Robustness of feedback stabilization : a topological approach

Citation for published version (APA):

Zhu, S. Q. (1989). Robustness of feedback stabilization : a topological approach. [Phd Thesis 1 (Research TU/e / Graduation TU/e), Mathematics and Computer Science]. Technische Universiteit Eindhoven.
https://doi.org/10.6100/IR320073

DOI:

10.6100/IR320073

Document status and date:

Published: 01/01/1989

Document Version:

Publisher's PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

- A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website.
- The final author version and the galley proof are versions of the publication after peer review.
- The final published version features the final layout of the paper including the volume, issue and page numbers.
Link to publication

General rights

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25 fa of the Dutch Copyright Act, indicated by the "Taverne" license above, please follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy

If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

ROBUSTNESS OF FEEDBACK STABILIZATION: A TOPOLOGICAL APPROACH

PROEFSCHRIFT

ter verknijging van de graad van doctor aan de Technische Universiteit Findhoven, op gezag van de Rector Magnificus, prof. is, M. Tels, voor een commissie aangewercen door het College van Dekanen in het openbadr te verdedigen op vijidag 17 november 1989 te l6.00 यит
door

ZHU SIQUAN

geboren te Xi'an

Dit proefschrift is goedgekeurd door de promotoren prof. Ar.ir. M.L.J. Hautus
 en
 prof. dr. J.M. Schumacher

Copromotor: Dr. C. Praagman

To my parents
To my motherlortd

Preface

In September 1985 , I came to Eindhoven and started to study systems and control theory, Since then, Prof. Malo Hautus has been supervising me enthusiastically and patiently to learn and to do research leading to this thesis. His stringent scientific style and broad knowledge have influenced me to a great extent. I am grateful to kim for his guidance and supervision during the past four years.

Another person who has played a role in my studies is Dr. Kees Praagman. I am indebted to him for slways being ready to discuss problens, for his rapid critical reading of my manuscript, and for his support in practical matters. Then, I would like to give my thanks to Drs. Anton Stoorvogel for sharing his many research interests with me, for many stimulating discussions and for the help he offered me; also, thanks gost to my room rnate Ir. Ton Geerts for many interesting distussion and for lis astistance.

I have been fortunate to learn systems and control theory in a land that holds a concentration of eminent researchers in this field, and from whom I have benefited very much. The subject of my thesis resulted from a sugetestion of Prof. Hans Sclumacher to compare the gap topology with the graph topology, and I am indebted to himin for his constant help and advice. From Prof. Ruth F. Curtain I learnt about the theory of infinite dimensional systems, and her enthusiastic help and support are gratefuly acknowledged. Special thanks are given to Prof. Frank M. Callier and Dr. Joseph Wintin from Belgium and Frof. George Zames from Cantada for their interest in this research.

I appreciate that Prof. H. Kwakematik and Prof. J. de Graaf took the trouble to review my thesis and that Di. Peter Attwood improved the written English of the thesis.

I would pilie to express my gratitude to the Facuity of Mathematics and Computing Science at Eindhoven University of Techntlogy for its financial suppott of my research over the last four years. Last but not least I would like to thank Mrs. Harma Koops, the secretary of our group.

In this thesis, a compact and self-contained story is presented on a topological approach to the robustness of feedback stabilization. The finvestigation was carried out in a general framevork including finite and imfinite dimensional linear time-invariant systems as well as continuous-time and discrete-time and even 2D-systems. This thesis summarises the extensive work done on this approach including the most recent tesearch. To follow this thesis one meeds no more than the background of Hardy class theory, operator theory and the frequency domain approach to control Eystems.
Preface
Contents ii
Motation, Symbots and Abbreviations iii
Introduction 1
Robust stabilization 1
Review of this thesis 3
Chapter 1 Preliminaries
1-1 Framework 5
l-2 Clobedness of P e $F^{\text {nixt }}$
1-3 Bezout fractions and stabilizing controllers 10
1-4 Robustness of feedbeck stabilization 13
Chapter 2 The Gap Topology and the Graph Topology 15
2-1 The gap between two closed subspaces 15
2-2 The gap topology ior $F^{7 \times \prime 4}$ 16
2-3 A necessary and sufficient condition for robust stabiliation 20
2-4 The graph topology for $B^{n, m}$ 22
2-5 Comparing the gap topology with the graph topology 24
Chapter 3 Sufficient Conditions for Robust Stabilization 2 A
3-1 The gap metric and the grepth metric 26
3-2 The gap metric and generalized Bezout fractions 39
3-3 Guaranteed bounds for robust stabilization 32
Chapter 4 Transfer Matrices with Entries in the Quotient Field of \mathbf{H}_{∞} 3
4-1 Easic properties 35
4-2 Nonmalized Bezont fractions 37
4-3 Optimally robust controllers (1) 39
S-4 Optimally robust controllers (2) 42
4-5 A formula, a lower and an upper bound for the gap metric 51
4-6 Finite dimensional controller design 53
4-7 Computation of optimally robust controllers 36
Conclusions and Perspectives ${ }^{1} 1$
References 42
Index 86
Curriculum Vitze $5 T$
$R \quad$ the set of real numbers
$\mathbb{R}_{\boldsymbol{+}} \quad$ the set of non-negative real numbers
© the set of complex nunabers
$t_{4} \quad$ the open right half plane
D the open unit disk

A \& normed integral domajn with identity of linear bounded operators
$F \quad$ a subring of the quotient field of A
$A^{n \times m} \quad$ the set of all nxm matrices with entries in A
$\mathrm{M}(A)$ the set $U_{n, m} A^{n \times m}$
$U^{m, m}$ the subset of $A^{m \times M}$ consisting of all the unimodular matrices
$B^{n, m}$ the subset of $F^{n \times m}$ consisting of all the matrices having a right Berout fraction and a left Bezout fraction over $M(A)$
$C^{n, m} \quad$ the subset of $F^{n x m}$ consisting of all the systems having stabilizing controllers

X the space of inputs and outputs
$\mathrm{H}_{\infty} \quad$ a Hardy space consisting of all complex-valued functions $\mathrm{f}($.$) which are$ analytic in \mathbb{C}_{*} and satisfy

$$
\|f(\cdot)\|:=\sup \left\{\| f(s) \mid: s \in C_{+}\right\}<\infty
$$

$\mathrm{H}_{\mathrm{o}}(\mathbb{D})$ a Hardy space consisting of all complex-waiued functions $\mathrm{f}(-)$ which are analytic in CD and satisfy

$$
\|f(,)\|:=\sup _{\{ }\{|\mathrm{f}\{\mathrm{~s}\}|: 5 \in \mathbb{C}(\mathrm{D}\}<\infty
$$

$\mathrm{H}_{2} \quad$ a Hardy space consisting of all complex-valued functions $f($.$) which are$ analytic in \mathbb{C}_{+}and satisfy

$$
\|f(\cdot)\|:=\left[\sup \left\{\int_{0}^{2 \pi}|f(\sigma+i \omega)|^{2} d \omega: \sigma>0\right\}\right]^{1 / 2}<\infty
$$

$\mathrm{H}_{\mathbf{2}}(\mathrm{D})$ a Hardy space contisting of all complex-valued functions $f($.$) which are$ analytic in C,B and satisfy

$$
\|f(\cdot)\|: \infty\left\{\sup \left\{\int_{m \infty}^{+\infty}\left|f\left(\gamma e^{b \omega}\right)\right|^{2} d \omega: \gamma>1\right\}\right]^{1 / 2}<\infty
$$

L_{∞}
a Lebergue space consisting of all complex-valued functions $f($.$) satisfying$

$$
\|f(-)\|:=\operatorname{ess} \sup \{\| f(i \omega) \mid: \omega \in \mathbb{R}\}<\infty
$$

L_{2} a Lebeggue space consisting of all complex-valued functions $f(-)$ eatisfying

$$
\|f(.)\|:=\left[\int_{-\infty}^{+\infty}|f(w)|^{2} d \omega\right]^{1 / 2}<\infty
$$

RH_{∞} the subset of H_{*} consisting of ratipal functions

$\|P\|$	determinant of the matrix P
$\mathrm{P}^{\text {T }}$	transpose of the matrix P
$\mathrm{P}^{\text {" }}$	adjoint of the operator P
P (5)	$=\overline{\mathrm{P}(-\overline{5})}^{\mathrm{T}}$
$\phi \ominus \psi$	$=\{x \in \phi: x \perp y$ for all $y \in \notin\}$
iff	if and only if
LTI	linear time-invariant
S150	single-input and single-output
т.b.f.	right Bezout fraction
l.b.f.	left Bezout fraction
g.r.b.f.	generslized right Bezout fraction
g.l.b.f.	generalized left Bezout fraction
resp.	respectively

Robust stabilization

Consider the standard feedback system shown in Figure 1.1. It is assumed that F_{0} is the nominal system which models a natural phenomenon and C_{6} is the ided controller designed according to the nominal system P_{0} in order to make the closed-loop systern athieve some desired prrposes, for example, closed-loop stability and/or response improvement. Due to the complicated nature ard our limited howledge, in general, the "real" system is difficult to be identified fuily. Moreover, often a model has to be simplified, becarse it is too complicated to handle. Therefore, the nominal system orly deacribes the "real" system approximately. On the other hanc, some errors and/or simplification should be expected when implementing the ideal controller, so that the "real" controller will not necessarily be the same as the ideal controller. Thus, the joend controller can only be an approximation of the "real" controller. In some sense, nearly all control systems are subject to the uncertainties of both systems and controllers. Consequently, in control system synthesis, it is necessary to stady robustness with the uncertainties of both systems and controllers.

Figure 1.1 Feedback System

Conventionally and conveniently, the "real" system and the "real" controllex can be regarded as perturbed versions of the nominal system and the ideal controller, respectively. This thesis is concerned with rabustness of feedbeck stabilization ard closed-ioop response with respect to uncertainties in systems and controllers. It is supposed that the ideal controller C_{0} stabilizes the nominal system P_{0} and the closed-loop transfer matrix $H\left(\mathrm{P}_{0}, \mathrm{C}_{0}\right)$ from $u:=\left[u_{1}^{\mathrm{T}}, u_{2}^{\mathrm{T}}\right]^{\mathrm{T}}$ to $\left.e:=; e_{1}^{\mathrm{T}}, e_{2}^{\mathrm{T}}\right]^{\mathrm{T}}$ acheves the desired response. Then, the central question to be studied hare is : What sort of perturbations can be permitted in P_{0} and for C_{0} without destroytry the feedback stability and without changing the closed-loop response $\mathrm{H}\left(\mathrm{P}_{0}, \mathrm{C}_{0}\right)$ unacceptably ? This is called the problem of robustness of feedbuck stabilization, or simply, robust stabilization.

Robustness of feedback stabilization is one of the critical problems in control system syn:lesis, and especially, in applications. In recent years, it has been studied from various points of wiew and a considerable amount of literature has been devated to its study, To name some of them (certainly oniy a few) : The stability radil studied by Hinuichsen and Pritchard [H-P]; structured perturbations stadied by Doyle [Do.]; acditive system perturbations studied by Chen and Desoer [Ch-D], Vidyasagar and Kimura [V-G], Glover [Gl. 1], end Curtain and Glover [C-G]; multiplicative system perturbations studied by [V-K], stable Bezout factor perturbations studied by [V-K], Glover and McFarlane [G-M], Curtain [Cu. 2]; graph metric approach studied by Vidyasagar [Vi. 1,2] and Zhu [Zh. 4]; gap metric approach studied by Zames and El-Sakkary [Z-E], [El.], Zhu [Zh. 4], Thu, Flautus and Priagman [Z-KI-P I, 2], and Georgiou and Smith [G-S]. This thesis presenta recent developroents in the gap metric approach to the problem of robust stabilization.

The problem of robust stabilization is concerned with perturbation of a system. First of all, there is a meed to measure perturbations, that is, to measure the distance between two systems. This need is typically met by introducing a metric, For stable systems, represented by input-output mappings, the operator norm is a natimal measure. However, this norm cannot measure the distance between two unstable systems, and a topology or metric has to be developed for these systems.

Developing a topology or a metric for unstable systerms should be related to a special desigir purpose. A topology which is suitable for one control design purpose might be untatisfactory for another. More precisely, the characteristics of a topology or motric should match the features of the control design under consideration. The problem of robust stabilization has two basic requitements (for simplicity we will temporarily suppose that there are no perturbations on the controlers $:$ i) the perturbed systoms P of the nominal system P_{0} should be stabilized by the controller $C_{0} ;$ it) the closed loop system $H\left(P_{7} \mathrm{C}_{0}\right)$, resulting from the perturbation of P_{0}, should be "chose" to $\mathrm{H}\left(\mathrm{P}_{0} \mathrm{C}_{0}\right)$. Accorcling to these two requirementis, a neighborhood of P_{0} can be defined as

$$
N\left(\mathrm{P}_{0}, z\right):=\left\{\mathrm{P}: \mathrm{P} \text { can be stabilized by } \mathrm{C}_{0} \text { and }\left\|\mathrm{H}\left(\mathrm{P}_{1} \mathrm{C}_{0}\right)-\mathrm{H}\left(\mathrm{P}_{0}, \mathrm{C}_{0}\right)\right\| \varepsilon\right\}
$$

By varying s and P_{D}, a collection of the neighborhoods can be obtained, which generates a certain topology T. A family $\left\{P_{\lambda}\right\}$ of systems converges to P_{0} in the topology $T, ~ a s ~ \lambda \longrightarrow$ 0 if and ondy if (iff) P_{λ} ban be stabilized by C_{0} when λ is sufficiently close to 0 , while $H\left(P_{\lambda}, C_{0}\right)$ converges to $H\left(\mathrm{P}_{0}, \mathrm{C}_{0}\right)$ as $\lambda \rightarrow 0$. This topology exactly matches the problem of rolust stabilization. Unfortunately, this definition doesntt offer a good perspective for carrying out an analysis.

In 1980, Zames and El-sakkary applied the gap metric to the robustness of feedback stabilization for square finite dimensional linear time-invariant (LTI) systems under
unity feedoack [Z-El.]. At the same time, Vidyasagar [Vi. 1] proposed the graph fetric for finite dimensional LTI systems. A reformulation of these two topologies for a general setting and their comparison are presented in [允h. 4]. It was shown that both are equal to the topology T.

In this thesis, we will report a study on robustness of feedback stabilization ubing the gap metric approach fox a general framework including finite and infinite dimensional as well as continucus-time and discrete-time, and even including 2-D LTI sytems. A necessary and sufficient condition for robust stabilization is characterized by the gap topology, and the estimation is given in the gap metric for the influence on the closed-loop transfer matrices by the perturbations the syatems and controlless. Moreover, several guaranteed (i.e. sufficient) bounds for robust stabilization are provided in terms of the gap metric. For systems described by the transfer matrices with entries in the quotiont field of $H_{\text {co }}$, optimally robust controllers and the laxgest robust stability radius are discussed. Meanwlile, the relationship of the gap metric approach with the graph metric approach and stable Bezout factor perturbation method as well as additive and multiplicative system perturbation methods are presented.

Review of the thesis

This thesis consjsts of four chapters. Chapter 1 containt preliminaries having of four sections. The framework is outlined in Section 1 , which is a general set-up including lumped and distributed as well as continuous-time and discrete-time and $2-D$ LTI systems. In Section 2, it is proven that the operators induced by systems are closed. And this property will be used twice in this thetis $;$ first, to apply the gap topology; secondly, to apply the theorem of Lax. We will discuss the relationship between Bezout fractions and stabilizing controllers in Section 3. It is shown there, in generel, that the existence of a right (or left) Bezout fraction entures the existence of some stabilizing controllers. A useful fact in Lemma 1.3.3, hidden in the parameterization of all stabilizing controllers, will be revealed in this section too. Finally, a mathematical formulation for robustness of feedback stabilization will be given in Section 4.

Chapter 2 is devoted to a qualitative description of the robustness of feedback stabilization, and a necessary and sufficient condition for robust stabilization is characterized in terms of the gap topology. There are five sections in Chapter 2. The first describes a preparatory stage before the gap topology being disenssed, in which the gap between two closed subspaces of a Batach spece is introduced. The definition and some basic properties of the gap tepology are introduced in Section 2, in which we will also prove the diagonal product propesty of the gap topology. In Section 3, a necessary and
sufficient condition for robustness of feedback stabilization is given in the gap topology. Moreover, a lower and an upper bound ãe obtained for estimating the influence upon the closed-loop transfor matrix of perturbations of the system and controlier. The graph topology is generalized to out fremework in Section t, in which a proof is provided for the diagoral product property withont using spectral factorization. In the last section (Section 5), the gap topology is compared with the graph topology.

Chapter 3 gives a quantitative description of robust stabilization for systems in the general framework. It this chapter, several bounds are given which gaarantee fobust stabilization, and some useful techiques are developed. In Section 1 , the definition of the gap metric is discussed, then, the concept of generalized Bezout fractions is developed and it is used to define the gragh metric. A relationship between the gap metric and generalized Bezout fractions is presented in Section 2. This is one of the key techniques that are used in Chapters 3 and 4. Ir Section 3, the main results are provided, namely, the guaranteed bounds fo: robust stabilization.

In the first three chapters, the transfer matrices of the systems under consideration are supposed to have their entries in the quotient field of an arbittary nomed integral domain consesting of linear bounded operatora. Ir Chapter 4, a special case is examined, that is, transfer matrices with entries in the quotient field of H_{w}. Since H_{∞} has a rich mathematical background and more structure, many results in the first three chapters can be deepened. Especially, ane of the bounds obtained in Chapter 3 is shown to be the sharpest in this special case. In Section 1 of this chapter, the relationship of Bezout fractions with stabilizing controllers is again distussed. It is shown that H_{∞} is a Flemite ring i.e. a transfer matrix has a right Bezout fraction iff it has a left Bezout fraction. The existence of normalized Eexout fractions is presented in Section 2, it will be a cornerstone for later developments. In Section 3, it is shown that the neighborhoods of a system in the gap metric are exactly the neighborthoods obtained by perturbing the right normalized Bezout fractions of the system. It follows that one of the guaranteed bounds given in Chapter 3 is the sharpest. Optimally robust controllers and the largest robust stability radius of a system are discussed in Section 4, where several related problems such as the influence of the uncertainties in optintally robust controllers and the variation of the closed-loop syaterns etc. are discussed. Section 5 is devoted to the discussion of the computation of the gap metric, and in this section a computable formula of the gap metric found by Georgiou and a lower and an apper bound of the gap metric obtained by Zhu, Hautus and Pragman are presented. In Section 6 , we discuss the design of finite dimensional controllers for inffinte dimensional systems via the largest robust stability radius and optimally robust controllers. Finally, in Section 7, a procedure for conputing optimally robust controllers and the largest robust stability radius is presented. Some numerical examples are also provided there.

Preliminaries

1.1 Framework

A framework will now be formulated, which is a unifying approach for dealing with bath lumped and distributed, as well as continuous-time and discrete-time LTI systems. This framework provides a connection of systems with operators which makes it possible to apply operator theory to control system synthesis.

SET-UP Let A be a commutative normed integral domain with identity of linear bounded operators mapping a Banach space X into X, and F be a subring of the quotient field of A.

ASSLMPTION 1.1.1 It is assumed that any monzero element if of A maps X into X injectively, and if f maps X onto X surjectively, then f^{-1} is in A also. Morcover, each element $P \in F$ is supposed to have a coprime fractions over A, which is unique up to moultiplications by the units of A.

Note that the coprime fractions do not necessarily have to be Bezout fractions, whose definition will be given in Section 3 .
X is regarded as the space of (single) inputs and outputs. A is interpreted as the set of all single-imput and single-butput (SISO) stable systems, while F is the universe of all the \$16O systems under consideration.

Since each nonzero element if of A is an injective linear bounded operator mapping X into X, the inverse f^{-1} exists as a linear (possibly, unbounded) operator mappirig the range $R(f)(G X)$ of f onto X. It follows that for each system $P=h / f \in F$, a linear (possibly, urbounded) operator P can be defined as follows.

DEFINTIION 1.1.2 Let $P \in F$ and $f, h \in A$ be a coprime fraction of P. A linear operator P cant be defined : The $\operatorname{Dom}(P)$ of P is defined as $R(f)$ and the action of P on $x \in \operatorname{Dom}(P)$ is defined as $P x:=h f^{-1} x$. The operator P is called the operator induced by the system P.

Because the coptime fractions of $\mathrm{P} \boldsymbol{\operatorname { E F }} \boldsymbol{F}$ are unique up to multiplications by the units of A, it is easy to check that the induced operator P by $P \in F$ does not depend on a special coprime fraction of P .

LEMMA 1,1.3 Suppose that $\mathrm{f}, \mathrm{h} \in A$ and $\mathrm{f} \neq 0$. Then, the operator $\mathrm{f}^{-1} \mathrm{~h}$ is oqual to $h f^{-1}$ on $\operatorname{Dom}\left(\mathrm{hf}^{-1}\right)$,

Proof Let $x \in \operatorname{Dom}\left(\mathrm{hf}^{-1}\right)$ and $\mathrm{hf}^{-1} x=y$. Then, fhf $\mathrm{f}^{-1} x=\mathrm{f} y$, Since f and h are cornmutative, it follows that $h x=f y$. Therefore, $h x \in \operatorname{Dom}\left(f^{-1}\right)$ and $f^{-1} h x=y$. This implies that $f^{-1} h$ is equal to $h f^{-1}$ on Dong $\left(h^{-1}\right)$.

LEMMA 1.t.4 Let $P_{1}, P_{2} \in F$. Then $P_{1}=P_{2}$ if and only if (iff) $P_{1}=P_{2}$.

PROOF " $<$ " This is trivial.
$" \rightarrow$ " Suppose that $\left\langle\hat{f}_{i}, h_{i}\right\rangle \subseteq A$ is a coprime fraction of $\mathrm{F}_{\mathrm{i}}(\mathrm{i}=1,2)$. For any $x(g 0) \in \operatorname{Dom}\left(\mathcal{P}_{1}\right)\left(=\operatorname{Dom}\left(\mathrm{P}_{2}\right)\right.$), we have that $\mathrm{h}_{1} \mathrm{f}_{1}{ }^{-1} x=\mathrm{h}_{2} \mathrm{f}_{2}^{\mathrm{I}} x$. It follows from Lemma 1.1.3 that $f_{1}^{-1} h_{1} x=f_{2}^{-1} h_{2} x$, i.e., $f_{2} h_{1} x=f_{1} h_{2} x$. Define $g:=f_{2} h_{1}-f_{1} h_{2}(\epsilon$ A). Since g is not injective, it is zero. Thus, $\mathrm{P}_{4}=\mathrm{P}_{2}$.

Becase of this lemma, P can be identifiod with P, and, for simplicity, P is denoted also by P .

LEMMA 1.1.5 The induced operator by $\mathrm{P} \in \mathcal{F}$ is a bounded mapping of X into X iff P e A.

PROOF "ه" It is trivial.
$" \rightarrow$ " Suppose that $(f, h) \in A$ is a coprime fraction of P. Since $\operatorname{Dom}(P)=\operatorname{Dom}\left(f^{-1}\right)$ $=R(f)=X, f^{\mu}$ is bounded, $i, e^{,}, f^{-2} \in A$. Hence, $P \in A$.

The sum of two systens in F is their parallel connection, and the product of two systerns is their cascade connection.

ASSOMPTION 1.1.6 The algebraic properties of operators induced by systems in F are defined by those of systems, i.e., the sum of two operators is the operator induted by the sum of the relevant systems and the product of two operators is the operator induced by the product of the relevant gystems.

The following examples show that the above framework is reasonable and includes many
important situations.

EXAMPEE 1.1.7 Assume that A is the set of all rational functions without poles in the doned right half plane including infinity and F is the set of all rational functions, Let X be the Hardy space H_{2}. It is well known that each system P e A induces a so-called Laurent operator [Fr. p4 2], a linear bounded mapping from H_{2} to H_{2}, which is injective if $P \neq 0$. Identify each system P in A with its Laurent operator, then, A will be a normed integral domain. It is a routine to checi that A, F and H_{2} satisfy Assumption 1.1.I. This case represents continuous-time lumped LTI systems.

EXAMPLE 1.1.S Assume that A is the set of all rational functions without poles in $\{z \equiv \mathbb{C}:|z| z \mathbb{Z}\}$. Let F be the set of all rational functions and X be the Hardy space $\mathrm{H}_{2}(\mathrm{D})$. As in Example 1.1.7, each system of A indutes a Laurent operator mapping $\mathrm{H}_{2}(\mathrm{D})$ into $\mathrm{H}_{2}(\mathbb{D})$. If we identify the syttems in A with their Laurent operators, then A becomes a normed integral domain. It is easy to cleck that A, F and $\mathrm{H}_{2}(\mathrm{D})$ satisfy Assumption t.1.1. This case stands for discrete-time lumped LTI systems.

Note that Examples 1.1.7 and 11.8 also include the so-called singular (or generalized) finite dimensional continuous-time and discrete-time lumped LTT systems, respectively.

EXAMFLE 2.1.9 Let (LTI) ${ }^{2}$ denote the set of all real-valued Laplace transformable distributions with support on \mathbb{R}_{+}. Define

$$
L_{1, \sigma_{0}}\left(\mathbb{R}_{+}\right):=\left\{\mathrm{f}: \mathrm{f}: \mathbb{R}_{+} \longrightarrow \mathbb{R}_{;} \int_{0}^{\infty}|\mathrm{f}(\mathrm{t})| \mathrm{e}^{-\sigma_{0} \mathrm{t}} \mathrm{dt}<\infty\right\}
$$

and

$$
\begin{aligned}
& \text { where, } \left.f_{\alpha}(\cdot) \in L_{1, \sigma_{0}}\left(R_{\psi}\right) ; t_{i} \in R_{+} \text {and } \sum_{i L_{0}}^{\sum_{j}}\left|f_{i}\right| e^{-\sigma_{0} t_{i}} \leq \infty\right\} \text {. }
\end{aligned}
$$

Moreover, define

$$
A_{-}\left(\sigma_{q}\right):=\left\{\mathrm{f} \in A\left(\sigma_{0}\right\}: \exists \sigma_{1}<\sigma_{0} \text { such that } f \in A\left(\sigma_{1}\right)\right\}
$$

If mon denote the Laplace transform, the interpretation of $\hat{A}\left(\sigma_{0}\right)$ and $\hat{A}_{-}\left(\sigma_{0}\right)$ is fairly obvious. Furthernore, define

$$
\dot{A}_{-}^{\infty}\left(\sigma_{0}\right):=\left\{f=\bar{A}_{-}\left(\sigma_{0}\right): \exists \rho>0, \text { such that } \inf _{|\sigma|>p}|\varepsilon(s)|>0\right\},
$$

and

$$
\hat{B}\left(\sigma_{0}\right):=\left[\dot{A}_{n}\left(\sigma_{0}\right)\right]\left[\dot{A}_{-}^{\infty}\left(\sigma_{0}\right)\right]^{-1} .
$$

Let A be $\ddot{A}_{-}(0)$ and F be $\tilde{B}_{(0)}(0)$ and assume that X is the Hardy space H_{2}. This is the transfer-function algebra introduced by Callier and Desoer [$\mathrm{C}-\mathrm{D} 1,2$], which describes a class of continuous-time distributed LTI systems. It is a routine to check that A, F and H_{2} satisfy Assumption 1.1.1.

EXAMPLE 1.1.10 Let \boldsymbol{F} be the set of all rational functions of two variables; i.e., \boldsymbol{F} consista of all functions $\mathrm{P}(\mathrm{s}, \mathrm{t})$ that are rational with respect to s and t , respectively. The poles of $\mathrm{P}(\mathrm{s}, \mathrm{t})$ are derined as the pairs ((s, t) to that the denominator of $\mathrm{P}(\mathrm{s}, \mathrm{t})$ is 2erc. And $P(s, t)$ is said to be stable if all of its poles are in $0:=\{(s, t): \operatorname{Res}<0 ; \operatorname{Ret}<0$,$\} , Let A$ be the subset of F, which consists of all stable elements. Define X to be the space consisting of all the functions of two variabies $\mathrm{g}(\mathrm{s}, \mathrm{t})$ which are analytic in both variables everywhere outside $\%$ and satisfy

$$
\|g(,,)\|:=\left[\sup _{\infty, \beta ; \beta>0} \int_{-\infty}^{+\infty} \int_{-\infty}^{\infty}|\sigma(\alpha+i \omega, \beta+i \gamma)|^{2} d \omega \mathrm{~d} \gamma\right]^{1 / 2}<\infty .
$$

It can be easily check that A, F and X defined here also satisfy Assumption 1.1.1. This case describes a class of 2D- LTI systems.

Note that, actually, there are various definitions of stability for 2-D systems and the definition given above is only one of the possibilities.

Denote the set of all matrices with entries in F (resp A) by $M(F)$ (resp $M(A)$), the subset of $\mathrm{M}(F)$ (resp. $M(A)$) consisting of all nxm matrices by $F^{n \times m}$ (resp. $A^{n \times m}$), and the subset of $A^{m \times m}$ consisting of all unimodular matrices in $A^{m \times m}$ by $U^{m, m}$. Note that $\mathrm{U} \in A^{m \times m}$ is unimodular meither implies nor is implied by the situation that its entries are mimodutar, The norm of X^{m} is defined as $\|x\|:=\left[\Sigma_{\text {i-1 }}^{m}\left\|x_{i}\right\|^{2}\right]^{1 / 2}$. It follows from [Ka. p153] that

LEMMA 1.1.11 The rapping $\mathrm{U} \longrightarrow Y^{-1}$ defined on $U^{n, n}$ is continuous and $U^{m, n t}$ is an open subset of $A^{m, m}$.

Each element $P \in F^{n M m}$ induces an operator mapping a subspace of X^{m} into X^{n} in an obvious way. In the next section, we will prove that this operator is closed.
1.2 Closedness of $\mathrm{P} \equiv F^{\mathrm{trm}}$

In this section we show that each operator induced by system $P \in F^{n \times m}$ is a dosed operator mapping a subspace of $\mathrm{X}^{\text {m/ }}$ into X^{t}. This property is essertial for the application of the gap topology, becarse the gap topology is only defined for closed Iinear operators. Moreover, it is also a crucial property for applying Lax's theorem in order io prove the existence of nommalized Bezout fractions in Chapter 4.

Suppose that T is a linear operator mapping a subspace of a Banach space X into gnother Barach space $Z . T$ is said to be closed if its graph

$$
G(T):=\{(x, T x): x \in \operatorname{Dom}(T) \subseteq Y\}
$$

is a closed subspace of $Y \times Z$.

THEOREM 1.2.1 Uneđer Assumaption 1.1.1, each system $P E F^{n x m}$ is a closed linear operator mapping a subspate of X^{m} into X^{n}

The proof of this theorem is besed on the following lemma.

LEMMA 1.2.2 Assume that W, Y and Z are Banach spaces, S a closed linear operator mapping a subspace of W into Y and that T is a linear bounded injective operator mapping Z into Y. Then, the combined operator $T^{-1} S$ mapping a subspace of W into Z is closed.

Note that the injectivity of T implies the existence of T^{-1}, which is defined on the range $k(T)$ of T.

