing 29 
trading relations 132 
transaction 28,30, 105, 11l - 112, 124, 126 

atomic 31, 115 
confirmation protocol 30 
consi stent 31, 115 
contract protocol 30,42 



Index 

transaction (continued) 
conversational 115 
data structure 42 - 43 
durable 31,115 
EDI 125 
execution protocol 30, 32, 36, 42 43 
flat 115 
identification 42,44 
incoming 34 - 36, 47 - 48, 75,114 
initiation protocol 30 
isolated 31, 115 
long-life 115 
nested 115 
outgoing 33, 35,47 - 48 
planning protocol 30, 42 
protocol 29 - 31, 35, 39 
reference 118 
rollback protocol 30, 37 
short-life 115 
subordinate initiated 30 
superior initiated 30 

transaction cost economics 110 
transaction engineering 105, 110 111 
transaction management 105 
transaction oriented ordering 110 
Transaction Protocol Designer 36 
Transction Manager 116 
transport 17 
transporting 89 
tree constraint 46 
two phase locking 116 

U 
uncertainty 16 
unitofwork 18,33,115-116 

v 
validation 82 
value chain 110 
verification 83 
vertical structure 110 

W 
warehouse operator 95 
warehousing 90 
workflow 114 
Workflow Management 105 
Workflow Management System 9, 114 
write operation 115 

163 



Samenvatting 

Actoren, bijvoorbeeld ondernemingen of afdelingen van ondernemingen, gaan in 
toenemende mate over op het klantgericht leveren van produkten en diensten. 
Elektronische informatieuitwisseling en automatische verwerking van die infor
matie speelt daarbij een steeds grotere roI. Dit proefschrift richt zich op het 
ontwikkelen van concepten voor bedrijfsprocessen en een conceptueel model voor 
de uitwisseling en verwerking van informatie. Het doel is het ontwikkelen van 
generieke software voor de informatie-uitwisseling ter ondersteuning van be
drijfsmatige processen. Er is een conceptueel model gemaakt van deze generieke 
software en dit conceptueel model kan gebruikt worden als formele specificatie 
voor de bouw. Er is een eerste prototype gemaakt waarmee de haalbaarheid is 
aangetoond. 

De bedrijfsmatige processen zijn gemodelleerd als 'timed, coloured, hierarchical 
Petri nets'. De generieke software is ook gemodelleerd met 'timed, coloured, 
hierarchical Petri nets' , waarbij de kleuring van de Petri netten is weergegeven met 
het functionele datamodeL De principes voor het modelleren van de interactie zijn 
afgeleid van de ISO/OSI standaard voor gedistribueerde transactieverwerking. 
Verder is gebruik gemaakt van de gelaagde decompositiemethode van het ISO/OSI 
Basic Reference Model voor de ontwikkeling van transactieprotocollen. 

Het conceptuele model leidt tot de ontwikkeling van nieuwe generieke software 
(BTMS: Business Transaction Management System) die als uitbreiding van de 
tools op platforms (tools zijn bijvoorbeeld een DBMS (Data Base Management 
System) en een UIMS (User Interface Management System» gezien kan worden. 
De functionaliteit van een BTMS is in de huidige systemen specifiek voor een 
applicatie. 
Een BTMS werkt op basis van procedures voor het afhandelen van onder handen 
werk. Een procedure ondersteunt een dienst van een actor. Als zodanig kan een 
BTMS de afhandeling van werkzaarnheden door een actor ondersteunen. 
Er is een grote economische behoefte aan dergelijke software, aangezien applicatie 
specifieke software te duur is en de samenwerking tussen bedrijven van grote 
economische waarde wordt geacht. Deze samenwerking is echter pas haalbaar met 
een generieke BTMS. 



