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Preface 
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Another p~rson who hM played a tole. in my studies is Dr. Kee~ Pr<l<lgman. I am 

indehted to him for always being ready to discuss problems, for his rapid critical 
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give my thanks to Drs. Anton Stoorvogel fo~ ~haring his many research interests with me, 

for many stimulating discussions and for the help he offe.r"q me; also, thanks goes to my 

room mate lr- Ton Geerts fOr many interesting discussion and for his assistance. 

I have been fortunate to learn system~ aDd control tllMry hi a land that holds a. 

conc~;f\tration of eminent researchers in this field, and from whom I have benefited very 

much_ The subject of my thesis resulted fNlU a suggestion of hof. Hans Stltuma.cher to 

WIltpare the gap topology with the graph topology, and I am indebted to him for his 

constant help and advice. from Pro!' Ruth F. Curtain 1 learnt »bout the theory of 

infinite dirnensioniM syst.:.ms, a.nd her enthusia.stk help and support are gratefully 

a..;knowledged. Spedal thanks are given to Prof. Frank M. Callier and Dr. Joseph Wink in 

from Belgium .. nd Prof. George Zames from Can»da for tlleir interest in this reseuch. 

I appreciate that Prof. H. Kwakernaall and Prof. J. de GraM took the trouble to 

review my thesis and that Dr. Peter Attwood improved the written English of the thesis. 

I would ljke to expreSS my &ratitude to the Faculty of M .. thematl~s and Computing 

Science at ]!:indhoven University of Technology for its fin..,cial support of my research 

over til" last four years. Last but not least I would like to thank lIIrs. Huma Koops, tlle 

secretary of O\\r group. 

In tllis tlleS)s, a compact and self-cont"ined stOI'Y is presented on a topological 

apl?!Oach to tit" robustness of feedb",cll etabilita.tion. The hIVe.tigation was carrieq out 

in '" general framework including finite ~nd infinite dimensional linear time-invariant 

systems ".. well as conthwous-time and discrete-tim<l and even 2D-systems. This thesl$ 

summarises the extensive work done on this approach including tile moot recent research. 

To follow this thesis one needs no more than the backgtound of Hardy d"..s theory, 

operator theory ~nd the frequency domain :..pproach to cOlltrol systems. 
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Not<:.tioll, Symbols and Abbreviations 

IR the set of teal numbers 

IR+ tlle set of non-negative reM numbers 

<C the set of complex nll!!lllen 

C+ the open right half plane 

D the open unit disk 

A a, normed integra.! domain with identity of linea,r bounded oper .. tor. 

If' a subring of the quotient fidd of A. 

A"~'" tile set of ",,11 n.m matrices with entries in A 

~I(A) the ~et Un,mAn~", 

U""m the subset of Am ... con~istins; of all the unimodular matrices 

B",m the subs~t of F"~m consisting of <Ill the matrices having a right Bezout 

fraction and a left Bezout ftaction over M(A) 

e",m the subset of F"xm consisting of all the systems having stallilizing controllers 

X tl\e apace of inputs and outputs 

H.. a Jiardy space consisting of all comple:.:-valued functions f(.) which are 

ana.)ytic in C. and satisfy 

H.,(D) 

Loo 

L, 

RHoo 

Ilf(.)1I := sup { If(s)l : s e C+ } <: co 

a Hardy sp<Lce consisting of all complex-valued functions f(.) which ate 

analytic in C\15 and Ga.tMy 

Ilf{.)1I := sup { If{s)1 : ~ '" C\O } <. "'" 

i\. Hardy sp"<;~ consisting of all ccmplex-v""lued functions f{.) which are 

analytk in C+ and satisfy 

f
211" 2 'h 

Ilf(.)11 ;= [~up { If(<1+i-w)I d ... : <1 > 0 } ] <: 00 

o 
a Hardy ep:>ee ccnsisting of all coI<lplex-valued functions f{.) which are 

analytic in C\[') ?lid satisfy 

f+OO i-w 2 'f.> 
IIf(.)11 : .. r Sup { If{Te)1 dw : y :> 1 } 1 <.00 

.00 
i\. Lebesgue space consisting of aU complex-valued functions f(.) sati~fyin!l: 

IIf(.)11 :; ess sup { If(iw)1 : ... e IR } <; 00 

a Lellesgue space tonsistlDg of all complex-valued funrtions f(") satisfying 
+00 

IIf{.)11 := [J If(<w)llow J'h < 00 

-00 

the subset of H" cOllsistill1): of r .. tiona.! functions 
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¢e1/' 

iff 

tTl 
SISO 

r.b.f. 

U>.( 

g.r.b.f. 

g.l.b.f. 

resp, 

de,eIminant of th~ matrix P 

transpose of the matri~ P 

adjoint of the operator P 

-T 
= P(-s) 
={ x E ¢ ; ot-Ly fot all Y E '/l 

if and only if 

linear time-invariant 

single:-input and sin~le-oucput 

right Bezout fraction 

lefl flezo"t fra.elion 

generalized right newul f."ction 

generalized ldt llezout fr .. ,tion 

respectively 
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Introduction 

Robust stabilization 

Conside~ the etand!U'd feedback $y#~m ehown in FI~l1te 1.1. It i, assumed that P Q is 

the nominal system which modd$ '" natural phenomenon and Co is the ide(JJ cMtrQller 

designed according to tile nomin;a.) system P Q in order to make the closed-loop system 

:.thieve ,orne desired purposes, for exam pi", dosed-loop stability and/or r<1-sponse 

improvement. Due to the coroplieated nature and OUr limited kllowledge, in 5eneral, the 

"real" system is difficult to be identified fully_ Moreover, oftm :. model has to be 

simplified, because it is too oomplicat~d to handle. Therefore, the nominal system only 

describes the "real" system approximat<1-ly. On the other hand, some <!rrors and/or 

simplifko.tion should be """petted when implementing the ideal cOlltroller, ,0 that the 

"real" controller will not necessarily be the same as th~ ideal controller. 'thus, the 

ideal controll~t can only be an appro:dml).tion of the "roaal" controller. In sot!'l~ sense, 

nearly all control systems :.t(! $ubject to the unc~rt",inties of both $ystems and 

controllers_ Comequently, in ~ontrol system synthesis, it is necessary to study 

robustness W\,ll ,he uncel'ta.inties of both systems :.nd controllers. 

... 0 '+' 0 ~ .~ 

Figllre 1.1 Feedback SYstem 

Conv<:ntionally and conveniently, the "Teal" system and the "real" controller can be 

regru-ded as perturbed versions of tile nominal system a.nd the ideal cOl>troller, 

respe~tlvely. This thesis is concerned with ~Obu5tne55 of feedback stabilization "nd 

dos""d-loop rtspons. whh respect to IlJltertalnties in systems and conuollers. It i5 

supposed ,hat the idea.! controller Co stabilizes the nominal system Po and the 

closed-loop transfer matrix H(po,Co) f~om U :",[tt;,tt;lT to e :" [e;,<!I1T achiev~s the 

desired response. Then, the centr:.l question to be studied lIere is : What sort of 

p~rturba!iotlS can be permitted in Po (l'ld lor Co withoul destruying the feedback stability 

and w;thout Ghal1gil1g tile closed -loop r~spo"$e H(po,Co) ""acceptably 1 'This is called the 

problem of robustness of feedback $t(LQilization, or simply, robust stabili~ation. 



RobllStt'less of feedback stabilization is one of the critical problem; in control 

"y.c"m synthe,i;, ;llld ~;pedall.l', i,l apr>lications. In recent yearo, it h<,s been studied 

from v".dQu~ PQinlo of view "'n<;\ '" ~Qnsidera.ble amount of literature ha$ been devoted to 

its study. To n<lme some of them (cert",inly only a. few) ; Th. stability radii sttldied by 

Himicilsen and Pritchard [H-P); structured perturb",tion6 studied by DQyle [DO.}; additive 

syw)ln porturbations studied by Chen and Desoer [Ch-D), Vidyasag'" and Kimura (V-K). 

Glover [Gl. 1J, and Curtain and Glover [C-G); multiplicative BY5tem perturbations .tudied 

by [V-KJ, stable Bezout factor perturbations studied by [V-K}, Glover ",nd l'kfarla.ne 

[O-M), Curl .. in [Cu_ 2); ;ral'h 'Mtrit approacil studied by Vidyasagar [Vi. 1,2] ",nd Zhu 

[7.h_ 4); ga.p metric approach studied by Zames and EI-Sakl!uy [Z-E], [El.), Zh\l [ZII- 4], 

Zhu, tla.utus and PraagmaIl [Z-t1-P 1,2), a.nd Oeorgiou and Smith [G-S). l'ilis thesVl pre,ent~ 

r~~en, d~vdopTI\ent" jn the gap TI\~tric approach to the probl~m of robust stabilization. 

Tile problem of robu~t stabilization is concerned with perturbatiQn of " system. 

First of all, there is a ,IMd to meaSUl'e p~rturbations, that is, to meas\lre the dist",nce 

belw,",n two systems. Thi. M<:d is typically met by introducing; a metric. For stable 

systems, represented by input-output mappings, tile operator norm is a natural meaS\lre_ 

However 1 this norm cannot IIleasure the distance betWetnl two uIl.stable systems, and a 

topology or metric h,,-s to be developed for these systems. 

Developing a topology or a. metric for unstable systems silould b," related to a 

sped"l desig" purpOS~, A tDpology which is suitable for one control design purpose mig;ht 

be unsMisfactory fOr anotiler. MOr~ pNcisely, tile chatacteristics of a topology or 

mctdc should match the features of tile control design under consicier",tion. The problem 

of robust stabilintion ll~s two basic r"quit~m~nts ( for simplicity we will temporarily 

SUj)POSc tll~t th~r. "re no pertu,-bations on the contwUcl'S) : i) tlw perturbod systems P 

of the nominal system ['0 should be stablliz~d by the controller Co; ii) the closed-loop 

system }[(P,Co), re~ulting from the perturbation of Po, silould be "dose" to }1(Po,Cu). 

AG~ordil1g to the~e two requlrernent5, '" n~jgbborhood of Po ~~n b~ defined <" 

N(pu,c) :" { P : P ~al\ be stabilized by Co, and 1I11(f',Co)-H(Po,C.)iI < " }-

By varyinp; G and Po, a collection of the neighborhoods ca.n be obla.ined, which genera.tes .. 

tcttaill topology T. A fa.mily {P).} of systems converges to Po in tile topology T, ",. ), ------>

o if and only if (iff) PA C"l\ be sta.bilized by Co when A is sufficiently close to 0, 

whil~ H(P~,Co) converg;es to H(po,Co) as A .-.---,. 0- ThiS topology ex"~tly nla.ttltes tile 

prQbl",,, of robust stabilization. Un[ortllnatdy, tilis definition doesn't offer " good 

perspective for carrying out an analy,is. 

In lOilD, Zames alld E:l-SakkMy applied the gap metric to the rob\lstness of feedback 

stabilization for sq\lare finite dimensional linear time~invariant (LTr) 5y~t~m~ l))1der 
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unity feedback [Z-El. J. At th~ .ame time, VidyasagM (Vi. 1J proposed the grl!.ph metric 

for finite dimensional LTI systems. A reformulation. of the~e two topologies for a general 

oetting and their comp • .:d~on are presented ill [Zh. 4]. It w~ shown that both are equal 

to the topology T. 

In this thesis, W~ will report a study on robustness of feedba.c.k stabilization uSing 

the ga,p metric approach for a genera,l framework indudillg finite and infinit~ dimensional 

as well as continuous-time and discrete-tillle, and even induding 2-D LTI system~. A 

neceSSMY and sdfident condition fOr robust stabilizati<ln is chMa<terized by the gap 

topology, ",nd the estimation is given in the gap metric fOr the influence on the 

dosed-loop tra.nsfer matrices hy the perturbations the systems and controllers. ~lor"over, 

severi1l guaranteed (i.e. suffident) bounds for robust st",biliz~tion are provided in 

terms of the gap m",u-k. for systems d.:.scrib.d hy the transfer matrices with entries in 

the quotient field of H"" optimally robust controllers and the lar;;est robust stability 

radius are discussed. Heanwhil"" the relationship of the gap metric approath with the 

graph metric approacll and stable Be20ut f"ctor perturbation :method as well as additive 

and multiplicative system perturbation methods are presented. 

Review of the thas;s 

This thesis topsists of four chapt •• s. Chapter 1 contains preliminaries having of 

f om;- "",etions. The framework is outlined in Section 1, which is a generll.!· Mt-up 

includillg lumped and distributed a,s well as continuous-time and di~crete-tjme and 2-D LTI 

systems. III Section 2, it is proven that the operators induced by systems are closed. And 

this property will be used twice in thIs thesis 1 first, to apply the ga,p topology; 

secondly, to apply the theorem of Ll.x. We will discuss the relatiomhip between Bezout 

fractions a.nd stabilizing controllers in 5",<;I.10n 3. It is shown there, in ~eneral, that 

the existe.JIC<l of .. right (or 19ft) Bezout fraction ensure~ the existence of some 

,tabilizing controllers. A useful fa<;t in Lemma 1.3.3, hidden in the p..,.am~teriz<.tion of 

all Gta.bi)j~ing controllers, will be revealed in this section too. Finally, a 

mathem",tical formulation for robustMss of feedback stabilization will be given in 

Section 4. 

Chapter 2 i~ devoted to a qui1litative description of the robustMss of feedhack 

stabilizMion, and a necessary and sufficient condition for robust stabilization is 

~h"racterized in terms of the $ap topology. There are five sections in Chapter 2. The 

first describe$ a preparatory stage before the gap topology heinlJ; discussed, in ",hicll the 

$ap between two closed subspaces of a Bana.ch space is introduced. The ddillition and SOme 

basic properties of the gap topology are introduced in Section 2, in which we ",ill also 

plOVe the diagonal product propcny of tile gap topology. 1n Section 3, a necessary and 

3 



8uffident condition for robustn€8i; of feedback stabilization is given iu the gap 

topolo~y. ~loreover, a lower and an upper bound ",e o1&al'l£d fO!' estimating the influen~e 

upon the dosed-loop transfer matrix of perturbations of the sy"t~m and controller. The 

gra.ph topology is ge'ler",lized to our framework in Section 1, iII which a proof is provided 

for the diagonal product property without using ope~tr"l factoril .. tio,l. I,l the last 

section (Section 5), the gap topol01;y is compared with the gra.plt topology. 

Cha.ptcr 3 giv~s a. qua1ltitative description of robust sta.bilization for systems in 

th" geMral frame\vork. 111 this chaptN, several bounds ~re giv~n which guar .. ntee robust 

stabilization, and som~ usdul tecEmiques are developed- In Section 1, th" definition of 

the gap metric is distuss~d, the.1I, the concept of generalized Bezout fractions is 

developed and it is used to define tll~ graph metric. A reiatiQ[l8hip betw.en the gap 

metric a.nd generalized Uezout fractions is presented in Section 2. This is one of the hy 

techniC( ues that are used in Chapters 3 and 4. In Se(tio1;l 3, the ma.in results are 

provided, lI .. rnely. the guaranteed bou.ndg for robust stabilization. 

In the first three chapters, the tran.fer matrice, of the systems u.nder 

consideration arc sllppos~d to have their entries in the qllotient field of an arbitrary 

nOl'med ir\t<l~I'al doma.in conSisting of linear bounded operatofs_ In Cha.pter 4, a speda.l 

case is examined, that is, transfel' matrices with entrie8 in the quotient field of H". 
Since Hoo lias a rich mathematicai background and more .tfucture, m .. ny results iII the first 

three chapters can be deepe1\ed. Especia.lly, one of the bounds obtainl;d in Chapter 3 is 

shown to be the shaJ'pc$t in this special case. In Section of tltis .::l\aptilt, the 

relationship of 8czout fractions with stabilizing controllers is ag"in di5cussed. It i" 

shown thM Boo is a Hermite rin3 Le_ a tr;,.nsfer I):Iatrix has a right Bezout fraction iff it 

ha.. a l~ft Bezout fraction. Tlte existence of normaliz.d B.>:Ol1t fractions is presented in 

Sectio" 2, it will be a cornerstone for l~ter d~velopm~nt~. In Section 3, it is shown 

Ih"t the neighborhoods of a system ill the gap metric are exactly the lle.ighborhooQ. 

obtained by perturbing the right normalized Hezollt fractions of th~ system. It follows 

that one of the gl,ar"'IIteed bounds giv~n in Qlapter 3 is the sha.rpest. Optimally robust 

controllers and the largest robust stability l'adius of a system are discu.~sed in Se~.tion 

4, where several related problems such as the influence of the uncerta.inties in optirllally 

robust controllers M,d the variation of the dosed-loop systems "tc. are discussed. 

