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Weak Type Theory:

a formal language for mathematics

Rob Nederpelt





Abstract

In this report we propose a formal language for expressing mathematics, called Weak Type
Theory (‘WTT’). This language, as we claim, is close to the usual way in which mathemati-
cians express themselves in writing. Therefore it is relatively easy to use and has a high
degree of reliability in the sense that it gives a true image of what the mathematician intends
to say.

As a formal language, WTT has a precise syntax, which is based on linguistic categories.
A derivation system for WTT helps in restricting the usage of WTT to cases which obey a
number of ‘natural’ linguistic requirements. Both the syntax and the derivation systems are
extensively exposed in this report, with a number of illustrative examples.

It must be emphasized that WTT is still very weak as regards correctness: the rules of
WTT only concern linguistic correctness, its types are of a pure linguistic character, ensuring
that the formal translation into WTT is satisfactory as a readable, well-organized text . On
the other hand, all information concerning the real essence of correctness, namely its logical-
mathematical aspects of truth, trustworthiness and applicability, are disregarded. Only in a
later stage, when extending a WTT-text to, e.g., full Type Theory, logical and mathematical
correctness start playing their leading parts. We discuss a number of more or less problematic
topics which have to be solved in order to design such desirable refinements of WTT.
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Chapter 1

Introduction

The way in which mathematical ideas are usually expressed in writing (books, papers and
the like) is informal , in the sense that there exists no prescribed syntax for the presentation
of the mathematical content. We give the name Common Mathematical Language (or CML)
to this linguistic machinery which mathematicians preferably use to express mathematical
content and to communicate with their fellow mathematicians. We concentrate hereby on
written specimens of CML.

We think that it is useful for several applications to also have a formal language at hand
for the same communication purposes. Such a language may act as a substitute for CML. In
section 1.4 we discuss possible uses and the benefits thereof.

We propose a system called Weak Type Theory (abbreviated WTT ), intended to be a
formal language for expressing mathematical content. What we aim at in developing WTT
is simply to keep as much as possible of the advantages, and to remove as much as possible
of the disadvantages of CML.

In doing so, we inevitably had to make design decisions. We defend our decisions below,
knowing that it is likely that our choices can be disputed.

1.1 A comparison between Common Mathematical Language

and Weak Type Theory

We start with an overview of what we see as the main advantages and disadvantages connected
with CML.

First we list the most salient ADVANTAGES :
Expressive CML is suited for expressing all kinds of mathematical mental constructs,

ranging from mathematical entities and relations between them, to mathematical reasonings
and theories. It also accommodates the use of relevant mathematico-linguistic categories,
such as definitions, theorems and proofs.

Time-honoured It has been polished and refined by intensive use and it is rooted in a long
tradition.

Satisfactory It has the tacit approval of a large community of mathematicians, since it has
proved and still proves to be an adequate communication medium.

3



4 CHAPTER 1. INTRODUCTION

Universal It is used all over the world and it offers a recognizable format and style to all
users.

Flexible Not only can it accommodate many branches of mathematics, but it is also easily
adaptable to new developments in mathematics.

However, there are also DISADVANTAGES in using CML:
Informal Since it is based on natural language – albeit mixed with mathematical symbols

and formulas – it has no well-defined formal basis and hence it suffers of imprecision, only
overcome by the understanding of the average user.

Ambiguous It has inherited the ambiguities present in natural language, such as unspecified
‘discourse references’ or unsolved anaphoric relations1, including the overloading of frequently
used words. Moreover, it introduces new ambiguities since the mathematical extensions to
the natural language, as used in CML, are sometimes ill-defined.

Incomplete Much is left undetermined, implicit or is neglected, the writer making appeal
to the intuition or common sense of the mathematical reader.

Poorly organised A common mathematical text is only partly structured in textual units,
but many structural aspects are omitted or only hinted at.

Automation-unfriendly Since it is a plain text only, its mathematical contents cannot be
exploited to its full extent by invoking computer assistance for many different purposes.