PROOE We apply the well-known fact that a linear operator K mapping a subspace of Y into Z is closed iff $K x=y$ whenever $x_{n} \longrightarrow x$ and $K x_{n} \longrightarrow y$ tor $n \longrightarrow \infty$. Let $w_{n}, w \in W$, $w_{n} \longrightarrow w$ and $\mathrm{T}^{-1} \mathrm{~S} w_{n} \longrightarrow z$. Sintee T is continuous, $\mathrm{S} w_{n} \longrightarrow \mathrm{~T} z$. By the dosedness of S , we have $S w=T z$. Hence, $T^{-2} S u=z^{2}$, and this implies that $T^{-1} S$ is closed.

PROOF OF THEOREM 1.2.1 Since $P \in F^{n x m}$, thete is an element $d \in A$ and a matrix $N \in A^{n \times m}$ such that $P=d^{-1} N$. Therefore, if we take $S=N$ and $T=d Y$, where I is the $n \times n$ identity matrix, then, according to Lemma 1.2.2, P must be closed.

1.3 Bezout fractions and stabilizing controllers

For each $P=F^{n \times m},(D, N) \equiv M(A)$ is said to be a right Bezout fraction (r,b.f.) of P over $M(A)$ if

1) $D \subseteq A^{m \times m}, N a A^{n \times m}$ and $|D| \neq 0 ;$
2) there are two matrices X and Z in $M(A)$ such that

$$
\begin{align*}
& \mathrm{YD}+\mathrm{ZN}=\mathrm{I} \tag{1.3.1}\\
& \mathrm{P}=\mathrm{ND}^{-1}
\end{align*}
$$

Left Beant fractions (lib.f.) are defined analogously. It is easy to check that an r.b.f. (resp. i.b.f.) of $\mathrm{P} \equiv \boldsymbol{F}^{\mathrm{nxm}}$ is unique up to right (resp. left) multiplication by matrices in $U^{m, m}\left[V i .2 p^{75]}\right.$.

Equation (1.3.1) is called a Bezout identity. It plays an important role in control system synthesis. Later on we will show that a stabilizing controller can be obtained by solving a Bezout identity and that all stabilizing controllers can be parameterized by solving two Bezout identitiss (one is related to an r.b.f., another to an l.b.f.).

In general, not every matrix in $F^{n \times n t}$ has an r.b.f. (resp. l.b.f.), and the fact that a system having an r.b.f. acither implies nor is mpplied by the fact that it has an 1.b.f.. That each matrix P with entries in the quotient field of A his an t.b.f. iff it has an l,b.f. is equivalent to the fact that A is a Hermite ring [Vi, 2 p347]. In Chapter 4 we will prove that H_{∞} is a Hermite ring.

Denote by $B^{r, m}$ the subset of $F^{n \times m}$ consisting of all elements which have both an r.b.f. and an l.b.f. over $M(A)$, and by $M(B)$ the set $U_{n, m} B^{n, m}$. Note the fact that a matrix $\mathrm{F}_{\mathrm{g}} F^{\text {nxit }}$ has a right (resp, left) Bezout fraction does not imply that each of its entries has onej for instance, the matrix

$$
P=\left[\begin{array}{cc}
s e^{-5} & 0 \\
\frac{-1}{s+1} & 1
\end{array}\right]=\left[\begin{array}{cc}
\frac{s e^{-s}}{8+1} & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{cc}
\frac{1}{5+1} & 0 \\
1 & 1
\end{array}\right]^{-1}=\mathrm{ND}^{-1}
$$

has a right Bezout fraction (D, N) over $M\left(H_{\infty}\right)$. But se^{-3} does not have a Bezout fraction (see Chapter 4).

Now we will introduce the feedback system shown in Figure 1.3.1, where $P \in M(F)$ represents a system and $\mathrm{C} \in \mathrm{M}(\boldsymbol{F})$ a controller; w_{1}, ψ_{2} denote external inputs, ϵ_{1}, e_{2} inputs to the controller and system respectively, and $y_{11} y_{2}$ outputs of the compensator and system, respectively. This model is versatile enough to accommodate several control problems, for instance, the problem of tracking or disturbance rejection or
desensitization to noise on feedback compensation or cascade tompensation etc.. For convenjence, we will refer to such a set-up as a feedback system.

Suppose that $\mathrm{F}, \mathrm{C} \in \mathrm{M}(\boldsymbol{F})$. The tranfer matrix from $u:=\left[u_{1}^{\mathrm{T}}, u_{2}^{T}\right]^{T}$ to $e:=\left[e_{2}^{\mathrm{T}}, e_{2}^{\mathrm{T}}\right]^{T}$ is

$$
H(\mathrm{P}, \mathrm{C}):=\left[\begin{array}{cc}
(\mathrm{I}+\mathrm{PC})^{-1} & -\mathrm{P}(\mathrm{I}+\mathrm{CP})^{-1} \tag{1.3.2}\\
\mathrm{C}(\mathrm{I}+\mathrm{PC})^{-1} & (\mathrm{I}+\mathrm{CP})^{-1}
\end{array}\right] .
$$

Throughout this thesis it is assumed that P and C have compatible dimensions, also that the well-posedness condition $|\mathrm{I}+\mathrm{PC}| \neq 0$ is satisfjed so that $\mathrm{H}(\mathrm{P}, \mathrm{C})$ makes sense.

Figure 1.3.1 Feedback System

A transfet matrix js said to be stable if it is in $M(A)$. The feedback system showis in Figure 1.3 .1 is said to be stable if the transfer matrix $W(P, C)$ from u to $y:=\left[y_{1}^{\mathrm{T}}, y_{2}^{T}\right]^{T}$ is stable. But it turns out that $W(P, C)$ is stable iff $\mathrm{H}(\mathrm{P}, \mathrm{C})$ is stable, because

$$
W(P, C)=\left[\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right](\mathrm{H}(\mathrm{P}, \mathrm{C})-\mathrm{I}) .
$$

Since $H(P, C)$ has a slightly simpler form than $W(P, C)$, we alvays deal with $H(P, C)$ when studying stability of feedback system.

A system $\mathrm{P} \in \mathrm{M}(F)$ is said to be stabilizable in there is an element C in $\mathrm{M}(F)$ euch that $H(P, C)$ is stable. If $H(P, C)$ is stable, then C is called a stabilizing controller of P. One can verify that the conditions for stability are symmetric in P and C, i.e., $H(P, C)$ is stable iff $H(C, P)$ is stable. The set of all stabilising controllers of P is denoted by $\mathrm{S}(\mathrm{P})$.

LEMMA 1.3.1 If $P \in F^{\text {nam }}$ has ath r-b.f, then P has a stabilizing controller.

PROOF Assume that $(D, N) \in M(A)$ is an r.b.f. of P, and $(Y, Z) \in M(A)$ such that

$$
\mathrm{VD} \div \mathbb{Z}=\mathrm{I}
$$

If $|\mathrm{X}| \neq 0$, define $\mathrm{C}:=\mathrm{Y}^{-2} 2$. It follows from

$$
\mathrm{H}(\mathrm{P}, \mathrm{C})=\left[\begin{array}{ll}
\mathrm{I} & 0 \\
0 & 0
\end{array}\right]+\left[\begin{array}{c}
-\mathrm{N} \\
\mathrm{D}
\end{array}\right](\mathrm{YD}+\mathrm{ZN})^{-1}[\mathrm{Z}, \mathrm{Y}]
$$

that C is a stabilizing controller of F. Now suppose that $|Y|=0$. Choosing $K \in A^{m x m}$ such that $\left[Y^{T}, K^{T}\right]^{T}$ has full columa rank, and define

$$
V:=\left\{\mathrm{R} \in A^{m x \pi}:|Y+\mathbb{R}| \neq 0\right\} .
$$

It is shown [Vi. 2 pIIl] that V is ant open dense subset of $A^{m \times m}$ (Note that although [Vi. 2 plll] states this property for principal ideal domains, the proof suits for the general case). Now, take $R \in V$ such that $\|R K D\|<1$. Thus, $I+R K D$ is unimpodular and it follows from

$$
(Y+R K) D+Z N=I+R K D
$$

that $C:=(Y+R K)^{-1} Z$ is a stabilizing controller.

Aralogously, it can be shown that, if $\mathrm{P} E F^{\mathrm{nxm}}$ has an l.b.f., then it has stabilizing controllers too. Moreover, assume $P \doteq F^{n: m}$ has stabilizing controllers, then, it can be easily proved that P has an r.b.f. iff all of its stabilizing controllers have an l.bri, and that P has l.b.f. iff all of its stabilicing controllers have an s.b.f. [V i. 2 p363]. Hence, if P is in $\mathrm{M}(B)$, then the stabilizing controllers of P always exist and all its stabilising controllers are in $M(B)$ too. Furthermore, we tan parameterize all of the stabilizing controllets of $\mathrm{P} \in \mathrm{M}(B)$.

Assume that (D, N) and ($\overline{\mathrm{D}}, \dot{\mathrm{N}}$) are an r.b.C. and an $1 . \mathrm{b} . \mathrm{f}$, respectively, of P. Let $C_{0} E S(P)$ and (X, Z) and (\bar{X}, \bar{Z}) be an r.b.f. and an l.b.f., respectively, of C_{0}, such that

$$
\left[\begin{array}{rr}
-Z & \mathrm{Y} \tag{1.3.3}\\
\overline{\mathrm{D}} & \overline{\mathrm{~N}}
\end{array}\right]\left[\begin{array}{cc}
-\mathrm{N} & \overline{\mathrm{Y}} \\
\mathrm{D} & \bar{Z}
\end{array}\right]=\left[\begin{array}{ll}
\mathrm{I} & 0 \\
0 & \mathrm{I}
\end{array}\right] .
$$

It is readily shown that

$$
\left[\begin{array}{cl}
-\mathrm{Z}-\mathrm{RD} & \mathrm{Y}-\mathrm{R} \overline{\mathrm{~N}} \tag{1.3.4}\\
\overline{\mathrm{D}} & \overline{\mathrm{~N}}
\end{array}\right]\left[\begin{array}{cc}
-\mathrm{N} & \overline{\mathrm{Y}}-\mathrm{NR} \\
\mathrm{D} & \overline{\mathrm{Z}}+\mathrm{DR}
\end{array}\right] \leftrightarrows\left[\begin{array}{cc}
\mathrm{I} & 0 \\
0 & \mathrm{I}
\end{array}\right]
$$

where R is an arbitrary element of $A^{\text {mann }}$.

LEMMA 1.3.2 (Vi. 2 p108]

$$
\begin{aligned}
S(P) & =\left\{(\mathrm{X}-\mathrm{RN})^{-1}(\mathrm{Z}+\mathrm{RD}): \mathrm{R} \in A^{\mathrm{marr}},|\mathrm{Y}-\mathrm{R} \overline{\mathrm{~N}}| \neq 0\right\} \\
& =\left\{(\bar{Z}+\mathrm{DR})(\dot{\mathrm{Y}}-\mathrm{NR})^{-\mathrm{B}}: \mathrm{R} \in A^{\mathrm{mxn}} \quad|\overline{\mathrm{X}}-\mathrm{NR}| \neq \mathrm{O}\right\}
\end{aligned}
$$

LEMMA 1.3.3 If $|Y-R N| \neq 0$, then $|\overline{\mathrm{Y}}-\mathrm{NR}| \boldsymbol{\mu} 0$, and vice versa.
PROOF Assume $\left|Y-R N^{\prime}\right| \neq 0$. According to Lemma 1.3.2, $\mathrm{C}:=(\mathrm{Y}-\mathrm{RN})^{-1}(\mathrm{Z}+\mathrm{RD})$ e $\mathrm{S}(\mathrm{P})$. Let $\left(Y_{c} Z_{c}\right)$ be an r.b.f. of C. Again by Lemma 13.2, there exists an $R_{c} \in A^{m \times m}$ such that $\left|\dot{\mathrm{Y}}-\mathrm{NR}_{c}\right| \neq 0$ and $\left(\mathrm{Y}_{c}, \bar{Z}_{c}\right)=\left(\overline{\mathrm{X}}-\mathrm{NR}_{c}, \overline{\mathrm{Z}}+\mathrm{DR}_{e}\right)$. It follows from

$$
(\mathrm{Y}-\mathrm{RN})^{-1}(\mathrm{Z}+\dot{\mathrm{R}})=Z_{c} Y_{c}^{-1}
$$

that $R_{c}=R$. Hence $|\overline{\mathrm{Y}}-\mathrm{NR}|$ quo. The convense can be proved similarly.

Now the next theorem follows readily from the above arguments.

THEOREM 1.3.4 tet $P \in B^{n \times m}$. Then $C \in S(P)$ iff and $R E F^{n x m}$ exists such that

$$
|\mathrm{Y}-\mathrm{RN}| \neq 0, \quad \mathrm{C}=(\mathrm{Y}-\mathrm{RN})^{-1}(\mathrm{Z}+\mathrm{R} \overline{\mathrm{D}})=(\overline{\mathrm{Z}}+\mathrm{DR})(\overline{\mathrm{Y}}-\mathrm{NR})^{-1} .
$$

If P has neither an r.b-f. nor an l.b.f., a stabilizing controller of P may exist (see an example given by Anantharam [An.]) or may not (for example: $\mathrm{P}(\mathrm{s})=\mathrm{se}^{-5}$). If A is $H_{m, ~ t h e n ~} P \in M(F)$ has an r.b.f. iff it has an l.b.f. iff it has a stabilizing controller. A detailed discussion will be given in Chapter 4 for the case $A=\mathrm{H}_{\mathrm{w}}$.

1.4 Robustness of feedback stabilization

In this section, we will formulate the central problem studied in this thesis. Suppose that we have a sequence of systems $\left\{\mathrm{P}_{\lambda}\right\}$ and a sequence of controllers $\left\{\mathrm{C}_{\lambda}\right\}$ pararueterized by λ taking values in a raetric space A Also suppose that $H\left(P_{0} c_{0}\right)$ is stable. The guestion is : when will $\mathrm{H}\left(\mathrm{P}_{\lambda}, \mathrm{C}_{\lambda}\right)$ be stable as λ is sufficiently close to 0 , and $\mathrm{H}\left(\mathrm{P}_{\lambda_{2}} \mathrm{C}_{\lambda}\right) \longrightarrow \mathrm{H}\left(\mathrm{P}_{0} \mathrm{C}_{0}\right)$ as $\lambda \longrightarrow 0$.

The space, Λ, of the paratiteters λ could occur as a result of perturbations, disturbantes, approximations, measurement errors, modelling errors and parameter uncertainties, or could correspond to the physical characteristics that are intrinsic to the problem at hand.

Roughly speaking, P_{0} is the nominat system or a mathematical model, which approximately describes the unknown real phytical system; while δ_{0} is the ideal controller which is designed according to the nominal system. In theory, the ideal controller \mathcal{C}_{0} stabilizes the nominal system, P_{0}, i.e., $\mathrm{H}\left(\mathrm{P}_{0}, \mathrm{C}_{\mathrm{p}}\right)$ is stable, besides, $H\left(\mathrm{P}_{0}, \mathrm{C}_{0}\right)$ is the expected response. In practice, it is hoped that both real physical
systern P_{λ}, which is close to P_{a} and real controller C_{λ}, which is close to C_{0}, will form a stable pair too, i.e., $\mathrm{H}\left(\mathrm{P}_{\lambda}, \mathrm{C}_{\lambda}\right)$ is stable, and, in addition, $\mathrm{H}\left(\mathrm{P}_{\lambda}, \mathrm{C}_{\lambda}\right)$ is close to $\mathrm{H}\left(\mathrm{P}_{\mathrm{m}_{0}} \mathrm{C}_{0}\right)$. This problem is referred to robustness of feedboch stabilization, or simply, robust stabilizations.

For the study of robustness of feedback stabilization, we need a topology or a metric in order to describe the distances from P_{0} to P_{A} and from C_{0} to C_{λ}. This topology should be compatible with the robustness of feedback stabilization in the serise that the perturbation ($\mathrm{P}_{\lambda}, \mathrm{C}_{\lambda}$) from ($\mathrm{P}_{0}, \mathrm{C}_{0}$) is a stable pair and $\mu\left(\mathrm{P}_{\lambda}, \mathrm{C}_{\lambda}\right)$ is close to $\mathrm{H}\left(\mathrm{P}_{0}, \mathrm{C}_{0}\right)$ when P_{λ} is close to P_{0} and C_{λ} is close to C_{0} in the topology. According to these requirementa, the following topology can be defined and it will be compatible with the problem of robust stabilization.

Let $G^{n, m}$ be the subset of $F^{n \times m}$ consisting of all the elenients which possess stabilizing controllers. We define a basic neighborhood N of $P_{0} \in C^{n, m}$ as

$$
\mathcal{N}:=\mathcal{N}\left(\mathrm{P}_{0}, \mathrm{C}_{0}, \varepsilon\right):=\left\{\mathrm{P}: H\left(P, C_{0}\right) \text { is stable and }\left\|H\left(P, \mathrm{C}_{0}\right)-H\left(\mathcal{P}_{0}, \mathrm{C}_{0}\right)\right\|<\varepsilon\right\}
$$

where C_{0} is a stabilizing controller of P_{0}. By varying ε over R_{+}, varying C_{0} over the set $S\left(P_{0}\right)$ of all stabilizing controllers of P_{0} and varying P_{0} over $c^{n, m}$, we will obtair a collection of basic neighborhoods, which forms a basis for a topology (denoted by T) over $c^{n \times m}$.

Unfortunately, although this topology perfectly describes the robustness of feedback stabilization, this definition as given has little structures and doesn't offer a good perspective for antalysis. In the next chapter, we will introduce the gap topology and show that it is equal to topology T on $C^{n, n x}$.

The Gap Topolegy and the Graph Topology

2.1 The gap between two closed subspaces

Let Y be a Banach space and ϕ, ψ be two linear closed subspaces of Y. The gap is a measure of the "distance" between two linear closed subspaces. It is given in terms of two directed gaps, and the directed gap from ϕ to ψ is defined as

$$
\begin{equation*}
\delta^{*}(\phi, \psi):=\sup _{\substack{ \\x * S_{\varphi}}} \quad \inf f\|x-y\|_{,} \| \tag{2.1.1}
\end{equation*}
$$

where

$$
\mathcal{S}_{\phi}: m\{x \in \phi:\|x\|=1\} .
$$

If $\phi=0$, then define $\bar{\delta}(\phi, \psi):=0$. The gap between ϕ and ψ is defined as

$$
\begin{equation*}
\hat{\theta}(\phi, \psi):=\max \left\{\overrightarrow{\beta^{\prime}}(\phi, \psi), \overrightarrow{\delta^{+}}(\psi, \phi)\right\} . \tag{2.1.2}
\end{equation*}
$$

The following relations are difect consequences from the definition.

$$
\begin{array}{ll}
\bar{\delta}^{+}(\phi, \psi)=0 \text { iff } \phi \leq \psi ; & \delta(\phi, \phi)=0 \text { iff } \phi=\psi ; \\
\delta(\phi, \psi)=\delta(\psi, \phi) ; & 0 \leq \delta(\phi, \psi) \leq 1 .
\end{array}
$$

Ir general, $\delta(, \ldots)$ is not a metric for the space of all linear closed subspaces of Y, because it may not satisfy the triangle inequality. But the function $\gamma(\ldots$, defined by

$$
\begin{align*}
& \vec{\gamma}(\phi, \psi):=\sup _{x=S_{\phi}} \quad \inf _{y \in S_{\psi}}\|x-y\| ; \gamma(\phi, \psi):=\max \{\vec{\gamma}(\phi, \psi), \vec{\gamma}(\psi, \phi)\} \tag{2.1.3}\\
& \vec{\gamma}(0, \psi)=0 \quad \underset{\gamma}{ } \quad(\phi, 0)=2 \quad(\text { if } \phi \neq 0)
\end{align*}
$$

is a wetric and $\delta(\phi, \psi) \leq \gamma(\phi, \psi) \leq 2 \delta(\phi, \psi)$. Although the gap function $\delta(\ldots$, is not a metric, is is more convenient than the proper metric function $\gamma(.,$.$) for applications,$ since its definition is slightly simpler.

We will end this section by giving an intuitive illustration of the gap function. First, we consider the case of ϕ and ψ being two lines on the plane shown in Figure 2.1.1. In this case we have $\sigma^{\circ}(\phi, \psi)=\vec{\phi}(\psi, \phi)=\sin (\partial)$. Next, let ϕ be a line and ψ be a plane, and their relationship is abown in Figure 2.1.2. Then, we have $\vec{\phi}(\phi, \psi)=\sin (\gamma)$ and $\vec{\delta}(\psi, \phi)=1$.

Figure 2.1.1

Figure 2.1 .2

2.2 The gap topology for $F^{n \times \mu}$

According to Definition 1.1 .2 , each system $P \cong F^{3 x, n}$ is a linear operator mapping a subspace of $X^{\prime \prime \prime}$ into X^{n} and by Theorem 1.2.1, this operator is closed i.e. the graph of P,

$$
\mathrm{G}(\mathrm{P}):=\{(x, \mathrm{P} x): x \in \operatorname{Dom}(\mathrm{P})\}
$$

is a closed subspace of $\mathrm{X}^{m} \times \mathrm{X}^{n}$. The directed gap and the gap between two systems in $\boldsymbol{F}^{n x m}$ are defined as the directed gap and the gap between their graphs, respectively, that is, for $\mathrm{P}_{1} \mathrm{P}_{2}$ in $\boldsymbol{f}^{\text {nxut }}$

$$
\vec{\delta}\left(\mathrm{P}_{1}, \mathrm{P}_{2}\right):=\vec{\delta}\left(\mathrm{G}\left(\mathrm{P}_{1}\right), \mathrm{G}\left(\mathrm{P}_{2}\right)\right) ; \quad \delta\left(\mathrm{P}_{1} \mathrm{P}_{2}\right):=\delta\left(\mathrm{G}\left(\mathrm{P}_{1}\right), \mathrm{G}\left(\mathrm{P}_{2}\right)\right)
$$

It is easy to see that $\delta\left(\mathrm{P}_{1}, \mathrm{P}_{2}\right)=0$ iff $\mathrm{P}_{1}=\mathrm{P}_{2}$. We will define a basic neighborhood of $\mathrm{P}_{\mathrm{o}} \in F^{\mathrm{nxmm}}$ as

$$
N\left(P_{0, c},\right):=\left\{P \boxminus \dot{F}^{n \mathrm{ncm}}: \delta\left(P_{0}, P\right) \approx \in\right\}
$$

Now, by varying ξ over $(0,1)$ and varying P_{0} over $F^{n \times n}$, we can obtain a collection of basic neighborhoods. This collection forms a base for a topology on $F^{n \times \pi t}$ which is called the gap topology.

The following properties, Theorem 2.2.1-2.2.4 are guoted from [Ka. p197-206], and they will be used later,

THEOREM 2.2.1 If $P_{0} \in A^{n \times m}$ and $P \in F^{n x m}$ satisfy

$$
\delta\left(\mathbf{P}_{r} \mathrm{P}_{0}\right)<\left(1+\left\|\mathrm{P}_{\mathrm{a}}\right\|^{2}\right)^{-1 / 2}
$$

then, P is in $A^{n y \text { mem }}$

A consequence of this theorem is that $A^{n k m}$ is an open subset of $F^{n \times m}$ in the gap topology. Thus, any system is stable, if it is sufficiently close to a given stable system.

THEOREM 2.2.2 On $A^{n \times m}$, the gap topology is equal to the topology induced by the operator norm.

THEOREM 2.2.3 Let $\mathrm{P}_{\mathrm{t}} \in F^{\pi \times m}(\mathrm{i}=1,2)$ and $P_{0} \in A^{n \mathrm{xm} m}$. Then,

$$
\begin{equation*}
\Leftrightarrow\left(\mathrm{P}_{1}+\mathrm{P}_{0}, \mathrm{P}_{2}+\mathrm{P}_{0}\right) \leq 2\left(1+\left\|\mathrm{P}_{0}\right\|^{2}\right) \delta\left(\mathrm{P}_{1}, \mathrm{P}_{2}\right) \tag{2.2.1}
\end{equation*}
$$

Ancther way of writing (2.2.1) is

$$
\begin{equation*}
\delta\left(\mathrm{P}_{2} \mathrm{P}_{2}\right) \leq 2\left(1+\left\|\mathrm{P}_{0}\right\|^{2}\right) \delta\left(\mathrm{P}_{1}+\mathrm{P}_{0}, \mathrm{P}_{2}+\mathrm{P}_{0}\right) . \tag{2.2.2}
\end{equation*}
$$

THEOREM 2.2.4 If $\mathrm{P}_{4} \doteq \boldsymbol{F}^{m \times m}(\mathrm{i}=1,2)$ ate invertible, then

$$
\delta\left(\mathrm{P}_{1}^{-1}, \mathrm{P}_{2}^{-1}\right)=\delta\left(\mathrm{P}_{1}, \mathrm{P}_{2}\right)
$$

Note that according to Theorem 2.2-4 the gap between two Siso systems, whose transfer functions are polynomials, can be obtained by computing the gap between their inverses, whose transfer functions are strictly proper rational functions.

It is well-known that the norm topology in $A^{n \times 3}$ is a product topology, ine, a family $\left\{P_{\lambda}\right\}$ of matrices in $A^{n \times m}$ converges to P_{0} iff each entry family $\left\{p_{\lambda}^{(i, j)}\right\}$ converges to $p_{0}^{(f, j)}$ for all i, j. In Section 5 , we will show that the gap topology is equal to the graph topology on $B^{n_{1}, \ldots}$. But, Vidyasagar [Vi. 2 p246] showed that the graph topology is not a product topology. Hence, the gap topelogy is not a product topology on $F^{n \times m}$.

Below, we will prove that the gap topology is a dtagorol product topology. This property plays an important role in dealing with feedback systems. Suppose that $P_{i} \in F^{\text {nxm }}$
($\mathrm{i}=1,2$) have the following diagonal form

$$
\mathrm{P}_{i}=\left[\begin{array}{ll}
\mathrm{P}_{i}^{1} & 0 \tag{2.2.3}\\
0 & \mathrm{P}_{i}^{2}
\end{array}\right]
$$

where $P_{i}^{\prime} \in F^{* j} j^{x+j}$ (j m 1,$2 ; i=1,2$) and $n_{1}+n_{2}=n ; m_{1}+m_{2}=m$.
THEOREM 2.2.5 Let $\mathrm{F}_{\mathrm{i}} \in \boldsymbol{F}^{\text {num }}$ have the diagonal form (2.2.3) ($\mathrm{i}=1,2$). Then,

$$
\begin{equation*}
\max \left\{\delta\left(\mathrm{P}_{1}^{2}, \mathrm{P}_{2}^{1}\right), \delta\left(\mathrm{P}_{1}^{2}, \mathrm{P}_{2}^{2}\right)\right\} \leq \delta\left(\mathrm{P}_{1}, \mathrm{P}_{2}\right) \leq \delta\left(\mathrm{P}_{1}^{1}, \mathrm{P}_{2}^{1}\right)+\delta\left(\mathrm{P}_{1}^{7}, \mathrm{P}_{2}^{2}\right) \tag{2.2.4}
\end{equation*}
$$

PROOF By definition

$$
\bar{\delta}\left(\mathrm{P}_{1}, \mathrm{P}_{2}\right):=\sup _{x_{0} S \mathrm{Se}\left(\mathrm{P}_{1}\right)} \inf _{y \in \mathrm{G}\left(\mathrm{P}_{z}\right)}\|x-y\|,
$$

where x and y are in $X^{n t} \times X^{n}$ i.e.

$$
x=\left(x^{1}, x^{2}\right) \in \mathrm{G}\left(\mathrm{P}_{1}^{2}\right) x \mathrm{G}\left(\mathrm{P}_{1}^{2}\right)_{1} \quad y=\left(y^{1}, y^{2}\right) \in \mathrm{C}\left(\mathrm{P}_{2}^{1}\right) \times \mathrm{G}\left(\mathrm{P}_{3}^{2}\right)
$$

Therefore, we can write $\bar{\delta}^{*}\left(\mathrm{P}_{1}, \mathrm{P}_{2}\right)$ as:

$$
\begin{equation*}
\vec{\delta}\left(\mathrm{P}_{1}, \mathrm{P}_{2}\right):=\sup _{x \in S G\left(\mathrm{P}_{1}\right)} \inf _{y \in G\left(P_{2}\right)}\left[\left\|x^{1}-y^{1}\right\|^{2}+\left\|x^{2}-y^{2}\right\|^{2}\right]^{1 / 2} \tag{2.2.5}
\end{equation*}
$$

Now, we can prove the first inequality of (2.2.4). From (2.2.5), we get

$$
\text { i.e., } \quad \bar{\sigma}^{*}\left(\mathrm{P}_{1}, \mathrm{P}_{2}\right) \geq \bar{\delta}^{*}\left(\mathrm{P}_{1}^{1}, \mathrm{P}_{2}^{1}\right) \text {. }
$$

From (2.2.5) to (2.2.6), if we take $x^{1}=0$ instead of $x^{2}=0$, we can get

$$
\begin{aligned}
& =\vec{b}\left(\mathrm{P}_{1}^{1}, \mathrm{P}_{2}^{1}\right) \text {, }
\end{aligned}
$$

$$
\bar{\delta}^{*}\left(\mathrm{P}_{1}, \mathrm{P}_{2}\right) \sum \bar{\phi}\left(\mathrm{R}_{I_{3}}^{2}, \mathrm{P}_{2}^{2}\right)
$$

Hence

$$
\overline{\sigma^{+}}\left(\mathrm{P}_{1}, \mathrm{P}_{2}\right) \geq \max \left\{\bar{\sigma}^{-\infty}\left(\mathrm{P}_{1}^{I}, \mathrm{P}_{2}^{1}\right), \overline{\delta^{+}}\left(\mathrm{P}_{1}^{A}, \mathrm{P}_{2}^{2}\right)\right\} .
$$

By symmetry,

$$
\vec{\theta}\left(\mathrm{P}_{23}, \mathrm{P}_{1}\right) \geq \max \left\{\overrightarrow{\theta^{2}}\left(\mathrm{P}_{2}^{1}, \mathrm{P}_{1}^{1}\right), \vec{\delta}\left(\mathrm{P}_{2}^{2}, \mathrm{P}_{1}^{2}\right)\right\}
$$

Consequently, we get the first inequality of (2.2.4). To prove the second inequality, we apply

$$
(\alpha+\beta)^{1 / 7} \leq \alpha^{1 / 2}+\beta^{\mathrm{x} / 2} \quad \forall \alpha, \beta \geq 0
$$

to (2.2.5) and obtain

$$
\text { i.e., } \quad \quad \delta^{r}\left(\mathrm{P}_{1,} \mathrm{P}_{2}\right) \leq \vec{\delta}\left(\mathrm{P}_{1}^{1}, \mathrm{P}_{2}^{1}\right)+\vec{\delta}\left(\mathrm{P}_{1}^{2}, \mathrm{P}_{2}^{7}\right) \text {. }
$$

By symmetry

$$
\bar{\delta}\left(P_{2,} P_{1}\right) \leq \vec{\delta}\left(P_{2}^{1} P_{1}^{1}\right)+\sigma\left(P_{2}^{2}, P_{1}^{2}\right)
$$

As a result, the second inequality of (2.2.4) is true.

