

Reactive machine control : a simulation approach using chi

Citation for published version (APA):
Hofkamp, A. T. (2001). Reactive machine control : a simulation approach using chi. [Phd Thesis 1 (Research
TU/e / Graduation TU/e), Mechanical Engineering]. Technische Universiteit Eindhoven.
https://doi.org/10.6100/IR548334

DOI:
10.6100/IR548334

Document status and date:
Published: 01/01/2001

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 16. Nov. 2023

https://doi.org/10.6100/IR548334
https://doi.org/10.6100/IR548334
https://research.tue.nl/en/publications/6119c56a-a10f-43a1-8cfb-e4187d3d4348

Reactive machine control
a simulation approach using χ

A.T. Hofkamp

Voorkant: Tekening door G.J. Pouw te Naarden.
De tekening laat het interne kruiwerk van de molen te Zeddam (Gld) zien.
Deze stenen torenmolen is tussen 1440 en 1450 gebouwd. Het is de oudste in
bedrijf zijnde wind-korenmolen van Europa, en staat in de UNESCO top 100
van Nederlandse monumenten.
De molen is te bezichtigen aan de Bovendorpstraat 14 te Zeddam.
Voor meer informatie, zie http://welcome.to/torenmolen.nl .

Drukker: Universiteitsdrukkerij Technische Universiteit Eindhoven

The work in this thesis has been carried out under the auspices of the re-
search school IPA (Institute for Programming research and Algorithmics).

c© Copyright 2001, A.T. Hofkamp
All rights reserved. No part of this publication may be reproduced, stored in a retrieval
system, or transmitted, in any form or by any means, electronic, mechanical, photocopying,
recording or otherwise, without the prior written permission from the copyright owner.

CIP-DATA LIBRARY TECHNISCHE UNIVERSITEIT EINDHOVEN

Hofkamp, Albert Th.

Reactive machine control : a simulation approach using χ / by Albert Th.
Hofkamp. - Eindhoven : Technische Universiteit Eindhoven, 2001. -
Proefschrift. - ISBN 90-386-3012-3
NUGI 841
Subject headings: virtual machines / reactive machine control / development
tools / simulation / chi language

Reactive machine control
a simulation approach using χ

PROEFONTWERP

ter verkrijging van de graad van doctor aan de
Technische Universiteit Eindhoven, op gezag van de

Rector Magnificus, prof.dr. R.A. van Santen, voor een
commissie aangewezen door het College voor
Promoties in het openbaar te verdedigen
op dinsdag 6 november 2001 om 16.00 uur

door

Albert Theo Hofkamp
geboren te Leeuwarden

iii

Dit proefontwerp is goedgekeurd door de promotoren:

prof.dr.ir. J.E. Rooda
en
prof.dr. M. Rem

Copromotor:
dr.ir. J.M. van de Mortel-Fronczak

iv

Preface

In March 1997, I started working at the Systems Engineering Group for my final project of
OOTI1. I liked the work and the environment, and thus agreed to stay for a PhD on design
for the design and implementation of a tool set for the development of machine control
systems. Now, three years later, I have finished the project, had a lot of fun, and learned
a lot.

Since I wrote this thesis, my name is on the front of this thesis. However, I am not
the only person that worked on its contents. I would like to thank everybody involved
for his or her assistance in this project. First of all, dr.ir. J.M. van de Mortel-Fronczak,
prof.dr.ir. J.E. Rooda, and prof.dr. M. Rem for their help and time while writing this
thesis.

I would like to thank dr.ir. W.T.M. Alberts, dr. G. Fábián M.Sc, and dr.dipl.-ing. G. Nau-
moski for their involvement in the compiler design and implementation, and ir. N.Z. Chen
for constructing the simulation engine. Also, I thank dr. H. Geuvers for his help with the
type checking algorithm, and correcting that part of my thesis.

A large number of people invested their time and energy in the paint-factory case study.
Without them, the study would not have been possible. Dr.ir. D.A. van Beek defined the
global requirements, ir. K.J. Eijsvogels came with the idea of a paint factory and performed
the first simulations, ing. H.W.A.M. van Rooij, F.G.J. Soers, and F.A.J.C. van Stiphout
created the physical version of the machine that ir. M.H.M. van Duin brought to life by
designing and implementing the operational controller.

Last but not least, I thank Mieke, Corry, and Anja for their discussions about the
challenges and problems of every day life. They provided the counterweight to prevent me
from drifting into the technicalities of work.

In this thesis, Chapter 1 discusses the topic of this project, the design and implementa-
tion of reactive control systems for industrial machines using simulation. It introduces an
approach to realize the construction of a controller, and discusses a number of important
design decisions made in the project. One of these decisions is the simulation language.
The chosen language χ is explained in the second chapter. This chapter also considers
the differences between the real world around us, and the simulation world. Chapters 3

1Post-graduate designer programme Software Technology.

v

and 4 explain the design and implementation of the tool to perform the transformation
from simulation to the real world. The fifth chapter discusses the paint-factory case study.
This case study is the first larger experiment of the approach proposed in the first chapter.
Chapter 6, the final chapter of this thesis, reflects on the work done and draws conclusions.
Also, suggestions for next steps are made.

Summary

Customers want their products cheap and tailored to their needs. In the production process,
this means that each product is more or less unique, yet they have to be manufactured in
large enough quantities to keep the costs low. At the same time, the life time of a product
is getting shorter. In order to sell as many products as possible, a short time-to-market
is essential. To meet these demands, production machines must be constructed in a short
time, with enough flexibility to manufacture each product variant in large enough volume.
The short delivery time of machines and the requirements with respect to flexibility makes
the design of these machines and their control systems increasingly complex. The Systems
Engineering Group is therefore investigating new methods to design machines and their
control systems. The focus in the research lies foremost on the design of the control system.
In particular, methods and practices are devised that allow developers to construct machine
control systems with high performance. Realizing this aim means that the controller and
the machine have to be designed and used as a two-unit. That is, both are separate systems
but they are so strongly linked that they cannot function independently.

Designing a machine and its controller as a two-unit is a highly complex task. Due to
the strong inter-connections, a change in one system causes changes in the other system
and vice versa. To manage the complexity, virtual machines are used. Instead of designing
the construction of the machine and developing an implementation of the control system,
a design of both systems is performed using simulation first. The machine and its control
system are described in a specification and tested using simulation. Once the simulation
gives satisfactory results, the design can be build. For the control system, the translation
from simulation to implementation can be done automatically.

Specifying the machine and the control system enforces the developers to be precise
about their ideas. That goes a long way in detecting and correcting potential problems
early in the design process. Simulation of the virtual machine and controller allows the
machine to ‘come to life’. It enables study of the dynamic behaviour of the combination.
The study provides insight in the design, and gives feedback about development steps done.
Also, data from simulations may be used to guide the development process. For example,
if the simulation data suggests that performance will be adequate, improving performance
even further is not necessary.

vii

This Ph.D. project on design aims to create practically usable means for performing
case studies in the research of designing controllers for industrial machines using the virtual
machine concept. In particular, a practically usable design technique is discussed, and tools
to support the development process have been designed and implemented for the formal
specification language χ.

The design technique presented in the thesis divides the development process in a
number of vertical design steps, and a single horizontal design step at the end. In each
vertical design step, a simulation model is designed and specified that is lower in abstraction
level compared to the previous model. Simulation experiments are performed with the
model, and the output of the experiments is studied. If the output is satisfactory, either
the next vertical design step is made to further lower the abstraction level of the model,
or the model has the right abstraction level in the sense that it uses the same interface
as the real machine. In the latter case, the final horizontal design step is made. In this
step, the model of the machine control system is translated to an implementation of the
control system on a real-time operating system. Since the model of the controller is not
modified, the implementation will function the same as the model, and since the interface
of the machine model is the same as the interface of the real machine, the implementation
will be able to control the real machine.

Two tools have been designed and implemented. The first tool is the simulation tool
which enables simulation of a specification on a Unix system. The second tool is the
translation tool. It translates a controller model to an implementation on the real-time
operating system VxWorks. All tools have been written in C++, and consist of a compiler
that compiles the specification, and a run-time system that executes the compiled model.

The VxWorks run-time system of the translation tool currently uses a single processor
only, but it can easily be extended to run on a distributed system. An important part of the
run-time system is the implementation of the communication algorithm. The χ specifica-
tion language uses synchronous communication, whereas the VxWorks real-time operating
system only provides asynchronous communication primitives. The implemented com-
munication algorithm, based on Bagrodia [Bag89], performs the mapping of synchronous
communication to asynchronous primitives. Several extensions have been added to the
algorithm to make it fit the needs of the translated specification. Correctness of the im-
plemented algorithm has been tested with a number of verifications, and a large number
of Monte Carlo simulations.

As a test to see whether the virtual machine concept, the developed method, and
the tools are useful in reaching the research goals, a case study has been performed. A
machine called the paint factory and a control system have been developed using the
design technique. Although the higher levels of control that optimize scheduling are not
yet finished, the case study did produce a functioning machine with its control system. The
use of the virtual machine concept seems to be a promising road towards the development
of controllers for (complex) industrial machines.

Samenvatting

Klanten willen hun producten aangepast aan hun wensen en goedkoop. In het productie-
proces betekent dit, dat elk product min of meer uniek is. Tegelijkertijd moeten ze wel in
voldoende aantallen gemaakt worden om de kosten laag te houden. Bovendien wordt de
levensduur van een product korter. Om zoveel mogelijk producten te verkopen is een korte
time-to-market essentieel. Een korte time-to-market van een product betekent ook, dat de
productie-machines snel te leveren moeten zijn. Machines moeten daarom snel te bouwen
zijn en voldoende flexibiliteit bezitten, om met wisselingen tussen product-varianten te
kunnen omgaan.
De kortere ontwikkeltijd van machines en de eisen ten aanzien van de flexibiliteit maken het
ontwerp van deze machines en hun besturingssystemen complexer. De Systems Enginee-
ring groep onderzoekt daarom nieuwe methoden om machines en hun besturingssystemen
te ontwerpen. De nadruk van het onderzoek ligt daarbij vooral op het ontwerpen van
het besturingssysteem. Er worden methodes ontwikkeld die het voor ontwerpers mogelijk
maken om machines en besturingen te bouwen die hoge prestaties leveren.
Om dit doel te verwezenlijken moeten de machine en zijn besturing als een twee-eenheid
ontworpen en gebruikt worden. De machine en de besturing zijn twee losse systemen, maar
ze zijn zo sterk met elkaar verbonden dat ze niet zelfstandig kunnen functioneren.
Het ontwerpen van een machine en zijn besturing is een complexe zaak. Door de sterke
verbondenheid van beide systemen heeft het veranderen van het ene systeem gevolgen
voor het andere en andersom. Om de complexiteit te kunnen beheersen wordt het idee
van virtuele machines gebruikt. In plaats van het ontwerpen van de machine-constructie
en het ontwikkelen van een implementatie van de besturing, wordt er eerst een ontwerp
gemaakt van de systemen gezamenlijk door middel van simulatie. De machine en het
besturingssysteem worden beschreven in een specificatie en geanalyseerd met behulp van
simulatie-experimenten. Wanneer de simulatie-resultaten uitwijzen dat het ontwerp aan
de gestelde eisen voldoet, kan het ontwerp gebouwd worden. Voor het besturingssysteem
kan de vertaling van simulatie naar implementatie automatisch gedaan worden.
Het specificeren van de machine en de besturing dwingt de ontwerper om zijn ideeën precies
te formuleren. Dat helpt veel in het ontdekken en corrigeren van potentiële problemen vroeg
in het ontwerpproces. Simulatie van de virtuele machine en zijn besturing zorgt ervoor, dat
de machine ‘tot leven komt’. Dankzij simulatie is het mogelijk om het dynamische gedrag

ix

van de combinatie te analyseren. De analyse levert inzicht in het ontwerp en geeft een
terugkoppeling over ontwerpbeslissingen. Bovendien kan data uit simulatie-experimenten
gebruikt worden om het ontwerpproces te sturen. Als de gegevens bijvoorbeeld aangeven
dat de prestaties voldoende zijn, dan hoeven deze niet verder verbeterd te worden.

Het doel van dit proefontwerp is om praktisch bruikbare middelen te ontwikkelen voor
het onderzoek naar het ontwerpen van machine-besturingen, gebruikmakend van virtuele
machines. In het proefschrift wordt een ontwerpmethode behandeld, daarnaast heeft het
promotieproject geresulteerd in het ontwerp en de implementatie van gereedschappen die
het ontwerpproces ondersteunen voor de formele specificatietaal χ.
De ontwerpmethode voorgesteld in dit proefschrift verdeelt het ontwerpproces in een aantal
verticale ontwerpstappen en één horizontale ontwerpstap aan het einde. In elke verticale
stap wordt een simulatiemodel ontwikkeld en gespecificeerd op een lager abstractieniveau
dan het vorige model. Dit model wordt gesimuleerd en de simulatie-resultaten worden
bestudeerd. Als de resultaten voldoen aan de eisen, kan de volgende verticale ontwerpstap
gedaan worden om het abstractieniveau verder te verlagen. Indien het abstractieniveau
overeenkomt met de interface die gebruikt wordt bij de echte machine, wordt een laatste
horizontale ontwerpstap gemaakt. Het model van de besturing wordt vertaald naar een
implementatie op een real-time beheerssysteem (operating system). Omdat het model van
de controller ongewijzigd blijft, zal de implementatie hetzelfde gedrag hebben als tijdens de
simulatie. Omdat bovendien de echte machine dezelfde interface gebruikt als de machine
in de simulatie, zal de implementatie de echte machine kunnen besturen.
Twee gereedschappen zijn ontworpen en gebouwd. Het eerste gereedschap is het simulatie-
gereedschap, wat simulatie van een specificatie mogelijk maakt op een Unix systeem. Het
tweede gereedschap is het vertaalgereedschap, wat een model van een controller vertaalt
naar een implementatie op het real-time beheerssysteem VxWorks. Alle gereedschappen
zijn geschreven in C++ en bestaan uit een vertaler (compiler) en een run-time systeem,
wat het vertaalde model uitvoert. Het run-time systeem op VxWorks gebruikt nu slechts
één processor, maar kan eenvoudig uitgebreid worden om te kunnen werken op een gedis-
tribueerd systeem. Een belangrijk deel van het run-time systeem is de implementatie van
het communicatie-algoritme. De χ specificatietaal gebruikt synchrone communicatie ter-
wijl het VxWorks real-time beheerssysteem slechts asynchrone communicatie-primitieven
biedt. Het gëımplementeerde communicatie-algoritme is gebaseerd op Bagrodia [Bag89], en
vertaalt synchrone communicatie naar asynchrone primitieven. Er zijn een aantal uitbrei-
dingen toegevoegd aan het algoritme om het passend te maken voor het vertaalde model.
Correctheid van het gebouwde algoritme is getest door middel van een aantal verificaties
en een groot aantal Monte Carlo simulaties.

Als een test of het virtuele machine concept, de ontwikkelde methode en de gereedschappen
nuttig zijn in het bereiken van het onderzoeksdoel, is een casus (case study) uitgewerkt.
Een machine, die verffabriek wordt genoemd, en het bijbehorende besturingssysteem zijn
ontwikkeld, gebruikmakend van deze ontwerp-methode. Hoewel de hogere besturingslagen
die de volgorde van orders optimaliseren nog niet af zijn, leverde de casus een functione-
rende machine en besturing. Het gebruik van virtuele machines lijkt een goede weg naar
het ontwikkelen van besturingen voor (ingewikkelde) industriële machines.

CONTENTS

1 Introduction 1
1.1 Control systems . 1
1.2 Project goal . 4
1.3 Design technique . 4
1.4 Implementation of tools . 10
1.5 Reactive machine control . 13
1.6 Thesis outline . 14

2 The χ language 15
2.1 Language definition . 15
2.2 Time-related aspects . 20
2.3 The horizontal design step . 22

3 The real-time platform 27
3.1 The real-time operating system . 27
3.2 Machine control application . 31
3.3 Data structures of the machine control application 33
3.4 Run-time support . 34
3.5 χ implementation . 39
3.6 Future extensions . 44

4 Synchronous communication 45
4.1 Bagrodia . 47
4.2 Communication in χ . 49
4.3 Implementation . 52
4.4 Verification of the implementation . 62

5 Case study 67
5.1 Choice of the case . 67
5.2 Highlights . 68

i

5.3 Observations and conclusions . 76

6 Conclusions 79
6.1 The design technique . 79
6.2 Modelling . 82
6.3 Virtual machines . 84
6.4 Languages and tools . 84

A The type-checking mechanism 87
A.1 Introduction . 87
A.2 Type matching . 89
A.3 Type-variables resolving . 91
A.4 Performance . 92

B Promela code and verification results 95
B.1 Algorithm . 95
B.2 Verification . 105
B.3 Simulation . 109

Bibliography 113

Index 117

ii

CHAPTER

ONE

Introduction

In the recent years, computer technology has been introduced in industrial machines on
a large scale. The ever-decreasing size and cost has made this technology feasible for use
in machine control systems. Also, the ever-increasing computing power of this technology
opens new roads and new applications. For example, visual inspection of products can now
be done automatically with a sophisticated program rather than manually. Manufacturers
of industrial machines therefore extend the functionality of their machines to make them
more attractive to customers. Computer technology also allows re-programming of the
controller almost at the flick of a switch. Thus, it is much easier to adapt the machine to
new situations; the machine has become much more flexible than its predecessor. To some
extent, one can say that a machine is becoming a small factory in itself.

The market needs this flexibility. Our society is becoming more oriented towards the
individual. Concepts like mass-customization1 are becoming popular. These personal-
ized products are however more complex to manufacture than products that cannot be
personalized. In other words, more is demanded from the industrial machines.

In short, the introduction of computer technology increases the number of possibilities
of the machine, and the market wants flexibility. The latter can be realized by clever use
of the former. The question however is how to do this in a systematic and controlled way.
More precise:

How do you systematically design a flexible industrial machine and its controller ?

The Systems Engineering Group has set itself the goal of finding an answer to this
question. This project is one of the first steps towards solving this puzzle.

1.1 Control systems

A widely accepted model of a control system for an industrial system is [JM86], pub-
lished by the National Bureau of Standards, nowadays known as NIST. This hierarchical
production control system is a framework composed of five levels of control, as shown in
Figure 1.1. The top level facility takes care of planning for the entire plant for a relative
long planning horizon, but on a global level. Each level below takes orders from above,

1Every customer his own personalized product, while using mass-production manufacturing techniques.

1

Chapter 1. Introduction

facility

shopshop

cellcell

workstation workstation

equipmentequipmentequipmentequipment equipment

Figure 1.1: Model of a hierarchical control system by NIST.

makes a more detailed plan on a shorter planning horizon, and controls the level below
using the computed plan. Below the equipment level, machines perform the manufacturing
steps, thus realising the plan. Since production never completely follows the plan, status
feedback is reported upwards between the levels. The feedback information can be used to
adapt the plan, thus making optimal use of the industrial system.

As an example of such a framework we briefly describe the litho area of a chip factory
using the above hierarchical control model. The facility level is the entire factory, as
perceived by the clients and suppliers of the factory. This level accepts orders, agrees on
delivery dates, and makes sure that the clients get the requested products. The internal
organisation on the factory floor is controlled at the shop level. This level controls the
various areas of the plant. In other words, it ensures that batches containing wafers are
moved and processed in the correct area, and that materials needed for processing are also
available.

One of these areas is the litho area. In this area, a number of litho modules and inspec-
tion machines are available. The cell control system routes the wafers to the machines,
and makes sure that all the needed materials and chemicals for the particular wafer are
available too at the same machine. For example, the masks necessary for the exposure
process step should be on the same machine as the wafers that should be exposed.

Inside an individual litho module, a number of process steps are performed (coating,
pre-bake, exposure, development, and post-bake). Routing of wafers through the process
steps in a litho module is co-ordinated by the workstation control system. Each process
step is performed by a machine, controlled by its equipment level control system. The
machines themselves perform the process steps, and change the wafer surface.

In this project an initial step is taken towards a systematic approach of the development
of machine control systems at equipment level in an industrial environment. Figure 1.2
shows a typical machine control system interacting with its environment. From above,
orders are given to the machine control system. These orders are translated to actions

2

1.1. Control systems

Machine control system

sensors actuators

Machine

Figure 1.2: Model of a machine control system and its environment.

that must be done by the machine, and actuators are given orders to perform physical
movements in the machine. Sensors in the machine report the status of the physical
components in the machine back to the machine control system, and the latter uses this
information as feedback, thus controlling the machine. Also, feedback on the status and
progress of the order is given upwards to the higher level.

The end result of the development project of a machine control system is a functioning
machine control system, controlling a physical machine. The control system thus has
some real-time control properties such as timeliness. Obviously, these matters need to
be addressed during the development of the control system. However, before reaching
the point where real-time properties of the control system become important, the general
design of the controller must be established. Especially for larger machines, this is a
difficult subject. With the introduction of computers in machine control, machines have
become much more flexible. They are no longer a mechanically-coupled number of parts,
the parts can be controlled independently from each other. This delivers a lot of flexibility
to the control system, but also makes designing a good controller more difficult because the
various parts must co-operate as well as possible in order to utilize the increased flexibility.
In a sense, machines can be seen as small factories with their own scheduling problems
between the parts.

Another complicating factor is the environment of the machine and the controller, that
is, the manufacturing process. For example, in some environments, the machine may be
used in a batch system. In other environments, many small orders are manufactured, which
requires a lot of switching between different products.

The main objective of a machine control system in an industrial environment is always
to deliver maximal performance in the manufacturing process. In other words, the machine
has to perform as well as possible in its environment. To achieve this goal, the controller
has to be tailored to the environment. The design approach presented here considers the
combination of controller and machine to be a two-unit. They are separate systems, but
they should be developed and used together for the best results.

Development of the control system in this context involves profound knowledge of the

3

Chapter 1. Introduction

machine as well as its environment. With machines and environments as described above,
this is too much knowledge to overlook completely. The systematic approach of the deve-
lopment process will thus focus on understanding of the situation.

1.2 Project goal

The goal of the research on embedded systems in the Systems Engineering Group is to
develop a methodology to design controllers for (complex) industrial machines. Central
concept in the research is the virtual machine concept. It means that the entire environment
around the controller, including the machine, is simulated. In this simulation environment,
the controller is developed. Section 1.3 explains these ideas in more detail.

This Ph.D. thesis aims to

create the practically usable means for performing case studies in the research of
designing controllers for industrial machines using the virtual machines concept.

‘Create practically usable means’ is the key-phrase here. The idea is to create means,
such that researchers, engineers in industry, and students can perform practical experiments
in the design of controllers, in order to get feedback on ideas in research.

The realization of this objective implies two ‘deliverables’:

• A design technique. The above description about development in a virtual environ-
ment is too abstract for students and engineers in industry. A more down-to-earth
description is needed. This is called the design technique, and its description can be
found in Section 1.3.

Note that this technique is a first attempt. As research progresses, the design tech-
nique will quite likely be improved.

• Tools to support the design technique. A design technique is only viable for realistic
case studies if it is supported by adequate, robust tools.

Experimenters should concentrate on their objective of designing a controller, rather
than worry about the limitations of the tools. Therefore, the tools should accept
anything that is correct, even if it is big, ugly, or both. More about the tools can be
found in Section 1.4.

An important factor in the construction of the technique and the tools are the capabilities
of users. The intended audience in this project are designers with a Mechanical Engineering
background. That means that knowledge of users about software-engineering techniques
and formal methods is limited. The technique and the tools have to take this into account.

1.3 Design technique

The basic goal of the design technique is to provide a global framework in which the
developer can organize his work. At the same time, it tries not to exclude any design

4

1.3. Design technique

activity that may be considered useful. In other words, the design technique provides a
general guide for the developer that can be tailored to a particular situation.

There are a number of reasons for this approach. First of all, trying to capture the
entire design process is not feasible. Each machine control system has its own unique
nature. This heavily influences the approach of designing the control system. Also, each
developer has his own strong and weak points. The design technique should be flexible
enough to allow each developer to use the approach that he prefers. Secondly, there is
little or no experience with the development of design techniques for these kind of control
systems. Further research must be done in order to decide on a good approach. Until
that time, it seems foolish to eliminate any design approach. Also, it is more efficient to
do research in this area after this project is finished, because tools are then available to
perform realistic tests of different design approaches. Finally, the focus of the project lies
on developing tool support rather than designing an optimal design technique.

The design technique is a framework to guide the developer in the design of the machine
control system. The main focus of the technique is understanding the controller, the
machine, and the environment.

One good way to get a good understanding of a subject is by modelling it. Modelling
is a common engineering activity used in a lot of disciplines. For example, a new bridge
is first modelled as a scale model and as a set of blueprints before construction starts.
Software is designed and captured in graphical models like data flow diagrams. In fact,
modelling is a technique that forces the developer to specify his thoughts. This aids in
structuring the design [BRJ99]. Also, it confronts the designer with unclear areas in the
design. Modelling is thus the foundation of the method.

Modelling is good for creating structure, but it gives little information about the dy-
namics of the system. Software-engineering techniques such as use-case diagrams or state
diagrams do allow the developer to capture behaviour, but understanding the diagram as
a dynamically changing object is a different matter, especially when the behaviour is com-
plex. One technique to assist the developer in understanding the dynamics is simulation
[Sha75]. With simulation, the design ‘comes to life’. The developer can verify and correct
his conceptual model of the dynamics by studying the results of the simulation. Since
understanding the dynamics of the machine and its environment is crucial for development
of good controllers, simulation is also part of the design method.

Even with modelling and simulation techniques, developers will make mistakes, and
some of these mistakes will survive the design process and become bugs in the implemented
controller. Obviously, there should be as few bugs in the implementation as possible. Paths
to achieve this are extensive testing and formal verification. The former does not give
full guarantees, the latter does provide correctness proofs at the cost of a lot of effort.
Since failure of a controller for an industrial machine is very expensive, preventing bugs
is extremely important. The method should thus allow the use of testing and formal
verification techniques. However, the rigorousness of modelling and simulation techniques
goes a long way in preventing bugs, see for example [Kar98]. Also, the machine control
systems developed with the technique will not include mission-critical systems, for example

5

Chapter 1. Introduction

nuclear reactors or air planes. For these reasons, formal verification methods are currently
considered to be a future extension to the design technique.

Finally, the end result of the development project using the design technique is a func-
tioning controller. In other words, with the modelling and simulation techniques described
above, a model is developed, and this model has to be ported to real hardware. That
has to be done with a) as few changes as possible in the model, because every change
may introduce an error, and b) little knowledge of software engineering and the real-time
domain, because our users do not possess that knowledge.

The development path to the end result is as follows. First, a model is developed in a
language formal enough for interpretation by a machine. The modelling process forces the
developer to be precise. Since the language is formal enough for machine interpretation, a
computer-based simulation of the model is possible. This simulation brings the model to
life, allowing the developer to watch his design and check his assumptions. After enough
iterations, the model is good enough to be implemented in the real world. Again using the
ability to interpret the model by machine, the model is translated to an implementation.
This implementation can then be used to control the real machine.

The above development procedure uses a number of assumptions. Two important ones
are:

• The real-world machine is controlled in the same way as the simulated machine. The
specified controller is translated to the implementation without functional changes.
If the translated controller is to control the real machine, the latter should behave
just like the simulated machine.

• The implementation should address the real-time properties needed. Numerous books
are written on this subject. The properties listed below are from [HS91]. Others use
similar lists. Some typical properties of a real-time control system are:

– Timeliness. The system must react timely upon events from external processes.

– Simultaneity. There are normally many external processes going on at the same
time, and each of them must be controlled.

– Predictability. The system must always (even under extreme conditions) pro-
duce predictable responses, both in the processing results themselves, and in
the moments when the results become available.

– Dependability. Embedded systems are used in environments where failure of the
system may not only cause loss of data, but also endanger people and major
investments. In order to minimize these risks, the embedded system must be
made as reliable as possible.

Timeliness is a property that needs to be verified already during the early stages
of development. The modelling language does need the concept of time in order to
allow this. Also, the translation to the implementation must preserve the timeliness

6

1.3. Design technique

Simulation Implementation

C

V M

Figure 1.3: Simulation and implementation using virtual machine V , controller C, and real
machine M .

property. The simultaneity property should be supported by the language. It can-
not be expected that users understand how to incorporate simultaneous handling of
multiple tasks in a sequential language. By introducing parallelism in the modelling
language, simultaneity can be expressed in the model cleanly. Predictability of the
implementation is taken care of by the modelling process. The rigorousness of this
process ensures that the developer has at least seen and specified what happens in
each situation. Dependability is a property that can only be ensured by systematic
and precise working. The modelling and simulation process done by the developer
does help here; a model in a formal language does not allow to leave parts of the
system unspecified.

The models developed using the design technique look like Figure 1.3. The model
consists of two components, the controller and the machine. While the design technique is
used in the simulation domain, that is, models are developed and simulated, the controller
C is connected with a virtual machine V . The latter is used as a representation of the
machine in the model. With each iteration, more details are added to the controller, the
machine component, or both, and behaviour of the combination is verified by simulating
the model. During the translation to the real-world implementation, the virtual machine
V is replaced by the real machine M , where M should be a real-world implementation of
V . In the controller component, connections to machine V are replaced by connections to
machine M , and the new combination can be executed and tested in the real world.

Early experiments show that a developer experiences the development process as three
different stages, at least for relatively simple machine control systems:

1. Conceptual design. Starting from the requirements, early (abstract) models of the
controller and the machine are written and simulated. The developer becomes ac-
quainted with the global operation of the machine, and can check whether the given
requirements can be fulfilled.

2. Physical design. Once the global working of the machine is understood, the developer
can concentrate on designing the machine (its sensors and actuators), and the con-
troller. Quite accurate estimates of the performance of the combination can be made,

7

Chapter 1. Introduction

and these estimates can be used to decide for example on hardware components or
control strategy.

3. Implementation and testing. In this stage, the transformation to the real world is
made. After it, the real machine is controlled by the controller. Correctness of the
design (for example regarding reaction time) is verified by performing tests.

If the design technique is followed correctly, the last step should confirm that the machine
and the controller are functioning correctly. If that is not the case, then the translation step
to the implementation should be postponed, until the design is corrected by performing
some extra iterations in the simulation domain.

From a larger distance, the design process first focuses on lowering the abstraction level
of the design from requirements to a simulated controller, and then makes a translation
step to an implemented controller. The first part is not uncommon in engineering; the
principle can be found in many books about design, for example [vdKS98] uses ‘doel’,
‘functie’, ‘structuur’, and ‘inrichting’ (English translation: goal, function, structure, and
layout). Also, [Bra93, Page 20] shows that several methods have the same global-to-
detailed design-process phases, although the number of phases and the names of the phases
differ with each method. The second part where the developed model is translated to an
implementation is rare. The step from model to implementation is often made, for example
in [Bri97], but these approaches start with an implementation in another language using
the developed model as a guide. Aside from the fact that the developer needs to know at
least two languages, there is a large chance of introducing errors into the implementation
while implementing.

