Modeling and analysis of a long thin good conducting stripline

Citation for published version (APA):

Bekers, D. J., Eijndhoven, van, S. J. L., \& Ven, van de, A. A. F. (2003). Modeling and analysis of a long thin good conducting stripline. (RANA : reports on applied and numerical analysis; Vol. 0306). Technische Universiteit Eindhoven.

Document status and date:

Published: 01/01/2003

Document Version:

Publisher's PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

- A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website.
- The final author version and the galley proof are versions of the publication after peer review.
- The final published version features the final layout of the paper including the volume, issue and page numbers.
Link to publication

General rights

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25 fa of the Dutch Copyright Act, indicated by the "Taverne" license above, please follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy

If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Modeling and Analysis of a Long Thin Good Conducting Stripline

D.J. Bekers, S.J.L. van Eijndhoven and A.A.F. van de Ven
Eindhoven University of Technology, Department of Mathematics and Computer Science, P.O. Box 513, 5600 MB Eindhoven, The Netherlands

February 5th, 2003

Abstract

A long thin good conducting stripline embedded in a dielectric and centered between two large conducting plates, i.e. the stripline environment, is considered. The stripline is modeled as infinitely long, infinitely thin, and perfectly conducting by first considering a stripline of finite length, thickness, and conductivity in a dielectric layer. Starting from Maxwell's equations and assuming that the current on the stripline is a propagating wave in length direction, asymptotic expressions for the fields inside and in the neighbourhood of the stripline are deduced. These expressions are used to model the stripline in the stripline environment, which leads to a boundary value problem for the electric potential. This problem is solved by two different approaches, leading to integral equations for the current and for an auxiliary function describing the electric potential. A relation between the current and the auxiliary function is deduced, which is used to obtain asymptotic expressions for current and impedance. Results are compared with a numerical solution of the integral equation for the current and with results in literature.

Keywords: Stripline, finite thickness versus infinitely thin, skin depth, finite versus perfect conduction, current distribution, impedance

1. Introduction

A stripline is a special type of electromagnetic transmission line, which is used for the excitation of antennas. For high frequency applications, a stripline is modeled usually as infinitely long, infinitely thin, and perfectly conducting, because the skin depth, as defined by Landau and Lifshitz [1], is much smaller than the thickness of the stripline, and the thickness is much smaller than all other characteristic length scales. By this model, the electromagnetic fields of a number of planar striplines can be computed by means of conformal mapping theory, if a transverse electromagnetic wave (TEM) is assumed, see Collin [2, Chapter 3, Part 2, and Appendix III] and Wheeler [3]. In this paper, we present the modeling of a stripline as infinitely long, infinitely thin, and, perfectly conducting in more detail. We deduce asymptotic expressions for the fields inside and in the neighbourhood of a long thin good conducting stripline in a dielectric layer. After that, we apply the model to calculate the electromagnetic field of a stripline in a so-called stripline environment, not by conformal mapping theory, but from both an integral equation for the current and an integral equation for an auxiliary function describing the electric potential.

Figure 1 shows an intersection of a stripline in a stripline environment and the geometry of the stripline itself. The stripline is a long thin good conducting strip of width $2 a$ and thickness $2 b$ with $b \ll a$. In the stripline environment, the stripline is centered between two good conducting plates, called ground plates, which are
(c) 2003 Kluwer Academic Publishers. Printed in the Netherlands.
connected to the earth. The layer between the groundplates and around the stripline is filled by a dielectric medium. The width of the ground plates and the dielectric layer is much larger than the width of the stripline, while their length equals the length of the stripline. Moreover, the ground plates are separated by a distance $2 h$, which is usually of the same order as the width $2 a$, i.e. $\zeta=h / a$ is of order 1 . For the stripline, we assume the existence of an electric current as a propagating wave, with prescribed total amplitude I. Hence, the total time-averaged current is prescribed. We assume that the wavelength λ of this wave is much smaller than the length of the stripline, while $2 a \ll \lambda$. Therefore, we may assume that the current propagates in length direction (y-direction) only. We disregard reflections and boundary effects at the ends of the stripline. The thus defined problem is symmetric in z. An example of a set of parameter values for a copper stripline designed for L-band applications is given in Table I.

In Section 2, we consider a long thin good conducting stripline in a dielectric layer. Starting from Maxwell's equations and assuming that the current on the stripline is a propagating wave in y-direction, we deduce asymptotic expressions for the fields inside and in the neighbourhood of the stripline. We show under which conditions these expressions can be applied. Moreover, we show that these expressions and conditions imply that the stripline can be modeled as infinitely long, infinitely thin, and perfectly conducting. Using the obtained results, we model a stripline in a stripline environment in Section 3. As in literature, we deduce a boundary value problem for the electric potential. In Section 4, we solve this boundary value problem by two different approaches, one leading to an integral equation for the current and the other to an integral equation for an auxiliary function describing the electric potential. A relation between the current and the auxiliary function is deduced, which is used to obtain asymptotic expressions for current and impedance in Section 5. In Section 6, a numerical algorithm is given to solve the integral equation for the current. Results of this algorithm for current and impedance are shown in Section 7. In conclusion, the numerical solution of the impedance is compared to the asymptotic solutions and to results in literature.

2. Deducing Boundary Conditions for a Long Thin Good Conducting Stripline

In this section, we consider a long thin good conducting stripline in a dielectric layer, as described in the previous section. We will deduce asymptotic expressions for the fields inside and in the neighbourhood of the stripline. We assume that the two media, stripline and dielectric, are linear, homogeneous, and isotropic. Furthermore, the permeability of both media equals the permeability of vacuum, $\mu_{s}=\mu_{d}=\mu_{0}$, while their permittivities ε_{d} and ε_{s} are equal to, or at least of the same order as the permittivity ε_{0} of vacuum, see Table I. The electric field $\mathcal{E}^{(d)}$ in the dielectric is
described by the wave equation and the condition that it is solenoidal,

$$
\begin{equation*}
\frac{\partial^{2} \mathcal{E}^{(d)}}{\partial t^{2}}-c_{d}^{2} \Delta \mathcal{E}^{(d)}=\mathbf{0}, \quad \operatorname{div} \mathcal{E}^{(d)}=0 \tag{1}
\end{equation*}
$$

where $c_{d}^{2}=1 /\left(\mu_{0} \varepsilon_{d}\right)$. These equations are deduced from Maxwell's equations. The magnetic field $\mathcal{H}^{(d)}$ can be calculated from Maxwell's equations, when the electric field is known. We note that the current density $\mathcal{J}^{(d)}=\mathbf{0}$ and the free charge density $\varrho^{(d)}=0$.

In the stripline, no free charge distribution can exist, i.e. $\varrho^{(s)}=0$, and $\mathcal{J}^{(s)}=\sigma \mathcal{E}^{(s)}$ by Ohm's law. Then, $\mathcal{J}^{(s)}$ is described by the damped wave equation and the condition that it is solenoidal,

$$
\begin{equation*}
\frac{\partial^{2} \mathcal{J}^{(s)}}{\partial t^{2}}+\frac{\sigma}{\varepsilon_{s}} \frac{\partial \mathcal{J}^{(s)}}{\partial t}=c_{s}^{2} \Delta \mathcal{J}^{(s)}, \quad \operatorname{div} \mathcal{J}^{(s)}=0 \tag{2}
\end{equation*}
$$

Furthermore, $\mathcal{E}^{(s)}$ and $\mathcal{H}^{(s)}$ follow from Maxwell's equations and Ohm's law, when $\mathcal{J}^{(s)}$ is known.

