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Modeling and Analysis of a Long Thin Good Conducting Stripline

D.J. Bekers, S.J.L. van Eijndhoven and A.A.F. van de Ven
Eindhoven University of Technology, Department of Mathematics and Computer Science, P.O. Box
513, 5600 MB Eindhoven, The Netherlands

February 5th, 2003

Abstract. A long thin good conducting stripline embedded in a dielectric and centered between
two large conducting plates, i.e. the stripline environment, is considered. The stripline is modeled as
infinitely long, infinitely thin, and perfectly conducting by first considering a stripline of finite length,
thickness, and conductivity in a dielectric layer. Starting from Maxwell’s equations and assuming that
the current on the stripline is a propagating wave in length direction, asymptotic expressions for the
fields inside and in the neighbourhood of the stripline are deduced. These expressions are used to
model the stripline in the stripline environment, which leads to a boundary value problem for the
electric potential. This problem is solved by two different approaches, leading to integral equations
for the current and for an auxiliary function describing the electric potential. A relation between the
current and the auxiliary function is deduced, which is used to obtain asymptotic expressions for
current and impedance. Results are compared with a numerical solution of the integral equation for
the current and with results in literature.

Keywords: Stripline, finite thickness versus infinitely thin, skin depth, finite versus perfect conduc-
tion, current distribution, impedance

1. Introduction

A stripline is a special type of electromagnetic transmission line, which is used for the
excitation of antennas. For high frequency applications, a stripline is modeled usually
as infinitely long, infinitely thin, and perfectly conducting, because the skin depth, as
defined by Landau and Lifshitz [1], is much smaller than the thickness of the stripline,
and the thickness is much smaller than all other characteristic length scales. By this
model, the electromagnetic fields of a number of planar striplines can be computed
by means of conformal mapping theory, if a transverse electromagnetic wave (TEM)
is assumed, see Collin [2, Chapter 3, Part 2, and Appendix III] and Wheeler [3]. In
this paper, we present the modeling of a stripline as infinitely long, infinitely thin,
and, perfectly conducting in more detail. We deduce asymptotic expressions for the
fields inside and in the neighbourhood of a long thin good conducting stripline in a
dielectric layer. After that, we apply the model to calculate the electromagnetic field
of a stripline in a so-called stripline environment, not by conformal mapping theory,
but from both an integral equation for the current and an integral equation for an
auxiliary function describing the electric potential.

Figure 1 shows an intersection of a stripline in a stripline environment and the
geometry of the stripline itself. The stripline is a long thin good conducting strip of
width 2a and thickness 2b with b ¿ a. In the stripline environment, the stripline
is centered between two good conducting plates, called ground plates, which are
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2 D.J. Bekers et al.

connected to the earth. The layer between the groundplates and around the stripline
is filled by a dielectric medium. The width of the ground plates and the dielectric
layer is much larger than the width of the stripline, while their length equals the
length of the stripline. Moreover, the ground plates are separated by a distance 2h,
which is usually of the same order as the width 2a, i.e. ζ = h/a is of order 1. For the
stripline, we assume the existence of an electric current as a propagating wave, with
prescribed total amplitude I. Hence, the total time-averaged current is prescribed.
We assume that the wavelength λ of this wave is much smaller than the length of
the stripline, while 2a ¿ λ. Therefore, we may assume that the current propagates
in length direction (y-direction) only. We disregard reflections and boundary effects
at the ends of the stripline. The thus defined problem is symmetric in z. An example
of a set of parameter values for a copper stripline designed for L-band applications is
given in Table I.

In Section 2, we consider a long thin good conducting stripline in a dielectric layer.
Starting from Maxwell’s equations and assuming that the current on the stripline is
a propagating wave in y-direction, we deduce asymptotic expressions for the fields
inside and in the neighbourhood of the stripline. We show under which conditions
these expressions can be applied. Moreover, we show that these expressions and con-
ditions imply that the stripline can be modeled as infinitely long, infinitely thin, and
perfectly conducting. Using the obtained results, we model a stripline in a stripline
environment in Section 3. As in literature, we deduce a boundary value problem for
the electric potential. In Section 4, we solve this boundary value problem by two
different approaches, one leading to an integral equation for the current and the other
to an integral equation for an auxiliary function describing the electric potential. A
relation between the current and the auxiliary function is deduced, which is used to
obtain asymptotic expressions for current and impedance in Section 5. In Section 6, a
numerical algorithm is given to solve the integral equation for the current. Results of
this algorithm for current and impedance are shown in Section 7. In conclusion, the
numerical solution of the impedance is compared to the asymptotic solutions and to
results in literature.

2. Deducing Boundary Conditions for a Long Thin Good Conducting
Stripline

In this section, we consider a long thin good conducting stripline in a dielectric
layer, as described in the previous section. We will deduce asymptotic expressions
for the fields inside and in the neighbourhood of the stripline. We assume that the two
media, stripline and dielectric, are linear, homogeneous, and isotropic. Furthermore,
the permeability of both media equals the permeability of vacuum, µs = µd = µ0,
while their permittivities εd and εs are equal to, or at least of the same order as
the permittivity ε0 of vacuum, see Table I. The electric field E(d) in the dielectric is
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Modeling and Analysis of a Stripline 3

described by the wave equation and the condition that it is solenoidal,

∂2E(d)

∂t2
− c2

d∆E(d) = 0, div E(d) = 0, (1)

where c2
d = 1/(µ0εd). These equations are deduced from Maxwell’s equations. The

magnetic field H(d) can be calculated from Maxwell’s equations, when the electric
field is known. We note that the current density J (d) = 0 and the free charge density
%(d) = 0.