A conceptual model of a 
Business Transaction Management System 



" 

STELLINGEN 

behorende bij het proefschrift 

A conceptual model 
ofa 

Business Transaction Management System 

van 

WoutHofman 

Eindhoven, 13 september 1994 



I 
Een Business Transaction Management System maakt het mogelijk infor
matiesystemen met relatief weinig inspanning en in korte tijd aan te passen 
aan nieuwe of vemieuwde bedrijfsprocessen en organisatiestructuren [1]. 

[1] hoofdstuk 7 van dit proefschrift. 

II 
Een Workflow Management System zoals gedefinieerd door Ellis en Nutt 
[1], is een instantiatie van een Business Transaction Management System 
voor het besturen en beheren van documentstromen [2]. 

[1] Ellis and Nutt, Modelling and Enactment of Workflow Systems, in Proceedings 
Petri Net conference, Springer Verlag, 1992. 

[2] hoofdstuk 6 van dit proefschrift. 

III 
De integratie van een Business Transaction Management System en CASE
tools werkt kostenbesparend. 

IV 
De toepassing van een Business Transaction Management System zal de 
rol van EDI-organisaties structureel veranderen. 

V 
De directe baten van het vervangen van documentstrornen door elektroni
sche berichten zijn voor de verzender hoger dan voor de ontvanger [1], [2]. 

[1] Stichting UTC, Een verkenning van kosten en baten van EDI bij verladers en 
vervoerders,1994. 

[2] Meer P.C.M. van der, EDl met de toeleveranciers, in documentatie Nationaal 
EDI congres 1993, Stichting Ediforum, 1993. 

VI 
De werkgroep Business and Information Modelling van de EDIFACT 
Board van de Verenigde Naties [1] dient zich meer rekenschap te geven van 
de onderliggende structuur in de comrnunicatie tussen organisaties [2]. 
AIleen dan is het rnogelijk stabiele standaarden te ontwikkelen. 

[1] UNIEDIFACT, Business and Information Modelling Guidelines, Working draft 
version 2.2a, july 1993. 

[2] hoofdstuk 6 van dit proefschrift. 



vrr 
Zoals de toepassing van EDI in aile sectoren economische voordelen geeft 
[1], [2] en [3], zal ED! ook aanzienlijke voordelen geven bij de ontwikke
ling, de invoering en het beheer van het berichtenverkeer zelf [4]. 

[I] Hofman, W J., EDI handbook, electronic data exchange between organizations, 
Tutein Nolthenius, Amsterdam 1989 (in Dutch). 

[2] Vlist P van der, et aI., EDI in trade, Samsom Bedrijfsinformatie bv, Alphen aan 
den Rijn, 1992 (in Dutch). 

[3] Vlist P van der, et aI., ED] in industry, Samsom Bedrijfsinformatie bv, Alphen 
aan den Rijn, 1992 (in Dutch). 

[4] Shepherd Alan, Hofman Wout, ED] Management -Its application inAutomotive 
supply, in Proceedings of the 5tb World Congress of EDI users, 1994. 

vm 
Alleen met duidelijke doelstellingen voor telematicabeleid in het verkeer 
en vervoer is het mogeJijk om de resultaten van een dergeJijk beleid te 
toetsen [1]. 

[1] Ad-hoc Commissie Telematica Verkeer en Vervoer, Telematica in verkeer en 
vervoer, Raad voor Verkeer en Waterstaat, 1993. 

IX 
De praktische bruikbaarheid van formele methoden en technieken is groter 
naarmate men relatief meer tijd besteedt aan de toepassing van die metho
den en technieken in concrete situaties dan aan het vergelijken met andere 
methoden en technieken. 

X 
De creativiteit nodig voor het schrijven van een proefschrift en aanverwante 
stellingen is maximaal op het moment dat men bezig is met volledig andere 
activiteiten. 


	Voorblad
	Preface
	Contents
	1 Introduction
	2 Conceptual modelling
	3 Data structures
	4 Structure and behaviour of the BTMS
	5 External logistics
	6 Other approaches
	7 Conclusions and further study
	Annex: Modelling techniques
	Glossary
	References
	Index
	Samenvatting
	STELLINGEN