Section 5 is devoted to the disC\lJ;J;ion of the computation of th~ gap metric, and in this 

section .. ~omputable formula of the gap metric found by Georgiou <loIld .. lOWer and "II upper 

bound of the ga.p mettic obtained by Zhu, Halltlls and Praagman are presented. In Section 6, 

we discuss the design of finite dimension .. l controllers fOr infinite dimensional systems 

via the largest robust stability radius and optimally robust controllers_ FinaUy, in 

Section 7, a pl'ocedurO! for to,I1puting optimally l'obust controllers and the largest robust 

stability radius is pl'esented. Some numerical examples are also provided the,e-

4 



Chapter 1 

Preliminaries 

1.1 Framework 

A fr'l.meW01'k will now be formulat(ld, which i~ 'l. unifying 'l.ppl'oaeh for dealing with 

botA lumped and distributed, as well as continuous-tim!! and dis~rete-time LTI systems, 

Thi~ framework provides a connection of sYB~ems with Oper .. tors which makes it possible to 

'l.pply oper .. tor theory to control system synthesis, 

SET-tif' Let A be II comrnuta..ive normed integral <:\om'l.in with identity of lineM 

bounded operators mapping a B:m .. ch space X iilto X, and F be a subring of the quotient 

field of A, 

ASSUMPTlON 1.1.1 It i. assumed that any llOllzero element f of A maps X into X 

injectively, a.nd if f maps X onto X surjectively, then C1 is in A "Iso, Horeover, each 

element P e; F 15 supposed to h~l,Ve a coprirne fractions OV(>r A, which is unique up to 

multiplications by the units of A. 

Not~ tht the coprime fractions do not necessarily have to be Eezout fractions, 

whose definition will be given in SecHon 3. 

X is regarded as the space of (single) inputs a,q<;\ outputs. A i~ interpreted as the 

set of all single-input <>-11<;\ singl~-output (SISO) st~ble systems, while F is the 'UniVerse 

of 1111 the SlSO systems under ccns;deT .. tion. 

Since each nonzerO element f of A is an inj"ctive linear bounded operator mapping X 

into X, the inverse r' e;.;ists as ~ Hll .... r (possibly, unbounded) operator mappin~ the 

ra.;nge R(f) (!;; X) of f onto X. It follows tbt for eao:h system P .. Iljf EO F, a linear 

(possibly, unbounded) opera-tor P can b" Mrined as follows. 

DEFINITION 1.1.2 Let P e; F and f,h ~ A be a coprime fra~tion of P. A lineM 

operator P can be defined: The Dom(P) of P is defined as R(f) and th", action of P on 

x E Dom(p) is defined as Px :'" hC1x. The operator P is ,iI11ed the operator induced by the 

system P. 

5 



He~aLLS~ th", eoptimt [ractiOM of P 0;; F are unique up to multiplications by the units 

of A, it is easy to check thM the induced operMor P by P E F does not depend on a 

,pecial cop"ime fraction of P. 

LE~I~IA 1.1.3 Suppose that f,h E A and f "" O. Then, the opemtor r-1h is equal to 

he' 011 Dom(hf"\ 

PROOf LH x " DOll\(hC I
) a.nd 1[-lx '" y, Then, fhr'x = fy. 5inc~ { ij.I\d h .. re 

commutative, it follows that II" = ry. Therefore, hx E Dom(C') and f'hx '" y. Thie 

impH~~ th,t C'lI is equal to he' on Oom(hr\ _ 

f'~ if and only if (iff) Pi = P~. 

PROOF " .... " TM3 is trivial. 

"..,." Suppose that (f/>h i ) G A is a coprime fra~tion of ?i (i=1,2). For a.ny 

X (pO 0) E Dom(f',) (:= Dom(f',)), we have that h,f~'x =; h.G'",· It follows from LerrlIua, 1.1-3 

that f~lh,x '" f;lh,X, i.e., f,h[x '" f,lI,x. Define g :'" r,h, - r,hz (e; A). Sin~e g is not 

itljective, it is zero. Thus, P, '" Po. • 

BecaUSe of this lilmnla, P can b~ id£ltttificd with P, and, for ,implicity, P is denoted 

also by ['. 

LE~I/<IA 1.1.5 The induced operator by P '" F i~ '" bound~d rna.ppin;; of X into X iff P E 

A, 

mOOF ".,.." It is trivial. 

"..,." Suppose that (f,h) € A. is a coprime fn.ctioll of ? Since Dom(P) = Dom(r-I
) 

R( f) = X, r ' is bounded, i.e., (' '" A. Hence, P '" ,1. • 

Th~ sum of two SystettlS in F is their parallel connectIon, and ti,e prod1lc\ of two 

systems is their ca£cade connection, 

ASSUlvIPTION LUi The ij.lgebrij.1c properties of opera.tors induced by systems in Fare 

ddiMd by those of systems, i.e., the sum of two Ope'<Ltors i. the operator induced by 

the sllm of the relevant systems and tho product of two operators is the oper",tor induced 

by the product of the relev<Lnl ~y~tem~. 

The following example, show that the a.bov~ fram~work is reasonable and includes IDij.ny 
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import~nt $ituations. 

EXAMPI,E 1.1.7 Assume tllat A j~ the set of all .",tional functions without poles in 

til'" cio"ed right half plane including infinity and F is tM ~et of all rMional 

f unc;tjom. Let X be the H;udy 6pace H2• It is well known that ~ac.h system P e; A induces a 

~o-called Laurent operator [Fr. p48], " linear bounded mapping from H: to H., which is 

injN;ti".'e jf P;< O. Identify e~ch sy.tem P in A ,with its Laurent operator, then, A will 

be a normed integral doma.j!l_ It is a routine to checl: that A, F <tnd H2 satisfy Assumption 

1.1.1. This CMe T~present.s ~ontinuous-time lumped LTI systems. 

EXA.IVJPLE 1.1.8 Assume thM A Is the 5et of all rational functions without poles in 

{z e C : I z I ~ 1 }. Let F be the set of all rMional funttio:os and X be the Hardy space 

lIdO). As in Example 1.1.7, each system of A ind"lltes .. Laurent operator mapping H2(D) 

into H.(ID). If we identify the systems in A Witil their L,."urent operators, then A becomes 

a normed integral domain. It i. ea-~y to check that A, F and U2(1D) satisfy Assumption 

1.1.1. Thi~ calle stands for discr",te-time lump"d LTI systems. 

Note that Ex~plea 1.1.7 and Ll-S also include the so-ta.lled singular (or 

generalized) finite dimensional continuous-time and d;s.;xele-lime lumped LTI systems, 

respectively. 

EXAMPLE 1.1.9 Let (LTl)+ denote the set of aU real-va.lued Laplace transformable 

distributions with snpport on R •• Define 

and 

Moreover, define 

If "-" denote the Lapla<:e tl'ansform, the interpretation of .1(0'0) and A_("o) is fairly 

obvious. Furtllermore, define 



X'O(O-o).- f E A_("o) :3 p>o, sudl that inf 1 f(s) 1 :;,. 0 }, 
I·i>p 

and 

Let A be A_(O) and F be 8(0), and as~ume that X i. the HMdy sp:..ce ll~. This is the 

ttansfer-funetion algebra introduce.d by Callict and Desoer [C-D 1,2], which describes a 

class of continuous-time distributed LTI systBms. It is a routine to <;he<;)< that A, F and 

Hz s:..tisfy Assumption 1.1.1. 

EXAMf'I;.J;: J..~.10 Let F be the set of all ration,,\ functions of two vaTiables; i.e., F 

consist, of all functions f'(~,t) that are rational with respect to S OiLnd t, resp"ctively. 

The poles of F(s,t) are defined as the p"irs (s,t) so that the denominator of P(~,t) ~ 

Z~to. Alld F(s,!) is said to be stable if all of its poles are in 

():= { (s,t): Re s <: 0; Re t <: O,}. Let II be the subset of F, which consists of all 

stable clements. Define X to be the ~p",ce <;oJ:11;isLiIlg of all the fUllction. of two 

vil.tiabl"s g(s,t) which ate analytic in both variables everywhere out.ide {, and sa.tisfy 

Ilg(".)1I .- SliP 
CO>Q: I3,Q 

It can be easily check that A, F and X defined he,e .. 1.0 s .. U.fy AssumptioIL 1.1.1. This 

cas~ MgCl'ib~s a class of 2D- L1'! systBms. 

Kote that, actually. there are various definitions of stability for 2-D systems and 

the definition given above is only One of the possibilities. 

D~note the set of all matrices with entries in F (resp. ,:\.) by M(F) (re.sp. 1-1(':\')), the 

subset of I-l(F) (resp. I-l(A)) consisting of all n.m matri~e~ by Fnxm 
(~e~p. An'"'), a.nd th.e 

subset of Amer;:m conslsting of all unimodular matrices in AmKm. by Um,m .. Note that U E Amx:m 

is unimodl.ll .. r neither implie~ nor i.s implied by the .it\latiort that its enlries are 

unimodular, The norm of Xm is defined as 11:>::11 :; [1:
1
:

1
11:>::,11']''', It follow, from [Ka. p153j 

tll .. t 

l.f:M~IA 1.1.11 1'h~ tnappiIlg U _ U-1 dcfiMd on U""" is continuous and Um
,", is an 

open .ub.et of Am,m. 

Each element P e FOX," induces :..n operator mapping a subspace of X"' il~to X" iII an 

obvious way. III Ihe I1ext section, we will prove til at this op~r:..toI' is closed. 
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l.2 Closedness of P El F"~m 

In this s",ction we ~how th"t eaeh operator lndu~eQ by system P E F"~"I>I is a dosed 

operator mapping a. subspace of X" into X". This property is esselItiaJ for the application 

of the gap topology, b~cau$e the gap topology is only defined fOI closed liIl~a.r 

operators. Moreover, it is also " crucial l?roPe~ty for applyins Lax's theorem in order \0 

prove the ,,)d>tel\~e of normalized Bezout fractions in ChaptH 4. 

Suppose that l' j~ a lineM operator mapping a subspaee of a Billiath .pace Y into 

another Billiach space Z. T is said to be c/o$ed if its graph 

G(I) :'" { (x , Tx) : x ~ Dom(T) , Y } 

is a dosed 6ubspaee of YxZ. 

THEOREM 1.2.1 Under A~~umption 1.1.1, ea.cl!. ~ystem P E F""" is a dosed lh,ear 

operator mapping a subspatE of X"' into Xn 

The proof of this theorem is based on the following lemma_ 

LEMMA 1.2.2 Assume that W, Y and Z are B!\.lIa.ch spaces, S a dosed linear operator 

mapping a subspace of W into Y and that T is (l. linear bounded injedh·e operator mapping 

Z into Y. Then, th~ o;ombined op""ator T-'S mapping a subspa..;~ of W into Z is dosed_ 

Note that the inj(divity of T implies the e;,dstence of r-\ whith is defined on the 

range R(I) <;>f T-

PROOF We apply the well-known fact that a linear opera.tor K mapping a subspa.ce of Y 

into Z is closed iff Kx=y whenever xn _ :;< =d K"rt ------> y for n --+ 00 _ ~t W.,1II E W, 

W. - 111 illid r'Swn - z. Sint~ I is continuous, SWn _ Tr. By the dosedness of S, we 

have Sw = Tz_ Hence, r1sw = z, and this implies tht r's is closed. • 

PROOF OF tHEOREM 1.2.1 Sinte P e F
n

""" th""e is illi ejemenl d E A and a matrix 

N E An,,", such th(l.t P .. dolN. Therefore, if we tall .. S = N (l.nd T .. d r, Where r is the n,n 

identity matrix, then, according to Lemma 1.2.2, P mUSI be closed. • 
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l._3 Bezout fractions and stabilizing cont~oller5 

For each P e pn.,,, , (O,N) E M(A) is said to be i'- right Bcz"ut I,-actio,", (r.b.f-l of P 

ove!' H(A) if 

1) D e A"""" N .. An"", and IDI ;c 0; 

2) thcre arc two matrices Y ~nd Z in M(A) such that 

(1.3_1) YO + ZN '" I 

3) P = ND-1 

[ef~ Bezou, fr<1-~tion8 (l.b_L) are dcfiIled analogously_ It is ea.y to check that an 

Ltd. (resp. I.b.f.) of P E p",m is unique up to right (reep- left) multiplicatiOll by 

matrices in Um,," [Vi_ 2 p75]_ 

Equ<,ti<Hl p_:l_1) i. called a B~zout identity_ It pla.y. an important role in control 

system synthesis_ Later oa we will show that a Gt<,bHizing controller can be obtained by 

oolving .. lJezout identity aad that all stabili~l);lg ~ontmllers c<l.,' be parameterized by 

solvin3 two Bezoul ide[ltitics (olle is related to an r_b_f., another to an l.b.f.). 

In gener",l, lIot ;,vcry matrix in F"'" haG an r_b_f. (re.p" l.b.f.), and the fact that 

,. system having an r.b.r. neither implies nor is implied by the fatt that it has an 

l.b-f-- 1'h<l.t eath II1atrix ? with entries in the quotie);lt field of A has an t"b.f. iff it 

has an l.b.f. is equivalent to the fact that A is a Hermite ring [Vi. 2 p347]- III <1\<).pt", 

4 We will prove that H", is a Hermite ri);lg_ 

Denots by S",'" the subset of F"xm comi,ting of an elemeats which hav~ both an 

1'_b_f_ and an LbL over M(A), and by MIS) the set Un,m8n, ... Note the f"ct th"t <I. matrix 

P '" F
nx

", 11"-"' <). right (re.jl" l~[t) Bezollt fraction does not imply that e<).eh of its e,ltrieS 

h<" Olle; for insta,\c", the II1atrix 

p 
[ 

se _5 0] 

----=-.:. 1 
5+1 

h<l.s a tight Bc;:zout fraction (D,N) over M(a,,)- But .,,-5 does not have a Bezout fraction 

(see <1\<).pter 4)-

Now we w\1l i);ltrociute t1l2 feedback system shown in Figure 1-3_1, where P E M(F) 

repI'es~"ts a system and C '" M(P) a. eon troller; Ull ti2 denote external inputs, elle~ 

I);lPl1t, to the ccn,trol1,,!' and system respectively, and YI> Y2 outputs of the compensator 

a_nd system, resp8ttIvllly. This model is ver~i'-tile e);lough to i'Lccomrnod<l.te several colltrol 

problems, for iIlstance, the prohlem of traddng Or disturban~e rejection or 



desensitization to noise Qr feedback compensatioll or cascade compensation cteo. For 

conv~nience, we will refer to such a set-up a~ to feedback syst~m. 

Suppose tbat P,C E M(F). The transfer matrix from u :=Iui,u;lT to e : .. [e;,e~)T is 

(1.3.2) 

Throughout this tllllsis it ;5 ~sumed that P ancl C have e<lrtlpa.tible dimensions, also tho-t 

the well~posedne~s condition II+PCi;"O is sati~fied so tlUl.t H(P,C) ma.kes sense. 

F'lgme 1.3.~ Feedback System 

A transfet matri;>;; is said to be ~t<lble if it is in M(A). The feedb .. <:k system shown 

ill Figure 1.3.1 is $ .. id to be stabl" if the transfer matrix \V(P,C) from u to y :", !J,;;,yil 
is stable. But it turns out that IV(P,C) is stable iff H(P,C) is stable, beca.use 

W(P,q .. [.~ ~ ] (ll(P,Cl-I). 