In the stripline, no free charge distribution can exist, i.e. %(s) = 0, and J (s) = σE(s)

by Ohm’s law. Then, J (s) is described by the damped wave equation and the condition
that it is solenoidal,

∂2J (s)

∂t2
+

σ

εs

∂J (s)

∂t
= c2

s∆J (s), divJ (s) = 0. (2)

Furthermore, E(s) and H(s) follow from Maxwell’s equations and Ohm’s law, when
J (s) is known.

The transition conditions for the field quantities E(d) and J (s) at the interfaces
x = ±a and z = ±b follow from the general transition conditions (see Stratton [4]).
We consider only the interfaces z = ±b for reasons we explain later. The normal
component of the magnetic field and the tangential component of the electric field are
continuous across these interfaces, yielding

(
rotE(d)

)
z
− 1

σ

(
rot J (s)

)
z

∣∣∣∣
z=±b

= 0, (3)

E(d)
y − 1

σ
J (s)

y

∣∣∣∣
z=±b

= 0, E(d)
x − 1

σ
J (s)

x

∣∣∣∣
z=±b

= 0. (4)

It can be shown that (4) implies (3).
The tangential component of the magnetic field is continuous, because the (volume)

current J (s) is finite at the interface. Hence,
(
rotE(d)

)
y
− 1

σ

(
rotJ (s)

)
y

∣∣∣∣
z=±b

= 0,
(
rotE(d)

)
x
− 1

σ

(
rot J (s)

)
x

∣∣∣∣
z=±b

= 0. (5)

The normal component of the dielectric displacement is discontinuous across the in-
terfaces z = ±b, as surface charges exist at these interfaces. Let %±S be the (unknown)
surface charge density at z = ±b. Because of symmetry, %+

S = %−S =: %S . Then,

%S = ±εdE(d)
z

∣∣∣
z=±b

. (6)

Here, we use that the normal component of the current is continuous across the the
interfaces z = ±b,

J (s)
z

∣∣∣
z=±b

= 0. (7)
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4 D.J. Bekers et al.

As aforementioned, we assume that the current in the strip is a propagating wave in
y-direction,

J (s)(x, t) = J(s)(x, z) ei(βy−ωt). (8)
where β is the wave number with Reβ > 0. Note that for Reβ = 0, the wave
does not propagate, and for Reβ < 0 the wave propagates in negative y-direction.
Moreover, depending on the sign of Imβ, the wave is attenuated, explodes, or is
purely propagating in positive y-direction.

By the transition conditions, E(d) and %S are of the same nature,

E(d)(x, t) = E(d)(x, z) ei(βy−ωt), %S(x, y, t) = ρS(x) ei(βy−ωt). (9)

We introduce the dimensionless coordinates x̂ = x/a and ẑ = z/b, and the parameters

ε =
b

a
, ξ2 = b2(β2 − k2

d),
1
δ2

= b2(β2 − k2
s − iσωµ0), (10)

with −π/2 < arg ξ ≤ π/2 and −π/2 < arg δ ≤ π/2. Then, the field equations (1) and
(2) turn into (we omit the superscripts)

ε2
∂2E
∂x̂2

− ξ2E +
∂2E
∂ẑ2

= 0, ε
∂Ex

∂x̂
+ ibβEy +

∂Ez

∂ẑ
= 0, (11)

ε2
∂2J
∂x̂2

− 1
δ2

J +
∂2J
∂ẑ2

= 0, ε
∂Jx

∂x̂
+ ibβJy +

∂Jz

∂ẑ
= 0, (12)

and the transition conditions (3) - (6) into

Ey − 1
σ

Jy

∣∣∣∣
ẑ=±1

= 0, Ex − 1
σ

Jx

∣∣∣∣
ẑ=±1

= 0, (13)

−ε
∂Ez

∂x̂
+

∂Ex

∂ẑ
+

1
σ

∂Jx

∂ẑ

∣∣∣∣
ẑ=±1

= 0, ibβEz − ∂Ey

∂ẑ
+

1
σ

∂Jy

∂ẑ

∣∣∣∣
ẑ=±1

= 0, (14)

ρS = ±εdEz|ẑ=±1 . Jz|ẑ=±1 = 0. (15)

We are interested in E in the neighbourhood of the strip (|x̂|, |ẑ| > 1, but x̂, ẑ = O(1))
and J in the strip (−1 < x̂, ẑ < 1). For −1 < x̂ < 1 with 1 − |x| 6= O(ε), and for
ẑ = O(1), the field quantities are only weakly dependent on x̂, because ε ¿ 1. For the
numerical values given in Table I, ε = O(10−3). The small parameter ε is responsible
for boundary layers near the edges x̂ = ±1. From now on, we will neglect these effects,
meaning that in the field equations (11) - (12), we take ε = 0. This implies that all
fields are now independent of x̂, i.e. E = E(ẑ) and J = J(ẑ). Moreover, since Ex

and Jx are governed by an independent set of differential equations and boundary
conditions, including Ex → 0 as |ẑ| → ∞, these components must be zero. Hence,
Jx = 0 and Ex = 0.

From the problem formulation, it follows that Jy is an even function of ẑ. Then,
(12)2 and the y-component of (12)1, with ε = 0, yield

Jy(ẑ) =
Jy(1) cosh (ẑ/δ)

cosh (1/δ)
, Jz(ẑ) = −ibβδ

Jy(1) sinh (ẑ/δ)
cosh (1/δ)

, |ẑ| ≤ 1. (16)
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We see that Jz satisfies the z-component of (12)1, with ε = 0, but not the transition
condition (15)2. However, we will show that this equation is satisfied neglecting vector
components of O(

√
ωεd/σ), which is of O(10−5) for the numerical values in Table I.