We revisit the above lists of advantages and disadvantages, this time comparing the formal
WTT with the Common Mathematical Language. First we consider the advantages:

Expressive The expressivity of WTT is comparable to that of CML.
Time-honoured WTT is novel, but it respects the mathematical traditions.
Satisfactory Though we have ample experience with WTT, its satisfactory usability of

course still has to be demonstrated.
Universal At the moment only potentially.
Flexible WTT has flexibility to a great extent, but not as much as CML. This is due to

the fact that both language and meta-language are allowed (and often mixed) in the latter,
whereas WTT, by its formal nature, only allows ‘language’. So meta-language must be pushed
down to the language level, which is not always easy or even impossible.

As regards the disadvantages:
Informal The main gain of WTT over CML is its formality. WTT has a well-defined

syntax, consisting of a grammar and a derivation system, which provide for uniformity of
expression.

Ambiguous Most of the ambiguities in the CML-texts disappear in the translation into
WTT. For example, the anaphoric obscurities in language (hence also in CML) are resolved
in WTT, in particular by the requirements of the strict context management of WTT.

Incomplete A text in WTT-format is still incomplete, but less so than CML. However,
WTT can be translated further into stronger theories, which are more and more complete.

Poorly organised A WTT-text is clearly organized.

1Anaphora regard ‘the use of words referring to or replacing a word used earlier in a sentence, to avoid

repetitions’ (the Concise Oxford Dictionary).
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Automation-friendly WTT is by its formal character already more or less fit for comput-
erization. In translating WTT into stronger versions, the potentials for automation grow fast
and promising.

1.2 The safety criterion

In our design of WTT, we try to keep close to the Common Mathematical Language. Our main
reason for doing this is reliability : it is of uttermost importance that the formal version of a
piece of mathematics covers exactly the intended contents of the original CML-version. Since
the latter is informal – already in the mind of the mathematician who devised it, but also in
a written version – it is impossible to have an objective check on the correspondence between
the original and the formalized text. Hence it is necessary to invoke a human judgement
on this correspondence, for each piece of mathematics under consideration. This judgement
can be left to the one who devised the text, but also to others. Although a hundred percent
reliability cannot be attained, it is our opinion that this judgement is optimally trustworthy if
the formal version is as close as possible to the informal one. We call this the safety criterion.

As soon as a reliable formal translation of a piece of informal mathematical text has been
made, we are on solid ground. Such a translation will still be far from complete, but since
it is formal, it is possible to define further translations into more complete versions. Since
these subsequent translations are from formal texts to formal texts, it is much easier to check
reliability: one only needs to confirm oneself of the reliability of the translation procedure,
not once and again, but once and for all .

1.3 Features of WTT

Some of the features of WTT making it useful as a formal language for mathematics are the
following:

• WTT respects all linguistic categories which a mathematician usually employs, so not
only the notions set and element of a set, taken from the mathematical language, but
also the notions noun and adjective, already present in natural language and amply
used in CML. This brings a WTT-text nearer to the intuition of a mathematician, since
the fine details of a piece of mathematics are better accounted for than in a purely
set-theoretic setting.

• In this respect it should be observed that the average mathematician does not have a
purely set-theoretic view on mathematics! A collective notion (a ‘type’) is not always
identifiable with a ‘set’. Moreover, the combination notion-subnotion differs in meaning
and content from the combination set-subset. Also, predicates can be identified with
subsets, but again, there are subtle differences between the two.

In order to respect the fine details of a CML-text, we preserve categories like ‘noun’
and ‘adjective’, albeit that, on first view, they seem superfluous. Another reason for
maintaining these linguistic categories is, that we want to minimize communication
losses in this first formalization step (from CML to WTT). We do this by keeping
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as much of the linguistic and structural features of CML as possible, thus leaving all
possibilities open. Sieving possibly superfluous ingredients can always happen in a later
stage, for example in a further translation into Type Theory (see below).

• As a consequence of the above, we believe that most of the ambiguities in CML are
representable and distinguishable in WTT. This is important for any attempt to obtain
a successful disambiguation.