Since H(P,q ha.s a slightly simpler form than W(P,C), we always deal with H(P,C) when 

studying stabmty of feedback system. 

A system P E M(~) is said to be s.abilizable if there is an element C in M(F) such 

that H(P,C) is stable. If H(P,q is stable, then C is ",lied a stabilizillg cQlltrolier of 

P. One can verify that the conditions for stability .. re symmetric in P and C, i.e., 

H(P,C) is stable iff H(C,P) is stable. The set of all stabilizing comrollers of P is 

denoted by S(P). 

LEMMA 1.3.1 If P .. ~ru;m has an r.b.f., then P has a stabilizing controller. 

PROOF Assume that (D,N) .. ~1(A) is an r.b-f. of P, and (Y,Z) E M(A) such that 

YD+ZN=J-

If IYI "" 0, define C := Y"Z. It follows from 

H(p,C) = [~ ~ ] + [ -~ ] (ill + ZNj"' IZ, YJ 
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that 

that 

C is a stabilizing controller of P. Now ~llPPO~" 

[yT,KT]·t has full column rank, and define 

V := { REAm"," : IY + RKI;eO }. 

that IYI O. Choosing K E Am
•

m 
.uth 

It ie ~how1\ [Vi. 2 pill] th"t V is <en 01''''' d~nM subset of Am .. " (Note that althongh 

[Vi. 2 plll] states this property for principal idea.! domains, ttle proof "uits fot the 

genetal case ). Now, take R € V s\\ch that IIRKDII <; 1. Thu., 1 + RKD is lInimodul"'r and it 

follow3 from 

(Y + RK)D + ZN = I + RKD 
that C ;= (Y + RKf1z Is a stabilizing controller. .. 

AnaJogou;ly, it can be shown that, if P € F",m has il,n Lb.L, then it has 

o\ahiHd11g contN\\ers too. Moreover, assume P ~ F n.", has stabilizing controllers, then, 

it can be easily proved that P ha.s "-1\ r.b.£. iff all of its stabilizing ~on"Dllers ha.ve 

an I.b.f., and tllM P has I.!;>.!. iff ll-\1 of it. stabilizing controllers have ~n r.h.r. 

[Vi. 2 p363]. Hence, if P is in ~1(B), then the stQ;bHi~ing controllers of P always exist 

and all it. .bbilizing controllers are in M(8) too. FUl'thermol'e, we tat, pal'amctet'ize 

,,11 of the stabilizing ~ontIDllers of I' E M(B). 

Assume that (D,N) and (D,N) are an r.b.r. and an l.b.f., re5pedively, of P. Let 

Co E S(!:,) "-lid (Y,Z) M\d (Y,Z) be ~II f.b.f. and an Lb.r., respectively, of Co, such tht 

(1.3.3 ) [ -~ ~] [~N ~] [I 0] . 
D N D Z 0 I 

It i. re",dily shown th",t 

(1.3.4) ~-Nll. ] 

Z+DR 

LEMMA 1.3.2 (Vi. 2 pl081 
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LEMMA L3_3 If IY-RN,#O, thii'll IY-NRI.,.O, and vi~e versa. 

?ROOF Assume Iy-RNI;<O. According to Lemma 1,3.2, C:", (Y-RNf\Z+RD);;;S(P). Let 

(Yo,Z<) be an r.b.f. of C. Again by Lemma 1-3.2, there exists a.n Ro <;; A""'" such that 

I"Y-NRcl;eO and (Y.,Zd = 6.'-NRe,Z+DR.). It followa from 

- I· 1 
(Y-RNf (Z-tRD) "" Zc'Y. 

that Rc '" R. H<!!tH:<!! IY-!\TRI,oo. The conV<i!l'l'ie can be proved similarly. • 
tl:ow tt<i! next theorem follows readily from the above ;rrguments. 

lEEOREM 1.3.4 Let PEaR""'. Theil C e S(Pl iff an R <; Ji'=m exists such that 

IY-RNI;eO, 

If P ha.~ neither an T.b-f. nor an Lb-f_, a stabilizing ~ontroller of P may exist 

(see an example given by An'l.nth'l.ram [An.) or may not (for eX"lIl1pk 1'(s) = se -$). If A is 

Hm, the" P e M(F) has an r.b.f. iff it has an l.b.f. iff it has a stabilizing eontroller_ 

A detailed discussion will be given in Ol'l.pter 4 fot tIle case A '" H.,. 

1.4 RobustM"'$ of feedback st""bilization 

In this section, we loll! formulate the central problem studid in this thesi._ 

Suppose that we h'l.ve a sequence of systems {PA} and 'l. sequence of controllers {ClI} 

parameteriz<i!d by }, ~i"g va.!ues in .. metric space tl- Also suppose that H(Po,Co) is 

stable. The q1I~$lion is , when will H(PA,C .. ) be $table as }, is suffkierrUY cillSe to 0, 

and H(P .. ,c .. ) ------ H(1'o,<;) as }, __ O. 

The space, A, of th" pal'attI .. ters }, could occ'<r all a. res'<lt of perturbations, 

disturbances, approximations, measurem"j\t errors, modelling errO,$ l!.l1d pa.rameter 

uncertainties, or could torr"spond to the physJeaJ. cha.ra<:teristics th"t Me intrinsic to 

the problem at hand. 

R01.1ghly speakinl;, Po Is the nominal system or 'l. mathernMical madel, which 

approximately d<lscrib"s the unknown rea.! physical system; while ~ i. the ideal 

controller which is de5igned a~cording to tM, nominal system. In theory, the ideal 

controller Co $tabili~es the nominal system, P" i.e., tJ(Po,Co) i. "table, beside$, 

H(po,Co) is th" expected re~pOn"e. In ptactice, it is hoped that both real pl>ys).;"I 
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sy,lelTI P", which i. dost to Po> and real controller C~, which is do~e to Co, will form 

a stable pair too, i.e., H(PA,C",) is stable, and, if' addition, H(P""C,,) i5 dose to 

H(l'o,Co). This problem is referred to ,·obuslness of feedback ~tabilizatiM, or simply, 

rob1'st sl.abilizatioT!. 

For ttle study of robustness of feedb<Lck stabilization, we need a t<;>pology Ot a 

metric in order to describe the distances from Po to fA and from Co to C,... Thi. topology 

should be compatible with the robustness of fMdback stabiliz<Ltion in th~ se,lS", that the 

perturbation (? .. ,C .. ) from (?D,CO) i. a .tabl~ pair and H(P",C..,) i. dose to H(po,c,,) whell 

f'x is close to Po alld C" i. clo,,, to CQ ill the lopology. According to these requirements, 

the following topology ca.n be defiMd and it will be compa.tible with the problem of 

robust 5tabilizalioll. 

Let en,", be the subset of F""'" consisting of ,,11 the "lenlMts which possess 

stabilizing controllers. We defil\e a o,,"~k neighborhood N of Po e Cn,m "s 

wherC Co is a staoili~i[\g controller of Po. Sy varying 0: over IR+, v!)'rying Co over th" set 

S(po) of all stal:>ilizillg cOlltrollers of 1'0 "nd varying Po over Cn,m, we will ootain "

collection of bMic Itci.ghl:>orhoods, which forms "- o",i. far a topology (denoted by T) over 
Cn",m. 

Unfortunately, although this topology perfectly de~crib.5 the robustness of feedl:>ack 

stabilization, this definition as g;iven has little structuH!~ "nd doesn't offer a good 

perspective for "llaIY5is. In tIte next chapter, we will introduce tile gap topology and 

show that it is "'lual to tOpology T on en,",. 
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ChaptE:r 2 

The Gap Topology and the Graph Topology 

2.1 The !J;ap between two <olosed subspacM 

Let Y be a Ban:..cll .p;v;;e and 1>,'if; be two linea.r closed 5ub5paces of Y. The gap is a 

Measure of the "distance" between tlVo )));Iea.r closed subspa.ces. It is given in terms of 

two directed gaps, and the dirtat~d fI~P from 1> to 'if; i. defined as 

(2.1.1) 

Where 

"""T('l\~) :'" sup id II x - y II, 
x.S.p y.>/1 

s" : .. { X E ¢ : Ilxll .. 1 }. 

If if> = 0, theIl defj);le T( 1,"") := 0_ The gap betwee);l 1> and 'if; is d",fined as 

(:2-1.2) 

The following relaotions are dftect ~on6equenc~B from the definition_ 

7(1,'/1) ;;; 0 iff ,p \;; '/'; o(,p,'if;) = 0 iff 1> = '1'; 

6(,p,'I'} = 6(,/,,1»; 0 ~ <I(¢,>/1) :0;; 1. 

In general, 0(.,.) i~ );lot a. metric for the sr>ate of all linear closed StlbSpa.ce5 of 

Y, he<:ause it May not 5a.tisfy the tri!Mlgle inequality_ But the function y(.,.) defined by 

(2.1.3) 7(1,.",) :'" sup inf Ilx ~ :vII ; 1(1,.",) := Ma.x{7(1),'¢),Y('P,¢)} 
XeS~ y.SjI> 

is a metric a.nd 6(1".",) 5: y(</>,'I') ::; 20(1),'1'). Although the gap function <1(_,.) is not .. 

IlJetric, it i. more coIlvenient than the proper metric fll!1~tion 1'(.,.) for applic:..tione, 

since its definition is slightly simpler. 
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We will e!ld this section by giving an intuiti.e illustration of the g"p function. 

Fir~t, we t()1l.sider the case of ¢ !l.nd 'i' being two line. on the plalle shown in Figure 

2.1.1. In this case we have T(¢,~) = ---;)(;0,1» .. 5in(8). Next, let", be " line !l.nd 1/' be 

!I. plane, and their r~la.tion~ldp is shown in Figure 2.1.2. Then, Will h!l.ve 

T(¢>,;o)=sin(y) and ---0"(;0,1»" l. 

.p 

¢ 
"{ 

¢ 

.p 

Fls· .. 1.1.1 Fi~u", 2.1.2 

2.2 Th~ gnp topology for F n<", 

According to Ddinitioll 1.1.2, each sY5tem P e F"'''' is a line", opera.tor mapping a. 

oubopa.c" of x'" into X" and by Theor~m 1.2.1, this op~riLtor is dosed i.e. the graph of P, 

G(P) ;= { (x , f'x) ; x <; DoroW) } 

is a c\o5ed .ub"p<Lcf! of X'''xX". The dir~c~~d gap aud the gap between two .yst~ms in F"",m 

are defined as the dil'ceted gap and tit" !):a.p between d,eir gTaphs, respectively, that i~, 

(or 1\,f'2 in p""ft 

It is elLSY to See tha.t S(P"P,) 
Po E Fnx,ln ;;tJ;i 

6(P"Pd := S(G(pd , G(p~») 

P z. We wit! define " basic llcighhorhood of 

NWo.~) .- ( PEP"'''' 6(l'o,P)« e }. 

Now, by varying ~ ove~ (O,IJ a.nd varying Po over in.,", we can o\;>t"iI\ a. collection of 

ba.sic Mighborhoods. Thi5 ~ollection forma a h;u;e for a topology on F···· which is called 

the gap topoloyy. 



The following pn:>perties, Th~orem 2.2.1-2.2.4 are. quoted from [Ka. p197~200], «TId 

they will be used later, 

THEOREM 2.2.1 If POE A~"'" and P e F"'" satisfy 

then, P is in A""m 

A consequence of this tMo~em is that An
•

m is an open .ubset of F
n

,,,, in the gap 

topology. Thus, any system is stabll), if it is sufficiently close to a given stable 

syst~m. 

THEOREM 2.2.2 On A"''''', the gap topology is "'qual to the topology induced by th~ 

operator norm. 

(2.2.1) 

Another way of writing (2.2.1) is 

(2.2.2) 

THEOREM 2.2.4 If P j " F"""" (1.01,2) "re invertible, then 

Note that according to Theorem 2.2.4 the gap between two 5150 systems, Ivhose 

transfer fun~tions are polynomials, can be obtaine.d by computing tbe g"p between their 

inverses, whose transfer f1lllclions Me strkdy proper ra.tion<ll function •. 

It is well-known th"t the norm topology in Anxm is a product topology, i.e., a 

family {P).} of matrices in A"'" con\'erges to Po iff each entry f:..mily {p(1,j)} converges 

to p,;,j) for all i,j. In Section 5, We wHi show th"t the gap topology is equal to the 

graph topology on Bn,,,,. But, Vidyasagar [Vi. 2 p246] 5howed that the graph topology is 

not a product topology. Hence, the gap topology j$ "ot a product topology on F"""'. 

Below, we will prove that the gap topology is a diag<mai product topology. This 

property pl"y~ an important role in dealing with feedb"ck systems. Suppose that P; E F""" 
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(i=1,2) lLav~ the fo!1owing diagono.l form 

(2.2.3) [
P' 0 J 

Pi '" 0' 1";' 

'fHEOREH 2,2,,, Let"'; '" F
nxm have th~ diagonal form (2.2.3) (i=1,2). Then, 

(2.2.4) 

PROOF By definition 

T(P,.Pz) ;= ~ul' inf II x - y II, 
XoSG(P,) yoC( Pol 

where x and yare in X"'xX" Le. 

Therefore, we can. write 7(1",,1",) as: 

(2.2.5) 7(p"p,):- 6Up inf [II'" - y'I11 + IIxz - lllZI'h 
x.SG(PI ) yoG(Pz) 

Now, wo can pl'ove the first inequality of (2.2.4). From (2.2.5), we get 

(2_'2.6 ) ¢(?"P~)?; sup 
x'.SGwl) 
~'i. ... o 

SUp 
"!"So(,,l) 
X'ZIIIIIO 

i.e., 7(p"p.) <:: ¢(p:,?i)-

inf [llx' - y'lI' + 110 _ lllZjllo 
Y·G(P,) 

inf [II'" - y'lI' + 110 - 011 1]'1' 
y'.G(p!) 
y'aO 

inf 11,,1 _ )I'll 
yl .. G(p~) 

From (2.2.5) to (2.2.6), if we take x'", 0 in6te~ of ,.? = 0, we can get 
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HE!n~e 

By symmetry, 

COllsequelltly, we get the first ineqnality of (2.2.4). To prove the second inequality, we 

apply 

to (2.2.5) and ob1;aill. 

"'6"(P"p.) ~ sup inf [11",1 - ill 4- IIxt - y'lll 
x'SG(P,} y .. C(1"2) 

.. sup [inf 11;./ ~ y'll + inf II~l - /111 
X4SG(Pl) Y'~G(pl) Y~G(P~) 

~ sup inf Ilxl 
- ill + l;1,l.p in! IIi - ill 

nSG(Pl) y'~G(P~) X.SG(P,} y'l~G(P~) 

sup inC Ilx' - y'lI + $up in! Ilx' - ill 
x'"SG(p\) yBG(P~) x'.SG(Pil y'l.G(P~} 

By symmetry 

As a r(lsuU, the second inequality or (2,2.4) is true. • 
COROLLARY 2.2.6 Let {P),} be a family of syst"m$ in F""m which has the following; 

diagonal form P)" = ro1 ~;], where p{ e F"j"'''j (j = 1,2) <U\d n,+nl = Ii; rn,+m~ = Ill_ Then, 
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8(P""Po) ----- 0 as .\ ----> 0 iff 8(f'~,P;) ----- 0 a"ld 8(P~,P~) - 0 "intultaneo\1~ly a. 

A_O. 

This prOp~,.ty is called the «[,>gollal product property and it will be used in the 

no:t section, 

REMARK 2.2.7 h\ a completely analogous wa,y, it c'>n be proved thM (2.2,4) will 

still hold if Pi i~ defined by PI = [g; ~~] in5tead of (2.2.3). 

2.3 A necessary and sufficient condition for rohust stabilization 

In this section we '>pply the sap lopology to the problem of robust stabilization, It 

is shown th;,.t on e"'''' the pp topology is compatible with this pro bkro and coincides with 

the topology T defined in Section 1.4. 