Using Ey, Ez → 0 for |ẑ| → ∞, we obtain from (13)1, (15)1, and the y and z-
component of (11)1, with ε = 0,

Ey(ẑ) =
1
σ

Jy(1) e−ξ(|ẑ|−1), Ez(ẑ) = sign(ẑ)
ρS

ε(d)
e−ξ(|ẑ|−1), |ẑ| ≥ 1. (17)

Substitution of (17) into (11)2, with ε = 0, we find

ρS =
ibβεd

σξ
Jy(1). (18)

Using this relation together with (17) in (14)2, and requiring Jy(1) 6= 0, we arrive at
the following dispersion relation for β,

−b2β2

ξ
+ ξ +

1
δ

tanh(1/δ) = 0. (19)

Note that ξ depends on β. By the definition of ξ2, i.e. (10)2, it follows from (19) that

ξ = b2k2
dδ coth(1/δ)), β2 = k2

d(1 + b2k2
dδ

2 coth2(1/δ)). (20)

Substituting (20)2 into (10)3 yields an equation for δ,

1
b2k2

dδ
2
− b2k2

dδ
2 coth2(1/δ) =

σωµ0

k2
d

(
k2

d − k2
s

σωµ0
− i

)
. (21)

Having solved this equation, the field components Jy, Jz, Ey, and Ez, and the surface
charge density ρS follow from (16) - (18) and (20). The unknown Jy(1) is expressed
into the prescribed total amplitude I as follows. Neglecting boundary effects near
x̂ = ±1, we calculate the total current I(y, t) passing at time t through the cross
section Σ of the strip,

I(y, t) =
∫

Σ
Jy dS = I ei(βy−ωt), I = 4abδ Jy(1) tanh(1/δ). (22)

Then, the field components Jy, Jz, Ey, and Ez, the x-component Hx of the magnetic
field in the dielectric, and the surface charge density ρS are given by

ρS =
iβεdI

(b)

2σξδ
coth(1/δ)), Hx(ẑ) = sign(ẑ)

iβ2I(b)

2b2σωµ0k2
dδ

2
(1− ξδ) e−ξ(|ẑ|−1), (23)

Jy(ẑ) =
I(b)

2bδ

cosh(ẑ/δ)
sinh(1/δ)

, Jz(ẑ) = − iβI(b)

2
sinh(ẑ/δ)
sinh(1/δ)

, (24)

Ey(ẑ) =
I(b)

2σbδ
coth(1/δ) e−ξ(|ẑ|−1), Ez(ẑ) = sign(ẑ)

iβI(b)

2σb2k2
dδ

2
e−ξ(|ẑ|−1), (25)
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6 D.J. Bekers et al.

where I(b) = I/2a is the total current through a line segment −b ≤ z ≤ b of the
cross section Σ, the parameters ξ and β are given by (20), and Hx is calculated from
Maxwell’s equations. Note that the field components Hy and Hz are zero, as are the
field components Ex and Jx.

To find δ, we consider (21). From the numerical values in Table I, it follows that
b2k2

d = O(10−7) and (k2
d − k2

s)/σωµ0 = O(10−10). Hence, b2k2
d is a small parameter

in (21), and (k2
d − k2

s)/σωµ0 is of lower order. We consider first solutions of (21) for
which δ2 = O(1). Neglecting terms of O(b2k2

d), we obtain from (21) and (20)2

δ2 =
i

b2σωµ0
, β = kd. (26)

Note that we have chosen Reβ > 0 in (8). For the numerical values in Table I, it
follows that δ2 = O(10−3) and b2k2

dδ
2 = iωεd/σ = O(10−9). Then, it can be seen that

(26)1 satisfies (21) and β = kd up to terms of O(ωεd/σ). The imaginary part of the
approximation of β is zero, and hence, the wave is considered as purely propagating.
Since we disregard reflections and boundary effects at the ends of the stripline, we
may consider it as infinitely long. We note that the imaginary part of β/kd is of
O(ωεd/σ), and hence, the wave is attenuated at a distance of the order of 109 times
λd. This distance is in practical cases much larger than the length of the stripline.
Since the real part of the approximation of β equals kd, the wavelength λ = λd of the
propagating wave is much larger than the width 2a. This corroborates our assumption
that the wave propagates in y-direction only.

Secondly, we consider solutions of (21) for which b2k2
dδ

2 = O(1). Neglecting terms
of O(b2k2

d), we obtain from (21) and (20)2

δ4 =
iσωµ0

b2k4
d

, β = (1 + i)
√

σωµ0

2
. (27)

For the numerical values in Table I, |b2k2
dδ|2 = 13.6. Moreover, since b Im β = 9.64, the

wave is attenuated at distances of the order of b. Hence, the wave will not propagate.
Therefore, we exclude this solution and consider only the solution (26).

Neglecting terms of O(ωεd/σ) in ρS , Hx, and Ez as in δ and β, we obtain from
(23), (24)1 and (25)2 the expressions (32) and (33)1. From (24) and (25), it can be
shown that Jz and Ey are of O(

√
ωεd/σ) (= O(10−5), see Table I) with respect to Jy

and Ez, respectively, for ẑ = O(1). Therefore, we put Jz = 0 and Ey = 0. Then, Jz

satisfies the transition condition (15)2.
Now, let us consider the field component Jy in (24). In (10)3, we have chosen

−π/2 < arg δ ≤ π/2, and hence, 1/δ = A(1− i), where A = b
√

2σωµ0. The numerical
values in Table I yield A = 19.3. For ẑ = O(1), but ẑ 6= O(1/A), we find

Jy(ẑ) =
I(b)A(1− i)

2b
e−A(1−|ẑ|)(1−i), (28)

neglecting terms of O(e−2A) = O(10−17). For ẑ = O(1/A), we find Jy(ẑ) = 0, ne-
glecting terms of O(e−A). Then, we can use the expression (28) for ẑ = O(1). Since
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A À 1 , it follows from (28) that Jy decays very fast with ẑ, such that it is in fact
restricted to very thin layers near ẑ = ±1. We define the thickness δ̂skin of each of
these layers, relative to half the thickness 2b of the stripline, as the value of 1− |ẑ| for
which real part of the power of the exponent in (28) equals −1. Then, δ̂skin = 1/A.
The dimensional skin depth δskin of the two layers at ẑ = ±1 together is given by

δskin = 2b δ̂skin =

√
2

σωµ0
. (29)

For the numerical values in Table I, the skin depth is about 5% of the thickness 2b of
the stripline (δ̂skin = 0.052).