• WTT also accommodates all sorts of binders (such as
⋃

,
∑

or ∀).

• Incorporated in WTT are basic notions as: assumption, declaration of a fresh variable,
definition and statement (covering notions like theorem and step in a proof ).

• WTT is consistently structured and uses contexts, which are lists of assumptions and
variable declarations ‘setting the stage’ for a statement or a definition. These contexts
reflect the introductory statements usually expressed in mathematics as e.g. ‘Let . . . ’
or ‘Assume . . . ’.

• The overall form of a text in WTT is a so-called book , being a sequence of so-called lines,
which are statements and definitions, each embedded in their own context. Each WTT-
line can be seen as the translation of a mathematical expression stating that something
‘holds’ in a certain context. Hence, one finds in a book a – probably connected –
fragment of mathematical knowledge, consisting of lines expressing mathematical facts
(like theorems, lemma’s, but also steps in a reasoning or in a proof) and lines expressing
definitions (possibly in a context).

• A text transposed in WTT gives an accurate image of the structure of the original
CML-text. The line-by-line development of a theory is reflected in the sequence of lines
in a WTT-book. These lines are interdependent in the sense that each one may call
upon previous ones (and most often does so).

1.4 The usefulness of WTT

Of course, the author of this report does not expect that mathematicians convert themselves
to using WTT exclusively. On the contrary, the common mathematical language, as it can
be found in books and papers, is good enough and, moreover, usable and familiar to a high
degree. However, WTT is formal and so close to the usual linguistic format used by mathe-
maticians, that it can easily be adopted by mathematicians as ‘a second language’. This can
be advantageous for the following reasons:

• In complex situations, the ‘second language’ WTT can help the mathematician to pre-
cisely identify the (logico-mathematical) structure in which he or she works.

• It can also help a person to be fully aware of the complexity of a mathematical notion,
structure or reasoning, in order to better understand the situation. This holds for
experts, but also for teachers and students.
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• By its uniformity, WTT provides an excellent basis for communication. For example,
it enables that many persons work productively on the same task. Also, the text
administration of a mathematical project can get a firm basis by the use of WTT.

• WTT does not restrict the mathematician to a purely set-theoretic environment, since
the full linguistic apparatus of mathematics is faithfully and respectfully represented.

In this respect it is interesting to observe that – although many mathematicians ‘believe’
that their mathematics is based on (or can be formally expressed in) set theory – the
actual formalization into set theory is more problematic than expected. Such a formal-
ization requires a set-theoretical ‘coding’, which causes a certain distance between CML
and its set-theoretical translation. Moreover, a choice for the set-theoretical framework
has consequences concerning content and therefore restricts the user in several ways.
In both aspects, WTT is nearer to the original mathematical content: (1) their mutual
distance is smaller, and (2) by using WTT, the choice for a foundational framework
(set-theoretical or other) has not yet been made.

Therefore, it is the author’s conviction that WTT obeys better to the safety criterion
as exposed in section 1.2.

• WTT may also act as a lingua franca or a mathematical vernacular2 for mathematicians,
since WTT enables a mathematician to express mathematical contents in a uniform
way. The advantage of WTT over the ordinary way of expressing mathematics (half
in formal language, half in a natural language like English), is that WTT is more
clearly structured. Moreover, its use forces the mathematics writer to think better
about the interdependencies of the notions used, in particular as regards contexts and
instantiations of constants.

• One can also say that WTT is a specification language for mathematics, since it en-
ables the mathematician to explicitly specify which mathematical notions, definitions,
statements, theorems and proofs he or she likes to use and/or communicate to others.
In this respect, WTT resembles specification languages in computer science, which also
enable one to formally represent the ‘requirements’. In computer science, a specification
is ‘realized’ in a computer program. In mathematics, a WTT-book can be ‘realized’ in
a ‘type-theoretic program’, being a sequence of lines obeying the rules of some system
of Type Theory.