The design technique proposed in this project is depicted in Figure 1.4. In the figure,
a rectangle represents a state of the design. Arrows between design states represent deve-
lopment steps or design steps. Development starts with a specification at a high level of
abstraction. By modelling, simulating, and making design decisions, the design is made
more concrete, that is, it is lowered in abstraction level. This is shown in the figure by the
downward arrows. Such development steps are called vertical design steps. After enough
vertical design steps have been taken, the abstraction level is low enough to implement the
system in the real world. Translating to an implementation is called a horizontal design
step, and is represented by the horizontal arrow in the figure. The step crosses the line
between the simulation domain and the real-world domain. Unlike vertical design steps, it
does not lower the abstraction level. It is the process of constructing an implementation
as specified in the model. In other words, the horizontal design step creates a real-world
version of the simulation model.

Language

The language used in modelling and simulation is very important in the design technique.
It is the language in which developers express their design, so it must be easy to use and
learn. Also, since it must be interpreted by a machine, it has to be a formal language.

8

1.3. Design technique

Simulation

High

Low

Real world

A
bs
tr
ac
ti
on
le
ve
l

Figure 1.4: Design technique using simulation.

Since the implementation of a controller is a piece of software, it is tempting to use
common software-engineering methods, for example described in [HP88, Coo91], or the
newer object-oriented method UML [BRJ99]. These methods use diagrams to model the
software, and manage to capture a part of the dynamics of the system, but none of them
uses simulation which is a powerful technique for our users. Also, they do not treat the
software and its environment as a two-unit, they concentrate on software only. For these
reasons, the software-engineering methods have been dropped as modelling language.

The Systems Engineering Group already uses their own language χ for modelling and
simulating, with a lot of success. Also, tools for simulation are already available. This
makes the χ language the prime candidate. Nonetheless, it should be verified that χ is not
a wrong choice.

χ is based on CSP [Hoa78], a formalism where multiple concurrently executing processes
work together. The description of behaviour of processes themselves is based on process
algebra, except an imperative style of programming is used to describe behaviour rather
than a functional style. Data modelling in χ is done using constructs commonly found
in modern programming languages, such as booleans, integer and real numbers, strings,
tuples and arrays, lists, and sets. A more detailed description of the language can be
found in Chapter 2. Also, χ fulfills the requirements mentioned previously. It has parallel
execution, which allows easy specification of simultaneous tasks, and it has the concept
of time, allowing timeliness properties to be expressed. Finally, the imperative style of
programming and the powerful data handling constructs can be translated to a normal
programming language, like C++.

For the implementation of the tools, a language is needed too. The existing simulation
tool [NA98] consists of two parts, a compiler that translates χ to C++, and a run-time
environment that performs the simulation. Both parts are written in C++.

In the horizontal design step, a similar strategy seems beneficial: a compiler for trans-

9

Chapter 1. Introduction

lating the χ model to the language understood by the implementation, and a tool in the
run-time environment to support the translated code. For the compiler, an object-oriented
programming language is better suited for the job, because the object-oriented paradigm
provides better abstraction mechanisms. The cost of object-oriented techniques compared
to the imperative paradigm is an increase in processing power and memory. Since the
compiler is executed on a normal computer system with plenty of processing power and
memory, these costs are not a problem. The two major programming languages in object-
oriented programming are Java and C++. Since the compiler for the simulation tool is
written in C++, the latter language gives better performance, and the author of this thesis
has more experience with the language, the choice of C++ for the compiler will not be a
big surprise.

For the run-time environment of the controller implementation, the situation is less
clear. In embedded systems, small processors are common. Also, C is a common program-
ming language, often with some processor-specific extensions. The Java language is also
used in some cases, for example in set-top boxes. Despite this, the programming language
C++ has been chosen for the run-time environment as well. C has been dropped because
the project aims at the design of complex industrial machines. In this context, the cost
of more processing power and more memory is not very important. Secondly, since the
project is done as part of a research programme, it is expected that the software will be
changed often. The higher abstraction of object-oriented languages is clearly an advantage
then. Thirdly, C++ can be used in combination with C, which means that integration with
software written in the latter language is possible. (To be fair, Java can also be used in
combination with C, but C++ is designed for backwards compability.) Fourthly, availabil-
ity of templates in C++ makes the handling of complex data types easier. Finally, in the
run-time environment, performance plays a big role, and C++ delivers better performance
than Java. Also, run-time maintenance like garbage collection is not performed.

1.4 Implementation of tools

In Section 1.2, it was concluded that tools were needed to support the design technique.
The latter consists of two kind of steps; vertical design steps and horizontal design steps.
The former takes place in the simulation domain, the latter crosses the border from the
simulation domain to the real world. For each kind of design step, a computer-based tool
is necessary:

• A simulation tool. A vertical design step is a transformation of a simulation model
to a lower abstraction level. The design method aims at giving the engineer an
understanding of the dynamic behaviour of the developed model. The best way to
support this process, is by providing a simulator capable of showing the dynamic
behaviour of the specification written by the engineer.

Currently, there is no tool support for formally checking certain properties, for ex-
ample (lack of) deadlock. Also, equivalence checking or testing between successive

10

1.4. Implementation of tools

specification ✲compilation

(χ, C++)
executable ✲execution

behaviour

Figure 1.5: Overview of the operation of a tool.

simulation models is not supported by tools. Such tools may be added in the future
if the need arises in the research.

• A translation tool. A horizontal design step transforms a specification from the simu-
lation domain to the real world. Tool support is needed to transform the specification
to an executable with the same behaviour, running on an embedded controller.

Both tools take a χ specification, and produce an executable version of it that shows
the specified behaviour. Since the tools should be usable in larger case studies, speed of
execution of the result is important. Speed of the transformation from the specification
to the executable format is not that important, because the conversion takes little time
compared to the execution time of the result. The architecture of an existing simulation
tool [NA98] has good properties in this respect, and this architecture is used as blue print
for the design of the new tools. The idea is shown in Figure 1.5. Creating behaviour of
the specification is done in two stages. First, the specification is compiled to an executable
form. This executable form is then executed to obtain the behaviour. The benefit of this
approach is that a large number of checks with respect to the correctness of the specification
can be done during the compilation instead of during the execution. Furthermore, during
the compilation stage, the program temporarily exists as specification in the intermediate
implementation language C++, as discussed in the previous section.

The similarities between the simulation and the translation tools, the use of two stages
to obtain behaviour of the specification, and the use of C++ as intermediate language also
have its impact on the organization of the source code of the tools. In particular, both
tools need

• a compiler front-end to parse and check the χ specification,

• a compiler back-end to generate C++ code suitable for execution,

• a run-time engine to ‘generate’ behaviour common for all specifications, and

• libraries to provide additional functionality.

The compiler front-end and back-end is a standard compiler construction approach. The
run-time engine is highly coupled to the compiler back-end. It contains for example a

11

Chapter 1. Introduction

scheduler that chooses statements to execute. It also contains code to represent and com-
pute data values during execution. The libraries contain code that provides functionality
used only by some specifications. For example the square root function. In the case of the
translation tool, the libraries also provide access to the physical machine. This is discussed
in more detail in Section 3.2.

Libraries are also the means to add new functionality to the tools. This is used to
experiment with new ideas. For example, recently, the wish to combine a χ simulation
with other (third party) simulation tools has arisen. By building a new library that allows
TCP/IP connectivity to other programs, experiments can be done to investigate this idea.

From maintenance point-of-view, it is advantageous to share as much source code as
possible between both tools. The compiler front-end is completely shared by both tools.
The run-time engine cannot be shared. The execution stage of both tools occurs at two
different platforms, with different semantics (discussed in more detail in Chapters 2 and 3).
Therefore, the run-time engines of both tools are separate pieces of source code. The code-
generator of the compiler is tightly connected to the run-time engine, and exists therefore
also twice (one generator for each tool). Libraries are common when they are platform-
independent. For example, functions like the square root are common, but I/O interfacing
functions exist only for the translation tool.

After the decision to construct six pieces of code (one compiler-frontend, two compiler-
backends, two run-time engines, and one library), the next question was how to create all
this functionality. An existing simulation tool ([NA98]) was available. Analysis showed
that the global design ideas of the tool were good. Also, parts of the tool were re-usable,
especially pieces of the run-time engine and the libraries. The compiler part was considered
not re-usable, because

• The χ language had changed since the implementation of the old compiler. Concepts
had been changed, or were added to the language.

• There was a fundamental design flaw in the type system of the compiler. χ uses
both polymorphism and overloading. The type system of the old compiler is based
on [Mil78]. This algorithm can handle only polymorphism. As a result, the type
checking of the simulation compiler sometimes failed.

• Many features of the χ language and the translation to C++ were hard-coded in the
compiler.

Especially the change of the type-checking system had a large impact on the existing
compiler. Estimation of the amount of work showed that the benefit of re-use of existing
compiler code was non-existent due to the huge amount of changes. That opened the
path to creating a new compiler with an improved internal structure tailored to the new
situation.

In the project, attention was foremost focussed on constructing a functional transla-
tion tool. The project started with constructing the compiler-frontend, then the run-time
engine, followed by the code generator and the libraries.

12

1.5. Reactive machine control

Once the compiler-frontend was finished, the remaining simulation-tool functionality
was implemented by Chen ([Che99b, Che99a]) as a separate sub-project, performed in
parallel with the remaining three parts of the translation tool.

1.5 Reactive machine control

The title reactive machine control is basically a one-line description of the subject. Careful
consideration of this description is necessary to give the readers a correct impression of
its contents. Particularly important is the choice of the right jargon description. For this
thesis, three candidates were considered close enough for a closer look.

Embedded is a recent term. Below are two definitions of the word.

General-purpose systems are not designed for any specific applications but
can be programmed to run different applications.

In contrast, application-specific systems are designed for dedicated appli-
cations. . . . As these systems are contained in a larger, and often, non-
electric, environment, these are commonly referred to as embedded systems.
[Gup95]

An embedded system is a combination of computer hardware and software,
and perhaps additional mechanical or other parts, designed to perform a
specific function. [Bar99]

Common to both definitions is the fact that the system has an application-specific
purpose, and that other parts outside the system are related to it. A control system
for a machine meets this definition, since the application is designed to control a
particular machine. Also, the machine is a collection of parts that exists outside the
control system and that has a relation to the system (without it, the machine would
not function).

Real-time is another term which comes to mind when discussing machine control systems.
The definitions address the fact that the system must be capable of influencing its
environment on time.

A real-time computer system may be defined as one which controls an envi-
ronment by receiving data, processing them, and taking action or returning
results sufficiently quickly to affect the functioning of the environment at
that time. [Mar67]

Whenever a computer system is required to acquire data, emit data, or
interact with its environment at precise times, the system is said to be a
real-time computer system. [LM87]

13

Chapter 1. Introduction

Real-time systems are those which must produce correct responses within a
definite time limit. Should computer responses exceed these time bounds,
then performance degradation and/or malfunction results. [Coo91]

All machine control systems have to react on the machine within a certain time
interval to prevent damage or degradation of performance of the machine.

Reactive is not often used in literature. It focuses on the fact that the system keeps on
running indefinitely.

Reactive systems are computer systems that continuously react to their
environment at a speed determined by this environment. [Hal93]

A reactive system is a system that maintains an ongoing interaction with
its environment, as opposed to computing some final value on termination.
[MP95]

A machine control system is reactive, since it continuously controls a machine at the
speed of the machine without ever stopping (unless powered down).

Since the technique focuses on understanding rather than the combination of control system
and its environment, ‘embedded’ is considered somewhat out of place. In the same way,
timeliness of machine control systems is important, but not enough to use the word ‘real-
time’ in the title. The ongoing dynamics of a machine control system is however a key-
feature in understanding the design, making ‘reactive’ a very appropriate description for
such systems in this thesis.

1.6 Thesis outline

This chapter explains the goal of the project in more detail, and also discusses the design
technique proposed for the development of machine control systems. The next chapter
explains the modelling language χ, how time is handled by the language and what happens
when a χ specification is translated to the real-world domain. Chapters 3 and 4 describe
the structure of the target system and the real-time environment. Also the translation
done by the horizontal design step compiler is briefly described. As an example of usage
of the design technique, the case study of ‘the paint factory’ is discussed in Chapter 5.
Finally, concluding remarks, and possibilities for next steps are discussed in Chapter 6.

14

CHAPTER

TWO

The χ language

In this chapter, the χ specification language is informally introduced. More detailed de-
scriptions of the language can be found in [BK00, Fáb99, NA98, Are96]. After the introduc-
tion of χ, the second part of this chapter discusses the semantics interpretation issue of the
horizontal design step. A user develops a specification with simulation using χ semantics.
The design technique described in the previous chapter should transparently transform
the specification to an implementation using a horizontal design step. That implies that
interpretation of the specification under real-world semantics should be predictable.

2.1 Language definition

Within the Systems Engineering Group, research is being done on the design of industrial
systems. Since these systems are highly complex, mathematical theories like queueing
theory cannot be applied adequately. Therefore, computer-based simulation is used as a
design tool. Around 8 years ago, the simulation language in use at that time was not
adequate any more, a new language was needed. It appeared that no existing simulation
language met the needs of the application domain, and a decision has been taken to create
a new simulation language, now known as χ. The language allows specification of discrete-
event, continuous-time, and mixed discrete-event/continuous-time (hybrid) systems, thus
covering a large range of industrial systems. The user is supported in the development of
his model by a computer-based simulation tool, that allows verification and validation of
the model. Meanwhile, the discrete-event part of the language has become stable, while
the continuous-time part of the language is still being developed. Since this project only
uses the discrete-event part of the language, references to ‘the χ language’ in this thesis
always refer to the discrete-event part only, unless explicitly specified otherwise.

χ is a parallel language, it has concurrently executing processes that communicate with
each other using synchronous communication channels. Its intended users are (mechanical)
engineers and students with little or no training in formal methods.

Technically, the language is heavily based on CSP [Hoa78, Hoa85] and ideas from [vdS93].
It is a static language, the number of executing processes as well as the topology of the com-
munication channels between the processes is fixed. Also, the type system is static (can be
checked completely during compile time) and uses structural type equivalence (two types

15

Chapter 2. The χ language

are the same when their structure is the same). The static nature of the language allows
the compiler tool to perform a lot of checks for errors.

For the user, χ is a small language with few concepts, which are as orthogonal to each
other as possible. Much attention has been paid to making the language feel ‘natural’ to
the user, but not at the cost of introducing difficult to understand constructs. Also, the
user should be precise when specifying a model. This feeling of preciseness is designed into
the language as well. The statically defined data types is one example, other examples are
lack of type widening1, and no support for ‘unnatural’ operations on data types, such as
projection on a list.

In general, the language is considered to be a kind of mathematical tool for specifying
industrial systems. Like in mathematics, short and clear descriptions are possible, not only
for small systems but also (especially!) for complex ones.

Since the subject of this thesis does not concern the χ language itself, and other docu-
ments with more precise descriptions exist, this chapter only gives an informal introduction
to the language. The formal language definition can be found in [BK00]. Below, the syntax
and an informal description of the semantics of each construct is given. The next section
discusses time-related aspects during an ‘execution’ of a specification.

The syntax of χ language constructs is defined by a set of production rules of a gram-
mar. The general form of a production rule is T ::= t1 t2 . . . tn. It defines that the
sequence of terminals and/or non-terminals t1 through tn can be rewritten to non-terminal
T . The symbol ε denotes an empty sequence. Non-terminals are written in uppercase
italics, keywords and symbols are written in roman, while more complex terminals (such
as identifiers like const-id or type-id, or expressions2 like e, b, or c are written in lowercase
italics.

There may be more than one production rule with the same non-terminal at the left-
hand side. This means that there may be more than one sequence of terminals and/or
non-terminals that can be rewritten to the same non-terminal. The vertical bar is used
as a shorthand notation for multiple production rules with the same non-terminal at the
left-hand side. As an example, the two production rules W ::= A and W ::= b B specify
that the non-terminal A as well as the sequence b B may both be rewritten to the same
non-terminal W . Using shorthand notation, both rules can be written in a single line
W ::= A | b B. The χ language itself also uses the vertical bar as a symbol. In order
to differentiate between both uses, the vertical bar used as a terminal in the language is
written between quotes, as in ‘|’.

The top-level production rule of a specification is χ:

χ ::= χ χ | TD | CD | FD | PD | SD | XD

1Type widening is the implicit conversion of a data type to a larger data type. For example in d := 3,
where d is of type real. The integer number 3 is implicitly widened to ‘fit’ into the floating-point variable.

2In the implementation, an expression is a non-terminal rather than a terminal. However, the syntax
of expressions is considered common knowledge and will not be discussed in this thesis.

16

2.1. Language definition

non-terminals TD, CD, FD, PD, SD, and XD are type definition, constant definition,
function definition, process definition, system definition, and xper definition, respectively.
All these definitions are explained below.

Data types

χ is a high-level specification language, and the available data types reflect this. The user
may use all types T , where

T ::= void | bool | nat | int | real | string
| T ∗ | T+ | T n | T0 × T1 × T2 × . . .× Tm

| −T | ?T | !T | ∼ T
| (T) | type-id

TD ::= type D
D ::= D,D | type-id = T

On the first line, the basic data types are listed. The void data type is only used for
synchronisation channels. The other basic data types are booleans, natural numbers,
integer numbers, floating-point numbers, and strings, respectively. More complex data
types may be constructed by using type operators. T∗ constructs a list containing values
of type T , T+ does the same for sets, and Tn constructs statically sized arrays. The data
type T0×T1×T2× . . .×Tm constructs a tuple where each field i (0 ≤ i ≤ m) has a possibly
different type Ti. The third line describes production rules for constructing data types used
for communication. By prefixing a type T with a dash, a communication channel capable
of transporting data of type T is constructed. A process does not use channels directly,
it accesses them through ports instead. The ? -operator constructs a port for receiving a
value from a channel, the ! -operator is used to construct ports for sending data, and the
∼ -operator is used to construct synchronization ports. On the fourth line, a production
rule specifies that a data type may be grouped by surrounding it with brackets. Finally,
a data type may be given a name by using a type definition (TD). The name serves as a
shorthand notation for the type. Because χ uses structural type equivalence, using a name
of a type in the specification is equivalent to inserting the type associated with the name
at that point surrounded by brackets.

Constants

It is often convenient to use symbolic names as a representation of constants. χ facilitates
this by the following production rules for constant definitions:

CD ::= const X
X ::= X,X | const-id : T = e

A constant definition CD is a list of definitions, each having an identifier, a type T and
a value expressed in e. All values must be constant at compile time, they may only rely

17

Chapter 2. The χ language

on other constants. Using a identifier const-id in an expression is equivalent to using its
associated value.

Functions

Some calculations are too complicated to be expressed in a single line, or are used at many
different places in the specification. These calculations can be defined in a function, and
be computed by calling the function by name:

FD ::= func func-id FP −→ T = |[L FS]|
FP ::= () | (V)
V ::= V, V | I:T
I ::= I, I | var-id
L ::= ε | V ‘|’
FS ::= skip | e1 := e2 | ↑ e | [FG] | ∗[FG] | ∗[FS] | FS ; FS
FG ::= []1≤i≤n bi −→ FS i

The function definition FD defines a function with a unique name func-id. The types of
parameters needed by the function are specified in the formal parameter list FP . The
return type of the function is specified by T . Inside the function, local variables may
be introduced (production rule L ::= V ‘|’), followed by a function statement FS which
describes the algorithm of the calculation. Statements allowed in a function are:

• The skip statement, which does nothing.

• The assignment statement, which copies the value expressed by e2 into the variable
indicated by e1.

• The return statement, which ends execution of the function and returns the value
expressed by e to the caller.

• The guarded statement, which performs a non-deterministic choice between several
alternatives. The statement continues execution with one of the statements FSi for
which the boolean guard bi evaluates to true. χ requires at least one guard to evaluate
to true. Also, a non-deterministic choice should not influence the resulting value of
the function call.

• The repetitive statement, which is a repetitive version of the guarded statement.
Repetitively, guards are evaluated, and a statement is non-deterministically chosen
and executed, until all guards evaluate to false. At that moment the repetitive state-
ment is finished, and execution continues with the statement following the repetitive
statement. Note that repetitive non-deterministic choice is the only property of the
statement. Other properties, for example fairness of choice are not part of the lan-
guage. The form ‘∗[FS]’ is a shorthand notation for ‘∗[true −→ FS]’, and gives
the user an endless loop.

18

2.1. Language definition

• Finally, the semicolon concatenates two statements. Execution of this statement
means execution of the statement before the semicolon, followed by execution of the
statement after the semicolon.

A function in χ is a function in the mathematical sense. That means that a function
const-id should always return the same value if it is called with the same parameter values.
To enforce this, formal parameters are passed by value, and constructs with side effects
(for example communication with another process) are not allowed. The only exception to
this rule is the guarded statement which allows a non-deterministic choice. It is assumed
that the user will take care of specifying functions with proper functional behaviour.

Process and system definitions

Process behaviour is defined in process definitions. The topology of multiple concurrently
executing processes is specified in system definitions. This division between process spec-
ification and process instantiation is a separation of concerns. The former concentrates
on the inner working of a process, while the latter concentrates on how the processes are
connected to each other.

PD ::= proc proc-id FP = |[L PS]|
PS ::= skip | e1 := e2 | terminate | E | [PG] | ∗[PG] | ∗[PS] | PS ; PS
C ::= c ? e | c ! e | c ? | c ! | c ∼
E ::= C | ∆e
PG ::= []1≤i≤n bi −→ PS i | []1≤i≤n bi ; Ei −→ PS i

SD ::= syst syst-id FP = |[H ‘|’ N]|
H ::= H,H | I:T
N ::= N ‖N | id(e1, e2, . . . , en)
XD ::= xper = |[id(e1, e2, . . . , en)]|

The production rule PD specifies a process definition with name proc-id and statement PS.
Despite the new name of the production rules, the statements are very similar to statements
in a function definition. Below, only the new or changed statements are discussed.

• The terminate statement terminates execution. The statement is like an instanta-
neous self-destruct button. The statement is considered a kludge, and will probably
be removed in the future.

• The communication statements listed in productions rules C are used to communi-
cate with a single other process using a communication channel. In other words,
communication channels are point-to-point connections between two processes. In
all cases, c is an expression which evaluates to a port. The question and exclamation
marks indicate the direction of communication (reception, respectively transmission).
In the first two production rules, e is an expression used for data transfer. It respec-
tively evaluates to a variable and a value. The remaining production rules are used

19

Chapter 2. The χ language

for synchronisation between processes. With synchronisation, no data is transferred.
Rules c ? and c ! still have a sense of direction, while rule c∼ is a direction-less syn-
chronisation.

• The delta statement rule ∆e (e ≥ 0) causes the process to sleep for e time units.

• The guarded statement and the repetitive statement have been extended. The first
production rule of PG is the same as in the function definition. In the second
production rule, the statement waits for communication and/or delta statements,
before continuing execution. Effectively, the second form of the statement allows
waiting for communication with another process and/or passing of time, which is
why it is called the selective waiting statement, and the repetitive version is called
the repetitive selective waiting statement .

The system definition SD creates concurrently executing processes (which may commu-
nicate with each other) using the parallel composition operator ‖. The instantiation of a
process is written as id(e1, e2, . . . , en). The process definition being instantiated is indicated
by id. The values of the expressions ei (1 ≤ i ≤ n) are used as initial values of the actual
parameters of the process. Systems may be instantiated in the same way. Instantiation of
a system means instantiation of the processes in its body. Nested instantiation of systems
is allowed, recursive instantiation is not allowed.

The top-level instantiation used to instantiate the entire model is specified in the xper
definition XD .

2.2 Time-related aspects

In the previous section, the syntax and informal meaning of each statement was explained.
For understanding a specification, the order of executing statements in different processes
is also important. χ is a language that has the concept of time. How time behaves in
relation to execution of the statements is the topic of this section.

Language

The operational semantics of the discrete-event part of the χ language is formally described
in [BK00]. Informally, the instantiated specification is translated to a tree of statements.
Execution of a statement is performed by non-deterministically selecting a statement in the
tree that can be ‘executed’ according to the rules of the semantics, followed by modifying
the tree. Only one statement can be executed at each time, which naturally leads to
interleaving semantics.3

Another view of an executing χ specification is to consider each instantiated process
as a separate state machine. A transition in a state machine represents execution of a
single statement. All state machines have local state. All those local states together

3Communication over a channel is regarded as a single distributed assignment here.

20

2.2. Time-related aspects

form the global state of the specification. At each time, only a single state machine can
make a transition, thus resulting in interleaving semantics. This latter view is closer to an
implementation, and will be used in this thesis.

Handling of time in χ is done by having different types of transitions. On the one hand
there are time-less transitions where time is not progressing, while on the other hand some
transitions cause non-zero progress in time. Choosing between transitions is done using
the maximal progress principle. As long as time-less transitions are possible, one of these
transitions is chosen and executed. When only time-progressing transitions exist, the non-
empty set of those transitions is chosen, such that progress in time is as small as possible.
When none of the state machines can perform a transition, the system is considered to be
in a deadlock.

The above semantics means that most statements in a χ program do not cost time.
In particular, calculations and communications with co-operating partners are performed
time-less. This is known as the synchrony hypothesis [Hal93, BCG+97]. This abstract
notion of time is very convenient during the design of a system, because it simplifies
reasoning about its behaviour.

In the real world however, time-less activities do not exist, all activities cost time. Even
worse, time is also progressing when you do nothing. In terms of state machines, one would
say that a transition between states costs time and staying in a state also costs time.

Concurrency in the real world is in principle resolved using true concurrency. Multiple
independent processors each perform transitions on their own. That means that it is
possible to perform multiple state transitions at the same time. The tricky part here is
that ‘process’ and ‘processor’ are not the same thing. The former is an abstract notion of a
state machine with its local state, the latter is a physical resource that can make transitions
in a state machine. The creation of a good mapping from process(es) to processor(s) is
an area of research in the real-time systems and embedded systems disciplines. Below, the
relation between time in the real world (wall-clock time) and time in a specification is
discussed in the context of the simulation and translation tools.

Simulation

Several simulators have been built for the χ language in the past years, see [NA98, Fáb99].
These simulators adhere to the χ semantics. Since there are currently no real-world com-
puter systems that adhere to this semantics, the simulation time perceived by the simula-
tion of the model is completely decoupled from the time in the real world, the wall-clock
time. In this way, the simulation time can be manipulated as desired within the constraints
of the χ semantics. The advantages of this approach are a) execution of statements can be
done completely time-less in simulation time, b) long expiration intervals can be executed
in less wall-clock time than indicated by the interval, and c) simulation results become in-
dependent of the performance of the computer system being used, although the wall-clock
time needed to get those results still depends on it.

In the past, the simulators have been mostly used to simulate manufacturing-control

21

Chapter 2. The χ language

systems. Machine-control systems can be simulated with the same simulators however.
In principle, machine control systems are event-based. That means in a system as in
Figure 1.3, the controller C waits until the machine sends an event, for example by com-
municating or by failing to communicate within a certain period. Upon the reception of
an event, the controller starts processing the event, it calculates how it should react on the
received event. Once the calculation is complete, the reaction is sent back to the machine.

Since the χ semantics uses maximal progress, it can be said that the simulated controller
reacts infinitely fast to events.

Implementation

With the horizontal design step, a specification developed under χ semantics is interpreted
under real-world semantics. The basic change when switching the semantics is that ex-
ecution speed becomes finite. Processing of events suddenly costs time. In other words,
the controller reacts only fast rather than infinitely fast under real-world semantics. The
realization of any implementation means basically deciding about the mapping of processes
to processors, along with other properties of the processors, like performance and/or reli-
ability. As said before, this decision should be made by using research results in the field
of real-time systems and/or embedded systems.

2.3 The horizontal design step

Since time in χ is handled differently than time in the real world, interpretation of the
same specification under both semantics will create different behaviour. These differences
must be small enough to make the horizontal design step a useful activity. Below are a
number of approaches that may be employed to reach this objective.

Formal approach

The formal approach to deal with this issue is to change the semantics of χ. In particular,
try to find a semantics χ′ that defines behaviour of statements such that it mimics real-world
behaviour more closely. A relatively simple change in this direction is the introduction of
passage of time while communicating, like in [Hoo91]. A much more elaborate change is
for example [LMW99]. They simulate the execution of a program on a computer, down
to a simulation of the processor caches and internal buses of the processor. The big
disadvantage of this approach is that the semantics becomes more difficult to understand.
More difficult semantics also means that it is more difficult to understand the behaviour
of the specification. Exactly this understanding is crucial to advance in the design of the
highly complex industrial machines, at which the design technique is aimed. That means
that changing the semantics may be helpful in capturing the real-world semantics, but at
the same time, it hampers development of the earlier stages. Since the earlier stages in the

22

2.3. The horizontal design step

e3

e1
e2

time
(b)

e3

e1
e2

time
(c)

e3

e1
e2

time
(a)

Figure 2.1: Timing of execution of a specification.

form of vertical design steps are considered more important than an easy horizontal design
step, this approach has been abandoned.

Assume approach

Another approach is to simply assume that the execution time of a controller to process an
event can be neglected compared to the response time of a machine. In other words, the
response time of a controller is so small that it may be safely ignored. This assumption
makes development, in particular the horizontal design step, much easier. It basically
states that execution is sufficiently fast to assume that it is infinitely fast, which is exactly
the assumption made by the χ semantics. The horizontal design step can thus simply be
implemented by porting the specification from the simulation environment to the real-world
environment.

The disadvantage of this approach is the assumption itself. In particular, is the as-
sumption valid, and if not, what then? Figure 2.1 shows what happens when interpreting
the same specification under χ semantics and under real-world semantics. In Figures 2.1a
through 2.1c, execution of three events e1, e2, and e3 is shown. The events are listed
vertically, time progresses horizontally. Execution of the event is shown with a bar in the
figure. When the event is received, the bar starts. When calculation of the response for the
event is finished, the bar ends. In 2.1a, χ semantics is used for the execution. Since that
semantics uses the synchrony hypothesis, each event starts and is executed entirely at that
moment. The result is thus an infinitely small bar, which is drawn as a vertical line. When
the same specification is interpreted using real-world semantics, time progresses during
execution of the event, and pictures like 2.1b or 2.1c come into existence. The starting
time of the event is different from the ending time, and thus a bar with a non-zero length
appears. The length of the bar indicates how fast the event is handled. Faster execution
means shorter bars. A few points can be made about this figure:

23

Chapter 2. The χ language

• If the real-world system would have infinite execution speed, then the bars would be
infinitely small, which would produce the same picture as Figure 2.1a.

