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Wavelength Conversion Employing 120-fs Optical
Pulses in an SOA-Based Nonlinear Polarization

Switch
A. K. Mishra, X. Yang, D. Lenstra, Member, IEEE, G.-D. Khoe, Fellow, IEEE, and H. J. S. Dorren

Abstract—We demonstrate wavelength conversion based on non-
linear polarization rotation driven by ultrafast carrier relaxation
in an InGaAsP–InGaAs multiquantum-well semiconductor optical
amplifier. We use a continuous-wave (CW) probe beam at a center
wavelength of 1555 nm, and a control pulse of duration of 120 fs at
a center wavelength of 1520 nm. We have investigated wavelength
conversion for different injection currents and for different control
pulse energies. We show that a conversion efficiency of 12 dB can
be obtained for control pulse energies of 10 pJ.

Index Terms—Nonlinear polarization rotation, semiconductor
optical amplifier, ultrafast carrier relaxation, wavelength conver-
sion.

I. INTRODUCTION

NONLINEAR phenomena in semiconductor optical ampli-
fiers such as cross-gain, cross-phase, four-wave mixing

(FWM), and nonlinear-polarization rotation have been widely
utilized for wavelength conversion and optical switching.
Wavelength conversion based on nonlinear polarization rota-
tion in semiconductor optical amplifiers (SOAs) is presented in
[1]–[7]. In conventional applications, the speed of wavelength
converters based on SOA nonlinearities is limited to 250 GHz
due to the slow SOA recovery by carrier injection (typically in
the order of 1 ns) [7].

In this paper, we investigate wavelength conversion driven by
femtosecond optical pulses in a nonlinear polarization switch as
described in [1] using optical pulses with duration 47 ps. In brief,
wavelengthconversion inanonlinearpolarization switch isbased
on nonlinear polarization rotation caused by polarization-de-
pendent gain saturation in the SOA that is introduced by pump
light [7]. Suppose that a continuous-wave (CW) probe signal
and a modulated pump signal, both at different wavelengths,
are simultaneously injected into the SOA. The modulated pump
signal will saturate the SOA. Since the SOA gain saturation is po-
larization dependent, a polarization-dependent nonlinear index
change also is introduced in the SOA by the pump light. Thus,
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the pump beam creates additional birefringence in the SOA,
which makes the polarization angle of the probe light rotated
while propagating through the SOA. It has been shown in [7]
that this concept can lead to error-free inverted and noninverted
wavelength conversion at a bit rate of 10 Gb/s.

A model that describes polarization-dependent nonlinear gain
and index dynamics in SOAs on subpicosecond timescales is pre-
sented in [8]. The rate-equation model of [8] takes into consid-
eration carrier dynamics on femtosecond timescales driven by
two-photon absorption (TPA) and free-carrier absorption (FCA).
The model accounts for self- and cross-phase modulation, car-
rier heating, and spectral and spatial hole burning, as well as self-
and cross-polarization modulation. The polarization-dependent
gain saturation is taken into account by assuming that the polar-
ized optical field can be decomposed into a TE and TM compo-
nent. These modes propagate “independently” through the SOA
although they have indirect interaction with each other through
thecarriers.ThemodelaccountsdifferentTEandTMgainsby as-
sumingthat thesepolarizationscoupletodifferentholereservoirs.
This assumption is justified by the fact that in zinc-blende struc-
tures such as GaAs and InP the optical transitions occur between
an type conduction band state and a (degenerate) type
valence band state. Two out of the three possible transition types
are selected by the TE and TM polarizations with the two cor-
responding inversions. In the isotropic bulk situation, these two
transitions will occur in a fully symmetric manner,but weare now
interested in the case where tensile strain is built into the active
medium, and this will cause an asymmetry between the two tran-
sition types such that TM will be favored over TE transitions.

In this paper, we present experimental results which show that
the model presented in [8] is capable of describing wavelength
conversion driven by 120-fs optical pulses in a nonlinear polar-
ization switch. We investigated the wavelength conversion ef-
ficiency as a function of the injection current and the control
pulse energy for different probe powers. We found a conver-
sion efficiency of 12 dB and the performance of this switch
is compared to switching in a Mach–Zehnder interferometer.
Moreover, we investigate the converted pulsewidth numerically.
Our numerical results indicate that the converted pulse broadens
while propagating through the switch, but the recovery of the
nonlinear polarization switch remains below 1 ps.