• Yet another view on WTT is, that a WTT-book acts as a kind of (mathematical)
discourse representation structure, bringing a number of structural relations to surface
which are only implicitly present in CML. In this respect, WTT is a distant relative
of Kamp’s Discourse Representation Theory ([Kamp and Reyle 93]), well-known in the
field of linguistics.

2The name ‘mathematical vernacular’ was coined by de Bruijn, who was the first to develop such ‘a language

for mathematics’ (see [De Bruijn 87]). ‘Vernacular’ means: ‘the language of a particular group’ (in this case:

the mathematicians).
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• WTT is easy to learn and easy to write, as shown by experiences, over a long period
of time, with mathematics and computer science students at Eindhoven University of
Technology.

Moreover, as said before, WTT may open the possibility for the mathematical researcher
to get all kinds of computer help in the development of his or her ideas. One can think of the
following aspects:

• Verification of mathematical theories, e.g. by a type-theory-based computer program.
This requires a translation in one or more steps of a WTT-text into Type Theory and
the use of some typechecker. This translation is greatly a technical matter and may be
done by a Type Theory expert, not necessarily the mathematician who wrote the WTT-
text. This leads to ‘separation of concerns’, thus relieving the mathematician from the
cumbersome task to fill in the (possibly uninteresting) details. Another possibility is
that an intelligent computer programme does (part of) the translation, in interaction
either with the mathematician who delivered the WTT-text, or with a type-theoretic
expert.

• Documentation of bodies of checked mathematical texts in an archive, a data base which
is publicly accessible. One of the ‘views’ available for the inspection of such a database
could be WTT.

• Computer assistance in the development of mathematics. In this case, a mathemati-
cian may use WTT as a ‘rough’ formal language in which he/she expresses ideas and
conjectures. A computer program translates the WTT-text into Type Theory, in di-
rect communication with the mathematician. The computer program keeps track of
all ‘holes’ (open places in definitions and in the reasoning) and ‘proof obligations’. So
the mathematician knows exactly what the status is of the theory-in-construction and
where it must be adapted and/or extended to make it a complete and reliable theory.

1.5 Contents of this report

In chapter 2 we introduce WTT, a formal grammar for informal mathematics. The syntax
describes the systematic construction of a book from its atoms (variables, constants, binding
symbols), via phrases (viz. terms, sets, nouns and adjectives) and sentences (viz. statements
and definitions) up to contexts, lines and books. (The syntax rules are listed in Appendix A.)

In chapter 3 we give a derivation system for WTT, following the syntax described in
chapter 2. (The derivation rules are summarized in Appendix B.)

A number of instructive examples are given in chapter 4. In chapter 5 we discuss the
relation between WTT and Type Theory.

The final remarks in Chapter 6 include a comparison with other work and a discussion of
future work.

Part of this report, in particular the syntax given in Chapter 2, has been published be-
fore ([Nederpelt and Kamareddine 200X]). Another part, concerning Chapter 3, has been
submitted for publication ([Kamareddine and Nederpelt 2001]).



Chapter 2

Abstract syntax for WTT

In this chapter, we develop a syntax for Weak Type Theory, based on linguistic categories.
These categories include nouns and adjectives, which usually are not incorporated in formal-
izations of mathematics. Constants are treated as ‘first-class citizens’, as are binders like

∑
and

⋃
. With a view to the categories ‘nouns’ and ‘adjectives’, we introduce a number of

extra binders, to facilitate linguistic constructions. On the sentence level, definitions play
a prominent role in WTT. They come in various forms and formats, reflecting the habitual
ways in which mathematicians use the definition-mechanism.

Like in Type Theory, contexts are an important ingredient of WTT, giving the necessary
immediate background for statements and definitions. This background information concerns
the types of the occurring free variables and the necessary assumptions. The notion of ‘line’ is
used to express a context and a statement or definition dependent on this context. The final
entity in the WTT-syntax is the ‘book’, being a sequence of lines. The book is the formal
counterpart of a ‘mathematical text’ (e.g. a theory).