COROLLARY 2.2.6 Let $\left\{P_{\lambda}\right\}$ be a farnily of systems in $\boldsymbol{F}^{n \times \pi}$ which has the following

$$
\begin{aligned}
& \vec{\delta}\left(P_{1}, P_{2}\right) \leq \sup _{x \in S \in\left(P_{1}\right)} \quad \inf \underset{y\left(P_{2}\right)}{ }\left[\left\|x^{1}-y^{2}\right\|+\left\|x^{2}-y^{2}\right\|\right] \\
& =\sup _{x+S G\left(P_{1}\right)}\left[\inf _{y^{1} \operatorname{H} \in\left(P_{2}^{1}\right)}\left\|x^{1}-y^{1}\right\|+\inf _{y^{2} \operatorname{GO}\left(P_{2}^{2}\right)}\left\|x^{2}-y^{2}\right\|\right]
\end{aligned}
$$

$$
\begin{aligned}
& =\overline{\sigma^{2}}\left(\mathrm{P}_{1}^{1}, \mathrm{P}_{2}^{1}\right)+\bar{\delta}\left(\mathrm{P}_{1}^{2}, \mathrm{P}_{2}^{2}\right),
\end{aligned}
$$

$\delta\left(P_{\lambda}, P_{0}\right\} \longrightarrow 0$ as $\lambda \longrightarrow 0$ if $\delta \delta\left(\mathrm{P}_{\lambda}^{1}, \mathrm{P}_{0}^{1}\right) \longrightarrow 0$ and $\delta\left(\mathrm{P}_{\lambda}^{7}, \mathrm{P}_{0}^{2}\right) \longrightarrow 0$ simultaneously as $\lambda \longrightarrow 0$.

This property is called the difgomal product property and it witl be used in the next section.

REMARK 2.2 .7 In a completely analogous way, it can be proved that (2.2.4) will still hold if P_{i} is defined by $P_{i}=\left[\begin{array}{ll}0 & P_{i}^{1} \\ P_{i}^{2} & 0\end{array}\right]$ instead of (2.2.3).

2.3 A necessary and sufficient condition for robust gtabilization

In this section we apply the gap topology to the problern of robust stabilization. If is shown that on $C^{\text {nown }}$ the gap topology is compatible with this problem and coincides with the copology T defined in Section 1.4.

THEOREM 2.3.I. Assume that $\left\{\mathrm{P}_{\mathrm{A}}\right\} \in F^{\text {nom }}$ and $\left\{C_{\lambda}\right\} \in F^{\text {naxt }}$. Then

$$
\begin{equation*}
\frac{1}{2} \max \left\{\delta\left(\mathrm{P}_{\lambda}, \mathrm{P}_{0}\right), \delta\left(\mathrm{C}_{\lambda}, \mathrm{C}_{0}\right)\right\} \leq \delta\left(\mathrm{H}_{\lambda}, \mathrm{H}_{0}\right) \leq 4\left[\delta\left(\mathrm{P}_{\lambda}, \mathrm{P}_{0}\right)+\delta\left(\mathrm{C}_{\lambda}, \mathrm{C}_{0}\right)\right] \tag{2.3.1}
\end{equation*}
$$

PROOF It is easy to check that $\mathrm{H}_{\lambda}:=\mathrm{H}\left(\mathrm{P}_{\lambda}, \mathrm{C}_{\lambda}\right)$ can be written as

$$
H_{\lambda}=\left(I+F G_{\lambda}\right)^{-1}
$$

where

$$
\mathrm{E}:=\left[\begin{array}{cc}
0 & \mathrm{I} \\
{ }^{2} & 0
\end{array}\right], \quad \mathrm{C}_{\lambda}:=\left[\begin{array}{cc}
\mathrm{C}_{\lambda} & 0 \\
0 & \mathrm{P}_{\lambda}
\end{array}\right] .
$$

According to Theorem 2.2.4, we hnow

$$
\begin{aligned}
\delta\left(\mathrm{H}_{\lambda}, \mathrm{H}_{0}\right) & =\delta\left(\left(I+\mathrm{FG}_{\lambda}\right)^{-1},\left(I+F G_{0}\right)^{-I}\right) \\
& =\delta\left(\left(I+F G_{\lambda}\right),\left(I+F G_{0}\right)\right)
\end{aligned}
$$

From (2.2.1) and (2.2.2), we have

$$
\frac{1}{4} \delta\left(E G_{\lambda}, F G_{0}\right\} \leq \delta\left(H_{\lambda}, H_{0}\right) \leq 4 \delta\left(F G_{\lambda}, F G_{0}\right)
$$

But by Remark 2.2.7,

$$
\max \left\{\delta\left(\mathrm{P}_{\lambda}, \mathrm{P}_{0}\right), \delta\left(\mathrm{C}_{\lambda}, \mathrm{C}_{0}\right)\right\} \leq \delta\left(\mathrm{F}_{\lambda}, \mathrm{FG}_{0}\right) \leq \delta\left(\mathrm{P}_{\lambda}, \mathrm{P}_{0}\right)+\delta\left(\mathrm{C}_{\lambda}, \mathrm{C}_{0}\right)
$$

Hence

$$
\frac{1}{4} \max \left\{\delta\left(\mathrm{P}_{\lambda}, \mathrm{P}_{0}\right), \delta\left(\mathrm{C}_{\lambda}, \mathrm{C}_{0}\right)\right\} \leq \delta\left(\mathrm{H}_{\lambda}, \mathrm{F}_{0}\right) \leq 4\left[\delta\left(\mathrm{P}_{\lambda}, \bar{P}_{0}\right)+\delta\left(\mathrm{C}_{\lambda}, \mathrm{C}_{0}\right)\right]
$$

The following corollary gives a necessary and sufficient condition for robustriests of feedback stabilization

COROLLARY 2.3.2 Suppose $\lambda \longrightarrow P_{\lambda}$ and $\lambda \longrightarrow C_{\lambda}$ are functions mapping A into the set $F^{n i s m}$ of systems and the set $F^{m \times n}$ of controllers, respectively. Moreover, assume that the corresponding closed-lopp transfer matrix $H\left(P_{\lambda}, C_{\lambda}\right)$ is stable at $\lambda=0$, i.e, $H\left(\mathrm{P}_{0} \mathrm{C}_{0}\right) \in \mathrm{M}(A)$. Then, the following two stetements are equivalent.
i) $H\left(\mathrm{P}_{2}, \mathrm{C}_{\lambda}\right)$ is stable when λ is sulficiently close to 0 and satisfics:

$$
\begin{equation*}
\left\|H\left(P_{\lambda}, C_{\lambda}\right)-H\left(P_{0}, C_{0}\right)\right\| \longrightarrow 0 \quad(\lambda \longrightarrow 0\rangle \tag{2.3.2}
\end{equation*}
$$

ii) $\delta\left(\mathrm{P}_{\lambda}, \mathrm{P}_{\mathrm{o}}\right) \longrightarrow 0(\lambda \longrightarrow 0)$ and $\delta\left(\mathrm{C}_{\lambda}, \mathrm{C}_{0}\right) \longrightarrow 0(\lambda \longrightarrow 0)$.

PROOF $\left.\mathrm{mi}_{\mathrm{i}}=\mathrm{iz}\right)^{\text {s }}$ According to Thedrem 2.2.2, the gap topology is identical to the topology induced by the operator norm. Since $H\left(\mathrm{P}_{\lambda}, \mathrm{C}_{\lambda}\right)$ is stable, (2.3.2) is equivalent to $\delta\left(\mathrm{H}\left(\mathrm{P}_{\lambda}, \mathrm{C}_{\lambda}\right), \mathrm{H}\left(\mathrm{P}_{0}, \mathrm{C}_{0} \partial\right) \longrightarrow 0\right.$. Using Theorem 2.3.1, we know that i) implies ii $)$.
$\left.\left.{ }^{3 i t}\right) \Rightarrow i\right)^{\prime \prime}$ From Theorem 2.3.1, $\delta\left(\mathrm{H}\left(\mathrm{P}_{\lambda}, \mathrm{C}_{\lambda}\right), \mathrm{H}\left(\mathrm{P}_{0}, \mathrm{C}_{0}\right)\right\} \longrightarrow 0$. According to Theorem 2.2.1, $\mathrm{H}\left(\mathrm{P}_{\lambda}, \mathrm{C}_{\lambda}\right)$ is stable as λ is sufficiently close to 0 . Again by Theorem 2.2.2, $\delta\left(H\left(\mathrm{P}_{\lambda}, \mathrm{C}_{\lambda}\right), \mathrm{H}\left(\mathrm{P}_{0}, \mathrm{C}_{0}\right)\right) \longrightarrow 0$ implies (2.3.2),

Recall that $\boldsymbol{C}^{\text {r,m }}$ is a subset of $\boldsymbol{F}^{n \times m}$ consisting of all the systems which possess stabilizing controllers in $M(F)$, The following result is a simple outcome of the above corollary.

COROLLARY 2.3.3. In the gap topology, $C^{n, m}$ is an open subset of $F^{n \mathrm{xxm}}$.

Finally, we will show that the restriction of the gap topology to $0^{n, m}$ is equal to the topology T defined in Section 1.4. For a systern $P \in \theta^{n, m}$ a basic neighborhood of P in the topology T is defined as

$$
N\left(\mathrm{P}_{0}, \mathrm{C}_{0}, \varepsilon\right):=\left\{P ; H\left(P, C_{0}\right) \text { is stable and }\left\|H\left(P, \mathrm{C}_{0}\right)-H\left(\mathrm{P}_{0}, \mathrm{C}_{0}\right)\right\| \in \varepsilon\right\}
$$

where C_{0} is a stabilizing controller of P_{0},
Suppose that $\left\{P_{\lambda}\right\} \in C^{n, m}$ converges to $P_{0} \in G^{\pi_{1}, \eta^{\prime}}$ in the topology T. Then, we see that $H\left(\mathrm{P}_{\lambda}, \mathrm{C}_{0}\right)$ is stable when λ is sufficiently close to 0 and $\left\|H\left(\mathrm{P}_{\lambda}, \mathrm{C}_{6}\right)-H\left(\mathrm{P}_{0}, \mathrm{C}_{0}\right)\right\| \longrightarrow 0$. Accotding to Corollary 2.3.2, we know that $\left\{\mathrm{P}_{\mathrm{A}}\right\}$ converges to P_{f} in the gap topology. Conversely, suppose that $\left\{\mathrm{P}_{\lambda}\right\} \in C^{\pi, n}$ converges to $\mathrm{P}_{0} \in C^{\pi, m}$ in the gap topology. By Theorom 2.3 .1 and 2.2 .1 , we krow that $H\left(P_{\lambda}, C_{0}\right)$ is stable when λ is sulficiently cloge to 0 and $\mathrm{L}\left(\mathrm{P}_{\lambda}, \mathrm{C}_{0}\right)$ converges to $\mathrm{H}\left(\mathrm{P}_{0}, \mathrm{C}_{0}\right)$, which means that $\left\{{ }^{2}, \lambda\right.$ converges to P_{0} in the topology T.

2.4 The graph topology for $B^{7, \text { th }}$

The definition of the graph topology and its essential properties are presented in this section. The graph topology was proposed by Vidyasagar and thoroughly studied in his monograph [Vi. 2]. Thete ate two distingunshing features in the present formulation:
i) The definition and theorems are carried out for a general setting;
ii) In [Vi. 2f spectral factorization of rational matrices is used to prove the diagonal product property of the graph topology. However, the spectral factorization problem has not yet been solved satistactorily for a general matrix ring. So, we provide a. proof, which is independent of spectral fectorization.

The only proof given in this section is for the diagonal product property. The proofs of all the other results are simple trantations of [Vi. 2], hence we will omit therr here.

LEMMA 2.4.1 Suppose that $P_{0} \in B^{n, m}$ and $\left(D_{0} N_{0}\right)$ is an r.b.f, of P_{0}. Then, there exists a constant $\mu=\mu\left(\mathrm{D}_{0} \mathrm{~N}_{0}\right)>0$ such that: if a pair $(\mathrm{D}, \mathrm{N}) \in \mathrm{M}(\mathcal{A})$ satisties

$$
\left\|(D, N\rangle-\left(D_{0}, N_{0}\right)\right\|<\mu
$$

then $|\mathrm{D}| \neq 0$ and (D, N) is an r - ל.f. of $\mathrm{P}:=\mathrm{ND}^{-1}$.

Let s be any positive number less than $\mu\left(\mathrm{D}_{0}, \mathrm{~N}_{0}\right)$, then

$$
\begin{equation*}
\mathcal{N}\left(\mathrm{D}_{0}, \mathrm{~N}_{0}, \varepsilon\right):=\left\{\mathrm{P}=\mathrm{ND}^{-1}:\left\|(\mathrm{D}, \mathrm{~N})-\left(\mathrm{D}_{0}, \mathrm{~N}_{0}\right)\right\|<\epsilon\right\} \tag{7.4.1}
\end{equation*}
$$

is a basic neighborhood of P_{0}.
Now by varying E over $\left(0, \mu\left(\mathrm{D}_{0}, \mathrm{~N}_{0}\right)\right.$), varying $\left(\mathrm{D}_{\mathrm{b}}, \mathrm{N}_{0}\right)$ over the set of the r.b.f.'s of F_{0}, and varying P_{0} over $B^{\pi, m}$ we can obtain a collection of basic neighborhoods.

LEMMA 2.4.2 The collection of the basic neighborhoods defines a topology on $B^{n, m}$.

We call this topology grapi topology. In this topology two systems P_{1} and P_{2} are "close" if for each r.b.f. ($\mathrm{D}_{1}, \mathrm{~N}_{1}$) of P_{1} there exists an r.b.f. $\left(\mathrm{D}_{2}, \mathrm{~N}_{2}\right)$ of P_{7} tuch that $\left\|\left(D_{1}, N_{1}\right)-\left(\mathrm{D}_{2}, N_{2}\right)\right\|$ is small. A family $\left(P_{A}\right\}$ converges to P_{0} in the graph topology, if for each r.b.f. $\left(D_{0}, \mathrm{~N}_{0}\right)$ of P_{0} there exist r.b.f.'s $\left(\mathrm{D}_{\lambda}, \mathrm{N}_{\lambda}\right)$ of P_{λ} such that $\left\|\left(\mathrm{D}_{\lambda}, \mathrm{N}_{\lambda}\right)-\left(\mathrm{D}_{0}, \mathrm{~N}_{0}\right)^{\prime}\right\| \longrightarrow 0(\lambda \longrightarrow 0)$,

THEOREM 2.4.3 $A^{\text {trim }}$ is an open subset of $B^{n, t h}$ in the graph topology and on $A^{n x m}$ the graph topology is equal to the topology induted by the operator norm.

THEOREM 2.4.4 Assume that $P_{\lambda} \in B^{n, m}$ has a diagonal form $P_{\lambda}=\left[\begin{array}{ll}P_{\lambda}^{1} & 0 \\ 0 & P_{\lambda}^{2} \\ n_{j} \approx m_{j}\end{array}\right]$, where $P_{\lambda}^{\prime} \in F^{n_{j} m_{j}}(j=1,2)$ and $n_{1}+n_{2}=n_{j} m_{1}+m_{2}=m$. Then $P_{\lambda} \longrightarrow P_{0}\left(\mathrm{as}_{\lambda} \rightarrow 0\right)$ iff $P_{\lambda}^{1} \longrightarrow$ F_{0}^{1} and $P_{\lambda}^{2} \longrightarrow P_{0}^{2}$ (as $\lambda \longrightarrow 0$) simultaneously.

PROOF "m" Assume that ($\mathrm{D}_{0}^{1}, \mathbb{N}_{a}^{4}$) is an r.b.f. of $\mathrm{P}_{0}^{1}(\mathrm{i}=1,2)$. Since $\left(\mathrm{P}_{\lambda}^{1}\right)$ converges to P_{0}^{1}, there are $\mathrm{r}, \mathrm{b} . \mathrm{f}^{\prime} \mathrm{s}\left(\mathrm{D}_{\lambda}^{1}, \mathrm{~N}_{\lambda}^{1}\right)$ of P_{λ}^{1} such that

$$
\left(D_{\lambda}^{1}, N_{\lambda}^{1}\right) \longrightarrow\left(D_{0,}^{1} N_{0}^{1}\right) \quad(2 s \lambda \longrightarrow 0) \quad(i=1,2)
$$

Let
(2.4.2) $\quad N_{\lambda}=\left[\begin{array}{cc}N_{\lambda}^{1} & 0 \\ 0 & N_{\lambda}^{2}\end{array}\right], \quad \quad \mathrm{D}_{\lambda}=\left[\begin{array}{cc}\mathrm{D}_{\lambda}^{1} & 0 \\ 0 & \mathrm{D}_{\lambda}^{2}\end{array}\right]$.

Then ($\mathrm{D}_{\lambda}, \mathrm{N}_{\lambda}$) is clearly an r.b.f. of F_{A} and ($\mathrm{D}_{0}, \mathrm{~N}_{0}$) defined by (2,4.2) with $\lambda=0$ is an r.b.f. of F_{0} - Since the topology induced by the norm is a product topology, we have

$$
\left(\mathrm{D}_{\lambda}, \mathrm{N}_{\lambda}\right) \longrightarrow\left(\mathrm{D}_{0}, \mathrm{~N}_{0}\right) \quad(\text { as } \lambda \longrightarrow 0)
$$

Therefore, $\left\{P_{A}\right\}$ converges to P_{0} in the graph topology.
$" \rightarrow$ Suppose ($\left.\mathrm{D}_{\lambda}^{1} \mathrm{~N}_{\lambda}^{\mathrm{N}}\right)$ is an r.b.f. or $\mathrm{P}_{\lambda}^{\mathrm{A}}$; then $\left(\mathrm{D}_{\lambda}, \mathrm{N}_{\lambda}\right)$ defined by (2.4.2) is an r.b.f. of P_{λ}. Since $\left\{\mathrm{P}_{\lambda}\right\}$ converges to P_{0}, there exists a family $\left\{\mathrm{U}_{\lambda}\right\}$ of unimodular matrices such that

$$
\left[\begin{array}{cc}
\mathrm{D}_{\lambda}^{1} & 0 \\
0 & \mathrm{D}_{\lambda}^{2} \\
\mathrm{~N}_{\lambda}^{1} & 0_{2}^{2} \\
0 & \mathrm{~N}_{\lambda}^{2}
\end{array}\right]\left[\begin{array}{ll}
\mathrm{U}_{1 \lambda} & \mathrm{U}_{3 \lambda} \\
\mathrm{U}_{4 \lambda} & \mathrm{U}_{2 \lambda}
\end{array}\right] \longrightarrow\left[\begin{array}{cc}
\mathrm{D}_{0}^{1} & 0 \\
0 & \mathrm{D}_{0}^{2} \\
\mathrm{~N}_{0}^{1} & 0 \\
0 & \mathrm{~N}_{0}^{2}
\end{array}\right](\lambda \longrightarrow 0)_{2}
$$

where U_{λ} is partitioned in a obvious way. Hence

$$
\left(\mathrm{D}_{\lambda,}^{1}, \mathrm{~N}_{\lambda}^{1}\right) \mathrm{U}_{i \lambda} \longrightarrow\left(\mathrm{D}_{\mathrm{a}, \mathrm{~N}_{0}^{1}}^{1}\right) \quad(\lambda \longrightarrow 0) \quad(\mathrm{i}=1,2)
$$

Since $\left(D_{0}^{1}, N_{0}^{1}\right)$ is an r.b.f of P_{0}^{1}, there exist X^{i} and Z^{1} in $M(A)$ such that

$$
\left[Y^{i}, Z^{\mathrm{l}}\right]\left[\begin{array}{c}
\mathrm{D}_{0}^{\mathrm{L}} \\
\mathrm{~N}_{0}^{i}
\end{array}\right]=\mathrm{I} \quad(\mathrm{i}=1,2) .
$$

Thus,

$$
\left[Y^{\prime} Z^{1} 1\left[\begin{array}{l}
\mathrm{D}_{\lambda}^{\mathrm{L}} \\
\mathrm{~N}_{\lambda}^{\prime}
\end{array}\right] \mathrm{U}_{i A} \longrightarrow \mathrm{I} \quad(\mathrm{i}=1,2) .\right.
$$

Hence, when λ is sufficiently close to $0,\left[X^{i}, Z^{1}\right]\left[\begin{array}{l}D_{\lambda}^{\prime} \\ N_{\lambda}^{1}\end{array}\right] U_{i \lambda}$ is unimodular. Consequently, $U_{i \lambda}$ to unimodular As a result, $\mathrm{P}_{\mathrm{d}}^{\mathrm{l}}$ converges to $\mathrm{P}_{\mathrm{i}}^{\mathrm{i}}$ in the graph topology ($\mathrm{i}=1,2$ 2 .

TFREREM 2.4.5 Suppose $\lambda \longrightarrow F_{\lambda}$ and $\lambda \longrightarrow C_{\lambda}$ are functions mapping Λ into the set $B^{n, m}$ of systerns and the set $B^{m, n}$ of controllers, respectively. Moreover, assume that the corresponding closed-loop transfer matrix $H\left(\mathrm{P}_{\lambda} \mathrm{C}_{\lambda}\right)$ is stable at $\lambda=0$, i.e., $H\left(\mathrm{P}_{0}, \mathrm{C}_{0}\right) \in \mathrm{M}(A)$. Then, the following two statements are equivalent.
i) $H\left(P_{\lambda}, C_{\lambda}\right)$ is stable when λ is sulficientily close to 0 and satisfies:

$$
\begin{equation*}
\left\|H\left(\mathrm{P}_{\lambda}, \mathrm{C}_{\lambda}\right)-\mathrm{H}\left(\mathrm{P}_{0}, \mathrm{C}_{0}\right)\right\| \longrightarrow 0 \quad(\lambda \longrightarrow 0) \tag{2.4.3}
\end{equation*}
$$

ii) P_{λ} converges to P_{a} and C_{λ} to C_{a} in the graph topology simultaneously.

2.5 Comparing the gap topology with the graph topology

It is obvious that the gap topology is defined for ar langer set of systems than the grapl topology. In this section, we ain to prove that the gap topology is equal to the graph topology, if it is restricted to $B^{n, m}$.

THEOREM 2.5.1 Let $\left\{\mathrm{P}_{\lambda}\right\} \subset B^{n,+n}$. Then, $\left\{\mathrm{P}_{\lambda}\right\}$ converges to $\mathrm{P}_{0} \in B^{n, \text {,th }}$ in the gap topology iff it converges in the graph topology.

PROOF Since P_{0} is in $\dot{B}^{n, m}$, it can be stabilized, i.e., there is a cortroller $C \in$ $\mathcal{E}^{n, m}$ such that $\mathrm{H}\left(\mathrm{P}_{\mathrm{G}}, \mathrm{C}\right)$ is inl $\mathrm{M}(A)$. Suppose that $\left\{\mathrm{P}_{\lambda}\right\}$ converges to $\mathrm{P}_{0} \in \mathcal{B}^{n, m}$ in the gap
topology, then, atcording to Theorems 2.3 .1 and $2.2 .2, H\left(P_{\lambda}, C\right)$ is in $M(A)$ when λ is sufficiently close to 0 and

$$
\left\|H\left(P_{\lambda}, C\right)-H\left(P_{0}, C\right)\right\| \rightarrow 0 \quad(\lambda \longrightarrow 0)
$$

Because of Theorem 2.4.5, this implies that $\left\{\mathrm{P}_{\mathrm{A}}\right\}$ converges to P_{0} in the graph topology. The converse implication follows by reversing the steps above.

REMAPK 2.5.2. It follows from the proof of the above theoren that if a topology K defined on a subset M of $M(F)$ possesses following two propertiss:
i) $M(A) \sim M$ is an open subset of M in the topology K, and restricted to $M(A) M$, topology K is equivalent to the topology generated by the nom;
7i) $\mathrm{H}\left(\mathrm{P}_{\mathrm{N}} \mathrm{C}_{\lambda}\right)$ converges to $\mathrm{H}\left(\mathrm{P}_{0}, \mathrm{~S}_{0}\right)$ in the topology K iff P_{λ} converges to P_{0} and C_{λ} converges to C_{0} in the topology K, simultancously,
then, the topology K is the restriction of the gap topology to M.

Sufficient Conditions for Robustness of Feedback Stabilization

3.1 The gap metric and the graph metric

First, we discuss the gap metric. As geid before, in general, the function $\delta($, , $)$ is not a metric. But the function $\gamma(,$.$) as defined by (2.1.3) is a metric and it induces$ the same topology as $\delta(.$,). This implies that the gap topology can be metrized. If the space X of inputs and outputs is a Hilbert space, then $\delta\left(x_{(, 2}\right)$ is a metric. In this chapter, if without specification, it is assumed that X is a frilbert space. For $P \in F^{n \times m}$, according to Theorem 1.2.1, the graph $G(P)$ of P is a closed subspace of $X^{m} \times X^{n}$. Let $\Pi(P)$ denote the orthogonal projection from $\mathrm{X}^{\mathrm{m}} \times \mathrm{X}^{n}$ onto the $\mathrm{graph} \mathrm{G}(\mathrm{P})$. If $\mathrm{P}_{\mathrm{f}}(\mathrm{i}=1,2) \in \boldsymbol{F}^{\mathrm{nx} \mu}$, then, it is easy to see that

$$
\begin{aligned}
& =\sup _{x \in X,\|x\|=1} \|\left(I-\Pi\left(P_{2}\right)\left\|\left(P_{1}\right) x\right\|\right. \\
& -\left\|\left(I-\Pi\left(P_{2}\right)\right) \Pi\left(P_{1}\right)\right\|
\end{aligned}
$$

From this !ormula, it is shown [$\mathrm{K}-\mathrm{V}-\mathrm{Z}$. p205] that

$$
\begin{equation*}
\delta\left(P_{1}, P_{2}\right)=\left\|\Pi\left(P_{1}\right)-\Pi\left(P_{2}\right)\right\| \tag{3.1.2}
\end{equation*}
$$

For densely defined closed operators $\mathrm{P},[\mathrm{CLL}]$ gave a reptesentation of $\mathrm{I}(\mathrm{P})$. But, in general, operators induced by systems ate not densely defined. For instance, in the case described by Example 1.1.4 we take $\mathrm{F}(\mathrm{s})=\frac{1}{\mathrm{~s}-1}$ and it is easy to check that $[\mathrm{Dom}\langle\mathrm{P})]^{\perp}$ is the subspace spanned by $\frac{1}{s+1}$. Fortunately, we can find a representation of $\Pi(P)$ for $\mathrm{P} \in B^{n, m}$. In order to do this, we need to prove

LEMMA 3.R.2 Suppose that (D, N) is an r.b.f. of $F \in B^{n, m}$, then $5:=D^{*} D+N^{* N}$ is bijective, where D" stands for the adjoint operator of D.

FROOF First, note that S is a bounded operator mapping $\mathrm{X}^{\text {m }}$ into $\mathrm{X}^{m} . \$ x=0$ implies
that $\left[\mathrm{D}^{\mathrm{T}}, \mathbb{N}^{T}\right]^{T} \mathrm{X}^{2}=0$. Deceuse $\left[\mathrm{D}^{\mathrm{T}}, \mathbb{N}^{\mathrm{T}}\right]^{T}$ has a left inverse, it is injective. So we obraid the injectivity of S.

To prove that S is surjective, we recall the following equation

$$
\text { Image }\left[\begin{array}{l}
D \tag{3.1.3}\\
\mathrm{~N}
\end{array}\right] \oplus \text { Kher }\left[\mathrm{D}^{*}, \mathrm{~N}^{*}\right]=\mathrm{X}^{m *} \times \mathrm{X}^{*}
$$

Since (D, N) is an r.b.f. of P, there are Y and Z in $M(A)$ such that $[Y, Z]\left[\begin{array}{l}D \\ N\end{array}\right]=I$. Hence $\left[D^{*}, N^{*}\right]\left[\begin{array}{l}X_{*}^{*} \\ Z^{*}\end{array}\right]=I$. For each $y \in X^{m},\left[\begin{array}{l}Y^{*} \\ Z^{*}\end{array}\right] y \in X^{m} \times X^{n}$. By (3.1.3), there are $x \in X^{m}$ and $z \in \operatorname{Ker}\left[\mathrm{D}^{*}, \mathrm{~N}^{*}\right]$ such that $\left[\begin{array}{l}Y^{*} \\ \mathrm{Z}^{*}\end{array}\right] y=\left[\begin{array}{l}\mathrm{D} \\ \mathrm{N}\end{array}\right]+z+\pi$. Thus $y=\left[\mathrm{D}^{*}, \mathrm{~N}^{*}\right]\left[\begin{array}{l}\mathrm{D} \\ \mathrm{N}\end{array}\right] x$. Hence, S is sarjective. This completes the proof.

Analogousty, it can be proved that $S:=D D^{*}+N N^{*}$ is bijective, if (D, N) is an l.b.f. of P.
 reppetively, then

$$
\begin{align*}
\Pi(P) & =\left[\begin{array}{l}
\mathrm{D} \\
\mathbb{N}
\end{array}\right]\left[\mathrm{D}^{*} \mathrm{D}+\mathbb{N}^{*} N\right]^{-1}\left[\mathrm{D}^{*}, \mathbf{N}^{*}\right] \tag{3.1.4}\\
& =\mathbf{I}-\left[\begin{array}{c}
-\dot{D}_{*}^{+} \\
\hat{N}^{*}
\end{array}\right]\left[\hat{\mathrm{D}}^{*}+\dot{N}^{*}\right]^{-1}[-\dot{\mathrm{D}}, \dot{\mathrm{~N}}] \tag{3.1.5}
\end{align*}
$$

To prove Lemma 3.1.2, it suffices to check that: i) the right hend side of (3.1.4) (resp. (3.1.5)) is selfadjoint and idempotent; iz) its image is $\mathrm{G}(\mathrm{P})$.

In order to define the graph metric for $B^{n, m}$, we need to generalize the definitions of right and left Bezout fractions.

DEFINTION 3.1.3 Suppose that $D \in B\left(X^{m}\right)$ and $N \in B\left(X^{m}, X^{n}\right)$ ($\left.D, N\right)$ is said to be a generalized right Bexout fraction (g.r.b.f.) of $\mathrm{P} \in \boldsymbol{B}^{\mathrm{r}, \mathrm{m}}$ if
i) D is invertible;
ii) $Y \in B\left(X^{m}\right)$ and $Z \in \mathbb{B}\left(X^{n}, X^{m}\right)$ exist such that

$$
\mathrm{YD}+\mathbb{Z N}=\mathrm{I}_{\mathrm{i}}
$$

iii) $\mathrm{P}=\mathrm{ND}^{-1}$.

Note that the condition iii) holds in the operator semse, i.e., ND^{-1} is the operator
induced by the system P.
It is easy to see that the g.r.b.f, is unique up to right multiplications by the units of $\mathrm{D}\left(\mathrm{X}^{\mathrm{m}}\right)$ (Vi, 2 p75]. An t.b.f. is certainly a g.tbit, bat not conversely. Generalized left betout fractions (g.l.b.f.) are defined similarly.

In the above definition the generalized Bezout factors D and N of the systern $\mathrm{P} \in B^{n, m}$ as well as the solutions Y and Z of the Bezout identity are just bounded operators and are not necessarily ini $M(A)$. But, this concept is necessary for dofining the graph metric in a general framework, Moreover, the generalized Bezout fraction is a usoful tool for obtaining sorne gnaranteed bourds for robustness of feedback stabilization. We emphasize that the concept of generalized Bezout fraction is only a tool or a bridge and our final results are not expressed in terms of generalized bezout fractions.

REMARK 3.1.4 If g.r.b.f.s are used instead of r.bef's, Lemmas 3.1.1 and 3.1.2 are still valid.