The transition conditions for the field quantities $\mathcal{E}^{(d)}$ and $\mathcal{J}^{(s)}$ at the interfaces $x= \pm a$ and $z= \pm b$ follow from the general transition conditions (see Stratton [4]). We consider only the interfaces $z= \pm b$ for reasons we explain later. The normal component of the magnetic field and the tangential component of the electric field are continuous across these interfaces, yielding

$$
\begin{gather*}
\left(\operatorname{rot} \mathcal{E}^{(d)}\right)_{z}-\left.\frac{1}{\sigma}\left(\operatorname{rot} \mathcal{J}^{(s)}\right)_{z}\right|_{z= \pm b}=0 \tag{3}\\
\mathcal{E}_{y}^{(d)}-\left.\frac{1}{\sigma} \mathcal{J}_{y}^{(s)}\right|_{z= \pm b}=0, \quad \mathcal{E}_{x}^{(d)}-\left.\frac{1}{\sigma} \mathcal{J}_{x}^{(s)}\right|_{z= \pm b}=0 \tag{4}
\end{gather*}
$$

It can be shown that (4) implies (3).
The tangential component of the magnetic field is continuous, because the (volume) current $\mathcal{J}^{(s)}$ is finite at the interface. Hence,

$$
\begin{equation*}
\left(\operatorname{rot} \mathcal{E}^{(d)}\right)_{y}-\left.\frac{1}{\sigma}\left(\operatorname{rot} \mathcal{J}^{(s)}\right)_{y}\right|_{z= \pm b}=0, \quad\left(\operatorname{rot} \mathcal{E}^{(d)}\right)_{x}-\left.\frac{1}{\sigma}\left(\operatorname{rot} \mathcal{J}^{(s)}\right)_{x}\right|_{z= \pm b}=0 \tag{5}
\end{equation*}
$$

The normal component of the dielectric displacement is discontinuous across the interfaces $z= \pm b$, as surface charges exist at these interfaces. Let $\varrho_{S}^{ \pm}$be the (unknown) surface charge density at $z= \pm b$. Because of symmetry, $\varrho_{S}^{+}=\varrho_{S}^{-}=$: ϱ_{S}. Then,

$$
\begin{equation*}
\varrho_{S}= \pm\left.\varepsilon_{d} \mathcal{E}_{z}^{(d)}\right|_{z= \pm b} \tag{6}
\end{equation*}
$$

Here, we use that the normal component of the current is continuous across the the interfaces $z= \pm b$,

$$
\begin{equation*}
\left.\mathcal{J}_{z}^{(s)}\right|_{z= \pm b}=0 \tag{7}
\end{equation*}
$$

As aforementioned, we assume that the current in the strip is a propagating wave in y-direction,

$$
\begin{equation*}
\mathcal{J}^{(s)}(\mathbf{x}, t)=\mathbf{J}^{(s)}(x, z) e^{i(\beta y-\omega t)} \tag{8}
\end{equation*}
$$

where β is the wave number with $\operatorname{Re} \beta>0$. Note that for $\operatorname{Re} \beta=0$, the wave does not propagate, and for $\operatorname{Re} \beta<0$ the wave propagates in negative y-direction. Moreover, depending on the sign of $\operatorname{Im} \beta$, the wave is attenuated, explodes, or is purely propagating in positive y-direction.

By the transition conditions, $\mathcal{E}^{(d)}$ and ϱ_{S} are of the same nature,

$$
\begin{equation*}
\mathcal{E}^{(d)}(\mathbf{x}, t)=\mathbf{E}^{(d)}(x, z) e^{i(\beta y-\omega t)}, \quad \varrho_{S}(x, y, t)=\rho_{S}(x) e^{i(\beta y-\omega t)} . \tag{9}
\end{equation*}
$$

We introduce the dimensionless coordinates $\hat{x}=x / a$ and $\hat{z}=z / b$, and the parameters

$$
\begin{equation*}
\epsilon=\frac{b}{a}, \quad \xi^{2}=b^{2}\left(\beta^{2}-k_{d}^{2}\right), \quad \frac{1}{\delta^{2}}=b^{2}\left(\beta^{2}-k_{s}^{2}-i \sigma \omega \mu_{0}\right), \tag{10}
\end{equation*}
$$

with $-\pi / 2<\arg \xi \leq \pi / 2$ and $-\pi / 2<\arg \delta \leq \pi / 2$. Then, the field equations (1) and (2) turn into (we omit the superscripts)

$$
\begin{align*}
\epsilon^{2} \frac{\partial^{2} \mathbf{E}}{\partial \hat{x}^{2}}-\xi^{2} \mathbf{E}+\frac{\partial^{2} \mathbf{E}}{\partial \hat{z}^{2}}=\mathbf{0}, & \epsilon \frac{\partial E_{x}}{\partial \hat{x}}+i b \beta E_{y}+\frac{\partial E_{z}}{\partial \hat{z}}=0, \tag{11}\\
\epsilon^{2} \frac{\partial^{2} \mathbf{J}}{\partial \hat{x}^{2}}-\frac{1}{\delta^{2}} \mathbf{J}+\frac{\partial^{2} \mathbf{J}}{\partial \hat{z}^{2}}=\mathbf{0}, & \epsilon \frac{\partial J_{x}}{\partial \hat{x}}+i b \beta J_{y}+\frac{\partial J_{z}}{\partial \hat{z}}=0, \tag{12}
\end{align*}
$$

and the transition conditions (3) - (6) into

$$
\begin{array}{ll}
E_{y}-\left.\frac{1}{\sigma} J_{y}\right|_{\hat{z}= \pm 1}=0, & E_{x}-\left.\frac{1}{\sigma} J_{x}\right|_{\hat{z}= \pm 1}=0, \\
-\epsilon \frac{\partial E_{z}}{\partial \hat{x}}+\frac{\partial E_{x}}{\partial \hat{z}}+\left.\frac{1}{\sigma} \frac{\partial J_{x}}{\partial \hat{z}}\right|_{\hat{z}= \pm 1}=0, & i b \beta E_{z}-\frac{\partial E_{y}}{\partial \hat{z}}+\left.\frac{1}{\sigma} \frac{\partial J_{y}}{\partial \hat{z}}\right|_{\hat{z}= \pm 1}=0, \\
\rho_{S}= \pm\left.\varepsilon_{d} E_{z}\right|_{\hat{z}= \pm 1} . & \left.J_{z}\right|_{\hat{z}= \pm 1}=0 . \tag{15}
\end{array}
$$

We are interested in \mathbf{E} in the neighbourhood of the strip $(|\hat{x}|,|\hat{z}|>1$, but $\hat{x}, \hat{z}=O(1))$ and \mathbf{J} in the strip $(-1<\hat{x}, \hat{z}<1)$. For $-1<\hat{x}<1$ with $1-|x| \neq O(\epsilon)$, and for $\hat{z}=O(1)$, the field quantities are only weakly dependent on \hat{x}, because $\epsilon \ll 1$. For the numerical values given in Table I, $\epsilon=O\left(10^{-3}\right)$. The small parameter ϵ is responsible for boundary layers near the edges $\hat{x}= \pm 1$. From now on, we will neglect these effects, meaning that in the field equations (11) - (12), we take $\epsilon=0$. This implies that all fields are now independent of \hat{x}, i.e. $\mathbf{E}=\mathbf{E}(\hat{z})$ and $\mathbf{J}=\mathbf{J}(\hat{z})$. Moreover, since E_{x} and J_{x} are governed by an independent set of differential equations and boundary conditions, including $E_{x} \rightarrow 0$ as $|\hat{z}| \rightarrow \infty$, these components must be zero. Hence, $J_{x}=0$ and $E_{x}=0$.

From the problem formulation, it follows that J_{y} is an even function of \hat{z}. Then, $(12)^{2}$ and the y-component of $(12)^{1}$, with $\epsilon=0$, yield

$$
\begin{equation*}
J_{y}(\hat{z})=\frac{J_{y}(1) \cosh (\hat{z} / \delta)}{\cosh (1 / \delta)}, \quad J_{z}(\hat{z})=-i b \beta \delta \frac{J_{y}(1) \sinh (\hat{z} / \delta)}{\cosh (1 / \delta)}, \quad|\hat{z}| \leq 1 \tag{16}
\end{equation*}
$$

We see that J_{z} satisfies the z-component of $(12)^{1}$, with $\epsilon=0$, but not the transition condition $(15)^{2}$. However, we will show that this equation is satisfied neglecting vector components of $O\left(\sqrt{\omega \varepsilon_{d} / \sigma}\right)$, which is of $O\left(10^{-5}\right)$ for the numerical values in Table I.