• On a relatively fast system, execution of one event is finished before the next event
is received. A picture like 2.1b emerges. At all times, the system is either idle or
executing exactly one event.

• On a slower system, bars in the picture become longer. Also, if events arrive faster
than they are executed, the execution of different events may overlap each other,
which means that the system is busy executing multiple events at the same time. As
an example, see Figure 2.1c.

In the latter case, the execution of several events at the same time may cause events to
interfere with each other, and cause unspecified behaviour with respect to the χ semantics.
As an example, consider the following specification:

func f() −→ nat = |[. . .]|

proc P (a: !nat) = |[x : nat | x := f() ; a ! 1]|

proc Q(b: !nat) = |[∆4; b ! 2]|

proc R(a, b: ?nat) = |[x : nat | [a ? x [] b ? x] ; ! x]|

syst S() = |[a, b: − nat | P (a) ‖Q(b) ‖R(a, b)]|

xper = |[S()]|

For simplicity, it is assumed that execution of the program starts at time τ = 0.4 Under χ
semantics, execution of all statements is timeless. Therefore, process R receives an event
at time τ = 0 from process P . R handles the event by executing the communication,
and printing 1 on the output. At time τ = 4, process Q receives a time-out event from
the delta statement. This is also the only statement of Q being executed, because the
communication with process R cannot take place.

Under real-world semantics, execution of any statement costs time. To simplify the
explanation, it is assumed that the execution time of statements in the processes may be
ignored compared to the execution time needed to compute the result of function f . The
execution time of this function is represented with tf . If tf < 4, then the first event is
received at time τ = tf , and the expiration event of the the delta statement is received at
time τ = 4. Handling both events is done in the same way as under χ semantics. If tf > 4,
then the delta statement expires before the computation of f finishes. Communication
using channel b becomes possible before communication using channel a. Execution of the
first event at time τ = 4 of R therefore prints 2 instead of 1, which is incorrect with respect

4This is not a limitation, since χ uses relative time-outs.

24

2.3. The horizontal design step

to the semantics of the χ specification. When tf = 4, then an unpredictable choice is made
between one of the above executions.

Obviously, a specification interpreted under real-world semantics should show specified
behaviour only. This can be done in the following ways:

• Assume that the system is handling at most one event at any time. In other words,
assume that nothing bad happens.

• Perform some form of monitoring on the system. Monitoring the behaviour of the
system enables us to detect potential problems.

• Enforce execution of a single event at any time by adding a layer between the machine
and the controller. The layer only allows passage of one event at a time. The
controller executes the event and returns a response, the layer then passes the next
event, etc. Since at most one event is passed to the controller, the controller will
behave as specified.

Whether delaying events is dangerous depends on the type of control being used.
One type of control is feedback control, where the controller must react immediately.
For example, a motor must be stopped when a package has reached the end of a
conveyor. If the controller would not react immediately to the sensor at the end
of the conveyor, the package would drop on the floor. The other type of control is
supervisory control. Events are sent as an acknowledgement that a certain operation
is finished. In the previous example, the motor would be stopped by a lower layer
of control (for example, the sensor is hard wired to the motor), and the machine
control system then gets an acknowledgement that a new package has arrived. With
supervisory control, it is not dangerous when the controller reacts too late. Reacting
too late will only degrade the performance of the machine.

• Write a robust specification, in other words, one that makes no assumptions about
the order of events. The above example may be a correct χ specification, it is not
necessarily a good model of a controller. In fact, it is quite unlikely that a customer
would be satisfied with a controller that breaks if events come in an unexpected order.

In the normal practice of writing specifications, a user develops models that can
withstand an unexpected order of events.

The last one of these solutions indicates that the problem of interference may be smaller
than we think. None the less, there should be a mechanism to verify that the specification
is indeed robust.

Splitting the horizontal step

A third approach is splitting the horizontal design step. Performing the entire horizontal
design step in one time seems too much. By splitting the step into multiple smaller steps,
it may become easier to tackle the problem:

25

Chapter 2. The χ language

• One way to ‘prepare’ the specification for the real world is to add delta statements
to the statements in the specification, to reflect the passage of time in the real world.
Simulation of the extended specification may predict behaviour of the controller in
the real world.

• Another way is to insert an intermediate step between the χ simulation and the real-
world execution. For example, a simulation could be performed using a semantics
somewhere between the χ semantics and the real-world semantics. If simulation
under that semantics behaves correctly, some confidence in the correctness of the
specification is gained.

• Finally, it is possible to simulate the specification using the real-world semantics
by running the simulation on the implementation platform. In other words, the
transformation to the implementation is made, but the virtual machine is not replaced
by the real machine. The resulting implementation thus contains the controller as
well as the virtual machine, yet real-world semantics is used for interpretation.

Each way has its own advantages and disadvantages. However, common to all ways is
that interpretation of the specification is performed either with a changed program or with
changed semantics. It is unclear what success or failure of this interpretation really means
for the correctness of the specification.

The construction of a perfect horizontal design step implies a very thorough under-
standing of real-world semantics. At this moment, nobody has achieved this goal, at least
not such that a well-defined relation between the χ semantics and the real-world semantics
can be defined within the project. Development of that knowledge is very interesting, but
outside the scope of this project. For this reason, this project uses the ‘assume nothing
bad happens’ approach to deliver a first operational version of the development method.

Then, by doing a number of case studies, the impact of the change in semantics can be
evaluated.

26

CHAPTER

THREE

The real-time platform

In the design approach explained in the first chapter, the developer of a control system can
perform a horizontal design step from simulation to real-world implementation. In order
to allow the users to perform this step, the translation should be automated as much as
possible. Before before building a computer tool, it is necessary to define the structure of
the target environment. In this and the next chapter, the structure and its implementation
are explained.

Figure 3.1 gives a global view of the target environment. At the bottom is the machine
which is being controlled by the target system. The target system interacts with the ma-
chine using sensors and actuators, and controls the machine. The system itself consists
of three parts, the real-time operating system, run-time support, and the generated χ im-
plementation. The last two parts together are also called the machine control application,
since they form an application for the real-time operating system.

The remainder of the chapter discusses the target environment in a bottom-up manner.
First, the choice of the real-time operating system is discussed, followed by the design
issues of the machine control application. In Sections 3.4 and 3.5, the implementation of
the run-time support layer respectively the χ implementation, is discussed. The chapter is
concluded with some possible directions for future extensions.

3.1 The real-time operating system

An operating system is responsible for managing resources of a computer system and
providing access to its resources for applications being executed on the computer. Real-
time operating systems are special in the sense that they are tailored to managing resources
on small and heavily customized computer systems. Also, they allow access to resources
such that hard real-time guarantees can be given for carefully designed applications.

In the area of machine control, it is important to have hard real-time guarantees, as it
allows construction of correct controllers which react to sensor readings within a pre-defined
time limit, thus allowing actuators to react within a pre-defined time limit. Timely reaction
of the actuators ensures that behaviour of the machine can be limited, thus allowing the
machine as a whole to behave in a controlled way.

For simple machine control systems, for example switching a current on and off at pre-
defined times, it is not necessary to have a real-time operating system. The controller itself

27

Chapter 3. The real-time platform

Machine

Real-time OS

support
Run-time

implementation

Machine
control
application

Target system

χ

Figure 3.1: The target system and its machine.

can manage its resources. This project however aims to be capable of handling complex
control systems as well. In these systems, timing requirements are more complex. Also,
it is very likely that the machine control application is not the only application being
executed on the system. In such an environment, the machine control application can no
longer decide by itself how and when it should use the resources, a real-time operating
system must make those decisions instead. For this reason, a real-time operating system
is necessary in the target system.

There are about three different ways to obtain an operating system for the target:

1. Build a real-time operating system from scratch,

2. Use a freely available real-time operating system, or

3. Buy a real-time operating system from a commercial vendor.

The first option was dropped almost immediately, since writing a real-time operating sys-
tem is a complex and time-consuming job, and is quite likely big enough to fill the entire
project. Creating only an operating system does not cover the objective of the project
since it does not enable the design step from simulation to implementation. Also, there are
already many real-time operating systems in the world and there is no compelling reason
why an existing real-time operating system would not be sufficient for the job.

By dropping the first option, the decision was made to use an existing operating system.
Because the functionality expected from the real-time operating system was small (it should
support C++, semaphores, and threading), and most operating systems seem to support
this functionality, the search for the ‘right’ operating system was not very extensive.

28

3.1. The real-time operating system

The operating system considered for the second option was RTLinux1. The ‘normal’
Linux platform has been used for several years in the group both for development of soft-
ware and for simulations. Also, the RTChi project done earlier in the group [dBvdBCP97]
provided positive experiences with this real-time platform. Commercial solutions consid-
ered for the third option (buying an operating system from a commercial vendor) were
QNX 2 and VxWorks3. The former was already available within the group complete with
all documentation, the latter is used extensively in the industry. In order to make a de-
cision on which operating system to obtain, the requirements from the first chapter are
carefully considered.

• The first requirement is that the entire project must be completed within the two
years available for the project.

This is another reason why the first option (writing our own operating system) is not
feasible. However, it does not make a firm choice between using a freely available or
a commercial operating system.

• The second requirement is that the real-time platform must be viable in an industrial
environment. The design approach aims to be capable of designing complex industrial
applications. The only way to test whether this aim is reached, is by designing
controllers for machines actually used in the industry, and verify that those machines
function satisfactory.

Since the research group does not have enough resources (people and money) to do
this within the university, industrial partners are being included in this part of the
research. Therefore, the operating system chosen in the project has to be a viable
option to them as well.

All operating systems under consideration are known to be used in industry ([KZ96],
articles in Linux Journal4, and the industry and suppliers themselves). This fact
is not really helpful in making a choice between them. A strong point in favour of
a commercial solution is that industrial partners can buy support for the operating
system. This argument supports the candidates QNX and VxWorks.5

Also, the operating system should be capable of handling real complex machines.
It is expected that the research will start with relatively simple machines, and then
move towards more complex machines. Much effort would be wasted if the solution
chosen now appears to be incapable of handling the more complex systems.

1For more information, point your browser to http://www.rtlinux.org/ .
2QNX is a product of QNX Software Systems Ltd.
3VxWorks is a product of Wind River Systems, Inc.
4Linux Journal is a monthly magazine dedicated to the Linux operating system and its cousin RTLinux.

For more information, see http://www.linuxjournal.com/, or its publisher SSC at http://www.ssc.com/ .
5In the meantime, commercial support for RTLinux has also become available. That means that this

operating system has become more viable to industrial partners.

29

Chapter 3. The real-time platform

• The third and last requirement being considered, is the ability to use the platform
for educational purposes. It creates the need to be able to have multiple instances of
the platform. None of the options above would create any major problems, except
that a commercial solution may be costly.

The above considerations and requirements make no firm choice between using a freely
available operating system, or buying a commercial solution. For this reason, technical
facilities provided by free and commercial operating systems are weighed as well.

• RTLinux [Yod, Epp97] is a small piece of software which is positioned between the
hardware and the Linux operating system. Hard real-time tasks are handled by
RTLinux, and the remaining idle time is given to the Linux operating system. The
philosophy behind it is ‘small is beautiful’. In other words, RTLinux only delivers the
minimal functionality (hard real-time tasks, their scheduling, and some interfacing
to non-hard real-time tasks), everything else, including non-hard real-time tasks, is
deferred to the normal Linux operating system, which provides a stable and very
complete Unix environment, including networking and graphical applications.

The system is open source, still under development, but has already been applied
successfully in the industry. Also, RTLinux has been successfully used in our RTChi
experiment.

• QNX [QNX96] is a micro kernel for the PC, based entirely on message passing. The
usual distinction between operating system and application does not exist on this
system, everything is a task. The distinction between programs in kernel space and
programs in user space does exist, but since it is a micro-kernel, many traditional
operating system tasks are executed in user space rather than in kernel space. The
micro-kernel thus allows for a very modular and flexible system, including switch-
ing to a distributed system, because message passing across the network is handled
transparently by the operating system.

• VxWorks [Win97] is a Unix-like, POSIX-compliant, hard real-time, multi-tasking
platform, delivering all the usual programming features, such as multi-tasking, IPC,
and RPC. It also supports a long list of different (multi-)processor architectures, and
an implementation of all the usual TCP/IP services. Also, the system can be bought
with extensive debugging and monitoring facilities.

All three operating systems provide a development environment, and the possibility to
program the system in C and C++.

Because of its maturity, its multi-processing capabilities, the large number of supported
processor families, and the familiarity of industrial partners with VxWorks, the latter has
been chosen as operating system for the target system.

30

3.2. Machine control application

Windows VxWorks

TCP/IP connection

Host Target

Tornado RT App

Figure 3.2: Overview of a VxWorks environment.

VxWorks

Wind River systems (http://www.wrs.com/) sells the real-time operating system VxWorks
as well as the development environment Tornado for construction of the applications. The
general structure is shown in Figure 3.2. The minimal setup consists of two computer
systems, a host on which development of the real-time application takes place, and a target
system (also known as target) on which the developed real-time application executes.

The host system uses a normal desktop operating system, such as Windows6. On the
host, the development environment Tornado is installed. This environment provides the
developer with the various tools needed for the development, testing, and debugging of the
real-time application.

The target system is a dedicated machine for executing the real-time application. The
VxWorks system can be delivered for a large range of processors, which allows for a lot
of freedom in the choice of hardware for the target. Depending on what hardware and
memory-space available is in the target, the system can be configured to include hard-
ware drivers for example for a hard disc, or an ethernet device, application programming
interfaces (API’s) for facilities like asynchronous I/O, semaphores, message queues, mem-
ory management, queued signals, scheduling, and clocks and timers, networking protocols
based on TCP/IP like telnet, FTP, SNMP, and HTTP, and testing and debugging facilities
which can deliver detailed information about what is happening during the execution of
the program.

The developed application and the VxWorks kernel can be linked together and be put
in ROM to form a dedicated application that controls the embedded system.

3.2 Machine control application

On top of the real-time operating system lies the machine control application. While the
name suggests it is a single application, it is in fact a framework which allows execution of
any χ specification that a user will write. This framework consists of two layers. The top
layer is the χ implementation layer. It is generated by the χ compiler from a specification

6Windows (in various flavours) are products of Microsoft.

31

Chapter 3. The real-time platform

written by a developer. The run-time support layer at the bottom provides an environment
for the generated χ implementation. The environment uses operating system services to
provide generic core services to the generated program, in particular

• it manages processes of the χ implementation,

• it provides a point-to-point synchronous communication service (communication us-
ing channels), and

• it translates time units used by the χ implementation to time ticks used by the
operating system.

Besides these core services, the χ implementation needs other services as well. For example,
an implementation of the data types used is necessary. Also, specifications need an interface
to access the hardware they control. These services are deliberately not covered by the
run-time support layer. Instead, the χ implementation uses separate libraries which (may)
interface directly with the operating system. The main reason for not including these
services is flexibility. By not including them in the layer, experiments with these services
are easier to perform.

The decision to exclude hardware access from the core services means that a χ im-
plementation has to control the physical machine by using function calls. Since commu-
nication statements are used to model hardware communication during simulation, this
decision means that those communication statements have to be replaced by function calls
during the horizontal design step. Unfortunately, the current χ language does not pro-
vide enough hooks to perform this replacement automatically. Therefore, the user has to
manually replace the communication statements that model hardware access.

While the manual conversion is a disadvantage, the technique to do it has already been
tried in the RTChi project. In that project, the technique worked quite nicely. Also, it was
not clear what type of hardware would be used in the experiments. In order to be as generic
as possible, the function-call mechanism was chosen as method to perform hardware access
in this project.

Aside from the hardware-access conversion and the change in semantics which cannot be
avoided (as explained in Section 2.3), the user should be able to use all language constructs
in the simulation and in the implementation. This has the advantage that machine control
specifications are not limited in the allowed language constructs, thus making research to
find the best way to model controllers easier.

This chapter continues with an explanation of the structure of the machine control
application followed by a discussion of a number of important services provided by the
run-time support layer. The synchronous communication service (also provided by the
support layer) is explained in the next chapter, since it is a relatively complicated core
service.

32

3.3. Data structures of the machine control application

object
System

object
System

Master
object

Xper
object

Channel
object

Process
object

T3

Process
object

T2

Channel
object

Process
object

T1

Figure 3.3: Data structures of an executing machine control application.

3.3 Data structures of the machine control application

The structure of data in an application explains a lot about the internal operation of that
application. Therefore, it is important to discuss the data structures used in a machine
control application executing a χ specification. A graphical representation is shown in
Figure 3.3. The functionality of a χ process and the value of its local variables is kept
inside a process object . Execution of this functionality (thus creating dynamic behaviour
of the process) is done by constructing VxWorks tasks Ti within each process object in the
target system. In the figure, three process objects with their tasks are drawn. Channels
between processes only contain data, they are passive objects. This data is stored in
channel objects in the implementation. Communicating processes rely on channel objects
to forward their requests and answers to their communication partner. The communication
protocol used by the process objects to decide which processes communicate is explained
in the next chapter.

The part of the figure with solid lines (tasks, process objects, and channel objects)
implements the behaviour of the χ specification. The arrows between the objects show
which object has knowledge of which other objects. For example, the process object with
task T3 only knows about the channel object placed directly above it. That channel object
knows about the process object, and the process object with task T2.

Theoretically, it is possible to calculate the set of instantiated processes with their
connected communication channels during compilation, and construct only the instanti-
ated processes in run-time. That would mean that the expressions used to compute the
processes to instantiate would either have to be calculated during compile time, or code
must be generated to compute the values of the expressions during startup of the program.
Since the expressions used in the instantiation-part of the specification can be arbitrary

33

Chapter 3. The real-time platform

complex, compile-time calculation is considered too complex. That means that code must
be generated to calculate the instantiation of the processes. In that case, it is easier to keep
the hierarchy during compilation, and create the machine control application recursively on
the target starting from xper, until all process objects have been constructed. In the figure,
the instantiation hierarchy is shown at the left with dashed lines. The xper object was the
starting point of the application. The incoming arrow means that the environment knows
the address of this object. The xper object constructs either a single system object or a
single process object. System objects construct more system objects or process objects.
In this way the instantiation hierarchy is traversed, until all process objects at the leafs of
the hierarchy have been created. In the figure, the hierarchical relation between the xper
object, the system objects, and the process and channel objects is shown with arrows.

As can be seen in the figure, the application is distributed over several tasks. Each
task is only concerned with its local behaviour as specified in the χ program. That means
that there is no task that knows what all processes are doing, and that can perform
operations which affect the entire application, such as stopping the application. Since such
operations are needed, an object that handles the global co-ordination has to be added
in the implementation. This object is called master object. It is depicted at the right-
hand side of the figure. Like the xper object, this object is known by the environment
to allow processes outside the application to distribute information or events to the entire
application. Also, all process objects have knowledge about its address, allowing them to
request coordinated global activities.

Currently, the master object handles starting and stopping of the application, and
provides the ability to get mutual exclusive access to shared resources such as the screen
and the keyboard.

3.4 Run-time support

The horizontal design step has to be possible for each correct χ specification. That means
that in fact many potential machine control applications exist. Therefore, the design
described here can be considered a framework rather than a single application. The run-
time support layer provides common functions (services), while the χ implementation layer,
generated from the χ specification by the χ compiler, uses those functions and implements
the behaviour specified in the specification. As a good engineering principle, the common
part of the functions should be kept separate from the generated part. C++ provides
the object-oriented inheritance mechanism for implementing this principle. The common
code is kept in base classes, while the changing functionality is kept in derived classes. In
the machine control application, the run-time support layer is stored in base classes. The
χ compiler generates derived classes which implement the requested behaviour in the χ
implementation layer.

The master object class and the process base class of the run-time support layer will
be explained in more detail below.

34

3.4. Run-time support

Master object

As explained in the previous section, the master object a) distributes information and
events to tasks of the application, and b) coordinates activities of tasks at a global level.
In the current implementation, information about priority and stack-size of processes is
distributed. Also, the events of starting and stopping of the control application are passed
on. Finally, the object coordinates access to the screen and the keyboard, which are
considered shared devices.

Having a single object in the application that is accessible by all tasks is not in line
with the idea of having a distributed, localised set of tasks. Even worse, it may become
a bottleneck in the system if too many tasks try to access it at the same time. Below, it
is explained why having a single master object will not cause disturbance of the normal
control cycle (that is, the response time of processes in the machine control application to
events detected within the machine will not change significantly).

• Startup of the application. The master object is flooded with requests, since each
process requests a stack size and a execution priority. Also, each process registers
itself as existing in the application.

At this moment, the machine control application is not executing. The flood of
requests is thus not affecting the normal control cycle.

• Shutdown of the application. Each process unregisters itself, which creates a lot of
requests at the master object.

Just as during startup, the machine is not being controlled at this moment, which
means that the normal control cycle is not affected.

• Access to the keyboard. The keyboard is a shared device, which means that a process
needs to get mutual exclusive access before being allowed to read characters from the
keyboard.

In a typical machine control application, only one process will attempt reading from
the keyboard at the same time, because if multiple processes compete with each other,
the operating system will unpredictably choose one process to get access first, which
means that the input typed by the user goes to an unpredictable process, which is
typically unwanted behaviour.

Also, a human sitting behind the keyboard is extremely slow compared to the time
needed to get mutual exclusive access from the central master object, so the latter
time interval can be neglected.

• Access to the screen. Just as the keyboard, access to the screen must also be requested
before writing anything to the screen.

First of all, if many processes would attempt to write to the screen more or less at
the same time, then the screen would display the output faster than a human would
be able to read (which after all is the main purpose of printing something to the

35

Chapter 3. The real-time platform

screen). Also, the process of actually making text appear on the screen by accessing
the screen driver takes more time than getting mutual exclusive access.

In the last two cases, it should be noted that in general, a machine control application has
a single keyboard and a single screen.7. That means that no matter how many processes
want to use them, they will always have to use the same hardware. By locating the master
object in the same machine, the overhead to get mutual exclusive access becomes negligible
compared to the actual I/O operation.

Last but not least, it is not wise to assume that devices are infinitely fast. A modeller
should assume that devices such as the screen or the keyboard may be slow, and ensure that
it does not affect the normal control cycle, for example by temporarily buffering output.

With the above functionality and design considerations in mind, the class definition
of the master object shown in Figure 3.4 will not contain surprises. For each function of
the master object, some methods exist. Upon construction of the object, a default process
priority and stack-size is given. The values of these parameters are retrieved by each process
through the GetPriority() and GetStackSize() methods. Also, all process objects register and
unregister themselves through the Register() respectively Unregister() methods, so they are
known by the master object. This knowledge is used by the environment during execution
of the StartTasks() and Shutdown() methods, which start respectively stop the application.
Finally, the Claim. . . () and Release. . . () method pairs coordinate (mutual exclusive) access
to standard input and standard output (the keyboard, respectively the screen).

Process base class

The run-time support layer provides common services, used by process objects in the χ
implementation layer. These common services exist in the form of methods in the process
base class CVxWorksProc, shown in Figure 3.5. In the constructor, the name of the process,
the address of the global master object and positioning information of its process definition
in the χ specification (used when a fatal error is reported to the user) are stored. The
Claim. . . () and Release. . . () methods are used to get access to standard input and output
(the call is forwarded to the central master object).

From outside the process, there are two types of objects which can enter this process
object, the master object, and channel objects. The Start() and Shutdown() methods are
entry points for the master object to start, respectively stop the task associated with
this process object. Also, channel objects forward calls from the other process. The
IncomingComm() method is used when a remote process wants to communicate with this
object, and the Answer() method is used to deliver the final answer to this process (see
Chapter 4 about communication for more information).

In the protected part of the base class are methods used by the local (derived) process
object. The InitFunction() is optional, it performs initialisation before the normal control
cycle is started. The virtual Run() method implements the behaviour of the process in a
derived process class. The next three methods (Sleep(), Terminate(), and CurTime()) also

7At least, in our experiments.

36

3.4. Run-time support

typedef set<CVxWorksProc*, less<CVxWorksProc*> > CProcSet;

class CVxWorksMaster
{
public:

CVxWorksMaster(int iPrio, int iStksize);
virtual ~CVxWorksMaster();

// Starting and stopping of tasks:
void StartTasks();
bool Shutdown();

public:
// Request task information
int GetPriority(const string& sProcname);
int GetStackSize(const string& sProcname);

// Task registration
void Register(CVxWorksProc *pP);
void Unregister(CVxWorksProc *pP);

void ClaimInput(); // Request and release mutual
void ReleaseInput(); // exclusive access to the keyboard
void ClaimOutput(); // Request and release mutual
void ReleaseOutput(); // exclusive access to the screen

private:
CProcSet cProcesses; // Set of processes

int iPriority; // Default priority of a process
int iStack; // Default stack size of a process

CMutexSem cReportSem,
cRegisterSem, // Used for registering processes
cInputSem,
cOutputSem; // Used for cin/cout mutual exclusion

};

Figure 3.4: Master-object class definition.

37

Chapter 3. The real-time platform

class CVxWorksProc
{
public:

CVxWorksProc(const string& sProcName, CVxWorksMaster *master,
const string& sPos);

virtual ~CVxWorksProc();

void ClaimInput();
void ReleaseInput();
void ClaimOutput();
void ReleaseOutput();

// Called from pMaster
void Start(); // Start the VxWorks task
bool Shutdown(int iNotThisTask); // Kill the VxWorks task

CComAnswer IncomingComm(CSync *pChannel);
void Answer(CComAnswer cAns);

protected:
virtual void InitFunction(); // Perform initialisation
virtual void Run()=0; // Start execution

void Sleep(CTime cT); // Delay for the indicated period
void Terminate(); // Shutdown everything
static CTime CurTime(); // Request time from the system

CComProto cComProto; // The communication protocol
private:

string sPosition, sProcName;
CVxWorksMaster *pMaster;

int iTaskId; // Task id of the VxWorks task
};

Figure 3.5: Process-object base-class definition.

38

3.5. χ implementation

codeparserscanner type
checking generation

tree
decorated c++

sourcespecification
χ token

stream
tree

Figure 3.6: Overview of the phases in the χ compilation process.

provide services to the derived class. Finally, the cComProto object implements primitives
for the selective waiting and sequential communication statements.

3.5 χ implementation

The remaining part is the implementation of the behaviour as described by the χ specifi-
cation. This part is different for each specification. The implementation code is generated
by a program called the χ compiler. This compiler takes the specification, and translates
it to equivalent C++ code. The generated code uses the services provided by the run-time
support part, for example by deriving concrete process classes from the process base class.

By compiling the generated code, and linking it with the pre-compiled files from the run-
time support part, an implementation with the same behaviour as specified in χ becomes
available8. The implementation can then be downloaded and started, to control the real
machine.

The χ compiler

As explained above, the χ compiler translates a χ specification to equivalent C++ code
that can be used on the target system. To the developer of a machine control application,
the translation from a specification to an implementation on the real-time platform is an
auto-magic9 step.

To this project however, the compiler is crucial in making the horizontal design step
possible for our users. On the other hand, from a compiler-construction point-of-view, the
compilation process from a χ specification to C++ code is quite standard. As shown in
Figure 3.6, the compilation process consists of several standard phases. In the first phase,
the scanner converts the text of the χ specification to a token stream, which is read by the
parser to construct a parse tree. The type-checking phase decorates the tree with extra
information (for example, data-type information is added in the expression nodes). The

8With the changed semantics as explained in the second chapter.
9An auto-magic process is an automatically executed process, which the author does not want to explain

in detail, because it is too ugly, too complicated, or just too simple [Ray96].

39

Chapter 3. The real-time platform

last phase is code generation, which generates a C++ source from the decorated tree to
match the environment expected by the run-time support part.

Type checking

The most interesting phase in the compiler is the type-checking phase. This phase checks
the entire specification for semantical errors, and decorates the parse tree for the code-
generation phase. The type-checking phase checks definitions specified in the source in the
following order:

1. Constant definitions,

2. Type definitions,

3. Function definitions,

4. Process definitions, and finally

5. System and xper definitions.

In other words, first all constant definitions are checked, then all type definitions, etc.
The reason for this order is that χ is considered to be a mathematical language to de-
scribe industrial systems, rather than a programming language. Therefore, the order in
which definitions in the specification are listed has no influence on their interpretation.
By checking in the above order, the definition of elements is checked before they are used.
For example, function definitions are checked before process definitions, because the latter
may use function applications in their definition.

Throughout the type-checking phase, the χ type system is implicitly used. This system
defines what data type an expression in χ has. The language uses the following conventions
for data types

• It is a statically typed language, all types are decided during compile time.

• The language uses structural type equivalence, two data types are the same when
their structure is the same.

• Expressions may not have a polymorphic data type at the end of the compilation.

• Both polymorphism and overloading are allowed in the language.

• Last but not least, data types are not related to each other. For example, the data
type of natural numbers is not related to the data type of integers. A consequence
of separating data types is that the language does not use casting. For example, the
literal list [1.0, 2] would be correct if the value 2 would be casted to its equivalent real
value 2.0. χ however does not perform casting, and considers the list semantically
incorrect. The user may however use conversion functions for changing the type of
data.

40

3.5. χ implementation

The piece of software that derives a type of an expression in its context is at the core of
the type-checking phase.

The basic type-checking algorithm used in previous versions of the χ compiler is based
upon [Mil78]. This algorithm is capable of handling polymorphism (also known as generic
polymorphism) while deciding the data type of expressions. Meanwhile, allowing overload-
ing (also known as ad-hoc polymorphism) of library functions had become desirable in χ.
Therefore, a new checking algorithm for deriving types in expressions was needed. Unfor-
tunately, this was not as easy as it sounds. Apparently, the combination of no casting, but
with use of both generic and ad-hoc polymorphism was sufficiently non-standard to belong
to the set of problems for which no off-the-shelf solution exists. Therefore, a solution had
to be devised. Cardelli [Car87] describes a general approach to solve a set of type equations
with the presence of polymorphism. Extending this idea with overloading, and having it
solved by a computer seemed a feasible option. Also, [DdlBS99] proved that it could be
done in Prolog. The article describes an algorithm to generate a set of Prolog typing rules
which (after solving by a Prolog interpreter) defined the type of a Prolog expression.