The paper is organized as follows. In Section II, we describe a
wavelength conversion experiment based on nonlinear polariza-
tion rotation driven by 120-fs optical pulses. We present experi-
mentalresultsandshowthatthemodelpresentedin[8]canexplain
the experimental data. In Section III, conclusions are given.
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Fig. 1. Experimental implementation of the nonlinear polarization switch.
OPO: optical parametric oscillator, HW: half-wave plate, P: polarizer, M:
mirror, PBS: polarizing beam-splitter, BS: beam-splitter, L: lens, A: attenuator,
BPF: band pass filter, PC: polarization controller, CW: CW tunable laser.

II. EXPERIMENTS AND RESULTS

The scheme of our wavelength converter is shown in Fig. 1.
The wavelength converter is made out of an SOA, two polariza-
tion controllers (PC-1, PC-2), two beam splitters (BS-1, BS-2),
an optical bandpass filter (BPF), and a polarizing beam splitter
(PBS). The amplifier used in this experiment is a multiquantum
well InGaAsP–InGaAs SOA with a central length of 750 m and
at both sides a taper zone of 400 m. A beam of optical pulses
with duration of 120 fs at a repetition rate of 75.82 MHz and with
a central wavelength of 1520 nm was generated by an optical
parametric oscillator that was pumped by a Ti : Sapphire laser.
TheOPOoutput isfirstattenuatedusingahalf-waveplate (HW-1)
and a polarizer. A second half-wave plate (HW-2) is used to set
the polarization of the laser beam to the TE mode. A tunable laser
emits a CW probe beam at wavelength 1555 nm. The power of the
probe beam is controlled by the variable attenuator (A-1) and the
polarization is controlled by polarization controller PC-1. The
pump and probe beam were combined by beamsplitter BS-1 and
fed into the SOA by using microscope objectives. At the SOA
output, afterpassing throughPC-2, thepumpandprobe lightwere
separatedbyaBPF.TheBPFwithabandwidthof1nmwasused to
remove the pump light and to suppress the amplified spontaneous
emission generated by the SOA.

Wavelength conversion can be realized in this setup by setting
the linear polarization of the probe beam by approximately 45
with respect to the SOA layers. When a pump pulse is injected in
theSOA,polarization-dependentgainsaturationwillleadtopolar-
ization-dependent indexchangesand, thus, topumpinducedbire-
fringence. The pump-induced birefringence makes it so that the
TEcomponentoftheprobebeamexperiencesadifferentrefractive
index compared to the TM component of the probe beam, which
causes a rotation of the polarization state of the probe beam. The
rotationofthepolarizationisobservedbymeasuringthetransmis-
sion through the PBS. PC-2 was adjusted so that initially no light
can pass through the PBS. However, if a pump pulse is injected in
the SOA, the pump-induced rotation of the polarization angle of
the probe light makes it so that some probe light can pass through
thePBS.Thismeans thatat thePBSoutput, thepumppulse is con-
verted to the wavelength of the probe light.

In the first experiment, the polarization-dependent SOA gain
was measured as a function of pump pulse energy. The SOA in-
jection current was 200 mA. The results are shown in Fig. 2, in

Fig. 2. Measured and computed polarization-dependent gain for the TE and
TM modes as a function of the pump pulse energy. The diamond-shaped points
and the star-shaped points represent the measured data for both modes. The
solid line represents the computed result for the TE mode, and the dashed line
represents the computed result for the TM mode. The SOA injection current was
200 mA.

which the amplification for TE and TM modes are plotted as a
function of the injected pulse energy. The curve with the max-
imum amplification is attributed to the TE mode and the curve
with the minimum amplification is attributed to the TM mode.
The solid line in Fig. 2 represents the computed amplification
for the TE mode, while the diamond-shaped points represent
the measured data. Similarly, the dashed line in Fig. 2 repre-
sents the computed amplification for the TM mode, while the
star-shaped points represent the observations [8]. The SOA pa-
rameters used in the simulations can be found in Table I. We
corrected for the coupling and component losses that were esti-
mated to be 12.0 dB (this includes two times 3.0-dB facet losses
and 6.0 dB for the components used in the experimental setup);
it follows from Fig. 2 that for a current of 200 mA, the small
signal gain (measured for pulses with a pulse energy of 13 fJ)
equals 19.6 dB for the TE mode and 16.3 dB for the TM mode.
If we increase the pulse energy to 8.6 pJ, the gain of the corre-
sponding modes dropped down to 3.1 dB for the TE mode and

4.1 dB for the TM mode. This is due to TPA and FCA, which
dominate at high pulse energies. It follows from Fig. 2 that the
experimental and numerical results are in good agreement.