Using $E_{y}, E_{z} \rightarrow 0$ for $|\hat{z}| \rightarrow \infty$, we obtain from $(13)^{1},(15)^{1}$, and the y and z component of (11) ${ }^{1}$, with $\epsilon=0$,

$$
\begin{equation*}
E_{y}(\hat{z})=\frac{1}{\sigma} J_{y}(1) e^{-\xi(|\hat{z}|-1)}, \quad E_{z}(\hat{z})=\operatorname{sign}(\hat{z}) \frac{\rho_{S}}{\varepsilon_{(d)}} e^{-\xi(|\hat{z}|-1)}, \quad|\hat{z}| \geq 1 \tag{17}
\end{equation*}
$$

Substitution of (17) into $(11)^{2}$, with $\epsilon=0$, we find

$$
\begin{equation*}
\rho_{S}=\frac{i b \beta \varepsilon_{d}}{\sigma \xi} J_{y}(1) \tag{18}
\end{equation*}
$$

Using this relation together with (17) in $(14)^{2}$, and requiring $J_{y}(1) \neq 0$, we arrive at the following dispersion relation for β,

$$
\begin{equation*}
-\frac{b^{2} \beta^{2}}{\xi}+\xi+\frac{1}{\delta} \tanh (1 / \delta)=0 \tag{19}
\end{equation*}
$$

Note that ξ depends on β. By the definition of ξ^{2}, i.e. $(10)^{2}$, it follows from (19) that

$$
\begin{equation*}
\left.\xi=b^{2} k_{d}^{2} \delta \operatorname{coth}(1 / \delta)\right), \quad \beta^{2}=k_{d}^{2}\left(1+b^{2} k_{d}^{2} \delta^{2} \operatorname{coth}^{2}(1 / \delta)\right) \tag{20}
\end{equation*}
$$

Substituting (20) ${ }^{2}$ into $(10)^{3}$ yields an equation for δ,

$$
\begin{equation*}
\frac{1}{b^{2} k_{d}^{2} \delta^{2}}-b^{2} k_{d}^{2} \delta^{2} \operatorname{coth}^{2}(1 / \delta)=\frac{\sigma \omega \mu_{0}}{k_{d}^{2}}\left(\frac{k_{d}^{2}-k_{s}^{2}}{\sigma \omega \mu_{0}}-i\right) . \tag{21}
\end{equation*}
$$

Having solved this equation, the field components J_{y}, J_{z}, E_{y}, and E_{z}, and the surface charge density ρ_{S} follow from (16) - (18) and (20). The unknown $J_{y}(1)$ is expressed into the prescribed total amplitude I as follows. Neglecting boundary effects near $\hat{x}= \pm 1$, we calculate the total current $\mathcal{I}(y, t)$ passing at time t through the cross section Σ of the strip,

$$
\begin{equation*}
\mathcal{I}(y, t)=\int_{\Sigma} \mathcal{J}_{y} d S=I e^{i(\beta y-\omega t)}, \quad I=4 a b \delta J_{y}(1) \tanh (1 / \delta) . \tag{22}
\end{equation*}
$$

Then, the field components J_{y}, J_{z}, E_{y}, and E_{z}, the x-component H_{x} of the magnetic field in the dielectric, and the surface charge density ρ_{S} are given by

$$
\begin{array}{lr}
\left.\rho_{S}=\frac{i \beta \varepsilon_{d} I^{(b)}}{2 \sigma \xi \delta} \operatorname{coth}(1 / \delta)\right), & H_{x}(\hat{z})=\operatorname{sign}(\hat{z}) \frac{i \beta^{2} I^{(b)}}{2 b^{2} \sigma \omega \mu_{0} k_{d}^{2} \delta^{2}}(1-\xi \delta) e^{-\xi(|\hat{z}|-1)}, \\
J_{y}(\hat{z})=\frac{I^{(b)}}{2 b \delta} \frac{\cosh (\hat{z} / \delta)}{\sinh (1 / \delta)}, & J_{z}(\hat{z})=-\frac{i \beta I^{(b)}}{2} \frac{\sinh (\hat{z} / \delta)}{\sinh (1 / \delta)} \\
E_{y}(\hat{z})=\frac{I^{(b)}}{2 \sigma b \delta} \operatorname{coth}(1 / \delta) e^{-\xi(|\hat{z}|-1)}, & E_{z}(\hat{z})=\operatorname{sign}(\hat{z}) \frac{i \beta I^{(b)}}{2 \sigma b^{2} k_{d}^{2} \delta^{2}} e^{-\xi(|\hat{z}|-1)}, \tag{25}
\end{array}
$$

where $I^{(b)}=I / 2 a$ is the total current through a line segment $-b \leq z \leq b$ of the cross section Σ, the parameters ξ and β are given by (20), and H_{x} is calculated from Maxwell's equations. Note that the field components H_{y} and H_{z} are zero, as are the field components E_{x} and J_{x}.

To find δ, we consider (21). From the numerical values in Table I, it follows that $b^{2} k_{d}^{2}=O\left(10^{-7}\right)$ and $\left(k_{d}^{2}-k_{s}^{2}\right) / \sigma \omega \mu_{0}=O\left(10^{-10}\right)$. Hence, $b^{2} k_{d}^{2}$ is a small parameter in (21), and $\left(k_{d}^{2}-k_{s}^{2}\right) / \sigma \omega \mu_{0}$ is of lower order. We consider first solutions of (21) for which $\delta^{2}=O(1)$. Neglecting terms of $O\left(b^{2} k_{d}^{2}\right)$, we obtain from (21) and (20) ${ }^{2}$

$$
\begin{equation*}
\delta^{2}=\frac{i}{b^{2} \sigma \omega \mu_{0}}, \quad \beta=k_{d} . \tag{26}
\end{equation*}
$$

Note that we have chosen $\operatorname{Re} \beta>0$ in (8). For the numerical values in Table I, it follows that $\delta^{2}=O\left(10^{-3}\right)$ and $b^{2} k_{d}^{2} \delta^{2}=i \omega \varepsilon_{d} / \sigma=O\left(10^{-9}\right)$. Then, it can be seen that $(26)^{1}$ satisfies (21) and $\beta=k_{d}$ up to terms of $O\left(\omega \varepsilon_{d} / \sigma\right)$. The imaginary part of the approximation of β is zero, and hence, the wave is considered as purely propagating. Since we disregard reflections and boundary effects at the ends of the stripline, we may consider it as infinitely long. We note that the imaginary part of β / k_{d} is of $O\left(\omega \varepsilon_{d} / \sigma\right)$, and hence, the wave is attenuated at a distance of the order of 10^{9} times λ_{d}. This distance is in practical cases much larger than the length of the stripline. Since the real part of the approximation of β equals k_{d}, the wavelength $\lambda=\lambda_{d}$ of the propagating wave is much larger than the width $2 a$. This corroborates our assumption that the wave propagates in y-direction only.

Secondly, we consider solutions of (21) for which $b^{2} k_{d}^{2} \delta^{2}=O(1)$. Neglecting terms of $O\left(b^{2} k_{d}^{2}\right)$, we obtain from (21) and (20) ${ }^{2}$

$$
\begin{equation*}
\delta^{4}=\frac{i \sigma \omega \mu_{0}}{b^{2} k_{d}^{4}}, \quad \beta=(1+i) \sqrt{\frac{\sigma \omega \mu_{0}}{2}} . \tag{27}
\end{equation*}
$$

For the numerical values in Table I, $\left|b^{2} k_{d}^{2} \delta\right|^{2}=13.6$. Moreover, since $b \operatorname{Im} \beta=9.64$, the wave is attenuated at distances of the order of b. Hence, the wave will not propagate. Therefore, we exclude this solution and consider only the solution (26).

Neglecting terms of $O\left(\omega \varepsilon_{d} / \sigma\right)$ in ρ_{S}, H_{x}, and E_{z} as in δ and β, we obtain from (23), (24) ${ }^{1}$ and $(25)^{2}$ the expressions (32) and (33). From (24) and (25), it can be shown that J_{z} and E_{y} are of $O\left(\sqrt{\omega \varepsilon_{d} / \sigma}\right)\left(=O\left(10^{-5}\right)\right.$, see Table I) with respect to J_{y} and E_{z}, respectively, for $\hat{z}=O(1)$. Therefore, we put $J_{z}=0$ and $E_{y}=0$. Then, J_{z} satisfies the transition condition $(15)^{2}$.

