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Abstract
This paper completely solves the discrete time minimum entropy control problem. It is

shown that in discrete time the central controller has the additional interpretation as the
controller which minimizes a minimum entropy criterion. This is completely analogous
to the continuous time. However, although the H00 control problems for discrete and
continuous time can be connected via the bilinear transform, it is shown that this is not
the case for the corresponding minimum entropy control problems and hence the bilinear
transform does not connect the central controllers in continuous and discrete time.

Keywords Roo control, algebraic Riccati equation, discrete time systems, minimum entropy,
bilinear transform.

1 Introduction

For the Roo control problem a parametrization was derived of all stabilizing controllers which
yielded a closed loop system with Roo norm strictly less then some a priori given bound 1.
This so-called Q-parametrization centered around a controller which was hence called the
central controller. The above was derived for continuous systems [1, 10] and for discrete time
systems [2, 5, 10].
For continuous time systems an alternative interpretation to the central controller was given:
it was the controller which minimized an entropy criterion (see [6, 8]). The objective of this
paper is to show that we can also derive such an interpretation of the central controller in
discrete time. Clearly this is not very surprising.
We feel that it is good to have this interpretation because it can be used to derive several
properties of the central controllers. In section 5, we for instance show that to design a discrete
time controller via a bilinear transform to the continuous time domain might introduce an
implicit and undesirable additional weighting function.
The discrete minimum entropy control problem has been studied before in [4] for the special
case of a one-block problem and in a much more general setting in [3]. This paper extends
these results.
The notation in this paper is quite standard. We will denote by 0 the shift operator: (ox)(k) =
Ax(k+1). By 1) we denote the unit circle. Finally, by At we denote the Moore-Penrose inverse
of the matrix A and peA) denotes its spectral radius.

·The research of dr. A.A. Stoorvogel has been made possible by a fellowship of the Royal Netherlands
Academy of Sciences and Arts.
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2 Discrete time minimum entropy

Consider the linear time-invariant system:

{

CTX = Ax + Ew + Bu,

1: : z = GIX + Dnw D I2U,

y = G2X +D2I W,

(2.1)

Here A, B, E, GI , G2, Dn , Dl2 and D21 are real matrices of suitable dimension. Let G be a
proper real-rational matrix which has no poles on the unit circle and which is such that

IIGlloo:= sup IIG (ilJ
) II < /.

IJE[O,211"]

where" ·11 denotes the largest singular value. For such a transfer matrix G, we define the
following entropy function:

(2.2)

where G""'(3) := GT(3-1). The minimum entropy Hoocontrol problem for given / is then
defined as:

infimize :J(Gcl, / ) over all controllers which yield a proper, internally stable closed
loop transfer matrix Gcl with H00 norm strictly less than /.

We will investigate controllers of the form:

1:F: {C1P= Kp+ Ly,
u =Mp+Ny.

(2.3)

In the formulation of our main result we require the concept of invariant zero of the system
1: = (A,B,G,D). These are all sEC such that

(
31 - A -B) ( z1 - A -DB).rank C D < normrank C

We first formulate the main result from [11]:

(2.4)

Theorem 2.1 : Consider the system (2.1). Assume that the systems (A,B,G2,D21 ) and
(A, E, Cll D12) have no invariant zeros on the unit circle. The following statements are
equivalent:

(i) There exists a dynamic compensator 1:F of the form (2.3) such that the resulting closed
loop system is internally stable and the closed loop tronsfer matrix GF satisfies IIGFlloo <
/.

(ii) There exist symmetric matrices P ~ 0 and Q ~ 0 such that
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(a) We have

R>O

where

y .-
R .-

(2.5)

BTPB + Di2D12,
'}'21- Di1Du - ETPE + (ETPB + Di1D12) yt (BTPE + Di2DU) .

( b) P satisfies the discrete algebmic Riccati equation:

P =ATpA CTC _ (E
T

PA+ D'flC1)T a(p)t (ETPA + D'flCl )
+ 1 1 BT P A + Df2Cl BTP A + Df2Cl .

where

(c) For all z E C with Izi ~ 1, we have

(2.6)

(2.7)

-E
ETPE + Df1Du - I

BT PE + DI2Du

(d) We have

S> 0,

where

W .-
S .-

(2.8)

D21D~1 + C2QC'i,

'}'21- DuD;l - C1QCr + (ClQC'i + DUDi'l) W t (C2QCi + D2l D;l) .