Defining the data type resolving problem precisely, and designing an algorithm to solve
the type equations was the next step. Ideally, after defining the algorithm, some properties
should be proven about it, for example correctness and termination properties. However,
since time was limited, proving properties could take a long time, and some confidence
was built with the algorithm while it was being constructed, it was decided to take an
engineering approach instead. Rather than formally proving the properties, the algorithm
was tested on a few tricky examples. Also, by reasoning about the mechanism of the
algorithm it was deduced that key-properties like termination would very likely be correct.
With this knowledge, the algorithm was implemented and then tested again to verify the
results as well as the implementation. The tests gave satisfactory results. Also, after
integrating the algorithm into the compiler, users found the data-type checking of the χ
compiler accurate. This means that errors reported by the compiler are indeed errors in
the specification, and constructs considered to be correct by the compiler are not found to
be faulty. In the latter case, it should be noted that the type checking done by the C++

compiler on the generated code serves as an extra check on the correctness of the generated
code. In this respect, it is convenient to have users that do not understand C++. Their
first reaction when confronted with a C++ error is to report it rather than trying to fix it.

Users also found the algorithm to be slow in some cases. One user even believed
that the compiler sometimes got stuck in an endless loop. Investigation of this behaviour
revealed that this behaviour was a property of the algorithm. An optimization to prevent
this problem has been developed and implemented. The precise description of the type-
checking problem, the devised algorithm to solve the type equations, and the changes made
to the algorithm to ensure proper performance are described in more detail in Appendix A.

Code generation

The translator tool performs the translation of χ constructs to C++ code. For each
language construct in Chapter 2, a translation has been designed and implemented. In

41

Chapter 3. The real-time platform

this section, the most interesting translations are discussed.

• Type definitions are completely eliminated. The identifier is replaced by the data
type that it represents. This is allowed because χ uses structural type equivalence.

• Each χ data type is translated to a C++ data type. Basic data types such as bool,
nat, and string have a native C++ equivalent. The χ types nat and int are both
translated to the same int type to prevent conversions as defined in the C++ language.

Constructed data types are translated by instantiating a template. Except for tuples,
all constructed data types have a single template class. For example, the list data
type real∗ is translated to CList〈double〉10.
For tuples T0 × T1 × . . . × Tm, a single template class is not enough because m is
variable between different tuples, and the length of an argument list of C++ template
classes is fixed. For this reason, the template class itself is also generated. Generating
template classes may create a consistency problem when using tuple data types in
libraries, since the latter are compiled at a different time compared to the compilation
of a χ specification. At this moment, the problem is non-existent since no library
function uses tuples. In the future, the χ compiler will be modified to generate
tuple template classes on demand to assist the developer to prevent such consistency
problems.

• Constants are implemented by replacing the constant identifier with its expression.

• Functions are compiled to C++ functions.

• The guarded statement is implemented with if-then-else statements. This implemen-
tation is correct with respect to the semantics because the χ language allows all
decision policies.

• The terminate statement indirectly calls the CVxWorksMaster::Terminate() method
which shuts the entire control application down.

• Communication statements are implemented as selective waiting statements with a
single alternative with a true guard and no statements to execute after the commu-
nication succeeds.

• The delta statement is implemented as a call to a delay function available in the
VxWorks libraries. The argument of the delta statement is interpreted as the number
of seconds to wait. Because the delay function takes an integer number of clock ticks,
a conversion of the argument to the number of clock ticks is performed. That means
that the difference in waiting time between the specified argument and the actual
number of clock ticks may be half a clock tick. For very small values of the argument,
this difference may become significant. However, the delta statement is normally used

10This C++ notation means that CList is a templated class using the type double as its argument.

42

3.5. χ implementation

to detect time-out, and small values for the argument are not common with this type
of use.

• In the language semantics, the (repetitive) selective waiting statement uses a non-
deterministic choice between alternatives. In the implementation, it is attempted to
be as cheap in execution as possible. For this reason, ∆0 (wait for 0 time units) is
given priority over communication.

If communication should be performed (because there is no ∆0), verifying whether
a communication partner exists is assumed to be infinitely fast. If no partner exists,
the process executing the selective waiting statement blocks until the delay expires
or until a partner announces itself.

The decision to assume infinite speed in determining whether communication can
take place is taken because the statement behaves closer to the semantics in this
way. A user has the guarantee that at least all communication options are tried.
The assumption is not unreasonable given the fact that a selective waiting statement
normally has only a few alternatives, testing is relatively fast (a subroutine call in a
single processor environment), and time-out values are normally quite long because
they are used for detecting failure to respond.

• The interleaving semantics of χ is not preserved. The semantics defines that a χ
statement is entirely executed in a single step. In the implementation, a single χ
statement is typically translated to 10–20 C++ statements11. A single C++ state-
ment is in its turn translated to multiple machine-language statements. Scheduling
of statements is done by the VxWorks scheduler which uses pre-emptive scheduling.
Therefore, switching of tasks while in the middle of executing a single χ statement is
likely to happen. However, the changing part of the state of a task is not externally
visible. Semaphores are used to take care of presenting a correct and consistent state
to the outside world, for example, while communicating over a channel.

• Also not preserved is the timeless-nes of executing statements. As explained in the
second chapter, this is wanted behaviour. However, it should be noted that referring
to the current time in a statement may behave in unexpected ways. For example
[τ = τ −→ skip]12 may fail because the value of the clock may change while the
guard expression is evaluated.

• Synchronous communication is not really synchronous. There is always one side that
concludes first that communication should take place (details of how this decision is

11Roughly measured in the simulation tool.
12This is a guarded statement with one alternative. The τ refers to the current time. The χ semantics

specifies that this statement is executed at a single point in time, therefore the boolean guard always
evaluates to true and the guarded statement can always choose the alternative. In the implementation,
time progresses while evaluating the guard, therefore the current time may change between the two reads,
causing the guard to evaluate to false. The latter results in having a guarded statement without a selectable
alternative, which is a violation of the semantics.

43

Chapter 3. The real-time platform

reached, is discussed in the next chapter).

Data transfer over the channel takes place after reaching an agreement to communi-
cate. The actual transfer is synchronized by semaphores. First the receiver supplies
an address where the value should be written into, then the sender computes the
value, writes it, and synchronises back to the receiver that the data transfer has been
performed. Note that transfer using pointers is better than transferring the actual
value from sender to receiver, because it saves one copy-operation of the (large) value.

Unfortunately, in an implementation of guarded statements and selective waiting state-
ments, a choice must be made which rule to use in selecting an alternative. In principle,
every choice is wrong. Whatever rule is used, users can always use their experience with
the implementation to tailor their models. Therefore, users should be educated in not
falling into this trap rather than trying to outsmart a user in an implementation.

3.6 Future extensions

The current implementation of the target system and the χ compiler is quite complete.
The most notable exceptions are reading and writing to file (due to lack of a file system
on the target), and random numbers. This functionality does however fit in the design of
the target system in the sense that the design allows inclusion of these features.

Also, the machine control application is currently limited to computer systems with
a single processor. A quite likely extension is distribution of the control application to
several machines, connected to each other by a network. χ supports this extension already
with its notion of parallel executing processes. The design of the target system is also
prepared for this extension by not having a central engine. Instead, everything is decided
as locally as possible by the processes themselves. This allows for a scalable system when
extending to distributed control systems.

The target system is also prepared for extension of the research towards real-time be-
haviour. At the moment, χ considers each process equally important. Therefore, each task
gets the same priority in the target system. In the future, some tasks in a controller may
be considered more important than other tasks. For example, a process that monitors the
emergency switch may need more attention than a task that calculates optimal schedules.
By assigning different priorities to different processes, these ideas can be tested. To im-
plement this extension, only the registration procedure of process objects will need to be
extended.

44

CHAPTER

FOUR

Synchronous communication

The χ language uses synchronous communication to transfer information between pro-
cesses. In the implementation however, both the computer hardware and the real-time
operating system only provide asynchronous communication primitives. Therefore, a con-
version from synchronous communication to asynchronous communication has to be per-
formed as part of the horizontal design step. This conversion can be done in three ways:

• The user converts the χ specification to an equivalent specification that uses asyn-
chronous communication.

• The χ compiler performs the conversion.

• The run-time support layer implements a synchronous communication service using
asynchronous communication primitives.

The big advantage of the first solution is that the user has full control over the use of com-
munication. That allows for tailoring of the translation to the specific circumstances known
to exist in the specification. For example, buffer processes in the specification may be elim-
inated, because the communication channel may be used as buffer. The downside of the
solution is that the developer has to ensure that the model remains correct. Also, to exploit
the advantages offered by the solution, the developer needs to have a good understanding
of the use of asynchronous communication. In some early case studies [Wie98, Kam99],
this appeared to be a major obstacle for our users.

To make the horizontal design step feasible for our users, a simpler solution is needed.
The second and third solutions for the conversion are much better in that respect. They
shift the burden of the conversion from the developer to the tools. In fact, with these
solutions, the developer does not need to know about the conversion. The disadvantage
of being less flexible in the use of communication is a cheap price to pay for the increase
in usability. Deciding whether to use the second or the third solution is mainly a matter
of deciding where the conversion takes place. The second solution is slightly more flexible
in the sense that the compiler may be able to take advantage of generating more optimal
code in a number of cases, at the expense of a more complex compiler. Since generating
optimal code is not the first priority in this project, the third solution of including support
for synchronous communication in the run-time support layer has been chosen.

45

Chapter 4. Synchronous communication

The next step in implementing the communication service is to decide how the service
should be implemented. One approach is to make a single object in the target system
responsible for combining communication requests. Each task reports its progress with
respect to communication to this central object, and queries whether communication can
take place. Another approach is trying to localize communication as much as possible.
Rather than having a central object, the tasks themselves exchange information with each
other, until they reach agreement.

The centralized approach with a single object is simple to implement, but it lacks scala-
bility. Also, distribution of the control system across several computer systems may become
more difficult due to communication bandwidth requirements between the computers. As
a result, the centralized approach has been rejected in the project.

For the implementation of the distributed synchronous communication service, several
algorithms exist in the literature. The article of Buckley and Silberschatz [BS83] gives an
overview of previous solutions and provides criteria for choosing an algorithm:

• As few processes as possible should be involved in reaching a decision on whether or
not to communicate.

• Processes should need as little information as possible to reach a decision.

• With the assumption that processes execute at a non-zero rate, and matching com-
munication possibilities exist, the decision to communicate should be made within a
certain time period.

• Processes should communicate as few messages as possible.

These criteria look sound and were adopted as criteria for comparing solutions with each
other. It should be noted that that the last criterion currently has no big impact in the
implementation. Our target environment is a single-processor system with multiple tasks
in a shared-memory environment. Sending a message in this system means performing a
subroutine call, which is very fast. However, if the system is extended to distributed con-
trol (that is, the machine control application becomes distributed over multiple computer
systems), the last criterion will become very important. For this reason, the last criterion
is also used in the decision of which algorithm to use.

All previous algorithms reviewed by Buckley and Silberschatz fail to meet one or more
of the above criteria. Their own algorithm does adhere to the criteria, but is found to
be incorrect in [KS97]. Luckily, in the meantime, Bagrodia [Bag89] has devised another,
slightly simpler and more efficient algorithm which also complies with the above criteria.
This algorithm has therefore been chosen to serve as a base for resolving communication
in the target system.

In the next section, the algorithm of Bagrodia is summarized. Section 4.2 continues
with an explanation of the extensions added to the core algorithm to make it usable for
the implementation of synchronous communication in χ. Finally, the implementation of
the adapted algorithm and the verification of it is discussed.

46

4.1. Bagrodia

4.1 Bagrodia

This section summarizes the distributed synchronous point-to-point communication algo-
rithm by Bagrodia [Bag89]. In particular, the more formal parts of the algorithm are not
discussed here.

In a group of asynchronously executing processes, each process has a unique process
identifier pi. Each process does not terminate, and is either active or idle. In the active
state, the process is busy performing calculations, and is not willing to communicate.
After some time, the process needs to exchange information with another process. At
that moment, the process switches from active state to idle state. In the idle state, the
process tries to communicate with another process. After it succeeds in communicating
with another process, the process goes back to active state, performs calculations, etc.

Communication between two process pi and pj is called an interaction, and is written
as (pi, pj). All interactions which may take place (where both processes are idle), are said
to be enabled. Interactions which are not enabled are considered to be disabled. Since
a single process can only commit to a single interaction each time, enabled interactions
which ‘use’ the same process cannot happen at the same time. These interactions are in
conflict with each other. As an example, interactions (p1, p2) and (p1, p3) between three
different processes p1, p2, and p3 are in conflict with each other, because process p1 can
only participate in one of the interactions.

The distributed algorithm of Bagrodia has the following properties:

• Safety property: Processes do not (simultaneously) commit to interactions that con-
flict with each other.

• Liveness properties:

– If pi commits to interaction (pi, pj), pj has either committed to the interaction
or will eventually do so.

– Every enabled interaction is eventually disabled.

In the article, a proof is given for these properties.

The algorithm

For an interaction (pi, pj) to take place, both pi and pj have to commit to the interaction.
Committing to an interaction can only be done after both processes have successfully
concluded a negotiation process. The negotiation process can only be started by the
processes that ‘owns’ the interaction. Ownership of the interaction is defined as ownership
of a token associated with the interaction.

In other words, for every interaction, there is a token. A token t, associated with
interaction (pi, pj), is either owned by process pi or by process pj. The process owning
the token can initiate the negotiation process for the interaction. During the negotiation

47

Chapter 4. Synchronous communication

process, ownership of token may change. That means that the next time the interaction
is attempted, the other process starts the negotiation process.

The algorithm uses tokens rather than interactions in the decision process. It requires
that tokens are fully ordered. In other words, for each pair of tokens ti and tj , the relation
ti < tj is properly defined. The article simplifies the proofs by making interactions and
tokens the same. For example, the token associated with interaction (pi, pj) is written as
(pi, pj). At the start, each token is given to one of the processes involved in the interaction.

A process P1 initiates communication by sending the smallest token possessed by it
to the process indicated by the associated interaction. For example, if the smallest token
possessed by process P1 is (p1, p2), then this token is sent to process P2. If the receiving
process is idle, it responds to this request with a commit message. In that case, the token
is sent back, and communication is considered successful. If the process does not want to
communicate, it responds with a refuse message. The token is captured by the receiving
process and stored for future use. Upon receiving the refuse message, the initiating process
P1 again selects the smallest token, and attempts again to communicate, etc.

Unfortunately, due to the asynchronous character of exchanging messages, it is possible
that after the initiating process P1 has sent the request to P2, but before it receives an
answer, another token is received by P1 from a third process P3. Reception of this token
gives process P1 a choice. If process P2 refuses the request, it can acknowledge the request
from P3, and vice versa. However, P1 can only decide how to answer to P3 after it has
received an answer from P2. Waiting for an answer is not an option, because P2 may
be busy negotiating with P3, thus creating deadlock. To prevent deadlock, the algorithm
uses a smaller/bigger rule. If the incoming request from the third process has a token
bigger than the token being used by the process itself, the incoming request is refused.
Else, a delay message is returned which means as much as ‘please hold’. In the example
where process P1 is busy with token (p1, p2), and process P3 requests communication with
the former process using token (p1, p3), the first process will deny the request of P3 if
(p1, p3) > (p1, p2). Otherwise, it will send a delay message to P3. Once the process gets a
commit or a refuse answer from its own request, it sends a final refuse respectively commit
message to the process that was delayed.

With the bigger/smaller rule, deadlock cannot happen. Also, sending a refuse message
to a process with a bigger token does not mean elimination of the possibility of communi-
cating with that process, because sending a refuse message also means capturing the token.
That means that the process sending the refusal gets the ability to initiate communication
with the same process. In the example, if P1 would refuse communication with P3, it
captures the token (p1, p3). Then, if P2 returns a refuse message to P1, the latter tries to
communicate with a different process. It takes the smallest token owned by it for example
(p1, p3), and sends a request to communicate.

There are two cases not discussed yet that may occur while executing the algorithm.
The first case is that more processes may attempt to communicate with P1 after P3 has been
delayed. Those requests are always refused. The second case is that a process attempting
to communicate finds all its potential partners busy. With each request, the process looses

48

4.2. Communication in χ

a token, until it runs out of tokens. At that point, the process cannot initiate requests
to communicate anymore and has to wait until it gets an incoming request, which it then
acknowledges.

4.2 Communication in χ

The algorithm of Bagrodia discussed above provides a solid base for deciding which χ pro-
cesses will communicate with each other. Before it can be applied in the communication
service in the target system, the handling of guards, channels, and data transfer must be
addressed. Also, an interface to the χ implementation layer is needed. In the discussion
below, only the selective waiting statement is taken into account. The sequential com-
munication statement is treated as a selective waiting statement with a single alternative.
During the discussion, two deviations with respect to the semantics are introduced. These
are discussed in more detail at the end of this section.

Starting with the interface for the selective waiting statement, the user considers the
selective waiting statement as a choice mechanism between one or more communication
and/or delta alternatives, each with its own guard. The interface to this mechanism in the
run-time support layer uses the following five steps to realize the behaviour:

1. Initialise data structures for storing the alternatives.

2. Add all useful alternatives for which the guard evaluates to true.

3. Make a choice from the given alternatives.

4. Execute the code associated with the choice if necessary. For example, perform the
data transfer of the communicated value.

5. Continue execution of statements at the correct point in the program.

If at least one communication alternative exists during execution of the third step, the
algorithm of Bagrodia is used to decide which alternative is chosen. Outside the third
step, the task is considered to be in active state, it is busy calculating. Other processes
that attempt to communicate with it at that time, are refused.

The second, third and fourth steps are explained in more detail below. ‘Adding a useful
alternative’ means that all alternatives are added, except alternatives that cannot be chosen
and duplicate alternatives. Alternatives that cannot be chosen are delta alternatives with
a timeout value larger than the smallest value. Duplicate alternatives are delta alternatives
with a timeout value equal to the smallest value, and multiple communication alternatives
that attempt to communicate over the same channel except one. For example, in the
following selective waiting statement

[true ; ∆2 −→ . . .
[] true ; ∆1 −→ . . .
[] true ; ∆1 −→ . . .

49

Chapter 4. Synchronous communication

[] true ; s ! 1 −→ . . .
[] true ; s ! 2 −→ . . .
[] true ; c ! 3 −→ . . .
]

with s and c both ports to communicate natural numbers, the first alternative is eliminated
because it is never chosen. Either the second or third alternative is kept, while the other
is considered a duplicate alternative, and thrown away. Likewise, either the fourth or fifth
alternative is stored and the other is thrown out since both alternatives use the same port.
The last alternative is stored because it uses a different port. Step three thus makes a
choice between waiting one time unit, communicating over port s, or communicating over
port c. The current implementation throws away all duplicates, except the first one.1

In the third step, a final selection is made between the following four cases, based on
the available delta and communication alternatives from the second step:

3a The smallest timeout value of the delta alternative is less than 0. In this case, the
statement violates the χ semantics. An error is reported and execution of the program
is aborted.

3b The smallest timeout value of the delta alternative is 0. The χ semantics leave
freedom to either communicate or to select the delta alternative. Since the latter is
cheaper in execution, it is chosen rather than attempting to communicate.

3c There is neither a delta alternative nor a communication alternative to choose from.
For the selective waiting statement, this is a violation of the semantics. Like above, an
error is given and execution is aborted. For the repetitive selective waiting statement,
this situation means the end of the repetition. Execution proceeds by executing the
next statement.

3d Either the smallest timeout value of the delta alternative is larger than 0, or there
is no delta alternative. In the latter case, the timeout value is considered to be ∞.
The algorithm of Bagrodia is used to check whether it is possible to communicate.
If communication is not possible within the timeout limit, the delta alternative is
chosen. How the decision to choose the delta alternative is made, is explained later
in this section.

This step is relatively straightforward because a lot of potential troublesome choices have
already been eliminated in the second step. At this point, an alternative has been chosen.
Timeout alternatives are already dealt with in the algorithm by waiting the specified time
interval for communication, but when a communication alternative with data transfer has
been chosen, the actual data transfer has not been done. In that case, this data transfer
is performed in the fourth step. The sender writes the result of the expression evaluation

1The χ semantics allows any policy, therefore a different policy can be implemented without breaking
the semantics.

50

4.2. Communication in χ

to memory using an address supplied by the receiver. Synchronisation of these activities
is ensured by semaphores. Then, execution of the next χ statement is started.

The χ semantics only demands that a non-deterministic choice is made between alter-
natives with a true guard in a selective waiting statement. Giving ∆0 alternatives priority
over communication, throwing away duplicates and unreached delta alternatives, and us-
ing a non-fair communication-decision algorithm therefore meet the requirements of the
language.

Above, it is stated that Bagrodia is used to select between communication alternatives,
and a timeout. While this is true in general, some extensions to the algorithm have
been silently assumed in order to simplify the explanation above. With knowledge of
the global solution as discussed above, the time has come to explain the details of guards,
communication channels, and the handling of timeout. Except for the treatment of timeout,
the approach to add these extensions to the core Bagrodia algorithm has been based on
recommendations in [Bag89].

• Guards. As in χ, most CSP variants use guards to enable and disable communication
alternatives. As noted by Bagrodia, the algorithm is easily extended by only request-
ing and committing tokens for which its guard evaluates to true. Tokens for which
the guard evaluates to false are never sent and are refused when another process uses
them.

• Channels. By making tokens and interactions equivalent, Bagrodia assumes a single
interaction between two processes. In χ, this assumption is not valid. The language
uses channels as communication medium, and only excludes channels that connect
a process with itself. In other words, in χ it is possible that two different channels
connect the same pair of processes with each other. The reason for assuming a single
interaction between processes is however for ease of proof only. There is no structural
limitation to the connection of channels, as long as each interaction has a unique
token associated with it, and tokens are fully ordered. Therefore, by associating
a χ-channel with a token, channels can be added to the algorithm. Fully ordered
tokens are ensured by comparing the address of the channel object associated with
the token.

• Timeout. Bagrodia assumes that a process wanting to communicate will wait un-
til communication is possible. In χ, delaying can be limited to some upper limit
by including delta alternatives in the selective waiting statement. As a result, the
algorithm of Bagrodia cannot accommodate delta alternatives without change.

Adding timeout means that a process may go from active state to idle state to wait
for communication, and then after some time autonomously decides to go back to
active state. The implementation assumes that a process can decide whether or not
communication is possible within the period prior to the timeout. In other words,
it can try all available communication options before the timeout interval expires.
Therefore, at the moment the timeout expires, the process has no tokens left and is

51

Chapter 4. Synchronous communication

waiting until some other process initiates communication with it. In this situation,
no harm is done by deciding autonomously to go back to active state. The process is
after all not negotiating with any other process, nor has any other process indicated
that it is interested in communicating with the waiting process. Thus timeout can
be chosen under the following conditions: a) the process has no outstanding requests
for which it has not received a final answer, b) it has not received a commit to one
of its requests, and c) it has refused all requests coming from other processes. Under
these conditions, it is safe to switch back from idle state to active state.

It should be noted that the above description deviates from the official χ semantics in
two ways, aside from the difference in behaviour of time. The first deviation is made in
step 3b. In this step, an alternative with timeout value 0 is given preference above commu-
nication. The reason for this decision is that a choice has to be made in an implementation,
and there is no compelling reason for not choosing the cheap alternative first.

The second deviation from the semantics lies in the handling of timeout alternatives.
Specifically, it is assumed that the decision to communicate with another process can be
made within the timeout interval. Obviously, for small timeout periods this may not be
true. However, in the application domain, timeout alternatives are used for fault detection.
If, for some reason, the realized timeout period is slightly longer than specified because the
decision cannot be reached in time, nothing bad happens.

4.3 Implementation

The algorithm designed above needs to be linked into the architecture of the target system.
This is achieved by filling in the details of the channel objects, and the cComProto object
in the base process class.

Rather than listing the C++ code here, the algorithm is explained using a more compact
notation. The data in channel objects and process objects is presented in tuples. For ex-
ample, the data of a channel is stored in tuple (p0, p1, powner). For function and procedure
calls, the object-oriented notation object.method() is used. Definitions of the methods
use χ notation, in combination with object-oriented conventions for access to data and
methods of the object. For example, the line c.changeowner(p) = |[powner := other(p)]|
defines the method changeowner on channel c. Inside the body of the method, parameter
p, the data stored in the channel tuple, and the methods associated with the channel are
available without prefixing them. For example, the method other in the body is in fact
c.other.

Below, the channel objects are described first, followed by the process objects. The
reason for this order is that channel objects are easier to understand than process objects.
However, since channels and processes closely work together, both should be studied at
the same time in order to understand them.

52

4.3. Implementation

Channel

Data in a channel is a tuple (p0, p1, powner). It contains references to its connected pro-
cesses p0 and p1. powner is the owner of the token of the channel. Storing the owner of
a channel inside the channel tuple originates from the wish to get rid of moving tokens
back and forth between processes. The reason for this is that a process may be connected
to many channels, which means that it requires a lot of storage to store all the tokens
that it may own. Since this holds for all processes, a lot of that storage is wasted (not in
the last place because a token is always associated with exactly one process). To reduce
the storage requirements, the list of tokens is distributed from within the process to its
connected channels in the form of an owner field.

On each channel c, the following methods are defined:

c.owner(p) = |[↑(p = powner)]|

c.changeowner(p) = |[powner := other(p)]|

c.other(p) = |[[p = p1 −→ ↑ p0 [] p = p0 −→ ↑ p1]]|

c.remotecomm(p) = |[↑ c.other(p).remotecomm(c)]|

c.finalanswer(p, a) = |[c.other(p).finalanswer(c, a)]|

The first method is a consequence of the above decision to store ownership in the channel.
Instead of checking whether a process owns the token, it must verify that it owns the
channel using the function c.owner(p), before it can issue a communication request for
that channel. Another consequence of the above decision is that a channel needs to have
a way to change its ownership. The method changeowner takes care of this functionality.
The other method returns the process not specified as parameter. It allows a process
connected to the channel to find the process connected at the other port of the channel.
The two functions, c.remotecomm(p) and c.finalanswer(p, a) perform a forwarding service
of process methods to the other process connected to the channel. (The c.other(p) part
returns the process connected to the channel that is not p. On that process, the method
is called.)

Last but not least, both processes have access to the data in a channel, which makes
the channel a shared data structure. To prevent data corruption, the channel must be
claimed by a process using a semaphore before using the channel. The operations on this
semaphore are written as operations on the channel itself, so ‘P(c)’ means ‘perform the P
operation on the semaphore of channel c’.

53

Chapter 4. Synchronous communication

Process

A process has a tuple (s, dm, cm, c, dc, bs, ans) to store its data. This data is shared
between several processes, and must be mutually exclusively accessed. Like channels,
obtaining and releasing this lock is denoted as semaphore operations on the process. The
fields in the tuple have the following meaning:

• State s of the process has four possible values:

active The process is busy calculating, and not interested in communicating with
another process.

trying The process is trying to establish communication (it has sent a request, but
has not yet got an answer).

pending The process has been asked to wait, and has not received a final answer
yet.

idle The process is waiting for another process to initiate communication with it.

• Delta set dm contains information about alternatives using a delta event. The set
is either empty, or contains a single element (d, i), with d the value of the time-out
expression for the ith alternative.

• Communication set cm contains information about communication alternatives. Each
element is a tuple (c, i), with c the channel used in the ith alternative. The set is
ordered on channel, because the algorithm needs an in-order traversal of channels.

• Channel c is being tried for establishing communication. This data is only valid when
s ∈ {trying,pending}.

• Delayed channel dc is a set containing at most one channel c′. Existence of this
channel in the set means that another process has tried to initiate communication
using channel c′.

• Semaphore bs is used for internal synchronisation between the p.doselwaiting and
the p.remotecomm routines. The semaphore must be initially taken. Use of this
semaphore is demonstrated in the example on Page 57.

• In the ans field, the final answer is stored for this process when it is in pending state
(the process is blocked on semaphore bs at that moment, and is not able to accept
the value immediately).

Besides the tuple, there are also a number of methods associated with each process p.
These methods follow the five steps described in Section 4.2. Note that in the sequel,
c ∈ cm is a shorthand notation for ∃ x: (c, x) ∈ cm.

54

4.3. Implementation

p.clear = |[dm := ∅ ; cm := ∅]|

p.adddelta(d, i) = |[[dm = ∅ −→ dm := {(d, i)}
[] dm = {(d′, i′)} ∧ d < d′ −→ dm := {(d, i)}
[] dm = {(d′, i′)} ∧ d ≥ d′ −→ skip
]

]|

p.addcomm(c, i) = |[[c �∈ cm −→ cm := cm ∪ {(c, i)} [] c ∈ cm −→ skip]]|

p.finalanswer(c, a) = |[P(p) ; ans := a ;
[ans = ack −→ skip
[] ans = refuse −→ c.changeowner(p)
]

; V(bs) ; V(p)
]|

The clear routine performs the first step by clearing the delta set dm and the commu-
nication set cm. The second step, adding new communication and delta alternatives to
their sets is done using the addcomm respectively adddelta methods. In case of adding a
delta alternative, the algorithm is only interested in one of the delta alternatives with the
smallest time-out value, so the add method does not even store other alternatives. Multiple
communication alternatives using the same channel are also silently deleted, except for one
alternative. The finalanswer method is a routine to deliver a delayed answer to process p.
This routine also adjusts the ownership of the channel if necessary.

For the actual handling of communication, two other methods are needed. The first
and easiest method is for handling incoming communication requests from other processes:

p.remotecomm(rc) =
|[P(p)
; [s = active −→ V(p) ; ↑ refuse // line #R1
[] s = idle −→ [dc = ∅ ∧ rc ∈ cm −→ dc := {rc} ; V(bs) ; V(p) ; ↑ ack // line #R2

[] dc �= ∅ ∨ rc �∈ cm −→ V(p) ; ↑ refuse
]

[] s = trying ∨ s = pending // line #R3
−→ [dc = ∅ ∧ rc ∈ cm −→ [rc > c −→ V(p) ; ↑ refuse

[] rc ≤ c −→ dc := {rc} ; V(p) ; ↑wait // line #R4
]

[] dc �= ∅ ∨ rc �∈ cm −→ V(p) ; ↑ refuse
]

]
]|

55

Chapter 4. Synchronous communication

Depending on the activities of process p as indicated by the state s, which channel c
is used by p, and whether or not another process has already requested communication
(stored in dc), the request is acknowledged, refused or delayed.

