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Abstract

The generating function approach for analysing queueing systems has a longstanding
tradition. One of the highlights is the seminal paper by Kingman on the shortest
queue problem, where the author shows that the equilibrium probabilities Pm,n of the
queue lengths can be written as an infinite sum of products of powers. The same
approach is used by Hofri to prove that for a multiprogramming model with two
queues the boundary probability PO,n can be expressed as an infinite sum of powers.
The present paper shows that the latter representation does not always hold, which
implies that the multiprogramming problem is essentially more complicated than the
shortest queue problem. However, it appears that the generating function approach
is very well suited to show when such a representation is available and when not.

1 Introduction

There is a long tradition of using generating functions for analysing exponential queueing
models. A seminal paper in this area is Kingman's paper [6] on the shortest queue model, in
which the author shows that the generating function for the equilibrium probabilities Pm,n
for the queue lengths is meromorphic. This implies that a partial fraction decomposition is
possible which shows that the equilibrium probabilities can be expressed as countable sum
of products of powers. Kingman gives the first term of this expansion explicitly and Flatto
and McKean [4] give the second. Hofri [5] uses the same approach for a multiprogramming
problem with essentially two queues. The equilibrium equations for the multiprogramming
problem are quite similar to the equilibrium equations for the sl'iortest queue problem and
therefore it seems likely that the same approach works. By concentrating on the boundary
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probabilities PO,n rather than on the general probabilities, Hofri is able to get the expansion
in a more explicit form.

The aim of the present paper is to show that the multiprogramming problem is less similar
to the shortest queue problem than it looks at first sight. It appears that the representation
of PO,n as an infinite sum of powers does not necessarily hold for every n, but only from
some n onwards. It also appears that the generating function approach is a good tool to
handle this complication.

The complication, mentioned above, stems from a feature, which does not occur in the
shortest queue problem, at least not in the symmetric version as treated by Kingman.
Recently, another approach has been developed for the shortest queue problem, leading
to more explicit representations of the equilibrium probabilities (see [1]). The extension
of this new approach to the asymmetric shortest queue problem (see [2]) encounters a
similar complication as the one overlooked by Hofri. In fact, also for this new approach,
the analogy can be exploited for the analysis of the multiprogramming system (see [3]).

The paper is organised as follows. In section 2 the model is introduced together with
a sketch of the analysis of the relevant generating function. Section 3 is devoted to the
partial fraction decomposition of this generating function and hence to the conditions for
the representation of the boundary probabilities PO,n as countable linear combination of
powers. Section 4 contains some concluding remarks.

2 The multiprogramming model and its analysis

The multiprogramming system as introduced by Hofri in [5] has the following queueing
properties (compare fig. 1). In the queueing model it is supposed that queue III of incoming

queue 1

10
queue III

Figure 1: Queueing model for a multiprogramming system

jobs provides an infinite source of ever available jobs. The multiprogramming system
consists of an input-output unit (IO) and a central processor (CP). Incoming jobs start at
the 10 with an exponentially distributed service time with parameter Jl'. Subsequently, the
job leaves the system with probability P or proceeds to queue II at the CP with probability
1 - p. At the CP a job has an exponentially distributed service time with parameter Jl.
Next the job is recycled to the 10 unit where it joins queue I. The 10 unit treats the jobs
in queue I with nonpreemtive priority with respect to the new jobs in queue III.
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The system may be represented by a continuous time Markov process with states (i, j),
i = 0,1, ... and j = 1,2, ... where i and j are the lengths of the queues II and I respectively
(including the jobs being served). Let {pi,j} be the equilibrium distribution of the Markov
chain, which exists if (1 - p)p' < p (see Appendix A in [5]). The determination of
this distribution is the main topic of [5]. By the analogy of the Markov process of the
multiprogramming system with the Markov process of the shortest queue problem, Hofri
can use a similar approach as Kingman used in [6] for the shortest queue problem. In
doing so, he shows that the generating function of the boundary probabilities Pod is a
meromorphic function, and he finds the poles and residues. This enables him to express
PO,j as an infinite sum of powers.

In this section we proceed by sketching the part of the generating function analysis which
is crucial for our discussion. For the other parts and also for more details, the reader is
referred to the extensive treatment by Hofri in [5]. Let G(z, u) be the generating function
of the equilibrium distribution {pi,j}:

00 00

G(z,u) = LLPi,jZiuj .
i=Oj=l

Application of the generating-function approach to the equilibrium equations ofthe Markov
process leads to a functional equation for G(z, u), relating G(z, u) to the boundary values
G(z, 1) and G(O, u). Clearly, G(O, u) is the (one-dimensional) generating function of the
boundary probabilities PO,j, j = 1,2, .... The determination of G(O, u) is crucial. It will
be proved that G(O, u) may be continued to a meromorphic function and that the poles
and residues can be found. This provides, by partial fraction decomposition of G(O, u),
the possibility to express PO,j as an infinite sum of powers. In section 3 it will be shown
that this partial fraction decomposition is more complicated than suggested by Hofri and
it does not necessarily lead to explicit expressions for all PO,j. In the sequel of this section
the determination of G(O, u) will first be outlined in more detail. This outline closely
follows Hofri's exposition in [5].