2.1 Linguistic categories

In Weak Type Theory (or WTT ) we have the following linguistic categories:

• On the atomic level: variables, constants and binders,

• On the phrase1 level: terms, sets, nouns and adjectives,

• On the sentence level: statements and definitions,

• On the discource2 level: contexts, lines and books.

There is a hierarchy between the four levels: atoms are used to construct phrases; both
atoms and phrases are part of sentences; and discourses are built from sentences.

1A phrase is according to the Concise Oxford Dictionary ‘a group of words forming a conceptual unit, but

not a sentence’.
2A discourse is ‘a connected series of utterances’.

9



10 CHAPTER 2. ABSTRACT SYNTAX FOR WTT

The syntax given in the following sections, establishes well-formedness conditions for these
categories. We assume that the sets of variables, constants and binders are given before-
hand, hence fixed, and that they are mutually disjoint. The syntax decides about the well-
formedness of phrases, statements, definitions, and also of contexts, lines and books. Hence, a
phrase, statement (etc.), constructed with the syntax, can be considered a well-formed phrase,
statement (etc.). For convenience, however, we leave this implicit in the following sections,
hence we suppress the word ‘well-formed’ in the syntactic description of all categories men-
tioned.

A list of all metasymbols and abstract syntax rules introduced in this chapter, can be
found in Appendix A.

2.2 Abstract syntax

We describe each of these categories below, first variables (see section 2.3) and constants
(section 2.4), then binders (section 2.5), phrases (divided in terms, sets, nouns and adjectives,
see section 2.6), statements (section 2.7), definitions (section 2.8) and finally contexts, lines
and books (sections 2.9, 2.10 and 2.11).

We use the following standard metasymbols for the categories mentioned above:

level category symbol representative
atomic level variables V x

constants C c

binders B b

phrase level terms t t

sets σ s

nouns ν n

adjectives α a

sentence level statements S S

definitions D D

discourse level contexts Γ Γ
lines l l

books B B

In this syntax we make use of binders B (think of e.g.
∑

or ∀), in the following abstract
format:

BZ(E) ,
where the subscript Z is a declaration introducing a (bound) variable and its type, e.g.

x : N (for: ‘x has type N’). See section 2.7.1 for a formal definition of a declaration. The
symbol E stands for an expression, to be specified in section 2.5. (See also below.)

Examples of formulas with binding symbols in the above format are:
∑

x:{0,1,...,10}(x
2) and

∀x:N(x ≥ 0).
The binding symbol for set comprehension, {. . . | . . .}, fits in this format after a slight

modification, for example: write {x ∈ R |x > 5} as Setx:R(x > 5). Because of uniformity,
our standard for set notation in this report will be the latter one.
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We use abstract syntax for the description of the various categories. For example, in
section 2.11 we describe the collection of all books, B, in abstract syntax as:

B = ∅ | B ◦ l
Hence, a book is either ‘the empty book’ or a book B followed by a line l, with an open

circle as separation marker. (By convention, ∅ ◦ l is written as l.) Otherwise said, a book is
a finite (length ≥ 0) sequence of lines.

Notation 2.2.1 In the abstract syntax used in this report, upper indices and lower indices
play different roles. Upper indices are part of the symbol, but lower indices belong to the
abstract syntax. For example, with BtZ(E), we mean all constructs composed of a binder in
the set Bt (e.g. ‘ lim’), subscripted with a declaration from Z (e.g. ‘n : N’) and followed by
an expression in E (e.g. ‘ 1

n ’) between parentheses. The superscript t attached to B says that
the binders in Bt are term-forming. Hence, ‘ limn:N( 1

n)’ is a term belonging to BtZ(E).

Other metasymbols used in this report are:

category symbol representative
expressions E E

parameters P P

typings T T

declarations Z Z

We give a short description of the last-mentioned metasymbols:
— Expressions are used in section 2.5 and represent – as we already mentioned above –

the various categories that can follow a binder. An expression is a kind of collective category,
to be precise:

E = t | σ | ν | S,
so after a binder we may find a term, a set, a noun or a statement.
— Parameters are discussed in section 2.4. They represent the categories on which con-

stants may depend. Parameters also have a collective character, but without the ν of E :
P = t | σ | S.
— Typings and declarations are special statements, see section 2.7.1.