In the second experiment, the polarization-dependent gain
of the probe beam was measured as a function of the injected
current in the absence of pump light. The probe power was

10.0 dBm. The results are shown in Fig. 3. If the SOA is
pumped with 200 mA of current, after correction for the com-
ponent and coupling losses, the amplification for the TE and
TM modes of the CW beam was 23 and 18 dB, respectively.
We found that the small signal gain for the pump light differs
from the small signal gain for the CW beam. The main reason
for this is that we have different coupling losses for the pump
light and probe light in our experiment. Similarly, as in Fig. 2,
the discrete points represent the observations and the solid and
dashed lines represent the computed results for the TE and TM
modes of the CW beam. The computed amplifications for the
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TABLE I
SOA PARAMETER DEFINITIONS AND THEIR VALUES

Fig. 3. Measured and computed polarization-dependent gain for the TE and
TM modes as a function of the SOA injection current. The diamond-shaped
points and the star-shaped points represent the measured data for both modes.
The solid line represents the computed result for the TE mode, and the dashed
line represents the computed result for the TM mode. The CW input power was
�10.0 dBm and the injection current was 200 mA.

two modes are in agreement with the experimental data for cur-
rents above transparency point (50 mA). It should be remarked,

however, that from an experimental point of view, it is increas-
ingly more difficult to control the intensities of injected light in
each mode while reducing the current below transparency.

In the wavelength conversion experiment, PC-1 was adjusted
so that the polarization of the input signal is approximately 45
with respect to the orientation of the SOA layers. PC-2 was ad-
justed in such a way that the probe beam that outputs the SOA
cannot pass through the PBS. The whole setup was placed in a
box to shield the polarization switch from thermal and mechan-
ical disturbances. When saturating pump pulses were coupled
into the SOA, the gain saturation led to a phase difference be-
tween the TE and TM modes of the probe signal, causing the
polarization of the probe light to be rotated [1], [3]. As a conse-
quence, the power meter could detect some probe light passed
through the PBS. The discrete points in Fig. 4 show the observed
PBS output for various pump pulse energies while the SOA in-
jection current was 200 mA and the power of the CW probe
beam was 3 dBm. The solid and dashed lines represent com-
puted results using the model of [8]. We found a conversion ef-
ficiency larger than 12 dB for pulses with an energy of 10 pJ.
It is clearly visible that our SOA model leads to results that are
in good agreement with the experimental data. This experiment
was repeated for the case of a probe power of 0 dBm and we
found similar results.
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Fig. 4. Measured and computed output power of the nonlinear polarization
switch as a function of pump pulse energy. The diamond-shaped points show the
result if the CW input power was 0 dBm, and the star-shaped points represents
the results if the CW power was 3 dBm. The SOA injection current was 200 mA.
The central wavelength of the CW light was 1555 nm and the central wavelength
of the pump light was 1520 nm.

We have also investigated wavelength conversion as a func-
tion of the injection current for different pump pulse energies.
The power of the CW probe beam was 3 dBm. The result is
shown in Fig. 5. The diamond-shaped points represent the re-
sults for pump energies of 10 pJ and the star-shaped points rep-
resent the results for pump pulse energies of 6.3 pJ. The solid
and dashed lines represent computed results for pump pulses
of 10 and 6.3 pJ, respectively, based on the model and the pa-
rameters in Table I. It is observed that the averaged converted
power of the light that passes through the PBS increases as a
function of current. We find that our experimental results are in
good agreement with the computational results at least for the
current above transparency current (50 mA).