(e) Q satisfies the following discrete algebmic Riccati equation:

Q =AQAT + EET _ (CIQA
T

+ DllET)T H(Q)t (CIQA
T

+ DUET) . (2.9)
C2QAT + D21ET C2QAT + D21 ET

(2.10)
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(J) For all zE C with Izi ~ 1, we have

(

zI-A

rank'R -CI

-C2

AQC{+EDII

CIQCI + DllDII - I
C2QCI + D21 DII

(g) p(PQ) < "1 2 • o

The lliccati equations appearing in the above conditions do not have the classical form due
to the Moore-Penrose inverse appearing in the equation. However, it wass shown in [11] that
these more general Riccati equations can be connected to classical lliccati equations of lower
dimension.
Note that the existence of such P and Q guarantees that the system ~ is detectable from y
and stabilizable by u. To present our main result we need one preliminary lemma:

Lemma 2.2 : Suppose there exist matrices P and Q such that part (ii) of theorem 2.1 is
satisfied. Then there exist matrices Fo and Ko such that the matrices

A st Ap - B [Dt2.PCl .P - (I - VtV)Fo]

Afi .- Ap - [(ApYCi,p +EpDi'l.P)WJ - Ko(I - wywJ)] C2.P

are both asymptotically stable. In the above,

z .-
Ap .-
E p .-
C l •P .-
Dll .P :=

D12.P :=

C2•P :=

D21 .P :=

Y .-
W y .-
Sy .-

E T PA +DilC1 - [ET PB +DilDd vt [BT PA +Di2C1] ,

A+ER-1Z,

ER- 1/ 2 ,

Dt2.P (BT PA +Di2C1) +Dt2.P [BT PE +Di2Dll] R-1Z,

Dt2.P (BT PE +Di2D ll) R-1
/

2
,

V 1/ 2,
C2 +D 21R-1Z,

D R-1/2
21 ,

C'Y 21- Qp)-lQ,

D 21.pD;1.P +C2 •PYCi,p,

1- Dll.pD'[l.P - Cl.pYC~P +
(Cl.pYCi,p +Dll.pD'i,..p) wt (C2•pYC;'p +D 2l .pD'[l.P) . o

We can now present our main result:
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Theorem 2.3: Consider the system (2.1). Let"'{ > 0 be given. Assume that the systems
(A, B, Cl, D1 ) and (A, E, C2, D2) have no invariant zeros on the imaginary axis and assume
that there exists a controller which is such that the closed loop system is internally stable
and has Hoo norm strictly less than "'{. The infimum of (2.2), over all internally stabilizing
controllers of the form (2.3) which are such that the closed system has Hoo norm strictly less
than 'Y, is equal to:

"'{2ln det (~) +"'{21n det Sy.

Let Fo and K o be chosen according to lemma 2.2. The infimum is attained by the controller
~F, described by (2.3) where:

N .- -D!2,P (C1,PYC;,p + Dll,pD~,p) wt,
M .- -(D!2.PC1,P + NC2,p) + (I - VtV)Fo,

L BN + (ApYC;'p +EpD~.p) w~ - Ko(I - Wyw~),

K .- Ap - LC2,p - B[D!2,pC1.P - (I - VtV)Fo].

Remarks:

o

(i) In the system (2.1) we have one direct feedthrough matrix which is identical to zero.
It is straightforward to extend the above result to the more general case with all direct
feedthrough matrices possibly unequal to zero. (see [7, 10]). The problem is that the
infimum might not be attained in this case.

(ii) One can also derive that the infimum over all strictly proper compensators is equal to:

(iii) We will only prove this result for "'{ = 1. The general result can then easily be derived
by scaling.

3 Properties of the entropy function

In this section we recall some basic properties of the entropy function. These properties are
the discrete-time equivalent of the properties derived in [6, 8].
We first define the property of being inner.

Definition 3.1 : A proper rational transfer matrix C is called inner if C is a stable rational
matrix such that C .....C = I. A system ~ is called inner if the system is internally stable and
its transfer matrix is inner. 0
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Next, we give two key lemmas. Of the first lemma, the first part stems from [10] while the
second part is a discrete-time version of a result in [6, 8].

Lemma 3.2 : Suppose that two systems ~ and ~2, both described by some state space repre
sentation, are interconnected in the following way:

z w- i4-

~

Y u

~2

(3.1)

Assume that the system ~ is inner. Moreover, assume that its transfer matrix G is square
and has the following decomposition:

G(w) =: (Gn G12) (w) = (z)
U G21 G22 U Y

(3.2)

such that G;] E H00 and such that G22 is strictly proper. Under the above assumptions the
following two statements are equivalent:

(i) The closed loop system (3.1) is internally stable and its closed loop transfer matrix Gel
has H00 norm less than 1.