Now, let us consider the field component J_{y} in (24). In $(10)^{3}$, we have chosen $-\pi / 2<\arg \delta \leq \pi / 2$, and hence, $1 / \delta=A(1-i)$, where $A=b \sqrt{2 \sigma \omega \mu_{0}}$. The numerical values in Table I yield $A=19.3$. For $\hat{z}=O(1)$, but $\hat{z} \neq O(1 / A)$, we find

$$
\begin{equation*}
J_{y}(\hat{z})=\frac{I^{(b)} A(1-i)}{2 b} e^{-A(1-|\hat{z}|)(1-i)}, \tag{28}
\end{equation*}
$$

neglecting terms of $O\left(e^{-2 A}\right)=O\left(10^{-17}\right)$. For $\hat{z}=O(1 / A)$, we find $J_{y}(\hat{z})=0$, neglecting terms of $O\left(e^{-A}\right)$. Then, we can use the expression (28) for $\hat{z}=O(1)$. Since
$A \gg 1$, it follows from (28) that J_{y} decays very fast with \hat{z}, such that it is in fact restricted to very thin layers near $\hat{z}= \pm 1$. We define the thickness $\hat{\delta}_{\text {skin }}$ of each of these layers, relative to half the thickness $2 b$ of the stripline, as the value of $1-|\hat{z}|$ for which real part of the power of the exponent in (28) equals -1 . Then, $\hat{\delta}_{\text {skin }}=1 / A$. The dimensional skin depth $\delta_{\text {skin }}$ of the two layers at $\hat{z}= \pm 1$ together is given by

$$
\begin{equation*}
\delta_{s k i n}=2 b \hat{\delta}_{s k i n}=\sqrt{\frac{2}{\sigma \omega \mu_{0}}} . \tag{29}
\end{equation*}
$$

For the numerical values in Table I, the skin depth is about 5% of the thickness $2 b$ of the stripline ($\hat{\delta}_{\text {skin }}=0.052$).

We have obtained (28) by neglecting terms of $O\left(e^{-A}\right)$. For the numerical values in Table I, $e^{-A}=O\left(10^{-9}\right)$, which is $O\left(\omega \varepsilon_{d} / \sigma\right)$. In the expressions for ρ_{S}, H_{x}, E_{z}, and J_{y}, we have neglected terms of order $O\left(\sqrt{\omega \varepsilon_{d} / \sigma}\right)$. However, ρ_{S}, H_{x}, and E_{z} are not dependent anymore on σ and ω, whereas J_{y} is still dependent on these parameters. Hence, in the expressions of ρ_{S}, H_{x}, and E_{z}, we have taken the limit $\sqrt{\omega \varepsilon_{d} / \sigma} \rightarrow 0$, while in J_{y}, we have not taken the limit $O\left(e^{-A}\right) \rightarrow 0$ or $A \rightarrow \infty$. The latter limit can only be taken in distributional sense. We find

$$
\begin{equation*}
\lim _{A \rightarrow \infty} J_{y}(\hat{z})=\Lambda\left(\delta_{f}(\hat{z}-1)+\delta_{f}(\hat{z}+1)\right), \tag{30}
\end{equation*}
$$

where δ_{f} is the delta function and Λ is a constant. This means that

$$
\begin{equation*}
\lim _{A \rightarrow \infty} \int_{-\infty}^{\infty} J_{y}(\hat{z}) \varphi(\hat{z}) d \hat{z}=\Lambda(\varphi(1)+\varphi(-1)) \tag{31}
\end{equation*}
$$

for every function $\varphi \in C_{c}^{\infty}(\mathbb{R})$. Here, $\varphi \in C_{c}^{\infty}(\mathbb{R})$ is the space of all infinitely many times continuously differentiable functions on \mathbb{R} with compact support. Taking φ such that $\varphi(\hat{z})=1$ for $-1 \leq \hat{z} \leq 1$, we obtain $\Lambda=I^{(b)} / 2 b$.

Summarizing, we have deduced the following asymptotic expressions for the field components and the surface charge density, which are valid for $\hat{z}, \hat{x}=O(1)$ and $1-|\hat{x}| \neq$ $O(\varepsilon)$:

$$
\begin{array}{ll}
\rho_{S}=\frac{\sqrt{\varepsilon_{d} \mu_{0}} I^{(b)}}{2}, & H_{x}(\hat{z})=\operatorname{sign}(\hat{z}) \frac{I^{(b)}}{2}, \\
E_{z}(\hat{z})=\operatorname{sign}(\hat{z}) \sqrt{\frac{\mu_{0}}{\varepsilon_{d}}} \frac{I^{(b)}}{2}, & J_{y}(\hat{z})=\frac{I^{(b)}}{2 b}\left(\delta_{f}(\hat{z}-1)+\delta_{f}(\hat{z}+1)\right) . \tag{33}
\end{array}
$$

Note that the other field components are zero. These expressions can be interpreted as follows. Taking the limits $\sqrt{\omega \varepsilon_{d} / \sigma} \rightarrow 0$ and $A=b \sqrt{2 \sigma \omega \mu_{0}} \rightarrow \infty$ corresponds to taking the limit $\sigma \rightarrow \infty$, i.e. the stripline is a perfect conductor. Moreover, since the thickness $2 b$ is much smaller than all other length scales and the current is located at the boundary, the stripline can be modeled as infinitely thin. The boundary conditions of an infinitely thin perfectly conducting stripline at its boundaries $z= \pm 0$ follow from
(32) and (33) with $\hat{z}= \pm 1$. We see that the tangential component of the electric field and the normal component of the magnetic field vanish at the surface of the stripline, which is in correspondence with the vanishing of the fields inside a perfect conductor and the continuity of the fields over the boundaries $\hat{z}= \pm 1$.

3. Modeling a Stripline in a Stripline Environment

In this section, we consider a long thin good conducting stripline in a stripline environment, as described in Section 1, and we assume that the current in the stripline is a propagating wave in y-direction. Since the distance $2 h$ between the ground plates and the sizes of these plates are much larger than the thickness of the stripline, we can model the stripline as infinitely long, infinitely thin, and perfectly conducting, based on the results of the previous section. However, we now take $J_{y}=J_{y}(x)$ instead of $I^{(b)}$ as in the previous section, see (32) and (33), because we wish to account also for the edge effects at $x= \pm a$.

Because of symmetry with respect to the plane $z=0$, we take $\mathrm{x} \in G^{+}=\{\mathbf{x} \in$ $\left.\mathbb{R}^{3} \mid x, y \in \mathbb{R}, 0<z<h\right\}$, see Figure 1 . The current on the stripline is described by

$$
\begin{equation*}
\mathcal{J}(\mathbf{x}, t)=\mathbf{J}(x) e^{i(\beta y-\omega t)}=J_{y}(x) e^{i(\beta y-\omega t)} \mathbf{e}_{y}, \tag{34}
\end{equation*}
$$

for $\mathbf{x} \in S=\left\{\mathbf{x} \in \mathbb{R}^{3} \mid-a<x<a, y \in \mathbb{R}, z=0\right\}$. Here, $\operatorname{Re} \beta>0$. Although we have shown in the previous section that $\beta=k$, where $k=\omega \sqrt{\varepsilon \mu_{0}}$ is the wave number in the dielectric, we put β as the (unknown) wave number and we will show that $\beta=k$ for transverse electromagnetic waves.

In literature, boundary value problems for the electric potential are deduced for several types of stripline, see [2, Chapter 3]. Therefore, we only summarize the steps to arrive at the boundary value problem for this potential. The electric field \mathcal{E} and the magnetic field \mathcal{H} in the dielectric are described by Maxwell's equations. They are also planar waves in y-direction, as is the charge density ϱ_{S} on the stripline, see (9). Then, \mathbf{E} and \mathbf{H} are described by the source free Maxwell's equations for planar waves of the type (34). These equations are supplemented by boundary conditions. The ground plates are assumed to be perfectly conducting, which implies that the tangential component of the electric field and the normal component of the magnetic field vanish at the ground plates. At the stripline, the boundary conditions from the results obtained from (32) and (33), where $z= \pm 1$ is replaced by $z=0^{ \pm}$and $I^{(b)}$ is replaced by $J_{y}(x)$. At the symmetry line $|x|>a, z=0^{+}$, the boundary conditions follow from the behaviour of \mathbf{E} and \mathbf{H}, i.e. H_{x}, H_{y}, and E_{z} are odd in z, and E_{x}, E_{y}, and H_{z} are even in z.