Suppose that T is a linear operator mapping a Hilbert space Y into another Hilbert space 2 . T is said to be isometric on X , if $\|\mathrm{T} x\|=\|x\|$ for all $x \in \mathrm{Y}$, or equivalently, $\mathrm{T}^{*} \mathrm{~T}=\mathrm{I}$. And T is said to be unitary from X to Z, if it is isometric and surjective. It can be easily chacked that a necessary and sufficient condition for T to be unitary is $\mathrm{C}^{-1}=\mathrm{T}^{*}$.

An (resp. a generalized) r.b.f. (D,N) of P a $B^{n, m}$ is said to be normalized if $\left[D^{T}, N^{T}\right]^{T}$ is isometric on X^{m}, i.e., $\left\|\left[D^{T}, N^{T}\right)^{T} x\right\|=\|x\|$ for all $x \in X^{m}$, or equivaleatly,

$$
\begin{equation*}
\mathrm{D}^{*} \mathrm{D}+\mathrm{N}^{*} \mathrm{~N}=\mathrm{I} \tag{3.1.6}
\end{equation*}
$$

The reason why we call it normalized instead of normalized is that we normalize the (generalized) r.b.f.s using their adjoint operators and it is different from what is called normalized conventionally, which is only defined for H_{w}-matrices. In Chapter 4 we will give the defintion of normalized r.b.f.'s and compare it with normalized r.b.f.'s. It can be easily checked that normalized (resp. generalized) rb.f.'s are urique up to right multiphications by the elements in $U^{m, m}$ (resp. in the set of uuits of $\mathrm{B}\left(\mathrm{X}^{m}\right)$), which are unitary on X^{m}.

LEMMA 3.1.5 $P \equiv B^{n, m}$ always has a normalized g.r.b.f. and a normalized g.l.b.f..

FROOF Suppose that (D, N) is an r.b.f., it is krown from Lemma 3.1.2 that $5:=\mathrm{D}$ " D $+N^{*} N$ is bijective Hence, S and S^{-1} are positive operators and there is a square root $S^{1 / 2}$, which is also positive. It is trivial to check that ($\mathrm{DS}^{-1 / 2}, \mathrm{NS}^{-1 / 3}$) is a nommalized
g.r.b.f. Similarly, a normalized g.l.b.f. can be obtained.

Now we are in the position to define the graph metric. Let (D_{i}, N_{i}) be a normalized g.r.b.f. of $P_{i} \in B^{n, m}(i=1,2)$, and define

$$
\begin{aligned}
& \mathrm{a}^{*}\left(\mathrm{P}_{1}, \mathrm{P}_{2}\right)=\inf _{\mathrm{UoR}\left(\mathrm{X}^{m_{1}},\|\mathrm{U}\| \leq 1\right.}\left\|\left[\begin{array}{l}
\mathrm{D}_{1} \\
\mathrm{~N}_{1}
\end{array}\right]-\left[\begin{array}{l}
\mathrm{D}_{2} \\
\mathrm{~N}_{2}
\end{array}\right] \mathrm{U}\right\|_{3} \\
& \mathrm{~d}\left(\mathrm{P}_{1}, \mathrm{P}_{2}\right)=\max \left\langle\overrightarrow{\mathrm{d}}\left(\mathrm{P}_{1}, \mathrm{P}_{2}\right), \overrightarrow{\mathrm{d}}\left(\mathrm{P}_{2}, \mathrm{P}_{1}\right)\right\rangle
\end{aligned}
$$

Then, by an analogovs procedure as in [Vi. 2 p262-265], it can be proved that $d(-$,$) is a$ metric (we call it the graph metric), which induces the graph topology.

3.2 The gap metric and generalized Bezout fractiont

The main purpose of this section is to find the relationship between the gap metric and generalized Bezout fractions. This is of interest on its own, and in addition is one of the key techriques required in the sequel.

LEMMA 3.2.1 ABsume that $P \in B^{n, m}, D \in B\left(X^{m}\right)$ and $N \in B\left(X^{m}, X^{n}\right)$. Then, (D, N) is a g.r.b.f. of P iff $\left[D^{T}, \mathbb{N}^{T}\right]^{T}$ maps X^{m} bijectively onto the graph $G(P)$ of P.

PROOF "\#" We can easily check that $\left[\mathrm{D}^{\mathrm{T}}, \mathrm{N}^{\mathrm{T}}\right]^{\mathrm{T}}$ maps $\mathrm{X}^{\text {" }}$ injectively into $\mathrm{G}(\mathrm{P})$. We show that $\left[\mathrm{D}^{\mathrm{T}}, \mathrm{N}^{\mathrm{T}}\right]^{\mathrm{T}}$ is also surjective. For esch $t=\left[x^{\mathrm{T}},(\mathrm{P} x)^{\mathrm{T}}\right]^{\mathrm{T}} \equiv \mathrm{G}(\mathrm{P})$, define $\mathrm{z}:=\mathrm{D}^{-1} x$. Then we have $\left[D^{T}, N^{T}\right]^{T} \quad z=w$. Hence, $\left[D^{T}{ }_{3} N^{T}\right]^{T}$ must be surjective.
"o" Suppose that (D, \mathbb{R}) is an r.b.f. of P. According to the necessity part, $\left[D^{T}, \mathbb{N}^{T}\right]^{T}$ maps X^{m} bijectively onto $\mathrm{G}(\mathrm{P})$. By assumption, $\left[\mathrm{D}^{T}, \mathrm{~N}^{T}\right]^{T}$ also maps X^{m} bijectively onto $\mathrm{C}(\mathrm{P})$. Hence, for each $x \in \mathrm{X}^{m}$, there is a unique $y \in X^{m}$ such that

$$
\left[\begin{array}{c}
D \tag{3.2.1}\\
N
\end{array}\right] x=\left[\begin{array}{c}
D \\
\mathbb{N}
\end{array}\right] y
$$

and vice versa. Since (D, N) is an r.b.f. of P, there exist $Y, Z \in M(A)$ such that

$$
\mathrm{YD}+\mathrm{ZN}=\mathrm{I}
$$

Therefore,

$$
(\mathrm{YD}+\mathrm{ZN}) x=y
$$

Hence $\mathrm{U}:=\mathrm{YD}+\mathrm{ZN}$ maps X^{m} to X^{m} bijectively. Since $\left[D^{T}, N^{T}\right]^{T}=\left[\mathbb{D}^{T}, \mathbb{N}^{T}\right]^{T},(\mathrm{D}, \mathrm{N})$ must be a generalized r.b.f. P.

The next lemma is an alternative version of a result in [$\mathrm{K}-\mathrm{V}-2 p 206]$,

LEMMA 3.2.2 Let $\mathrm{P}_{i} \in F^{n, m}(\mathrm{i}=1,2)$. Then
i) $\delta\left(\mathrm{P}_{1}, \mathrm{P}_{2}\right)<1$ iff $M\left(\mathrm{P}_{1}\right)$ maps $\mathrm{C}\left(\mathrm{P}_{2}\right)$ bijectively onto $\mathrm{C}\left(\mathrm{P}_{1}\right)$;
ii) If $\delta\left(\mathrm{P}_{1}, \mathrm{P}_{2}\right)<1$, then $\vec{\delta}\left(\mathrm{P}_{12} \mathrm{P}_{2}\right)=\vec{\delta}\left(\mathrm{P}_{2}, \mathrm{P}_{1}\right)=\delta\left(\mathrm{P}_{1}, \mathrm{P}_{2}\right)$.

Part i) of the theorem is proved in [K-V-Z p206] and the proof given there also entablishes part ii). Using Lemmits 3.2 .1 and 3.2 .2 , we can prove

THEOREM 2.2.3 Let $\mathrm{F}_{1} \in B^{n_{1} m},\left(\mathrm{D}_{1}, \mathrm{~N}_{1}\right)$ be a g.r.b. f_{r} of P_{1} and $\mathrm{P}_{2} \in \dot{F}^{m \times m}$. Define

$$
\left[\begin{array}{l}
D_{2} \\
\mathrm{~N}_{2}
\end{array}\right]:=\Pi\left(\mathrm{P}_{2}\right)\left[\begin{array}{l}
\mathrm{D}_{4} \\
\mathrm{~N}_{\mathrm{k}}
\end{array}\right] .
$$

Then, $\left(\mathrm{D}_{2}, \mathrm{~N}_{2}\right)$ is a g.r.b.f. of P_{2} iff $\delta\left(\mathrm{P}_{1}, \mathrm{P}_{2}\right) \&$ д.

PROOF " \Rightarrow " That $\left[\mathrm{D}_{2}^{\mathrm{T}}, \mathrm{N}_{2}^{\mathrm{T}}\right]^{\mathrm{T}}$ is a g.r.b.f. of P_{2} implies that $\mathrm{ll}^{(1)}\left(\mathrm{P}_{2}\right\}$ maps $\mathrm{G}\left(\mathrm{P}_{\mathrm{i}}\right)$ bijectively onto $\mathrm{C}\left(\mathrm{P}_{\mathrm{i}}\right)$. It follows from Lentria 3.2 .2 that $\delta\left(\mathrm{P}_{1}, \mathrm{P}_{2}\right) \& 1$.
"血" According to Lemma $3.2 .2, \delta\left(\mathrm{P}_{1}, \mathrm{P}_{2}\right) \& \mathrm{~L}$ implies that $\mathbb{I}\left(\mathrm{P}_{2}\right)$ maps $\mathrm{G}\left(\mathrm{P}_{1}\right)$ bijectively onto $\mathrm{G}\left(\mathrm{P}_{2}\right)$. Ience, $\left[\mathrm{D}_{2}^{\mathrm{T}}, \mathbb{N}_{2}^{\mathrm{T}}\right]^{\mathrm{T}}$ maps X^{m} bjectively onto $\mathrm{G}\left(\mathrm{P}_{2}\right)$. By Lemma 3.3.l, $\left(\mathrm{D}_{2}, \mathrm{~N}_{2}\right)$: s_{a} a g.r.b.f. of P_{2}.

Now we will consider the relationship between the gap metric and generalized left becoul fractions in order to to get an analogous result to Theorem 3.2.3.

Suppose tha: (D, N) is a g.l.b.f. of $\mathrm{P} \in B^{n, m}$, and define $\mathrm{Tr}:=\mathcal{N}^{*}\left(-\mathrm{D}^{*}\right)^{-1}$. Then Tr is uniquely determined by P and independent of the g.Lb.f.'s of P. Moreover, (D, N) is a g.l.b.f. of F iff $\left(-D^{m}{ }_{2} \mathrm{~N}^{\prime \prime}\right)$ is a gr.b.f. of Tr .

LENMA 3.2.4 Let $P \in B^{n, m}, D \in B\left(X^{n}\right)$ and $N \in B\left(X^{m}, X^{n}\right)$. Then, (D, N) is a g.i.b.f. of P iff

$$
\operatorname{Ker}[N,-D]=G(P) ; \operatorname{Image}[N ;-D] a X^{n}
$$

PROOF "
 whenever $(x, y) \in \operatorname{Ker}[N,-D]$. Fence $\operatorname{Ker}[\mathbb{N},-D]=G(P)$. Since (D, N) is a g.l.b.f. of P, $\left(-D^{*}, N^{*}\right)$ is a g.r.b.f. of TP. By Theorem 3.2.1, $\left[-D^{{ }^{m T}}, N^{m T}\right]^{T}$ is injective, and hence, $\operatorname{Ker}\left[-D^{*}{ }^{*}, N^{*}\right]^{T}=0$. But

$$
\operatorname{Ker}\left[-D^{* T^{\prime}} ; N^{*-T}\right]^{T}=0 \quad ゅ \quad \operatorname{Image}[\mathbb{N},-D]=X^{n}
$$

$$
\operatorname{Ker}[\dot{\mathrm{N}},-\mathrm{D}]=\operatorname{Ker}[\mathrm{N},-\mathrm{D}]=\mathrm{G}(\mathrm{P})
$$

Hence,

$$
(\operatorname{Ker}[\dot{N},-\bar{D}])^{\perp}=\left(\operatorname{Ker}\left[N_{2}-D\right]\right)^{\perp} .
$$

So that

$$
\operatorname{Image}\left[-D^{*}{ }_{;}{ }_{2}{ }^{-T}\right]^{T}=\operatorname{Image}\left[-D^{*}, N^{*}\right]^{T}=G(T P)
$$

By assumption, $\left[-\mathrm{D}^{*}{ }^{\mathrm{T}}, \mathrm{N}^{+} \mathrm{T}^{\mathrm{T}}\right.$ is injective. Consequently, $\left[-\mathrm{D}^{*}{ }^{\mathrm{T}}, \mathrm{N}^{*}\right]^{\mathrm{T}}$ maps $\mathrm{X}^{\boldsymbol{H}}$ bijectively onto $G\left(T_{P}\right)$. it follows from Theorem 3.2.1 that $\left(-D^{*}, N^{\omega}\right)$ is a g.r.b.f. of Tr. Thus, we bave shown that (D, N) is a g.l.b.f. of P.

THEOREM 3.2.5 Suppose ($\mathrm{D}_{1}, \mathrm{~N}_{1}$) is a g.l.b.f. of $\mathrm{P}_{1} \in B^{n, m}$ and $\mathrm{P}_{2} \in F^{\text {nxm }}$. Define

$$
\left[\begin{array}{l}
D_{2} \\
N_{2}
\end{array}\right]:=\left[\Pi\left(\mathrm{P}_{2}\right)\right]^{\perp}\left[\begin{array}{c}
-\mathrm{D}_{1}^{*} \\
\mathrm{~N}_{1}^{*}
\end{array}\right],
$$

then, $\left(-\mathrm{D}_{2}^{*}, \mathrm{~N}_{2}^{*}\right)$ is a g.l.b.f. of P_{2} iff $\delta\left(\mathrm{P}_{1}, \mathrm{P}_{2}\right)<I$.

FROOF The following facts car be checked easily

1) $\left.\left[\Pi\left(\mathrm{P}_{2}\right)\right)^{\perp}=\Pi\left(\mathrm{Tr}_{2}\right) ; 2\right) \delta\left(\mathrm{P}_{1}, \mathrm{P}_{2}\right)=\delta\left(\mathrm{TP}_{1}, T P_{2}\right)$.

So, it is sufficient to prove that $\left(\mathrm{D}_{2}, \mathrm{~N}_{2}\right)$ is a g.r.b.f. of $\mathrm{T}_{\mathrm{P}_{2}}$ iff $\delta\left(\mathrm{T}_{\mathrm{P}_{1}} \mathrm{TP}_{2}\right)<1$, which follows from Theorem 3.2.3

This section is concluded by presenting a corollary of Theorem 3.2 .3 , which will be used to discuse optimally robust controllers.

COROLARY 3.2.6 Suppose that $\left(D_{i}, N_{i}\right)$ is a g.r.b.f. of $P_{f} \in F^{n x m}(i=1,2)$. Then, $\delta\left(P_{1}, P_{2}\right)<1$ iff $N_{1}^{*} N_{2}+D_{1}^{*} D_{2}$ is bijective.

PROOF Acconding to Theorem 3.2.3, $\delta\left(P_{1}, P_{2}\right)<I$ iff $\Pi\left(P_{2}\right)\left[\begin{array}{l}D_{1} \\ N_{1}\end{array}\right]$ is a g.r.b.f. of F_{2}. By $(3.1 .4), \quad \mathrm{P}\left(\mathrm{P}_{2}\right)=\left[\begin{array}{l}\mathrm{D}_{2} \\ \mathrm{~N}_{2}\end{array}\right]\left\langle\left(\mathrm{D}_{2}^{*} \mathrm{D}_{2}+\mathrm{N}_{2}^{*} \mathrm{~N}_{2}\right)^{-1}\left(\mathrm{D}_{2}^{\prime \prime} \mathrm{N}_{2}^{m}\right)\right.$. Hence, $\delta\left(\mathrm{P}_{1}, \mathrm{P}_{2}\right)<1$ iff $\left(\mathrm{D}_{2}^{*} \mathrm{D}_{2}+\mathrm{N}_{2}^{*} \mathrm{~N}_{2}\right)^{-1}$ $\left(\mathrm{D}_{2}^{*}, \mathrm{~N}_{2}^{*}\right)\left[\begin{array}{l}\mathrm{D}_{1} \\ \mathrm{~N}_{1}\end{array}\right]$ is bijective. Since $\left(\mathrm{D}_{2}^{*} \mathrm{D}_{2}+\mathrm{N}_{2}^{*} \mathrm{~N}_{2}\right)^{-1}$ is bijective, $\quad \delta\left(\mathrm{P}_{1}, \mathrm{P}_{2}\right)<1$ iff $\left(\mathrm{D}_{2}^{*}, \mathrm{~N}_{2}^{*}\right)\left[\begin{array}{l}\mathrm{D}_{1} \\ \mathrm{~N}_{1}\end{array}\right]$ is bijective. This completes the proof.

3.3 Guaranteed bounds for robust stabilization

In this section we win present various bounds which can guarantee the stability of a perturbed feedback system, if the perturbations of the system and the controller are within these bounds.

Throughout this section, we suppose that $\lambda \rightarrow P_{\lambda}$ and $\lambda \longrightarrow C_{\lambda}$ are functions mappint the metric space Λ into the set $F^{\text {rux }}$ of systems and the set $F^{m \times n}$ of controllers, respectively. Moreover, we assume that the corresponding closed-loop transfer matrix $\mathrm{H}\left(\mathrm{P}_{\lambda}, \mathrm{C}_{\lambda}\right)$ is stable at $\lambda=0$, i.e., $\mathrm{H}\left(\mathrm{P}_{0}, \mathrm{C}_{0}\right) \in \mathrm{M}(A)$.

THEOREM 3.3.1 Suppose that X is a Banach space. If

$$
\begin{equation*}
\delta\left(\mathrm{P}_{\lambda}, \mathrm{P}_{0}\right)+\delta\left(\mathrm{C}_{\lambda}, \mathrm{C}_{0}\right)<\frac{1}{4}\left(1+\left\|\mathrm{H}\left(\mathrm{P}_{0}, \mathrm{C}_{0}\right)\right\|^{2}\right)^{-1 / 2} \tag{3.3.1}
\end{equation*}
$$

then $H\left(\mathrm{P}_{\lambda}, \mathrm{C}_{\lambda}\right)$ is stable.

PROOF It follows from (2.3.1) that

$$
\bar{\delta}\left[\mathrm{H}\left(\mathrm{P}_{\lambda}, \mathrm{C}_{\lambda}\right), \mathrm{H}\left(\dot{\mathrm{~F}}_{0}, \mathrm{C}_{0}\right)\right) \leq 4\left[\delta\left(\mathrm{P}_{\lambda}, \mathrm{P}_{0}\right)+\delta\left(\mathrm{C}_{\lambda}, \mathrm{C}_{0}\right)\right]
$$

Hence we have

$$
\delta\left(H\left(P_{\lambda}, C_{\lambda}\right), \mathrm{H}\left(\mathrm{P}_{0} \mathrm{C}_{0}\right)\right)<\left(1+\left[H\left(\mathrm{P}_{0}, \mathrm{C}_{0}\right) \|^{2}\right)^{-1 / 2},\right.
$$

According to Theorem 2.2.1, $H\left(\mathrm{P}_{\lambda}, \mathrm{C}_{\lambda}\right)$ is stable.

The next bound given in the graph metric is quoted from [Vi. $2 p^{290]}$.

THEOEEM 3.3.2 If

$$
\begin{equation*}
d\left(P_{\lambda}, P_{0}\right)\left\|T\left(P_{0}, C_{0}\right)\right\|+d\left(C_{\lambda}, C_{0}\right)\left\|T\left(C_{0}, P_{0}\right)\right\|<1, \tag{3.3,2}
\end{equation*}
$$

where

$$
\mathrm{T}(\mathrm{P}, \mathrm{C}):=\mathrm{H}(\mathrm{P}, \mathrm{C})-\left[\begin{array}{ll}
\mathrm{I} & 0 \\
0 & 0
\end{array}\right],
$$

then $H\left(P_{\lambda} C_{\lambda}\right)$ is stable.

THEOREM 3.3.3 Let $\left(\mathrm{D}_{0}, \mathrm{~N}_{0}\right)$ be an r.b.f. of P_{0} and $\left(\dot{\mathrm{D}}_{0} \dot{\mathrm{~N}}_{0}\right)$ be an l.b.f. of C_{0}. Denote

$$
A_{0}:=\left[\begin{array}{l}
D_{0} \tag{3.3.3}\\
\mathrm{~N}_{0}
\end{array}\right] ; B_{0}:=\left[\dot{\mathrm{D}}_{0}, \hat{\mathbb{N}}_{0}\right] ; w:=\left\|A_{0}\right\|\left\|\mathbb{E}_{0}\right\|\left\|\left[\mathbb{B}_{0} A_{0}\right]^{-1}\right\| .
$$

If

$$
\begin{equation*}
\delta\left(\mathrm{P}_{\lambda}, \mathrm{P}_{0}\right)+\delta\left(\mathrm{C}_{\lambda}, \mathrm{C}_{0}\right)<\mathrm{w}^{-\mathrm{I}} \tag{3,3,4}
\end{equation*}
$$

then $H\left(P_{\lambda}, C_{\lambda}\right)$ is stable
It is easy to check that, if (D, N) is a generalized r.b.f. of $P \in F^{r x m}$ and (X, Z) is a generalized l.b.f. of $C \in F^{\pi \times \pi}$, then $H(P, C)$ is stable iff $\left.[Y, Z] D^{T}, N^{T}\right]^{T}$ is bijective.

PKOOF Finst, it is easy to shop that the right hand side of (3.3.4) is net larger than 1. According to Theorem 3.2 .3 and $3.2 .5,\left(\mathrm{D}_{\lambda}, \mathrm{N}_{\lambda}\right)$ and $\left(\dot{\mathrm{D}}_{\lambda}, \hat{N}_{\lambda}\right)$ defined by

$$
A_{\lambda}:=\left[\begin{array}{l}
\mathrm{D}_{\lambda} \\
\mathrm{N}_{\lambda}
\end{array}\right]:=\Pi\left(\mathrm{P}_{\lambda}\right)\left[\begin{array}{l}
\mathrm{D}_{0} \\
\mathrm{~N}_{0}
\end{array}\right] ; \mathrm{B}_{\lambda}:=\left[\begin{array}{c}
-\dot{\mathrm{D}}_{\lambda}^{m} \\
\bar{N}_{\lambda}^{m}
\end{array}\right]:=\left[\Pi\left(\mathrm{C}_{\lambda}\right)\right)^{\perp}\left[\begin{array}{c}
-\dot{\mathrm{D}}_{0}^{*} \\
\hat{N}_{0}^{*} \\
\dot{N_{0}}
\end{array}\right]
$$

are a g.r.b.f. of P_{λ} and a g.l.b.f. of C_{λ}, respectively,

$$
\begin{aligned}
& \left\|B_{\lambda} A_{\lambda}-B_{0} A_{0}\right\| \\
& =\left\|\left(B_{\lambda}-B_{0}\right) A_{\lambda}+B_{0}\left(A_{\lambda}-A_{0}\right)\right\| \leq\left\|B_{\lambda}-B_{0}\right\|\left\|A_{\lambda}\right\|+\left\|B_{0}\right\|\left\|A_{\lambda}-A_{0}\right\| \\
& =\left\|\left[\Pi\left(C_{\lambda}\right)\right]^{\perp} B_{0}-\left[\Pi\left(C_{0}\right)\right]^{\perp} B_{0}\right\|\left\|A_{\lambda}\right\| \div\left\|B_{0}\right\|\left\|\Pi\left(P_{\lambda}\right) A_{0}-\Pi\left(P_{0}\right) A_{0}\right\| \\
& \leq\left\|\left[\Pi\left(C_{\lambda}\right)\right]^{\perp}-\left[\Pi\left(C_{0}\right)\right]^{\perp}\right\|\left\|B_{0}\right\|\left\|A_{\lambda}\right\|+\left\|B_{0}\right\|\left\|\Pi\left(P_{\lambda}\right)-\Pi\left(P_{0}\right)\right\|\left\|A_{0}\right\| \\
& \leq\left[\left\|\left(\Pi\left(C_{\lambda}\right)\right]^{\perp}-\left[\Pi\left(C_{0}\right)\right]^{\perp}\right\|+\left\|\Pi\left(P_{\lambda}\right)-\Pi\left(P_{0}\right)\right\|\right]\left\|A_{0}\right\|\left\|B_{0}\right\| \quad\left(\text { since } A_{\lambda}=\Pi\left(P_{\lambda}\right) A_{0}\right) \\
& =\left(\delta\left(P_{\lambda}, P_{0}\right) \div \delta\left(C_{\lambda} C_{0}\right)\right)\left\|A_{0}\right\|\left\|B_{0}\right\|<\left\|\left(B_{0} A_{0}\right]^{-1}\right\|^{-1} .
\end{aligned}
$$

Therefore, $B_{\lambda} A_{\lambda}$ is bijective and $H\left(P_{\lambda}, C_{\lambda}\right)$ is stable.

Now, we give a bound which is similar to (3.3.4), but it depends only upon the right Bezout fractions of F_{0} and C_{0}.

THEOREM 3.3.4 Let $\left(\mathrm{D}_{0} \mathrm{~N}_{0}\right)$ be an r.b.f. of P_{0} and $\left(\dot{\mathrm{D}}_{0}, \hat{N}_{0}\right)$ an r.b.f. of C_{0}. Denote

$$
A_{0}:=\left[\begin{array}{c}
\mathrm{D}_{0} \\
-N_{0}
\end{array}\right] ; B_{0}:=\left[\begin{array}{c}
\dot{N}_{0} \\
\dot{D}_{0}
\end{array}\right] ; w:=\left\|\left[B_{0}, A_{0}\right]^{-1}\right\| \cdot \max \left\{\left\|A_{0}\right\|,\left\|B_{0}\right\|\right\}
$$

If

$$
\begin{equation*}
\delta^{2}\left(\mathrm{P}_{\lambda}, \mathrm{P}_{0}\right)+\delta^{2}\left(\mathrm{C}_{\lambda}, C_{0}\right) \leqslant \mathrm{w}^{-2}, \tag{3.3.5}
\end{equation*}
$$

then $H\left(P_{\lambda}, \mathrm{C}_{\lambda}\right)$ is stable.

Note that, if (D, N) is a gemeralized r.b.f. of $\mathrm{P} \in \boldsymbol{F}^{\mathrm{nKM}}$ and (Y, Z) is a generalized r.b.I. of $C=F^{m \times n}$, then $H(P, C)$ is stable iff $\left[\begin{array}{cc}D & Z \\ N & Y\end{array}\right]$ is bijective.

PROOF First, it is easy to check that the right hand side of (3.3.5) is smaller than 1. According to Theorem 3.2.3, ($\mathrm{D}_{\lambda}, \mathrm{N}_{\lambda}$) and ($\overline{\mathrm{D}}_{\lambda} \bar{N}_{\lambda}$) defined by

$$
\mathrm{A}_{\lambda}:=\left[\begin{array}{c}
\mathrm{D}_{\lambda} \\
-\mathrm{N}_{\lambda}
\end{array}\right]:=\Pi\left(-\mathrm{P}_{\lambda}\right)\left[\begin{array}{c}
\mathrm{D}_{0} \\
-\mathrm{N}_{0}
\end{array}\right] ; \mathrm{B}_{\lambda}:=\left[\begin{array}{c}
\dot{\mathrm{D}}_{\lambda} \\
\dot{\mathrm{N}}_{\lambda}
\end{array}\right]:=\Pi\left(\mathrm{C}_{\lambda}\right)\left[\begin{array}{c}
\dot{\mathrm{D}}_{0} \\
\dot{N}_{0} \\
\hline
\end{array}\right.
$$

are E-r.b.f.s of P_{λ} and of C_{λ}, respectively.

$$
\begin{aligned}
& \left\|\left[B_{\lambda}, A_{\lambda}\right]-\left[B_{0}, A_{0}\right]\right\|^{2}=\left\|\left[B_{\lambda}-B_{0}, A_{\lambda}-A_{0}\right]\right\|^{2} \\
& 5\left\|B_{\lambda}-B_{0}\right\|^{2}+\left\|A_{\lambda}-A_{0}\right\|^{2}=\| \Pi\left(C_{\lambda}\right) B_{0}-\Pi\left(C_{0} \mid B_{0}\left\|^{2}+\right\| \Pi\left(P_{\lambda}\right) A_{0}-\Pi\left(P_{0}\right) A_{0} \|^{2}\right. \\
& \left.\leq \delta^{2}\left(P_{\lambda}, P_{0}\right)\left\|A_{0}\right\|^{2}+\delta^{2}\left(C_{\lambda}, C_{0}\right)\right\rangle\left\|B_{0}\right\|^{2}<\left\|\left[B_{0}, A_{0}\right]^{-1}\right\|^{-2} .
\end{aligned}
$$

Hence, $\left[B_{\lambda}, A_{\lambda}\right]$ is bijective, Consequently, $\mathrm{H}\left(\mathrm{P}_{\lambda}, \mathrm{C}_{\lambda}\right)$ is stable.

In the same way, we can also find another bound by using only the $1 . b . f$.s. Since the techiques are the same, we omit in

Transfer Matrices with Entries in The Quotient Field of H_{w}

4.1 Basic properties

In the last three chapters we studied robustness of feedback stabilization for ant arbitrany normed integral domain a consisting of linear bounded operators. In this chapter we will discuss a special situation, in which A is H_{∞} and F is the quotient field of $\mathrm{H}_{\mathrm{w}^{\prime}}$ It is shown by Smith [5 m .] that H_{w} is a psetdo-Bezout domain, i.e., every two elements of H_{∞} have a greatest common divisor. If the space X of inputs and outputs is chosen to be $H_{p}(1 \leq p \leq \infty)$, then A, F and H_{p} will satisfy Assumption $1,1,1$ and the rosurts from Chapters \downarrow and 2 as well as Theorem 3.3 .1 can be applied to this framowork. But, in this chapter a further stucy will be made for the case when X is H_{2}, a Hibert space. First, we point out that the class of trantifer matrices with entries in the quotient field of H_{w} includes many cases of interest in theory and in applications. For example, it covers :
i) Finite dimentional LTI systems, i.e. systems described by rational matrices (see Example 1.1.7);
ii) Semigroup systems je. systems governed by :

$$
\begin{array}{ll}
x(t)=A x(t)+B u(t) & x(0)=x_{0} \\
y(t)=C x(t)+D u(t), &
\end{array}
$$

where A is the infinitesinal generator of a strongly continuous semigroup $T(t)$ on a Hilbert space H, B is an operator mapping \mathbb{R}^{m} into H, C mapping H into \mathbb{R}^{n} and D mapping \mathbb{R}^{m} into $\mathbb{R}^{n},(A, B)$ is supposed to be stabilizable and/or (C, A) to be detectable (for details, see [Cu. 1] by Curtain).
izi) The Callier-Desoer class (see Example 1.1.9).

It is well known that H_{o} is not a Bezout domain i.e. not every matrix in $M(F)$ has a Bezont fraction over $\mathrm{M}\left(\mathrm{H}_{\mathrm{m}}\right)$. For instance, $\mathrm{P}(\mathrm{s})=s e^{-5}$ has a. coprime fraction $\left(\frac{s e^{-s}}{s+1}, \frac{1}{s+1}\right)$, but does not have a Bezout fraction.