The second routine is the main routine. It performs the selection between the alterna-
tives as explained in the third step.

p.doselwaiting =
|[[dm = ∅ −→ t :=∞ // line #S1
[] dm = {(d, i)} −→ t := d
]

; [t < 0 −→ Report fatal error
[] t = 0 −→ ↑Alternative i, (t, i) ∈ dm
[] t > 0
−→ P(p) // line #S2

; [cm = ∅ ∧ dm = ∅ −→ V(p) ; ↑No alternative chosen
[] cm = ∅ ∧ dm �= ∅ −→ V(p) ; ∆d ; ↑Alternative i, (t, i) ∈ dm
[] cm �= ∅
−→ s := trying ; dc := ∅ // line #S3

; ∗[c ∈ cm // Note: c iterates over set cm
−→ V(p) ; P(c) // line #S4

; [¬c.owner(p) −→ V(c)
[] c.owner(p)
−→ a := c.remotecomm(p) // line #S5

; [a = ack −→ V(c) ; P(p) ; s := active // line #S6
; [dc = ∅ −→ skip
[] dc = {c′} // line #S7
−→ P(c ′) ; c′.finalanswer(p, refuse) ; V(c′)

; dc := ∅
]

; V(p) ; ↑Alternative i, (c, i) ∈ cm // line #S8
[] a = refuse −→ c.changeowner(p) ; V(c) // line #S9
[] a = wait // line #S10
−→ P(p) ; s := pending ; V(c) ; V(p)

; P(bs) ; P(p) // line #S11
; [ans = ack
−→ s := active

; [dc = ∅ −→ skip
[] dc = {c′}
−→ P(c ′) ; c′.finalanswer(p, refuse) ; V(c′)

; dc := ∅
]

; V(p) ; ↑Alternative i, (c, i) ∈ cm
[] ans = refuse // line #S12

56

4.3. Implementation

−→ s := trying ; V(p)
]

] // end a = wait
] // end c.owner(p)

; P(p) ; [dc = ∅ −→ skip // line #SE
[] dc = {c′} −→ s := active ; dc := ∅ ; V(p)

; P(c ′) ; c′.finalanswer(p, ack)
; V(c ′) ; ↑Alternative i, (c′, i) ∈ cm

]
] // end repetition c ∈ cm

; s := idle ; V(p) ; P(bs,∆t) ; P(p) ; s := active // line #SI
; [dc = ∅ −→ V(p) ; ↑Alternative i, (t, i) ∈ dm
[] dc = {c′} −→ dc := ∅ ; V(p) ; ↑Alternative i, (c′, i) ∈ cm
]

] // end cm �= ∅
] // end t > 0

]|
The above method uses the steps 3a through 3d to perform the selection. Note that

inside the repetitive statement that iterates over the channels in cm, the process is released
and claimed again to give other processes a chance to request communication through
the p.remotecomm() method. When the process runs out of channels to try, it ends the
iteration, sets its state to idle, and performs P(bs,∆t) operation. This is a special P
operation on semaphore bs with an upper time limit ∆t. This primitive is provided by
VxWorks.

Example

As an example of how the implemented communication algorithm works, consider the
following χ specification:

proc P (c: ∼ void) = |[c ∼]|
=

proc X(c, d : ∼ void) = |[[c ∼ [] d ∼]]|
=

syst S() = |[c, d : −void | P (c) ‖ P (d) ‖X(c, d)]|
=

xper = |[S()]|
In this specification, two processes P attempt to communicate with process X. The χ
semantics specify that synchronization will take place, either using channel c or using
channel d. After translation of the specification, downloading the result, and instantiating
the machine control application, the process objects and channel objects as shown in
Figure 4.1. In the figure, three big boxes and two small boxes are connected with each

57

Chapter 4. Synchronous communication

p1.clear
p1.addcomm(c,1)
p1.doselwaiting

x.clear
x.addcomm(c,1)
x.addcomm(d,2)
x.doselwaiting

p2.clear
p2.addcomm(d,1)
p2.doselwaiting

c d

p1 x p2

Figure 4.1: Translated χ communication example.

process channel process channel process
object p1 object c object x object d object p2

p1.s: active x.s: active p2.s: active
p1.dm: ∅ x.dm: ∅ p2.dm: ∅
p1.cm: {(c, 1)} x.cm: {(c, 1), (d, 2)} p2.cm: {(c, 1)}
p1.bs: taken c.owner: p1 x.bs: taken d.owner: p2 p2.bs: taken
p1: free c: free x: free d: free p2: free

Table 4.1: Data values of the process and channel objects just before attempting to com-
municate.

other. The big boxes represent process objects. At the left, one instantiated process P
is shown. For reference purposes, this object is called p1. In the middle, the instantiated
process object x is shown, and at the right, the second instantiation of P is displayed.
The latter is called p2. Inside the process objects, the generated code for handling the
communication is listed. The small boxes between the process objects represent channel
objects. Between p1 and x is channel object c, and between processes x and p2 is channel
object d. Note that in reality, an xper object, a system object, and a master object also
exist2, but these are not shown to improve clarity of the figure.

Associated with each object are some data and a semaphore. These are initialized
during instantiation of the objects, and with the calls to the clear and addcomm functions,
as shown in the generated code in the figure. Table 4.1 shows the value of all relevant
variables of the objects just prior to calling the doselwaiting function in each process
object. The state of each process object follows directly from the execution of the clear and
addcomm functions. The state s of the process is active, since the process has not started
communicating yet; the delta map dm is empty, because there are no delta alternatives
available; the communication map cm contains the alternatives added with the addcomm
function call(s); semaphore bs is in its initial state; the semaphore protecting the data of
the process object (that is, the variables explained above) is free for use.

The state of the channel objects only contains the current owner of the channel in

2As shown in Figure 3.3, on page 33.

58

4.3. Implementation

variable owner. Its value is constructed during instantiation of the channel object. The
other data of the channel is not shown here for clarity.

Below, one sequence of execution for the three tasks in the process objects is described.
It is a fairly complex sequence that covers a lot of the code of the implementation. In
particular, delaying the final answer to a process occurs. The starting point of the example
is that all three process objects are about to call the doselwaiting function, and the values
of the relevant variables are as listed in the table.

The execution is split in seven (numbered) pieces. The final result is that processes p2
and x communicate with each other, and that process p1 becomes blocked due to lack of
a communication partner. For the purpose of demonstrating the algorithm, the scheduler
that selects tasks to execute makes some unfortunate choices. This results in a number of
failed attempts to communicate before being successful.

At this level of detail, it is easy to lose track of the context. Therefore, a small piece of
text in italics font introduces what will happen in each piece of execution in terms of the
algorithm.

1. Process p2 attempts to communicate with process x, but fails because x is still in
active state.
The scheduler starts the execution in task p2.

3 It enters the doselwaiting function, and
sets local variable t to ∞ on line #S1, since p2 has no delta alternatives. Execution
continues on line #S2 by obtaining a lock on the local data of the process object, and
concluding that it should attempt to iterate over the communication alternatives. On
line #S3, it switches to the trying state, indicating that it is trying to communicate
with other processes, and it initializes the dc variable. It sets the c variable to the
first (and only) communication alternative. On line #S4, the process data is released
for use by other processes, and a lock on the channel object is taken. Once the lock
is obtained, the tasks concludes that it is the owner of the channel (d.owner = p2),
and it queries process x whether communication is possible on line #S5 (d.other(p2)
reduces to x, execution therefore resumes in x.remotecomm(d)). After grabbing a
lock on the data of process x, it is concluded on line #R1 that process x is not willing
to communicate. The lock is released, and the return value refuse is returned, and
put into local variable a of process p2. Execution proceeds on line #S9. The owner of
channel d is changed from process p2 to process x, and the channel data is released.
The execution of the task continues with checking whether another process tried to
communicate with p2. On line #SE, the own process data is locked again (it was
released on line #S4). Then, dc appears to be empty, and execution is continued with
the next alternative. In this case, there is no next alternative, so line #SI is executed
next. The state of the process is set to idle, meaning ‘I am waiting for someone to
communicate with me’, the process data is released, and the process blocks on its
synchronization semaphore p2.bs.

3Just as with process objects, the tasks are given names that correspond with the names of the objects.

59

Chapter 4. Synchronous communication

2. Process x attempts to communicate with process p1, but fails because x does not own
channel c. The task then proceeds by attempting communication over channel d.
After task p2 blocks, the scheduler selects task x for execution. The tasks also starts
executing doselwaiting. Execution proceeds along lines #S1 and #S2 to line #S3,
where the state of process object x is changed to trying. In this example, channel c is
considered smaller than channel d, therefore, task x will first attempt to communicate
using channel c. On line #S4, the semaphore of channel c is taken. Inspection of
the ownership of the channel then reveals that task x is not the owner, and the
channel semaphore is released again. Execution then proceeds at line #SE. Since
no other process has attempted to communicate, dc is still empty, and the task goes
on with channel d on line #S4. On that line, the task releases the lock on its own
process data, and claims the channel data of channel object d. Since process p2 gave
ownership of the channel to x, the task finds that it owns the channel, and execution
continues from line #S5 to p2.remotecomm(d).

However, before task x gets a chance to execute this function, it is interrupted by
the scheduler, and a switch is made to task p1.

3. Process p1 attempts to communicate with task x, and is told to wait for a final answer
from x.
Task p1 also starts with executing the doselwaiting function. On line #S3 it sets its
state to trying. Channel c is selected, and since process p1 owns it, it ‘jumps’ over
the channel to execute x.remotecomm(c) on line #S5. It acquires the lock on the
process data of x, and determines that process x is in the trying state on line #R3.
The rc argument has value c, and task x is busy using channel d. Since channel c is
smaller than channel d, the second alternative is chosen (line #R4). x.dc is filled with
the channel used by p1, the lock on the process data of x is released, and the return
value wait is returned, and put into variable p1.a on line #S5. This return value
means that process x is currently not able to answer. Using the returned answer, the
alternative on line #S10 is chosen. The task reclaims its own process data, sets its
state to pending, and releases channel c (thus allowing process x to use the channel
for delivering the answer). Next, it releases its own process data, and blocks on the
synchronization semaphore p1.bs until the answer is delivered.

4. Process x is successful in establishing communication with process p2. After returning
with this result, it sends a refusal to process p1 to indicate it is not interested.
With process p1 blocked, only task x is able to proceed. The scheduler switches to this
task, and continues the execution. The task owns the data of channel d, and is about
to call p2.remotecomm(d). In that function, it claims the process data of process p2.
Then it inspects the state of process p2, and detects that it is idle. Also, p2.dc is still
empty, and process p2 wants to communicate using channel d (dc = ∅ ∧ rc ∈ cm).
Communication is thus possible between process x and process p2. The alternative
on line #R2 is chosen, task x stores channel d in p2.dc as a note to process p2, it
releases task p2 by releasing semaphore p2.bs, and it releases the process data of p2.

60

4.3. Implementation

Finally, it returns ack to indicate success. The return value is stored in x.a on line
#S5.

Since the return value indicates success, the alternative on line #S6 is chosen. Process
x releases the channel (channel d), and claims its own process data to check whether
anything happened while it was busy establishing communication over channel d with
process p2. It finds that x.dc contains c on line #S7. Another process has apparently
attempted to establish communication. It claims the data of channel c, and sends
a refuse message by executing c.finalanswer(x,refuse). Channel c forwards the call
to procedure p1.finalanswer(c,refuse). In this procedure, task x claims the process
data of process p1, stores the refusal message in p1.ans, changes the ownership of the
channel, and releases p1.bs, thus allowing task p1 to resume execution. The procedure
then ends, Execution continues after the call in x.remotecomm, directly below line
#S7. Channel c is released, the delayed channel variable x.dc is cleared, the own
process data is released on line #S8, and the number of the selected communica-
tion alternative (alternative number 2 in this case) is returned, which also ends the
execution of the fragment of code of task x.

5. Process p1 runs out of communication options, and becomes blocked, waiting for a
communication partner.
During the execution of task x, both process p1 and process p2 were awakened by
a synchronization on the internal semaphore. The scheduler picks process p1 first.
This task was blocked on p1.bs, waiting for a final answer from task x on line #S11.
Since task x released the semaphore in the p1.finalanswer procedure, taking the p1.bs
semaphore succeeds for task p1. The next step is to reclaim the own process data,
and inspect p1.ans. The answer appears to be a refusal, and execution therefore
continues on line #S12. After changing the state of the process back to trying, the
task notices that no other process has attempted to communicate with it on line
#SE. The process has tried all its communication options without any success. On
line #SI it changes its state to idle and it blocks on p1.bs indefinitely.

6. Process p2 notices that it has succeeded.
The task scheduler switches to task p2 that became unblocked during the the ex-
ecution of task x in the previous part. The task wakes up after taking the p2.bs
semaphore on line #SI. It claims its own process data, switches to the active state,
takes the delayed channel from p2.dc that caused the process to wake up, and returns
the associated number of the alternative (1 in this case). Since the function call was
the last statement in the process object, the execution of process p2 terminates.

The final result is that processes p2 and x agree on having synchronized with each other,
while process p1 is waiting for a communication partner.

61

Chapter 4. Synchronous communication

4.4 Verification of the implementation

Resolving communication in the target system is a vital functionality. It is important that
it works correctly under all conditions. In other words, the implementation as proposed in
Section 4.2 should always work correctly.

Starting point of the verification is [Bag89], where safety and liveness properties of the
core algorithm are proven. From the core algorithm to the implementation, the following
additions have been made:

• Guards have been added,

• Channels have been added,

• Autonomous switching of tasks from idle state to active state has been added,

• Ownership of channels has been moved to the value of a shared variable in a channel
object,

• Process objects have been introduced containing shared data, and

• Semaphores have been introduced to prevent corruption of shared data, and to syn-
chronize behaviour.

The latter two items are consequences of constructing an implementation with concurrently
executing tasks, using semaphores to synchronize behaviour.

Assuming that the original proofs in the article are correct, the first three additions are
not difficult. In fact, the first two items are even explicitly mentioned as obvious extensions
in the article. The third item is also not hard: If no other process has seen you being in
idle state, autonomously switching back to active state will not influence the correctness
of the algorithm. Therefore, showing correctness of the algorithm with only the first three
additions is almost the same as done in the article.

The part of the implementation with the biggest risk of being incorrect is in the handling
of semaphores, and in the protection of shared data. By having a single P or V opera-
tion wrong, processes may become blocked indefinitely, or data may become corrupted.
Verification of the implementation therefore means foremost showing that the handling of
semaphores and the sharing of data is done correctly.

A model checker seems suitable for this type of verification, in this project, the tool
spin [Hol91, Hol97] has been used. With the choice to use a model checker, the next
question is what should be checked. In Figure 4.2, five interesting configurations of χ
processes are shown. The first configuration tests communication between two processes.
This is the smallest configuration possible. The second configuration tests what happens
when a third process can interfere, and the third configuration tests what happens when
a fourth process is added. On the second line, two configurations are shown that check
correct handling of cycles in communication options. Also, in these configurations two
communications can be performed independently. Despite the fact that Bagrodia already

62

4.4. Verification of the implementation

Figure 4.2: Interesting test cases for verification.

proved that his algorithm can cope with cyclic configurations, the cases have been included
because they are excellent tests whether semaphores are released properly.

The configurations should handle communication between processes correctly indepen-
dent of

• initial ownership of each channel,

• relative order between channels,

• activation or de-activation of communication options within each process, and

• existence of delta alternatives.

In the explanation of the algorithm, ownership of each channel was assigned to one of its
processes. The implementation should work correctly, independently of what assignment
was initially made. Along the same lines, an order between each pair of channels was
assumed. The implementation should work in every case. The last two items check that
adding guards or delta alternative do not harm the correctness.

In the above configurations, it is assumed that each process attempts to communicate
once. Other interesting tests are that the implementation allows multiple sequential com-
munications, one communication after the other over the same channel, without getting
into a deadlock, or getting corrupted data.

After coding the implementation in the Promela language used by the spin model
checker, actual verification of the configurations was started. Code can be found in Ap-
pendix B.2. The first configuration with two processes and one channel was performed
successfully. Adding non-deterministic choices for the ownership of the channel and values
for the guards gave no problems; the model checker finished that verification request suc-
cessfully as well. Note that non-deterministic choices for the ownership of the channel was

63

Chapter 4. Synchronous communication

not strictly necessary, due to symmetry in the configuration, all cases were already covered
without it.

Trying to verify the second configuration proved to be impossible within the machine
limits however, even without non-deterministic choices and maximal state-space compres-
sion. Apparently, the more complex execution patterns (with three processes, it is possible
that one process is asked to wait for a final answer), and the interleaving possibilities of
three processes were too much for the model checker.

Despite a number of attempts, verification of a configuration containing more than two
processes has not been successfully concluded. The model checker consistently ran out of
its 1GB memory before the entire state space was explored. On the positive side, it did
not find errors during its execution.

Since complete verification appeared to be too much, a switch to bitstate verification
was made. Results were positive, but coverage was too low to conclude anything.

Failure of bitstate verification exhausted the formal verification options of the model
checker. Instead of attempting verification, the implementation was tested with over 215
million Monte Carlo simulations. Since random testing has no problems with large state
spaces, a model with four processes was used. The code is shown in Appendix B.3. All
simulations performed were successfully concluded. That does give some confidence, but
no conclusive proof.

The final answer to the question ‘Is the implementation correct?’ is therefore ‘I do
not know’. It works in practice, and verification attempts did not find errors, but those
two facts are not strong enough for a conclusive positive answer to the question. On the
other hand, the large number of successfully executed random simulations do give some
confidence in the correctness.

Although this project ends with a non-conclusive answer, the correctness of the imple-
mentation of the algorithm is still crucial for the system. In particular, before the system
can be used in more critical systems, a positive answer to the question has to be found.
Therefore, in the future, a feasible way to answer the question must be found.

Epilogue

It is interesting to investigate why the verification effort ended at this point, despite the
inconclusive answer. To understand this, it is necessary to understand the goal of a de-
signer. In general, a designer aims to deliver a solution with the highest possible quality
within the limits of the project. With that goal in mind, the prospect of having a formally
proven correct communication algorithm is very appealing to a designer. From that goal
also follows that a designer is, to a large degree, solution driven. That is, he is primarily
interested in his own particular solution. This explains why the verification effort targeted
the implementation rather than, for example, some abstract version of it. In this case, the
decision to target the implementation was supported by the fact that the core algorithm
was already published. In that article, the existence of a number of important properties

64

4.4. Verification of the implementation

was already established. This provided a solid foundation for the implementation, and
made it feasible to investigate properties of the implementation.

The verification effort was mainly intended to proof correctness of the implementation
in the sense that it would show that no errors had been made in the development steps from
the core algorithm to the implementation. In this case, the formal verification needed more
resources than available; three instances of the algorithm created a state space explosion
within the model checker beyond machine limits. With formal verification out of reach,
the steps from formal verification to bit state verification to Monte Carlo simulations are
logical. All attempts try to verify as much of the implementation as possible.

Since formal verification is not possible with the implementation, a conclusive answer
cannot be given. The question arises how to proceed. In this case, other verification options
with a model checker do exist, but they are not interesting with respect to the goal, either
because they verify something different than the implementation or because they are only
possible after degrading the quality of the solution.

The reasoning to this conclusion is based on the fact that the current implementation
is too big to handle for the model checker. There are two ways to solve this verification
problem. Either implementation details are left out, or behaviour of the implementation
is limited. The former way is the strategy to verify an abstract version of the algorithm.
By abstracting from details, the state space becomes smaller and the model checker should
be able to prove correctness. In this case, Bagrodia already showed that the abstract
algorithm was correct. The major new addition of the implementation described in this
thesis is that the algorithm is implementable in terms of semaphores. By abstracting away
from the implementation, the verification work of Bagrodia would be repeated rather than
taken to the next level.

The latter way of limiting the behaviour of the implementation is also not a feasible
option. The idea is to take the limits of the model checker as constraints, and adjust the
implementation until the model checker can cope with it. Since much of the state space
explosion is caused by concurrent execution of multiple instances of the algorithm, this
strategy would mean minimizing concurrency. The solution found in this way would be
formally correct, but at the same time it also defeats the purpose of having a distributed
algorithm. This option is therefore also not useful.

That exhausts verification approaches with a model checker. Other verification options
for checking an implementation do not seem to be available in the sense that they need
more work than possible in the project. For example, manual verification is possible, except
that the number of proofs is too large to be feasible within the project.

The conclusion is therefore that no next steps exist to give a conclusive answer within
the project. The verification effort therefore ends after performing the Monte Carlo simu-
lations with the conclusion that there is no proof of correctness of the implementation.

65

66

CHAPTER

FIVE

Case study

As an example of how the design technique may be applied in practice, a machine named
the paint factory was designed and constructed as a test. The case study started with a
global idea of the machine and should end when the entire machine works. At the time of
writing, the case study project is still under development. However, a control system for
the machine has been designed and implemented using the design technique and the tools.
Therefore, it seems justified to make some observations and draw some conclusions, based
on the current state of the project.

Even though the design technique was used in particular for the development of the
controller of the machine, other parts of the machine in the development process also seem
to make vertical design steps, as will be shown below.

It should be kept in mind that the goal is to see how simulation techniques, and in
particular the design technique is used in practice. That means that in the project, the
designer was free to use the design technique in any way he considered useful. Conclusions
were drawn afterwards. This way of performing the case study gives less specific informa-
tion about the design technique and the tools, but more information about how a machine
control design problem is solved in practice using the virtual machine concept.

5.1 Choice of the case

With proper tool support for both the vertical and the horizontal design steps, the design
technique described in the first chapter can be applied by users. However, before a user
can develop a machine, there must be a concrete idea about the machine to develop.

As a first requirement, in order to get meaningful results, the machine being designed in
the case study should come close to machines typically used in an industrial environment.
That means that the machine being designed and built should be more than a toy problem.
On the other hand, since the case study is done with a limited number of people, it is
not possible to develop a really large machine. A second requirement is that, while the
case study should deliver a machine that demonstrates the usefulness of the approach,
the machine itself should be useful as well in research and in education. In other words,
designing and building the machine and then throw it away, because its existence is enough
proof that it can be built, is out of the question.

67

Chapter 5. Case study

P3P1 P2

Figure 5.1: Global view of the paint factory.

The first requirement more or less rules out existing small examples, like the bottling
system or elevator system in [Ove87], or the water tank system of [Are96]. Usefulness in
research as well as demonstrating the usefulness of a specification language for machine
control implies that the machine must have a ‘difficult’ problem which can be properly
solved in a specification language like χ. Usefulness in research means that the machine
must be in a domain which is not entirely understood yet from a modelling point of view.
That requirement boils down to designing a machine typically used in the process industry.
In that type of industry, a lot of research is done on how to apply χ well. In a few years,
we may be able to apply those results at machine-control level. With certainty of being
able to use the machine in research, use of the machine for educational purposes comes for
free. If we don’t completely understand the machine now, then students should be able to
learn from the machine for the years to come, even if only parts of the machine are used
by them.

We asked a lot of people to think of ideas for this new machine. The idea now known
as the paint factory was chosen. The basic idea of the machine is shown in Figure 5.1. At
the top are three vessels P1, P2, and P3 containing predefined primary colours of paint.
Customers can request small canisters of paint with any colour. The paint factory mixes
the primary colours to get the requested colours, and fills the canisters with the requested
colour in the correct order.

Physically, the machine has the size of a large table. Paint with different colours is
‘implemented’ by coloured water, vessels have a diameter of 14 cm, and a height of 18 cm,
and canisters of paint are physically plastic coffee cups. Tubes between vessels have the
same size as a garden hose, and are transparent to show the flow of the various colours of
paint. Note that despite the small size of the machine, the parallel nature and complexity
of a typical machine in the process industry has been preserved.

5.2 Highlights

Rather than describing every step of the development, only the interesting highlights of the
development process are shown. Also, application of the horizontal design step is shown in

68

5.2. Highlights

Mp

M

S3

S2

S1

W

Ms

Mm

C

P3

P2

P1

F

Figure 5.2: Internal structure of the paint factory.

more detail for a part of the controller. The observations and conclusions about the case
study are discussed in Section 5.3 and some parts of Chapter 6.

Overview of development

From the initial idea of the machine as described above, an internal structure as depicted
in Figure 5.2 was made. The light-gray area contains the internals of the paint factory.
From primary vessels P1, P2, or P3, paint is pumped to mixing vessel M . After mixing
two or more primary colours, the paint is stored in storage vessel S1, S2, or S3. At the
appropriate time, the paint is then put into the canisters in the turn table in filling station
F . The dark-gray areas are manifolds, which connect incoming tubes to outgoing tubes.
The layout of the manifolds is not decided at this stage. To preserve the colour of the paint
in the system, vessels, manifolds, and tubes, have to be cleaned before a different colour of
paint may be transported through them. For this purpose, vessel C with cleaning liquid
has been added. Vessel W is used to collect liquid waste.

Also, an initial simulation model of the machine was built. This simulation model used
for example vessels with infinite size, manifolds were not modelled, and the customer could
choose between six colours only.

With the internal structure and the simulation results, the decision was taken to start
the physical construction of the machine. A more detailed layout was constructed, and
various pieces of the physical machine were made and roughly put together. The design
of the internals of the manifolds became important. An initial design of them (not shown
here) was found to be incorrect. By creating a number of alternatives, and by performing
some calculations to verify them on correctness, the manifolds were designed as shown in
Figure 5.3. The manifolds from the previous figure are shown here with dark-gray areas
surrounded by a dashed line. The machine uses a combination of 3/2 valves, 2/2 valves,

69

Chapter 5. Case study

M

C S3

S2

S1

F

W

P3

P2

P1

Movable 2/2 valve
Tube with fall
Tube

Mp Mm

Ms

Pump

3/2 valve

2/2 valve

Funnel

Figure 5.3: Detailed layout of the paint factory.

70

5.2. Highlights

A18

VC

va18

A8

PC

pa8

SM

SMC

S4
csd csm

ss4

ssf 4

sst4

ssi4

FM

FMC

S2
cfd cfm

fs2

sff 2

sft2

sfi2

TM

TMC

S2
ctd ctm

ts2

stf 2

stt2

sti2

RC 3

DPG
gd

drc3 rcd3

rv3

vr3

rp3

pr3
rs3

sr3

rf 3

fr3

rt3

tr3

Figure 5.4: Paint factory simulation model in [vD00].

and movable valves. These valves select between two exits, switch a flow on and off, and
choose between n exits respectively.

With the detailed layout in place, the manifolds can be constructed. The next step in
making the machine come alive, is designing and implementing a controller for the machine.
The simulation model depicted in Figure 5.4 shows the structure of the controller. Each
circle is a process. The name of its definition is shown inside the circle. Some names
are raised to the power of a integer number. That means that there are actually that
many processes in existence instead of one. Channels connect the processes with each
other. Channels with data transfer are indicated by an arrow, channels without data
transfer are indicated by a line. Like processes, some channels are actually an array of
channels. The number of channels is indicated by the number associated with the name
of the channel. The horizontal dashed line across the figure indicates the border between
controller and virtual machine. Above the line are the controller processes, below the line
are the processes modelling the machine. From the bottom upwards, and from left to right,
A18 are the 18 valves being controlled, A8 are the 8 pumps, and SM is a motor that moves
the valve above the storage vessels in manifoldMm. S4 represents the 4 sensors that detect
presence of the valve at each position. Process FM is similar to SM , but is positioned
above the filling station in manifold Ms. TM is the motor that rotates the turn table. Its
two sensor processes S detect correct positioning of a cup, and a zero position respectively.
For each type of hardware, a hardware controller exists. The 18 valves are controlled by

71

Chapter 5. Case study

a single valve controller VC , and PC is the pump controller responsible for controlling all
pumps. Processes SMC , FMC , and TMC control the storage motor, filling-station motor,
and turn-table motor respectively. In order to transport paint from one vessel to another
vessel, a number of hardware controller must be given commands. These commands must
be synchronized as well. For example, if the storage motor needs to be moved to a different
storage vessel, the valve of manifoldMm should be closed until the motor has arrived at the
correct position. Co-ordinating the actions performed by the hardware is the responsibility
of resource controller RC . Since the paint factory allows at most three paint-movement jobs
to be processed in parallel, there are three resource controllers. The dispatcher process DP
makes sure that each job being processed uses different resources. Finally, the generator
process G ‘generates’ orders to move paint from one vessel to another. Note that the
generator is operational in nature, it sends jobs to move paint in a specified quantity
between two specified vessels. This is quite different from the original idea of a customer
ordering a number of canisters of paint with a specified colour. The reason for this change
is that it became clear that the translation from customer orders to jobs is a scheduling
problem which was too difficult to deal with at that time. Scheduling was postponed until
later, and the operational control of the machine was developed first instead. Later, the
scheduling of customer orders can be put on top of the operational controller.

The horizontal design step

The vertical design step lowers the abstraction level of a design. This activity is well known
within the group as ‘developing a simulation model’. The horizontal design step on the
other hand, is relatively new. This case study is the first larger test of the design technique,
therefore it is interesting to see how this step has been made.

It appears that the horizontal design step was not as horizontally executed as prescribed
by the design technique. Several changes slipped in between the last simulation model and
the implementation model. To illustrate this, the SMC controller process definition before
and after the horizontal design step is discussed.

The purpose of SMC is to control the manifold Mm (see Figure 5.3). The manifold
switches the output of the mixing vessel to the waste vessel, or to one of the three storage
vessels. Physically, it is a cart with a 2/2 valve moving on a track, as schematically shown in
Figure 5.5. At both ends of the track, limit switches are positioned that prohibit movement
of the cart off the track. Also, along the track, four sensors detect the presence of the cart
when it is correctly positioned above one of the vessels. The names of the sensors and limit
switches are also shown in the figure.

Since the cart and valve are physically attached to each other, the discussion below
about movement and positioning uses cart and valve interchangeably.

Figure 5.6 lists the SMC controller in the last simulation model before the horizon-
tal design step. The controller gets its orders through channel rs, and acknowledges its
readiness for receiving the next order through sr . The orders contain instructions to move
the valve to one of the four positions above the vessels. Channels csd and csm are used

72

5.2. Highlights

S1 S2 S3W

trackcart

valve

om s a om s o1 om s o2 om s o3

limit
switch

limit
switchom ls a om ls o

Figure 5.5: Schematic overview of the valve track controlled by the SMC controller.

proc SMC (rs: (?smorder)3, sr : (∼ void)3, csd : !dir, csm: !mon
, ssf , sst : (∼ void)4, ssi : (?bool)4

)=
|[b: bool, i ,m: nat, k : smorder
| b := false ; i := 0
; ∗[i < 4 ∧ ¬b −→ ssi .i ? b ; i := i + 1]
; [b −→ m := i − 1
[]¬b −→ csd ! true ; csm ! true ; sst .3∼ ; m := 3; csm ! false
]

; i := 0; ∗[i < 3 −→ sr .i ∼ ; i := i + 1]
; ∗[i ←− [0..3): rs.i ? k
−→[k = m −→ skip

[] k �= m −→ csd !(k > m) ; csm ! true ; sst .k ∼ ; csm ! false ; m := k
]

; sr .i ∼

]
]|

Figure 5.6: Simulation model of the SMC controller in [vD00].