We have obtained (28) by neglecting terms of O(e−A). For the numerical values in
Table I, e−A = O(10−9), which is O(ωεd/σ). In the expressions for ρS , Hx, Ez, and
Jy, we have neglected terms of order O(

√
ωεd/σ). However, ρS , Hx, and Ez are not

dependent anymore on σ and ω, whereas Jy is still dependent on these parameters.
Hence, in the expressions of ρS , Hx, and Ez, we have taken the limit

√
ωεd/σ → 0,

while in Jy, we have not taken the limit O(e−A) → 0 or A →∞. The latter limit can
only be taken in distributional sense. We find

lim
A→∞

Jy(ẑ) = Λ (δf (ẑ − 1) + δf (ẑ + 1)) , (30)

where δf is the delta function and Λ is a constant. This means that

lim
A→∞

∫ ∞

−∞
Jy(ẑ)ϕ(ẑ) dẑ = Λ(ϕ(1) + ϕ(−1)) , (31)

for every function ϕ ∈ C∞
c (IR). Here, ϕ ∈ C∞

c (IR) is the space of all infinitely many
times continuously differentiable functions on IR with compact support. Taking ϕ such
that ϕ(ẑ) = 1 for −1 ≤ ẑ ≤ 1, we obtain Λ = I(b)/2b.

Summarizing, we have deduced the following asymptotic expressions for the field
components and the surface charge density, which are valid for ẑ, x̂ = O(1) and 1−|x̂| 6=
O(ε) :

ρS =
√

εdµ0 I(b)

2
, Hx(ẑ) = sign(ẑ)

I(b)

2
, (32)

Ez(ẑ) = sign(ẑ)
√

µ0

εd

I(b)

2
, Jy(ẑ) =

I(b)

2b
(δf (ẑ − 1) + δf (ẑ + 1)) . (33)

Note that the other field components are zero. These expressions can be interpreted
as follows. Taking the limits

√
ωεd/σ → 0 and A = b

√
2σωµ0 → ∞ corresponds to

taking the limit σ → ∞, i.e. the stripline is a perfect conductor. Moreover, since the
thickness 2b is much smaller than all other length scales and the current is located at
the boundary, the stripline can be modeled as infinitely thin. The boundary conditions
of an infinitely thin perfectly conducting stripline at its boundaries z = ±0 follow from
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8 D.J. Bekers et al.

(32) and (33) with ẑ = ±1. We see that the tangential component of the electric field
and the normal component of the magnetic field vanish at the surface of the stripline,
which is in correspondence with the vanishing of the fields inside a perfect conductor
and the continuity of the fields over the boundaries ẑ = ±1.

3. Modeling a Stripline in a Stripline Environment

In this section, we consider a long thin good conducting stripline in a stripline envi-
ronment, as described in Section 1, and we assume that the current in the stripline is
a propagating wave in y-direction. Since the distance 2h between the ground plates
and the sizes of these plates are much larger than the thickness of the stripline, we can
model the stripline as infinitely long, infinitely thin, and perfectly conducting, based
on the results of the previous section. However, we now take Jy = Jy(x) instead of
I(b) as in the previous section, see (32) and (33), because we wish to account also for
the edge effects at x = ±a.

Because of symmetry with respect to the plane z = 0, we take x ∈ G+ = {x ∈
IR3 | x, y ∈ IR, 0 < z < h}, see Figure 1. The current on the stripline is described by

J (x, t) = J(x)ei(βy−ωt) = Jy(x)ei(βy−ωt)ey, (34)

for x ∈ S = {x ∈ IR3 | − a < x < a, y ∈ IR, z = 0}. Here, Reβ > 0. Although we have
shown in the previous section that β = k, where k = ω

√
εµ0 is the wave number in

the dielectric, we put β as the (unknown) wave number and we will show that β = k
for transverse electromagnetic waves.

In literature, boundary value problems for the electric potential are deduced for
several types of stripline, see [2, Chapter 3]. Therefore, we only summarize the steps
to arrive at the boundary value problem for this potential. The electric field E and
the magnetic field H in the dielectric are described by Maxwell’s equations. They
are also planar waves in y-direction, as is the charge density %S on the stripline, see
(9). Then, E and H are described by the source free Maxwell’s equations for planar
waves of the type (34). These equations are supplemented by boundary conditions.
The ground plates are assumed to be perfectly conducting, which implies that the
tangential component of the electric field and the normal component of the magnetic
field vanish at the ground plates. At the stripline, the boundary conditions from the
results obtained from (32) and (33), where z = ±1 is replaced by z = 0± and I(b)

is replaced by Jy(x). At the symmetry line |x| > a, z = 0+, the boundary conditions
follow from the behaviour of E and H, i.e. Hx, Hy, and Ez are odd in z, and Ex, Ey,
and Hz are even in z.