2.3 Variables

The set V of variables is given beforehand, infinite, and divided into three disjoint subsets:

(Vt) Variables ranging over terms,

(Vσ) Variables ranging over sets,

(VS) Variables ranging over statements.

In abstract syntax:

V = Vt | Vσ | VS
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2.4 Constants

Apart from variables, there are constants in WTT. Again, this set is given beforehand and
infinite. Moreover, the set is disjoint from the set of variables.

Constants play an important role in mathematical language. They are either ‘primitive’3

or they act as an abbreviation. In the latter case a constant is introduced in the left hand side
of a definition, being a special kind of sentence (see section 2.8). Both primitive and defined
constants can be used after having been introduced. ‘Doing’ mathematics without constants
(hence without definitions) is theoretically possible but practically unfeasible.

Below we discuss the various categories of constants. We give examples in section 2.4.1.

The set C of constants is divided in the following five disjoint subsets:

(Ct) Constants forming terms,

(Cσ) Constants forming sets,

(Cν) Constants forming nouns,

(Cα) Constants forming adjectives,

(CS) Constants forming statements.

Hence, C = Ct | Cσ | Cν | Cα | CS .

Note: In this report, we use the word ‘noun’ for what is known in linguistics as indefinite
noun phrase. Moreover, we use ‘adjective’ for adjective phrase.

A constant is always followed by a parameter list . We denote this as C(
→
P). This list has for

each constant a fixed length ≥ 0, the arity of the constant. Parameters P are either terms,
sets or statements:

P = t | σ | S

(If the parameter list is empty we write c instead of c( ).)

2.4.1 Examples of constants

Below, we give examples for each of the six kinds of constants, with parameter lists.

Remark 2.4.1 We can see from the examples that we often use ‘sugared’ versions of the
combination ‘constant followed by parameter list’. For example, instead of ‘ the centre (C)’
we write ‘ the centre of C’, and instead of ‘+(3, 6)’ we write the infix formula ‘ 3 + 6’.

We also often write things like ‘x ∈ N’ instead of ‘x : N’. In doing this, we confuse ‘is
element of’ with ‘has type’. Again, this is for easy understanding and we hope that the reader
does not take offence at this obvious abuse of notation.

3Primitive constants are introduced axiomatically, they are not defined in terms of other notions. Think of

the primitive set N of the natural numbers, the primitive function s (‘successor’) from N to N or the primitive

element 0 in N.
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We explicitly state that these kinds of sugaring are only for the human reader, they are not
part of the syntax of WTT and should be ‘undone’ whenever formal accuracy is at stake.

Hence, we do not incorporate a formal counterpart in WTT of what this sugaring ‘is’, since
we want to keep our basic-WTT simple and straightforward: to decide about the instances
where ‘sugar’ is useful and advantageous, is not easy and adding rules for sugaring therefore
introduces arbitrariness. We are aware of the fact that this policy of ours undermines our
claim that WTT is as close as possible to CML. We leave this dilemma to further research.

(Ct) Constants for terms, with parameter lists, are e.g.:

π, the centre of C, 3 + 6, the arithmetic mean of 3 and 6, d(x, y), ∇f .

The constants in this example are the terms π, ‘the centre’, +, ‘the arithmetic mean’,
d and ∇.

The parameter lists are: ( ), (C), (3, 6), (3, 6), (x, y) and (f), respectively.

(Cσ) For sets:

N, AC, V → W , A ∪B.

Constants: N, C, →, ∪.

Parameter lists: ( ), (A), (V,W ), (A,B).

(Cν) For nouns:

a triangle, an eigenvalue of A, a reflection of V with respect to l, an edge of 4ABC.

Constants: ‘a triangle’, ‘an eigenvalue’, ‘a reflection’, ‘an edge’.

Parameter lists: ( ), (A), (V, l), (4ABC).

(Cα) For adjectives:

prime, surjective, Abelian, continuous on [a, b].