73

Chapter 5. Case study

to set the direction of the cart and control movement respectively. Reports of the correct
positioning of the valve comes from four sensors, which may be accessed through channels
ssf , sst , or ssi . (For an explanation of having this many channels for the sensors, see
sensor modelling at page 82.) The controller has no information about what happens with
the cart between the positions. Note that the limit switches are not used in the simulation
model.

After switching the machine on, the first job of the controller is thus to initialize properly
by finding the current position of the valve. By probing all four sensors, it is determined
whether the valve is located at a position above the vessels. If it is not, the valve must
be somewhere between the sensors. In the latter case, by moving the cart towards the
last position and waiting until the valve is detected by the corresponding sensor sst .3, the
controller ‘finds’ the valve. The cart is stopped, and the controller is ready to receive orders.
This is acknowledged upwards by synchronizing over all channels sr . From that moment,
the controller repeatedly takes an order to move from position m to position k , it starts
movement of the valve in the right direction until the valve arrives, and acknowledges the
arrival upwards by synchronising readiness to receive a new order. In short, the controller
does not take limit switches into account, and it moves the cart to a known position before
accepting orders.

The implementation model of the same controller is shown in Figure 5.7. The basic
steps taken are the same as in the simulation model. First initialization takes place, then
the controller switches to normal operation. However, the code looks completely different.
First of all, in the implementation model, all processes of the virtual machine have been
deleted. Also, communication on actuator channels and sensor channels has been replaced
by function calls to control the actual hardware. Controlling hardware means that the
controller has to know about hardware addresses where the sensors and actuators are
situated. In the controller, sensor addresses are stored in the constants in six-tuple st , and
actuator addresses are stored in constants omdir and om. The four sensors used to position
the valve above a vessel are addressed using st .1 through st .4, The remaining two sensors
refer to the limit switches at both ends of the track. This leads to the second main change
in the controller. The valve is assumed to be anywhere on its track, including between a
limit switch and an outermost position. If the valve hits a limit switch, the movement has
to be reversed. This reversing of direction makes movement of the valve more involved.
Therefore, the controller is not attempting to move the valve during initialisation, as done
in the simulation model. Instead, it only quickly tries to find the valve at one of the
six positions. If it cannot find the valve, it marks it as ‘unknown’ using the assignment
cp := 99. Next, it announces its readiness for taking orders by synchronizing over sr ,
followed by waiting for an order to move the valve from position cp to position rp. Upon
receiving the order, the direction for the valve to move to is set or reset accordingly by
Setbit(h, omdir), respectively Resetbit(h, omdir). Also, the limit switch at the end of the
track which may become active is indicated in ls. Movement of the valve started with
Setbit(h, om). The controller then monitors the sensor at the requested position as well
as the limit switch, until the valve arrives at either one. If it arrives at the limit switch,
the direction of the valve is reversed, and the controller resumes monitoring. If the valve

74

5.2. Highlights

proc SMC (rs: (?smorder)3, sr : (∼ void)3, ob: ?optohandle) =
|[rp, cp, ls, rc, i : nat, b, c: bool, h: optohandle, st : (nat2)6

| st := 〈om ls a, om s a, om s o1 , om s o2 , om s o3 , om ls o〉
; rc := 99; i := 0; b := false ; ob ? h
; ∗[i < 6 ∧ ¬b −→ b := Readbit(h, st .i) ; i := i + 1]
; [b −→ cp := i − 1 [] ¬b −→ cp := 99]
; ∗[[rc = 99 −→ i := 0; ∗[i < 3 −→ sr .i ∼ ; i := i + 1]

[] rc �= 99 −→ sr .rc ∼

]
; [rc ← [0..3): rs.rc ? rp]
; ∗[rp �= cp
−→[rp > cp −→ c := Setbit(h, omdir) ; ls := 5

[] rp < cp −→ c := Resetbit(h, omdir) ; ls := 0
]

; c := Setbit(h, om) ; b := false
; ∗[¬b ∧ ¬Readbit(h, st .rp) −→ b := Readbit(h, st .ls)]
; [b −→ cp := ls [] ¬b −→ cp := rp]

]
; c := Resetbit(h, om)
]

]|

Figure 5.7: Implementation model of the SMC controller in [vD00].

75

Chapter 5. Case study

arrives at the requested position, movement is turned off, the controller acknowledges the
arrival of the valve upwards, and waits for the next order to move the valve.

5.3 Observations and conclusions

The paint factory with its controller as described above, is able to physically transport
paint from one vessel to another, and from a vessel to the turn table. After adding a
scheduling layer and a user interface, the machine will meet the goal of the case study.
Adding these layers of software is not necessary for evaluating the design technique for
the design of machine control systems, because the layers do not introduce new concepts
in control of the hardware. Below, a number of observations about the case study are
discussed.

Vertical design step If the changes caused by the switch from simulation to the imple-
mentation in the last specification are ignored, three simulation models have been
developed. The first one was an initial model with infinitely big vessels, and no man-
ifolds, the second one was a complete operational controller of the machine, and the
third one was the same model, but with the introduction of more details, like the
limit switches. In this sequence, lowering of abstraction level can be seen between
successive models. In other words, vertical design steps are made in the development
of the machine control system.

Vertical design steps appear elsewhere as well. Looking at Figure 5.1, Figure 5.2, and
Figure 5.3 as a sequence in the development process, it is clear that in each figure
the abstraction level is lowered further. Vertical design steps have thus been made in
the design of the machine as well. Some of these steps are not based on simulation,
but for example on performing calculations of properties of possible manifold layouts.
The vertical design steps can thus be useful in the design of a machine as well.

Horizontal design step Evaluating the horizontal design step is more difficult. After all,
only one horizontal design step has been made in the entire project. Therefore draw-
ing conclusions from the case study regarding the horizontal design step is somewhat
hazardous.

With the above in mind, the first conclusion is that the technique seems to work.
After all, a functioning operational controller exists. A more detailed analysis shows
that the horizontal design step was not exactly horizontal. Besides the step from
simulation to implementation, limit switches have been added and a different way
of initializing was chosen. The latter changes are in fact vertical design steps. In
other words, the horizontal design step made was in fact diagonal in nature, since it
contains both horizontal and vertical design step activities.

Deviating from the design technique is not wrong; the technique is intended as a
guide rather than a strait jacket. If the developer wants to deviate, there is probably
a good reason. In the case study however, after finishing the operational controller,

76

5.3. Observations and conclusions

the developer himself considered the diagonal design step an error. The next time, he
would do more vertical design steps before making the step to the physical machine.

Distribution of control In the paint factory, but in other experiments as well, the con-
trol system is often distributed across several control processes that work together.
Apparently, developers consider this a more natural way to specify the controller
than in a single controller process. This observation strengthens the believe that a
specification language aimed at specifying these kind of systems should have parallel
executing processes.

Layering of control Another property often found in controllers is layering of function-
ality. For example in Figure 5.4, controller SMC controls a single cart on a track,
while the control process RC controls the entire paint factory for a single pump order
to pump a specified amount of paint through the factory. At a higher level of abstrac-
tion, layering of control also takes place. As explained in the previous section, the
controller designed is operational in nature, and a scheduler that transform customer
orders to pump orders is put on top of the former.

This layering is natural in the design of complex controllers. It occurs in man-
ufacturing control systems as well, for example, see the hierarchical model of a
manufacturing-control system in [JM86], shown in Figure 1.1. It is nice to see that
the design technique allows this kind of layering. It gives more confidence that the
technique will be scalable to larger machines.

Other observations made in the case study are the use of function calls to address the phys-
ical machine, and the modelling of sensors. The conclusions drawn from these observations
go beyond the case study, and are therefore discussed in the next chapter.

Notably lacking are observations about the simulation and translation tools. During
the project, no special attention was paid to them, they were used just like any other
tool. Apparently, the tools performed well enough not to be noticed, and/or the modelling
problems were far bigger than the tool problems.

It should be noted that the designer performing the case study had experience with
simulator tools. The magic step from a ‘dead’ specification on paper to a ‘living’ simulation
was already known to him. Also known to him was the development of a simulation model,
that is, performing vertical design steps. Furthermore, at the surface, there is no big
difference between a tool that performs a vertical design step and one that performs a
horizontal design step. Both tools start with a specification, and end with an executable
program. The only major difference between both tools is that the generated executables
run on different platforms. In other words, on the surface there were no major changes in
the approach or the tools.

Even though it sounds odd here, the fact that the designer did not notice the tools
should be considered a good sign. Basically it means that the tools were used as tools in
the case study, rather than as objects that need special care. This is much like the use
of for example, a text editor. How it is used, and how well it performs, are irrelevant

77

Chapter 5. Case study

questions in day-to-day use. The tool is simply assumed to perform its function without
being noticed.

A number of smaller changes and extensions have been made to the tools, such as
building a proper I/O library and fixing the random number generator. Also, in the mean
time, more experience has been gained with the tools, and except for the translation of
communication to function calls (see the next chapter for more details), the tools function
satisfactorily, not only in research projects, but also in education.

78

CHAPTER

SIX

Conclusions

In this project, a design technique for the design and implementation of machine control
systems has been proposed. Also, to make the technique feasible for realistic case studies,
tools have been developed to provide computer support for the developers. In this chapter,
the project is reflected upon, and suggestions for next steps are made.

In the next sections, the design technique, the modelling of machine control systems,
virtual machines, and the languages and tools used, are evaluated.

However, before discussing the various details, the overall conclusion of the project is
that the design technique seems to work. As demonstrated in the case study, machines
like the paint factory can be designed and implemented using the design technique and
the tools. The immediate result of the project is that it has become practically feasible
to design and implement controllers for machines. This capability forms the basis for
conducting further experimental research towards better design techniques for machine
control systems.

6.1 The design technique

The design technique is a framework that guides developers during the development process
of a machine control system.

The basic idea of the technique is understandable to our users. The available tools
allows them to scale the design technique up to realistic applications. The technique is
however far from perfect. Especially the horizontal design step needs a lot of research.

Below, both types of design steps are discussed in more detail.

Vertical design step

A vertical design step is a single iteration in the development cycle of a simulation model.
In the step, the abstraction level of the model is reduced. In the Systems Engineering
Group, developing simulation models is a known art. In other words, a lot of experience
has been gained with vertical development steps already. Until now, the iterations just did
not have an explicit name.

In the case study, development steps were made by computing different alternatives
rather than simulating them. Since the steps lower the level of abstraction, such steps

79

Chapter 6. Conclusions

should be marked vertical design steps too. The current definition of vertical design steps
is clearly too narrow.

At first this was considered a surprising result, because it was expected that only simu-
lation was used to make design decisions. However, looking back at the source [vdKS98],
the method is presented as a generic method. In other words, it was already promised
that the development steps would be applicable in more situations. The surprise is that
apparently, there is currently little understanding of our own approach of developing mod-
els. How to deal with this discovery is still unclear. However, when improving the design
technique, this issue should be addressed.

Horizontal design step

In the horizontal design step, a simulation model of a control system is transformed to an
implementation controlling a real machine.

One of the weak points of the horizontal design step is its reliability. Users applying
the design technique expect that after performing the horizontal design step, everything
works as modelled. In practice however, it is the moment where the modelling errors come
to the surface. Often, they are small errors like using the wrong value for the direction of
a motor. For example, writing true to an output causes a cart to move to the left instead
of the expected movement to the right. These small errors can however cause major havoc
in the machine. The attention of further research in the design technique should therefore
focus on making this step more reliable.

Discussed below are two aspects of the predictability of the horizontal design step. Also,
there is a short explanation on how the expressive power of the selective waiting statement
may be preserved during the horizontal design step.

Accuracy of the machine model

In the horizontal design step, the virtual machine in the simulation model is blindly replaced
with the real machine. If this step is to be successful, the virtual machine has to be accurate.
More precisely, the model must have actuators and sensors that react the same as in the
real machine. In the ideal case, this property should hold at each moment in time. For any
realistic machine, this requirement is quite likely too complex to fulfill. At a low enough
level of detail, no two machines are the same, let alone that an abstract description of a
machine would be able to capture the behaviour exactly. Fortunately, all that is needed is
a model that is accurate enough. The question is however, what is accurate enough, and
how can one verify this property. This will be an important topic of research to make the
horizontal design step more reliable.

Post-horizontal phase

The current tool implementation of the horizontal design step only performs a transition
from simulation to implementation. In particular, it does not pay attention to optimiza-

80

6.1. The design technique

tions in time or space.
One of the first objectives after the transition should be to verify correctness of the

resulting implementation. This has to be done using testing techniques, since formal
verification against a physical machine is difficult to do. Also, in some embedded systems,
minimizing usage of time and space is important.

For these reasons, it may be useful to extend the design technique with a post-horizontal
phase, where testing and tailoring of the implementation can take place.

Transformation of communication

In the current tool implementation, the user has to replace machine communications in
the controller with function calls to read and write the hardware status of the physical
machine. This has been a design decision of the tool. Hardware access has many forms,
and in order not to exclude possibilities, the most flexible and easily accessible form of
hardware addressing has been chosen. The price that a user pays for this decision is the
loss of a selective waiting statement with multiple communication choices. For example, in
a controller model, the following fragment waits for a response from the machine on ports
a and b:

. . .
; [a ∼ −→ . . .
[] b ∼ −→ . . .
]
. . .

In the implementation, the synchronization channels a and b are replaced by hardware
access at ha respectively hb. The following fragment thus comes into existence:

. . .
; u := false ; v := false
; ∗[¬u ∧ ¬v −→ u := Readbit(ha) ; v := Readbit(hb)]
; [u −→ . . .
[] v −→ . . .
]
. . .

Two extra variables u and v temporarily store the values read from the physical machine.
These variables are then used to decide the flow of the program.

The above is an example of a standard replacement pattern. A similar pattern exists
for the case of a one or more communication choices and one or more time-out choices.
Since these patterns are standard, it is possible to code them into the compiler tool for the
horizontal design step. Another alternative that can be considered is to leave the fragment
untouched, and change the communication choices in the run-time support layer of the
target system. In the latter alternative, the controller still uses communication primitives
to access the machine. These are coupled to the real machine in the run-time support layer.
The latter solution is conceptually cleaner, but requires some fundamental changes in the

81

Chapter 6. Conclusions

implementation. At this moment, no decision has been made which of the alternatives
should be used.

6.2 Modelling

Although the Systems Engineering Group has been developing simulation models of indus-
trial systems for many years, modelling a machine control system with its machine is a new
subject. With the availability of tools both for the vertical and horizontal design steps, it
has become possible to get experience in the modelling, simulation, and implementation
of machine control systems.

One of the goals is to get standard solutions for standard concepts. Just like a buffer
and a machine are standard in any manufacturing control system, so are an actuator and
a sensor standard in machine control systems. Rather than re-inventing the solution each
time, these concepts should be developed once and be available for everybody.

Sensor modelling

Coming up with a good model of a sensor for simulation is not simple. In particular,
it appears to be impossible to have a simple sensor model for continuous polling . With
continuous polling, the controller should react immediately upon the sensor. The sensor is
however a passive component, and not capable of sending a signal to the controller at the
moment the latter should react. The controller thus has to continuously query the value
of the sensor until it becomes active and then take immediate action.

For the purpose of this discussion, it is assumed that the controller has to monitor a
button. As soon as the button is activated, the controller should perform some action.
This leads to the following χ specification:

proc U(pb: ! bool) = |[pb ! false ; ∆1; pb ! true]|
proc C(lb: ? bool) = |[v : bool | v := false ; ∗[¬v −→ lb ? v] ; . . .]|
proc B(pb: ? bool, lb: ! bool) = |[b: bool | pb ? b ; ∗[pb ? b [] lb ! b]]|
syst S = |[pb, lb:−bool | U(pb) ‖B(pb, lb) ‖ C(lb)]|
xper = |[S()]|

There are three processes running in this specification. The user process U simulates a
user pressing the physical button (channel pb) after one second, a controller process C that
continuously polls the logical button (channel lb) until it is activated and then performs
some (unspecified) action, and finally the button process B that transforms the physical
position of the button to a logical value. Like a normal button, the physical position can
change at any moment, and the logical value can be queried at any moment.

The above specification is a logical representation of reality. Most buttons work in
this manner, and polling is an accepted method of querying status. The simulation of
this specification will however never reach the point where the button is pressed by the
user. The reason for this behaviour is the assumption of the synchrony hypothesis for χ

82

6.2. Modelling

models. This hypothesis assumes infinite computing resources by only progressing time
when every process is blocked. The infinite computing resources enable instantaneous
response of a modelled system to events, which is a good property for reasoning about a
complex system. However, in the case of continuous polling, it uses its infinite computing
resources to perform an infinite number of polling operations before progressing in time.
In other words, it is stuck. It should be noted that this problem exists for any language
using the synchrony hypothesis, not only χ is affected.

There are two ways to solve the above problem. One solution is to further lower the
abstraction level of polling, the other solution is to stop lowering the abstraction level
before reaching the above ‘solution’.

Further lowering of the abstraction level means introducing the concept of finite re-
sources into the specification. In reality, things like infinite computing resources and infi-
nite bandwidth in the communication channel do not exist. Therefore, it can be justified
that after a polling cycle in the controller or after usage of the communication channel, a
small amount of progress in time should be made. By introducing either of these concepts,
time will progress in the simulation, and eventually reach the moment where the simulated
user presses the physical button.

The more abstract version of the above specification can be reached by realizing that
the value of the button is not of interest to us; the controller is only interested in the
moment that the button is pressed down. Thus, rather than communicating the value of
the button over the channel, the channel should communicate ‘the button is pressed down’.
If the button is not depressed, the channel should block. In this version, the controller will
wait for a communication with the button. Since the channel blocks until the user presses
the button, time will progress in the simulation.

Neither of the solutions is really logical for modelling polling. The more abstract version
uses a button model that is too rich compared to reality, the introduction of finite resources
is against the philosophy of the modelling language. The whole idea of the synchrony
hypothesis is that the developer should not worry about details such as finite resources,
these worries should be postponed until later in the development process.

Errors and exceptions

Handling of, and recovery from error conditions is a difficult concept in machine control
systems. The basic idea is that upon detection of an error in the operation of the machine,
the machine must go to a safe state. This is often enforced by hardware construction of
the machine. For example, the emergency switch is wired to cut the power of the machine
when activated. The controller must detect the error, and decide how to handle it. After
resolving the error, a switch back to normal operation of the machine must be made in a
well-defined manner, thus resuming production.

While the above explanation is short and easy to understand, the implications in terms
of the controller specification are huge. Occurrence of errors is by definition unpredictable.
That means that at any point in the control program an error may occur from which

83

Chapter 6. Conclusions

recovery must be possible. Recovery often means a radical step outside the normal flow
of control. Other languages use exceptions to handle such matters. The current definition
of χ has no exceptions, although [vBR96] describes an extension to add exceptions to the
language. However, before deciding to include exceptions in the language, error handling
and recovery in machine control systems should be carefully studied in order to be able to
judge whether exceptions are the right answer to the problem.

6.3 Virtual machines

As briefly touched in the first chapter, a virtual machine is the part of a simulation model
that represents the machine hardware being controlled. In the design technique, the virtual
machine is developed using vertical design steps, and then replaced by the real machine
in the final horizontal design step. Within the design technique, the role of the virtual
machine is thus limited to use as a representation of the machine hardware during the
vertical design steps. However, the virtual machine provides a number of hooks in the
development process which are very interesting to explore in a future research project.

First of all, a virtual machine is a formal, unambiguous description of a machine.
That makes it a very good candidate to use as a reference document between the group
of machine hardware developers and the group of control system developers, which may
co-exist in a project which uses concurrent-engineering techniques.

Secondly, a virtual machine is still a valid description of the real machine after perform-
ing the horizontal design step. In other words, the virtual machine may still be used as a
test bed for modifications in the controller. This opens the possibility to make enhance-
ments or to fix bugs in the controller and test the changes on the virtual machine, before
requiring costly machine time to implement and test the changes on the real machine. Of
course, the virtual machine is only valid as long as the real machine is not modified. If
the real machine does get modified, the virtual machine should be modified accordingly in
order to keep the virtual machine in sync.

6.4 Languages and tools

In this section, the choice of languages and tools is discussed. Also, some indications of
consequences are given if the controller implementation would use a different language or
a different real-time operating system.

Using χ as modelling language has been a correct decision. The ability to use the
years of experience in modelling manufacturing-control systems with this language made
the introduction of the new modelling subject easier. Students did not have to learn a new
language, and could discuss their problems with other students without language barriers.
χ has shown to be a good modelling language to tackle the complexity of machine control
systems in our experiments. It is expected that the language will be able to deliver enough
expressive power to tackle complex control systems as well.

84

6.4. Languages and tools

The use of object-oriented techniques has aided the design of both the compiler and
the run-time environment. More importantly, it had a positive impact on maintenance
and extension of the tools as well, especially on the compiler tool. Bugs could be located
quickly and extensions could be introduced by locally modifying the implementation.

As for implementation languages, using C++ in the compiler tool has also been a good
decision. Design and implementation of the compiler went fluently, for a large part due
to experience of the previous implementations and the object-oriented design. The type
checker was the most difficult hurdle, because there was no off-the-shelf algorithm. The
design of the compiler tool has shown to be good. Major changes in the implementation
have not been necessary. For example, in the mean time, the code generator for simulations
has been added. This has been done without changing other parts of the compiler. The
compiler has also proven to be accurate in its error reporting.

Using C++ in the run-time support environment of the controller implementation has
been beneficial to the project, because it enabled the re-use of existing implementations of
χ data structures. The main weak point in the current implementation of the environment
is the lack of a formal proof of the correctness of the communication protocol.

How well the environment will perform in real industrial projects is not yet known. Es-
pecially the choice of the implementation language remains a point of concern. However,
should the need arise, switching to a different implementation language is not insurmount-
able. For example, switching to Java should be straightforward due to the object-oriented
design, except for the use of templates. Replacements for the latter can however be gen-
erated by the compiler. Switching to C is more work because that language also lacks
object-oriented concepts, but there are no fundamental obstacles that prohibit the switch
to a different implementation language.

The real-time operating system VxWorks functions as expected. Currently, only a
small part of its capabilities is actually used. That means that it is not difficult to switch
to a different operating system now. On the other hand, VxWorks does provide a number
of tools that may become useful in the future.

The overall conclusion of the project is that a base line has been drawn. A design
technique has been proposed that is understandable and feasible to the users. Working
tools exist to enable users perform realistic case studies.

On the other hand, the research on this subject has only just started. With the case
study, it has become clear that there is currently little understanding of the development
process itself, especially the horizontal design step.

With the available tools, the next step is to learn modelling of machine control systems.
Also, fitting the design technique into a real industrial design project with the use of
concurrent engineering techniques, as well as exploring the use of the virtual machine
concept are big challenges for the future.

85

86

APPENDIX

A

The type-checking mechanism

In this appendix, the type-checking mechanism used in the χ compiler is explained. How
this mechanism fits in the other parts of the compiler is explained in the section about the
χ compiler on page 39.

The global working is first demonstrated with a small example. After the example, the
algorithm is explained in a bottom-up fashion. It starts with the core algorithm to perform
pattern matching on types. The pattern-matching algorithm is used to solve the types of
a set of type variables. This algorithm is described next.

After implementation, the performance of the type-check algorithm was too poor for
practical use. By making some small modifications, the performance was improved to an
acceptable level. The final section describes these modifications.

A.1 Introduction

The type-checking process in the compiler decides which data types are used in an expres-
sion. It works in three phases.

1. In the first phase, the compiler generates a set of type variables, and associates each
type variable with a type set. The latter describes possible solutions for the type
variables. The compiler also generates a number of type rules. These rules describe
the relation between different type variables.

2. In the second phase, the set of type sets and type rules is used to deduce a type for
each type variable. This is done by logic reasoning. By combining type sets with
each other using the type rules, the sets are reduced until no reduction is possible any
more, or until a type set becomes empty. In the former case, the solution is found,
in the latter case, it is concluded that no valid solution exists.

3. In the third phase, if a solution is found, the types found by the algorithm are checked
for being unique and non-polymorphic, and they are copied into the abstract syntax
tree of the compiler. If the solution is not unique or it is polymorphic, the expression
is considered to be incorrect. The user should modify the expression.

This appendix focuses mainly on the second step.

87

Appendix A. The type-checking mechanism

xv1

:=

1v4

+v3

[e]v2

Figure A.1: x := [+ 1] as a tree structure.

Before proceeding to the example, a few words about types. In χ, a number of basic
types exist, such as nat or bool. More complex types can be constructed by applying
operators on types. For example, the ∗-operator constructs a list from a given type. In
this appendix, that nested structure is important, because equality of types in χ is defined
as structural equality. Unfortunately, the structure of types is not easily seen when using
the χ syntax. For this reason, this appendix uses an expression syntax. A type can be
seen as an expression. The basic types are the constants, the operators are functions.
This tree structure is then written as a set of nested function calls. For example, a list of
integers is written in χ as ‘int∗’. Here, it is written as ‘list(int)’. The only exception to
this rule is for functions. For clarity, the return type is indicated by separating it from the
arguments by an arrow. For example, the addition function of two naturals has the type
‘(nat, nat→ nat)’. In this appendix, function identifiers f , g, etc are used as generic type
operators.

As an example of the above process, consider the statement x := [+ 1], where x is
declared as a variable of type int∗. The right-hand side of the assignment has the same
type. The constant 1 has nat as type. The unary +-function converts the constant to
the same value, but with an int type. The square brackets construct a list, containing the
integer constant, thus resulting in the same int∗ type. Since the types at the left-hand side
and right-hand side match, it is a correct χ assignment statement. Below is an explanation
of how the compiler reaches this decision. The statement is stored in the abstract syntax
tree as shown in Figure A.1. The subscripts vi in each node are type variables assigned to
the nodes in this part of the tree.

The first phase of the type-check algorithm is to generate type rules and type sets for
the assignment statement. For the assignment statement, the rules and sets are listed in
tables A.1 and A.2 respectively. As explained, the type rules describe relations between
different type variables. For example, (A.1) says that if v1 is type T , then v2 should also
be type T and vice versa. Type sets specify which types may be used to fulfill the rules.
Each element in a type set may be used as a type in the result. A polymorphic value in an
element (written here as Greek letters α, β, etc), allows any type to be used in its place.
For example, a valid type for v2 would be list(bool) or list(list(int)) according to (A.5).

88

A.2. Type matching

v1 = v2 (A.1)
v2 = list(vr) (A.2)
v3 = (v4 → vr) (A.3)

Table A.1: Type rules of Figure A.1

v1 ∈ {list(int)} (A.4)
v2 ∈ {list(α)} (A.5)
v3 ∈ {(nat→ int),

(int→ int),
(real→ real)} (A.6)

vr ∈ {β} (A.7)
v4 ∈ {nat} (A.8)

Table A.2: Type sets of Figure A.1

Note that names of polymorphic values are unique within a single element of a type set
only.

Resolving the equations for the type variables in the second phase can for example
be done by first applying (A.1) and (A.4). The only common type between v1 and v2
is list(int). v1 and v2 thus both become this type. Using (A.2), type set (A.7) becomes
vr ∈ {int}. Finally, applying (A.3) results in v3 ∈ {(nat → int)}. At this moment, no
further reduction is possible, and the second phase terminates.

The third phase checks the existence of a unique non-polymorphic type for each type
variable, and copies them to the abstract syntax tree.

A.2 Type matching

The core algorithm of the second type-checking phase is reaching a decision whether two
(type) expressions p and p′ match, and if so, what the resulting type is. This functionality
is delivered by the type-matching functionM(p, p′,Σ). Parameters p and p′ are two type-
patterns which may contain ‘holes’ in the form of polymorphic values. It is assumed that
both patterns do not share polymorphic values, thus if a polymorphic value α is used in
pattern p, then it is not used in pattern p′ and vice versa. In the implementation, this
requirement is fulfilled in the type-resolving algorithm. The third parameter Σ of the
type-matching function is a symbol table of substitutions in both patterns. A substitution
has the form α/x, which means that the polymorphic value α should be replaced by the
pattern x.

Testing whether a substitution for α is available in the symbol table is written as
α/x ∈ Σ. This expression is true when the substitution exists. If it is true, x becomes
bound to the replacement pattern to allow usage of this pattern.

Symbol tables can be concatenated, as in Σ·[α1/x1, . . . , αn/xn]. The list of substitutions
between the square brackets define a symbol table containing the substitutions, the dot
operator concatenates both tables together. The concatenation is defined only for non-
overlapping symbol tables, that is, the concatenation Σ1 · Σ2 is only allowed if ∀i:αi/xi ∈
Σ1 ⇒ αi/yi �∈ Σ2.

Finally, application of substitutions in a pattern p from symbol table Σ is written as

89

Appendix A. The type-checking mechanism

Σp, and is defined as

Σp =

Σx, if p = α, α/x ∈ Σ
α, if p = α, α/x �∈ Σ
f(Σx1,Σx2, . . . ,Σxn) if p = f(x1, x2, . . . , xn)

The result of the type-matching function is a tuple 〈Σ′, b〉. The first field contains the
updated symbol table Σ′, the second field is either match or fail. The former value means
that a match is found, the latter means that no match has been found.

The type-matching function has four cases, depending on whether the first and second
parameters are a function or a polymorphic value. For each of the cases, the relation
between the function parameters and its result is described. Besides the operations on the
symbol table listed above, a test whether a polymorphic value α is used in pattern p is also
needed in the description. This is written as α ∈ p.

M(f(p1, . . . , pn), f
′(p′1, . . . , p

′
m),Σ)

=

〈Σ, fail〉 if f �= f ′ ∨ n �= m
〈Σ,match〉 if f = f ′ ∧ n = m ∧ n = 0
〈Σn, b) if f = f ′ ∧ n = m ∧ n > 0

(A.9)

with 〈Σi, bi〉 =M(pi, p
′
i,Σi−1),Σ0 = Σ, b =

{
match if ∀1≤i≤n: bi = match
fail otherwise

M(f(p1, . . . , pn), α,Σ)

=

M(f(p1, . . . , pn), x,Σ) if α/x ∈ Σ
〈Σ · [α/f(p1, . . . , pn)],match〉 if α/x �∈ Σ ∧ α �∈ Σf(p1, . . . , pn)
〈Σ, fail〉 if α/x �∈ Σ ∧ α ∈ Σf(p1, . . . , pn)

(A.10)

M(α, f(p1, . . . , pm),Σ)

= M(f(p1, . . . , pm), α,Σ) (A.11)

M(α, α′,Σ)

=

M(x, α′,Σ) if α/x ∈ Σ
M(α, x,Σ) if α′/x ∈ Σ
〈Σ,match〉 if α = α′

〈Σ · [α/α′],match〉 if α/x �∈ Σ ∧ α′/x �∈ Σ ∧ α �= α′

(A.12)

The first case (A.9) occurs when trying to match two ‘normal’ patterns. They match if
they have a common prefix f and f ′, and when all sub-patterns pi, p

′
i match. The other

three cases occur when a polymorphic value is encountered. If this happens in combination
with a normal pattern, the polymorphic value is substituted from the symbol table Σ if
available, or an entry is added to the table. In the latter case, an extra condition has been
added to prevent infinitely large type patterns. The last case of polymorphic values in the

90

A.3. Type-variables resolving

type-matching function is (A.12), where two polymorphic values are matched with each
other. If either of them can be substituted, the substitution takes place; if they are equal,
there is always a match; otherwise they must be equal to each other for a match, so one
value is assigned as pattern for the other value.