We assume that the planar wave in the stripline environment is a transverse elec-
tromagnetic (TEM) wave, which implies Ey = 0 and Hy = 0. Then, the x-components
and the z-components of Maxwell’s equations (the law of Faraday and the law of
Ampère-Maxwell) are satisfied if and only if β2 = ω2εµ0 = k2. Hence, the stripline
can only support a TEM wave if β2 = k2. This is in correspondence with (26)2 for the
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Modeling and Analysis of a Stripline 9

asymptotic solution for a stripline of finite thickness and finite conductivity. From the
y-component of Maxwell’s equations, it follows that E and H are irrotational. Then,
E and H are both conservative, because G+ is simply connected. This implies that E
and H can be written as E = −gradφ and H = −gradψ, where the scalar functions
φ and ψ are called the electric and magnetic potential, respectively. From divE = 0
and divH = 0, it follows that they are harmonic,

∆φ = 0, ∆ψ = 0, (35)

and from the y-component of Maxwell’s equations, it follows that they satisfy the
Cauchy-Riemann relations

−∂ψ

∂z
=

√
ε

µ0

∂φ

∂x
,

∂ψ

∂x
=

√
ε

µ0

∂φ

∂z
. (36)

Because of (36), we do not need to solve the boundary value problems for both φ
and ψ. Therefore, we deduce and solve the boundary value problem for φ only. The
boundary conditions for φ are deduced from the aforementioned boundary conditions
for the electric and magnetic field. Then, the boundary value problem for φ is given
by

∆φ = 0, |x| < ∞, 0 < z < h,

∂φ

∂x
= 0, z = h,

∂φ

∂z
= 0, z = 0+, |x| > a,

∂φ

∂z
= −

√
µ0

ε

Jy(x)
2

, z = 0+, |x| < a,

∂φ

∂x
= 0, z = 0+, |x| < a.

(37)

The solution to this problem is not unique. Since the tangential derivatives of φ at
z = h and at z = 0, |x| < a are zero, we may prescribe a constant potential at
these boundaries. Without loss of generality, we put φ = 0 at z = h and φ = φ0 at
z = 0, |x| < a, thus arriving at a mixed (Dirichlet-Neumann) boundary value problem
for φ. The potential φ0 is related to the total current amplitude I by (37)4 and hence,
it can be interpreted as the generator of the current on the stripline. To normalize the
problem for φ, we introduce

x = ax̂, z = hẑ, φ = φ0φ̂, Jy =
2φ0

h

√
µ0

ε
Ĵ, (38)
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10 D.J. Bekers et al.

where Ĵ is a function of x̂. Then, the boundary value problem for φ̂ is given by

∂2φ̂

∂x̂2
+

1
ζ2

∂2φ̂

∂ẑ2
= 0, |x̂| < ∞, 0 < ẑ < 1,

φ̂ = 0, ẑ = 1,

∂φ̂

∂ẑ
= 0, ẑ = 0+, |x̂| > 1,

∂φ̂

∂ẑ
= −Ĵ(x̂), ẑ = 0+, |x̂| < 1,

φ̂ = 1, ẑ = 0+, |x̂| < 1,

(39)

where ζ = h/a. In the analysis to follow, we omit the hats. From (39)1, we conclude
that φ depends on ζ, and therefore, J depends also on ζ. To show these dependencies
explicitly, we write φ(x, z; ζ) and J(x; ζ).

4. Calculation of Potential and Current

To solve the boundary value problem (39) for φ, we apply the Fourier transformation
with respect to x, i.e.

F{f(x, ·) ; x → s} =
1√
2π

∫ ∞

−∞
f(x, ·) eisx dx. (40)

to the differential equation for φ and the boundary condition at z = 1. Then, it follows
that

φ(x, z; ζ) = F−1{C(s; ζ) sinh (ζs(1− z)) ; s → x} =

=
1√
2π

∫ ∞

−∞
C(s; ζ) sinh (ζs(1− z)) e−isx ds, 0 < z < 1, |x| < ∞, (41)

where C is an unknown function and F−1 is the inverse Fourier transformation. We
distinguish two approaches to calculate C and J . In the first approach, we choose
the conditions (39)3,4 to calculate the potential φ, i.e. to express φ in terms of the
current. The current is calculated from the condition for φ on the plate, i.e. (39)5. In
the second approach we choose the conditions (39)3,5 to calculate the potential φ. The
current is calculated from the condition (39)4.

4.1. First Approach

The boundary conditions (39)3,4 yield an integral equation for C(s; ζ),

F−1{ζsC(s; ζ) cosh (ζs) ; s → x} =

{
J(x; ζ), |x| < 1,

0, |x| > 1.
(42)
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Applying the Fourier transformation to both sides of the equation, we obtain

C(s; ζ) =
1√

2π ζs cosh(ζs)

∫ 1

−1
J(u; ζ) eisu du. (43)

Substituting this expression into (41) and reversing the order of integration, we obtain

φ(x, z; ζ) =
∫ 1

−1
J(u; ζ)k(x− u, z; ζ) du, (44)

where

k(α, z; ζ) = F−1
cos

{
sinh (ζs(1− z))√

2π ζs cosh(ζs)
; s → α

}
=

=
1

2πζ
log


cosh

(
απ
2ζ

)
+ sin

(
(1−z)π

2

)

cosh
(

απ
2ζ

)
− sin

(
(1−z)π

2

)

 , (45)

see Erdélyi et al. [5], table 1.9 (34), p. 33. Note that Fcos is the inverse Fourier cosine
transformation defined by

Fcos{f(x, ·) ; x → s} =
√

2
π

∫ ∞

−∞
f(x, ·) cos(sx) dx. (46)

Substituting (44) into (39)5, we obtain a Fredholm equation of the first kind for J ,

KζJ = 1, on [−1, 1], (47)

where Kζ is defined by

(KζJ)(x) =
∫ 1

−1
J(u; ζ) k0(x− u; ζ)du, |x| < 1, (48)

and
k0(α; ζ) = k(α, 0; ζ) =

1
πζ

log
∣∣∣∣coth

απ

4ζ

∣∣∣∣ . (49)

Let for any function f the function f∨ be defined by f∨(x) = f(−x). Then, it can be
shown that KζJ

∨ = (KζJ)∨ = 1 on (−1, 1). Hence, J(x; ζ) is even in x, if the solution
of (47) is unique.