Our experimental setup did not allow time-resolved measure-
ments of the converted pulse. We, therefore, investigate the con-
verted pulse numerically. The expression for the average output
power detected by the power meter due to polarization rotation
can be written as

(1)

where is detector response time, and are the
intensities of TE and TM components of the light that passes
through the PBS, and is the pump-induced nonlinear
phase difference between the TE and TM modes per unit length
which can be expressed as

(2)

Here, is the linewidth enhancement factor and and
represent the gain that accounts for TPA and FCA. Note

Fig. 5. Measured and computed output power of the nonlinear polarization
switch as a function of the SOA injection current. The diamond-shaped points
shows the result if the pump pulse energy was 10 pJ and the star-shaped
points represents the results if the pump pulse energy was 6.3 pJ. The central
wavelength of the CW light was 1555 nm, the central wavelength of the pump
light was 1520 nm, and the CW power was 3 dBm.

that (2) differs from its counterpart in [12], since in (2) there is
no direct contribution due to TPA. Since both modes propagate
through the same SOA, the contribution to the nonlinear phase
shift due to TPA is canceled out. As a result of this, the opera-
tion of a nonlinear polarization switch operated by femtosecond
optical pulses differs fundamentally from a similar functionality
based on nonlinear gain and index dynamics of an SOA placed
in a Mach–Zehnder interferometer [9]. Fig. 6(a) shows a sim-
ulation of the nonlinear phase shift as a function of the time.
It follows from Fig. 6 that the nonlinear phase shift
has a long-lived tail that is much smaller than 0.1 rad. However,
since the PBS output power is proportional to the cosine of the
nonlinear phase shift, the effect of the long-lived tail has van-
ished in the PBS output power. This is visible in Fig. 6(b), which
shows a simulation of the pulse that outputs the nonlinear polar-
ization switch. Fig. 6 also shows that the nonlinear phase shift
recovers in 500 fs so that the duration of the pulse that outputs
the nonlinear polarization switch is also approximately 500 fs
(at full-width at half-maximum). Fig. 6(b) also indicates that the
converted pulse has considerably broadened with respect to the
input pulse.

In Fig. 4, we observe that an increase of the pump pulse
energy leads to an increase in the transmission of the probe
light through the PBS. Moreover, it is clearly visible from
Figs. 4 and 5 that the output power saturates for both high
pump energy and high injection current. This behavior can
be explained by using the results shown in Figs. 2 and 3,
in which it is shown that the SOA saturates for both high
injection currents as well as for high pulse energies. In the
latter case, the saturation of the SOA gain can be explained
by TPA and FCA. Also, it is clearly visible in Figs. 4 and
5 that the wavelength converted output power was very low,
which is due to the low repetition rate of the pump light.
We observed a static extinction ratio larger than 12 dB with
pump pulses having energy of 10 pJ. This value for the energy
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Fig. 6. (a) Computed nonlinear phase shift �� (t) as a function of time using (2). (b) Computed pulse transmission through the PBS as a function of time. In
both cases, the pump pulse energy was 10 pJ and the power of the CW probe light was 3 dBm. The SOA injection current was 200 mA.

is much higher than desired in telecommunication systems.
However, it can be substantially lowered by optimizing the
bandwidth of the BPF that is used to suppress spontaneous
noise and pump pulses. Thus, it should be possible to achieve
wavelength conversion operating at high repetition rates.

III. CONCLUSION

We have discussed wavelength conversion using a nonlinear
polarization switch that is driven with optical pulses with dura-
tion of 120 fs and demonstrated a static conversion efficiency
larger than 12 dB.

We have also shown that the operation of a nonlinear polar-
ization switch differs on an essential point from the operation

of a nonlinear optical switch based on an SOA placed in a
Mach–Zehnder interferometer. This is due to the fact that both
the TE and TM modes propagate through the SOA (this is in
contrast to a Mach–Zehnder interferometer, where only TE
modes of the probe beam propagates through the SOA [9]).
It was argued in [12] that the nonlinear phase shift contains
two contributions, one due to the phase shift introduced by the
carrier depletion and the other due to the direct nonlinear phase
shift introduced by TPA. Since in a nonlinear polarization
switch both the TE and TM modes propagate through the
same SOA, the direct contribution due to TPA was canceled
out. This implies that the width of the pulse that outputs the
nonlinear polarization switch only depends on the nonlinear
carrier dynamics in the SOA.
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Our results indicate that there are two major challenges on
the road toward system applications of wavelength conversion
in SOAs employing subpicosecond pulses. First, the pump
pulses that were used in our experiment had energy of 10 pJ,
which is two orders too high to allow system applications at
high repetition rates. We believe, though, that the pulse energy
can be substantially lowered by optimizing the experiment.
Second, numerical simulations indicate that the converted pulse
has significantly broadened with respect to the input pulse. This
is undesirable in system applications in which the output pulse
typically has the same duration as the input pulse.
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