(2,3,1) 

PROOF It i:s easy to chock that H), : .. H(P)"C),) can he written as 

H" = (I + FG),f\ 

where 
o I 

f := [nI 0]' [ 
c), 0] 

C),.- 0 P).' 

According to Theorem 2,2.4, we know 

= 8((1 + FG,,) , (I + FCQ)). 

From (2.2.1) and (2.2.2), we have 

B\\t by Remarl! 2,2.7, 
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The following corollo.:ry givas a ne~esgary and J;u.fficie.nt condition for robustnes$ of 

feedback stabiHzatioj\ 

COROLLARY 2.3.2 Suppose>. ----0 PA and >. _ C), are funct)Ol\$ mapping A into the set 

F""m of systems and the set Fmno of controllers, respectively. Horeovet, 'l-'lsume that the 

corresponding closed-loop transfer maMix H{P-,-,C.,J is stable at >. 0, i.e., 

H(Po,Co) E M(A). Then, the following two st~tements are equiva.lent. 

i) H(P~,C),) is stable when A is suffidently close to 0 aJ;ld satisflas: 

(2.3.2) 

ii) 6(p)"Po) _ 0 (J.. ----> 0) and 6(C)"Co) _ a (A ---->- 0). 

PROOF "i) _ ii)" According to Theo,ern 2.2.2, the gap topology is identie.a.l to the 

topology induced by the op~r;).tor norm. SiJ;lce H(P,)",C,),,) i5 stable, (2.3.2) is equivalent to 

6(H(P""C-,-J , H(PQ,Co)) - O. Using Theorem 2.3.1, We know that i) implies ii). 

"iiJ .... i)" From Theorem 2.3.1, 6(l1{P-,-,C.I,) , H(Po,Cg )) ----> O. According to Theorem 

2.2.1, H(P,)",C . ..J is stahle as J.. is sufficiently close to o. Again by Theorem 2.2.2, 

6(H(p-\,C;..) , H(Pa,Cg)) _ 0 implies (2.3.2). • 

Recall that en,m is a Sllbs~t of F""m conSisting of an the systems whiclt possess 

stabiliZing controllers in M(F). The following result is a simple outcome of the above 

corollary. 

COROLLARY 2.3.3. In the gap topology, C .. , .. is an open ~\1bset of F""m. 

finally, we will show that the restriction of tlle ga.p topology to Cn,", i$ equal to 

the topology T defined ;n Section 1.4. for a. system P E C"'''', a. ba.sic neighborhood of P 

in the topology T is defined as 

N(Po,Co,t) :" { P : H(P,Co) ;$ stable and, IIH(P,C,) - H(Po,CaJIi <: € }, 
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whel'e Co i~ a 5~abjlizinJ; ccmtroller of PD' 

Suppo.,. that {P,\} c en,,,. converge~ to Po E e"'''' in the topology T. Thon, we 5e~ th .. t 

H(P,\,Col i. st .. bl" when .\ is 6\1.(fici~ntly do"" to 0 and IIH(P",Co) - tl(I'o,Colii ~ O. 

Ac~ordlng to COI'ollary 2.3.2, we know th"t {P",} converges to 1'0 in tlte gap topology. 

Conver5ely, s\lppose th .. t {p ... } E en,", COl\v~rg"" to Po E en,," in the ga.p topology. By 

Theol'om 2.3.1 and 2.2.1, we know tha.I H(P ... ,Co) is ,ta.ble when .\ is sufficiently dose to 

o and tl(PA,CO) converge~ to H(l'o,Co), which means that {PA} converges to Po hi the 

tQPQlogy T. 

2.4 The graph topology for B""· 

Th~ defil;lition of the gta.ph topology and its essential prope,ties are presented in 

this section. The graph topology was prop05ed by Vidya.sagar and thoroughly studied iil his 

monograph [Vi. 2J. Th~te a.to;, two distinguishing f~a.tutes in the present formulatioil : 

i) The definition a.nd thMrems are carried out fOr a general setting; 

Ii) In [Vi. Zl opectra.l fac\ori2ation of ration .. 1 matrices is used to prOVe the 

diagonal p"l"oduC! property of th~ graph topology. However, the spettral factorization 

pl'Qblem has I\ot yet beeit solved sMisfactorily for '" geilel'a! matrix ring. So, we provide 

a p1'oof, which is independ~nt of spectral factorization, 

The oilly proof given in thi8 ,e~tion is for the diagonal product property. The 

p~oo(s of a.ll the other results are aimple translations of [Vi, 21, hell~e we will omit 

thF2m h~[e, 

LEMMA 2.4.1 Suppose thM Po '= 8
n
,," .. nd (Do,No) is an r.t.f. of Po. Then, there 

.xist5 '" con.tant J.I. = J.I.(I)~,ND) > 0 such that: if a. pair (D,N) oS I>I(A) oati5fieQ 

then 101 .. 0 and (D,N) is an r.u.f. of P ;= ND-t
• 

Let Ii: be any positive number less than ~(Do,No), theil 

is a basic neighborhood of Po. 

Now by varying", over (0 , ,,(Do,No)), varying (Do,No) ovet the set of the r.b.f's 

of Po, "1\d vatying Po oYer Bn
,," we can obtain a collection of basic neighborhoods. 
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LEI'IHA 2.4.2 The collection of the basic neighborhoods define. a topology on B",m. 

We ~all this topology graph topology. In thj~ topology two sysMms PI and p. are 

"do.e" if for u.ch r.b.f. (D"N,) of P, there exi.t. a.n r.b.f. (D"N.l of p. such th., 

II (DI,NI) - (D2,N.)11 is ~mall. A family {p).} conVerges to Po in the graph topology, if for 

each r.h.r. (Do,Nol of Po th"r" "hi~t r.b.L's (D;"N,:.J of P). ouch that 

II(OMN~)-(Oo,No)II-O (,.\ ----- 0). 

THEOREM 2.4.3 A""" i~ "n open ~ubset of B~,m in the graph topology and on A~"'" the 

graph topology is equal to the topology Induced by the operator norm. 

THEOREM 2.4.4 Assume that PA '" Bn,m has a diagonal form PA '" ~l ~~' where 
n -m' LO ), 1 pI € F f' 1 (J '" 1,2) and nl,nZ = n; ill,+m. ;;;; m. Th~n, P", - PD ("" ,.\ --..-. 0) if PA _ 

P~ Mld P~ - P~ (as ;., - 0) simultaneolls1y. 

PROOF " ... " ASSume that (D~,N~l is an r.h.f. of Pb 0=1,2). Since {pb tOnyerges to 

P~, tllere are r.b.f.'s (Dl,Ni) of pi Slltl tll",t 

Let 

(2.4.2) 

Then (D""N;.) is clearly an r.b.f. of P). and (Do,ND) d~flned by (2.4.2) with;" = 0 is an 

r.t.r. of Po. Sin~e the topology !ndue~d by the norm Is a, product topology, we ha .. ·• 

Th~refor~, {PAl wnverges to Po ill the gn!.ph topology. 

" .... ~ Suppose (Dl,Nl) i$ WI r.b.f. of pl; then (D;,.,N ... l ddined by (2.4.2) is an 

r.b.f. of P.\. Sinee {P",} ~onyerges to Po, there exists lI. family {U).} of unimod\l\ar 

mMrices such that 

(X_D), 

where U.\ is partitioned in a obvious way. llen~e 
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Since (D~,N~) is an r.b.f of P~, there exist yi and Zl in 1'<1(,1) such thM 

Thus, 

Dl 
I I [ "] , [Y ,z 1 Nl U,A- I (1=1,2) 

is unimodular. As a result, pi converges to P~ in the g,aph topology (i=I,2). • 

TffEORl;;(v1 2-4.5 Suppo~e)" -----> PA "lId)" _ CA are funclions mapping A into 1I,,, set 

Bn,., of systems and the set B"',n of controllers, respectively. I-Ioreover, assume that the 

eorrc,ponding dosed-loop tr;utSfN mattix H(P".,C ... ) is stabl8 at )" 

l!(po,Co) E M(A). Thn, the following two statemeIlts are equivalent. 

i) !-1(PiI,e",) is st",bl" when)" is suffid.,tltly dose to 0 a"d satisfies: 

(2.4,3) 

ii) P" converges to Po and C", to Co in the !l:l'aph topology simultan~ously, 

2.5 CompUl'ing the tap topology with the graph topology 

It is obviolls that th" g"p topology is deOued for ~. larger J5et of systems than the 

grapll topology. In this section, we aim to prove that the gap topology is equal to thil 

graph topology, if it is restl'ict<:>d to en
,",-. 

THEOREM 2.5.1 Let {P",} C 8 n
,,,,. Then, {P~} converges to Po E nfl

, .. in the gap 

topolQgy iff it converges ill the graph topology. 

PROOf Since Po is in e"'''', it can be stabilized, j,e" ther" js " ~o11t,Qller C E 

Un,", such that H(po,C) i; ill M(A), Suppose tha.t {P",} converge" tQ Po '" lin,", in Ihe gap 
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topology, then, il.Ctording to Theorems 2.3.1 and 2_2.~, H(p.\, C) is in M(A) when.\ is 

sufficiently close to 0 and 

Because of Theorem 2.4.5, this implies that {P~} ~onveIg",~ to Po in the graph topology. 

The converse impl!cation follows by reversing the steps above. • 

REMARK 2.5.2. It follows from tlw proof of the abov~ theorem that if a topology K 

defined on a subset M of M(F} possesses following two propertie.: 

i) M(A)rtM is an open subset of M in the topology K, a,nd restrj~ted to ~l(A)nM, 

topology K is equivalent to the topology generated by the norm; 

ii) H(PMC.\) converges to H(Po,Co) in the topology K iff P", c9n"erges to Po ill\d 

C;.. tonverge'l to Co in the topology K, simultaneously, 

t)'en, the topology K is the restriction of 1M g~p topology to M. 
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Chnpter 3 

Sufficient Conditions for Robustness of Feedback Stl\bm~"tiDn 

3.1 The .r:;ap metric and the !;;raph metric 

Fil'st, we diseuss the gap metrie, As said before, in gener",i, the fUll-etion 8(.,.) is 

not a metric. Btlt the fUn~tion y(.,.l as defined by (2.1.3) is a. metric and it induces 

the .a.rne to>,ology as 8(.,.). This implies that the gap topology can b~ metrized. H the 

.pace X of inputs ",nd outputs i. " Hilbert spa.te, thell 5(.,.) is a. metric. In this 

chapt~r, if without 8p~cification, it i. a.6um~d that X is a Hilbert .pace. For P .. F"xm, 

accordin~ to Theorem 1.2,1, the traph G(P) or P is a dosed subspace of Xffix)(', Let niP) 

denote the orthogonal prDjectioIl from XmxX" OIltO the graph C(P). If P, (i=1,2) E F"'"', 
then, it i~ e~6y to see that 

(3.1.1) 

T(Pl>pz) :,. sup inf 
x.SC(f",) y,C(~2) 

II x ~ y II m sup 
x.SC(f', ) 

sup I!(l-n(? i)) n(?, )-,,11 
x.X,lIxli a l 

-1I(T-lT(?z)) IT(?,)1I 

From this fonnu]", it i5 5hown (K-V-Z. p205] th"t 

(3.1.2) 

For densely defined dosed operators 1", [C-L) gave a representation of n(p). But, in 

genetal, operators iIlduced by systems .,re Mt d~n$~ly d~n!\~d. for in~tante, in the CMe 

oe~c;db~cl by f.;<;ampie U.7 we tak~ t'(6) = _,_ and il i~ e,,~y to ~he~k thaI [Dom(P)].L is 
S - 1 

the 5\lbspace ~pa.nned by s+---J ' Fortunately, we can find a representation of niP) for 

p € Sn,m. In order to do this, we need \0 prove 

LEMMA 3.u Suppo~e that (D,N) is an r.bJ, of P e B",m, then S .- D·D+N"N is 

bijeclive, where D· stands for the adjoint operator of D. 

PROOF Fint, note that S is a bounded operator mapping X'" into Xm Sx= 0 jmplie~ 
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th"t [DT,NTf x=O. n~C"llse [DT,N't1't has" left inverse, it is inje~tjv~" So we obtain the 

injectivity of S. 

To pro.--, th'l.t S is surjective, we recall the following equation 

(3.1.3) Ima.g<l~] $ Ker[D",N"j = X"'xXn. 

Since (n,N) is 'l.ll r.b.f. of P, the~e Me Y 'l.lld Z in M(A) ,1lcit th"t [Y,Zl ~] = 1. Hence 

• 
~ e Ket[D',N"j well that rz·Jy = [~]x + z. Thus y = [D·,N"l~]X. H~nc~, S i •• urje~tive. 

This tomplet!;!$ the proof. • 

Ana1ogo11~ly, it C'l.ll be proved that S ._ DD· +NN' j, bijective, if (D,N) i~ an J.b.r. 

of P. 

lEMMA 3.1.2 It (D,N) and (D,N) are an r.b.f. and an I.b.L of P <;; B~''", 

respettively, then 

(3.1.4) n(p) '" ~] [DoD +N"Nfl [D",N"] 

(3.1.5) = I - [-E:] [1)[/ +Nitr' [-D,N) 

To prove ~mma 3.1.2, It suffices to check that: i) the right hand side of (3.1.4) 

(IeSp. (3.1.5)) k ~elf-adjoint and idempotent; ti) it~ image is G{P). 

In order to Miine the. gaph metric for Bft
, .. , w~ need to generalize the definitions 

of :right and left Bezollt fra.ctions. 

DEfINITION 3.1.3 Suppose th'l.t D ~ B(X") 'l.lld N E B(X",X"). (D,N) is said to be l). 

generalized right Be~Qu' fraction (g.r.b.f.) of P ~ !i'.m if 

i) D is invertible; 

ii) Y e B(Xm
) 'l.lld Z E B(X",Xm

) exist such that 

Yo + ZN = I; 
iii) P '" 1\'0-1

. 

Note that the tondition iii) hold~ i1:\ the operator sense, i.e., ND-1 i~ the operator 



induced by the system P. 

It i. easy to see IhM the g.r.b.C. is unique up to right multiplications by the 

uldts of B(X
m

) (Vi. 2 p75J. An t.b.r. is certainly a g.r.b.f., btlt not conversely. 

Generalized left BezO'IJ/ f,·a,·tion.; (g.!.b.f.) are deOned simn .. rly. 

III the .. bove definition the generalized Bezout factors D and N of the ~y.tem 

P E B",m as well as the solutions Y and Z of the Bezout identity arc jllst bounded 

oper"tms "nd are not Mccssarily in M(A). But, this ccncept is necessary fot defining 

the gra.l?h metric in "- general framework. Moreover, the generali~ed Be~out rn'-~Iiol\ i~ "

useful tool for obta.ining .ome gl'l).~l).n\eed bound~ (Dr robustness of feedback 

.tl).bilization. We emphasize tha.t the cDncept of generalized Be"out fradion is only a 

tool or iL bridge and our fina.! results al'e not expressed in terms of generl).lized Bezou\ 

fractions. 

RE~lAfI.f( 3.1.4 If g.r.b.£.'. are us~d jut~"d of r.b.f.'~, L~m!l'\~ 3.1.1 and 3.1.2 are 

still nlid. 

Suppose that T is a linea.r operator mapping .. Hilbert spa.~e Y into another Hilbert 

space Z. T is said to be isometric on Y, if IITxl1 IIxll for all x e Y, or eq11iv,,)ently, 

T·1 .. 1. And T is sa.id to be lm""ry from Y to Z, if it i~ l$ometric and surjective. It 

CMI DB easily checked th",-t "'- [\ece~sary and sufficient condition for T to be unitary is 
'rl ., T·. 