We assume that the planar wave in the stripline environment is a transverse electromagnetic (TEM) wave, which implies $E_{y}=0$ and $H_{y}=0$. Then, the x-components and the z-components of Maxwell's equations (the law of Faraday and the law of Ampère-Maxwell) are satisfied if and only if $\beta^{2}=\omega^{2} \varepsilon \mu_{0}=k^{2}$. Hence, the stripline can only support a TEM wave if $\beta^{2}=k^{2}$. This is in correspondence with $(26)^{2}$ for the
asymptotic solution for a stripline of finite thickness and finite conductivity. From the y-component of Maxwell's equations, it follows that \mathbf{E} and \mathbf{H} are irrotational. Then, \mathbf{E} and \mathbf{H} are both conservative, because G^{+}is simply connected. This implies that \mathbf{E} and \mathbf{H} can be written as $\mathbf{E}=-\operatorname{grad} \phi$ and $\mathbf{H}=-\operatorname{grad} \psi$, where the scalar functions ϕ and ψ are called the electric and magnetic potential, respectively. From $\operatorname{div} \mathcal{E}=0$ and $\operatorname{div} \mathcal{H}=0$, it follows that they are harmonic,

$$
\begin{equation*}
\Delta \phi=0, \quad \Delta \psi=0, \tag{35}
\end{equation*}
$$

and from the y-component of Maxwell's equations, it follows that they satisfy the Cauchy-Riemann relations

$$
\begin{equation*}
-\frac{\partial \psi}{\partial z}=\sqrt{\frac{\varepsilon}{\mu_{0}}} \frac{\partial \phi}{\partial x}, \quad \frac{\partial \psi}{\partial x}=\sqrt{\frac{\varepsilon}{\mu_{0}}} \frac{\partial \phi}{\partial z} . \tag{36}
\end{equation*}
$$

Because of (36), we do not need to solve the boundary value problems for both ϕ and ψ. Therefore, we deduce and solve the boundary value problem for ϕ only. The boundary conditions for ϕ are deduced from the aforementioned boundary conditions for the electric and magnetic field. Then, the boundary value problem for ϕ is given by

$$
\begin{array}{ll}
\Delta \phi=0, & |x|<\infty, 0<z<h, \\
\frac{\partial \phi}{\partial x}=0, & z=h, \\
\frac{\partial \phi}{\partial z}=0, & z=0^{+},|x|>a \tag{37}\\
\frac{\partial \phi}{\partial z}=-\sqrt{\frac{\mu_{0}}{\varepsilon}} \frac{J_{y}(x)}{2}, & z=0^{+},|x|<a \\
\frac{\partial \phi}{\partial x}=0, & z=0^{+},|x|<a .
\end{array}
$$

The solution to this problem is not unique. Since the tangential derivatives of ϕ at $z=h$ and at $z=0,|x|<a$ are zero, we may prescribe a constant potential at these boundaries. Without loss of generality, we put $\phi=0$ at $z=h$ and $\phi=\phi_{0}$ at $z=0,|x|<a$, thus arriving at a mixed (Dirichlet-Neumann) boundary value problem for ϕ. The potential ϕ_{0} is related to the total current amplitude I by $(37)^{4}$ and hence, it can be interpreted as the generator of the current on the stripline. To normalize the problem for ϕ, we introduce

$$
\begin{equation*}
x=a \hat{x}, \quad z=h \hat{z}, \quad \phi=\phi_{0} \hat{\phi}, \quad J_{y}=\frac{2 \phi_{0}}{h} \sqrt{\frac{\mu_{0}}{\varepsilon}} \hat{J} \tag{38}
\end{equation*}
$$

where \hat{J} is a function of \hat{x}. Then, the boundary value problem for $\hat{\phi}$ is given by

$$
\begin{array}{ll}
\frac{\partial^{2} \hat{\phi}}{\partial \hat{x}^{2}}+\frac{1}{\zeta^{2}} \frac{\partial^{2} \hat{\phi}}{\partial \hat{z}^{2}}=0, & |\hat{x}|<\infty, 0<\hat{z}<1, \\
\hat{\phi}=0, & \hat{z}=1, \\
\frac{\partial \hat{\phi}}{\partial \hat{z}}=0, & \hat{z}=0^{+},|\hat{x}|>1, \tag{39}\\
\frac{\partial \hat{\phi}}{\partial \hat{z}}=-\hat{J}(\hat{x}), & \hat{z}=0^{+},|\hat{x}|<1, \\
\hat{\phi}=1, & \hat{z}=0^{+},|\hat{x}|<1,
\end{array}
$$

where $\zeta=h / a$. In the analysis to follow, we omit the hats. From (39) ${ }^{1}$, we conclude that ϕ depends on ζ, and therefore, J depends also on ζ. To show these dependencies explicitly, we write $\phi(x, z ; \zeta)$ and $J(x ; \zeta)$.

4. Calculation of Potential and Current

To solve the boundary value problem (39) for ϕ, we apply the Fourier transformation with respect to x, i.e.

$$
\begin{equation*}
\mathcal{F}\{f(x, \cdot) ; x \rightarrow s\}=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} f(x, \cdot) e^{i s x} d x \tag{40}
\end{equation*}
$$

to the differential equation for ϕ and the boundary condition at $z=1$. Then, it follows that

$$
\begin{align*}
\phi(x, z ; \zeta) & =\mathcal{F}^{-1}\{C(s ; \zeta) \sinh (\zeta s(1-z)) ; s \rightarrow x\}= \\
& =\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} C(s ; \zeta) \sinh (\zeta s(1-z)) e^{-i s x} d s, \quad 0<z<1,|x|<\infty, \tag{41}
\end{align*}
$$

where C is an unknown function and \mathcal{F}^{-1} is the inverse Fourier transformation. We distinguish two approaches to calculate C and J. In the first approach, we choose the conditions $(39)^{3,4}$ to calculate the potential ϕ, i.e. to express ϕ in terms of the current. The current is calculated from the condition for ϕ on the plate, i.e. $(39)^{5}$. In the second approach we choose the conditions $(39)^{3,5}$ to calculate the potential ϕ. The current is calculated from the condition $(39)^{4}$.

4.1. First Approach

The boundary conditions (39) 3,4 yield an integral equation for $C(s ; \zeta)$,

$$
\mathcal{F}^{-1}\{\zeta s C(s ; \zeta) \cosh (\zeta s) ; s \rightarrow x\}= \begin{cases}J(x ; \zeta), & |x|<1 \tag{42}\\ 0, & |x|>1\end{cases}
$$

Applying the Fourier transformation to both sides of the equation, we obtain

$$
\begin{equation*}
C(s ; \zeta)=\frac{1}{\sqrt{2 \pi} \zeta s \cosh (\zeta s)} \int_{-1}^{1} J(u ; \zeta) e^{i s u} d u \tag{43}
\end{equation*}
$$

Substituting this expression into (41) and reversing the order of integration, we obtain

$$
\begin{equation*}
\phi(x, z ; \zeta)=\int_{-1}^{1} J(u ; \zeta) k(x-u, z ; \zeta) d u \tag{44}
\end{equation*}
$$

where

$$
\begin{align*}
k(\alpha, z ; \zeta)=\mathcal{F}_{\cos }^{-1}\left\{\frac{\sinh (\zeta s(1-z))}{\sqrt{2 \pi} \zeta s \cosh (\zeta s)} ;\right. & s \rightarrow \alpha\}= \\
& =\frac{1}{2 \pi \zeta} \log \left[\frac{\cosh \left(\frac{\alpha \pi}{2 \zeta}\right)+\sin \left(\frac{(1-z) \pi}{2}\right)}{\cosh \left(\frac{\alpha \pi}{2 \zeta}\right)-\sin \left(\frac{(1-z) \pi}{2}\right)}\right] \tag{45}
\end{align*}
$$

see Erdélyi et al. [5], table $1.9(34)$, p. 33. Note that $\mathcal{F}_{\text {cos }}$ is the inverse Fourier cosine transformation defined by

$$
\begin{equation*}
\mathcal{F}_{\cos }\{f(x, \cdot) ; x \rightarrow s\}=\sqrt{\frac{2}{\pi}} \int_{-\infty}^{\infty} f(x, \cdot) \cos (s x) d x \tag{46}
\end{equation*}
$$

Substituting (44) into $(39)^{5}$, we obtain a Fredholm equation of the first kind for J,

$$
\begin{equation*}
\mathcal{K}_{\zeta} J=1, \quad \text { on }[-1,1] \tag{47}
\end{equation*}
$$

where \mathcal{K}_{ζ} is defined by

$$
\begin{equation*}
\left(\mathcal{K}_{\zeta} J\right)(x)=\int_{-1}^{1} J(u ; \zeta) k_{0}(x-u ; \zeta) d u, \quad|x|<1 \tag{48}
\end{equation*}
$$

and

$$
\begin{equation*}
k_{0}(\alpha ; \zeta)=k(\alpha, 0 ; \zeta)=\frac{1}{\pi \zeta} \log \left|\operatorname{coth} \frac{\alpha \pi}{4 \zeta}\right| \tag{49}
\end{equation*}
$$

Let for any function f the function f^{\vee} be defined by $f^{\vee}(x)=f(-x)$. Then, it can be shown that $\mathcal{K}_{\zeta} J^{\vee}=\left(\mathcal{K}_{\zeta} J\right)^{\vee}=1$ on $(-1,1)$. Hence, $J(x ; \zeta)$ is even in x, if the solution of (47) is unique.