Hofri first shows that G(O, u) is regular in lui < max{l,p'lp} and introduces the mapping

u =h(() =a + ¢>(( +(-1), (1)

where a and ¢>, which are defined by (45) and (57) in [5], are positive constants. h«() is a
conformal mapping from 1(1 > Ion the whole u-plane, excluding the interval [a-2¢>, a+2¢>].
The unit circle \(1 = 1 is mapped two to one on the interval [a - 2¢>, a+ 2¢>]. Next, the
number r > 1 is determined as the largest number such that h(() maps the annular
1/r < '(I < r into the disk lui < max{l,p'IJl}' By defining •

G«() = G(O, h«()), 1/r < 1(1 < r,

Hofri proves that on the (nonempty) intersection of 1/r < 1(1 < rand 1/r < la(1 < r, the
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(2)

function G(() satisfies

G(o:() 0: ( - (d 0:

G(() = 7i ( - 1/(1 '

where 0: and 1/(}, which are defined by (51) and (66) in [5], are strictly larger than unity
and 13 is given by

p, - p,'0:
13 = .

p,o: - p,'

Relationship (2) is deduced from the functional equation for G(z, u), and is used to define
G(() over 1(1 > 1 recursively as a regular function, except for simple poles at

_ o:j-l
( = (j = T' j = 2,3,... (3)

with corresponding residues 9j' Denoting by h- (u) the inverse of h(() from the whole
u-plane, excluding [a-24>, a+24>], to 1(/ > 1, it follows that G(h-(u)) is a regular function,
except for simple poles at

j = 2,3, ...

(

j-l ()- 0: 1
U = Uj = h((j) = a + 4> T + o:j-l '

with corresponding residues

(~ -1
g . _ -I..-g J

J - 'f' j ---=2 '
(j

j = 2,3, ... (4)

(5)

Since G(h-(u)) and G(O,u) coincide on the interior of the ellipse Ih+-(u)1 = r, excluding
[a - 24>, a + 24>], it follows that G(h+-(u)) is the analytic continuation of G(O,u) over
lui ~ max{l,p,'/p,}.

So far, it has been proved that G(O, u) can be continued to a meromorphic function over
the whole u-plane with simple poles at the points u = Uj and corresponding residues gj,

j = 2,3, ... To obtain expressions for the boundary probabilities PO,i the meromorphic
function G(O, u) is decomposed into partial fractions. This partial fraction decomposition
is the main topic of the next section.

3 Partial fraction decomposition of the. generating func
tion

To decompose G(O, u) into partial fractions, we will use the approach in §7.4 in Whittaker
and Watson [7].

Let El be the ellipse in the u-plane corresponding to Ih ..... (u)1 = 1(1 = (1 + 0:)(z/2 for
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1= 2,3, . ... Since

- 1 +0:- -
(, < -2-(' < ('+1'

no ellipse E, passes through any poles of G(O, u).

IT u is not a pole of G(O, z) and if 1 is sufficiently large such that E, encloses u, then, since
the only poles of the integrand are the poles of G(O, z) and the point z = u, we have by
the Theorem of Residues that

~ f G(O,z)dz = G(O,u)+ t -gk

2n lEI z - U k=2 Uk - u

But inserting the expansion

1 1 u un- 1 un
--=-+-2+"'+-+ ( )'z - u z Z zn zn Z - U

where n is some nonnegative integer, yields that

(6)

--.!..- f G(O,z)dz
21l"i lEI z - U

n-l 1 1G(O,z)uk

d
un 1 G(O,z) d,,- z+- z

LJ 21l"i E zk+l 21l"i E zn(z - u)
k=O I I

n-l k n-l 1 gjUk un 1 G(O, z) d
= "Po kU +""-- +- zLJ, LJ~ u~+1 21l"i E zn(z - u) .

k=l k=O )=2 ) I

(7)

Hence, by (6) and (7),

~ k ~ gjU
n un 1 G(O,z)

G(O,u) = LJPO,kU + LJ n( _ .) +-2' n( _ )dz.
k=l j=2 Uj U u) 1l"~ E, z z u

IT we can now prove that as 1~ 00,

f G(O, z) dz ~ 0,
lEI zn(z - u)

then, by letting 1~ 00 in (8), we obtain the following decomposition of G(O, u),

To satisfy condition (9), it is of course desirable to keep n as sI]lall as possible.