An (rEsp. a. generalized) r.bJ. (D,N) of P € Bn,m is sa.id to be normalized if 

(D'i',N~l is i.ometric on Xm
, i.e., II(DT,NTJTxll IIxll fot all x e Xm, Ot equivalelltly, 

(3.1.6) 

The r""Son why we call it normalized instead of normalized is that we I10rmalize the 

(ge"era.Ii~ed) r.b,f.'s usill& their adjoint operators and it i. different frottl what is 

ciL!led normalized convMtiOlla.lly, which is only defined for H",-matd~e~- lo ChiLpter 4 we 

will give th~ definition of normalized r.b,f.'s and compare it with normalized r.b.f.'s. 

It can be eMily checked that notll'laliZed (re.p. Ge,,€raliMd) "b,[,'. anl ur!iqu" up to 

right multiplications by the dements in Um,., (reSp. in the set of units of B(X"')) , which 

a.\"~ unitary on X"'. 

LEMMA 3.1.5 P .. B",m iL)Wa.yS ha.s iL normalized g.r.b.f. and a normalized g.Lb.f .. 

PROOF Suppose that (D,N) is all. r.b.f., it is known from I,emma 3.1.2 that 5 := D 1) 

+N'N is bij~ctive_ N~)1~~, Sand S·, are positive operator~ and there is a square root 

Sl/\ which i~ ",Iso positive. It is trivial to check that (OS·ln,NS· IN ) is a normalized 
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g.r.b.f .. Simila:rly, a. normalized g.l.b.f. tan be obtained. • 
Now We :ue in the position to Mfhle the graph metrk Let (Dj,Nd be a normalized 

g.r.b.f. of Pi (;; B~·m (i;1,2), and define 

Th~n, by an analogous proeoo\rr8 "'" in [Vi.2 p262-265] , it tan be proved that d(.,.) is a 

metric (we ca.ll it the graph mettit), which indute. the graph topology. 

3.2 The gap metri<: and genera.lized BOl:zout fractiol'l~ 

The tria.l" purpose of this section is to find the relatiollship between the gap metric 

and generalized Bezout fractions. This is of interest on its own, and in addition is one 

of the key tochniques requir~d in the sequel. 

LEMMA 3.2.1 Assume tha.t P E 8"'''', D <; B(x"') and N E B(X"',X"). Then, (D,N) is a 

g.r.b.r. of P iff [DT,NT]T ma.pa Xm bijectively omo the graph erp) of P. 

PROOF "..,." We can. easily check that [DT,N"']T ma.ps X" inje~tively into G(p)- We show 

that [DT,N"']T is also surjective. for ea.clt w = [xT,(Px)T)T ~ G(P), deflne " := D-1x. 'then 

we have [DT,N TJT ,,= w. Hence, [DT,NTJT must be surjective_ 

n ... n Suppose that (lJ,N) i~ an r.b.r. of P. Atto~ding to the necessity part, 

[OT,l'f]T maps X'" bije~tive1y onto C(P). By ""'~1lIllption, [DT,N'Y :uso maps X'" bije~tively 
onto G(P). H~nte, for ea.ch :r .. x"', there is a uniqu~ y € X" sud that 

(3.2.1) 

and vke versa. SinN (D,N) is ~n r.b.f. of P, there exist Y,Z E M(A) su,h that 

W+m=I 
Therefore, 

(YO +ZN):r '" y. 

Hente U :" YD +ZN maps Xm to X'" bijectively. Since [DT,NT]T = [l5T,N'YU, (D,N) must be a 

~ener:uit"d r.b.f. P. • 
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The next lemma i, all alternative version of a result in [K~V-Z p206j, 

LEMMA 3.2,2 Let P; E Fn,m (i=1,2). Them 

i) o(P"p.)" 1 iff TI(P, ) maps C(Pz) bijectively onto C(P,)i 

ii) If O(P"P.) " 1, then T(P"PZ) = T(P.,p,) '" 8(P"Pz)· 

Part i) of the theorem is proved ill [K-V-Z p206] "lid the proof given there also 

es\"blishes p"rt iii· Using Lemmas 3.2.1 and 3,2.2, we can prove 

PROOF " .... " That [DI,N;jT is a g.r.b.f. of P, implies tha.t n(p~) maps G(P,) 

bjj<1~tively 'mto C(P:!). It follow. from Lemma 3.2.2 th"t 8(P,,?,) < 1. 

" .... " According to LeII'lma 3.2.2, 8(P"Pz) " 1 implies that II(?) maps G(p.) 

biject.ively onto G(Pz). Ilenee, [DI,N1]T maps X"' bijectively onto G(P2)' By Lemma 3,3.1, 

• 
N ow we will consider the relationship between the gap metric lj,nd genera.\i2ed left 

bezout fraaions iII otder to to get an analogous result to Theorem 3.2.3. 

Suppo.e that (D,N) is a g.Lb.f. of P E B",m, lj,nd define Tp;=l-l"( -D·f'. Then Tf' is 

uniquely determined by P lj,l\d i\ldep.md<!nt of the g.l.b,f.'s of p. Moreover, (D,N) is a 

g,l.bJ, of P iff (-D",N") h '" g,I.b.f. of Tp. 

LE~j"IA 3.2.4 Let P e Bn,m, D E B(X'") and N E B(Xm,Xn). Then, (D,N) is a. g.l.bJ. of 

Piff 

Ker[N,-D] = G(P) i Inlage[tr;::IiT .. Xn 

PROOF " ... " for a.ll (x,y) ,; G(I'), y .. Px i.e, y = D~lNx. H"nc~, Nx - Dy '" 0, that js 

(x,y) E Ker[N,-D] :" ({x,y) <; Xm"Xn ; Nx - Dy '" O}, Ie is obvious IIlat (x,y) € C(P) 

wh~tlever (x,y) E Ker[N,-D]. Henc;e Ker[N,-DJ = G(P). Since (D,N) is a g.l.b.f. of P, 

(-D',N') is a g.r.b.f. of TF, By Theorem 3.2.1, [_DOT,N"T]T is injective, and hence, 

Ker[-D"T1N"'T1T = O. But 
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" .... n ta.k~" g.l.b.f. (D,N) of P. According to the necessity part, we can obtain 

KertN,-Dl = Ker[N,-DJ .. C(P) 

Hence, 
• • .L L 

(Ker[N,-Dj) = (Ker[N,-D]) . 

By assumption, [_D·T,N·TlT is injective. Co~~equently, [_D"T,N·TlT maps X" bijectively 

onto G(Tp). It follows from TheoNm 3.2.1 that (-O",N") is a, g.r.b.f. of Tp. Thus, we 

have shown tha,t (D,N) is a. g.l.b.!. of P. • 
THEOREM 3.2.5 Suppose (DhN,) is a g.l.b.f. of P, e en,,,, and P~ e F"'''"'. Define 

PROOf The following facts can be ehecked easily 

So, it is suffjdent to prove that (D"Nz) is a g.r.h.f. of TP2 iff 6(1P1,T!>2) <: 1, which 

follows from Theorem 3.2.3 • 

This section. i" concluded by presentillg a c¢rollary of tb.o~em 3.2.3, which will be 

used to discuss optima.lly robust tontrollers. 

COROLLARY 3.2.6 Suppose that (Di,N.) is a g.r.h.f. of P, .. F"''''' (i=1,2). Then, 

.5(PhP~) <: 1 iff N; N~ + D; D. is bijective. 

PROOf According to TI1Mrem 3.2.3, 5(Pl,P2) <: 1 iff n(P2) ~~ is a, g.r.b.f. of P~. 

~~ (D;D~ +N;N2(J (D;,N:). Hence, <5(P"P2) .;: 1 iff (D;D2+N;N2f' 

is bije<::tive. This complete., the proof. • 
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3.3 Guaranteed bounds for l'obu~t ~t""bnization 

In Ihi, sectioit IV~ will present various bounds which can. ~ual'an.tee the stability of 

a perturbed feedback $ystem, if the perturbations of the system and the controller are 

within Ihese bound •. 

Throughout this se~tion, we suppose that A __ p~ alld >. _ C", are functioIlS tnappiltf;: 

the metric space /I ill to the set FilXff
' of systems an.d the J5e\ F,un of coutroller-s, 

respectively. Moreover, we assume tll"t the ~ortesponding closed-loop transfer ma.trix 

H(P""C~) is stable a.t A = 0, Le_, H(I'o,Col ~ M(A). 

THEOREM 3-3-), Suppose th"t X is a Bana.ch space. If 

(3.3.1) 

PROOf' It follows from (2-3-1) that 

HMce we have 

.. 
The next bound given in. thB grap!l metric is quoted from [Vi. 2 p290J. 

Tf-lEOREM 3.3.2 If 

(3.3.2) 

where 

T(P,C) := H(P,C) - [~ ~], 
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THEOREM 3.3.3 Let (Do,Nol be an r.b.f. of Po and (I\,Nol be an l.b.r. of Cq. D~tlOte 

II 

(3.3.4) 
"1 

<; w , 

It is easy to meek that, if (D,N) is a generalized r.b.f. of P E ~n'm and (Y,Z) is 

a generalized l.b.f. of C ~ F"'~rt, ~hen H(P,C) is stabl" irf [y,Z)[DT,NT]T is bijenive. 

PROOF First, it is easy to show that the right hand $ide of (3.3.4) is not larger 

,han 1. Ac~ording to Theorem 3.2.3 and 3.2.5, (D",N.:\) and (ll",N;.,) dMilled by 

an~ " g.r.b.f. of P" and a g.l.b.f. of C~, respectively. 

= [I(B ... - BolA", + llo(A;>. - Ao)[1 S [lB ... - Boll II A ... II + IIBoIIIIA~ - ADII 

• 
Now, WI.! give a bound which is similar to (3.3.4), but it depends only llpon th~ right 

Bezout rraetions of Po and Co· 
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If 

(3.3.5) 

then H(P~,C.d is sta.bl •. 

-2 
< w , 

Note that, if (D,N) is a. gener~li~ed r.b.f. of P E F"x" ~nd (V,Z) is a generalized 

r.b.L of C E F"'x~, then ff(p,C) is ~t~ble iff l~ ~] )$ bijectiv .. , 

PROOF First, it is eMY to check th~t tlte rigltt hand side of (3.3.5) is smaller 

th"'1 L According to Theorem 3.2.3, (D,\,N,\) ~nd (O,\,N",) defined by 

<lr~ g.,.b.f-'~ <if P,\ alld of CA, respectively. 

• 
In the 5ame way, we call also find another bound by using only the l.b,f.'s. Since 

the techniques are the same, We omit it, 
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Chapter 4 

Transfer Matrices with Entries in The Quotient Field of H., 

4.1 Basi" properties 

In the last three chaptera we studied robustness ,,{ feedback stabjljz .. tion for an 

arbitrary norm~d integral domain A consisting of linear bOUJided operators. In this 

chapter we will discuss a spe:dal 5ituation, in which A. is H", and F is the quotient field 

of H.,. It is shown by Smith [Sm.] that H .. js .. pseudo-Bl!.zout domain, j,e., every two 

Ellemellts of H .. have: a gre"test common divisQr. If the sp,,~e X of inputs "nd outputs is 

chosen to be HI' (1 )i P s 00), then A, F and HI' will satisfy AssumptiQn 1.1,1 and the 

results from Chapters 1 and 2 as Will! "" Theorem 3,3,1 ~an be applied to this framework. 

But, in this cilapter a further study will be made for the case when X is H" a Hilbert 

space. First, we point out that the tl"",s of transfer matrices with entries in the 

quotient field of Roo includes many cases of interest in theory and in applicatiolls, For 

example, it ~overs : 

i) Finite dimei\$ional LTI systems, i.e. systems described by rational matdces (sec 

E~o.mple 1.1.7); 

ii) Semigroup systems i,e. systems governed by 

~(t) = Ax(t) + Bu(t) 

)itt) '= Cx(t) + DU(I), 

x(O) = :>:0 

where A is the infinitesimal /l:enerator of a strongly continuo\\$ semigroup I(t) on a 

Hilbert s!,,,~e H, B is an operator mapping ~m into H, C mappinl): H into ~n and 0 m"!,ping If' 
into R", (A,B) is suppo •• d to be stabili~"ble and/or (C,A) to be detectable (for det"ils, 

see [Cu. 1] by Cmtaln). 

iii) Tlle C\lJlier-Desoer class (see Example 1.1.9). 

It is well known that H." is not a Bezollt domain i.e. not every matrix jX\ M (P) has a 

Bezout fraction OVQr M(li,,). For instance, P(s) se-S has a copl'ime fraction 
-s 

( s. ') but does not hav(! a Dezout frar.t~on, 
"S+1'S+!" ' 
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Recall that C",", is a subs~t of FOx", consisting; of all systems possessing 

stabilizing controllers and B~'"' a subset of F",<r" consisting of all systems possessing 

right and left Bewut fractions_ Jt follows frO\l1- Section 1.3 that B"'"' c eft,",. The 

following theorem wa, proved in two different ways by Inouye [In_] aud Smith [Sm.], 

respectively_ 

THEORE~1 4.1.1. Assume F is the quotient field of HOO' Then, BTl,", en,m, 

Kote that an example was given by Anantharam [An_] which showed that, in general, 

BTl, .. and en,m are not equal. Using Theorem 4,1.1, we can prove thai H., is a H-.rmit< ring 

i.e, a system P G Fnxm 
has aJl. r.b.r. iff it has an l.bJ. (for original mathematical 

definition of fiermite riLlg we refer to [VI. 2 p345]). 

TflEORE1>J 4_1.2. Hoo is a Hermite ring i.e. a system P E F"x", has an r.b,r. iff it has 

an tb_f.. 

PROOF Let {D,N} 0; H(H.,} be an r.b.f. of P E Fn~M. According to Lemma 1.3.1, 

P "en,m. By Theorem 4.1.1, P @ Bn,,". Hence, P has an l.h.!.. The inverse part can he 

proved in a similar way. _ 

It h knowI1 Ihat eaeh system P E F",m induces aJl. opel'ater (denoted by P also) 

mapping a subspace of lC into H~. For a system P ~ F""'" we ca.n also define another 

opera.tor PI mapping a subspace of L'; into L~ ; the dOlIlain Dom(P, ) is defined a.s 

Dom(PIl : .. { x(.} e L'; ; P(.)x(.) E L~ }; 

and PI acting on x(.) € Dom(!'I) is ddiIltd as 

(Plx)( -} = P( -)~(,), It can be readily checked that when P 

the product P(.}x(.), i.e., 

HYiX ')1 
~ 00 , the adjoint operator 

of PI is P(-s)'(=:p'(s», and th" adjoiIlt operator p' of P is equal to the restriction of 

T:P- to fi~, Le_, (f",,)(s) T~[p·(8)x(s)1 (V x(.) E H~) where T~ is the orthogonal 

proje~tion from L~ to H;. 

Suppose that PEL:""', til" Tocp!itz "perator Tp mapping H'; into H~ with symbol (' is 

dMined a.. 
(Tpr){s) := T:P(s)x{s) \f x E H~. 

II is known [Ha.] and [Z-S] that th~ norm of a TMplitz operator is equal to the norm of 

its symbol, Le_, II Tp II = IIPII (for V P e L:,m), For any P " H:,m, 5jn~~ Ihe adjoint 

operator p' of P is ",qual to' the restrictiO'n of T~P' to 1I~, p' is just the Toeplitr 

operator with symbol P _ 

A ma.trix V(_) E H;xm i~ s<lid to be inner if V (w}V(i,w) I (V W 0; 11.), or 
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~quiv<>lently, it is an isometric on L':. A matri~ V(_) '" JC"'" is said to be outer if it is 

surjective, or cquiv<>lently, h has f1lll row rank Or it has !I. ri~ht-iilv~rse in H,;;xn_ Jt 

is rea.dily shown that an m"trix V(.) e rex'" i. in!;>e, ~J1d outer iff it is unitary (in this 

case, n = m). 

Recall that (D,N) is said to be nQrmaiiud if [DT,NT]T i. isometric on H?, i.e., 

II[DT,NT]Txll = 111:11 for all x 0= H;, which is equivalent to 

(4.1.1) O·(<<-:)D(<<-:) + N·(WlN(<w) = I V W E R 

Th~Il, we have 

lIt:tD"O + N"N - Ilil '" O. 