Recall that $C^{n, 2 m}$ is a subset of $F^{\text {rusm }}$ consisting of all systems possessing stabilizing controllers and $B^{r, n \neq}$ a subset of $F^{r i x / h}$ consisting of all systems possessing right and left Bezout fractions. It followa from Section 1.3 that $B^{\text {ri,tr }} \in C^{\text {th,m }}$. The following theorem was proved in two different ways by Inouye [In.] and Smith [Sm.], respectively.

THEOREN 4.1.1, Assume F is the quotient field of $H_{o r}$ Then, $B^{\pi, \pi}=C^{\pi, m}$.

Note that an example was given by Anantharam [An.] which showed that, in genoral, $B^{r, m}$ and $C^{r, m}$ are not equal. Using Theorem 4.1.1, we can prove that H_{w} is a Hermite ring i.e, a system P a $F^{\pi \times m}$ has an t.b.f. iff it has an l.b.f. (for original mathematical definition of Hermite ring we refer to [Vi. 2 p345]).

THEOREN 4.1.2. H_{w} is a Hermite ring i.e. a system P E $F^{\pi x m}$ has an r.b.f. inf it has an l.b.f..
 $P \in C^{n, m}$. By Theorenn 4.1.1, $P \Theta B^{n, m}$. Hence, P has an l.b. \quad.. The inverse part can be proved in a similar way.

It is known that each system $P \in F^{r x m}$ induces an operator (denoted by P also) mapping a subspace of H_{2}^{μ} into H_{2}^{*}. For a system $P \equiv F^{\pi \times m}$ we can also define anther operator P_{1} mapping a subspace of $L_{2}^{\prime \prime}$ into $L_{2}^{\text {th }}$: the domain Dom $\left(F_{l}\right)$ is defined as

$$
\left.\left.\operatorname{Dom}\left(\mathrm{P}_{1}\right):=\left\{x^{(}\right) \in \mathrm{L}_{2}^{\mathrm{m}}: \mathrm{P}(\cdot) x_{(.)}\right) \in \mathrm{L}_{2}^{n}\right\}
$$

and P_{1} acting on $x() \quad, a \quad \operatorname{Don}\left(P_{2}\right)$ is defined as the product $P() x.($.$) , i.e.,$ $\left(\mathrm{P}_{\mathrm{I}} x\right)(\cdot)=P() x.($,$) , It can be readily checked that when \mathrm{P} E \mathrm{H}_{\mathrm{so}}^{\mathrm{nX}}$, the adjoint operator of P_{l} is $\overline{P(m \bar{s})^{T}}\left(=P^{\top}(s)\right)$, and the adjoint operator P^{*} of P is equal to the restriction of $\mathrm{T}_{+}^{n} \mathrm{P}^{-}$to H_{2}^{n}, i.e., $\left(\mathrm{P}^{*} x\right)(s)=\mathrm{T}_{+}^{n}\left[\mathrm{P}^{*}(s) x(s)\right]\left\langle\forall(\forall) \in H_{2}^{n}\right.$ where T_{+}^{n} is the orthogonal Projection from L_{2}^{π} to H_{2}^{n},

Suppose that $\mathrm{P} \in \mathrm{L}_{\mathrm{ec}}^{\mathrm{nx}}$, the Toeplitz operator $\mathcal{T F}_{\mathrm{F}}$ mapping $\mathrm{H}_{2}^{\mathrm{th}}$ into $\mathrm{H}_{2}^{\mathrm{h}}$ with symbol P is defined at

$$
(T \mathrm{~F} x)(\mathrm{s}):=T_{+}^{\pi} \mathrm{P}(\mathrm{~s}) x(\mathrm{~s}) \quad \forall x \in \mathbf{H}_{z}^{m}
$$

It is known [Ha.] and [Z-S] that the norm of a Toeplitz operator is equal to the norm of its symbol, i.e., $\left\|T_{F}\right\|=\|P\|$ (for $\forall P=L_{s \beta}^{n \times m}$). For any $P=H_{m}^{\pi \times \pi}$, since the adjoint operator P^{*} of P is equal to the restriction of $\mathrm{T}_{+}^{\mu} \mathrm{P}^{*}$ to $\mathrm{H}_{2}^{n}, \mathrm{~F}^{*}$ is just the Toepliti operator with symbol P.
A matrix $V(.) \equiv H_{\mu}^{n x m}$ is said to be sinner if $\bar{V}\left(\omega_{\omega}\right) V(i \omega)=I(\forall \omega \in \mathbb{R})$, or
equivalently, it is an isometric on $\mathrm{L}_{2}^{\text {m. }}$ A matrix $\left.\mathrm{V}_{(}.\right) \in \mathrm{H}_{\mathrm{w}}^{\mathrm{nxm}}$ is said to be outer if it is surjective, or equivalently, it has full row rank or it has a right-inverse in $H_{p}^{m \times n}$. It is readily shown that an matrix $V(.) \in \mathrm{H}_{\mathrm{o}}^{\mathrm{nxm}}$ is inner and outer iff it is unitary (in this case, $\mathrm{n}=\mathrm{m}$).

Recall that (D, N) is said to be normolteed if $\left[\mathrm{D}^{\mathrm{T}}, \mathrm{N}^{\mathrm{T}}\right]^{\mathrm{T}}$ is isometric on H_{2}^{*}, i.e., $\left\|\left[D^{T}, N^{T}\right]^{T} x\right\|=\|x\|$ for all $x \in H_{2}^{m}$, which is equivalent to
$(4,1.1) \quad \mathrm{D}^{*}(\omega) \mathrm{D}(\omega)+\mathrm{N}^{*}(i \omega) \mathrm{N}(i \omega)=\mathrm{I} \quad \forall \omega \in \mathbb{R}$.
Then, we have

$$
\left\|T_{+}^{m}\left[D+N^{2} N-I\right]\right\|=0
$$

As said before, the norm of a Topplitz operator is equal to the norm of its symbol Herce

$$
\|[\bar{D}+\mathrm{N} N-\mathrm{I}]\|=0,
$$

i.e.

$$
\begin{equation*}
\mathrm{D}^{"}(\omega) \mathrm{D}(\omega)+\mathrm{N}^{-}(\omega) \mathrm{N}(\omega)=\mathrm{I} \quad \forall \omega \in \mathbb{R} \tag{4.1.2}
\end{equation*}
$$

This is equivalent to say that $\left(\mathrm{D}_{1} \mathrm{~N}\right)$ is isometric on $\mathrm{L}_{2}^{\mathrm{m}}$.

REMAFK The author thanks Drs. Anton A. Stoorvogel for his suggestion of the proof from (4.1.1) to (4.1.2).

Assume that $\left[\mathrm{D}^{\mathrm{T}}, \mathrm{N}^{\mathrm{T}}\right]^{\mathrm{T}}$ is a normalized r.b.f. of $\mathrm{P} \in B^{n, m}$, it can be checked that if $\left[D^{T},^{T}\right]^{T} U$ is also a normalized r.b.f. of P for a $U \subseteq U^{m, m}$, then $U^{-}(i \omega) U(i \omega)=I$ for all ω $\in \mathbb{R}$, i.e., U is unitary of L_{z}^{m}. Recall that a necessary and sufficient condition for U to be unitary is that U^{-}, the adjoint operator of U , is equal to U^{-1}. Thus, U has to be a constant matrix. Hence, U is a unitary constant matrix i.e. $U \in \mathbb{C}^{n x m}, \mathrm{O}^{\mathrm{T}}=\mathrm{U}^{\mathbf{1}}$.

In the next section, we will prove the existence of nommalized Bezout fractions, which is a cornerstone for later developments.

4.2 Existence of normalized Bezout frattions

In Section 3.1 it was shown that normalized g-r.b.f.'s and g.l.b.f.'s always exist for $\mathrm{P} \in B^{n, m}$. But the existence of normalized Bezont frections of $P \in B^{n \times m}$ is not trivial. Callier and Winkin proved the existence of normalized r.b.f. for SISO systems in the Callier-Detoer class (see Example 1.1.9) in [C-W 1], and in [C-W 2] they proved the existence for semigroup systems with bounded input and output operators. The existence for semigroup systems with unbounded input and output operators was shown by Curtain [Cu. 2] and [2h. 3], while the existence of nommaized Bezout fractions of transfer matrices with entries in the quotient field of H_{w} was obtained in [Zh. 2]. In this section, we will quote the main results from [Zh. 2].

The proof of the existence of normalized r.b.f.s given below depends on Lax's
theorern [La.]. Before presenting this theorem, we have to introduce the concept of shift invariant subspaces. A subspace $\phi \subset \mathrm{H}_{2}^{k}$ is said to be shift anvariant if $\theta^{-c x} \phi$ s ϕ for and positive ca.

LEMMA 4.2.1 For each $P \in \dot{F}^{n x m}$, the graph $G(P)$ of P is a shift invariant subspace of $\mathrm{H}_{2}^{n+n \mathrm{I}}$.

PROOF Because Dom(P) consists of all the clements $x($.$) in H_{2}^{m}$ such that $P(\cdot) x(\cdot)=H_{2}^{n}$ and $(\mathrm{P} x)(5)=P(s) x(s)$, for any $w(.) \in G(P)$ there exists an $x(.) \in H_{z}^{m}$ such that $w(s)=\left[\begin{array}{c}x(s) \\ \mathrm{P}(\mathrm{s}) x(\mathrm{~s})\end{array}\right]$. It follows from $\mathrm{e}^{-\mathrm{cs} x(s) \in \mathrm{F}_{2}^{m}} \quad$ and $e^{-\alpha s} \mathrm{P}(s) x(s)=P(s) e^{-\alpha s} x(s) \in \mathrm{H}_{2}^{n} \quad$ that $\quad e^{-\alpha s} w(s)=\left[\begin{array}{c}e^{-\alpha s} x(s) \\ P(s) e^{-\alpha s} x(s)\end{array}\right] \in G(\mathrm{P}) \quad(\forall \alpha>0)$. This completes the proof.

Lax's theorem [La.] can be stated as follows.

THEOREM 4.2.2 Suppose that ϕ is a. closed shift invariant subspace of H_{z}^{k}. Then, there is an integer $p>0$ aud an imier matrix $A \in H_{\infty}^{k \times p}$, such that A maps H_{2}^{p} bijectively onte ϕ.

Now we are able to prove the main theorem of this section.
THEOREM 4.2.3 If $P \in F^{n x m}$ has an r.b.f., then it has a norrualized r.b.f.،

PROOF According to Theorem 1.2.1 and Lemma 4.2.l, $C(F)$ is a closed shift invariant subspace of H_{2}^{n+m}. By Lax's theorem, there is an integer $p \geqslant 0$ and an inner matrix $A \in H_{s}^{(\pi+r m a z p}$, which maps H_{2}^{F} bijectively onto $G(P)$. Assume that (D, N) is an r.b.f. of P. From Lemma 3.2.1, $\left[\mathrm{D}^{\mathrm{T}},^{\mathbb{N}^{\mathrm{T}}}\right]^{\mathrm{T}}$ maps H_{2}^{m} bijectively onto $\mathrm{G}(\mathrm{P})$. Suppose that $(\mathrm{Y}, \mathrm{Z}) \in \mathbb{M}\left(\mathrm{H}_{s}\right)$ satisfies $\mathrm{VD} \neq \mathrm{ZN}=\mathrm{I}$. Then, of course, $[Y, Z]\left[\mathrm{D}^{\mathrm{T}}, \mathrm{N}^{\mathrm{T}}\right]^{\mathrm{T}}$ maps H_{z}^{m} bijectively onto $\mathrm{H}_{2}^{m \prime}$. Consequently $\{Y, Z\}$ maps $G(P)$ onto H_{z}^{m} bijectively. Hence, $[Y, Z] A$ maps K_{z}^{p} onto $H_{z}^{\text {m }}$ bijectively. Since $[X, Z] A$ is a $H_{x o}-$ ratrix, $[X, Z] A$ is bijective iff $[Y, Z] A$ is unimodular. Thus, we have $\mathrm{p}=\mathrm{m}$. If we partition A s $\left[\mathrm{D}^{\mathrm{T}}, \mathbb{R}^{\mathrm{T}}\right]^{\mathrm{T}}$ with $\mathrm{D}=\mathrm{H}_{\mathrm{p}}^{m \times m}$ and $\mathrm{N} \in \mathrm{H}_{p}^{\pi \times m}$, then, according to Lemona $3.2 .1,(\bar{D}, \mathrm{~N})$ is an r.b.f. of P . Since it is normalized, this completes the proot,

The existence of normalized l.b.f.'s and the corresponding results of discrete-time LTI systems can be found in [7h, 2].
4.3 Optimally robust contrallers (1)

In Theorem 3.3.3, a guaranteed bound $w^{-1}\left(w:=\left\|A_{0}\right\|\left\|B_{0}\right\|\left\|B_{0} A_{0}\right\|\right)$ was obtained for robnstness of feedback stabilization, For the case of $A=H_{m}$, we can masimize w^{-1} by choosing an appropriate stabilizing controller. Moreover, it catr be shown that the maximum w_{g}^{-1} is the sharpest bound. In this section, we will assume that there are no perturbations on the controllets.

Suppose that $\left(\mathrm{D}_{0}, \mathrm{~N}_{0}\right)$ and $\left(\dot{\mathrm{D}}_{0}, \dot{N}_{0}\right)$ are a normalized r.b.f. and l.b.f. of P_{0}, respectively. Let C_{0} be a stabilizing controllex of P_{0} and $\left(\dot{Y}_{0}, \dot{Z}_{0}\right)$ and ($\left.\mathrm{Y}_{0}, \mathrm{Z}_{0}\right)$ be an r.b.f. and l.b.f- of C_{f}, respectively, such that

$$
\left[\begin{array}{cc}
-\mathrm{Z}_{0} & \mathrm{X}_{0} \tag{4.3.1}\\
\overline{\mathrm{D}}_{0} & \hat{\mathrm{~N}}_{0}
\end{array}\right]\left[\begin{array}{cc}
-\mathrm{N}_{0} & \hat{\mathrm{Y}}_{0} \\
\mathrm{D}_{0} & \bar{Z}_{0}
\end{array}\right]=\left[\begin{array}{ll}
\mathrm{I} & 0 \\
0 & \mathrm{I}
\end{array}\right] .
$$

It follows from Lemma 1.3.4 that the set of all stabilizing controilers is

Recall from (1.3.4) that

$$
\left[\begin{array}{cc}
-\mathrm{Z}_{0}-\mathrm{RD} \dot{\mathrm{D}}_{0} & \mathrm{Y}_{0}-\mathrm{R} \dot{N}_{0} \tag{4.3.2}\\
\overline{\mathrm{D}}_{0} & \dot{\mathrm{~N}}_{0}
\end{array}\right]\left[\begin{array}{cc}
-\mathrm{N}_{0} & \dot{\mathrm{Y}}_{0}-\mathrm{N}_{0} \mathrm{R} \\
\mathrm{D}_{0} & \dot{Z}_{0}+\mathrm{D}_{0} \mathrm{R}
\end{array}\right]=\left[\begin{array}{cc}
\mathrm{I} & 0 \\
0 & I
\end{array}\right]
$$

Let $\mathrm{C}=\left(\mathrm{Y}_{0}-\dot{\mathrm{N}}_{0}\right)^{-1}\left(\mathrm{Z}_{0}+\mathrm{RD}_{0}\right)$ be any controller in $\mathrm{S}\left(\mathrm{P}_{0}\right)$ and assume that P_{λ} is a pertarbed version of P_{p}. According to Theorem 3.3.3, if

$$
s\left(P_{A}, P_{0}\right)<w^{-1}
$$

where

$$
\begin{aligned}
& \left.w:=\left\|\left[\begin{array}{l}
\mathrm{D}_{0} \\
\mathrm{~N}_{0}
\end{array}\right]\right\|\left\|\left[\left(\mathrm{Y}_{0}-\overline{\mathrm{RN}}_{0}\right),\left(\mathrm{Z}_{0}+\mathrm{RD}_{0}\right)\right]\right\| \|\left(\mathrm{X}_{0}-\mathrm{RN}_{0}\right),\left(\mathrm{Z}_{0}+\dot{R D}_{0}\right)\right]\left[\begin{array}{c}
\mathrm{D}_{0} \\
\mathrm{~N}_{0}
\end{array}\right] \| \\
& =\left\|\left[\left(Y_{0}-\dot{R}_{0}\right),\left(Z_{0}+\dot{\mathrm{P}}_{0}\right)\right]\right\|,
\end{aligned}
$$

then C also stabilizes P_{λ}. Now, we minimize w by choosing the controllers in $S\left(P_{p}\right)$, i.e., we solve

$$
\begin{equation*}
\inf _{\operatorname{ReH}_{m}^{m \times n}}\left\|\left(\left(\mathrm{Y}_{0}-\mathrm{R} \bar{N}_{0}\right)_{\mathrm{p}}\left(\mathrm{Z}_{0}+\mathrm{R} \hat{\mathrm{D}}_{0}\right)\right]\right\| \quad\left(=: \mathrm{w}_{g}\right) \tag{4.3.3}
\end{equation*}
$$

In the next section, we will discuss how to achieve this infimum. Now let us just suppose that it can be achieved for some $\mathrm{R}=\mathrm{H}^{m \times n}$. Define

$$
\begin{equation*}
K\left(P_{0,} \varepsilon\right):=\left\{\dot{P} \in F^{n \times M}: \delta\left(P_{0}, P\right) \varepsilon g\right\} \quad \varepsilon>0 \tag{4.3.4}
\end{equation*}
$$

According to Theorem 3.3.3, if a solution R_{g} of (4.3.3) is foumd, then $C_{g}=\left(\mathrm{Y}_{0}-\mathrm{R}_{j} \overline{\mathrm{~N}}_{0}\right)^{-1}\left(Z_{0}+\mathrm{R}_{g} \dot{D}_{0}\right)$ stabilizea $\mathrm{K}\left(\mathrm{P}_{0}, \mathrm{w}_{g}^{-1}\right)$. We will show that the bound w_{g}^{-1} is the sharpest in the sense that there are no controllers which can stabilize $K\left(P_{0}, E\right)$ if $\varepsilon>\mathrm{w}_{g}^{-1}$. In other words, the largest number ε such that $\mathrm{K}\left(\mathrm{F}_{0,5}, \boldsymbol{r}\right)$ can be stabilized by one simgle controller is w_{g}^{-1}.

Recall that $\left(\mathrm{D}_{0}, \mathrm{~N}_{0}\right)$ is a normalized x.b.f. of $\mathrm{P}_{0} \in B^{n, m}$. Define

$$
\mathbb{R}\left(\mathrm{P}_{0}, \sigma\right):=\left\{\mathrm{P}=\left(\mathrm{N}_{0}+\Lambda_{n}\right)\left(\mathrm{D}_{0}+\Delta_{d}\right)^{-1} \in F^{n \times m}:\left\|\left[\begin{array}{c}
\Delta_{d} \tag{4,3,5}\\
\Delta_{n}
\end{array}\right]\right\| \leqslant e\right\} \varepsilon>0
$$

Note that $\left(\Delta_{d}, \Delta_{n}\right)$ does not have to be in $\mathrm{M}\left(\mathrm{H}_{\infty}\right)$ but only that $\mathrm{P} \in \boldsymbol{F}^{\text {rxxm }}$, because $\left(\mathrm{D}_{0}+\Delta_{d}, N_{0}+\Delta_{n}\right)$ may be a generalized right bezout fraction of F. In fact, it is more reasonable and more natural to assume that the perturbations (Δ_{d}, Δ_{n}) are in a wider class than just in $\mathrm{M}\left(\mathrm{H}_{\infty}\right)$ as lont as it can be handled. Since the nomalized r.b.f.s are unique up to the multiplication by unitary matrices in $\mathbb{C}^{-\mathrm{mxm}}, \mathrm{R}\left(\mathrm{P}_{0}, \mathrm{E}\right)$ is independent of the normalized x.b.f.s of P_{0}. The following theorem was proved by Vidyasagar and Kinaura in [V-K].

THEOREM 4.3.1 The controller $C=\left(Y_{0}-\mathrm{RN}_{5}\right)^{-1}\left(Z_{0}+\mathrm{RD}_{0}\right)$ stabilizes $R\left(\mathrm{P}_{0}, \varepsilon\right)$ iff

$$
\left\|i\left[\left(Y_{0}-R_{0} \ddot{N}_{0}\right),\left(Z_{0}+\dot{R}_{0} \dot{\mathrm{O}}_{0}\right)\right]\right\| \leq \varepsilon^{-1}
$$

COROLLARY 4.3.2 The latgest mumber E such that $R\left(P_{0}, E\right)$ can be stabslized by one single controller is w_{g}^{-1}, and if R_{g} is a solution of (4.3.3), then $C_{0}:=\left(\mathrm{Y}_{0}-\mathrm{R}_{j} \stackrel{N}{N}_{0}\right)^{-1}\left(\mathrm{Z}_{0}+\mathrm{R}_{9} \dot{\mathrm{D}}_{0}\right)$ is a controller stabilizing $\mathrm{R}\left(\mathrm{F}_{0}, \mathrm{w}_{0}^{-1}\right)$.

Making use of Corollary 3.2 .6 , Theotem 3.2 .3 and Lemma 3.2 .2 , we can prove

THEOREM 4.3 .3 If $0 \approx \epsilon \leq I$, then

$$
K\left(P_{0}, \varepsilon\right)=\mathbb{R}\left(P_{0}, \xi\right)
$$

PROOF "2" Taking any $\mathrm{P}=\left(\mathrm{N}_{0}+\Delta_{n}\right)\left(\mathrm{D}_{0}+\Delta_{d}\right)^{-1} \in \mathrm{R}\left(\mathrm{P}_{0}, \varepsilon\right)$, Since $\left\|\left[\begin{array}{l}D_{0} \\ N_{0}\end{array}\right]\right\|=1$, we know that $\left\|\left[D_{0}^{*}, N_{0}^{*}\right]\right\|=1$. Because

$$
\left\|\left[D_{0}^{*}, N_{0}^{*}\right]\left[\begin{array}{c}
\Delta_{d} \\
\Delta_{n}
\end{array}\right]\right\| \leq\left\|\left[D_{0}^{*}, N_{0}^{*}\right]\right\|\left\|\left[\begin{array}{c}
\Delta_{d} \\
\Delta_{n}
\end{array}\right]\right\|<\varepsilon<1
$$

$$
\left[D_{0}^{*}, N_{0}^{*}\right]\left[\begin{array}{c}
D_{0}+A_{d} \\
N_{0}+\Delta_{n}
\end{array}\right]=\mathrm{I}+\left[D_{0}^{*}, N_{0}^{*}\right]\left[\begin{array}{c}
\Delta_{d} \\
\Delta_{n}
\end{array}\right]
$$

is a bijective mapping. According to Corollary $3.2 .6, \delta\left(\mathrm{P}_{0}, \mathrm{P}\right)<1$. By Lemma 3.2.2, $\bar{\delta}\left(\mathrm{P}_{0}, \mathrm{P}\right)=\overline{\delta^{+}}\left(\mathrm{P}_{2}, \mathrm{P}_{\mathbf{0}}\right)=\delta\left(\mathrm{P}_{0}, \mathrm{P}\right)$. Now we can check

$$
\begin{aligned}
\stackrel{\rightharpoonup}{\delta}\left(P_{0} P\right) & =\sup _{x ه S G\left(P_{0}\right)} \inf _{y \in G(F)}\|x-y\| \\
& =\sup _{x \in H_{2}^{m},\|x\|=1} \quad \inf _{y \in G(F)}\left\|\left[\begin{array}{l}
D_{0} \\
N_{0}
\end{array}\right] x=y\right\| .
\end{aligned}
$$

Because of $\left[\begin{array}{l}D_{0}+\Delta_{d} \\ N_{0}+\Delta_{n}\end{array}\right] H_{z}^{m} \subseteq G(P)$, we have

$$
\begin{aligned}
& =\left\|\left[\begin{array}{l}
\Delta_{d} \\
\Delta_{n}
\end{array}\right]\right\|<\epsilon .
\end{aligned}
$$

Hence, $\mathrm{P} \in \mathrm{K}\left(\mathrm{P}_{\mathrm{a}}, \tau\right)$.
${ }^{n} \mathrm{~m}^{n}$ Talke $\mathrm{P} \in \mathrm{K}\left(\mathrm{P}_{0}, \boldsymbol{\varepsilon}\right)$. Since $\delta\left(\mathrm{P}_{0}, \mathrm{P}\right)<1$, by Theorem $3.2 .3,(\mathrm{D}, \mathbb{N})$ given by

$$
\left[\begin{array}{c}
\mathrm{D} \\
\mathrm{~N}
\end{array}\right]:=\mathrm{n}(\mathrm{P})\left[\begin{array}{l}
\mathrm{D}_{0} \\
\mathrm{~N}_{0}
\end{array}\right]
$$

is a generalized r.b.f. of P. Because

$$
\left\|\left[\begin{array}{l}
D \\
N
\end{array}\right]-\left[\begin{array}{c}
D_{0} \\
N_{0}
\end{array}\right]\right\|=\left\|\Pi(P)\left[\begin{array}{l}
D_{0} \\
N_{0}
\end{array}\right]-\Pi\left(P_{0}\right)\left[\begin{array}{l}
D_{0} \\
N_{0}
\end{array}\right]\right\| \leq \delta\left(\mathrm{P}_{0} P\right) \& \varepsilon,
$$

$P \in R\left(P_{0, f}\right)$. This completes the proof.

As a consequence of Corollary 4.3 .2 and Theorem 4.3 .3 , we can see that the largest number, ξ, such that $K\left(P_{0,}, \xi\right)$ can be stabilized by one controller is w_{g}^{-1}, and if R_{g} is a solution of (4.3.3), then $\mathrm{C}_{g}:=\left(\mathrm{X}_{0}-\mathrm{R}_{8} \overline{\mathrm{~N}}_{0}\right)^{-7}\left(Z_{0}+\mathrm{R}_{9} \hat{\mathrm{D}}_{0}\right)$ is a controllex stabilizing $\mathrm{K}\left(\mathrm{P}_{0}, \mathrm{w}_{g}^{-1}\right)$. It follows that we call w_{g}^{-1} as the largest robust stabiuty radius of P_{0} and C_{g} as an optimally robust controller of P_{D}. We emphasize that the largest robust stability radius is a intrinsic value of each system, and this value can be used as index to describe robustness of feedback stability of a given system.

Note that a result similar to Theorern 4.3 .3 was proved by Georgion and §mith [G-S]. There are two different featurcs between Georgion and Smith's work and Theorem 4.33 :
i) The result was proved in [G-S] under the assumption

$$
0<\varepsilon<\lambda\left(\mathrm{P}_{0}\right):=\inf _{\mathrm{inf}_{*}} \sigma_{m t n}\left[\begin{array}{l}
\mathrm{D}_{0}(\mathrm{~s}) \\
\mathrm{N}_{0}(\mathrm{~s})
\end{array}\right] \leq 1,
$$

wherean, in Thedrem 4.3 .3 , the ε can be sny number in $(0,1)$;
 slightly more general result, i.e., $\mathrm{R}\left(\mathrm{P}_{0}, \mathrm{~s}\right)=\mathrm{K}\left(\mathrm{P}_{\mathrm{0}}, \%\right)$.

Moreover, the techniques used in Theorem 4.3.3 are dilferent from that used in [G-5]. This section is ended by an example to show that, sometimes, $\lambda\left(P_{0}\right)$ cari be very small. Let $\mathrm{P}_{0}(3)=\alpha /[5-\beta]\langle\alpha, \beta>0)$. It is easy to prove that $(\alpha /[5+\gamma],[5-\hat{\beta}] /(5+\gamma)$) is a normalized ref.f of P_{φ}, where $\gamma^{2}=\alpha^{2}+\dot{\beta}^{2}$. It is easy to see that

$$
\begin{aligned}
A\left(\mathrm{P}_{0}\right) & \left.=\inf _{s \in \mathbb{C}_{+}}\left[|\alpha /[\delta+\gamma]|^{2}+\mid[s-\beta] /(\varepsilon+\gamma]\right]^{2}\right]^{1 / 2} \\
& \leq \alpha_{\gamma}[\beta+\gamma] \longrightarrow 0 \quad(\alpha \longrightarrow 0 \text { and } \text { ior } \beta \longrightarrow \infty) .
\end{aligned}
$$

4.4 Optimally robust controllers (2)

In this section, first, the "dual" versions of Theorem 3.3 .3 and Theorem 4.3.2 will be presented before wo discuss their relations with the original versions. Then, we deduce that the infimum (4.3.3) is achievable for some $R \approx H_{m}^{m \times n}$ and present three formulas for computing w_{g}. Afterwards, the problems of additive and multiplicative perturbations, uncertainties in optimally robust controllers, the structure of the neighborhoods and the varistion of the ciosed-loop systems as well as the dual problern of optimally fobusi controllers are discussed successively.

Suppose that $\left(\mathrm{D}_{0}, \mathrm{~N}_{0}\right)$ and $\left(\dot{\mathrm{D}}_{0}, \hat{\mathrm{~N}}_{0}\right)$ are a normalized r.b.f. and l.b.f. of $\mathrm{P}_{0} \equiv B^{n_{0}, \mathrm{mz}}$, respectively. Let \mathcal{C}_{0} be a stabilizing controfler of P_{0} and $\left(\bar{Y}_{0}, \dot{Z}_{0}\right)$ and $\left(\mathrm{X}_{0}, 7_{0}\right)$ be ant r.b.f. and an I.t.f. of C_{0}, respectively, such that (4.3.1) holds.

TFIEOREM 4.4.1 (Dual with Theorem 3.3.3) Let $\mathrm{C}=\left(\hat{\mathrm{Z}}_{0}+\mathrm{D}_{0} \mathrm{R}\right)\left(\hat{\mathrm{Y}}_{0}-\mathrm{N}_{\mathrm{o}} \mathrm{R}\right)^{\boldsymbol{1}}$ with $\mathrm{R} \in \mathrm{H}_{\dot{\infty}}^{\operatorname{mxn}}$. Assume that $P_{\lambda} \in F^{\text {nxm }}$ and $C_{\lambda} \in F^{\text {nnxm }}$ are perturbed version of P_{n} and C, respectively, If
(4.4.1) $\quad \delta\left(\mathrm{P}_{\lambda}, \mathrm{P}_{0}\right)+\hat{\delta}\left(\mathrm{C}_{\lambda}, \mathrm{C}_{\gamma}<\left\|\left[\begin{array}{l}\dot{\mathrm{X}}_{0}-\mathrm{N}_{0} \mathrm{R} \\ \dot{\mathrm{Z}}_{0}+\mathrm{D}_{0} \mathrm{R}\end{array}\right]\right\|^{-1}\right.$.
then $H\left(P_{\lambda}, C_{\lambda}\right)$ is stable.