We do not consider the question of the existence and uniqueness of the solution of (47). We note only that the solution for J in the boundary value problem (39) is not an element of $L_{2}[-1,1]$, because J has square root singularities in ± 1. This can be shown by solving the Laplace equation for ϕ near $x=1$ in local cylindrical coordinates. Then, the condition that the electric energy should be finite yields the behaviour of ϕ, and therewith J, near $x=1$.

4.2. Second Approach

The boundary conditions (39) ${ }^{3,5}$ yield a system of two integral equations for $C(s ; \zeta)$,

$$
\begin{array}{ll}
\mathcal{F}^{-1}\{C(s ; \zeta) \sinh (\zeta s) ; s \rightarrow x\}=1, & |x|<1, \\
\mathcal{F}^{-1}\{s C(s ; \zeta) \cosh (\zeta s) ; s \rightarrow x\}=0, & |x|>1 \tag{50}
\end{array}
$$

It can be seen that if $C(s ; \zeta)$ is a solution to this system, $-C(-s ; \zeta)$ is also. Hence, $C(s ; \zeta)$ is odd in s, if the solution is unique. Then, the Fourier transforms can be replaced by Fourier cosine transforms. To solve the system, we write

$$
\begin{equation*}
s C(s ; \zeta) \cosh (\zeta s)=\int_{t=-1}^{1} g(t ; \zeta) B(t, s) d t \tag{51}
\end{equation*}
$$

where $B(t, s)$ is a given function, which is even in s and $g(t ; \zeta)$ is an unknown function. Substituting this expression into $(50)^{2}$ and reversing the order of integration, we obtain

$$
\begin{equation*}
\int_{t=-1}^{1} g(t ; \zeta) \mathcal{F}_{\cos }^{-1}\{B(t, s) ; s \rightarrow x\} d t=0, \quad|x|>1 \tag{52}
\end{equation*}
$$

This equation is satisfied, if we assume that

$$
\begin{equation*}
\mathcal{F}_{\cos }^{-1}\{B(t, s) ; s \rightarrow x\}=\frac{H(|t|-|x|)}{D(t, x)}, \tag{53}
\end{equation*}
$$

where D depends on the choice of B or vice versa. Since $B(t, s)$ is even in $s, D(t, x)$ has to be even in x. Substituting (51) into the expression for ϕ, i.e. (41), we obtain

$$
\begin{equation*}
\phi(x, z ; \zeta)=\int_{t=-1}^{1} g(t ; \zeta) G(x, z, t ; \zeta) d t \tag{54}
\end{equation*}
$$

where $G(x, z, t ; \zeta)$ is defined by

$$
\begin{equation*}
G(x, z, t ; \zeta)=\mathcal{F}_{\cos }^{-1}\left\{\frac{\sinh (\zeta s(1-z))}{s \cosh (\zeta s)} B(t, s) ; s \rightarrow x\right\} . \tag{55}
\end{equation*}
$$

By (53), G can be written as

$$
\begin{equation*}
G(x, z, t ; \zeta)=\zeta \int_{u=-|t|}^{|t|} \frac{1}{D(t, u)} k(x-u, z ; \zeta) d u \tag{56}
\end{equation*}
$$

Then, $(50)^{1}$, i.e $\phi=1$ for $|x|<1$, turns into a Fredholm equation of the first kind for g,

$$
\begin{equation*}
\int_{t=-1}^{1} g(t ; \zeta) G(x, 0, t ; \zeta) d t=1, \quad|x|<1 . \tag{57}
\end{equation*}
$$

After calculation of g from this equation, ϕ is known and J can be calculated from $(39)^{4}$. Since $C(s ; \zeta$ is even in $s, \phi(x, z ; \zeta)$ is even in x and therefore, $J(x ; \zeta)$ is even in x.

To choose $D(t, x)$, we note first that $D(t, x)$ should be even in x and the transforms in (53) and (55) should exist. Examples of choices of $D(t, x)$ are $D(t, x)=1$ with $B(t, s)=\sqrt{\frac{2}{\pi}} \frac{\sin (s|t|)}{s}$ and $D(t, x)=\sqrt{\pi\left(t^{2}-x^{2}\right) / 2}$ with $B(t, s)=\mathcal{J}_{0}(t s)$, i.e. the Bessel function of the first kind of index 0 . For the first choice, we obtain

$$
\begin{equation*}
G(x, z, t ; \zeta)=\zeta[K(|t|+x, z ; \zeta)+K(|t|-x, z ; \zeta)] \tag{58}
\end{equation*}
$$

where K is defined by

$$
\begin{equation*}
K(\alpha, z ; \zeta)=\frac{1}{\pi \zeta} \int_{s=0}^{\infty} \frac{\sin (\alpha s) \sinh (\zeta s(1-z))}{s^{2} \cosh (\zeta s)} d s \tag{59}
\end{equation*}
$$

Note that $\partial K / \partial \alpha=k$. The function K can be written as a series expansion by carrying out a contour integration in the complex plane,

$$
\begin{equation*}
\operatorname{sign}(\alpha) K(\alpha, z ; \zeta)=\frac{1}{2}(1-z)-\frac{1}{\pi^{2}} \sum_{k=0}^{\infty} \frac{\cos \left(\left(k+\frac{1}{2}\right) \pi z\right)}{\left(k+\frac{1}{2}\right)^{2}} \exp \left(-\frac{|\alpha|}{\zeta}\left(k+\frac{1}{2}\right) \pi\right) \tag{60}
\end{equation*}
$$

4.3. A relation between J and g

In the first approach, we solve an integral equation for J, while in the second approach, we solve an integral equation for g. A relation between J and g can be deduced as follows. We substitute the expression (51) for C of the second approach into the integral equation of the first approach, i.e. (42). Reversing the order of integration and using (53), we obtain

$$
\begin{equation*}
J(x ; \zeta)=\zeta\left(\int_{t=|x|}^{1}+\int_{t=-1}^{-|x|}\right) \frac{g(t ; \zeta)}{D(t, x)} d t, \quad|x|<1 \tag{61}
\end{equation*}
$$

By this relation, it can be shown that the two approaches yield the same result for ϕ and J. Substituting (56) into (57) and using (61), we obtain the integral equation for J as obtained in the first approach, see (47).

5. Asymptotic Solutions

We consider the case $\zeta=h / a \ll 1$ first. We approximate $G(x, 0, t ; \zeta)$ in (57) by

$$
\begin{equation*}
G(x, 0, t ; \zeta)=\zeta \mathcal{F}_{\cos }^{-1}\{B(t, s) ; s \rightarrow x\}=\zeta \frac{H(|t|-|x|)}{D(t, x)} \tag{62}
\end{equation*}
$$

Then, by (61), (57) turns into

$$
\begin{equation*}
J(x ; \zeta)=1, \quad|x|<1 \tag{63}
\end{equation*}
$$

Hence, the current on the strip is (asymptotically) uniform. Then, using the expression (44) for ϕ in the first approach, we obtain

$$
\begin{equation*}
\phi(x, z ; \zeta)=K(1+x, z ; \zeta)+K(1-x, z ; \zeta), \tag{64}
\end{equation*}
$$

where K is defined by (59) with $\partial K / \partial \alpha=k$. It can be shown that ϕ satisfies the differential equation and the boundary conditions for ϕ in (39), except (39) ${ }^{5}$. The latter serves as a measure for the quality of the approximation. Numerically, it can be shown that for $\zeta=0.05,\left|\phi\left(x, 0^{+} ; \zeta\right)-1\right| \leq 0.01$ for $0 \leq x \leq 0.8$ and $\left|\phi\left(x, 0^{+} ; \zeta\right)-1\right| \leq 0.05$ for $0 \leq x \leq 0.89$. The impedance of the stripline is given by

$$
\begin{equation*}
Z=\frac{\zeta}{4 \sqrt{\varepsilon_{r}}} \sqrt{\frac{\mu_{0}}{\varepsilon_{0}}}\left(\int_{x=0}^{1} J(x ; \zeta) d x\right)^{-1}=\frac{30 \pi}{\sqrt{\varepsilon_{r}}} \zeta \tag{65}
\end{equation*}
$$

where $\varepsilon=\varepsilon_{r} \varepsilon_{0}$. For $\zeta \ll 1$, This result is approximately equal to the approximations of Pozar [6, p. 156] and Howe [7, p. 34-35] for $\zeta<1 / 0.35$.