It should be noted that in the first case, the description states that all sub-patterns
matches M(pi, p

′
i,Σi−1) should be attempted, even when a failure to match has already

been detected. This part of the definition ofM, although seemingly inefficient, is intended,
and is necessary for improving the performance of the type-check algorithm later.

A.3 Type-variables resolving

With the type matching function M, the value of type variables vi in an expression can
be decided, like in the example at the beginning of this chapter.

More formally, the problem to solve is to find a unique value for each of the type
variables v1, v2, . . . , vn. Allowed values for type variables are kept in associated typesets
V1, V2, . . . , Vn. Each value in a typeset may contain polymorphic values, but the number
of values in a typeset is always finite. It is assumed that all type sets are non-empty,
otherwise there would be no valid solution for the associated type variable.

Also available is a set of type rules1

u1
0 = F1(u

1
1, u

1
2, . . . , u

1
p1
), u2

0 = F2(u
2
1, u

2
2, . . . , u

2
p2
), . . . , um

0 = Fm(u
m
1 , u

m
2 , . . . , u

m
pm

)

The variables u are instances of type variables vi, therefore each uj
k has a typeset associ-

ated with it. Also, Fj is a compact notation for some type pattern using type variables
uj

1, . . . , u
j
pj
.

The basic reduction step for type sets using rule j is as follows:

∀ i ∈ {j0, . . . , jk}: V ′
i := ∅;

∀ xj0 ∈ Vj0, . . . , xjk
∈ Vjk

: if M(vj0, Fj(vj1 , . . . , vjk
), [vj0/xj0 , . . . , vjk

/xjk
]) = 〈Σ,match〉

then ∀ i ∈ {j0, . . . , jk}:V ′
i := V ′

i ∪ {Σvi};
∀ i ∈ {j0, . . . , jk}: Vi := V

′
i

This basic reduction step is repeatedly attempted for all type rules j ∈ {1, . . . , m} until
none of the typesets Vi changes any more.

As service to the user, the algorithm is prematurely aborted when a type set becomes
empty after the update. An empty type set means that there is no valid value for its
associated type variable. This can happen when the user specifies an incorrect expression.
By stopping the algorithm prematurely, the algorithm can give a more precise position
where the error is detected. Note that continuing the algorithm would not create illegal
solutions. As soon as one type set becomes empty, applying the reduction step to a rule

1The general form of a single type rule would be Fj(t
j
1, . . . , t

j
pj
) = Gj(u

j
1, . . . , u

j
qj
). While it is possible

to generalize the type-checking algorithm to this form, it gives unnecessary flexibility and complicates the
optimization discussed later. Therefore, this general form is not used here.

91

Appendix A. The type-checking mechanism

that uses the empty set, will cause distribution of the empty solution to all other used type
sets in that rule, until all type sets Vi are empty. At that point, no further reduction is
possible, and the algorithm will terminate.

For the algorithm to be useful, it should have a number of properties. One important
property is that the result should be independent of the order in which type rules are
applied to the type sets.

This property holds, because the reduction step updates all type sets to the biggest
common solution. For example, if U = {a, b} and V = {b, c}, and the type rule u = v, u ∈
U, v ∈ V is applied, then afterwards U = V = {b}. Both type sets U and V are changed
as a result of applying the rule. In other words, when applying a rule, the type sets are
updated ‘in all directions’. Also, unless at least one type set objects in the sense that it
does not give a match, the element is preserved. Therefore, no solution is thrown away,
unless there is ‘proof’ that the solution will not deliver a match. The latter basically means
that the type rules cannot be applied in the wrong order. For example, if the algorithm
would again apply the same type rule as above using the modified type sets, then both
type sets U and V will not change.

A.4 Performance

While the type-checking algorithm discussed above produces correct results, it is also too
slow for realistic applications. This is caused by the fact that the algorithm tries to find
matches for a type rule by trying each possible combination of elements from the type sets.
Consider the following example, where V0 denotes {f(int, int, int, int, int)}, and Vi denotes
{nat, int, real} for 1 ≤ i ≤ 5:

v0 ∈ V0

vi ∈ Vi, (1 ≤ i ≤ 5)

v0 = f(v1, v2, v3, v4, v5)

Applying the rule to these type sets produces the following sequence of matching attempts2

in the second phase:

2Or some permutation of this sequence.

92

A.4. Performance

Step v0 v1 v2 v3 v4 v5 Result
1 f(int, int, int, int, int) nat nat nat nat nat No match
2 f(int, int, int, int, int) int nat nat nat nat No match
3 f(int, int, int, int, int) real nat nat nat nat No match
4 f(int, int, int, int, int) nat int nat nat nat No match

...
121 f(int, int, int, int, int) nat int int int int No match
122 f(int, int, int, int, int) int int int int int Match
123 f(int, int, int, int, int) real int int int int No match

...
243 f(int, int, int, int, int) real real real real real No match

In other words, one match out of 243 attempts. Although this is bad, the real bad news
is that the algorithm slows down exponentially. In realistic χ specifications, it is not
uncommon to have for example 13 or more parameters in the top-level system definition,
instead of the 5 parameters shown here. That means that users would have to wait a
few hours or days before the algorithm is finished, not something that the average user is
willing to do.

There are two ways to reduce the problem. Either the initial size of the type sets is
made smaller before the second phase of the algorithm begins, or the matching algorithm
is made smarter. The former solution means that the generator creating the type sets and
type rules becomes more intelligent, it should take the context of a type set into account. In
some sense, this means that the reduction of the type sets is partly moved to the first phase
of the type-check algorithm. Besides the fact that the approach violates the separation
of concerns, it also complicates the generation phase. In particular, it is very difficult to
ensure that all cases are covered, and no errors have been made.

The other solution of a smarter reduction during type matching in the second phase is a
far better solution. The basic idea is that elements in type sets that will not contribute to a
solution should be eliminated as soon as possible. The effects of this solution are dramatic.
If, for example, type set V1 could be changed to contain {int} only, a 66% reduction in the
number of matching attempts is realized. The results get even better when the same trick
is applied to type sets V2 through V5 as well. Also, last but not least, implementing this
optimization does no harm to the generality of the algorithm, and is cheap (both in time
and code).

The optimization uses the fact that the left-hand side (LHS) of a type rule consists
of a single type variable, the fact that the type-matching function continues to attempt
matching sub-patterns in (A.9) even after a matching failure has been detected, and the
reduction property of a type set.

The approach used to implement this general idea is based on the fact that matches
are searched between the LHS and the right-hand side of the rule. Thus, in order to find
a match for some combination of values for vi (i ≥ 1), there has to be a ‘correct’ element
in the type set for the LHS (V0). Since finding a match is a recursive algorithm, this holds

93

Appendix A. The type-checking mechanism

both for the top-level of both type patterns, and for the levels below. This means that for
vi (i ≥ 1) to have a ‘correct’ value (to result in a match), there has to be a ‘correct’ type
pattern at the LHS. For the example this means, that in order to find a match for v5 = nat,
there has to be an element in V0 where the fifth parameter is ‘nat’. So, if for some value
vi (i ≥ 1), each element of V0 causes a failure to match for the sub-pattern vi, then that
value of vi will never match due to the reduction property of a type set. In the example,
since there is no element in V0 with ‘nat’ as fifth parameter, v5 = nat will never match
and can safely be discarded. Implementing this mechanism allows the following sequence
of the example

Step v1 v2 v3 v4 v5 Result
1 nat nat nat nat nat All nat elements eliminated
2 int int int int int Match
3 int int int int real v5 = real eliminated
4 int int int real int v4 = real eliminated
5 int int real int int v3 = real eliminated
6 int real int int int v2 = real eliminated
7 real int int int int v1 = real eliminated

In only seven calls to the matching function, the unique solution is found and the algorithm
terminates.

The implementation of this mechanism is not difficult. Since the LHS of a rule is limited
to a single value from V0, trying all possible combinations at the LHS of the rule can be
implemented by iterating v0 over V0 as the innermost loop. The matching function M
is modified to tag matches to type variables (so, for example if M(f(p1, . . . , pn), α,Σ) =
〈Σ′,match〉, then α is tagged as ‘matched’). Before entering the innermost loop, tags to
vi (i ≥ 1) are reset, and after the loop the tags are examined. If there is no tag on vi
(i ≥ 1), then no match occurred for any element from V0, and the value used by vi can be
eliminated.

After implementation of this optimization, the execution speed of the χ compiler im-
proved noticeably. With large type-check problems such as with 13 parameters or more,
the χ compiler does slow down, but compilation times stay in the order of a few seconds,
mainly due to having to write the generated C++ code to disk or network. Compared
with the C++ compiler that is executed next to convert the generated code to machine
language, this is lightning fast.

94

APPENDIX

B

Promela code and verification results

The synchronous communication algorithm explained in Chapter 4 has been the subject
of verification and simulation efforts (also explained in that chapter). The code below is a
listing of the Promela programs used in these efforts, in order to allow verification of the
verification and simulation results.

The algorithm itself is specified in algorithm3.m4. That file is used both in the veri-
fication and simulation efforts, with some small changes to tailor it. These changes are
described in the next section. The files 2p1c.m4 and 3p2c.m4 are used to construct test
cases with 2 processes and 1 channel, and 3 processes and 2 channels respectively. The file
t46simulation.m4 is the test case with 4 processes and 6 channels, used in the simulation
effort.

For compactness and readability, the macro processor m4 is used to generate the
promela code read by spin. The commands to perform the verification or simulation are
shown just before the listing of each test case.

B.1 Algorithm

The algorithm3.m4 file implements the synchronous communication algorithm as described
in Chapter 4. The following aspects can be changed:

• Maximal number of channels of a process. This number is set by the MAXCOMMS
definition from the test case. Its value should match the number of alternatives in the
TryComms macro. The file below is for maximal 3 channels connected to a process.
To change this number, look for “assert(MAXCOMMS==3)” below, and follow the
directions in the comment.

• Initial ownership of channels. As part of the initialization, each channel is initially
assigned to a process. For verification of the algorithm, this should be decided non-
deterministically. However, in some cases deterministic assignment suffices. Since
the latter is a large reduction in the state space, the latter should be used whenever
possible. The initialization is performed in Chan Init. The file below uses non-
deterministic initialization. To change it to deterministic initialization, search the
macro definition, and follow the directions in the comment.

95

Appendix B. Promela code and verification results

/* communication3.m4
** Generic communication code for processes with max 3 channels
**
** For a different maximal number of channels, find "assert(MAXCOMMS==3)"
** And change the macro to match MAXCOMMS.
*/

/* --
** Defines
*/
#define Semaphore bool
#define SemFree 0
#define SemTaken 1

#define Answer byte
#define AnsWait 100
#define AnsAck 108
#define AnsRefuse 109

#define ProcState byte
#define Active 200
#define Trying 201
#define Pending 202
#define Idle 203

#define NOT_USED 255

/* --
** Structures
*/
typedef Channel {

byte pab[2];
Semaphore chansem;
bit powner; /* pab[powner] is owner */

};

typedef DeltaStorage {
short deltavalue; /* In reality, this is a real value */
byte altnumber; /* Number belonging to this alternative */

}

typedef CommStorage {
byte channelidx;
byte altnumber;

}

dnl Process storage
typedef Storage {

DeltaStorage ds; /* Mimimal delta alternative value) */
bit numdeltas; /* Number of delta’s (either 0 or 1) */

96

B.1. Algorithm

CommStorage cs[MAXCOMMS]; /* Comm alternatives */
byte numcomms; /* Number of comm alternatives */

}

typedef Process {
ProcState s;
byte c; /* Current channel idx */
byte dc; /* Delayed channel. 255=NOT-USED */
Answer ans;
Storage stor;
Semaphore procsem;
Semaphore bs;

}

/* --
** Globals
*/
Channel channels[NUMCHANNELS]

Process processes[NUMPROCESSES]

/* --
** Semaphores
*/

define(Sem_Init,$1=$2)dnl
dnl 1=sem, 2=initial value

define(Sem_P,atomic { ($1==SemFree); $1=SemTaken })dnl
dnl 1=semaphore

define(Sem_V,atomic { assert($1==SemTaken); $1=SemFree })dnl
dnl 1=semaphore

/* Channel semaphores
*/
define(Chan_P,Sem_P(channels[$1].chansem))dnl
dnl 1=chanidx

define(Chan_V,Sem_V(channels[$1].chansem))dnl
dnl 1=chanidx

/* Process semaphores
*/
define(Proc_P,Sem_P(processes[$1].procsem))dnl
dnl 1=process-idx

define(Proc_V,Sem_V(processes[$1].procsem))dnl
dnl 1=process-idx

/* --

97

Appendix B. Promela code and verification results

** Channel definitionss
*/

define(Chan_Init,channels[$1].pab[0]=$2; channels[$1].pab[1]=$3;
if
:: true -> channels[$1].powner=0
:: true -> channels[$1].powner=1
fi;
Sem_Init(channels[$1].chansem,SemFree)
/* assert($2 != $3) */)dnl

dnl 1=channel-idx, 2=process_a-idx, 3=process_b-idx
dnl $2 should not be $3
dnl
dnl For deterministic initial ownership, replace the if statement with
dnl channels[$1].powner=0;

define(Chan_Owner,($2==channels[$1].pab[channels[$1].powner]))dnl
dnl 1=chanidx 2=procid of caller

/* ------------------------------
** Process definitionss
*/

define(Proc_Init,Sem_Init(processes[$1].procsem,SemFree);
Sem_Init(processes[$1].bs, SemTaken);
processes[$1].s = Active; processes[$1].c=NOT_USED;
processes[$1].dc=NOT_USED; Storage_Init(processes[$1].stor))dnl

dnl 1=process-idx

define(Proc_ClearCommDelta,Storage_Init(processes[$1].stor))dnl
dnl 1=process-idx

define(Proc_AddDelta,Storage_AddDelta(processes[$1].stor,$2,$3))dnl
dnl 1=process-idx, 2=delta-value, 3=alternative number

define(Proc_AddComm,Storage_AddComm(processes[$1].stor,$2,$3))dnl
dnl 1=process-idx, 2=channel-idx, 3=alternative number

define(Proc_FinalAnswer, Proc_P($1); processes[$1].ans = $3;
if
:: ($3==AnsAck) -> skip
:: ($3==AnsRefuse)

-> run ChanChangeOwner($2,$1,mydummy); mydummy?dummy
fi;
Sem_V(processes[$1].bs); Proc_V($1))dnl

dnl 1=procidx, 2=chanidx, 3=theanswer

define(Proc_Stor,processes[$1].stor)dnl
dnl 1=procidx

/* ------------------------------

98

B.1. Algorithm

** Alternatives storage
*/

define(Storage_Init,$1.numdeltas=0; $1.numcomms=0)dnl
dnl 1=storage structure

define(Storage_AddDelta,if
:: ($1.numdeltas == 0)

-> $1.ds.deltavalue=$2; $1.ds.altnumber=$3; $1.numdeltas=1
:: ($1.numdeltas == 1 && $1.ds.deltavalue<=$2) -> skip
:: ($1.numdeltas == 1 && $1.ds.deltavalue>$2)

-> $1.ds.deltavalue=$2; $1.ds.altnumber=$3
fi)dnl

dnl 1=storage structure, 2=deltavalue, 3=alternative number

define(TryComms,/* assert(MAXCOMMS==3); */
if
:: ($1.numcomms>=1 && $1.cs[0].channelidx==$2) -> $3
:: ($1.numcomms>=2 && $1.cs[1].channelidx==$2) -> $3
:: ($1.numcomms>=3 && $1.cs[2].channelidx==$2) -> $3
:: else -> $4
fi)dnl

dnl 1=storage-structure 2=ch-idx 3=true-activity 4=false-activity
dnl This macro should be adapted if MAXCOMMS changes.
dnl There should be an alternative for each i in this macro, for 0<=i<MAXCOMMS
dnl of the form ":: ($1.numcomms>=(i+1) && $1.cs[i].channelidx==$2) -> $3"
dnl with "(i+1)" and "i" replaced by its value

define(Storage_AddComm, TryComms($1,$2,skip,$1.cs[$1.numcomms].channelidx=$2;
$1.cs[$1.numcomms].altnumber=$3;
$1.numcomms++;
assert($1.numcomms<=MAXCOMMS)))dnl

dnl 1=storage structure, 2=channelidx, 3=alternative number

/* --
** Channel processes
*/

proctype ChanChangeOwner(byte chanidx; byte procid; chan res)
{

/* Only the owner should call this process & only if protected */
atomic {

assert(Chan_Owner(chanidx,procid));
assert(channels[chanidx].chansem == SemTaken)

}
channels[chanidx].powner = 1-channels[chanidx].powner;
res!0 /* Return something random */

}

proctype ChanFinalAnswer(byte chanidx; byte procid; chan res; Answer theans)

99

Appendix B. Promela code and verification results

{
chan mydummy = [0] of { bit };
bit dummy;

/* May only be called when taken */
assert(channels[chanidx].chansem == SemTaken);

if
:: (channels[chanidx].pab[0] == procid)

-> Proc_FinalAnswer(channels[chanidx].pab[1],chanidx,theans)
:: (channels[chanidx].pab[1] == procid)

-> Proc_FinalAnswer(channels[chanidx].pab[0],chanidx,theans)
fi;
res!0 /* Return something random */

}

proctype ChanRemoteComm(byte chanidx; byte procid; chan res)
{

chan myres = [0] of {Answer};
Answer cr;

/* May only be called when taken & when owned */
atomic {

assert(channels[chanidx].chansem == SemTaken);
assert(Chan_Owner(chanidx,procid));

}

if
:: (channels[chanidx].pab[0] == procid)

-> run ProcRemoteComm(channels[chanidx].pab[1], chanidx, myres)
:: (channels[chanidx].pab[1] == procid)

-> run ProcRemoteComm(channels[chanidx].pab[0], chanidx, myres)
fi;
myres?cr; res!cr

}

/* --
** Process processes
*/

proctype ProcRemoteComm(byte procidx; byte chanidx; chan res)
{

Proc_P(procidx);
if
:: (processes[procidx].s == Active) -> Proc_V(procidx); res!AnsRefuse
:: (processes[procidx].s == Idle)

-> if
:: (processes[procidx].dc == NOT_USED)

-> TryComms(Proc_Stor(procidx),chanidx,
processes[procidx].dc=chanidx;
Sem_V(processes[procidx].bs);

100

B.1. Algorithm

Proc_V(procidx); res!AnsAck
,Proc_V(procidx); res!AnsRefuse)

:: (processes[procidx].dc != NOT_USED)
-> Proc_V(procidx); res!AnsRefuse

fi
:: (processes[procidx].s == Trying || processes[procidx].s == Pending)

-> if
:: (processes[procidx].dc == NOT_USED)

-> TryComms(Proc_Stor(procidx)
,chanidx,if

:: (chanidx > Proc_Stor(procidx).
cs[processes[procidx].c].
channelidx)

-> Proc_V(procidx); res!AnsRefuse
:: (chanidx <= Proc_Stor(procidx).

cs[processes[procidx].c].
channelidx)

-> processes[procidx].dc=chanidx;
Proc_V(procidx); res!AnsWait

fi
,Proc_V(procidx); res!AnsRefuse)

:: (processes[procidx].dc != NOT_USED)
-> Proc_V(procidx); res!AnsRefuse

fi
fi

}

define(Refuse_DelayedChan,if
:: (processes[$1].dc == NOT_USED) -> skip
:: (processes[$1].dc != NOT_USED)

-> Chan_P(processes[$1].dc);
run ChanFinalAnswer(processes[$1].dc,$1,mydummy,

AnsRefuse);
mydummy?dummy;
Chan_V(processes[$1].dc);
processes[$1].dc = NOT_USED

fi)dnl
dnl 1=procidx

/* return values: 7=fatal error
** 9=no alternative chosen
*/
proctype Proc_DoSelWait(byte procidx; chan res)
{

byte curchan,result;
chan myans = [0] of {Answer};
Answer a;
chan mydummy = [0] of { bit };
bit dummy;

atomic {

101

Appendix B. Promela code and verification results

result = 199; /* To be sure of an error if not assigned */
/* Paranoia checking */
if
:: (Proc_Stor(procidx).numcomms == 0) -> skip
:: (Proc_Stor(procidx).numcomms == 1) -> skip
:: (Proc_Stor(procidx).numcomms == 2 &&

Proc_Stor(procidx).cs[0].channelidx
< Proc_Stor(procidx).cs[1].channelidx) -> skip

:: (Proc_Stor(procidx).numcomms == 3 &&
Proc_Stor(procidx).cs[0].channelidx
< Proc_Stor(procidx).cs[1].channelidx

&& Proc_Stor(procidx).cs[1].channelidx
< Proc_Stor(procidx).cs[2].channelidx) -> skip

:: else -> assert(0)
fi

}

if /* if 0 */
:: (Proc_Stor(procidx).numdeltas == 1 &&

Proc_Stor(procidx).ds.deltavalue < 0)
-> atomic { result=7; goto swdone } /* Negative delta !! */

:: (Proc_Stor(procidx).numdeltas == 1 &&
Proc_Stor(procidx).ds.deltavalue == 0)
-> atomic { result=Proc_Stor(procidx).ds.altnumber; goto swdone }

:: (Proc_Stor(procidx).numdeltas == 0 ||
(Proc_Stor(procidx).numdeltas == 1 &&
Proc_Stor(procidx).ds.deltavalue > 0))
-> Proc_P(procidx);

if /* if 1 */
:: (Proc_Stor(procidx).numcomms == 0 &&

Proc_Stor(procidx).numdeltas == 0)
/* no alternative available */

-> Proc_V(procidx); atomic { result=9; goto swdone }
:: (Proc_Stor(procidx).numcomms == 0 &&

Proc_Stor(procidx).numdeltas == 1)
-> Proc_V(procidx);

/* DELTA Proc_Stor(procidx).ds.deltavalue */
atomic { result=Proc_Stor(procidx).ds.altnumber; goto swdone }

:: (Proc_Stor(procidx).numcomms > 0)
-> processes[procidx].s = Trying;

processes[procidx].c = 0;
do /* iterate over each channel */
:: (processes[procidx].c >= Proc_Stor(procidx).numcomms)

-> break
:: (processes[procidx].c < Proc_Stor(procidx).numcomms)

-> curchan = Proc_Stor(procidx).
cs[processes[procidx].c].
channelidx;

Proc_V(procidx); Chan_P(curchan);
if /* if 2 */
:: (!Chan_Owner(curchan,procidx)) -> Chan_V(curchan)

102

B.1. Algorithm

:: (Chan_Owner(curchan,procidx))
-> run ChanRemoteComm(curchan,procidx,myans);

myans?a;
if /* if 3 */
:: (a==AnsAck)

-> Chan_V(curchan); Proc_P(procidx);
processes[procidx].s = Active;
Refuse_DelayedChan(procidx);
result=Proc_Stor(procidx).

cs[processes[procidx].c].
altnumber;

Proc_V(procidx); goto swdone
:: (a==AnsRefuse)

-> run ChanChangeOwner(curchan,procidx,
mydummy);

mydummy?dummy; Chan_V(curchan)
:: (a==AnsWait)

-> Proc_P(procidx);
processes[procidx].s = Pending;
Chan_V(curchan); Proc_V(procidx);
Sem_P(processes[procidx].bs);
Proc_P(procidx);
if /* if 4 */
:: (processes[procidx].ans == AnsAck)

-> processes[procidx].s = Active;
Refuse_DelayedChan(procidx);
result=Proc_Stor(procidx).

cs[processes[procidx].c].
altnumber;

Proc_V(procidx); goto swdone
:: (processes[procidx].ans == AnsRefuse)

-> processes[procidx].s = Trying;
/* Channel owner already changed */
Proc_V(procidx)

fi /* fi 4 */
fi /* fi 3 */

fi; /* fi 2 */
Proc_P(procidx);
if /* if 5 */
:: (processes[procidx].dc == NOT_USED) -> skip
:: (processes[procidx].dc != NOT_USED)

-> processes[procidx].s = Active;
curchan = processes[procidx].dc;
processes[procidx].dc=NOT_USED;
Proc_V(procidx); Chan_P(curchan);
run ChanFinalAnswer(curchan,procidx,mydummy,

AnsAck);
mydummy?dummy; Chan_V(curchan);
if
:: (Proc_Stor(procidx).numcomms>=1 &&

Proc_Stor(procidx).cs[0].channelidx==curchan)

103

Appendix B. Promela code and verification results

-> atomic { result=Proc_Stor(procidx).cs[0].
altnumber; goto swdone }

:: (Proc_Stor(procidx).numcomms>=2 &&
Proc_Stor(procidx).cs[1].channelidx==curchan)

-> atomic { result=Proc_Stor(procidx).cs[1].
altnumber; goto swdone }

:: (Proc_Stor(procidx).numcomms>=3 &&
Proc_Stor(procidx).cs[2].channelidx==curchan)

-> atomic { result=Proc_Stor(procidx).cs[2].
altnumber; goto swdone }

:: else -> assert(0)
fi

fi; /* fi 5 */
processes[procidx].c++;

od;
processes[procidx].s = Idle; Proc_V(procidx);
if /* if 6 */
:: (Proc_Stor(procidx).numdeltas == 0)

-> if
:: Sem_P(processes[procidx].bs) -> skip
:: timeout -> /* FORCED END OF THE SW */

assert(processes[procidx].dc == NOT_USED);
atomic { result=6; goto swdone }

fi
:: (Proc_Stor(procidx).numdeltas == 1)

-> if
:: Sem_P(processes[procidx].bs) -> skip
:: (processes[procidx].bs == SemTaken) -> skip
fi

fi; /* fi 6 */
Proc_P(procidx); processes[procidx].s = Active;
if /* if 7 */
:: (processes[procidx].dc == NOT_USED)

-> Proc_V(procidx);
atomic { result=Proc_Stor(procidx).ds.altnumber;

goto swdone }
:: (processes[procidx].dc != NOT_USED)

-> curchan = processes[procidx].dc;
processes[procidx].dc=NOT_USED;
Proc_V(procidx);
if /* if 8 */
:: (Proc_Stor(procidx).numcomms>=1 &&

Proc_Stor(procidx).cs[0].channelidx==curchan)
-> atomic { result=Proc_Stor(procidx).cs[0].

altnumber; goto swdone }
:: (Proc_Stor(procidx).numcomms>=2 &&

Proc_Stor(procidx).cs[1].channelidx==curchan)
-> atomic { result=Proc_Stor(procidx).cs[1].

altnumber; goto swdone }
:: (Proc_Stor(procidx).numcomms>=3 &&

Proc_Stor(procidx).cs[2].channelidx==curchan)

104

B.2. Verification

-> atomic { result=Proc_Stor(procidx).cs[2].
altnumber; goto swdone }

:: else -> assert(0)
fi /* fi 8 */

fi /* fi 7 */
fi /* fi 1 */

fi; /* fi 0 */
swdone:

res!result
}

B.2 Verification

In this section, two test cases used in the verification effort are listed. The first test case has
two processes and one channel, the second test case has three processes and two channels.
The verification result of each test case is listed directly after the test case itself.

Starting with the test case of two processes and one channel, the following commands
perform the verification:

$ m4 2p1c.m4 > 2p1c.prom

$ spin -a 2p1c.prom

$ gcc -O2 -o 2p1c -DMEMCNT=28 -DCOLLAPSE -DSAFETY pan.c

$./2p1c -m330

/* 2p1c.m4
** Verification of 2 processes, 1 channel
*/
define(NUMCHANNELS,1)dnl
define(NUMPROCESSES,2)dnl
define(MAXCOMMS,3)dnl

define(CH1,0)dnl

/* Make initial ownership deterministic. Both cases are checked because
** the configuration of the processes is symmetric.
*/
include(communication3.m4)

proctype Pi(byte procidx; byte ch; chan ichan)
{

chan myans = [0] of { byte };
byte i;

105

Appendix B. Promela code and verification results

Proc_ClearCommDelta(procidx);
Proc_AddComm(procidx,ch,1);
run Proc_DoSelWait(procidx,myans);
myans?i;
assert(i==1 || i==6);
ichan!i

}

init
{

chan p0r = [0] of { byte };
chan p1r = [0] of { byte };
byte i0,i1;

atomic {
Chan_Init(CH1,0,1);
Proc_Init(0); Proc_Init(1);

}
run Pi(0,CH1,p0r); run Pi(1,CH1,p1r);
p0r?i0; p1r?i1;

atomic {
if
:: (i0==1) -> assert(i1==1)
:: else ->
fi;

if
:: (i1==1) -> assert(i0==1)
:: else ->
fi;

}
}

The verification ended successfully. The output of the verifier is shown below, except
for the list of unreached states. These states handle the case when a third process interferes
with a communication attempt between two processes. Since this verification attempt only
has two processes, interference does not occur, and the states that handle interference are
not used.

(Spin Version 3.3.4 -- 9 September 1999)
+ Partial Order Reduction
+ Compression

Full statespace search for:
never-claim - (none specified)
assertion violations +
cycle checks - (disabled by -DSAFETY)
invalid endstates +

106

B.2. Verification

State-vector 191 byte, depth reached 136, errors: 0
194262 states, stored
206470 states, matched
400732 transitions (= stored+matched)
5704 atomic steps

hash conflicts: 75842 (resolved)
(max size 2^18 states)

Stats on memory usage (in Megabytes):
39.435 equivalent memory usage for states (stored*(State-vector + overhead))
6.859 actual memory usage for states (compression: 17.39%)

State-vector as stored = 23 byte + 12 byte overhead
1.049 memory used for hash-table (-w18)
0.008 memory used for DFS stack (-m330)
8.012 total actual memory usage

nr of templates: [globals procs chans]
collapse counts: [23128 20 156 104 97 604 48 7]

A more interesting test case is three processes connected together with two channels.
This test case should use non-deterministic initial ownership of channels to cover all cases.
As explained in Chapter 4, this verification fails, even with deterministic assignment of
channels.