THEOREM 4.4.2 (Dual with Theorem 4.3.2) Define

$$
\begin{equation*}
\mathrm{L}\left(\mathrm{P}_{0}, \varepsilon\right):=\left\{\mathrm{P}=\left(\dot{\mathrm{O}}_{0}+\dot{\Delta}_{d}\right)^{-1}\left(\dot{N}_{0}+\dot{\Delta}_{n}\right) \in \boldsymbol{F}^{\mathrm{nxm}}:\left\|\left[\dot{\Delta}_{d}, \dot{\Delta}_{n}\right\}\right\| \varepsilon\right\} \quad \varepsilon \geqslant 0 \tag{4,4,2}
\end{equation*}
$$

Then $C=\left(\hat{Z}_{0}+D_{0} R\right)\left(\hat{Y}_{0}-N_{0} R\right)^{-1}$ with $R \in H^{m \times \pi}$ stabilizes $L\left(P_{0}, \varepsilon\right)$ iff

$$
\left\|\left[\begin{array}{c}
\tilde{\mathrm{Y}}_{0}-\mathrm{N}_{0} R \\
\overline{\mathrm{Z}}_{0}+\mathrm{D}_{0} R
\end{array}\right]\right\| \leq e^{-1}
$$

It is obvious that, in order to get a makimal robust stability radius for Theorem 4.4.1 and 4.4.2, we have to compate

$$
\inf _{\mathrm{R}_{\kappa} \mathrm{H}_{\mathrm{w}}^{m \times \pi}}\left\|\left[\begin{array}{c}
\dot{\mathrm{Y}}_{0}-\mathrm{N}_{0} \mathrm{R} \tag{4.4.3}\\
\dot{\mathrm{Z}}_{\mathrm{n}}+\mathrm{D}_{0} \mathrm{R}
\end{array}\right]\right\| .
$$

To this extent we will use

THEOREM 4.4.3

$$
\left\|\left[\begin{array}{c}
\dot{Y}_{0}-N_{0} R \\
\bar{Z}_{0}+D_{0} R
\end{array}\right]\right\|=\|\left\{\left(Y_{0}-\mathrm{NN}_{0}\right),\left(Z_{0}+R \hat{D}_{0}\right)\| \|=\sqrt{1+\|V+R\|^{2}} \quad \forall R \in H_{*}^{m \times \pi}\right.
$$

where $V:=\dot{D}_{0}^{2} \dot{Z}_{0}-N_{0} \stackrel{H}{Y}_{0}=Z_{0} \dot{D}_{0}^{-}-Y_{0} \dot{N}_{0}$.

Proof Define $Q:=\left[\begin{array}{cc}-N_{0}^{-} & \mathrm{D}_{0}^{-} \\ \dot{D}_{0} & \dot{N}_{0}\end{array}\right]$. Then $\mathrm{Q}^{-}=\left[\begin{array}{cc}-\mathrm{N}_{0} & \dot{D}_{0}^{-} \\ \mathrm{D}_{\mathrm{j}} & \overline{\mathrm{N}}_{0}^{-}\end{array}\right]$is umitary on L_{2}^{m+n}. This proof is divided into two parts.
i) Since multiplicstion by witary matrices does not change the norms, we have

$$
\left\|\left[\begin{array}{c}
\dot{Y}_{0}-N_{0} \mathrm{R} \tag{4.4.4}\\
\dot{\bar{Z}}_{0}+\mathrm{D}_{0} \mathrm{R}
\end{array}\right]\right\|\left[\begin{array}{c}
\dot{\mathrm{X}}_{0}-\mathrm{N}_{0} \mathrm{R} \\
\dot{\mathrm{Z}}_{0}+\dot{D}_{0} \mathrm{R}
\end{array}\right]\|=\|\left[\begin{array}{c}
\mathrm{D}_{0} \hat{\mathrm{Z}}_{0}-\mathrm{N}_{0} \dot{\mathrm{Y}}_{0} \\
\mathrm{I}
\end{array}\right]+\left[\begin{array}{l}
\mathrm{I} \\
0
\end{array}\right] \mathrm{R} \|,
$$

and
$(4,4.5)$

$$
\begin{aligned}
& \left.\left\|\left[\left(\mathrm{X}_{0}-\mathrm{RN}_{0}\right),\left(Z_{0}+\mathrm{RD}_{0}\right)\right]\right\|=\|\left(\left(\mathrm{Z}_{0}+\mathrm{RD} \dot{D}_{0}\right), i-\mathrm{Y}_{0}+\hat{R N}_{0}\right)\right] \| \\
& =\left\|\left[\left(Z_{0}+\dot{R D}_{0}\right),\left(-\mathrm{Y}_{0}+\mathrm{RN} \dot{N}_{0}\right)\right] \dot{\mathrm{Q}}\right\|=\left\|\left[-\mathrm{I}, Z_{0} \dot{\mathrm{D}}_{0}-\mathrm{Y}_{0} \hat{\mathrm{~N}}_{0}^{\pi}\right]+\mathrm{R}[0, I]\right\| .
\end{aligned}
$$

Define
(4.4.6) $\quad V==\bar{D}_{0} \hat{Z}_{0}-\hat{N}_{0} \ddot{U_{0}}$.

We wild show $V=Z_{0} \dot{\mathrm{D}}_{0}-\mathrm{Y}_{0} \stackrel{\mathrm{~N}}{0}^{0}$ also. Since

$$
Q\left[\begin{array}{l}
\hat{\mathbf{Y}}_{0} \\
\dot{Z}_{0}
\end{array}\right]=\left[\begin{array}{rr}
-\hat{N}_{0} & \dot{\mathrm{D}}_{0} \\
\dot{\mathrm{D}}_{0} & \dot{\mathrm{~N}}_{0}
\end{array}\right]\left[\begin{array}{c}
\dot{\mathrm{Y}}_{0} \\
\dot{\mathrm{Z}}_{0}
\end{array}\right]=\left[\begin{array}{c}
\mathrm{V} \\
\mathrm{I}
\end{array}\right]
$$

and

$$
\left[\begin{array}{l}
\dot{\mathrm{Y}}_{0} \\
\hat{\mathrm{Z}}_{0}
\end{array}\right]=\mathrm{Q}^{-}\left[\begin{array}{l}
\mathrm{V} \\
\mathrm{I}
\end{array}\right]=\left[\begin{array}{cc}
-\mathrm{N}_{0} & \overline{\mathrm{D}}_{0} \\
\mathrm{D}_{0} & \bar{N}_{0}^{-}
\end{array}\right]\left[\begin{array}{l}
\mathrm{V} \\
\mathrm{I}
\end{array}\right]=\left[\begin{array}{c}
-\mathrm{N}_{0} \\
\mathrm{D}_{0}
\end{array}\right] \mathrm{V}+\left[\begin{array}{c}
\ddot{\mathrm{D}}_{0} \\
\bar{N}_{0}^{-}
\end{array}\right]
$$

we have

$$
\left[-Z_{0}, Y_{0}\right]\left[\begin{array}{c}
\bar{Y}_{0} \\
\bar{Z}_{0}
\end{array}\right]=\left[-Z_{0}, Y_{0}\right]\left[\begin{array}{c}
-N_{0} \\
D_{0}
\end{array}\right] V+\left[-Z_{0}, Y_{0}\right]\left[\begin{array}{c}
\bar{D}_{0} \\
\bar{N}_{0}
\end{array}\right]
$$

i.e.,

$$
0=\mathrm{V}+\left[-\mathrm{Z}_{0}, \mathrm{Y}_{0}\right]\left[\begin{array}{c}
\hat{\mathrm{D}}_{0}^{-} \\
\hat{\mathrm{N}}_{0}^{-}
\end{array}\right]
$$

It follows that $V=\bar{D}_{0} \bar{Z}_{0}-\bar{N}_{0} \dot{Y}_{0}=Z_{0} \overline{D_{0}}-\bar{Y}_{0} \bar{N}_{0}$, As a result of this part, we have
$(4.4 .4) \quad\left\|\left[\begin{array}{c}\bar{X}_{0}-N_{0} R \\ \bar{Z}_{0}+D_{0} R\end{array}\right]\right\|=\left\|\left[\begin{array}{l}V \\ I\end{array}\right]+\left[\begin{array}{l}I \\ 0\end{array}\right] R\right\|_{2}$
$(4.4 . \overline{5}) \quad\left\|\left[\left(\mathrm{X}_{0}-\mathrm{Ri}_{0}\right),\left(\mathrm{Z}_{0}+\mathrm{RD}_{0}\right)\right]\right\|=\|[-\mathrm{I}, \mathrm{V}]+\mathrm{R}[0, \mathrm{I}]\|$.
4)
(4.4.7) $\left\|\left[\begin{array}{l}V \\ I\end{array}\right]+\left[\begin{array}{l}I \\ 0\end{array}\right] R\right\|^{2}=\left[\begin{array}{c}V+R \\ I\end{array}\right]\left\|^{2}=\underset{x a H_{2}^{n+2},\|x\|-1}{ }\right\|\left[\begin{array}{c}V+R \\ I\end{array}\right] x \|^{2}$

$$
\begin{aligned}
& =\sup _{x-H_{2}^{2},\|x\|_{-5}^{2}}\left[\|x\|^{2}+\|[V+R] x\|^{2}\right]=1+\sup _{x=H_{2}^{n_{2}^{2}},\|x\| m 1}\|[\mathrm{~V}+\mathrm{R}] x\|^{2} \\
& =1+\|V+\mathbb{R}\| \\
& =\sup _{x-4 H_{2}^{n},\|x\|=1}\left(\|x\|^{2}+\|(V+R) x\|^{2}\right)=\|\left[-I,(V+R) \|^{2} .\right.
\end{aligned}
$$

Our clain follows from (4.4.4), (4.4.5) and (4.4.7),

Note that the above theorem was also proved inplicitly by Georgion and Snoith [G-S] in a different way. It follows from Theorem 4.4 .3 and (4.4.7) that

$$
\begin{align*}
& =1+\underset{\mathrm{Ram}_{\mathrm{m}} \mathrm{H}_{\boldsymbol{m}}^{\operatorname{mxn}}}{ }\|\mathrm{V}+\mathrm{R}\|^{2} \tag{4.4.8}
\end{align*}
$$

where $V=\overline{D_{0}} \bar{Z}_{0}-N_{0}^{\top} \hat{Y}_{0}=Z_{0} \overline{D_{0}}=Y_{0} \hat{N}_{0}^{n}$.
 indeed different sets [G-S]. Consequentiy, $R\left(P_{0}, s\right)$ and $L\left(P_{0}, \xi\right)$ are different.
ii) Using state space representation, Habetr [Ha.] showed that V is antistable and jts McMillan degree is the same as P_{0}.

Finding an R such that (4-4.8) is minimad is a standard Nehori problem and it is known to have solutions [Ne.] and [Gl. 2]. For a detailed discussion of the Nehari problen we refer to Francis [Fr.] and Glover [Gl. 2], where solutions for this problem have been constructed. The infimum value, w_{g}, is related to the norm of a Hankel operator For a matrix $Q \in L_{\mu}^{n x m}$, the Hankel operator $H_{\phi}: H_{z}^{m} \longrightarrow\left(H_{z}^{\pi}\right)^{\perp}$ with symbol Q is defined as

$$
\lambda_{Q} x=\left(I-T_{+}^{n}\right) Q x, \quad \forall x \in H_{2}^{m}
$$

where $\mathrm{T}_{+}^{* 1}$ is the orthogonal projection from $\mathrm{L}_{2}^{\prime \prime}$ onto H_{2}^{n}. It is explained in [Fr.] ard [Cl. 2] that

$$
\inf _{\operatorname{RcH}_{w}^{m a n}}\|V+R\|=\left\|\mathcal{R}_{v}\right\|
$$

Hence
$(4.4 .9) \quad \mathrm{w}_{g}=\left[1+\left\|H_{v}\right\|^{2}\right]^{1 / 2}$.

The next, theorem gives notable formulas for w_{g}. Originatly, they were proved by Glover and McFarlane [G-M 2] using state space representations, later, Georgiou and Smith [G-3] geve an operator theoretic proof.

THEOREM 4.4.4 [G-M] and [G-S]
$(4.4 .10) \quad \mathrm{w}_{g}^{-1}=\left(1-\left\|H_{\left(\mathrm{D}^{-}, \mathrm{N}^{-}\right.}\right\|^{2}\right)^{1 / 2}=\left(1-\left\|\mathcal{H}_{(\overline{\mathrm{D}, \mathrm{N})}}-\right\|^{2}\right)^{1 / 2}$

As said before, if R_{g} is a solution of (4.4.8) (or 4.3.3), then $\mathrm{C}_{g}=$ $\left(Y_{0}-R_{j} \stackrel{N}{N}_{0}\right)^{-1}\left(Z_{0}+R_{p} \dot{D}_{0}\right)=\left(\dot{Z}_{0}+\mathrm{D}_{0} \mathrm{R}_{g}\right)\left(\hat{\mathrm{Y}}_{0}-\mathrm{N}_{0} \mathrm{R}_{g}\right)^{-1}$ is a controller stabilizing $K\left(\mathrm{P}_{0}, \mathrm{w}_{g}^{-1}\right) \quad(=$ $\left.R\left(\mathrm{P}_{0}, \mathrm{w}_{g}^{-1}\right)\right)$ and $\mathrm{L}\left(\mathrm{P}_{0,} \mathrm{w}_{g}^{-1}\right)$. Now, we show that C_{g} can also stabilize other kinds of perturbations. Assume that $\mathrm{P}_{0} \equiv B^{\boldsymbol{t}_{1} \mathrm{mf}} \cap \mathrm{M}\left(\mathrm{L}_{\infty}\right)$ and $\varepsilon>0$, define
(4.4.11) $\quad A\left(P_{0}, \varepsilon\right):=\left(P \in B^{n, m} \cap M\left(L_{\infty}\right):\left\|P=P_{0}\right\| \leq \varepsilon, P\right.$ has the same number of open night half plane poles as P_{0} inctuding multiplicities $\}$,
(4.4-12) $\quad M\left(P_{0}, \xi\right):=\left\{P=(I+M) P_{0} E B^{n, m}: M \in M\left(L_{\infty}\right)\right.$ with $\|M\| \leqslant s, P$ has the same number of open right half plane poles as P_{0} including multiplicities \}.

The followins theorem was proved by Vidyasagar and Kimura [V-K].

THEOREM 4.4 .5 i) A contraller C stablizes $A\left(P_{0}, E\right)$ if f
$(4.4 .13)\left\|C\left(I+P_{0} C\right)^{-1}\right\| \leq E^{-1}$.
ii) A controller C stabilizes $M\left(F_{0}, E\right)$ iff
$(4-14) \quad\left\|P_{0}\left(I+C P_{0}\right)^{-1} C\right\| \leq E^{-1}$.

Since each stabilizing controller C of P_{a} can be written as $C=\left(Y_{0}-R N_{0}\right)^{-1}\left(Z_{0}+\mathcal{R}_{0}\right)=$ $\left(\bar{Z}_{0}+\mathrm{D}_{0} \mathrm{R}\right)\left(\overline{\mathrm{X}}_{0}-\mathrm{N}_{0} \mathrm{R}\right)^{-1}$ with $\mathrm{R} \equiv \mathrm{H}^{\mathrm{monn}}$, (4.4.13) is equivelent to
$(4.4 .15) \quad \mathrm{l}^{\prime}\left(\bar{Z}_{\mathrm{Q}}+\mathrm{D}_{0} \mathrm{R}\right) \overline{\mathrm{D}}_{0} \| \leq \mathrm{E}^{-1}$,
and (4.4.14) is equivalent to
(4.4.16) $\quad\left\|\mathbb{N}_{0}\left(Z_{\mathrm{c}}+\mathrm{R} \dot{\mathrm{D}}_{0}\right)\right\| \leq \epsilon^{-1}$.

Because $\mathrm{C}_{g}=\left(\mathrm{Y}_{0}-\mathrm{R}_{g} \dot{\mathrm{~N}}_{0}\right)^{-1}\left(\bar{Z}_{0}+\mathrm{R}_{g} \dot{\mathrm{D}}_{0}\right)=\left(\dot{Z}_{0}+\mathrm{D}_{0} \mathrm{R}_{g}\right)\left(\dot{\mathrm{Y}}_{0}-\mathrm{N}_{0} \mathrm{R}_{g}\right)^{-\mathrm{I}}$ with

$$
\left\|\left[\left(\mathrm{Y}_{0}-\mathrm{R}_{g} \dot{\mathrm{~N}}_{0}\right),\left(\mathrm{Z}_{0}+\mathrm{R}_{g} \overline{\mathrm{D}}_{0}\right)\right]\right\|=\left\|\left[\begin{array}{l}
\overline{\mathrm{X}}_{0}-\mathrm{N}_{0} \mathrm{~K}_{g} \\
\hat{\mathrm{Z}}_{0}+\mathrm{D}_{0} \mathrm{R}_{g}
\end{array}\right]\right\|=\mathrm{w}_{g},
$$

C_{g} stabilizes $\mathrm{A}\left(\mathrm{P}_{0}, \alpha\right)$ with
(4.4.17) $\quad \alpha^{-1}:=\left\|\left(\hat{\bar{z}}_{0}+D_{0} R_{g}\right) \dot{D}_{0}\right\|$.

Similarly, C_{g} also stabilizes $\mathrm{M}\left(\mathrm{P}_{0,7} \mu\right)$ with

$$
\begin{equation*}
\mu^{-1}:=\| \mathbb{N}_{0}\left(Z_{0}+R_{g} \dot{D}_{0}\right) \mathbb{L}^{2} \tag{4.4.18}
\end{equation*}
$$

Note that both α and μ are larger than w_{g}^{-1}, because of $\left\|\mathcal{D}_{0}\right\| \leq 1$ and $\left\|N_{0}\right\| \leq 1$. It is obvious that C_{g} may not be a optimally robust controiler with respect to $\mathrm{A}\left(\mathrm{P}_{0,5} \mathrm{~s}\right)$ or $M\left(\mathrm{P}_{0}, e\right)$. It should be kept in mind that if R_{g} is a solution to the Nehari problem (4.4.8), then the controller $\mathrm{C}_{g}=\left(\mathrm{Y}_{0}-R_{y} \dot{N}_{0}\right)^{-1}\left(\mathrm{Z}_{0}+\mathrm{R}_{g} \hat{\mathrm{~B}}_{0}\right)=\left(\overline{\mathrm{Z}}_{0}+\mathrm{D}_{0} \mathrm{R}_{g}\right)\left(\dot{\mathrm{Y}}_{0}-\mathrm{N}_{0} \mathrm{R}_{g}\right)^{-1}$ not only ttabilizes $\mathrm{K}\left(\mathrm{P}_{0}, \mathrm{w}_{g}^{-1}\right)\left(=\mathrm{R}\left(\mathrm{P}_{0}, \mathrm{w}_{g}^{-1}\right)\right)$ and $\mathrm{L}\left(\mathrm{P}_{0}, \mathrm{w}_{g}^{-1}\right)$ but also stabilizes $\mathrm{A}\left(\mathrm{P}_{0}, \mathrm{c}\right)$ and $\mathrm{M}\left(\mathrm{P}_{0}, \mu\right)$.

Next, let us discuss the influence of an approximate solution of (4.4.8). Let $N\left(P_{0}\right)$ denote the set of all solutions of (4.4.8). Suppose that $\mathcal{R}_{f} \in H_{m}^{m a n}$ is an ε-approximate solution of (4.4.8), that is:

$$
\operatorname{dist}\left(\mathbb{R}_{f} N\left(\mathrm{P}_{0}\right)\right)=\inf \left\{\left\|\mathrm{R}_{f}-\mathrm{R}_{g}\right\|: \mathrm{R}_{g} \in \mathrm{~N}\left(\mathrm{P}_{0}\right)\right\}<\varepsilon \quad \xi>0
$$

Then, the controller $C_{f}=\left(Y_{0}-R_{f} \dot{N}_{0}\right)^{-1}\left(\bar{Z}_{0}+R_{f} \bar{D}_{0}\right)=\left(\bar{Z}_{0}+D_{0} R_{f}\right)\left(\dot{Y}_{0}-N_{0} R_{f}\right)^{-7}$ stabilizes $\left.\mathrm{K}\left(\mathrm{P}_{0,}, \mathrm{w}_{g}+\varepsilon\right)^{-1}\right)\left(=\mathrm{R}\left(\mathrm{P}_{0}\left(\mathrm{w}_{g}+\varepsilon\right)^{-1}\right)\right.$ and $\mathrm{L}\left(\mathrm{P}_{0,}\left(\mathrm{w}_{g}+\varepsilon\right)^{-1}\right)$, because

$$
\begin{aligned}
& \left\|\left[\begin{array}{l}
\hat{Y}_{0}-\mathrm{N}_{0} \mathrm{R}_{f} \\
\dot{\mathrm{Z}}_{0}+\mathrm{D}_{0} \mathrm{R}_{f}
\end{array}\right]\right\|\left[\begin{array}{l}
\dot{\mathrm{Y}}_{0}-\mathrm{N}_{0} \mathrm{R}_{g} \\
\dot{\mathrm{Z}}_{0}+\mathrm{D}_{0} \mathrm{R}_{g}
\end{array}\right]+\left[\begin{array}{c}
-\mathrm{N}_{0} \\
\mathrm{D}_{0}
\end{array}\right]\left(\mathrm{R}_{f}-\mathrm{R}_{g}\right) \| \\
& \leq\left\|\left[\begin{array}{l}
\dot{\mathrm{Y}}_{0}-\mathrm{N}_{0} \mathrm{R}_{g} \\
\dot{\mathrm{Z}}_{0}+\mathrm{D}_{0} \mathrm{R}_{g}
\end{array}\right]\right\|+\left\|\left[\begin{array}{c}
-\mathrm{N}_{0} \\
\mathrm{D}_{0}
\end{array}\right]\left(\mathrm{R}_{f}-\mathrm{R}_{g}\right)\right\|
\end{aligned}
$$

Similarly, we can show that C_{f} also stabilizes $\mathrm{A}\left(\mathrm{P}_{0}:\left(\alpha^{-1}+\varepsilon\right)^{-1}\right)$ and $\mathrm{M}\left(\mathrm{P}_{0},\left(\mu^{-1}+\varepsilon\right)^{-1}\right)$.

Now, let's consider the total set of sygtems which can be stabilized by the optimal robust controller C_{β}. Start by writing

$$
\mathrm{Y}_{g}:=\mathrm{Y}_{0}-\mathrm{R}_{p} \dot{\mathrm{~N}}_{0}, \mathrm{Z}_{g}:=\mathrm{Z}_{0}+\mathrm{R}_{g} \dot{\mathrm{D}}_{0}, \hat{\mathrm{Y}}_{g}: m \dot{\mathrm{Y}}_{\mathrm{g}} \mathrm{~N}_{0} \mathrm{R}_{g}, \dot{\mathrm{Z}}_{g}:=\dot{\mathrm{Z}}_{0}+\mathrm{D}_{p} \mathrm{R}_{g}
$$

Then we have

$$
\left[\begin{array}{cc}
-\mathrm{Z}_{g} & \mathrm{Y}_{g} \tag{4,4,19}\\
\overline{\mathrm{D}}_{0} & \overline{\mathrm{~N}}_{0}
\end{array}\right]\left[\begin{array}{cc}
-\mathrm{N}_{0} & \dot{\mathrm{Y}}_{g} \\
\mathrm{D}_{0} & \dot{\mathrm{Z}}_{g}
\end{array}\right]=\left[\begin{array}{ll}
\mathrm{I} & 0 \\
0 & \mathrm{I}
\end{array}\right]
$$

and
(4.4.20) $\left[\begin{array}{ll}-Z_{g} & \mathrm{X}_{g} \\ \dot{\hat{D}}_{0}+\mathrm{SZ}_{g} & \hat{\mathrm{~N}}_{\mathrm{a}}-\mathrm{SY}\end{array}\right]\left[\begin{array}{cc}-\mathrm{N}_{0}+\dot{\mathrm{Y}}_{g} S & \dot{\mathrm{Y}}_{g} \\ \mathrm{D}_{\mathrm{a}}+\dot{Z}_{g} g & \dot{\mathrm{Z}}_{g}\end{array}\right]=\left[\begin{array}{ll}\mathrm{I} & 0 \\ 0 & 1\end{array}\right]$.

The set of all systems which can be stabilized by C_{g} is

$$
\begin{equation*}
\xi\left(\mathrm{C}_{g}\right):=\left\{\left(\dot{\mathrm{D}}_{0}+S Z_{g}\right)^{-1}\left(\dot{\mathrm{~N}}-\mathrm{SY} \mathrm{Y}_{g}\right): S \in \mathrm{H}_{*}^{\pi \times m},\left|\dot{\mathrm{D}}_{0}+S Z_{g}\right| \neq 0\right\} \tag{4,4,21}
\end{equation*}
$$

where

$$
\left.\left(\hat{\mathrm{D}}_{0}+S Z_{g}\right)^{-1}\left(\dot{\mathrm{~N}}_{0}-S X_{g}\right)=\left(\mathbb{N}_{0}-\bar{X}_{g} S\right)\left(\mathrm{D}_{0}+\bar{Z}_{q}\right)^{5}\right)^{-1} \quad \forall \mathrm{~S} \in \mathrm{H}_{\mathrm{w}}^{n \times m},\left|\dot{\mathrm{D}}_{0}+\mathrm{SZ}_{y}\right| \neq 0 .
$$

The most important point is

LEMMA 4.4.6 $P ⿷ F^{n \times m}$ is stabilized by C_{y} iff there exists an $S \in H_{\infty}^{n \times \pi m}$ such that

$$
\left|\dot{\mathrm{D}}_{0}+\mathrm{SZ}\right| \neq 0 \text { and } \mathrm{P}=\left(\overline{\mathrm{D}}_{0}+S Z_{g}\right)^{-1}\left(\overline{\mathrm{~N}}_{0}-\mathrm{S} \mathrm{X}_{g}\right)=\left(\mathrm{N}_{0}+\dot{\mathrm{Y}}_{g} \mathrm{~S}\right)\left(\mathrm{D}_{\mathrm{0}}+\dot{\mathrm{Z}}_{g} S\right)^{-1}
$$

Uising this Iemma we can look into the structure of the neighborhoods $\mathrm{R}\left(\mathrm{P}_{0}, \mathrm{w}_{g}^{-1}\right)(\underset{ }{=}$ $\mathrm{K}\left(\mathrm{P}_{0_{0}} \mathrm{w}_{g}^{-1}\right)$ and $\mathrm{L}\left(\mathrm{P}_{0}, \mathrm{w}_{g}^{-1}\right)$.

COROLLARY 4.4.7 i) $P \in R\left(P_{0}, w_{g}^{-1}\right)$ iff there exists an $S \in H_{m}^{n x m}$ such that

$$
\left|\dot{\mathrm{D}}_{0}+\dot{\mathrm{Z}}_{g} \xi\right| \neq 0, \mathrm{l}: \left.\left[\begin{array}{l}
\dot{\mathrm{Z}}_{g} \\
\dot{\mathrm{Y}}_{g}
\end{array}\right] \xi \right\rvert\, \leqslant \mathrm{w}_{g}^{-1} \text { and } \mathrm{P}=\left(\mathrm{N}_{0}-\dot{\mathrm{Y}}_{g} \xi\right)\left(\mathrm{D}_{\mathrm{c}}+\dot{\mathrm{Z}}_{g} \xi\right)^{-1} ;
$$

ii) $P \in L\left(P_{0,}, w_{i}^{-1}\right)$ iff there exists an $S \in H_{\infty}^{n \times m}$ such that

$$
\left|\hat{\mathrm{D}}_{0}+\mathrm{SZ} Z_{g}\right| \neq 0,\left\|\mathrm{~S}\left[Z_{g},-\mathrm{Y}_{g}\right)\right\|<\mathrm{w}_{g}^{-1} \text { and } \mathrm{P}=\left(\tilde{\mathrm{D}}_{0}+\mathrm{SZ}_{g}\right)^{-1}\left(\dot{\mathrm{~N}}_{0}-\mathrm{S} \mathrm{X}_{g}\right) .
$$

The following theorem is about the variation of the closed-loop transfer matrices.