Next, we consider the case $\zeta=h / a \gg 1$. We approximate k_{0} in (49) by

$$
\begin{equation*}
k_{0}(\alpha ; \zeta)=\frac{1}{\pi \zeta} \log \frac{4 \zeta}{|\alpha| \pi} \tag{66}
\end{equation*}
$$

Since J has square root singularities in ± 1, we define

$$
\begin{equation*}
\tilde{J}(x ; \zeta)=\sqrt{1-x^{2}} J(x ; \zeta), \quad|x|<1 \tag{67}
\end{equation*}
$$

Then, with $x=\cos \theta$ and $u=\cos \theta^{\prime}$, (47) turns into

$$
\begin{equation*}
\frac{1}{\pi \zeta} \int_{\theta^{\prime}=0}^{\pi} \tilde{J}\left(\cos \theta^{\prime} ; \zeta\right) \log \frac{4 \zeta}{\left|\cos \theta-\cos \theta^{\prime}\right| \pi} d \theta^{\prime}=1, \quad 0<\theta<\pi . \tag{68}
\end{equation*}
$$

Note that \tilde{J} is even as function of both θ and x. Expanding $\tilde{J}(\cos \theta ; \zeta)$ into a Fourier series,

$$
\begin{equation*}
\tilde{J}(\cos \theta ; \zeta)=\sum_{n=0}^{\infty} \alpha_{n}(\zeta) \cos 2 n \theta \tag{69}
\end{equation*}
$$

and writing the logarithmic kernel as

$$
\begin{equation*}
\log \left|\cos \theta-\cos \theta^{\prime}\right|=-\log 2-2 \sum_{l=1}^{\infty} \frac{1}{l} \cos l \theta \cos l \theta^{\prime} \tag{70}
\end{equation*}
$$

we obtain

$$
\begin{equation*}
\frac{\alpha_{0}(\zeta)}{\zeta} \log \frac{8 \zeta}{\pi}+\frac{1}{2 \zeta} \sum_{n=1}^{\infty} \frac{\alpha_{n}(\zeta)}{n} \cos 2 n \theta=1, \quad 0 \leq \theta \leq \pi \tag{71}
\end{equation*}
$$

Identifying corresponding Fourier coefficients, we arrive at

$$
\begin{equation*}
\alpha_{0}(\zeta)=\frac{\zeta}{\log \frac{8 \zeta}{\pi}}, \quad \alpha_{n}(\zeta)=0, n \geq 1 \tag{72}
\end{equation*}
$$

Then, the current J and the impedance Z are given by

$$
\begin{equation*}
J(x ; \zeta)=\frac{\zeta}{\log \left(\frac{8 \zeta}{\pi}\right) \sqrt{1-x^{2}}}, \quad Z=\frac{60}{\sqrt{\varepsilon_{r}}} \log \frac{8 \zeta}{\pi} \tag{73}
\end{equation*}
$$

We see that the current equals a constant times its edge behaviour, i.e. a square root singularity. Furthermore, the impedance equals the approximation of Howe [7, p. 3435] for $\zeta>1 / 0.35$ and is approximately equal to the approximation of Pozar [6, p. 156].

6. Numerical Solution

For a numerical solution, we consider the integral equation (47) for J of the first approach. Using that J and $\mathcal{K}_{\zeta} J$ are even, and substituting (67), $x=\cos \theta$, and $u=\cos \theta^{\prime}$ into (47), we obtain

$$
\begin{equation*}
\int_{\theta^{\prime}=0}^{\pi / 2} \tilde{J}\left(\cos \theta^{\prime} ; \zeta\right)\left[k\left(\cos \theta-\cos \theta^{\prime} ; \zeta\right)+k\left(\cos \theta+\cos \theta^{\prime} ; \zeta\right)\right] d \theta^{\prime}=1,0 \leq \theta \leq \pi / 2 \tag{74}
\end{equation*}
$$

To solve this equation numerically, we use the method of collocation. First, we expand \tilde{J} into a Fourier series as in (69). Then, we choose a finite number of points $0<\theta_{m}<$ $\pi / 2, m=0,1, \ldots, N$, and we require

$$
\begin{array}{r}
\sum_{n=1}^{N} \alpha_{n}(\zeta) \int_{\theta^{\prime}=0}^{\pi / 2} \cos \left((2 n-2) \theta^{\prime}\right)\left[k\left(\cos \theta_{m}-\cos \theta^{\prime} ; \zeta\right)+k\left(\cos \theta_{m}+\cos \theta^{\prime} ; \zeta\right)\right] d \theta^{\prime}=1 \\
m=0,1, \ldots, N \tag{75}
\end{array}
$$

In matrix notation, this can be written as $\mathcal{Z} \alpha=\mathcal{V}$, where $\alpha=\left(\alpha_{0}, \ldots, \alpha_{N}\right)^{T}, \mathcal{V}=$ $(1, \ldots, 1)^{T}$ and

$$
\begin{equation*}
\mathcal{Z}(m, n)=\int_{\theta^{\prime}=0}^{\pi / 2} \cos \left((2 n-2) \theta^{\prime}\right)\left[k\left(\cos \theta_{m}-\cos \theta^{\prime} ; \zeta\right)+k\left(\cos \theta_{m}+\cos \theta^{\prime} ; \zeta\right)\right] d \theta^{\prime} \tag{76}
\end{equation*}
$$

The integrals are computed by a Newton-Coates integration rule applied to subdivisions of the interval $(0, \pi / 2)$. Near the singularity in $\theta^{\prime}=\theta_{m}$, more subdivisions are used. Using (67) and (69), we write J as

$$
\begin{equation*}
J(x ; \zeta)=\frac{1}{\sqrt{1-x^{2}}} \sum_{n=0}^{N} \alpha_{n}(\zeta) T_{2 n}(x), \quad|x|<1 \tag{77}
\end{equation*}
$$

The impedance is computed as in (65), which yields $Z=60 \zeta / \alpha_{1}(\zeta) \sqrt{\varepsilon_{r}}$.

7. Numerical Results

From Table II and Figure 2, we see that three collocation points yield a reasonable approximation of the current and the impedance for $\zeta=0.05$. Sets of 4 and 7 collocation points yield comparable results. For 9 collocation points, the algorithm is not stable anymore. The function $J(x ; 0.05)$ is almost equal to 1 on the larger part of the interval $[0,1]$, as in the asymptotic solution (63). Furthermore, the impedance differs only 3.4% from the asymptotic approximation (65).

From Table III and Figure 3, we see that two collocation points yield a good approximation of the current and the impedance for $\zeta=1$. Furthermore, it can be seen that the current equals a constant times its edge behaviour plus a small correction term.

We do not show a result for $\zeta \gg 1$. For $\zeta=20$, only one collocation point is needed ($x_{m}=\cos \theta_{m}=0.5$), and the numerical and asymptotic solution match perfectly.

Figure 4 shows the numerical solution and the two asymptotic solutions. The asymptotic solution for $\zeta \ll 1$ matches with the numerical solution for $\zeta \lesssim 10^{-0.7} \approx$ 0.2 , while the asymptotic solution for $\zeta \gg 1$ matches with the numerical solution for $\zeta \gtrsim 10^{0.5} \approx 3.2$.

Figure 5 shows the numerical solution and the formulae of Pozar [6, p. 156] and Howe [7, p. 34-35]. We see that the curves match perfectly, except for larger values of $\zeta(\zeta>15)$, where the formula of Pozar differs from both the numerical solution and the formula of Howe (about 4% at $\zeta=30$).