Definition: Let m be the smallest nonnegative integer such that 1.BI;m-i < l.

Lemma (cf. Lemma 4 in [6]): G, = sUPuEEI~~ °as 1~ 00.
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o

Proof: Since by (1), U = h(() "" <!>( as 1(1 -> 00, it is sufficient to prove that

Gl = sup IG«()I = sup IG«l + a)(~ei8 /2)1 -> 0 as 1 -> 00.

1'1=(1+0')"(112 I(ml 0$8<211" 1«1 +a)(le,8/2)ml

It holds that

Gl < ~1 IG«(1 +a)(lei8 /2)/-- -- sup
Gl-1 - c;n 0$8<211" IG«l +a)(I_1 ei8 / 2)1

Inserting that (1 = a(l_l, by (3), and then applying relation (2), yields

Gl 1 (1 +a)(I_d2 +(l/ a
Gl-1 ::; 1,8lam- 1 (1 +a)(l_d2 - 1/(1 .

Hence, since 1/1,8lam-1 < 1 and (1-1 -> 00 as 1 -> 00, there exists a positive number R,
strictly less than unity, such that for all 1 sufficiently large,

GI
=-- < R,
GI-l -

which proves that GI tends to zero as 1 tends to infinity.

Remark: It can be shown that m is always strictly positive, and that m is possibly larger
than unity. For instance, for Ji' = 1, Ji = 2 and P = 3/25 we obtain from (51) in [5] that
a = 11/4 and ,8 = -1/6, so in that case m = 3.

Now as 1-> 00,

[ G(O,z) dZ=O(Gl),
lEI zm(z - u)

and so by the lemma, this integral tends to zero as 1-> 00. Therefore, by inserting n = m
in (8) and next letting I -> 00, yields

m-1 00 m
Theorem: G(O,u) = L PO,kuk +L m~jU_ .)

k=1 j=2 Uj U u,

By investigating the asymptotic behaviour of the poles Uj and the residues 9j as j -> 00,

it can be seen that n = m is indeed the smallest nonnegative integer, for which expression
(10) is valid. From (4), we obtain that as j -> 00,

<!> .
Uj "" -(a'.

1a

The asymptotic behaviour of 9j can be obtained from formula (105) in [5], which should
read as

j = 2,3, ....
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(11)

From that equality and (5) it is easy to show that as j -;. 00,

OJ ~ C9I9, ( ~)'
where e is given by

00 k-I/I" I" /,e = II a ..1 - ..1 a > O.
k=2 ak-I/(I - 1/(1

Hence, for any nonnegative integer n, as j -;. 00,

(Uj~~+I ~ C<jJ92 ((:)n+I (~a~-Ir.
So, if n < m, then the series in (10) is divergent.

We now show how the partial fraction decomposition of G(O, u) leads to the desired ex
pressions for PO,i. For lui < 1 we obtain that (notice that IUjl 2: 1 for all j)

00 00 00'
9jUm 9jUm U·

~U'?'l(u-u.) = -~u"!l+I ~ui.
3=2 3 3 3=2 3 1=0 3

00 00

= '" m+i '" 9j
- ~U ~ u"!l+I+i'

1=0 3=2 3
where interchanging of the summations is allowed since

00 00 19jUm +i l < 00 Igjl 1
~~ lu'!1+I+j l - ~ lu·lm+I I-lui
3=21=0 3 3=2 3

(12)

and the right-hand side converges by (11) with n = m. From (12) and the theorem, it
follows that

00

Corollary 1: PO,i = - L :~I for all i 2: m.
j=2 uj

From (11) follows that this expression for PO,i is not valid for i < m.

00

Corollary 2: The series - L :~I is divergent for i < m.
j=2 uj

4 Concluding remarks

Similarly, series expressions can be obtained for the boundary probabilities Pi,I. We did
not pursue here to deduce the partial fraction decomposition for the two-dimensional
generating function G(z, u), providing series expressions for Pi,j. Similarly as for the
shortest queue problem, this analysis is much more complicated than the one for the one-
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dimensional generating functions G(O, u) and G(z, 1), and leads to cumbersome expressions
for Pi,i' However, in [3] it is shown that explicit expressions for Pi,i can be obtained by
using a compensation approach, which is not based on generating-functions. In particular,
the expressions for Pi,i are valid for those i and j satisfying i +j ~ m, and not for smaller
i and j.
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