We do not consider the question of the existence and uniqueness of the solution
of (47). We note only that the solution for J in the boundary value problem (39)
is not an element of L2[−1, 1], because J has square root singularities in ±1. This
can be shown by solving the Laplace equation for φ near x = 1 in local cylindrical
coordinates. Then, the condition that the electric energy should be finite yields the
behaviour of φ, and therewith J , near x = 1.
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4.2. Second Approach

The boundary conditions (39)3,5 yield a system of two integral equations for C(s; ζ),

F−1{C(s; ζ) sinh (ζs) ; s → x} = 1, |x| < 1,

F−1{sC(s; ζ) cosh(ζs) ; s → x} = 0, |x| > 1.
(50)

It can be seen that if C(s; ζ) is a solution to this system, −C(−s; ζ) is also. Hence,
C(s; ζ) is odd in s, if the solution is unique. Then, the Fourier transforms can be
replaced by Fourier cosine transforms. To solve the system, we write

sC(s; ζ) cosh(ζs) =
∫ 1

t=−1
g(t; ζ)B(t, s) dt, (51)

where B(t, s) is a given function, which is even in s and g(t; ζ) is an unknown function.
Substituting this expression into (50)2 and reversing the order of integration, we obtain

∫ 1

t=−1
g(t; ζ)F−1

cos{B(t, s) ; s → x} dt = 0, |x| > 1. (52)

This equation is satisfied, if we assume that

F−1
cos{B(t, s) ; s → x} =

H(|t| − |x|)
D(t, x)

, (53)

where D depends on the choice of B or vice versa. Since B(t, s) is even in s, D(t, x)
has to be even in x. Substituting (51) into the expression for φ, i.e. (41), we obtain

φ(x, z; ζ) =
∫ 1

t=−1
g(t; ζ)G(x, z, t; ζ) dt, (54)

where G(x, z, t; ζ) is defined by

G(x, z, t; ζ) = F−1
cos

{
sinh (ζs(1− z))

s cosh(ζs)
B(t, s) ; s → x

}
. (55)

By (53), G can be written as

G(x, z, t; ζ) = ζ

∫ |t|

u=−|t|
1

D(t, u)
k(x− u, z; ζ) du . (56)

Then, (50)1, i.e φ = 1 for |x| < 1, turns into a Fredholm equation of the first kind for
g, ∫ 1

t=−1
g(t; ζ)G(x, 0, t; ζ)dt = 1, |x| < 1. (57)

After calculation of g from this equation, φ is known and J can be calculated from
(39)4. Since C(s; ζ is even in s, φ(x, z; ζ) is even in x and therefore, J(x; ζ) is even in
x.
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To choose D(t, x), we note first that D(t, x) should be even in x and the transforms
in (53) and (55) should exist. Examples of choices of D(t, x) are D(t, x) = 1 with
B(t, s) =

√
2
π

sin(s|t|)
s and D(t, x) =

√
π(t2 − x2)/2 with B(t, s) = J0(ts), i.e. the

Bessel function of the first kind of index 0. For the first choice, we obtain

G(x, z, t; ζ) = ζ [K(|t|+ x, z; ζ) + K(|t| − x, z; ζ)] , (58)

where K is defined by

K(α, z; ζ) =
1
πζ

∫ ∞

s=0

sin (αs) sinh (ζs(1− z))
s2 cosh(ζs)

ds. (59)

Note that ∂K/∂α = k. The function K can be written as a series expansion by carrying
out a contour integration in the complex plane,

sign(α) K(α, z; ζ) =
1
2
(1− z)− 1

π2

∞∑

k=0

cos((k + 1
2)πz)

(k + 1
2)2

exp
(
−|α|

ζ

(
k +

1
2

)
π

)
. (60)

4.3. A relation between J and g

In the first approach, we solve an integral equation for J , while in the second approach,
we solve an integral equation for g. A relation between J and g can be deduced as
follows. We substitute the expression (51) for C of the second approach into the
integral equation of the first approach, i.e. (42). Reversing the order of integration
and using (53), we obtain

J(x; ζ) = ζ

(∫ 1

t=|x|
+

∫ −|x|

t=−1

)
g(t; ζ)
D(t, x)

dt, |x| < 1. (61)

By this relation, it can be shown that the two approaches yield the same result for φ
and J . Substituting (56) into (57) and using (61), we obtain the integral equation for
J as obtained in the first approach, see (47).

5. Asymptotic Solutions

We consider the case ζ = h/a ¿ 1 first. We approximate G(x, 0, t; ζ) in (57) by

G(x, 0, t; ζ) = ζ F−1
cos {B(t, s) ; s → x} = ζ

H(|t| − |x|)
D(t, x)

. (62)

Then, by (61), (57) turns into

J(x; ζ) = 1, |x| < 1, (63)
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14 D.J. Bekers et al.

Hence, the current on the strip is (asymptotically) uniform. Then, using the expression
(44) for φ in the first approach, we obtain

φ(x, z; ζ) = K(1 + x, z; ζ) + K(1− x, z; ζ), (64)

where K is defined by (59) with ∂K/∂α = k. It can be shown that φ satisfies the
differential equation and the boundary conditions for φ in (39), except (39)5. The latter
serves as a measure for the quality of the approximation. Numerically, it can be shown
that for ζ = 0.05, |φ(x, 0+; ζ)− 1| ≤ 0.01 for 0 ≤ x ≤ 0.8 and |φ(x, 0+; ζ)− 1| ≤ 0.05
for 0 ≤ x ≤ 0.89. The impedance of the stripline is given by

Z =
ζ

4
√

εr

√
µ0

ε0

(∫ 1

x=0
J(x; ζ)dx

)−1

=
30π√

εr
ζ, (65)

where ε = εrε0. For ζ ¿ 1, This result is approximately equal to the approximations
of Pozar [6, p. 156] and Howe [7, p. 34-35] for ζ < 1/0.35.