8. Results and Conlusions

Asymptotic expressions have been deduced for the electromagnetic fields in and near a long thin good conducting stripline, embedded in a dielectric layer, where the current is assumed to be a propagating wave in length direction, with prescribed total amplitude. Reflections and boundary effects in the end sections are disregarded. Neglecting edge effects at $x= \pm a$ on basis of $b / a=O\left(10^{-3}\right)$, and consequently, neglecting terms of $O\left(\sqrt{\omega \epsilon_{d} / \sigma}\right)=O\left(10^{-5}\right)$, we find that the electric and magnetic field in the dielectric only have components in z and x-direction, respectively, in the neighbourhood of the stripline. Moreover, these components and the surface charge density at $z= \pm b$ depend only on the prescribed total amplitude of the current, the permittivity of the dielectric layer, and the permeability of vacuum. The current in the stripline has only a component in y-direction, and its wave number equals the wave number in the dielectric layer. Hence, the wavelength of the current is much larger than the width $2 a$ of the stripline, which corroborates our assumption that the current propagates in y-direction only. Moreover, since the wave number of the current is real, the fields are not attenuated in y-direction. Then, we may consider the stripline as infinitely long, because we disregard reflections and boundary effects at the ends of the stripline. We have shown that the current decays exponentially, with exponent $-A z / b$ and
$A=b \sqrt{2 \sigma \omega \mu_{0}} \approx 20$, from the boundaries $z \pm b$, such that this current is restricted to very thin layers near these boundaries. The layers have total characteristic thickness $\delta_{\text {skin }}=\sqrt{2 / \sigma \omega \mu_{0}}$, which is about 5% of the thickness $2 b$. Then, taking the limit $A \rightarrow \infty$ in distributional sense, the current is restricted to the boundaries $z= \pm b$. Summarizing, we have taken the limits $\sqrt{\omega \epsilon_{d} / \sigma} \rightarrow 0$ and $A \rightarrow \infty$ to arrive at the asymptotic expressions for the fields. This corresponds to $\sigma \rightarrow \infty$, i.e. the stripline is considered as a perfect conductor. Moreover, since the thickness $2 b$ is much smaller than all other length scales, the stripline can be modeled as infinitely thin.

Applying the thus deduced field expressions as boundary conditions, we model a stripline in a stripline environment as a perfect and infinitely thin conductor. The propagating wave is assumed of TEM type. It is shown that the stripline can only support such a wave, if the wave number of the stripline equals the wave number of the dielectric layer. This is in correspondence with the aforementioned asymptotic expressions. A boundary value problem for the electric potential is deduced, in which the total amplitude of the current is related to the potential difference between stripline and groundplates. The boundary value problem is solved by two approaches, one leading to an integral equation for the current, and the other leading to an integral equation for an auxiliary function. A relation between the current and the auxiliary function is used to obtain asymptotic expressions of current and impedance. For $\zeta \ll$ 1 , the current is almost uniform and the asymptotic expression for the impedance matches with the numerical solution for $\zeta \lesssim 0.2$. For $\zeta \gg 1$, the current is dominated by the square root singular behaviour of the current near the edges of the stripline, and the asymptotic expression for the impedance matches with the numerical solution for $\zeta \gtrsim 3$. Furthermore, it is shown that the numerical solution for the impedance matches with results in literature.

References

1. Landau, L.D., E.M. Lifshitz, Electrodynamics of Continuous Media, Oxford: Pergamon Press (1960).
2. Collin, R. E., Foundations for Microwave Engineering, New York: McGraw-Hill (1992).
3. Wheeler, H.M., Transmission-Line Properties of Parallel Wide Strips by a Conformal-Mapping Approximation, IEEE Trans. Micr. Theor. Tech. 12 (1964) 280-289.
4. Stratton, J.A., Electromagnetic Theory, New York: McGraw-Hill (1941).
5. A. Erdelyi, W. Magnus, F. Oberhettinger, F. Tricomi, Tables of Integral Transforms (vol. 1), New York: McGraw-Hill (1954).
6. Pozar, D.M., Microwave Engineering, New York: Wiley (1998).
7. Howe, H., Stripline Circuit Design, Burlington, Mass.: Artech House (1974).

Figure 1. Left: Cross-section of a stripline in a stripline environment, Right: Stripline of finite thickness.

Table I. Parameter values for a stripline. The subscripts $0, d, s$ refer to vacuum, dielectric, and stripline, respectively.

frequency	f	1 GHz
radian frequency	$\omega=2 \pi f$	$2 \pi \mathrm{GHz}$
permittivity	ε_{0}	$1 / 36 \pi \cdot 10^{-9} \mathrm{~A} \mathrm{~s} / \mathrm{V} \mathrm{m}$
	$\varepsilon_{n} / \varepsilon_{0}(n=d, s)$	$O(1)$
permeability	$\mu_{0}=\mu_{d}=\mu_{s}$	$4 \pi \cdot 10^{-7} \mathrm{~V} \mathrm{~s} / \mathrm{A} \mathrm{m}$
speed of light	$c_{0}=1 / \sqrt{\varepsilon_{0} \mu_{0}}$	$3 \cdot 10^{8} \mathrm{~m} / \mathrm{s}$
	$c_{n} / c_{0}=\sqrt{\varepsilon_{0} / \varepsilon_{n}},(n=d, s)$	$\mathrm{O}(1)$
wavelength	$\lambda_{0}=c_{0} / f$	0.3 m
	$\lambda_{n} / \lambda_{0}=c_{n} / c_{0}(n=d, s)$	$\mathrm{O}(1)$
wave number	$k_{0}=2 \pi / \lambda_{0}=\omega \sqrt{\varepsilon_{0} \mu_{0}}$	$20.9 \mathrm{~m}^{-1}$
	$k_{n} / k_{0}=\lambda_{0} / \lambda_{n}=\sqrt{\varepsilon_{n} / \varepsilon_{0}}(n=d, s)$	$\mathrm{O}(1)$
width	$2 a$	$10^{-2} \mathrm{~m}$
thickness	$2 b$	$40 \mu \mathrm{~m}$
conductivity	σ	$5.9 \cdot 10^{7} \mathrm{ohm} \mathrm{m}^{-1} \mathrm{~m}^{-1}$
height	h	$10^{-2} \mathrm{~m}$

Table II. Values of the expansion coefficients α_{n} and the impedances for four collocation point sets $x_{m}=\cos \theta_{m}$ for $\zeta=0.05$. Set 1: $0.1,0.5,0.9 ;$ Set 2: $0.2,0.4,0.6,0.8 ;$ Set 3: $0.1,0.2,0.35,0.5$, $0.65,0.8,0.9$; Set 4: 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9 .

Set	α_{0}	α_{1}	α_{2}	α_{3}	α_{4}	α_{5}	α_{6}	α_{7}	α_{8}	$Z \sqrt{\varepsilon_{r}}(\mathrm{ohm})$
1	0.656	-0.381	-0.038							4.575
2	0.660	-0.379	-0.046	-0.008						4.544
3	0.659	-0.380	-0.044	-0.001	0.008	0.006	0.002			4.553
4	0.856	0.014	0.341	0.351	0.296	0.208	0.116	0.046	0.010	3.503

Figure 2. The current distribution on right half of the strip $(0 \leq x<1)$ for $\zeta=0.05$ for three sets of collocation points. Solid curve: collocation points $0.1,0.2,0.35,0.5,0.65,0.8,0.9$; Dashed curve: collocation points $0.2,0.4,0.60 .8$; Crosses: collocation points $0.1,0.5,0.9$.

Table III. Values of the expansion coefficients α_{n} and the impedances for four collocation point sets $x_{m}(\zeta=1)$. Set 1: 0.5; Set 2: $0.3,0.7$; Set 3: 0.1, $0.5,0.9$; Set 4: 0.2, $0.4,0.6$, 0.8 .

Set	α_{1}	α_{2}	α_{3}	α_{4}	$Z \sqrt{\varepsilon_{r}}($ ohm $)$
1	0.942				63.72
2	0.917	-0.127			65.46
3	0.918	-0.123	0.004		65.40
4	0.918	-0.123	0.004	$-2 \cdot 10^{-5}$	65.40

Figure 3. The current distribution on the strip $(0<x<1)$ for $\zeta=1$. Dashed line: collocation point 0.5 ; Circles: collocation points $0.3,0.7$; Crosses: collocation points $0.1,0.5,0.9$; Solid line: collocation points $0.2,0.4,0.6,0.8$.

Figure 4. The impedance $Z_{0}=Z \sqrt{\varepsilon_{r}}$ as a function of $10{ }^{10} \log \zeta$. Solid line: Numerical approximation; Stars: asymptotic approximation (65) for $\zeta \ll 1$; Crosses: asymptotic approximation (73) for $\zeta \gg 1$.

Figure 5. The impedance $Z_{0}=Z \sqrt{\varepsilon_{r}}$ as a function of the $10^{10} \log \zeta$. Solid line: numerical approximation, Crosses: impedance formula of Howe, Circles: impedance formula of Pozar.