A~ said before, the norm of a Toep)jt~ operator is equal to the norm of its sytoboL He);lce 

11[1) I) + N N - J]II '" 0, 

(4-1.2) 

This is equivalent to say that (D,N) i. isometric on L~. 

REMARK The author thank. Dr5. Anton A. StooTVogei for his suggestion of the proof 

from (4.1.1) to (1-1.2). 

Assume that [DT,NT]T is 11. normalized rob_f. of P -= B~''', it {;lill be checked that if 

(DT,NT]TU is also a. normalized r.b.L of P for a U e U .. ,,., then U-(li.<J)U(<W) = I for all W 

'" IR, i.e., U i. unitary on L;_ Recall tllat a neo::essary and suffident condition for U to 

be unitary is that V", the adjoint oper<.tor of U, is equal to U"I. Thus, U has to be a 

constallt matrix. Hen~e, U is a. unitary cOIIBtant matr;x i-e. U E C" .... , OT = {f'. 

In th~ Ile"t section, We will prove the existence of nonnMized Bezout fra.ctions, 

which is a corIlerSlone for later developmeilts_ 

4.2 Existen(l~ of nOl'mali:ll~d Be:llout fradion~ 

In Section 3.1 it WM shown th .. t normalized g-d>-f,'s and gJ.hJ. 's always eXlst 

for P e Sn,m. But the existence of normalized Be~out fractiOllS of P e B""'" ;s not 

trivial_ Callier and Winkin proved the existence of normali2ed r-b-!. for SISO systems ill 

the Callier-Desoer class (se~ Example 1.1.9) in IC-W 1), and in IC-W 21 tbey proved tb~ 

exiBten~ for semiyoup systems with bounded input aJJ.d output Opera.tors. The existence 

for s~li');group systems with unbounded input and olltput operators WM shown by _Curt<.in 

[Cu. 2] a.nd (Zh. 3], while the existence of normalized Bezout fractions of transfer 

matri<::es with entries in the q1,lotient field of H", was obtaineQ in [Zh. 2)_ In this 

section, we wiI) quote the main results from [Zh- 21. 

TIle proof of the e;dstence of normalized r,hJ's given below depends on L<>x's 
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theor.m [La_]_ £lefor .. pre.enting this theorem, we have to introduce th£ concept of shift 

invariant suh,p<,cea_ A .uhap<'ce <P <;; H~ i. ,a.id to be $hif~ invariant if 0-
0151> S;; '" for all 

positive ct. 

LE;Vl~IA 4,2,l For each P E Fnxm
, the graph C(P) of P ;5 a .hift invariant suhspac£ of 

PROOF Because Dom(P) consists of all th~ elements x(.} ill H; SItch tht 

P(-)x(-) .. H~ l'1,nd (Px)(o) = P(5)X(3), for (l,ny 111(_) .. at?) there ",:(i$ts an x(.) eo H7 such 

111(1.1 w(s) ., [ x( 5)] It follows from .. "(xs",(a) .. Um
2 and 

P(s)r(s) . 

,,-OISp(s)x(S)=P(5)e-(xsx(5)EH~ that ,,-(xsw(s)= [ e-<>:~;s)] ~G(P) ('<10:>0). This 
P(s)e ;:(5) 

oompletes the pr'1of_ • 

Lax's theorem [La_] can be stated as follows. 

THEOREM 4.2,2 Suppose that 1> is a closed shift illvariant subspace of H;. Then, 

there is 'HI int.::;.r p >- 0 alld an inner matrix A ~ H!<P, such that A maps H~ bijectively 

OhtO 1>, 

Now we are able to prove the main theorem of this section. 

THEOREM 4_2_3 If P E F""''' has an r.hI, then it has", normalized "h.c.. 

PROOF According to Th~orem 1_2_1 <Lnd Lerom<L 4_2_~, C(P) is a. dosed shift invariant 

subspa.ce of H~+m _ By La.xts the:orem, there is a..n integer p > 0 :and a.n inner r'natrix 

A E H~n+"')xp, whi~h maps H~ hije~tively onto G(P)_ Assume that (D,N) is an r.h.f. of P. 

fNm {,~ronu 3'2_1, [DT,NT]T ro<>-p~ H~ hije~tive\y '1nto G(P)_ Suppo.e tlmt (Y,Z) e ~I(HM) 

5alisfies YD + ZN '" L Then, of course, [y,Z][DT,NTf rn(l,p~ H~ bljedively onto H';. 

CMsequentty (Y,Zj maps G(p) onto H; bij~ctively. Hellce, [Y,Z]A m<>-ps H~ ont'1 H~ 

bijectinly_ Since [Y,Z]A )5 a }I.,-ma.td;;;, [Y,Z]A i, bijective iff [Y,Z]A is unimodular. 

Thus, we have p '" m. H we partition A as [riT,NT]T with ri .. H';"'" and N E H:X
"', theIl, 

ll.t:<:orcliIlg 10 l,"IIIIIIa 3_2.1, (ri,N) is aII r_h.f. of P. Sillce it is normalized, this complete, 

the proof, -

The existence of normalized I.h_f'. and the corresponding results of discrete-time 

LTI 5ystema can be fouud in [Zh, 2]. 
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4.3 Optimally robust controllers (l) 

In Theorem 3.3.3, a guaranteed bound w-1 
(w := IIAoIIIIBoIIIIBoAolI) was obtai!\ed for 

robl1~tness of feedback stabiljzation, For the case of A = H"" we can m~imize w-1 by 

rnoosinlJ; an approptiat<: stabilizing controller, Moreover, it can be Ghown that the 

maximum w; 1 
i$ the 8harpest bound. In ,his section, W~ will assume that th~te a,e no 

pert11Ibatioll~ on the controllers. 

Suppose that (Do,No) and (l)Q,NQ) ate a normalized r.b.!. and l.b.f. of Po; 

re5pectively. Let Co be a stabilizing controller of Po and (Yo,Zo) o.nd (Yo,Zo) be an 

r.b.f. and l.o-f- of Co, respectively, such that 

(4-3,1) r 
-~o ~o] [-No ~o J [I 0], 

Do No Do Zo 0 1 

It follows from !.-emma 1.3.4 that the Get of all stabilizing controllers is 

Re~aJl from (1,3,4) that 

(4_3_2) Yo-No1] ... [01 Or] , 
Zo+DoR 

Let C:", (Yo-RN"of'(Zo+RDo) be any controller in S(po) and as5\lltIe that P.>, is a perturbed 

version of Po. According to Theorem 3,3,3, if 

where 

W := II [ ~~ ] II II[(Yo-RNo),(Zo+RDo)lll II [(Yo-RNo),(Zo+RDo)] [~~] II 

'" II [(Yo-Mo),(Zo+RDo)l II, 

then C <>l,o stabilizes P).. Now, we minirni~ w by choosing the controll@rs in S(Po)' I.~., 

we solve 

(4.3.3) 

In the next section, we will discuss how ~o achieve this infimum. Now let us just 

suppos@ tIl .. t it can be acltieved for some R E H"",n, DefiM 
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(4_3.4 ) f: > 0, 

According to Theorem 3.3.3, if a ~ol,~tion R. of (4.3.3) is fouIld, then 

C.;= (Yo-R/lofl(Zo+Rflo) stabilizes K(PO,W;')_ W. will show Ih"" th~ bound W~' is the 

sharpost in the sense that th~re o.rE! no controllers which can .t .. bilize K(PD'O) if 

f: > w~'. In other words, ,h", largest numb~t e such that K(Po,~) co.n be stabilized by one 

single controller is w;'_ 
Recall that (Do,Ng) is a normalhed T_b.f. of Po E S", ... Define 

(4,3,5) 

Note that (.:Id,.:I.) does not have to. be in M(l,,") b~t only that I' E F"x,", because 

(Do+.:1.. , No+.:In) may b~ .. genera.lized tight bezol.lt fraction of P. Iil fact, it is more 

re~lJoMble and 1U0re na.tura.1 to il.5i;UIM IhM the perturbations (.:Ia,.:I.) ate iil a wider d"--,~ 

than just in M(H",) "" IOIlg as it can be haIldled- Since Lh" ilotmalized r.b_f!~ are unique 

up to the multiplico.tioil by unitary matrice~ in e
m

•
m

, R(Po,e) is independent of the 

IIonn<>.U"ed dd'. of Po. The following theorem wa.s proved by Vidyasagar and KimuT~ in 

(V-KJ. 

COROLl"ARY 4_3_2 The latg~st nlimber f: such that R(Po,t) can be stabilized by oIle 

single controller '" w;\ and if Rg is a. .olution of (4-3_3), then 

Cll := (Yo-R/lo)-l(Zo+Rflo) is a controller stabilhing R(Po,w;\ 

~J<>.king use of Coroll .. ry 3.2.6, Theol'em 3,2,3 alld l"emrna. 3.2.2, we can prove 

THEOREM 4.3.3 If 0 < f: ~ 1, then 

PROOF "::!" raking any P 

that II [D~,N~1I1 '" 1. Because 

II[D~,N~J [ ~: ] II -:> II[D~,N~lll II [ ~: ] II < 6 < 1, 
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is a bijective mapping. According to Corollary 3,2,6, 8(po,P) < 1. By Lemma 3.2.2, 

TWo,P) '" T(P,Po) '" 6(po,P). Now we can check 

¢(Po,P) = sup inf II,; - :vII 
X~S<3(Po) Y4G(P) 

= ~11P inf II[ goo],; - :vII· 
x.H~, 11:<11-1 yoO(P) 

Because of [~~1~~ ] H~ !;; G(P), we have 

T(po,p) ,,; sup 
xcH~ .11,;11-1 

inf 
)leI,,';' 

"s;" Take P <; K(Po,~). Since 6(l'o,P) < l, by Theorem 3.2.3, (D,N) gh-en by 

is a generali!"d r.b.!, of P. Because 

P e R(?o,!)- This compl~tes the proof. • 
As a ~onsequence of Corollary 4.3.2 and Theor",m 4.3.3, we can see that the largest 

number, ~, such that K(Po,!) can be stahilit¢d by one controller i~ w;\ and if Rg is a 

solution of (4.3_3), then Cy .- (Yo-R~oj"\ZQ+Rpo) i~ a controller stabilizing 

K(PD'W;\ It follows that we tall w;' as the largest rob"$/ stability radius of Po and 

Cg as an optimally robust (:MtrQlI~r of PD' We emphasize that the largest robust 

stability adius is a intrinsic value of each system, and this value tan be used as index 

to describe robustness of f"edba<;J.; stability of a given 6ystem. 
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Note tim! a result similar to Theorem 4.3.3 wa. proved by Georgio\\ "!ld Smith [G-5J. 

There are two di[fer~ll.t f~atlil'cs between Georgio\. and Smith's work and Theo[~rn 4.3.3 

i) The result waS proved ill. IG-SJ under the aos\\rnptioll. 

where,,", in ThEorEm 4.3.3, the E can be any n11mher ill. (D,l); 

ii) IG-Sl showed thai R(Pa,~)nB""' = K[po,E)nBn,"" where","" Th~oreTII 4.3.3 providod ~. 

slightly more gell.etal result, i.e., R(p,),&) = K(Pa,I!). 

l>loreover, the techniques used ill. Theorem 4.3.3 ... re different from that used in 

IG-51. This section is ended hy an example to show th(l.t, ~om~times, A(Po) call. b~ wry 

small. Let p.(s) ;ow c</rs-(3] (QI.,(3 ;> 0). It is easy to prove tha.t ("'/[5+1], [5-,1/]/(.+Y)) is 

a normalized r.b.r. of Po, where l= OI.~ + fJ2. It is ea.sy to see tha.t 

(0< --> 0 and lor (J _ co). 

4.4 Optimally rob\lSt controllers (2) 

In this section, firot, the "dua.l" versiOM of Theorem 3.3.:> and Theorem 4.3.2 will 

be presented beron, we discuss their re!«tioM with the oril;';i.tal v~tSio1'lS. then, we 

deduce that the infimum (1.3.:l) is a.thievabl~ for some R <;; H:
xn 

and present three 

f01'1l111las for computing wy' Afterwards, the problem~ of ... dehtive and multil'licativ~ 

pCl·tul'batiollS, llncertainties in Dptimally robust controllers, the .t(ueture of th~ 

ndghbmhoods and the variation of the do.ed-loop syGt~mG as well as the dual problem of 

opthT\~.\\y robllst co.ttrollNs Me discussed successively. 

Suppose that (D~,No) "nd (Do,No) U~ a normalized r.b.£. and 1.b.r. of 1'0 e; B"'"" 
re'pettivdy. L8t Co be a stabilizing controlle( of 1'0 and (Yo,Zo) and (Yo'"z'o) be all. 

r.b.f. and an Lb.f. of Co, r;:spettivcly, such that (4.3,1) ho]d •. 

TflEQREl'-l 4.4.1 (Dual with Theorem 3.3,3) Lee C = (Zo+DoR)(io ..... NoR) .. l with R e H:~71. 
Assume th,,t r~ E F""'"altd C~ ~ F'""'" are perturbed ver.ion of Po a.nd C, respectively. If 
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(4.4.1) 

TIlEOID1 4.4.2 (Dual with ThM:teIli 4.3.2) Derine 

(4.4.2) e > O. 

It is obvious that, in order to get a Ili:..xj,I).«l rob"\\~t ,tability radius for Theorem 

4.4.1 !\.Ild 4.4.2, we have to compute 

(4.4.3) 

To this extent we will US(l 

11I~OREM 4.4.3 

PROOF Define Q : .. [-~~ ~~]. Then Q. = [-No ~~] is unitary 0;1\ L;+n. This proof is 
DQ No D~ N1) 

divided into two parts. 

i) Since multiplication by unitary matrices does not chan!:e the norms, we haw, 

(4.4.4) 

and 
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Define 

We will show V = ZoDo -YoNo a]so. Since 

and 

[V] [-No~~][V] 
I Do No I 

we have 

i.e., 

It follows that V '" D~io-N~Yo " ZoO. -YoN,. As a result of this part, we have 

(4.4.4) II [:O-NOR ] II = II [V] + [ 1 ]RII, 
Zo+DoR l 0 

(4.1.5) 1I[(Yo-RNo),(Zo+RDo)lll = 11[-1, Vl + R[O , IlII· 

ii) 

(4.4.7) II [ V] + [ I ] Rllz '" II [V + R ] liz = 6llP II [ V + R ] >:112 
I 0 I :<dl~, 11"'1[-' 1 
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sup [ Ilxll~ + IIlv + R[xll'] '" 1 + sup IIIV + R]x112 
xJl~, 11:<11-. x.H~, Ilxll~l 

= 1 + IIV + RII 

Sup (lIxll~ + II(V + R)xlll) III-I, (V + RlI( 
x~H;, 11,,11=1 

Om claim follow6 from (4.4.4), (4.4.5) and (4.4_7). • 

Note thM th(\ above .heorem was also proved Implicitly hy Georgiou and $ooi,h [G-S] 

in a different way. It follows from Theo.em 4.4.3 and (4.4.7) that 

(VI-B) 

REJl.1AlUC i) rt was shown by Georgiou and Srnhh that R(l'o,e-)nB",m and L(po,o)nE"'" ar~ 

indeed different sets [G-S]. Consequently, R(po,o) and t(Po,") are different. 

ii) Using state &pace representation, Habet$ [Ha.J showed that V is antistablc 

and Its Mcl>lillan degree is the san:u" a6 Po. 

Finding an R 5Ucl! that (4.4.8) is minim.<Il is a stand.,.d Nehati prablem and it i~ 

known to have solutions [Ne.] a,ud [eI. 2]. For a detajJed discussion of the Neh",l 

probl~I'I'l we refer to Francis [Fr_] and Glover [e!. 2), where solutions for this problem 

hav~ been consttv~ted. The infimum value, wY' is rela.ted to Ille norm of a. Hankel 

Opt,,,t,,r. For a matrix Q ~ L~xm, the HaMel operatot 'H
Q

: H'; ---- (H~rl. with symbol Q is 

clefined as 

where T: i$ the orthogonal projection from L~ onto H~. It is explainecl in [fro J a,ud 

[GI. 2J that 

inf IIV + RII IIHyli. 
R.:H:x

n 
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Hence 

The nOKI theorem gives notable formulas for "'g. Originally, they were proved by 

G1ov~r a.nd McFarlane [G-M 2J using state space representatiolls, hLter, GeorgiOU and Smith 

[G-5] gave all operator th .. oretic proof. 