THEOREM 4.4.s Iet $P \in K\left(P_{0,}, w_{p}^{-2}\right)$. Then

$$
\begin{equation*}
\left\|H\left(\mathrm{P}_{2} \mathrm{C}_{g}\right)-\mathrm{H}\left(\mathrm{P}_{0}, \mathrm{C}_{g}\right)\right\| \leq \mathrm{w}_{g} \delta\left(\mathrm{P}, \mathrm{P}_{0}\right)<\mathrm{I} . \tag{4.4.22}
\end{equation*}
$$

PROOF Recall that ($\mathrm{D}_{0}, \mathrm{~N}_{0}$) and ($\dot{\mathrm{D}}_{0}, \overline{\mathrm{~N}}_{0}$) are a normalized r.b.f. and a normalized l.b.f. of P_{0}, respectively, and that $\left(\dot{Y}_{g}, \dot{Z}_{g}\right)$ and $\left(Y_{g}, Z_{g}\right)$ are an r.b.f. and an l.b.f. of C_{g}, respectively, such that, (4.4.19) holds. Moreover, $\left\|\left[\mathrm{Y}_{g}, \mathrm{Z}_{g}\right)\right\|=\left\|\left[\hat{\mathrm{Y}}_{g}^{\mathrm{T}} \overline{\mathrm{Z}}_{g}^{\mathrm{T}}\right]^{\mathrm{T}}\right\|=w_{g}$. Suppose that (D, N) is aIl r.b.f. of P such that $Y_{g} D+Z_{g} N=I$. Then, it is not difficult to check that

$$
H\left(\mathrm{P}_{0}, \mathrm{C}_{g}\right)=\left[\begin{array}{rr}
\mathrm{I}-\mathrm{N}_{0} Z_{g} & -\mathrm{N}_{0} \mathrm{Y}_{g} \\
\mathrm{D}_{0} Z_{g} & \mathrm{D}_{0} \mathrm{Y}_{g}
\end{array}\right]=\left[\begin{array}{cc}
\mathrm{I} & 0 \\
0 & 0
\end{array}\right]+\left[\begin{array}{c}
-\mathrm{N}_{0} \\
\mathrm{D}_{0}
\end{array}\right]\left[\mathrm{Z}_{g,} \mathrm{Y}_{g}\right]
$$

and

$$
\mathrm{H}\left(\mathrm{P}, \mathrm{C}_{g}\right)=\left[\begin{array}{rr}
\mathrm{I}-\mathrm{NZ}_{g} & -\mathrm{NY}_{g} \\
\mathrm{DZ} & \mathrm{DY}
\end{array}\right]=\left[\begin{array}{ll}
\mathrm{I} & 0 \\
0 & 0
\end{array}\right]+\left[\begin{array}{c}
-\mathrm{N} \\
\mathrm{D}
\end{array}\right]\left[\mathrm{Z}_{g}, \mathrm{Y}_{g}\right]
$$

hold. Hence

But

$$
\begin{aligned}
& \left\|H\left(\mathrm{P}, \mathrm{C}_{g}\right)-\mathrm{H}\left(\mathrm{P}_{0} \mathrm{C}_{g}\right)\right\|=\left\|\left[\begin{array}{c}
-\mathrm{N} \\
\mathrm{D}
\end{array}\right]\left[\mathrm{Z}_{g}, \mathrm{Y}_{g}\right]-\left[\begin{array}{c}
-\mathrm{N}_{\mathrm{0}} \\
\mathrm{D}_{0}
\end{array}\right]\left[\mathrm{Z}_{g}, \mathrm{Y}_{g}\right]\right\| \\
& \leq\left\|\left[\begin{array}{c}
-\mathrm{N} \\
\mathrm{D}
\end{array}\right]-\left[\begin{array}{c}
-\mathrm{N}_{0} \\
\mathrm{D}_{\phi}
\end{array}\right]\right\|\left\|\left[\mathrm{Z}_{g}, \mathrm{Y}_{g}\right]\right\|=w_{g}\left\|\left[\begin{array}{c}
\mathrm{N} \\
\mathrm{D}
\end{array}\right]-\left[\begin{array}{c}
\mathrm{N}_{0} \\
\mathrm{D}_{0}
\end{array}\right]\right\| \cdot
\end{aligned}
$$

Note $\left[\begin{array}{l}\mathrm{D} \\ \mathrm{N}\end{array}\right] \mathrm{H}_{2}^{\mathrm{m}}=\mathrm{G}(\mathrm{P})$, we have

$$
\stackrel{\rightharpoonup}{\delta}\left(\mathrm{P}_{0}, \mathrm{P}\right)=\sup _{x \in \mathrm{H}_{2}^{m},\|x\|=1} \quad \inf _{\mathrm{f}}^{\mathrm{f}} \mathrm{H}_{2}^{m}\left\|\left[\begin{array}{l}
\mathrm{D}_{0} \\
N_{0}
\end{array}\right] x-\left[\begin{array}{c}
\mathrm{D} \\
\mathrm{~N}
\end{array}\right] p\right\|
$$

$$
\leq \underset{x \in \mathrm{H}_{2}^{\frac{2}{2}},\|x\|=1}{ }\left\|\left[\begin{array}{l}
\mathrm{D}_{0} \\
\mathbb{N}_{0}
\end{array}\right] x-\left[\begin{array}{c}
\mathrm{D} \\
\mathrm{~N}
\end{array}\right] x\right\|=\left\|\left[\begin{array}{l}
\mathrm{N} \\
\mathrm{D}
\end{array}\right]-\left[\begin{array}{c}
\mathrm{N}_{0} \\
\mathrm{D}_{0}
\end{array}\right]\right\|
$$

Since $\mathrm{P} \in \mathrm{K}^{\prime}\left(\mathrm{P}_{0}, \mathrm{w}_{g}^{-1}\right), \bar{\sigma}^{5}\left(\mathrm{P}_{\mathrm{P}}, \mathrm{P}_{0}\right)=\bar{\sigma}^{2}\left(\mathrm{P}_{0}, \mathrm{P}\right)=\delta\left(\mathrm{P}_{0}, \mathrm{P}\right)<\mathrm{w}_{g}^{-1}$. Consequently, we have obtained

$$
\left\|H\left(\mathrm{P}_{,} \mathrm{C}_{g}\right)-\mathrm{H}\left(\mathrm{P}_{0}, \mathrm{C}_{g}\right)\right\| \leq \mathrm{w}_{g} \delta\left(\mathrm{P}_{0}, \mathrm{P}\right)<1 .
$$

We will conclude this section by discussing dual problem of optimally robust controllers. According to Theorera 3.3.3, if $\mathrm{P}_{\lambda} \in \boldsymbol{F}^{r \times m}$ and $\mathrm{C}_{\lambda} \doteq \boldsymbol{F}^{m \times \pi}$ tatisfy

$$
\begin{equation*}
\delta\left(\mathrm{P}_{\lambda}, \mathrm{P}_{0}\right)+\delta\left(\mathrm{C}_{\lambda}, \mathrm{C}_{g}\right)<\mathrm{w}_{g}^{\mathbf{t}} \tag{4.4.23}
\end{equation*}
$$

then $\mathrm{H}\left(\mathrm{P}_{\lambda}, \mathrm{C}_{\lambda}\right)$ is stable. Now we suppose there are no perturbations on the system P_{0}. Then (4.4.23) implies that whenever $S\left(\mathrm{C}_{\lambda}, \mathrm{C}_{g}\right)<w_{g}^{-1}, \mathrm{H}\left(\mathrm{P}_{0}, \mathrm{C}_{\lambda}\right)$ is stable. In other words, P_{0} stabilizes $\mathrm{K}\left(\mathrm{C}_{g}, \mathrm{w}_{g}^{-1}\right)=\left\{\mathrm{C} \equiv F^{\mathrm{mxR}}: \delta\left(\mathrm{C}, \mathrm{C}_{p}\right) \leqslant \mathrm{w}_{g}^{-1}\right\}$. Consequantly, the largest robust stability radius $w_{c g}^{-1}$ of C_{f} is not smallex than w_{q}^{-1}, the largest robust stability radius of P_{01} ie., the robustness of C_{g} with respect to feedback stabilication is better than that of F_{0}. We will carry out a little further study about the relation between $W_{c o g}^{-1}$ and $w_{g}^{-\frac{1}{2}}$.

Assume that $\mathrm{U}_{:} \equiv U^{m, m}$ and $\mathrm{U}_{T} \in U^{\pi, \pi}$ such that $\mathrm{U}_{[}\left[\mathrm{Y}_{g} \mathrm{Z}_{g}\right]$ and $\left[\hat{\mathrm{Y}}_{y}^{\mathrm{T}}, \hat{Z}_{g}^{\mathrm{T}}\right]^{\mathrm{T}} \mathrm{U}_{r}$ are normalized, respectively. It follows from (4.4.20) that

Now the larget robust stability redius $w_{i g}^{-1}$ is

It is casy to check that $E:=\left[\begin{array}{ll}\left(\hat{X}_{g} U_{r}\right)^{*} & \left(\hat{Z}_{y} U_{+}\right)^{*} \\ -\mathrm{U}_{1} Z_{g} & \mathrm{U}_{1} \mathrm{Y}_{g}\end{array}\right]$ is unitary on $\mathrm{L}_{2}^{m+\pi}$. Hence

$$
\begin{aligned}
& \mathrm{w}_{\mathrm{cg}}=\inf _{\mathrm{SiH}_{\mathrm{m}}^{n \times m}}\left\|\mathrm{E}\left[\begin{array}{c}
-\mathrm{N}_{\mathrm{g}} \mathrm{U}_{l}^{-1}+\dot{\mathrm{Y}}_{g} \mathrm{U}_{\Gamma} \mathrm{S} \\
\mathrm{D}_{0} \mathrm{U}_{l}^{-1}+\bar{Z}_{g} \mathrm{U}_{r} \mathrm{~S}
\end{array}\right]\right\|
\end{aligned}
$$

Let $V_{e}=\left[-\left(\dot{Y}_{g} \mathrm{U}_{r}\right) \mathrm{N}_{\mathrm{o}} \mathrm{U}_{l}^{-1}+\left(\dot{\bar{g}}_{g} \mathrm{U}_{r}\right){ }^{\circ} \mathrm{D}_{0} \mathrm{U}_{l}^{-1}\right]_{\text {, then }} \mathrm{w}_{c g}=\left[1+\left\|\hat{H}_{\mathrm{V}_{e}}\right\|^{2}\right]^{1 / 2}$. Recall from (4.4.6) that $\mathrm{V}:=\mathrm{D}_{0} \bar{Z}_{0}-\mathrm{N}_{\mathrm{G}} \overline{\mathrm{Y}}_{\mathrm{O}}$. Therefore, we bave

$$
\left.\mathrm{V}_{c}=\left[-\left(\dot{\mathrm{Y}}_{g} \mathrm{U}_{r}\right) \overline{\mathrm{N}_{0}} \mathrm{U}_{l}^{-1}+\left(\dot{\mathrm{Z}}_{g} \mathrm{U}_{r}\right){ }^{2} \mathrm{D}_{0} \mathrm{U}_{l}^{-1}\right]=\mathrm{U}_{r}^{-}-\dot{\mathrm{Y}}_{g}^{-} \mathrm{N}_{0}+\hat{Z}_{g} \mathrm{D}_{0}\right] \mathrm{U}_{l}^{-1}=\mathrm{U}_{r}^{-} \mathrm{V}^{-} \mathrm{U}_{l}^{-1}
$$

We wish that a further study on the relation between $\left\|H_{v}\right\|$ and $\left\|H_{v_{0}}\right\|$ will be made elsewhere.

4.5 A formula, a lower and an upper bound for the gap metric

Georgiou gave a formula for the gap metric for rational matrices in [Ge.], which is a consequence of the Commutart Lifting Theorem (for one version see Young [Yo.)). In this section, using the result of Section 4.2, we show that this formula is also valid for distributed UTI systems. Then a lower and an upper boupd for the gap metric given by Zhu, Hautus and Proagman [$\mathrm{Z}-\mathrm{H}-\mathrm{P}$ 2] will be presented here.

A proof of the following theorem is given in [Yo.].

THEOREM 4.5.1 Let $\mathrm{B} \in \mathrm{H}_{\infty}^{2 N y}$ and $\mathrm{C} \in \mathrm{H}_{\infty}^{p x p}$ be inner matrices and $\mathrm{F} \in \mathrm{H}^{\boldsymbol{j x p}}$. Let ϕ be a closed subspace of L_{2}^{ℓ} containting $\mathrm{EC} \mathrm{H}_{2}^{p}+\mathrm{BH}_{2}^{p}$ and define

$$
\begin{equation*}
\mathrm{T}: \mathrm{C}^{\star} \mathrm{H}_{2}^{p} \longrightarrow \phi \Theta \mathrm{BH}_{2}^{p} \tag{4,5.1}
\end{equation*}
$$

$3 s$
(4.5.2) $\quad \mathrm{T}:=\left.\Pi \mathrm{F}\right|_{\mathrm{C}} \mathrm{H}_{2}^{p}$,
where II is the orthogonal projection from L_{2}^{q} to $\phi \in \mathrm{BH}_{2}^{\mathrm{g}}$. Then

$$
\begin{equation*}
\inf _{Q \in H_{\sigma}^{p x p}}\|\dot{F}+B Q C\|=\|T\| . \tag{4.5.3}
\end{equation*}
$$

Let $P_{i} \in B^{n,+\pi}(i=1,2)$. From Section 3.1, we have

$$
\vec{\delta}^{*}\left(\mathrm{P}_{\mathbf{n}_{2}} \mathrm{P}_{1}\right)=\left\|\left(I-\Pi\left(\mathrm{P}_{1}\right)\right) \Pi\left(\mathrm{P}_{2}\right)\right\| .
$$

According to Section 4.2, there will exists a normalized r.b.f. (D,N) for each $P \in B^{n, m}$. Suppose that $\left(\mathrm{D}_{\mathrm{i}} \mathrm{N}_{\mathrm{i}}\right)$ is a normalized r.b.f. of $\mathrm{P}_{\mathrm{i}} \in B^{\mathrm{z}_{1}, \mathrm{H}_{\mathrm{i}}}(\mathrm{i}=1,2)$. Define

$$
A_{i}:=\left[\begin{array}{l}
D_{i} \\
N_{i}
\end{array}\right] .
$$

Then

$$
\begin{aligned}
& \vec{\delta}\left(\mathrm{P}_{2}, \mathrm{P}_{1}\right)=\left\|\left(1-\mathrm{A}_{1} \mathrm{~A}_{1}{ }^{\mathbf{\prime}}\right) \mathrm{A}_{2} \mathrm{~A}_{2}^{m}\right\| \\
(4.5 .4) \quad=\left\|\left(\mathrm{I}-\mathrm{A}_{1} \mathrm{~A}_{1}^{m}\right) \mathrm{A}_{2}\right\| & \left(\mathrm{A}_{3}^{*} \mathrm{~A}_{2}=\mathrm{I}\right)
\end{aligned}
$$

Now we apply Theorem 4.5.1 to (4.5.4), Let $\mathrm{B}=\mathrm{A}_{1}, \mathrm{C}=\mathrm{I}_{2} \mathrm{~F}=\mathrm{A}_{2}, \phi=\mathrm{H}_{2}^{(n+m)}$, and II be the orthogonal projection from $\mathcal{L}_{2}^{(n+n)}$ to $H_{2}^{(n+m)}$ eA A_{1}^{m}, then, by Theorern 4.5.1, wo have

$$
\|\left[\left.1 A_{2}\right|_{H_{2}^{n}}\left\|=\inf _{Q=H_{w}^{m x m}}^{\operatorname{mxm}}\right\| A_{2}-A_{1} Q \|\right.
$$

But

$$
\left.\Pi \mathrm{A}_{2}\right|_{\mathrm{H}_{2}^{\prime \prime}}=\left.\left(\mathrm{I}-\mathrm{A}_{1} \mathrm{~A}_{1}^{*}\right) \mathrm{A}_{2}\right|_{\mathrm{H}_{2}^{m}}
$$

Hence, by (4.5.4)

$$
\begin{equation*}
\bar{S}^{*}\left(P_{2}, P_{1}\right)=\inf _{Q=H_{m}^{m \times m}}\left\|A_{2}-A_{1} Q\right\| \tag{4.5.5}
\end{equation*}
$$

REMARK Suppose that $\left\{\psi_{n}\right\}$ is a sequence of closed subspaces in \mathbb{R}^{3} and ϕ is a closec subspace of \mathbb{R}^{3}. It follows from the example shown by Figure 2.1.2 that $\vec{\delta}\left(\phi, \psi_{n}\right)$ may converge to zero while $\delta\left(\psi_{n} \phi\right)=\vec{\delta}\left(\psi_{n} \phi\right)=1$. But this situation can'thappen in the case of the transfer matrices with entries in the quotient field of H_{w}. That is, if $\left\{P_{k}\right\}$ is a sequence of $\boldsymbol{b}^{n, 4 t}$ and $\mathrm{P}_{\mathrm{0}} \in B^{n, m}$. Then, $\vec{\delta}\left(\mathrm{P}_{0}, \mathrm{P}_{k}\right) \longrightarrow 0$ implies $\delta\left(\mathrm{P}_{0}, \mathrm{P}_{k}\right) \longrightarrow 0$.

PROOF Assume that $\left(\mathrm{D}_{k, ~} \mathrm{~N}_{k}\right)$ is a normalized r.b.f of P_{k} and $\mathrm{A}_{k}:=\left[\mathrm{D}_{k}^{\mathrm{T}}, \mathbb{N}_{k}^{\mathrm{T}}\right]^{\mathrm{T}}$. Moreover, suppose that $C_{g}=Y_{g}^{-1} Z_{g}\left(Y_{g}, Z_{g}\right.$ satisfy (4.4.19)) is an optimally robust controller of P_{0}. Since $\boldsymbol{\gamma}^{-}\left(\mathrm{P}_{0}, \mathrm{P}_{\mathrm{k}}\right) \longrightarrow 0$, by $(4.5 .5)$ there exists a sequence $\left\{\mathrm{Q}_{k}\right\}$ with $\mathrm{Q}_{k} \in \mathrm{H}_{\infty}^{m \times m}$ such that

$$
\left\|A_{0}-A_{k} Q_{k}\right\| \longrightarrow 0 \quad(k \longrightarrow \infty)
$$

Hence,

$$
\left[\mathrm{Y}_{g} \mathrm{Z}_{g}\right]\left(\mathrm{A}_{0}-\mathrm{A}_{k} \mathrm{Q}_{k}\right)=\left(\mathrm{I}-\left[\mathrm{Y}_{g} \mathrm{Z}_{g}\right] \mathrm{A}_{k} \mathrm{Q}_{k}\right) \longrightarrow 0 \quad(\mathrm{k} \rightarrow \infty)
$$

Therefore, $\left[Y_{p} z_{y}\right] A_{k}$ and Q_{0} have to be unimodular for sufficiently large k. Consequently, $\left\{\mathrm{P}_{\mathrm{k}}\right\}$ converges to P_{a} in the graph topology (hence, also in the gap topology). Thus, $\delta\left(\mathrm{P}_{\mathrm{o}}, \mathrm{P}_{\mathrm{k}}\right) \longrightarrow 0(\mathrm{k} \rightarrow 0)$.

Note that $\vec{\delta}\left(\mathrm{P}_{k}, \mathrm{P}_{0}\right) \longrightarrow 0$, in general, doesn't imply $\delta\left(\mathrm{P}_{k} \mathrm{P}_{0}\right) \longrightarrow 0$. For example, take $\mathrm{P}_{\mathrm{0}}=0$ and $\mathrm{P}_{\alpha, \beta}(\mathrm{s})=\alpha /[\mathrm{s}-\beta]$. It is known that $\delta\left(\mathrm{P}_{\alpha, \beta}, \mathrm{P}_{0}\right)=1$ for all $\alpha, \beta>0$, but

$$
\begin{aligned}
& \sigma^{+}\left(P_{k}, P_{0}\right)=\inf _{Q \Delta H_{w}}\left\|\left[\begin{array}{c}
\frac{\beta-\beta}{S+\gamma} \\
\frac{\alpha+\gamma}{S+\gamma}
\end{array}\right]=\left[\begin{array}{l}
I \\
0
\end{array}\right] Q\right\| \quad \gamma=\left(\alpha^{2}+\hat{\beta}^{2}\right)^{1 / 2} . \\
& \xi\left\|\left[\begin{array}{c}
\frac{s-\beta}{s+\gamma} \\
\frac{\alpha}{s+\gamma}
\end{array}\right]-\left[\begin{array}{l}
I \\
0
\end{array}\right] \frac{\varepsilon-\beta}{\xi+\gamma}\right\|=\left\|\left[\begin{array}{c}
0 \\
\frac{\alpha}{\beta+\gamma}
\end{array}\right]\right\| \longrightarrow 0(\alpha \longrightarrow 0),
\end{aligned}
$$

Since $K:=\left[\begin{array}{c}\mathrm{D}_{1}^{-} \\ \mathrm{N}_{1} \\ -\hat{N}_{1} \dot{\mathrm{D}}_{1}\end{array}\right]$ is unitary, i.e., $\overline{\mathrm{K}_{\mathrm{K}}}=\mathrm{KK}=\mathrm{I}$, it follows that

$$
\begin{aligned}
\bar{\delta}\left(P_{2} P_{1}\right) & =\inf _{Q \in H_{m}^{m \times m}}\left\|K\left[A_{2}-A_{1} Q\right]\right\| \\
& =\inf _{Q=H_{m}^{m \times m}}\left\|\left[\begin{array}{c}
D_{1} \mathrm{D}_{2}+N_{1}-N_{2}-Q \\
-N_{2} D_{2}+\hat{D}_{2} N_{2}
\end{array}\right]\right\|+
\end{aligned}
$$

This is a standard "2-block" H_{∞} optimization problem, and can be solved by standard techniques from \mathbf{H}_{m} theocy [Fr.].

A lower and an upper bound is presented in [Z-H-P 2], their computations are certainly simpler thas the computation of (4.5.6). Moreover, the lower bound is of interest on its own. Suppose that $\left(\mathrm{D}_{i}, \mathrm{~N}_{i}\right)$ is a normalized r.b.f. of $\mathrm{P}_{i} \in B^{n, m}(\mathrm{i}=1,2)$. Define $A_{i}:=\left[D_{i}^{T}, N_{i}^{T}\right]^{T}$. It it known from (3.1.4) and (3.1.2) that

$$
\sigma\left(\mathrm{P}_{1}, \mathrm{P}_{2}\right)=\left\|\mathrm{A}_{1} \mathrm{~A}_{1}^{*}-\mathrm{A}_{2} \mathrm{~A}_{2}^{*}\right\| .
$$

THEOREM 4.5.2 [Z-H-P 2] i) The following inequality holds

$$
\begin{equation*}
\left\|A_{1} A_{ \pm}^{-}-A_{2} A_{2}^{*}\right\| \leq\left\|A_{1} A_{1}^{*}-A_{2} A_{2}^{*}\right\|^{*} \tag{4.5.7}
\end{equation*}
$$

If $\delta\left(\mathrm{P}_{1}, \mathrm{P}_{2}\right)<1$, then

$$
\left\|A_{1} A_{1}^{*}=A_{7} A_{2}^{*}\right\| \leq\left\|A_{1} A_{1}^{-}-A_{2} \dot{A_{2}}\right\|+\min \left\{\left\|H_{A_{1}}\right\|,\left\|H_{A_{2}}\right\|\right\}
$$

holds also.

Since A_{i}^{*} is the restriction of $T_{*}^{n+m} A_{i}^{-}$to $H_{2}^{m},\left\|A_{1} A_{1}^{-}-A_{2} A_{2}^{\top}\right\|$ is computed much more easily than $\left\|A_{i} A_{1}^{*}-A_{2} A_{2}^{*}\right\|$. For instance, in the case of $P_{i}($.$) being rational, A_{i} A_{i}^{*}$ is just a rational matrix, whereas A_{i}^{*} is a Toeplita operator. The norm of a rational matrix tan be computed by a program designed by Bruinsma and Steinbuch [B-S]. We will show that
to get the lower bound, it is not necessary to find a normalized r.b.f. of P over $\mathrm{M}\left(\mathrm{H}_{\mathrm{m}}\right)$. $(D(\cdot), N().) \in M\left(L_{\infty}\right)$ is said to be a right Bezout fraction of $P \in B^{n, m}$ over $M\left(L_{m}\right)$ if
i) $D(),. N(1) \in M\left(L_{\infty}\right)$ and $|C()| \neq$.
ii) $Y(),. Z(.) \in M\left(L_{s}\right)$ exist such that

$$
Y(\cdot) D(.)+Z(.) N(.)=\mathbf{I} ;
$$

iii) $\mathbf{P}()=.N(), D()^{-1}$.

According to the definition of the operator N_{t} in Section 4.1.1, in the same way as Lemma $3,1,1$ we can prove that $\overline{D_{1} D_{i}+}+\overline{N_{l}} N_{l}$ maps \mathbf{L}_{2}^{m} onto \mathbf{L}_{2}^{m} bijectively. And analogously to Lemma 3.1.2, we can also show that the orthogonal projection $\mathrm{H}_{l}(\mathrm{P})$ onto the graph of P_{7} is

It is obvious that an r.b.f. $\left[D^{T}, N^{T}\right]^{T}$ of P over $M\left(H_{\omega}\right)$ is always an r.b.f. of P over $\mathrm{M}\left(\mathrm{L}_{\infty}\right)$. Consequently,

If $\left[0^{T}, N^{T}\right]^{T}$ is normalized, we have

Suppose that (D_{i}, N_{i}) is a right Bezout fraction of $\mathrm{P}_{\ddagger} \equiv B^{\text {thm }}$ over $M\left(\mathrm{~L}_{\text {mo }}\right)$ (fur1,2), and that $\left(D_{i}, N_{i}\right)$ is a normalized r.b.f. of $P_{i}(i=1,2)$. Then, we have

$$
\begin{aligned}
& \left\|\Pi_{l}\left(P_{1}\right)-\Pi_{3}\left(P_{2}\right)\right\|
\end{aligned}
$$

Hence, we have shown that

THEOREM 4.5.3 The lower bound $\left\|\left[\begin{array}{l}D_{1} \\ N_{1}\end{array}\right]\left[\ddot{D_{1}}, N_{1}^{-}\right]-\left[\begin{array}{l}D_{2} \\ N_{2}\end{array}\right]\left[\mathrm{D}_{2}, \mathrm{~N}_{2}^{2}\right]\right\|$ in (4,5.7) is equal to

If $\left(D_{i,} N_{i}\right)$ is normalized, i.e., $\overline{D_{i}}(\omega) D_{i}(\omega \omega)+N_{i}^{-}(\omega) N_{i}(\omega \omega)=I(V \omega \in \mathbb{R}, I=1,2)$, then (4.5.9) is

$$
\left\|\left[\begin{array}{l}
D_{1} \\
N_{1}
\end{array}\right]\left(\overline{D_{1}^{\prime \prime}, ~} \overline{N_{1}}\right)=\left[\begin{array}{l}
D_{2} \\
N_{2}
\end{array}\right]\left(\overline{D_{2}, N_{2}} \overline{-}\right)\right\| .
$$

The advantage of the using an r.b.f. over $\mathrm{M}\left(\mathrm{L}_{\mathrm{m}}\right)$ is that it is much more easily obtained than ant r.b.f. over $\mathrm{M}\left(\mathrm{H}_{50}\right)$.

4.6 Finite dimensional controller design

In this section we will discuss the desiga of finite dimensional controllers for infinite dimensional systems wia the largest robust stability radits and optimally robust centrollers.

In general, there are two ways to design a finite dimensional controller for an infinite dimensional systen : 1) first to design an infinite dimensional controller and then approximate this controller by a finite one; 2) approximate the infinite dimensional system by a finite one, then, design a finite dimensional controller according to this finite dimensiotal system. According to these two general principles, we propose the following two schernes.

Let $P_{0} \in B^{n, m}$ be the system for which a finite dimensional contioller will be designed. Denote by $w_{g}^{-1}\left(\mathrm{P}_{0}\right)$ the largest robust stability radins of P_{o}.

SCIEME 4.6.1
Step 1 Find $\mathrm{w}_{g}^{-1}\left(\mathrm{P}_{0}\right)$ and an optimally robust controller C_{g};
Step 2 Find a finite approximation C_{f} of C_{y} such that

$$
\phi\left(\mathrm{C}_{f}, \mathrm{C}_{g}\right)<\mathrm{w}_{g}^{-1}\left(\mathrm{P}_{0}\right)
$$

THEOREM 4.6.2 The finite dimensional controller C_{f} obtained in Stheme 4.6.1 stabilizes P_{0}. Moreover,

$$
\begin{equation*}
\left\|H\left(\mathrm{P}_{0}, \mathrm{C}_{g}\right)-\mathrm{H}\left(\mathrm{P}_{0}, \mathrm{C}_{f}\right)\right\| \leq w_{g}\left(\mathrm{P}_{0}\right) \delta\left(\mathrm{C}_{\rho}, \mathrm{C}_{g}\right)<1 . \tag{4.6.1}
\end{equation*}
$$

FROOE According to the definition of $w_{2}^{-k}(4.4 .8)$ and Theorem 3.3.3, we know that C_{f} stabilizes P_{0}. By (4.4.22) we have

$$
\left\|H\left(\mathrm{P}_{0}, \mathrm{C}_{g}\right)=\mathrm{H}\left(\mathrm{P}_{0}, \mathrm{C}_{f}\right)\right\| \leq \mathrm{w}_{g}\left(\mathrm{C}_{g}\right) \delta\left(\mathrm{C}_{f}, \mathrm{C}_{g}\right) .
$$

It follows from the last topic of Section 4.1 that $\mathrm{w}_{g}\left(\mathrm{C}_{g}\right) \leqq \mathrm{w}_{g}\left(\mathrm{~F}_{0}\right)$. Hence, (4.6.1) is truee

SCHEME 4.6.3
Step 1 Find a finite approximation P_{f} of F_{0} such that

$$
\delta\left(\mathrm{P}_{f}, \mathrm{~F}_{0}\right) \leq \mathrm{w}_{g}^{-1}\left(\mathrm{P}_{f}\right) ;
$$

Step 2 Compute an optimally robust controller C_{f} of P_{f} (the algorithms will be presented in the next section).

THEOREM 4.6.4 The finite dimensional controller C_{f} obtained in Scheme 4.6 .3 stabilizes P_{0}. Moreover,
$(4.6 .2) \quad\left\|E\left(\mathrm{P}_{0}, \mathrm{C}_{f}\right)-\mathrm{H}\left(\mathrm{P}_{f} \mathrm{C}_{f}\right)\right\| \leq \mathrm{w}_{g}\left(\mathrm{P}_{f}\right) \in\left(\mathrm{F}_{f}, \mathrm{P}_{0}\right) \& \mathrm{l}$.

PROOF That C_{f} stabilizes P_{0} follows from the definition of $\mathrm{w}_{g}\left(\mathrm{P}_{f}\right)$ and Theorem 3.3 .3 , and (4.6.2) follows from (4.4.22).

4.7 Computation of optimally robust controllers

For a given finite dimersional LTI system i.e. a real rational matrix P_{0}, the following algorithms are gresented for computing its largest robust stability rodius and an approximate optimally robust controllers.

First, we remark that using state space representation Glover and McFarlane [G-M 2] gave some nice formulas for computing the largest robust stability radius and optimally robust controllers for proper rational transfer matrices. Algorithm 4.7 .1 depends on Glover and Mefarlane's work [C-M 2].

ALGORITHM 4.7.1 (for proper transfer matrices)

Step 1 Find a minimal realization ($\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}$) of P_{p}

Step 2 Solve the following two Algebraic Riccati Equations

$$
\left(A-B H^{-1} D^{T} C\right)^{T} X+X\left(A-B H^{-1} D^{T} C\right)-X B H^{-1} \mathrm{~B}^{T} X \div C^{T} L^{-1} C=0,
$$

$\left(A-B D^{T} L^{+1} C\right) Y+Y\left(A-B^{T} L^{-1} C\right)^{T}-Y C^{T} L^{-1} C Y+B H^{-1} B^{T}=0$,
where $\quad H:=I+D^{T} D \quad L:=I+D D^{T}$.

Step $3 \quad$ Set $\quad A_{c}:=A-B F \quad F:=H^{-1}\left(D^{\mathrm{T}} \mathbf{C}+B^{\mathrm{T}} X\right)$

$$
A_{o}:=A-K C \quad K:=\left(B D^{T}+Y C^{T}\right) L^{-1}
$$

Ther $\left[\begin{array}{cc}-\mathrm{Z}_{0} & \mathrm{Y}_{0} \\ \overline{\mathrm{D}}_{0} & \dot{N}_{0}\end{array}\right]\left[\begin{array}{cc}-\mathrm{N}_{0} & \hat{\mathrm{Y}}_{0} \\ \mathrm{D}_{0} & \dot{Z}_{0}\end{array}\right]=\left[\begin{array}{ll}\mathrm{I} & 0 \\ 0 & I\end{array}\right]$,
and ($\left.\mathrm{D}_{0}, \mathrm{~N}_{0}\right)$, ($\mathrm{D}_{0}, \mathrm{~N}_{0}$) are a normalized r.b.f. and a normalized l.b.f. of $\mathrm{P}_{0}($. respectively, where

$$
\begin{aligned}
& {\left[\begin{array}{cc}
-Z_{0} & Y_{0} \\
\dot{D}_{0} & \dot{N}_{0}
\end{array}\right]:=\left[\begin{array}{cc}
-H^{1 / 2} F\left(s I-A_{0}\right)^{1} K & H^{1 / 2}\left[I+F\left(s I-A_{0}\right)^{-1}(B-K D)\right] \\
L^{-1 / 2}\left[I-C\left(s I-A_{0}\right)^{-1} K\right] & L^{-1 / 2}\left[C\left(s I-A_{0}\right)^{-1}(B-K D)+D\right]
\end{array}\right]} \\
& {\left[\begin{array}{cc}
-N_{0} & \dot{Y}_{0} \\
\dot{D}_{0} & \dot{Z}_{0}
\end{array}\right]:=\left[\begin{array}{ll}
-\left[(C-D F)\left(s I-A_{c}\right)^{-1} B+D\right] H^{-1 / 2} & {\left[I+(C-D F)\left(s I-A_{e}\right)^{-1} K\right] L^{1 / 2}} \\
{\left[I-F\left(s I-A_{0}\right)^{-1} B\right] H^{-1 / 2}} & F\left(s I-A_{\theta}\right)^{-1} K L^{1 / 2}
\end{array}\right] .}
\end{aligned}
$$

Step 4 Compute $\lambda_{\max }(Y X)$, the largest eigenvalue of $Y X ; w_{g}=\sqrt{\left(1+\lambda_{\max }(Y X)\right.}$.

Step 5 Tike $\gamma>w_{g}$, and set $\mathrm{W}_{1}=\mathrm{I}+X Y-\gamma^{2} \mathrm{I}$. Then
$\left[A_{c}+\gamma^{2} W_{1}^{T-1} Y C^{T}(C-D F): \gamma^{2} W_{1}^{T-1} Y C^{T}: B^{T} X:-D^{T}\right]$
is a state space representation of an approximate optimally robust control controller.