The following commands perform the verification:

$ m4 3p2c.m4 > 3p2c.prom

$ spin -a 3p2c.prom

$ gcc -O2 -o 3p2c -DMA=276 -DMEMLIM=1000 -DCOLLAPSE -DSAFETY pan.c

$./3p2c -m500

/* 3p2c.m4
** Verification of 3 processes, 2 channels
**
** O---O---O
*/
define(NUMCHANNELS,2)dnl
define(NUMPROCESSES,3)dnl
define(MAXCOMMS,2)dnl

define(CH01,0)dnl
define(CH02,1)dnl

/* MAXCOMMS!=3, change the lines in communicationX.m4 !!
** Initial ownerhsip of channels should be non-deterministic, but even with
** deterministic initial ownership, the state space is too big

107

Appendix B. Promela code and verification results

*/
include(communication2.m4)

/* Both ends */
proctype Pi(byte procidx; byte cha)
{

chan myans = [0] of { byte };
byte i;

Proc_ClearCommDelta(procidx);
Proc_AddComm(procidx,cha,1);
run Proc_DoSelWait(procidx,myans);
myans?i;
assert(i==1)

}

proctype X(byte procidx; byte cha; byte chb)
{

chan myans = [0] of { byte };
byte x;
bit i,j;

Proc_ClearCommDelta(procidx);
Proc_AddComm(procidx,cha,0);
Proc_AddComm(procidx,chb,1);
run Proc_DoSelWait(procidx,myans);
myans?x; atomic { assert(x==0 || x==1); i=x; x=0; }
Proc_ClearCommDelta(procidx);
Proc_AddComm(procidx,cha,0);
Proc_AddComm(procidx,chb,1);
run Proc_DoSelWait(procidx,myans);
myans?x; atomic { assert(x==0 || x==1); j=x; x=0; }
assert(i!=j)

}

init
{

chan p0r = [0] of { byte };
chan p1r = [0] of { byte };
chan p2r = [0] of { byte };
byte i0,i1,i2;

atomic {
Chan_Init(CH01,0,1); Chan_Init(CH02,0,2);
Proc_Init(0); Proc_Init(1); Proc_Init(2)

}
run X(0,CH01,CH02); run Pi(1,CH01); run Pi(2,CH02);

}

The verifier fails due to lack of memory. The output fragment with respect to this event

108

B.3. Simulation

is:

Depth=306 States=7.8e+07 Transitions=1.92303e+08 Nodes=7017620 Memory=927.950
Depth=306 States=7.9e+07 Transitions=1.94801e+08 Nodes=7075341 Memory=937.371
pan: out of memory

9.39009e+08 bytes used
102400 bytes more needed
1.04858e+09 bytes limit (2^MEMCNT)

The verifier also outputs the following memory statistics:

Stats on memory usage (in Megabytes):
25020.841 equivalent memory usage for states (stored*(State-vector + overhead))
937.854 actual memory usage for states (compression: 3.75%)
1.049 memory used for hash-table (-w18)
0.012 memory used for DFS stack (-m500)
939.009 total actual memory usage

Note that the verifier has been given 1000MB (-DMEMLIM=1000), while it actually used
939MB. The difference between these two numbers comes from the fact that the latter
number is the upper memory limit enforced by the operating system. In other words, the
verifier aborts because it is not given more memory.

B.3 Simulation

After exhausting the verification options, a switch has been made to Monte Carlo simu-
lations, in order to test the implementation as much as possible. Unlike the verification,
non-determinism is not a problem here. In fact, more non-determinism gives the opportu-
nity to more different behaviour, and that increases the chances of finding bugs.

The Promela program used in the simulation contains four processes and six channels
(each process is connected to each other process). Also, initial ownership of channels is
assigned non-deterministically.

The Promela code is generated by executing:

$ m4 t46simulation.m4 > p.prom

A single simulation is performed by executing:

$ spin -nX p.prom

with X a number from the range 1–217200000, which is used as the initial seed for the
random number generator of spin. All simulations ran to completion without errors.

109

Appendix B. Promela code and verification results

/* t46simulation.m4
** Top level test file used for simulation
** Initial ownership of channels was non-deterministic
**
*/
define(NUMCHANNELS, 6)dnl
define(NUMPROCESSES,4)dnl
define(MAXCOMMS,3)dnl
dnl USE DIFFERENT communicationX.m4 if MAXCOMMS!=3
dnl
dnl #channels, #processes, max #communications in a single process

dnl Aliases for channels and processes
define(CH01,0)dnl
define(CH02,1)dnl
define(CH03,2)dnl
define(CH12,3)dnl
define(CH13,4)dnl
define(CH23,5)dnl

define(P0,0)dnl
define(P1,1)dnl
define(P2,2)dnl
define(P3,3)dnl

/* --
** Include the communication algorithm
**
** Be sure to modify the initial ownership of channels to non-deterministic
** for simulation
*/

include(‘communication3.m4’)

/* --
** Instantiation of 4 processes connected with 6 channels (1 channel between
** each pair of processes)
*/

proctype P(byte procidx; byte cha, chb, chc; chan ichan)
{

chan myans = [0] of {byte};
byte i;
bool b0,b1,b2,b3;

/* Proc_P() ? */
Proc_ClearCommDelta(procidx);
/* b0; delta 2 -> i:=0 */
if
:: true -> Proc_AddDelta(procidx,2,0); b0=true

110

B.3. Simulation

:: true -> b0=false
fi;
/* b1; cha~ -> i:=1 */
if
:: true -> Proc_AddComm(procidx,cha,1); b1=true
:: true -> b1=false
fi;
/* b2; chb~ -> i:=2 */
if
:: true -> Proc_AddComm(procidx,chb,2); b2=true
:: true -> b2=false
fi;
/* b3; chc~ -> i:=3 */
if
:: true -> Proc_AddComm(procidx,chc,3); b3=true
:: true -> b3=false
fi;
run Proc_DoSelWait(procidx,myans);
myans?i;

atomic {
if
:: (i==0) -> assert(b0)
:: (i==1) -> assert(b1)
:: (i==2) -> assert(b2)
:: (i==3) -> assert(b3)
:: (i==6) -> assert(!b0 && (b1 || b2 || b3)) /* FORCED END OF SW */
:: (i==9) -> assert(b0==false && b1 == false &&

b2 == false && b3 == false)
fi

}

ichan!i
}

init
{

chan p0ret = [0] of { byte };
chan p1ret = [0] of { byte };
chan p2ret = [0] of { byte };
chan p3ret = [0] of { byte };
byte p0i,p1i,p2i,p3i;

d_step { /*assert(NUMCHANNELS==6);*/
Chan_Init(CH01, P0, P1); Chan_Init(CH02, P0, P2);
Chan_Init(CH03, P0, P3); Chan_Init(CH12, P1, P2);
Chan_Init(CH13, P1, P3); Chan_Init(CH23, P2, P3);

/*assert(NUMPROCESSES==4);*/
Proc_Init(P0); Proc_Init(P1); Proc_Init(P2); Proc_Init(P3)

}

111

Appendix B. Promela code and verification results

run P(P0,CH01,CH02,CH03,p0ret);
run P(P1,CH01,CH12,CH13,p1ret);
run P(P2,CH02,CH12,CH23,p2ret);
run P(P3,CH03,CH13,CH23,p3ret);
p0ret?p0i; p1ret?p1i; p2ret?p2i; p3ret?p3i;

atomic {
if
:: (p0i==1) -> assert(p1i==1)
:: (p0i==2) -> assert(p2i==1)
:: (p0i==3) -> assert(p3i==1)
:: else -> skip
fi;

if
:: (p1i==1) -> assert(p0i==1)
:: (p1i==2) -> assert(p2i==2)
:: (p1i==3) -> assert(p3i==2)
:: else -> skip
fi;

if
:: (p2i==1) -> assert(p0i==2)
:: (p2i==2) -> assert(p1i==2)
:: (p2i==3) -> assert(p3i==3)
:: else -> skip
fi;

if
:: (p3i==1) -> assert(p0i==3)
:: (p3i==2) -> assert(p1i==3)
:: (p3i==3) -> assert(p2i==3)
:: else -> skip
fi

}

}

112

BIBLIOGRAPHY

[Are96] N.W.A. Arends. A Systems Engineering Specification Formalism. PhD
thesis, Technische Universiteit Eindhoven, 1996.

[Bag89] Rajive Bagrodia. Synchronization of asynchronuous processes in CSP. ACM
Transactions on Programming Languages and Systems, 11(4):585–597, Oc-
tober 1989.

[Bar99] Michael Barr. Programming Embedded Systems in C and C++. O’Reilly,
January 1999.

[BCG+97] Felice Balarin, Massimiliano Chiodo, Paolo Giusto, Harry Hsieh, At-
tila Jurecska, Luciano Lavagno, Claudio Passerone, Alberto Sangiovanni-
Vincentelli, Ellen Sentovich, Kei Suzuki, and Bassam Tabbara. Hardware-
software co-design of embedded systems: The POLIS approach. Kluwer
academic publishers, 1997.

[BK00] V. Bos and J.J.T. Kleijn. Formalisation of a production systems modelling
language: the operational semantics of χ core. Fundamenta Informaticae,
41(4):367–392, 2000.

[Bra93] L.E.M.W. Brandts. Design of industrial systems. PhD thesis, Technische
Universiteit Eindhoven, 1993.

[Bri97] Klaas Brink. Interfacing Control and Software Engineering: a formal ap-
proach. PhD thesis, Delft University of Technology, 1997.

[BRJ99] Grady Booch, James Rumbaugh, and Ivar Jacobson. The Unified Modeling
Language User Guide. Addison-Wesley, 1999.

[BS83] Gael N. Buckley and Abraham Silberschatz. An effective implementation
for the generalized input-output construct of CSP. ACM Transactions on
Programming Languages and Systems, 5(2):223–235, April 1983.

113

Bibliography

[Car87] Luca Cardelli. Basic polymorphic typechecking. Science of Computer Pro-
gramming, 8:147–172, 1987.

[Che99a] N.Z. Chen. Design and implementation of the chi 0.6 kernel. Systems En-
gineering report SE 420219, Technische Universiteit Eindhoven, July 1999.
Detailed Design Document for the Chi 0.6 redesign project.

[Che99b] N.Z. Chen. Redesign of the χ kernel. OOTI report, Technische Universiteit
Eindhoven, June 1999.

[Coo91] J.E. Cooling. Software Design for Real-time Systems. Chapman and Hall,
1991.

[dBvdBCP97] A. Gouder de Beauregard, B. van den Broek, R. Caelers, and R Penners.
Migration of χ towards a real-time operating system. Technical report,
Technische Universiteit Eindhoven, 1997. Department of Mathematics and
Computing Science.

[DdlBS99] B. Demoen, M. Garcia de la Banda, and P.J. Stuckey. Type constraint
solving for parametric and ad-hoc polymorphism. In J. Edwards, editor,
Proceedings of the 22nd Australian Computer Science Conference, pages
217–228. Springer-Verlag, January 1999.

[Epp97] Jerry Epplin. Linux as an embedded operating system. Embedded Systems
Programming, October 1997.

[Fáb99] Georgina Fábián. A Language and Simulator for Hybrid Systems. PhD
thesis, Technische Universiteit Eindhoven, 1999.

[Gup95] Rajesh Kumar Gupta. Co-synthesis of hardware and software for digital
embedded systems. Kluwer academic publishers, 1995.

[Hal93] Nicolas Halbwachs. Synchronous programming of reactive systems. Kluwer
academic publishers, 1993.

[Hoa78] C.A.R. Hoare. Communicating sequential processes. Communications of
the ACM, 21(8):666–677, 1978.

[Hoa85] C.A.R. Hoare. Communicating Sequential Processes. Prentice-Hall, 1985.

[Hol91] Gerard J. Holzmann. Design and validation of computer protocols. Prentice-
Hall, 1991.

[Hol97] Gerard J. Holzmann. The spin model checker. IEEE Transactions on Soft-
ware Engineering, 23(5):279–295, May 1997.

[Hoo91] Jozef Hooman. Specification and Compositional Verification of Real-Time
Systems. PhD thesis, Technische Universiteit Eindhoven, 1991.

114

Bibliography

[HP88] Derek J. Hatley and Imtiaz A. Pirbhai. Strategies for Real-Time System
Specification. Dorset House Publishing, 353 West 12th Street New York,
New York 10014, 1988.

[HS91] Wolfgang A. Halang and Alexander D. Stoyenko. Constructing predictable
real time systems. Kluwer academic publishers, 1991.

[JM86] Albert T. Jones and Charles R. McLean. A proposed hierarchical control
model for automated manufacturing systems. Journal of Manufacturing
Systems, 5(1):15–25, 1986.

[Kam99] J. C. A. Kamp. χ-modellen simuleren met vxworks. Onderzoeksopdracht,
Technische Universiteit Eindhoven, January 1999. SE 42201.

[Kar98] Pim Kars. Formal Methods in the Design of a Storm Surge Barrier Control
System, pages 353–367. Number 1494 in Lecture Notes in Computer Science.
Springer-Verlag, 1998.

[KS97] Devendra Kumar and Abraham Silberschatz. A counter-example to an
algorithm for the generalized input–output construct of CSP. Information
Processing Letters, 61(6):287, 28 March 1997.

[KZ96] Andrew J. Kornecki and Janusz Zalewski. Real-Time Ssystems Education,
pages 73–79. IEEE Computer Society Press, 1996.

[LM87] Peter D. Lawrence and Konrad Mauch. Real-time microcomputer system
design. McGraw-Hill, inc, 1987.

[LMW99] Yau-Tsun Steven Li, Sharad Malik, and Andrew Wolfe. Performance esti-
mation of embedded software with instruction cache modeling. ACM Trans-
actions on Design Automation and Electronic Systems, 4(3):257–279, July
1999.

[Mar67] James Martin. Design of Real-Time Computer Systems. Prentice-Hall, 1967.

[Mil78] Robin Milner. A theory of type polymorphism in programming. Journal of
computer and system sciences, 17:348–375, 1978.

[MP95] Zohar Manna and Amir Pnueli. Temporal verification of reactive systems.
Springer-Verlag, 1995.

[NA98] G. Naumoski and W. Alberts. A Discrete-Event Simulator for Systems
Engineering. PhD thesis, Technische Universiteit Eindhoven, 1998.

[Ove87] R. Overwater. Process and Interactions. An approach to the modelling of
industrial systems. PhD thesis, Technische Universiteit Eindhoven, 1987.

115

Bibliography

[QNX96] QNX Software Systems Ltd., 175 Terence Mathews Crescent, Kanata On-
tario, K2M 1W8, Canada. QNX Operating System: System Architecture,
1996.

[Ray96] Eric S. Raymond, editor. The New Hacker’s Dictionary. MIT Press, third
edition, 1996.

[Sha75] Robert E. Shannon. Sytems Simulation, the art and science. Prentice-Hall,
1975.

[vBR96] D. A. van Beek and J. E. Rooda. A new mechanism for exception handling
in concurrent control systems. European Journal of Control, 2(2):88–100,
1996.

[vD00] M.H.M. van Duin. From simulation using χ to implementation using vx-
works, a case: The paint factory. Master’s thesis, Technische Universiteit
Eindhoven, 2000. SE 420225.

[vdKS98] H.H. van den Kroonenberg and F.J. Siers. Methodisch ontwerpen. Edu-
catieve Partners Nederland, 1998. (Dutch).

[vdS93] Jan L.A. van de Snepscheut. What computing is all about. Springer-Verlag,
1993.

[Wie98] F. W. Wiekmeyer. Using vxworks for workstation control. Resarch project
report, Technische Universiteit Eindhoven, December 1998. SE 420205.

[Win97] Wind River Systems, Inc. VxWorks, Programmer’s Guide, first edition,
1997. VxWorks version 5.3.1.

[Yod] Victor Yodaiken. The rtlinux manifesto. http://www.rtlinux.org/.

116

INDEX

χ, 15
compiler, see compiler, tool
constant, 17
data types, 16, 17, 40
definition, 15
function, 18, 19
statement, 18

implementation, 27, 31, 34, 36, 39, 49
semantics, 21, 26, 50
simulation, 21
syntax, 16

abstraction level
function, 8
goal, 8
layout, 8
lowering, 8, 72, 76, 79
structure, 8

accuracy
virtual machine, 80

application
data structure
machine control, 33

framework
machine control, 31

machine control, 27, 31, 34
realtime, 31
structure
machine control, 32

aspects
time-related, 20

assignment
statement, 18

behaviour
real-time, 44

case study, 67
virtual machine, 71

channel
object, 33, 36, 51–53

chi, see χ
communication

object, 39, 52
protocol, 33
service
synchronous, 32

statement, 19, 39
synchronous, 15, 17, 45

compiler
χ, see compiler, tool
tool, 9, 16, 31, 34, 39, 41, 45, 81, 85,

87
conceptual

design, 7
constant

χ, 17
continuous

polling, 82
control

feedback, 25
real-time, 3, 6
supervisory, 25

data structure
machine control
application, 33

117

Index

data types, 87
χ, 16, 17, 40

definition
χ, 15

delta
statement, 20, 36

design
conceptual, 7
physical, 7
technique, 4

design step, 8
horizontal, 8, 15, 22, 27, 32, 45, 72,

74, 76, 80, 81
vertical, 8, 76, 79

design technique, 4, 79
example, 67
framework, 4, 5
proposal, 8
use of modelling, 5
use of simulation, 5

detailed layout
paint factory, 69

domain
real-time, 6

embedded, 13
system, 21, 22

environment
run-time, 9

event
processing, 22, 23
receiving, 22, 23
sending, 22

example
design technique, 67

feedback
control, 25

framework
design technique, 4, 5
machine control
application, 31

manufacturing control, 1, 2

NIST, see framework, manufacturing
control

function
χ, 18, 19
abstraction level, 8
statement
χ, 18

global view
paint factory, 68

goal
abstraction level, 8

guarded
statement, 18
repetitive, 18

horizontal
design step, 8, 15, 22, 27, 32, 45, 72,

74, 76, 80, 81
host, 31
hypothesis

synchrony, 21, 23, 83

implementation
χ, 27, 31, 34, 36, 39, 49
language, 9, 85
semantics, see real-world semantics
tools, 10

internal structure
paint factory, 69

language, 84
implementation, 9, 85
modelling, 8, see χ
programming, see implementation, lan-

guage
simulation, see χ
specification, see modelling, language,

15
layer

run-time
support, 32, 34, 36, 40, 45, 49

layout
abstraction level, 8

118

Index

lowering
abstraction level, 8, 72, 76, 79

machine
paint factory, 67
virtual, 4

machine control
application, 27, 31, 34
data structure, 33
framework, 31
structure, 32

system, 1–3, 76
manufacturing control

framework, 1, 2
master

object, 34, 35, 36
maximal progress, 21
modelling

in design technique, 5
language, 8, see χ
sensor, 74, 82

NIST
framework, see framework, manufac-

turing control

object
channel, 33, 36, 51–53
communication, 39, 52
master, 34, 35, 36
process, 33, 34, 36, 44, 52, 54
system, 34
xper, 34

operating system
real-time, 27, 28, 31, 45, 85
target, 28

paint factory
detailed layout, 69
global view, 68
internal structure, 69
machine, 67
simulation model, 71

physical

design, 7
platform

real-time, 27, 29, 39
polling

continuous, 82
process

object, 33, 34, 36, 44, 52, 54
processing

event, 22, 23
programming

language, see implementation, language
project goal, 4
proposal

design technique, 8
protocol

communication, 33

QNX, 29, 30

reactive, 14
real-time, 13

behaviour, 44
control, 3, 6
domain, 6
operating system, 27, 28, 31, 45, 85
platform, 27, 29, 39
system, 21, 22
tasks, 30

real-world
semantics, 22, 24, 26

realtime
application, 31

receiving
event, 22, 23

repetitive
guarded
statement, 18

selective waiting
statement, 20, 50

statement, 18
return

statement, 18
RTChi, 29, 30, 32

119

Index

RTLinux, 29, 30
run-time

environment, 9
support, 27, 81, 85
layer, 32, 34, 36, 40, 45, 49

selective waiting
statement, 20, 49
repetitive, 20, 50

semantics
χ, 21, 26, 50
implementation, see real-world seman-

tics
real-world, 22, 24, 26

sending
event, 22

sensor
modelling, 74, 82

service
synchronous
communication, 32

simulation
χ, 21
in design technique, 5
language, see χ

simulation model
paint factory, 71

skip
statement, 18

specification
language, see modelling, language, 15

statement
χ
function, 18

assignment, 18
communication, 19, 39
delta, 20, 36
guarded, 18
repetitive, 18
guarded, 18
selective waiting, 20, 50

return, 18
selective waiting, 20, 49

skip, 18
terminate, 19, 36

structure
abstraction level, 8
machine control
application, 32

target, 27
supervisory

control, 25
support

layer
run-time, 32, 34, 36, 40, 45, 49

run-time, 27, 81, 85
synchronous

communication, 15, 17, 45
service, 32

synchrony
hypothesis, 21, 23, 83

syntax
χ, 16

system
embedded, 21, 22
machine control, 1–3, 76
object, 34
real-time, 21, 22

target, 31, 81
operating system, 28
structure, 27

tasks
real-time, 30

technique
design, 4

terminate
statement, 19, 36

time
wall-clock, 21

time-related
aspects, 20

tool
compiler, 9, 16, 31, 34, 39, 41, 45, 81,

85, 87
tools

120

Index

implementation, 10
Tornado, 31
two-unit, 3
type-checking, 12, 39–41, 85, 87

vertical
design step, 8, 76, 79

virtual
machine, 4

virtual machine, 26, 84, 85
accuracy, 80
case study, 71
definition, 7

VxWorks, 29–31, 85

wall-clock
time, 21

xper
object, 34

121

122

Curriculum vitae

Albert Theo Hofkamp was born on the 25th of July, 1967 in Leeuwarden. In 1985, he
finished the atheneum in Leeuwarden, followed by a study in Electrical Engineering, which
was successfully finished in 1989. After serving in the Army, he studied Computer Science
at the University of Twente from 1991 to 1995. He graduated within the Tools Group
of TIOS (Tele-Informatics and Open Systems) on the subject A static semantics checker
for LOTOS, and wrote lcr. After graduating, he continued with the OOTI programme
(Postgraduate designer course Software Technology) at the Eindhoven University of Tech-
nology (TUE). The final project Data modeling in χ for this programme was done at the
department of Mechanical Engineering, with the Systems Engineering Group at the same
university.

In December 1997, he started his PhD project on the design of real-time systems.

123

124

Titles in the IPA Dissertation Series

H. Doornbos. Reductivity Arguments and Pro-
gram Construction. Faculty of Mathematics and
Computing Science, TUE. 1996-8

D. Turi. Functorial Operational Semantics and its
Denotational Dual. Faculty of Mathematics and
Computer Science, VUA. 1996-9

A.M.G. Peeters. Single-Rail Handshake Cir-
cuits. Faculty of Mathematics and Computing Sci-
ence, TUE. 1996-10

N.W.A. Arends. A Systems Engineering Specifi-
cation Formalism. Faculty of Mechanical Enginee-
ring, TUE. 1996-11

P. Severi de Santiago. Normalisation in Lambda
Calculus and its Relation to Type Inference. Fac-
ulty of Mathematics and Computing Science, TUE.
1996-12

D.R. Dams. Abstract Interpretation and Parti-
tion Refinement for Model Checking. Faculty of
Mathematics and Computing Science, TUE. 1996-
13

M.M. Bonsangue. Topological Dualities in Se-
mantics. Faculty of Mathematics and Computer
Science, VUA. 1996-14

B.L.E. de Fluiter. Algorithms for Graphs of
Small Treewidth. Faculty of Mathematics and
Computer Science, UU. 1997-01

W.T.M. Kars. Process-algebraic Transforma-
tions in Context. Faculty of Computer Science,
UT. 1997-02

P.F. Hoogendijk. A Generic Theory of Data
Types. Faculty of Mathematics and Computing
Science, TUE. 1997-03

T.D.L. Laan. The Evolution of Type Theory in
Logic and Mathematics. Faculty of Mathematics
and Computing Science, TUE. 1997-04

C.J. Bloo. Preservation of Termination for Ex-
plicit Substitution. Faculty of Mathematics and
Computing Science, TUE. 1997-05

J.J. Vereijken. Discrete-Time Process Algebra.
Faculty of Mathematics and Computing Science,
TUE. 1997-06

F.A.M. van den Beuken. A Functional Ap-
proach to Syntax and Typing. Faculty of Mathe-
matics and Informatics, KUN. 1997-07

A.W. Heerink. Ins and Outs in Refusal Testing.
Faculty of Computer Science, UT. 1998-01

G. Naumoski and W. Alberts. A Discrete-
Event Simulator for Systems Engineering. Faculty
of Mechanical Engineering, TUE. 1998-02

J. Verriet. Scheduling with Communication for
Multiprocessor Computation. Faculty of Mathe-
matics and Computer Science, UU. 1998-03

J.S.H. van Gageldonk. An Asynchronous Low-
Power 80C51 Microcontroller. Faculty of Mathe-
matics and Computing Science, TUE. 1998-04

A.A. Basten. In Terms of Nets: System Design
with Petri Nets and Process Algebra. Faculty of
Mathematics and Computing Science, TUE. 1998-
05

E. Voermans. Inductive Datatypes with Laws and
Subtyping – A Relational Model. Faculty of Math-
ematics and Computing Science, TUE. 1999-01

H. ter Doest. Towards Probabilistic Unification-
based Parsing. Faculty of Computer Science, UT.
1999-02

J.P.L. Segers. Algorithms for the Simulation of
Surface Processes. Faculty of Mathematics and
Computing Science, TUE. 1999-03

C.H.M. van Kemenade. Recombinative Evolu-
tionary Search. Faculty of Mathematics and Natu-
ral Sciences, Univ. Leiden. 1999-04

E.I. Barakova. Learning Reliability: a Study
on Indecisiveness in Sample Selection. Faculty of
Mathematics and Natural Sciences, RUG. 1999-05

M.P. Bodlaender. Schedulere Optimization in
Real-Time Distributed Databases. Faculty of Math-
ematics and Computing Science, TUE. 1999-06

M.A. Reniers. Message Sequence Chart: Syntax
and Semantics. Faculty of Mathematics and Com-
puting Science, TUE. 1999-07

J.P. Warners. Nonlinear approaches to satisfia-
bility problems. Faculty of Mathematics and Com-
puting Science, TUE. 1999-08

J.M.T. Romijn. Analysing Industrial Protocols
with Formal Methods. Faculty of Computer Sci-
ence, UT. 1999-09

P.R. D’Argenio. Algebras and Automata for
Timed and Stochastic Systems. Faculty of Com-
puter Science, UT. 1999-10

G. Fábián. A Language and Simulator for Hybrid
Systems. Faculty of Mechanical Engineering, TUE.
1999-11

J. Zwanenburg. Object-Oriented Concepts and
Proof Rules. Faculty of Mathematics and Comput-
ing Science, TUE. 1999-12

R.S. Venema. Aspects of an Integrated Neural
Prediction System. Faculty of Mathematics and
Natural Sciences, RUG. 1999-13

J. Saraiva. A Purely Functional Implementation
of Attribute Grammars. Faculty of Mathematics
and Computer Science, UU. 1999-14

R. Schiefer. Viper, A Visualisation Tool for Par-
allel Progam Construction. Faculty of Mathemat-
ics and Computing Science, TUE. 1999-15

K.M.M. de Leeuw. Cryptology and Statecraft in
the Dutch Republic. Faculty of Mathematics and
Computer Science, UvA. 2000-01

T.E.J. Vos. UNITY in Diversity. A stratified ap-
proach to the verification of distributed algorithms.
Faculty of Mathematics and Computer Science,
UU. 2000-02

W. Mallon. Theories and Tools for the Design of
Delay-Insensitive Communicating Processes. Fac-
ulty of Mathematics and Natural Sciences, RUG.
2000-03

W.O.D. Griffioen. Studies in Computer Aided
Verification of Protocols. Faculty of Science, KUN.
2000-04

P.H.F.M. Verhoeven. The Design of the Math-
Spad Editor. Faculty of Mathematics and Comput-
ing Science, TUE. 2000-05

J. Fey. Design of a Fruit Juice Blending and Pack-
aging Plant. Faculty of Mechanical Engineering,
TUE. 2000-06

M. Franssen. Cocktail: A Tool for Deriving Cor-
rect Programs. Faculty of Mathematics and Com-
puting Science, TUE. 2000-07

P.A. Olivier. A Framework for Debugging Het-
erogeneous Applications. Faculty of Natural Sci-
ences, Mathematics and Computer Science, UvA.
2000-08

E. Saaman. Another Formal Specification Lan-
guage. Faculty of Mathematics and Natural Sci-
ences, RUG. 2000-10

M. Jelasity. The Shape of Evolutionary Search
Discovering and Representing Search Space Struc-
ture. Faculty of Mathematics and Natural Sciences,
UL. 2001-01

R. Ahn. Agents, Objects and Events a computa-
tional approach to knowledge, observation and com-
munication. Faculty of Mathematics and Comput-
ing Science, TU/e. 2001-02

M. Huisman. Reasoning about Java programs in
higher order logic using PVS and Isabelle. Faculty
of Science, KUN. 2001-03

I.M.M.J. Reymen. Improving Design Processes
through Structured Reflection. Faculty of Mathe-
matics and Computing Science, TU/e. 2001-04

S.C.C. Blom. Term Graph Rewriting: syntax and
semantics. Faculty of Sciences, Division of Mathe-
matics and Computer Science, VUA. 2001-05

R. van Liere. Studies in Interactive Visualiza-
tion. Faculty of Natural Sciences, Mathematics and
Computer Science, UvA. 2001-06

A.G. Engels. Languages for Analysis and Test-
ing of Event Sequences. Faculty of Mathematics
and Computing Science, TU/e. 2001-07

J. Hage. Structural Aspects of Switching Classes.
Faculty of Mathematics and Natural Sciences, UL.
2001-08

M.H. Lamers. Neural Networks for Analysis
of Data in Environmental Epidemiology: A Case-
study into Acute Effects of Air Pollution Episodes.
Faculty of Mathematics and Natural Sciences, UL.
2001-09

T.C. Ruys. Towards Effective Model Checking.
Faculty of Computer Science, UT. 2001-10

D. Chkliaev. Mechanical verification of concur-
rency control and recovery protocols. Faculty of
Mathematics and Computing Science, TU/e. 2001-
11

M.D. Oostdijk. Generation and presentation of
formal mathematical documents. Faculty of Math-
ematics and Computing Science, TU/e. 2001-12

A.T. Hofkamp. Reactive machine control: A si-
mulation approach using χ. Faculty of Mechanical
Engineering, TUE. 2001-13

	Preface
	Summary
	Samenvatting
	Contents
	1. Introduction
	2. The X language
	3. The real-time platform
	4. Synchronous communication
	5. Case study
	6. Conclusions
	Appendix A.
	Appendix B.
	Bibliography
	Index
	Curriculum Vitae