(ii) The system ~2 is internally stable and its transfer matrix G2 has H00 norm less than 1.

Finally if (i), or equivalently (ii) , holds, then the following relation between the entropy func
tions for the different transfer matrices is satisfied:

J(Gcl, 1) = J(Gn , 1) +J(G2 , 1). (3.3)

o

Proof: The first claim that the statements (i) and (ii) are equivalent, has been shown in
[10]. Remains to show (3.3). The following equality is easily derived using the property that
~ is inner:

1 - G'dGel = Gn(1 - G2'G2'2)-1 (1 - G2'G2) (1 - G22G2)-1 G21

Therefore, we find that

In det (1 - G'dGel) = In det (1 - G11Gn ) +In det (1 - G2'G2)

-In det (1 - G22G2) -In det (1 - G2'G2'2)

6
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(3.5)

(3.6)

(3.8)

(3.9)

Moreover if statement (i), or equivalently statement (ii), is satisfied then we have

:I(G2, 1) - 2~ ~21r In det [I - G'i (ei9
) G2 (ei9

)] d8,

:I(Gll , 1) = - 2~ ~21r lndet [I - GIl (ei9
) Gll (ei9

)] d8.

It is easily checked that:

~21r In det [I _G2 (ei9) G22 (ei9 )] d8 = ~21r In det [I - G'i2 (ei8
) G'i (ei8

)] d8 (3.7)

We know that G2G22 is stable and has H00 norm strictly less than 1. Therefore the function
In det(I - G'i2G'i) is analytic on the unit ball which implies that (using Cauchy's theorem):

r! In det (I - G'i2(z)G'i(z))dz =In det (I - G'i2(O)G'i(O)) =01v z
The last equality follows because G22 is strictly proper. Combining the above, we find (3.3) .

•
The following lemma is an essential tool for actually calculating the entropy function of some
specific system:

Lemma 3.3: Let G be a rational matrix which has a detectable and stabilizable realization
(A, B, C, D). Assume that G, G-I E Hoo • Then we have:

r21r
10 In Idet G (ei9

) Id8 = 211" In det D

o

Proof: We know that In Ipl = Re p. Therefore, we have

r21r . r 110 In Idet G (el9
) Id8 =Re i 1v:; In det G"'(z)dz

We know that In det G'" is analytic on the unit disc. Hence the integrand on the right-hand
side has only one pole in O. Hence using Cauchy's theorem we find (3.8). •

Lemma 3.4: Let G be a stable transfer matrix with Hoo norm strictly less than 1 and with
stabilizable and detectable realization (A, B, C, D). Then we have:

:I(G,1) = -12ln det (I - ~2(BTXB+DTD»)
where X is the unique solution of the algebraic Riccati equation:

X = ATXA +CTC + (ATXB +CTD)N-1(BTXA +DTC)

such that N := 121 - BTX B - DTD > 0 and A + ,-2BBT X is asymptotically stable. 0
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Proof: The existence and uniqueness of X is a well-known result (see e.g. [10]). It is easily
checked that the transfer matrix M with realization

satisfies:

Moreover, M,M-l E H CXH Le. M is a spectral factor of I -1-2G"'G. We have

and therefore (3.9) is a direct consequence of applying lemma 3.3 to the above equation. •

Note that lemma 3.4 can be used to show that the entropy function is an upper bound for
the H 2 norm:

Corollary 3.5 :Let G be a stable transfer matrix. For all 11 larger than the H oo norm of G
we have

where

o

Proof: We have "Gil = Trace BT PB where P is defined by

P = ATpA +CTC.

It is easily seen that X, as defined in lemma 3.4, satisfies X ~ P and lim"Y_oo X = P.
Moreover,

In det(I - S) > det S, lim In det(I - S) = 1.
5_0 det S

The result then follows by applying the above two properties to:

S:= ~(BTXB+DTD)
I

8
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(4.1)

4 A system transformation

Throughout this section we assume that 'Y = 1 and that there exist matrices P and Q satisfying
the conditions in theorem 2.1 for 'Y = 1. Note that this is no restriction when proving theorem
2.3. The assumption 'Y = 1 can be easily removed by scaling while the existence of such P
and Q is implied by our assumption that there exists an internally stabilizing controller which
makes the Hoo norm strictly less than 1. We use a technique from [10, 9] of transforming the
system twice such that the problem of minimizing the entropy function for the original system
is equivalent to minimizing the entropy function for the new system we thus obtain. We will
show that this new system satisfies some desirable properties which enables us to solve the
minimum entropy H00 control problem for this new system and hence also for the original
system.
We define the following system:

{

UXp = Apxp + Epwp + Bup,

~p : Zp = C1 ,pxp + Du,pwp + D 12,pUp,

yp = C2 ,pxp +D 21 ,pWp ,

where the above matrices are defined in theorem 2.3 for 'Y = l.
The following lemma connects ~p with the original system ~ and presents some of the prop
erties of the connecting system.

Lemma 4.1 : Let ~ and ~p be defined by (2.1) and (4.1), respectively. For any system ~u

of suitable dimensions consider the following interconnection:

(4.2)

and decompose the transfer matrix U of ~u as follows:

U (:) =: (~:: ~::) (:) = (~) ,

compatible with the sizes of Uu, w, Yu, and z. Then the following holds: there exists a system
~u of suitable dimensions such that:

(i) The system ~u is inner

(ii) The transfer matrix Ui.i! is well-defined and stable

(iii) .J(Ull , 1) = In det R.

(iv) The system ~ and the interconnection in (4.2) have the same transfer matrix.

9



(v) The interconnection in (4.2) is detectable from yp and stabilizable by Up.

where R as defined in theorem (2.3) for 'Y = 1.

o

Proof: All of these properties except part (iii) have been derived in [11] where Eu has been
explicitly constructed. Note that U21 is a spectral factor for 1- Uli Un which yields (iii) by
using the state space realization for U21 given in [11] and by applying lemma 3.3. •

Remark: In case the system (A, B, C2 , D2I) is left-invertible we have that V is invertible
and we can construct Eu directly:

where

uxu = Auxu + Euw + Buuu,

Zu = C1 ,uX u +Du,uw + D12 ,UUU'

yu =C2 ,uX u +D21 ,uW

(4.3)

Au

E u

Bu

C1 ,u

Du,u

D 12,U

C2 ,u

D21 ,u

.- A - By-l (BT PA +D'f2Cl) '

.- E - By-l (BT PE +D'[2Dn)'

._ By-l/2,

.- C1 - D12y-l (BT PA +D'[2Cl),

.- Dn - D 12y-l (BT PE +Di2Dn) ,

._ D 12y-l/2,

_R-1/ 2 Z.- ,
R1/ 2 ,

and y, Rand Z are as defined in theorem 2.3 with 'Y = 1.
Combining lemmas 3.2 and 4.1, we find the following theorem:

Theorem 4.2 : Let the systems (2.1) and (4.1) be given. Moreover, let a compensator :EF
of the form (2.3) be given. The following two conditions are equivalent:

• :EF is internally stabilizing for E such that the closed loop transfer matrix Gel has
H 00 norm strictly less than 1.

• EF is internally stabilizing for Ep such that the closed loop transfer matrix Gel,P has
H00 norm strictly less than 1.

Moreover, if:EF satisfies the above conditions then we have

.J(Gel, 1) = .J(Gel,P, 1) + In det R. o

Next, we make another transformation from Ep to :EP,Q' This transformation is exactly dual
to the transformation from :E to Ep • We know there exists a controller which is internally
stabilizing for E p which makes the H oo norm of the closed loop system strictly less than 1.
Therefore if we apply theorem 2.1 to Ep we find that that there exists a unique matrix Y
such that
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(i) We have

S> 0,

where

W y .- D21 ,pD;',p + C2,PYC;,p,

Sy .- 1- Dll,pD'[l,P - Cl,PYC~P +
(CI,PYC;,p + Dll,pD;;',p) W~ (C2,PYC~P + D2I ,pD'[I,P) .