ALGORITHM 4.7.2 (For singular systems, i.e., non-proper transfer matrices)

Step 1 Find a right and a left Bezout fractions of P_{0}.

Step 2 Using spectral factorization, find a normalized right and left bezout fraction $\left(\mathrm{D}_{0}, \mathrm{~N}_{0}\right),\left\langle\dot{\mathrm{D}}_{0} \hat{\mathrm{~N}}_{0}\right)$.

Step 3 Solve the following two Bezout identities

$$
\mathrm{Y}_{0} \mathrm{D}_{0}+\mathrm{Z}_{0} \mathbb{N}_{0}=\mathrm{I} \quad \overline{\mathrm{D}}_{0} \bar{Y}_{0}+\overline{\mathrm{N}}_{0} \dot{Z}_{0}=\mathrm{I}
$$

Step 4 Set $V=\bar{D}_{0} \dot{Z}_{0}-\bar{N}_{0} \bar{Y}_{a}\left(=Z_{0} \dot{D}_{0}-Y_{0} \tilde{N}_{0}\right)$, find the strictly proper antistable part $\mathrm{V}_{\text {- of }} \mathrm{V}$, which is strictly proper, and compute a minimal realization $\left[\mathrm{A}_{2}, \mathrm{~B}_{3}, \mathrm{C}_{8}, 0\right]$ of V_{-}.

Step 5 Solve the following two Lyapunov equations

$$
\mathrm{A}_{2} \mathrm{~L}_{c}+\mathrm{L}_{c} \mathrm{~A}_{2}^{\mathrm{T}}=\mathrm{B}_{2} \mathrm{~B}_{2}^{\mathrm{T}}, \quad \mathrm{~A}_{2}^{\mathrm{T}} \mathrm{~L}_{\dot{\alpha}}+\mathrm{L}_{\phi} \mathrm{A}_{2}=\mathrm{C}_{2}^{\mathrm{T}} \mathrm{C}_{2}
$$

Compute the largest eigenvalue $\lambda_{\text {max }}$ of $\mathrm{L}_{c} \mathrm{~L}_{0}$. Then

$$
\left\|\mathcal{H}_{V}\right\|=\sqrt{\lambda_{\max }}(=: \infty) \quad w_{g}=\sqrt{\left(1+\lambda_{\max }\right)}
$$

Step 6 Fix an approximate margin $\%>0$ for the Nehari problem

$$
\begin{equation*}
\left\|\mathrm{V}_{-}-\mathrm{R}\right\|<c(l+\bar{\xi}) \tag{4,7,1}
\end{equation*}
$$

$$
\begin{aligned}
& \text { Set } \mathrm{L}_{q}:=\mathrm{L}_{\varphi}[\alpha(1+\varepsilon)]^{-1}, \mathrm{~N}:=\left\{\mathrm{I}-\mathrm{L}_{q} \mathrm{~L}_{c}\right\}^{-1} \text { and } \mathrm{C}_{3}:=(\boldsymbol{\alpha}+\boldsymbol{\alpha} \varepsilon)^{-1} \mathrm{C}_{2} \text {. Define } \\
& L_{2}(\cdot):=\left[A_{2}, \quad L_{2} N C_{3}^{T}, C_{3}, I\right] \quad L_{2}(.):=\left[\begin{array}{llll}
A_{2} & N^{T} B_{2}, & C_{3}, 0
\end{array}\right] \\
& \mathrm{L}_{3}(.): \mathrm{mm}\left[-\mathrm{A}_{2}^{\mathrm{T}}, \mathrm{NC}_{3}^{\mathrm{T}},-\mathrm{B}_{2}^{\mathrm{T}}, \mathrm{O}\right] \quad \mathrm{L}_{4}(\cdot):=\left[-\mathrm{A}_{2}^{\mathrm{T}}, \mathrm{NL}_{8} \mathrm{~B}_{2}, \mathrm{~B}_{7}^{\mathrm{T}}, \mathrm{I}\right] .
\end{aligned}
$$

Then, the set of all solutions to problem (*) is
$N(V, e):=\left\{V-\alpha(1+E)\left(L_{1} Y+L_{2}\right)\left(\mathrm{L}_{3} Y \div \mathrm{L}_{4}\right)^{-1} \in M\left(\mathrm{RH}_{m}\right): \mathrm{Y} \in \mathrm{M}\left(\mathrm{RH}_{\infty}\right),\|\mathrm{Y}\| \leq 1\right\}$.

The set of all approximate optimally robust controllers is

$$
\left.\begin{array}{rl}
S_{\text {cpi }}\left(\mathrm{P}_{0}, \mathrm{E}\right):=\left\{\mathrm{C}=\left(\mathrm{Y}_{0}-\mathrm{R} \dot{\mathrm{~N}}_{0}\right)^{-1}\left(Z_{0}+\mathrm{R} \dot{\mathrm{D}}_{0}\right)=\left(\dot{Z}_{0}+\mathrm{D}_{0} \mathrm{R}\right)\left(\dot{\mathrm{X}}_{0}-\mathrm{N}_{0} \mathrm{R}\right)^{-1}:\right. \tag{4.7.3}\\
\mathrm{R} \in N(\mathrm{~V}, \xi),\left|\overline{\mathrm{Y}}_{0}-\mathrm{N}_{0} \mathrm{R}\right| \neq 0
\end{array}\right\}
$$

Note that if a Y in (4.7.2) is fixed, the mapping from $\varepsilon \in\{0,1]$ to $C \in S_{\text {opt }}\left(\mathrm{P}_{\mathrm{o}}, \xi\right)$ is continuous at 0 . Hence, any element in (4.7.3) is indeed an approximate optimally
robust controller in the sense discussed in Section 4.4.

Algorithm 4.7 .1 is programmed by Habets [Ha.] in PC-Mathab m.-file, and we will use the program to give some numerical exarnples. Our first mumerical extaple is to show the variation of the lafgest robust stability radius with the pole of the plant.

EXAMPLE 4.7.3 Let $P_{p}(s)=1 /[s-\beta]$. The following diagram shows the values of the largest robust stability radius w_{g}^{-1} cormesponding to different β.

β	-10	-5	-3	-1	-0.5	-0.2	-0.01	-0.005	-0.0001	0
w_{-}^{-1}	0.9988	0.9951	0.9871	0.9239	0.8507	0.7733	0.7106	0.7089	0.7075	0.7071
β	10	5	3	1	0.5	0.2	0.01	0.005	0.0001	0
w_{0}^{-1}	0.0498	0.0985	0.1602	0.3827	0.5257	0.6340	0.7036	0.7053	0.7068	0.7071

From the above table one can see that the larger the unstable pole is, the smaller the w_{g}^{-1} is, and w_{3}^{-1} may approach to zero as the unstable pole goes to infinity.

Next, we fix the pole of ard change the cocfficient.

EXAMPLE 4.7.4 Let $P_{\mathrm{q}}(\mathrm{s})=\alpha /[\mathrm{s}-1]$. The following diagram shows the values of the largest robust stability radius w_{k}^{-1} conesponding to different α.

$\pm{ }^{\text {a }}$	0	10-7	1e-5	1e-3	0.5e-2	0.01	0.2	0.35	0.5	1
w^{-2}	1	$4.9 \mathrm{e}-8$	5,0e-6	5.0e-4	2.5e-3	0.0050	0.0985	0.16750	0.22985	0.3827
w^{-1}	0.7071	0.7071	0.7068	0.7064	0.7000	0.6710	0.6340	0.5847	0,5470	0.4931

This table tells us that when the coofficient is very small it influences w_{g}^{-1} significantly, but after certain large number it lost its influence on w_{g}^{-1}.

Note that, if $\mathrm{P}_{0}(\mathrm{~s}) \times \alpha / s(\alpha \neq 0)$, then w_{g}^{-1} is independent of α.

Our last example is to find the largest robust stability radius and an approximate optimally robust controller for an approximation of a homogeneous beam with viscous damping.

EXAMPLE 4.7.5 The tansfer matrix of homogencous beam with viscous damping
[Bo. p96] is

$$
P(s)=1 /(\rho \alpha)\left[\begin{array}{cc}
1 /\left(2 s^{2}\right) & 0 \\
0 & 3 /\left(2 s^{2}\right)
\end{array}\right]+1 /(\rho \alpha) \sum_{i=3}^{\infty}-\frac{G_{i}^{2}+\alpha_{1} \lambda_{i}^{4} s+\alpha_{2} \lambda_{i}^{4}}{},
$$

where $G_{i}=\left[\begin{array}{cc}v_{i}^{3}(0) & 0 \\ 0 & \left(v_{i}^{\prime}(0)\right)^{2}\end{array}\right], \lambda_{i} \in R$ is a spectrum point of the hompgeneous beam and $v_{e}(t)$ is the eigenfunctions corresponding to the λ_{i}, α_{1} is the darnping coefficient and α_{z} is the stiffness coefficient and $p \alpha$ is the mass per unit length. We use the parameters given in $[B \rho, p 122]$

$$
\alpha_{1}=3.89 \times 10^{-4} ; \quad \alpha_{2}=1.129 ; \quad \rho \alpha=47.2
$$

We will compute the largest robust stability radius and an approximate (in the sense that at the Step 5 of Algorithm 4.7.1, γ is chosen to be $w_{g}+10^{-5}$) optimally robust controller For the soth order approximation P_{0} of P .

The largest robust stability radius of $\mathrm{P}_{0}(\mathrm{~s})$ is $\mathrm{w}_{\mathrm{g}}^{-1}=0.3828, \mathrm{P}_{0}$ and an approximate optiraally robust controller is C_{g} given by

$$
P_{0}(s)=\left[\begin{array}{cc}
\frac{n 1}{d 1} & 0 \\
0 & \frac{n 2}{d 2}
\end{array}\right], \quad C_{\theta}(s)=\left[\begin{array}{cc}
\frac{\operatorname{cn} 11}{\operatorname{cd1}} & \frac{\operatorname{cn} 12}{\operatorname{cd12}} \\
\frac{\operatorname{cn} 21}{\operatorname{cd2} 2} & \frac{\operatorname{cn} 22}{\operatorname{cd2} 2}
\end{array}\right],
$$

where

$$
\begin{aligned}
& \mathrm{nI}=0.000 \mathrm{~s}^{4}+0.00045^{3}+0.38905^{2}+0.00735+5.2790 ; \\
& d 1=0.0167 s^{s}+0.0152 s^{5}+14.6946 s^{4}+0.6868 s^{3}+498.34165^{2} ; \\
& n 2=0.0001 s^{4}+0.0001 s^{3}+0.0648 s^{2}+0.0015 s+1.0583 ; \\
& \mathrm{d} 2=0.0001 \mathrm{~s}^{6}+0.0001 s^{3}+0.1396 s^{4}+0.04599^{3}+33.3013 s^{7} ; \\
& \mathrm{call}=-0.0003 s^{3}-0.00025^{4}-0.22033^{3}-0.01975^{2}-7.47225-0.3186 \\
& \text { cd11 }=0.0001 s^{5}+0.00019^{4}+0.0913^{3}+0.0275 s^{2}+3.09305+0.7839 ; \\
& \frac{\operatorname{cn} 21}{\operatorname{cd} 21} \approx \frac{\operatorname{cn} 12}{\operatorname{cd} 12} \approx 0_{i} \\
& \operatorname{cn} 22=-0.0442 s^{3}-0.0178 s^{2}-10.5464 s-0.7787 ; \\
& \operatorname{cd} 22=0.0002 s^{4}+0.01843^{3}+0.0473 s^{2}+4.36325+1.8794 .
\end{aligned}
$$

The author would like to thank Dr. J. Bontsena and Prof. R.F. Curtain for their generous help when he worked on this example,

In a general framework including finite and infinite dimentional LTI systems as well as discrete-time and continuons-time and 2 D - systems, the gap topology approach to robust stabilization was studied in the present thesis. A necessary and sufficient condition was given in the gap topology (Corollary 2.3.2). And the estimation was also presented for the variation of the closed-loop system secording to perturbations of system and controller (Theorem 2.3.1). Seversel guaranteed (sufficient) bounds were found for robust stabilization in the gap metric (or in the graph metric). A thorough study was made for the case when the trantfer matrices have their entries in the quotient field of H_{α}. Especially, the largest robust stability radius and optimally robust controilers were investigated. Moreover, the following related problems were also discussed such as : the existerce of normalized Bezout fractions, the variation of the closed-lopp systems, the design of firite dimensional controllers, the computation of the gap metric, optimatiy robast contrellers and the largest robust stability radius and so on. The section ; Review of the thesis in page 3 and 4 , gives additional information about contents.

Now, we present the following related topics, which are worth further investigation.

1) In Section 3.3, several bound were presented and one of them was maximized in Chapter 4 for a special case. The first problem is to compare these bounds and to maximize them for the general framework.
2) Generalization of the whole theory from Chapter 4 to 2-D systems described in Example 1.1.10. To do this, one needs to generalized Lax's theorem, the Commutant Lifting Theoreri and some other H_{∞} theories etc. to the two variables case.
3) Approximation of an infinite dimensional system by a family of finite diruensional systems in the gap topology. First, it can easily be checked that an infinite dimensional $P_{0} \in B^{n, m}$ (in the notations of Chapter 4) can be approximated by a family of rational matrices iff P_{0} has an r.b.f. or l.b.i., which are continuous on $t \mathbb{R}$. Many related problents such as its relation with L_{m}-approximation, computation of error bounds and state space version etc should be studied.
4) Application of the theory in Section 4.6 to some concrete distributed LTI systems such as delay systems, neutral systems and flexible beams. Note that we still do not know whether the controller $\mathrm{C}_{\text {g }}$ stabilizes P or not in Example 5.7.5.
[Aar.] Anartharam, V.
On stabilization and the extstence of coprime factorizations, IEEE Trans. Automat, Contr., Vol, 30, p1030-1031, 1985.
[Bo.] Boatsema, J.
Dynamic stabilization of large flexible space structurtes, Ph.D. thesis, Groningen, 1989.
[B-S] Bruinstne, N.A. and M. Steinbuch
A fast algorithrn to compute the $\mathrm{H}_{\infty}-$ norm of a transfer function, Fhilips Nat. Lab., Eirdhoven, June, 1989.
[C-D 1] Callier, FM. and C.A. Desoer
An algebra of transfer functions for distributed linear time-inveriant systems, EEE Trans. Clrclit Syst., Vol. CAS-25, p651-663, 1978; Correction: Vol. CAS-26, $\mathrm{p}^{360}, 1979$.
[C-D 2] Callier, F.M. and C.A. Desoer
Simplifications and darifications on the paper "An algebra of tronsfer functions for distributed linear time-invariant systems", IEEE Trans. Cincuit Syst., Vol. CAS-27, p320-323, 1980.
[C-W 1] Callier, F.M. and J. Winkin
The spectral factorization problem for SISO distributed systems, "Modeling, Robustress and Sensitivity Reduction in Control Systems" (R.F. Curtain ed.), NATO ASt Series, Vol. F34, SpringerwVerlag, Berin Heidelbetg, p463-489, 1987.
[C-W 2] Gallier, F.M. and J. Winkin
On spectral fatorization for multivariable distributed systems i A connection with the operator Ricooth equation, Proceedings of the 27 th Conference on Decision and Control, p2509-2515, December 1989 .
[Ch.-D] Chen, M.J. and C.A. Desoer
Necessary and sufficient conditions for robust stability of linear distributed feedback systems, Int. J. Control, Vol. 35, p255-267, 1982.
[C-L] Cordes, H.O. and J.P. Labrouste
The invartance of the index in the metric space of closed operators, J. Math. Mech. Vol. 12, p893-719, 1963.
[Cu. 1] Gurtain, R.f.
Equitalence of input-output stability and exponential stability for infinite-dimensional systers, to appear J. Math. Systerns Theory.
[Cu. 2] Curtain, R.F.
Robust stabilizability of Normalized Co-prime factors = The infinite
dimensional case, Groningen 198s,
[Cu. 3] Curtain, R.F.
A synthests of time and frequency domain methods for the control of infinite-dimensional systems : A system theoretic approach, to appear in SLAM Frontiers in Applied Math..
[C-G] Curtain, R.F. and K. Glover
Robust stabilization of infinite dimensional systems by finite dimensional controllers, Systeras and Control Letters Vol. 7, p41-47, 1986.
[Do.] Doyle, J.C.
Analysis of feedback systems with structured qncertainties, Proc. IEE, Pt. D., Vol. 129, p242-247, 1982.
[E].] El-Sakkary, A.K.
The gap metric : Robustness of stabitization of feedback systems, IEEE Trans. Automat. Contr., Vol. 30, p240-247, 1985.
[Fr.] Francis, B.A.
A course in $\mathbf{H}_{\text {o }}$ control theory, Lecture Notes in Control and Information Sciences, Vol. 88, Spinger-Verlag, New York, 1987.
[Ge.] Georgion, T.T.
On the computation of the gop metric, Systems and Control Letters, Vol. 11 , p253-257, 1988.
[G-S] Georgiou, T.T. and M.C. Smith
Optimal robustness in the gap metric, to appear in Proceedings of the 28th Conferente on Decision and ControL, December 1989.
[G. 1] Glover, K
Robust stabilization of linear multivariable systems : Relation to approximation, Int. J. Control, Vol. 43, p741-765, 1986.
[G. 2] Glover, K
All optimal Hankel-nom approximations of linecr multivariable sytems and their L_{w}-error bounds, Int. J. Contr., Vol. 39, p1115-1193, 1984.
[G-M] Glover K. and D McFarlane
Robust stabilization of Normadized Coprime Fartors : An explicit $H_{\infty}-$ soltution, Proc. of the American Control Conference, $\boldsymbol{p}^{842-\$ 47, ~} 1988$.
[C-M 2] Glover K. and D Mcrarlane
Robust stabilization of Normalized Coprime Factor plant descriptions with $\mathrm{H}_{\infty}-$ - - ounded uncertionty, IEEE trans. Autemat. Contr., Vol. 34, No. 8, p821-880, 1989.
[Ha.] Habets, L.C.G.J.M.
Robust stabilization in the gap topology, Mater chesjs, Eindhoven, 1989.
[Ha.] Halmos, P.R.

A Hilbert space problem book, (Second edition), Springer-Verlag, Berlin, 1982.
(H-Z) Hautus, M.L.J. and S.Q. Zhu
Topological aspects of transfer matrices with entries in the quotient fiedid of
H_{21} Proceedings of MTNS-1989 at Amsterdarn, Progress inl Systems and Control
Theory, Birkhiuser, Boston, 1990.
[H-P] Hinrichsen, D. and A.J. Fritchard
Scability radii of linear systems, Systems and Control Letters, Vol. 7, pl-10, 1986.
[In.] Inouye, Y.
Parameterination of compensators for linear systems with transfer functions of bounded type, Proceedings of the 27 th Conference on Decision and Control, December 1988.
[Ka.] Kato T.
Perturbation Theory for Linear Operators, Springer-Verlag, New York, 1966.
[K-V-Z] Kranosel'skii, M.A., G.M. Vainikko and PrP. Zabreiko
Approximate solution of operator equations, Groningen, Wolters-Noordhofi, 1972.
[La.] Lax P.D.
Translation invariant subspaces, Acta Math., Vol. 101, p163-178, 1959.
[Na.] Nehari, Z.
On bounded bilinear form, Ann, of Math., Vol. 65, pl53-162, 1957.
[Pr.] Prazgman, C.
On the factorization of rational matrices depending on a parameter, Systems and Control Letters, Vol. 9 p $387-392,1987$.
[Sm.] Smith, M.C.
On stabilization and the existence of coprime factorizations, To appear in IEEE trans. Automat. Contr..
[Vi. 1] Vidyasagar, M.
The graph metric for unstable plants and robustness estimiates for feedback stability, IEEE Trans. Automat. Control, Vol, 29, p403-418, 1984.
[Vi. 2] Vidyesagar, M
Control system synthestis : A factorization approach, Cambridge, Massachusetts, MIT Press, 1985.
[V-K] Vidyasagar, M, and H. Kimura, Robust controllers for uncertain Linear multivariable systems, Automatica, Vol. $22, p^{85-94}, 1986$.
[Wi.] Wimkin, J.
Spectral factorization and feedback control for infinite-dimensional systems, Ph.D. thesis, Namur, 1989.
[Yo.] Young, N.J.

The Nevanlinna-Pick problem for matrix-valued functions, J. Operator Theory, Vol. 15, p239-265, 1986.
[Za.] Zames, G.
Feedback and optimal serssttivity ; model reference transformations, multiplicative seminorms, and approximate inverses, 正EE Trans. Auto. Contr., Vol. AC-26, p301-520, 1981.
[Z-E] Zames, G and A. El-Sakkary
Unstable systems and feedback : The gap metric, Proc. Allerton Comf. p380-385, 1980.
[Z. 1] 2hu, S.Q.
A graph metric for a class of MIMO linear distributed systems, in "Lecture notes in control and information sciences", NRTA 1ll, (Bensoussan A, and J.L. Lions Ed.), Springer-Verlag, p1091-1102, 19\$8.
[Zh, 2] Zhu, S.Q.
On normalized Bezout fractions of Distributed LTI systems, to appear in $\mathbb{E E E E}$ trans. Automat. Contr.
[Zh. 3] Zhu, S.Q.
Normatixed coprime froctions of semigroup systerns, in Proceedings of the 27th Conferente on Decision and Control, p2467-2469, December 1988.
[7h. 4] Zhu, S.Q.
Graph topology and gap topology for unstable systems, IEEE trans. Automat. Contr., Vol. 34, No. 8, p848-\$55, 1959.
[2-H-F I] Zhu, S.Q., M.L.J. Hautus and C. Praagman Sufficient conditions for robust BIBO stabilization : Given by the gap metric, Systems and Control Letters, Vol. 11, p53-59, 1988.
[Z-H-P 2] Zhu, S.Q., M.L.J. Hautus and C. Praagman
A lower and an upper bound for the gap metric, to appear in Proceedings of the 28th Conference on Decision and Control, Detember 1989.
[Z-S] Zhu, S.Q. and A.A. Stoorvgel
A representation and the norm of Toeplitz operators, Systems and Control Letters Vol. 12 p409-413, 1989.

Inder
adjoint operator 2 s
closed operator $?$
commutant lifting theorem si
diagoral product topology 17
directed gap 15,18
feedback systera 1, so
generalifed right Bezout fraction ss
generalized left Bezout fraction $\quad 2 a$
gip 15,15
gap topology is
\&raph topology 23
Hankel operator 43
Hermite ring 10,36
ideal controller $\quad 1$
induced operator $\$$
inner 36
isometric 23
largest robust stability radius 41
left Bezout fraction \quad o
Nehari problem 43
nominal systern x
normalized $2 s$
optimally robust controller at
outer 37
product topology 17
pseudo-Bezont domain 3
right Bezout fraction 10
shift invariant 38
stabilizing controller $\$ 1$
Toeplitz operator 38
unitary 26

Curriculum Vitae

The author of this thesis was born in Xi'an, China on March 24, 1960. From September 1978 to December 1984, he studied at the Depatronent of Matharatics of Xi'an Jiaotong Uriversity, Ghina, where he received his Eachelor's and Master's degree in comprutation of mathematics in 1982 and 1984 , respectively. Afterwardt, be taught at Xiar Jiaotong University tutil August 1985.

From Septernber 1985 to August 1989, he worked as a Research Assistant in Systems and Control Theory at the Department of Mathematics and Compating Science of Eindhoven University of Technology, the Netherlands. His research at Eindhoven led to the present thesis. From Jume 1988 to August 1988, he joined Young Scientists' Summer Program (YSSP) at International Institute for Applied Systems Analysis at Laxenburg, Austria. Currently, he holds a position as a Visiting Researther Associate at the College of Sciences of Clemson University, U.S.A.r

PROPOSITIONS
accomponglug the disoentation

ROBUSTNESS OF FEEDBACK STABILIZATION : A TOPOLOGICAL ABPROACH

$b y$
\$.2. 2 hu
Eindhowen, The Netherlands Auptist 1989

 of numbers $\left\{\alpha_{1,}, \alpha_{2}, \ldots \alpha_{\mathrm{m}}\right\}$ in \mathbb{R}_{+1} find an x_{*} such that

$$
\begin{equation*}
\mathrm{L}\left(x_{*}\right)=\min _{x \in \mathrm{C}} \mathrm{~L}(x), \tag{1.1}
\end{equation*}
$$

where

$$
\begin{equation*}
L(x): m \sum_{1=1}^{m} \alpha_{i}\left\|x-\vec{x}_{i}\right\| . \tag{1.2}
\end{equation*}
$$

This is so-called the optimat location problem. Consider the following iteration

$$
\begin{aligned}
& x_{0} \in C, x_{0} \not z_{i} \bar{x}_{i}(i=1, \ldots \mathrm{~m}), \varepsilon \leq 0, \\
& x_{k+1}=\text { solution of } \min _{x \in C}\left\|y-\left(x_{k}-\left.\lambda_{k} \frac{d}{d x} L(x)\right|_{x-\bar{x}_{k}}\right)\right\| \text {, } \\
& \text { where } \lambda_{k}^{-\lambda}:=\sum_{i=1}^{m} \frac{\alpha_{i}}{\left\|x_{k}-\bar{x}_{f}\right\|}, \\
& y_{k+1} \text { satiafies }\left\|y_{k+1}-y_{k+1}\right\| \leq \delta_{k+1} \\
& \text { where } t_{k+1} \longrightarrow 0 \text {, } \\
& x_{k+1}=\gamma_{k} x_{k}+\left(1-\gamma_{k}\right) y_{k}, \\
& \text { where } \gamma_{k} \varepsilon[\varepsilon, 1] \text { such that } x_{k+1} \neq \bar{x}_{i} \text { for } \forall \mathrm{i}
\end{aligned}
$$

Then, $\left\{x_{k}\right\}$ converges to x.
[1] Kuhu, H.W. "Steiner's" problem revisited, Studies in optimisation, (G.B. Dantzig and B.C. Eaves ed.) The Mathematical Association of America 1974.
[2] Zhu, S.Q. Numerical Methods for sobing variatioral inequalites, Master thesis, 2985.
2. Let $A \in \mathbb{R}^{n \times n}$ be positive symmetric. A norm $\|\cdot\|_{A}$ can be defined on \mathbb{R}^{n}

$$
\begin{equation*}
\left.\|x\|_{A}:=\measuredangle A x, x\right\rangle^{1 / 2} \quad \forall x \in \mathbb{R}^{7 \pi} . \tag{2.1}
\end{equation*}
$$

Suppose that C is a elosed convex subset of \mathbb{R}^{n} and $b \in \mathbb{R}^{n}$. Now consider the following linear variational inequality problerin: find an $x * \in \mathbb{C}$ such that

$$
\begin{equation*}
\Delta x-x *, A x_{*}-b>20 \quad \text { for } \forall x \in C \text {. } \tag{2.2}
\end{equation*}
$$

An interesting fact is that the solution $\mathrm{x}=$ of (2.2) is the projection of the solution of the equation $A x=b$ to C in the norm $\|\cdot\|_{A}$, i.e.

$$
x_{*}^{*}=\text { solution } \min _{x \in C}\left\|x-A^{-1} b\right\|_{A} .
$$

3. Let $G \in \mathbb{R}^{n \times n}$ be symmetric C be a closed convex subset of \mathbb{R}^{n} and $b \in \mathbb{R}^{n}$. Denote $f(x)$ = Gx - b. The linear variational inequality problem $V(C, i)$ is to find an $x+E C$ such that

$$
\begin{equation*}
x x-x=, G x-b>\geq 0 \quad \text { for } \forall x \in C . \tag{3.1}
\end{equation*}
$$

Many iterations have been designed for solving $\mathrm{V}\left(\mathrm{R}_{4}^{\mathrm{n}}, \mathrm{f}\right)$ [1] and as far as we are aware there are little numerical methods for solving $V(C, T)$ for an arbitrary closed convex subset C. We propose the following iteration which solveg $\mathrm{VI}(\mathrm{C}, \mathrm{f})$.

Step $1 \quad z_{0} \in \mathrm{C} ;$

Step $2 y_{k+1}$ ss the solution of $\mathrm{V}_{\mathrm{L}}\left(\mathrm{C}, f_{k}\right)$,
where $\mathrm{C}_{k}(x)=\left[\left(x_{k}\right) \div \mathrm{D}_{k}\left(x-x_{k}\right) \div Q_{k}\left(y_{k+1}-x_{k}\right)_{1}\right.$ and D_{n} and Q_{k} ate arbitraty matrices;

Step $3 \quad x_{k+1}=\left(1-\alpha_{k}\right) x_{k}+\alpha_{k} y_{k+1}$, where $\alpha_{k} \in[\alpha, 1]$ and $\alpha>0$.

Under eertain conditions, $\left\{x_{k}\right\}$ coriverges to a solntion of $\mathrm{VI}(\mathrm{C}, \mathrm{f})$ -
[1] Zhu, S.Q. Numerical Methode for solving variational inequalities, Master thesss, Xi'an, 1985.
4. Consjer the problem of linear quadratic optimal control with stability related to the parameterized finite dimensional linear time-invariant systems $\left\{A_{\lambda}, B_{\lambda}, C_{\lambda}, D_{\lambda}\right\}$:

$$
\begin{equation*}
J_{\lambda}^{*}(x):=\min J_{\lambda}\left(x_{0}\right):=\left\{\int_{0}^{+\infty}\left\|C_{\lambda} x+D_{\lambda} u\right\|^{2} d t: u \in \mathcal{I}_{2 j}(0, \infty) \text { such that } x(+\infty)=0\right\} \tag{4.1}
\end{equation*}
$$

If $\left(A_{\lambda}, B_{\lambda}\right)$ is supposed to be stabilizable and ($C_{\lambda, ~} A_{\lambda}$) detectable, then

$$
\begin{equation*}
\prod_{\lambda+\lambda_{0}}^{\prod_{i t}} J_{\lambda}^{*}\left(x_{0}\right) \leq J_{\lambda_{0}}^{*}\left(x_{0}\right) \tag{4.2}
\end{equation*}
$$

holds.
[1] Geerts, Ton. Structure of linear-quodratic control, Ph.D thesis, Eindhoven, 1969.
[2] Trentelmarl, H.L. Families of linear-quadratic problems : Continuity propertics, IEEE Trans. Automat. Contr., Vol. AC-32, p323-329, 1987.
5. For a given systen P there are many "kudices" to describe it. For example, MaMillan degree, number of poles, number of unstable poles, the distance from the set of matable syitems and the minimal quadratic cost (with or without stability) etc.. Now, we defined another index for the system P, that is, ins largest robust stability radius w_{g}^{-1}, which is the largest radius of the ball $K(P, s)$ such that $K(P, E)$ can be stabilized by one single controller.
e. "Tao" has many meaning in chinese, Hatinly it means : a) "Taoism" (Taciam and Buddhism are the two dominant religions in China. It is known that Buddhism is imported and Taoism is self-created two thousand years ago); b) "search for excellence" (or "to be excellent") in your capeer; c) "high moral standards"; d) "to be perfect" (this is "Siquen" in chinese). etc.-

Nowadays, many people are still interested in "Cao". But they heve paid too much attention to the meaning b) "search for excellence" and forget about ch, especially businessmen.
7. At Pluto : babies are prodnced int factories, cars are born in families, judges ase the prisoners and Parliament consists of thieves, cows mitk people and only wolves are shllowed to enter McDonald's.