THEOREM 4.4.4 [G-M] and [G-S] 

(4.4.10) 

A~ ~aid before, if Rg is a solution of (4.4.8) (or 4.3.3), then Cg 

(Yo-Rjlo)-l(Zo+R;)o) = (:lo+DoRg)(Yo-NoRg)-l is a controller etabilizillg K(?o,w;') (= 

R(Po,W~!)) and L(Po,W;!)' Now, we show that Cg can also stabilize other kind. of 

perturba.tions. Assume that PD E B~'·'nM(L,,) and e )0 0, define 

(4.4.11) A{Po,e;):= { P E Bn''''n~I(Loo) : liP - Poll <: ~, P h'1.6 the .a.me numbe); of Op~n dgb.t 

half plane poles as Po including multiplicities }, 

(4.4.12) I'I(P.,"):= { P = (J+lVl)Po '" Bn,m : M E M(L .. ) with IIMII « e, P has the same number 

of ope>;l right half pl..fie pOles u Po inc\l1dirlg multiplicities }. 

Th. following theorem was proved by Yidyasagar a.nd Kimura [V-K]. 

THEOREM 4.4.5 i) A <;ontroller C stabilizes A(Po,e) iff 

(4.4.13) IIC(I+PoC)"'II:::; .r'. 

ii) A ~ontrollef C sta.bilizes M(Po,e) iff 

SI1\C~ each stabilizing controller C of Po C'1.n be wrltten as C 

(l.otDoRHYo-NoRf1 with R e: H"'x., (4.4.13) is equivalent to 
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and (4.4.14) is equivalent to 

Similarly, Cg also st",bilizes M(PQ,{I) with 

Note th .. t both 0: and {I Me larger tha);l w;\ DQC"Use of IIDoll ~ 1 .. lid IINol1 ~ 1. It i~ 
obvious that Cg may not be a optimally robust ~ontroller with respect to A(Po,") or 

M(Po,e). It should be Kept in mind that if Rg is a solution to the Nehari problem 
• -1 • - • -1 

(4-4.8), then the controll~{ Cg ", (Yo-Rl'ol (ZQ+R"Do) = (Zo+DoRg)().'o-NoRgl not only 

$t .. bilizes K(po,w;') ('" RiPo,W;l)) and L(Po,w;l) but also 5t .. bi1iz~s A(Pop) and M(f'o,!'l· 

Next, let us distuss the ini1u;!n~e of an app,oximate solution of (4.4.8). Let N(l'o) 

denote the set of all solutions of ('lA.S). Suppose that Rf ~ H:"" is an e-approxirnat(! 

solution of (4A.S), that is : 

Then, the controlle~ CJ ", (Yo-R"Nofl(Zo+RtDol (Zo+DoRJ)(\'o-NORt )"' stabilizes 

K(Po,(WgH)"l) (= R(Po,(wg+e)-I) ~d L(Po,(WgHf' ), b<'!cause 
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Now, let'. consid~r th" total 3et of systems which tail be stabilized by the optimal 

robust CO\ltroller c9. Start by writing 

_ ... 0 0 _ ... 

Y g := Yo-Rllo , Zg := Zo+RgDo , '1g :,. Y.-NaRy , Z9 := Zo+DORg. 

Then we have 

and 

(4.4_20) ~g] '" (I OJ. 
Zg ° 1 

The set of all systems which can be stabilized by C9 is 

where 

Th~ most important point is 

LEM~[t\ 4.4.6 P E F"xm is stabilized by C9 if! th~re £lxists an S E H:"" $u~h that 

Using this lemma we can look into the structure of the l1eighborhoods R(l'o,w;') 

K(PO'W;') and L(PO,W;l)_ 

COROLLARY 4.4.7 i) P E R(Po,w;l) iff there exists ail S E H:,m such thl 
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ii) P e L(Po,wg') iff there exists an S E; H:xm such that 

The following theorem is about the variation of th~ clo5ed-Ioop transfer matrkes, 

PROOF Recall that (Do,No) and (Do,No) are a normalilled r,b,!. and a normalized 

1.1>,f. of Po, respectively, and tha.t (Yg,Zg) and (¥b,Z9) <.re an r,b,f. and <.n I.b.f. of 
, 'T'TT 

C~, respectlvely, such that, (4.4.19) holds. Moreover, III¥g,ZglJl = IllY g,Zg] II =' wg, 

Suppose tha.t (D,N) is an r.b,!. of P such that YgD + ZIl = L Then, it is not difr;';ult 

to check that 

hold. HBIlce 

IIH(P,Cg) - H(Po,C/I)1I ,. II [ -g] IZ"Yg] - [ -~:] [Zg'Y$)1I 

But 
~II [ -~] - [ -g~] II IIlZg,Yglll = Wg II [~] - [~~] II· 

T(Po,P) = sup inf IIx - :vII '" SI1P inf II [ go]x - :vII, 
x.SG(Po) yoG(P) x.lI~, 11:>:11-' :VoG(p) 0 

Note [~ ] H~ '" G(P), we have 



Since P E K(f'Q,W;l), T(p,po) 

obta.iMd 

• 
We will con dude tDio oe~tiOI\ by discussing dual problem of optirnillly robtlst 

controlle, •. According to Theorem 3.3.3, if p ... E F nxm 
and C ... '" F"'x"" satisfy 

then H(P ... ,C ... ) is stable. Now we suppose there are no perturbations on the system Po· Then 

(4.4.23) impli~s that whenever 6(C""Cg ) <: w;I, H(Po,c'd is stabl",. In other words, Po 

stabili2cs K(Cg,w;l) = { C E Fmxn , 6(C,Cg) <: w;1 }. Consequently, the I .. rgest robust 

stability ,ad ius w~! of C9 i, not ~m"\\er tha.n w;', the largest ,obust sta.bility , .. dius 

of Po, Le., the cobu,toe55 of Cg with Ie,pect to feedbo.ck st"hili ... !i"" i. betto, than 

that of Po. We will carry out !). liltle further 5tudy about the relation between w~~ .. nd 
-I 

w~. 

Assume that TJ1 E Um,m and TJT '" Un,n ~uch tha.t Urxg,Zgl a.nd ("Y~;l~lTUf are 

llormalized, respe~tively. It follows from (4.4.20) tht 

(4.4.24) 

Now th~ largest ,abust stability ra.ciiu5 W ~~ is 

] is unitary on L~h. Hence 
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- - .. 1" .. -1 
Let Vo.~ [-!~yUr) NoV, +(ZgVr ) DoU, ), then Wcg [1 + lI1:lv tl~l"". ~e~all hom (4.4.6) that 

< 
V ,= DoZo-N~Yo' Th~rdcr~, w~ have 

- - I 
Vr V Vi· 

We wish that a fmlher study Crt the relation between 111ivll aI)<;\ II livo II will be made 

elsewhere_ 

4.6 A formula, a low~l' and an upper bound for the gap metr-io:; 

Geo~glOU gave a formula for the gap metri~ for rational matrices in [Ge_], which is 

a ~Jl.~equence of the Commu!llnt Lifting 'l'h~Qr~m (for OM version see Young [Yo_])_ In this 

section, using the result of Settion 4_2, we show that thi~ formula is also valid for 

distribute<;\ LTI 5ystems. Then a lower and an upper bOuJld fo~ ,he PI> metric: given by Zhu, 

Haulu, and Praagman [Z-H-P 2] will be presented here_ 

A proof of the following theorem is given in [Yo.]. 

TtlEOREM 4-0-1 Le, B e H!XI' and C s H~'" be inner mat,kes and F ~ H!'''. Let ¢ be a 

closed 511bspace of I4 cont.alnmg fC-H~ + BH~ and define 

(4.5.1) 

(4.5.2) 

where II i$ the onhogonal projection from tl to ¢e13H~. Then 

(4.5.3) 

Let Pi ~ 8 M
, .. (i;;I,2). From S~(:tion 3.1, we hav~ 

According to Section 4.2, there will exi.t~ OJ, normalized r.b-£_ (D,N) for each P e Bn,,,. 

Suppose that (Di,N;) is a normalized r.b.f. of Pi e En, .. (i=I,2). Ddine 
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Th~!\ 

(4.5,4) 

!Sow we apply Theorem 4.5.1 to (4.5.4). Let B = A" C = l, f = A2, ¢ = H~n+"'l, and n 
be the orthogonal projection from Lin ... ) to H~M"')eAIH~, then, by Theorem 4.5.1, we have 

But 

Hence, by (4.5.4) 

(4.5.5) 

REMARK SUI'Pose that {1/'~} is a sequence of closed subspaces in R' arid 1> is ~ do~ed 
subspate of IR~. It follows from the example shown by Fil):ure 2.1.2 that 6(1),1/'n) may 

COllyerg<l to ;;oro while 6(1/'~,¢) = 7('1',,1» '" 1. 8m this 6ituMiOl\ ~a1\'t h"pp~l\ in the 

case of tll~ transfer matrices with entries in the quotient field of H",. Th .. ! is, if {Pd 

is a sequence of B,,·d, and Po e B"·". Then, T(po,Pk ) _ 0 implies 6(po,Pk ) - d. 

PROOF Assume that (DkoNk ) is a rlormalized r.b.r. of Pk <>.nd Ak ,= [OIiIjT ~lor~over, 
suppose that Cg = Y~7,g (Yg,Z~ satisfy (4.4.19)) is an optimally robust controller of Po· 

Since T(Po,p~) - 0, by (4.5.5) there exists a sequence {Qk} with Qk E H:
xm such th"t 

\lAo - AkQk11 ---- 0 (k ----. 00). 

Hence, 

(k -- 00). 

Therefore, [Yv,ZglA~ and Q~ have to be unimoduia:r for ~uffidently 10-[g~ j{. Con~equellny, 

{Pd converges to Pu in the gn.ph topology (hente, also in the ga.p topoiop). Thus, 

8(Po,Pd - 0 (k -- 0). .. 

Not~ that T(Pk,PQ) __ 0, in generaJ., doesn't impl)' 6(P~,Po) - O. For eXMllple, 

tah Po = 0 and Pa,/1 (s) = ex /Is-In It is known that 8(P",/l'PD) .. 1 for all 01,(1 > 0, but 
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Since K:" [ D~ N~ ] i. unitary, i-e., K-K .. KI( .. I, it follows that 
-N, Dl 

(4.5.6) 

This is a standard "2-bjo.;k" H., optimization problem, and ~a.n be solved by standa.r<:l 

techniques from H" theory [Fr.]. 

A lower and an upper bound is presented in [Z-H-P 2], their computations a.re 

~e.t.,inly simpler tllan the ~omputation of (4.5.6). Moreover, the lower bound is of 

interest on its own. Suppose that (D"NI ) Is a no,m<>-'\ized r.b.f. of P, e BR,m (i",I,2). 

Define Ai :;;; [D;,N;Y'. It is ),:nown from (3.1.4) and (3.1.2) th:l.t 

THEOImM 4.5_2 [z-..H-P 2) i) The following inequality holds 

(4.5.7) 

If 6W"P.) < 1, then 

holds also. 

Sin~e A; is the rest:tiaion of T;+mA; to H~, UA,A, - A~zll is computed much mo.e 

e""ily than IIA,A~ - A~;lI- For instance, in the case of Pi (.) being rational, A;A; is 

just a ra.tiona.! matrix, whereas A~ i5 a Toeplit2 opera.tor_ The norm of a. rational matr;;>: 

tan be oomputed by a program designed by Bru;nl;ma <tlId Steinbuch [6-S]. We will show that 
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to get the lower bocnd, it is not necessary to filld a, llormalized r.b.t of P over M(lI,,). 

(D(. ),N(.)) E M(L.,) i3 sa.id to be " right Bezout fraction of P E Bn,m over 14(L,,) if 

i) D(.), N(.) € ~[(L,,) and ID(.)I>"Q, 

ii) Y(.), Z(.) t: ]I,](L,,) exist such that 

Y(. )D(.) + Z(. )N(.) = I; 

iii) P(.) '" N(.)D(P. 

According to the definition of the operator N( ill Section 4.1.1, in the same way as 

Lemma, 3.1.1 we can prove th"t 0;01+ N;NI ma.ps L~ OlltO L~ bijectively . And analogously to 

Lemma, 3.1.2, we ca,n aho ~how th1).t the orthogona.\ projcctioll Il1(P) onto the graph of PI 

is 

(4.5.8) 

It is obvious that an r.b.f. [DT,NT]T of P over M(H",) is always an r.b.f. of P over 

M(L"j. CollSCqUClltly, 

StlppOS~ that (Di,N,) is a right Bezout fra.~tion of P j ~ B""" over" ~1(L.,j (1)01,2), and 

tha.I (Dj,Nil is a. IlOrmalizcd r.b.r. of Pi (i=1,2). Then, we have 

= 1\ [~::] [D~iD'I+N~IN,Il-I [O~I,N;d - [£~:] [D~D~I+N~tN'lrl [D~I>N~i]11 

= 1\ [Z~ (D;DltN~Nd'l [O;,N;] - [£:] [D;D~+N~:lr' [D;,N;lIl 

Hence, we have 6howX\ th"t 
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THEOREM 4.5.3 The lower bound II [ ~~] tn;,N;) - [g:] [D2,N2lll in (4.5.7) is 

€<juiLl to 

(4.5.9) 

If (D"N;) is nonnalized, i.e., D:(/,w)Dj(iw)+N~U.w)Ni(l,w) '" I (V WEIR, 1=1,2), then 

(iI-5-9) is 

The advantage of the using an r.b.r. over M(L",) is that it is much more eMily 

obtained than (ll;\ r.hJ. over M(H.,). 

4.6 Finite dimensional eontroller design 

In this section We will discuss the desjgn of finite dimensional tOrttxollers for 

infinite dimensional ,y,tems via the largest rob1,1st stability radius and optimally robust 

eontrollers. 

Itt general, there arc two ways to design a finite dhnensional rontroll.r for an 

infinite dimensional system : 1) fiut to design an Infinite dimensional controller "ltd 

then approximate this controller by iL rip.ite one; 2) approximiLle the infinite dimen"iop.j).j 

sy.tern by a finite one, then, design a finite dim@sional controller according to this 

finite dimensional system. According to these two generiLl principles, W(l propose the 

following: two schemes. 

Let PQ E Bn
,.. be the system for which a finite di!llen.ional rontroller will be 

designed. n"'note by w;!(PQ ) the largest robust stability r<ldius of PQ• 

SOlEME 4.6.1 

Step 1 

SWl' 2 

Find w;'(Pol and :\.Ii optimally robust controller Cg; 

Find "" finite a.ppro;><im<ltion Cf of C9 sudl th'ilt 

6(C" Cgl <: w;l(Po). 

THEOREM 4.6.2 

stab;li2e~ P Q. M meover, 

The finite dimM,ion'ill controller Cf obta.ined in Scheme 4_6.1 



PROOF According to the definition of W;I (4.4.8) and Theorem 3.3.3, we know tl\!j.t r:; / 

sl!j.bilizes Po· Ily (4.4.22) we have 

IIHWo,Cg) - H(po,C,)II ~ wg(Cg )6(C"Cg ). 

It follows from the last topic of Section 4.1 that wg(Cg) :5 wg(Po)' Hence, (4,6.1) i~ 

• 
SOlEME 1.6.3 

Step I 

Step 2 

find" finite ""ppro;<;im""tion PI of Po ~llch tht 

6(Pf ,PO) 5 w;'(Pf); 

Compute an optimally robust controller C, of PI (the ""lgorHhro' wj\! 

be presented in the next section). 