(ii) Y satisfies the following discrete algebraic Riccati equation:

Y =A Y AT + E ET _ (CI'PYA~ + Dll'PE'f,) T H (y)t (CI'PYA~ + Dll,pET) .
P p P P C T ET P C YAT D r.oT2,pYAp + D21 ,P P 2,P P + 21,P£Jp

where

(iii) For all z E C with Izl ~ 1, we have

(4.4)

(4,5)

CI,pYAi: + Dll,pE;
Cl,pYC~P+Dll,pD'f..,p - I
C2,PYC~p + D21 ,pD'f..,p

It can be shown that Y := (I - QP)-l Q satisfies the above conditions.
We define the following system:

UXp,Q = Ap,Qxp,Q + Ep,Qw + Bp,Qup,Q'

zp,Q = C1,p,yXp,Q + Du,p,yw + D 12 ,P,yUp,Q,

YP,Q = C2,pxp,Q + D 21 ,P,YW,

(4.6)

where

.- ApYC~p+ EpD'it,p

- (ApYC;'p + EpD;',p) W~ (C2,pYC~P + D2I,pD'it,p) ,
- 1A p + ZSy CI,p,

- 1.- B + ZSy DI2 ,P,

11



D~l,P,V

D12,p,v

Dll,p,v

.- (ApYC;,p + EpDit,p) D~l,P,V

+ZSyl (Cl,PYC;,p + Dll,pDit,P) D!t,p,v,

S -1/2C.- y l,P,

._ W;/2,

S-1/2D.- y l~,P,

.- S;1/2 (Cl,PYc;,p + Dll,pD;l,P) D!t,p,v,

Using theorem 4.2 and a dualized version for the transformation from Ep to Ep,Q we can
derive the following corollary:

Corollary 4.3 : Let the systems (2.1) and (4.6) be given. Moreover, let a compensator EF
of the form (2.3) be given. The following two conditions are equivalent:

• EF is internally stabilizing for E such that the closed loop transfer matrix Gel has
H00 norm strictly less than 1.

• EF is internally stabilizing for Ep,Q such that the closed loop transfer matrix Gcl,P,Q has
H00 norm strictly less than 1.

Moreover, if EF satisfies the above conditions then we have

.7(Gel, 1) = .7(Gel,P,Q, 1) +In det R +In det By. o

From this corollary it is immediate that it is sufficient to investigate Ep,Q to prove the results
in our main theorem 2.3. Of course, we would like to know what we gain of our transformation
from E to Ep,Q' This is immediate from the following lemma:

Lemma 4.4 : Let EF be the compensator described in theorem 2.3. The interconnection of
EF and Ep,y is internally stable and the closed-loop transfer matrix from Wp,y to Zp,y is zero.

o

Combining corollary 4.3 and lemma 4.4 we find that the controller in lemma 4.4 minimizes
the entropy over all stabilizing controllers and the minimal achievable entropy is equal to

In det R +In det By.

The proof of theorem 2.3 is completed by noting that the controller in lemma 4.4 is equal to
the controller given in theorem 2.3.

12



5 Bilinear transform

We basically can derive two different characterizations of all suboptimal controllers for the
Roo control problem. The characterization as given in [2, 10] for discrete time systems or
to apply the bilinear transform. The bilinear transform leaves stability and the Roo norm
invariant. Hence if we transform our discrete time system to the continuous time via the
bilinear transform, then obtain the parametrization for all suboptimal controllers for contin
uous time systems and finally via the inverse bilinear transform we obtain a parametrization
of all suboptimal controllers for our original discrete time system.
We will compare the direct (discrete) derivation with the indirect (continuous) derivation.
Clearly, in both cases we obtain a parametrization of all controllers but the central controller
obtained via this two techniques is different. The central controller obtained via the discrete
design will be a minimum entropy controller. But via the bilinear transform it is not associated
with the (standard) continuous time entropy criterion. Suppose we apply the following bilinear
transform:

1+8z--
1- 8'

z-l8---
z+l

where 8 denotes the continuous domain while z denotes the discrete domain. If we trans
form our discrete time plant via the above bilinear transform into a continuous time system,
determine the central controller (for an Roo norm bound of " e.g. using the formulas of
[1D, and apply the bilinear transform on the resulting controller then we obtain a discrete
time controller which stabilizes the original discrete time system and satisfies the Roo norm
bound l' This controller minimizes, over all stabilizing discrete time controllers which yield
an Roo norm bound less than 1, the following criterion:

Jc(G, 1) := - ;;121r
(ei;:B1

)2 In det [I - ~2G'" (eiB ) G (eiB )] dO

If we compare this criterion with (2.2) then we note that an additional weighting function.
Because of this additional weighting function the central controller obtained via the bilinear
transform will in general put more emphasis on high-frequency behaviour and often result in
a worse design unless one compensates for this additional weighting. We feel that this is an
additional argument in favour of a direct discrete design compared to a continuous design via
the bilinear transform. It is not difficult to check that (2.2) is, via the bilinear transform,
related to what in [6] is called entropy at 1. Hence a design via the bilinear transform is
possible without creating aditional weighting functions but one should be careful.
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