Next, we consider the case ζ = h/a À 1. We approximate k0 in (49) by

k0(α; ζ) =
1
πζ

log
4ζ

|α|π . (66)

Since J has square root singularities in ±1, we define

J̃(x; ζ) =
√

1− x2 J(x; ζ), |x| < 1. (67)

Then, with x = cos θ and u = cos θ′, (47) turns into

1
πζ

∫ π

θ′=0
J̃(cos θ′; ζ) log

4ζ

| cos θ − cos θ′|π dθ′ = 1, 0 < θ < π. (68)

Note that J̃ is even as function of both θ and x. Expanding J̃(cos θ; ζ) into a Fourier
series,

J̃(cos θ; ζ) =
∞∑

n=0

αn(ζ) cos 2nθ, (69)

and writing the logarithmic kernel as

log | cos θ − cos θ′| = − log 2− 2
∞∑

l=1

1
l

cos lθ cos lθ′, (70)

we obtain
α0(ζ)

ζ
log

8ζ

π
+

1
2ζ

∞∑

n=1

αn(ζ)
n

cos 2nθ = 1, 0 ≤ θ ≤ π. (71)

Identifying corresponding Fourier coefficients, we arrive at

α0(ζ) =
ζ

log 8ζ
π

, αn(ζ) = 0, n ≥ 1. (72)
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Then, the current J and the impedance Z are given by

J(x; ζ) =
ζ

log
(

8ζ
π

) √
1− x2

, Z =
60√
εr

log
8ζ

π
. (73)

We see that the current equals a constant times its edge behaviour, i.e. a square root
singularity. Furthermore, the impedance equals the approximation of Howe [7, p. 34-
35] for ζ > 1/0.35 and is approximately equal to the approximation of Pozar [6, p.
156].

6. Numerical Solution

For a numerical solution, we consider the integral equation (47) for J of the first
approach. Using that J and KζJ are even, and substituting (67), x = cos θ, and
u = cos θ′ into (47), we obtain

∫ π/2

θ′=0
J̃(cos θ′; ζ)

[
k(cos θ − cos θ′; ζ) + k(cos θ + cos θ′; ζ)

]
dθ′ = 1, 0 ≤ θ ≤ π/2. (74)

To solve this equation numerically, we use the method of collocation. First, we expand
J̃ into a Fourier series as in (69). Then, we choose a finite number of points 0 < θm <
π/2, m = 0, 1, ..., N , and we require

N∑

n=1

αn(ζ)
∫ π/2

θ′=0
cos((2n− 2)θ′)

[
k(cos θm − cos θ′; ζ) + k(cos θm + cos θ′; ζ)

]
dθ′ = 1,

m = 0, 1, ..., N. (75)

In matrix notation, this can be written as Zα = V, where α = (α0, ..., αN )T , V =
(1, ..., 1)T and

Z(m,n) =
∫ π/2

θ′=0
cos((2n− 2)θ′)

[
k(cos θm − cos θ′; ζ) + k(cos θm + cos θ′; ζ)

]
dθ′. (76)

The integrals are computed by a Newton-Coates integration rule applied to subdivi-
sions of the interval (0, π/2). Near the singularity in θ′ = θm, more subdivisions are
used. Using (67) and (69), we write J as

J(x; ζ) =
1√

1− x2

N∑

n=0

αn(ζ)T2n(x), |x| < 1. (77)

The impedance is computed as in (65), which yields Z = 60ζ/α1(ζ)
√

εr .
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7. Numerical Results

From Table II and Figure 2, we see that three collocation points yield a reasonable
approximation of the current and the impedance for ζ = 0.05. Sets of 4 and 7 collo-
cation points yield comparable results. For 9 collocation points, the algorithm is not
stable anymore. The function J(x; 0.05) is almost equal to 1 on the larger part of the
interval [0, 1], as in the asymptotic solution (63). Furthermore, the impedance differs
only 3.4% from the asymptotic approximation (65).

From Table III and Figure 3, we see that two collocation points yield a good
approximation of the current and the impedance for ζ = 1. Furthermore, it can be
seen that the current equals a constant times its edge behaviour plus a small correction
term.

We do not show a result for ζ À 1. For ζ = 20, only one collocation point is needed
(xm = cos θm = 0.5), and the numerical and asymptotic solution match perfectly.

Figure 4 shows the numerical solution and the two asymptotic solutions. The
asymptotic solution for ζ ¿ 1 matches with the numerical solution for ζ . 10−0.7 ≈
0.2, while the asymptotic solution for ζ À 1 matches with the numerical solution for
ζ & 100.5 ≈ 3.2.

Figure 5 shows the numerical solution and the formulae of Pozar [6, p. 156] and
Howe [7, p. 34-35]. We see that the curves match perfectly, except for larger values of
ζ (ζ > 15), where the formula of Pozar differs from both the numerical solution and
the formula of Howe (about 4% at ζ = 30).