THEOREM 4.6.4 The finite dimensional controller CI obtained in Scheme 4,6.3 

stabmz~s Po. Moreover, 

PROOF ThM CJ stabilizes Po follows from the definition of wgWf) and Theorem 

3,3.3, and (4.6.2) follows from (4.4.22). • 

4.7 CornpQtation of optimally robust controlle~~ 

For a given finite dimensional LTI system Le. a real rational matrix Po, the 

followin/l: al/l:0fithms are presented for computing its largest robust stability radius and 

an approximate optimally robust controllers. 

First, We rern .. rk th .. t u5in,l; "t .. te 5p .. ce Iepn~5ent .. tion Clover .. nd McF .. rl""e [G-M 2] 

gave some nice formulas for computing the largest robust stability radius and optima.lly 

robu$t controllers for proper rational transfer matrices, Algorithm 4.7,1 depends on 

Glover and Mcfal'lane's work (G-M 2]. 

ALGORITfIlvl 4.7.1 (For I?roper transfer matrices) 

Step 1 Find a minimal realization (A,B,C,D) of P~ 

Step 2 Solve the following two Algebraic Riccatl Equations 
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where H ;= I+DTD 

Step 3 S~t Ao:" A - BF 

A,,:= A - KC 

Then [-~O YO] [-NO ~O] = [1 0], 
Do No Do Zo 0 I 

and (Do,No), (Do,NQl are a. tIOn'naJi~ed r.b.f. and a normalized l.b.f. of Po(.) 

re5pectively, where 

Step 4 

Step 5 

._ [-IlV,F(d-Aa11 K 

L ~""II-C(sI-A"f'Kl 

1l""[l+F(aI-Ao f'(B-KD)] ], 

L - ""[C(sl-A o )-1 (B-KO )+D 1 

[ 

-[(C-DF){sI-AG)-IB+D1WV. 

[I-F( sl-A.)- '8]1'1"'" 

[I+(C-DF)(sI~A<flK1L'h ]. 

F( s I-A. )-'KLV, 

wmpute Am .. (YX), the largest eigenvalue of YX; w 9 ,. -.j (1 + Am .. (YX) . 

Take y > wg, and set W, = I + XY --?L Then 

i$ a state spa.ce representation of a.n <,pproximate optimally robust control 

controller. 

ALGORlTHM 4.7.2 (For singu1ax ~y~.ems, i.e., non-proper transfer ma,tri~e$) 

Step 1 

Step 2 

Find a right and a lei. Bczout fractions of Po. 

Using spectral factorization, find a normallz!!d right and left be~ol1t 

fraction (Do,No), (Do,No)-
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Step 3 Solve tile following two Bezom identitj~5 

DoYa + NoZo = I. 

Step 4 Set V == D.Z.-NoYo ('" ZoDo -YoNa), find tile strictly proper "ntistable part 

V_ of V, whid, is sttictly proper, and compute a minimal realb"tion 

[A.,B"C.,OI of V_. 

Step 5 Solve the following two Lyapunov equatious 

Compt.Lt~ the largest eigenvalue A ... x of LoLo. Then 

Step 6 Fix an approximate margin ~ ;> 0 for the NehMi problem 

(4,7,1) IIV_ - RII <; 0:(1+0) 

L,(,) ,= [A" LJ'C~, c" II 

Then, the set of all ooll\tjons to pcoblem (*) is 

(4.7.2) N(V,e) ;= { V-a(l+e:)(L,Y+Lz)(L"Y+L.)-' 0; IoI(RH,,) : Y E M(RH",), IIYlls1 }, 

The SN of all apprO)(iroMe optimally cobust tontroll~ts is 

(1.7.3) S.p,(l'a,€) ;= { C = (¥o-RNof'{Zo+RDQ),.(io+DoRHYo-NoRfl ; 
R E N(V,.), I Yo-NoR I 0"0 } • 

Note thai if a Y in (4,7,2) is fixed, the mapping from" 0; [0, 1J to C 0=: Sop'(PI),&) 

is continuous at 0, Hence, any element iT, (4.7,3) is inM"d an approxim~te optimally 
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robust controller in the sens~ dist\i~Sed in Sedion 4.4. 

Al!;orithm 4.7.1 is programmed by Hab~ts [Ha.] itt PG-M"tJab ru.-file, and we will use 

the program to give some numerical exatnples. Our first num~rical example is to show the 

variation of the large$t robust stability radius with the pole of the plant. 

EXAlVIl'LE 4_7_3 Let P~(s) .. 1/Is-,8]. The following diagram shows the values of the 

la.r&est mb\l,st stability radius W;l corresponlling to different ,8. 

From the above table one can see that tlIe larger the unstable pole is, t.h<l: smaller 

the W;l is, atld w;l may approach to Z€:fO u the unstable pole goes to infinity. 

Next, we fix the pole of a.nll cilMlge the co<lffideI\t_ 

EXAMPLE 4.7.4 Let P",(.) = 0</Is-1]. the follow)~g Iliagram show. the values of the 

large.st fobu$t stability radius W;l torresponding to different 0<. 

w£-L-~ __ -L~~_~~~~~~~~~~~~~~~~~~~~~~~~~~~~ !
~! 
Io<~T'~~'-~'~;-~",,;-onn--r~n--r-'o>-r~~-r--,,--~,,~-r~~-1 

-_~1r-----r---~r-~~-----+-----+-----r-----r-----+------+---~ 

w£~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

This table telle U$ that When the co~ffid"nt ie very sIDall it influences 

significantly, but after tertain large number it lost its ittflu<m~e on wg-
1

• 

Not~ tha.t, if Po(a) .. o<ls (O! -;t< 0), then w;l is independent of 0<. 

Our last example is to find the largest rohu~t $t"bility radius "nd an appro;»im<>.te 

optimally rObl1st controller for an ll.pproximation of a homogeneous beam with viscous 

damping_ 

EXAMPLE 4,7.5 The t."nsfer matrix of homogeneous beam with viscom damping 
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[Bo. pO!)] i~ 

where Gi = [t'~(0) ~ ], Ai to R is " ~pedrum point of the homogeneous beam and 
o (1';(0))2 

1'1(1) is the eigenfunction. corresponding to the Ai, 01, is the damping coefficient and C<z 

is the 3tiffne~s coeWcient and pc< is the m~s per unit length. W... use the parameters 

given in [Bo. p122] 

"'z = 1.129; 

We will compute the largest robust stability radius and an "pproxima.tc (in the sense tht 

at th;, Step 5 of Algorithm 4.7.1, r is chosen to be Wg+lO~~) optimally robust controller 

for the 20th order approximation Po of P. 

The la.rgest robust snbility radius of Po(s' is w;' = 0.3323. Po and an approximate 

optimally robust controller is Cg given by 

[* 0] 
n2 ' o ---a2 

where 

cnll cn12 

[ 
CJIT Cd12] 
cnH cn22 ' 
C<I2I"'"' c d 2 2 

nl "' 0.000$5' + 0.0004s" + O.3SI)O.Z + O.0073s + 5.2700; 

dl = 0.011373" + o.O\.5'2l + 14.6046s· + O.6868s~ + 493.3416s~; 

n2 = O.OOOls· "' O.OOOls' + O.OMSs~ + 0.0015. + 1.0583; 

d2 = 0.OOOh6 + O.OOO1s~ + 0.13963' + O.04.?9~! + 33.3013s~; 

cnll = -0.0003/ - 0.0002.' - 0.2203i - 0.01975' - 1.<)722. - 0.3186; 

cdu ~ 0.0001s' + O.QOOJ~' + O.0913} + 0.027582 + 3.09305 + 0.7639; 

cn21 cn12 
""""Cd2T" '" """"C:dT2" '" 0 i 

cn22 = -0.0442s3 - 0.0178&" - 1O.5444~ - 0.7781; 

cd22 = 0.0002s· + O.Ol34l + 0.04733' + 4.3G3Zs + 1.8794. 

'the author would like to thank Dr. J. Bonts~ma and Prof. R.F. Curtain for their 

generous help when he worked Oil this example. 
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Conclusions and Fe~spectives 

In a general framework including finite a.nd infinite dimension",\ LTI syst~ms .. s well 

as discrete-time and continuous-time and 2D ~ system~, the gap topology approach to 

robu~t stabili2ation IVa.$ studied in th", present thesis. A )l",~essa:ry and sufficient 

~ondition was gillen in the gap topology (Corollary 2.3.2). And the estimation was ~.lso 

presented for the va:riatlon of the ~losed-loop system a.<:cording to perturb(l.tions of 

system and controller (Theorem 2.3.1). Several guaranteed (sufficient) bounds were found 

for robust ;;t .. h))j~"tion in the gap metric (or in tlle graph metric). A thorough study was 

m~de for the ca.Qe when the transfer m«trites have their ",ntries in the quotient field of 

H",. Especially, the lar~est robust st«bility radius and optimally robu$t controllers were 

investigated. Moreover, the following related problems were also discussed sud" as : the 

",xj~tence of normaJi.ed Bezout fra(:tioIls, the variation of the closed-loop systems, th" 

desi~n of finite dimensional controllers, tile ~ompl,l.t"'tion of thE! g"'p metriC, optjm'l.lly 

robust controllers and thE! largest robust sta.bility radius ~d so on. The section 

Review of the th.,s;s jn page 3 and 4, gives additional information about <;ontents. 

Now, we present the following lela.ted topiCS, which <Lre wOl'th further investigation. 

1) J:n Section 3.3, several bound Were presented and OM of them Was 0lOJ.Ximi2ed in 

Chapter 4 for a spedal ease. The fll'st problem is to compare these bounds and to 

maxirni2~ them for the l):en~raJ f~<UIlework. 

2) G"nE!rali~ation of th." whole theory from Chapter 4 to 2-D systems described in 

EX<UIlple 1.1.10. To do thiS, one needs to g"nffalized Lax's theorem, the ComIlluta.nt Lifting 

Theorem and some other H" theories etc. to the two variables C<\.$e. 

3) Approximation of an infinite aimensiona! system by '" family of finite dimensional 

sy"\ems in the gap topology. First, it o;an easily be checked that an infinite dimensional 

Po € BR
." (in thE! notations of Ch(l.pter 4) can be approximat~d hy a family of r«tional 

matrices iff Po hO» an r.h.!. or I.b.!., which are continuous on t1R. Many related 

probl<!.tns sucl\ as its relation with Loo-approximation, oom;putation of errOr bounds and 

state spatE! v~rsion etc should be studied. 

4) Applk"~ion of the theory in Section 4.6 to some conq",t'l dimibutea LTI systems 

stich "-5 delay systems, Mutrd systems and flexible beams. Note that we still do not kno\v 

whether the controller ell ~tabili2es P Or not in Example 5.7.5. 

Gl 
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FROFOSIT IONS 

~tM~«-t."", 

ROBUSTNESS OF FEEDBACK STABILIZATION: A TOPOLOGICAL APPROACH 

hy 
S.Q. Zhu 

E;"dhQl'~'" Th~ Nelher/QfldQ AUgWl 1989 



1. Given a set of points { x~\ x')~ X:rl1 } in IRfl \ a.. dO:5ed convex S€t C ~ 1Ft ittId a. tet 

of numbers { "'1, "'~j ... "' .. } in Il+, find an x. such that 

(1.1) L(x.).. min L(x), 
x.C 

where 

(1.2) L(x) .m E o<,lIx-xill. 
I-I 

This is l3o-c.a1led the optimal location problem_ Consider the following iteration 

d 
z •• ! = solution of min Ily - (x~ - ).); ;r;:L(x) 1._,)11, 

xcC ..,. 

"", 
wher~ ).~l ,= r ______ , 

I-I Il;:Ok - XI II 

Yt+1 .;;tiafies Ilh+l - 'kd] ::; Ok+l 

where 61.::+1 ~ o~ 

where n € [e,l] such that Xk., ,. X, for V i. 

[1] Kuhn, H.W. "Steiner's" pr()b1/iITl r~vi$ile(i, Studies jn opllmization, (G.B. Dantzig 

and Il.C. uves ed.) The Mathematical Association of AtnCrita 1974. 

Numerical Methods for solving variational ,ncqucllities, Master thesis, 

1985. 

2. wt A E Il
n
"" be positive symmetric. A norm II.II

A 
can be d~nned on 0;:" 

Suppose that C is a dosed convex subset of fI" and I) E Iln. Now considol the 

folloWing line,,-r vil-rill-tjollhl inequality probktn ; find "\ x, E C such tht 



(Z'Z) for V ;: '" C. 

An interesting fact i. that the oolutiotl x. of (2.2) i~ the projection of the .olutiotl of 

the equ~tiol\ A"- = b to C in the norm 11·11 A' i.~. 

x. = solution min IIx - A-1bIlA. 
x.C 

3. Let 0 E R'''' b. symmetric, C be a closed convex subset of IR" a,nd b E 1/.". DetlOte f(x) 

.. ex - b. The linear va;riMlonaJ inequality problem V1(C,f) is to find all x. E C such 

that 

(3,1) {or'" x E C. 

Many iterations have been designed for solvin€; V1(R:,f) [lJ and as far as we are .. wax. 

there are litlle Duwerica). methods for 50\vin$ V1(C,f) for an arbitu.ry cloBed convex 

sub.et C. We propose the following iteration which solves Vl(C,t). 

Step 1 

Step 2 

Step 3 

Yk., Is the solution of VI(C,{k), 

wh<ltc f.(x) ,. f(xd + Dk(x-XkJ + Qk(Yk+, -Xk), 

..nd D. ;iJ\d Q~ ar~ arbitrary matrices; 

Xh' = (1 - <:'<k)Xk + O<kYk." 

where O<k E [0< , lJl\tld ()< > O. 

Under ""rtam condition;;, {xd converge;; ~o a solution of V1(C,fJ. 

[lJ Zhu, S,Q. Numerical M.tkods for solving v.ri.tional inequalities, Master thesis, 

Xi 'an , ISS,). 

4. Consider the problem of linear quadratiC optimal control with .t..bility related to 

the parameterized finite dimensional linear Hme-inva:rian~ 6)'stelll'l {A)" S)" C;>., D,,,} , 

(4.1) 

If (A~,ll~) is supposed to be st..biliz .. ble and (C~,A,d d~tettabl", then 

Ui 



holds. 

(1) Geert., TOD. Str"Ct~re of linear- quadratic centrol, Ph.D th~sis, Eilldhov~n, 

19M. 

(2) Trentelm,,", H.L. families of iincar-'luadr{ltiC proMems Continuity 

ptQpettio., IEEE TrlUlS. Au\omat. Centr., VoL AC--32, p323-329, 1987. 

5. For .. given system P there are many "lndiees" 10 de.cribe it. For ex=rl", McMiIl .. n 

degrM, number of l'0le~, numl)er of un.table poles, the distlt.llCe from the set of unstatle 

sy,tems and the minim .. l 'l,uadr:)'tic COSt (with or without st:).bil;\y) etc .. Now, we defined 

anoth~r illdex for the 'ystem 1', that i~, it. l"q;e,t rot~st Gtatility radius w;', which 

is the b'rgest tadiu. of the ba.lt 1\(1',&) such that K(P,~) C"-n be stabili~.d by one single 

cDntroUer. 

e. "Tao" hM many meanings in chinese, mainly it mean$ , (1,) ''Taoi.m'' (Taoi~m and 

Buddhism are the two dominant feliglons In China, It is k!\own that Buddhi,m is imported 

and Taoism is .elf-crea.ted 'wo thousand y@a", ago)j b) "seMch for excelle,nce" (or "\0 b. 

excellent") in your c:).reerj c) "high mor.,l stl<ndMds"; d) "to be perfect" (Ihis is 

"$iqUMt" in chines.). etc._ 

Nowaday., many I'eople ",re still interested i~ 'Tao". But they have paid too much 

attention to the meaning b) ''Search for excellence" ~nd forget a.bout e), especially 

busiIlc::ssmen. 

7. At 1'1u\0 : b;tbies are produced ill larIOTie., ~"f5 Me born in families, jUdge. are 

the prisoners ana Parliament consi~ts of thi~'i"" cows milk people and only wolves are 

allowed to enter r-lcDo""ld' •. 
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