8. Results and Conlusions

Asymptotic expressions have been deduced for the electromagnetic fields in and near a
long thin good conducting stripline, embedded in a dielectric layer, where the current is
assumed to be a propagating wave in length direction, with prescribed total amplitude.
Reflections and boundary effects in the end sections are disregarded. Neglecting edge
effects at x = ±a on basis of b/a = O(10−3), and consequently, neglecting terms of
O(

√
ωεd/σ) = O(10−5), we find that the electric and magnetic field in the dielectric

only have components in z and x-direction, respectively, in the neighbourhood of
the stripline. Moreover, these components and the surface charge density at z = ±b
depend only on the prescribed total amplitude of the current, the permittivity of
the dielectric layer, and the permeability of vacuum. The current in the stripline has
only a component in y-direction, and its wave number equals the wave number in the
dielectric layer. Hence, the wavelength of the current is much larger than the width
2a of the stripline, which corroborates our assumption that the current propagates in
y-direction only. Moreover, since the wave number of the current is real, the fields are
not attenuated in y-direction. Then, we may consider the stripline as infinitely long,
because we disregard reflections and boundary effects at the ends of the stripline.
We have shown that the current decays exponentially, with exponent −A z/b and

stripline-article.tex; 14/03/2003; 16:32; p.16



Modeling and Analysis of a Stripline 17

A = b
√

2σωµ0 ≈ 20, from the boundaries z ± b, such that this current is restricted to
very thin layers near these boundaries. The layers have total characteristic thickness
δskin =

√
2/σωµ0, which is about 5% of the thickness 2b. Then, taking the limit

A → ∞ in distributional sense, the current is restricted to the boundaries z = ±b.
Summarizing, we have taken the limits

√
ωεd/σ → 0 and A → ∞ to arrive at the

asymptotic expressions for the fields. This corresponds to σ →∞, i.e. the stripline is
considered as a perfect conductor. Moreover, since the thickness 2b is much smaller
than all other length scales, the stripline can be modeled as infinitely thin.

Applying the thus deduced field expressions as boundary conditions, we model a
stripline in a stripline environment as a perfect and infinitely thin conductor. The
propagating wave is assumed of TEM type. It is shown that the stripline can only
support such a wave, if the wave number of the stripline equals the wave number
of the dielectric layer. This is in correspondence with the aforementioned asymptotic
expressions. A boundary value problem for the electric potential is deduced, in which
the total amplitude of the current is related to the potential difference between stripline
and groundplates. The boundary value problem is solved by two approaches, one
leading to an integral equation for the current, and the other leading to an integral
equation for an auxiliary function. A relation between the current and the auxiliary
function is used to obtain asymptotic expressions of current and impedance. For ζ ¿
1, the current is almost uniform and the asymptotic expression for the impedance
matches with the numerical solution for ζ . 0.2. For ζ À 1, the current is dominated
by the square root singular behaviour of the current near the edges of the stripline,
and the asymptotic expression for the impedance matches with the numerical solution
for ζ & 3. Furthermore, it is shown that the numerical solution for the impedance
matches with results in literature.
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Figure 1. Left: Cross-section of a stripline in a stripline environment, Right: Stripline of finite
thickness.
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Table I. Parameter values for a stripline. The subscripts 0, d, s refer to vacuum,
dielectric, and stripline, respectively.

frequency f 1GHz

radian frequency ω = 2πf 2π GHz

permittivity ε0 1/36 π · 10−9 As/V m

εn/ε0 (n = d, s) O(1)

permeability µ0 = µd = µs 4π · 10−7 V s/Am

speed of light c0 = 1/
√

ε0µ0 3 · 108 m/s

cn/c0 =
√

ε0/εn, (n = d, s) O(1)

wavelength λ0 = c0/f 0.3m

λn/λ0 = cn/c0 (n = d, s) O(1)

wave number k0 = 2π/λ0 = ω
√

ε0µ0 20.9m−1

kn/k0 = λ0/λn =
√

εn/ε0 (n = d, s) O(1)

width 2a 10−2 m

thickness 2b 40 µm

conductivity σ 5.9 · 107ohm−1m−1

height h 10−2 m
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Table II. Values of the expansion coefficients αn and the impedances for four collocation point
sets xm = cosθm for ζ = 0.05. Set 1: 0.1, 0.5, 0.9; Set 2: 0.2, 0.4, 0.6, 0.8; Set 3: 0.1, 0.2, 0.35, 0.5,
0.65, 0.8, 0.9; Set 4: 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9 .

Set α0 α1 α2 α3 α4 α5 α6 α7 α8 Z
√

εr(ohm)

1 0.656 -0.381 -0.038 4.575

2 0.660 -0.379 -0.046 -0.008 4.544

3 0.659 -0.380 -0.044 -0.001 0.008 0.006 0.002 4.553

4 0.856 0.014 0.341 0.351 0.296 0.208 0.116 0.046 0.010 3.503
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Figure 2. The current distribution on right half of the strip (0 ≤ x < 1) for ζ = 0.05 for three sets
of collocation points. Solid curve: collocation points 0.1, 0.2, 0.35, 0.5, 0.65, 0.8, 0.9; Dashed curve:
collocation points 0.2, 0.4, 0.6 0.8; Crosses: collocation points 0.1, 0.5, 0.9.
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Table III. Values of the expansion coefficients αn and the
impedances for four collocation point sets xm (ζ = 1). Set
1: 0.5; Set 2: 0.3, 0.7; Set 3: 0.1, 0.5, 0.9; Set 4: 0.2, 0.4, 0.6,
0.8 .

Set α1 α2 α3 α4 Z
√

εr(ohm)

1 0.942 63.72

2 0.917 -0.127 65.46

3 0.918 -0.123 0.004 65.40

4 0.918 -0.123 0.004 −2 · 10−5 65.40
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Figure 3. The current distribution on the strip (0 < x < 1) for ζ = 1. Dashed line: collocation point
0.5; Circles: collocation points 0.3, 0.7; Crosses: collocation points 0.1, 0.5, 0.9; Solid line: collocation
points 0.2, 0.4, 0.6, 0.8.
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Figure 4. The impedance Z0 = Z
√

εr as a function of 10 10log ζ. Solid line: Numerical approximation;
Stars: asymptotic approximation (65) for ζ ¿ 1; Crosses: asymptotic approximation (73) for ζ À 1.
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Figure 5. The impedance Z0 = Z
√

εr as a function of the 10 10log ζ. Solid line: numerical
approximation, Crosses: impedance formula of Howe, Circles: impedance formula of Pozar.
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