Constants: prime, surjective, Abelian, continuous.

Parameter lists: ( ), ( ), ( ), ([a, b]).

(CS) For statements:

‘P lies between Q and R’, ‘5 ≥ 3’, p ∧ q, ¬∀x∈N(x > 0).

Constants: ‘lies between’, ≥, ∧, ¬.

Parameter lists: (P,Q,R), (5, 3), (p, q), (∀x∈N(x > 0)).

Note that the parameters in parameter lists are usually either terms or sets. Only in
the case of statements the parameters may be statements as well, as is shown in the last
mentioned two examples.
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2.4.2 Special constants

We introduce two special constants in order to switch between the categories ‘noun’ and ‘set’.
These categories are both present and frequently used in CML and it turns out to be useful
to be able to easily change from the one to the other. Note that nouns and sets are in a sense
interchangeable and one could restrict oneself to only one of these categories, without losing
expressive power (as is actually done in the set-theoretic formalization). In section 1.3 we
explained why we nevertheless admit both categories.

The first special constant is ↑, belonging to the category Cσ. The second one is ↓, in the
category Cν . They have complementary roles. The unary constant ↑ ‘lifts’ a noun to the
corresponding set, ↓ does the opposite.

Examples:

(Cσ) (a natural number)↑= N, (a divisor of 6)↑= Setn∈N(n is a divisor of 6) = {1, 2, 3, 6},4
(Nounx∈R(x > 5))↑= Setx∈R(x > 5).

(Cν) Z↓ is ‘an integer’, (Setx∈R2(|x| = 1))↓ is Nounx∈R2(|x| = 1) or ‘a point on the unit
circle’.

2.5 Binders

As a third set given beforehand and infinite, we have the set of binders. This set is disjoint
from both the set of variables and the set of constants. We divide the set B of binders into five
subcategories, depending on the resulting category of the bound expression BZ(E) in which
the binder occurs:

(Bt) Binders forming terms,

(Bσ) Binders forming sets,

(Bν) Binders forming nouns,

(Bα) Binders forming adjectives,

(BS) Binders forming statements.

Hence, B = Bt | Bσ | Bν | Bα | BS .

In the body E of bound expressions BZ(E) various linguistic categories can occur:

E = t | σ | ν | S,

depending on what B is. We recall that Z is a declaration, e.g. x : N. (See also sec-
tion 2.7.1.)

We give some examples of bound expressions, specifying the appropriate body category E .
The bound expressions are listed according to the category of the binder:

4Here again, we used sugaring. We write, as usual, {1, 2, 3, 6} for Setn∈N(n = 1 ∨ n = 2 ∨ n = 3 ∨ n = 6).

However, the notation with Set is the only ‘official’ WTT-format.
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• BtZ(E) = minZ(t) |
∑

Z(t) | limZ(t) | λZ(t) | λZ(σ) | ιZ(S) | . . .

• Bσ
Z(E) = SetZ(S) |

⋃
Z(σ) | ιZ(S) | . . .

• Bν
Z(E) = NounZ(S) | AbstZ(t) | AbstZ(σ) | AbstZ(ν) | . . .

• Bα
Z(E) = AdjZ(S) | . . .

• BSZ(E) = ∀Z(S) | . . .

In these lists there are several (more or less) new binding symbols: λ, ι, Noun, Abst and
Adj. They are explained below. For the binder Set, see section 2.2.

2.5.1 The λ-binder

Church’s λ introduces function abstraction. The format for an expression bound by the λ-
binder is: λZ(t/σ). Here λZ(t) is a term-valued function and λZ(σ) is a set-valued function.

Examples:

(E ≡ t) The term λx∈R(x2) denotes the squaring function on the reals.

(E ≡ σ) The term λn∈NSetk∈N(k ≤ n) sends a natural number n to the set {0, 1, . . . , n}.

2.5.2 The ι-binder

Russell’s ι is used for a definite description: ‘the such and such, such that . . . ’. The general
format for an expression bound with the ι-binder is: ιZ(S).

The result of the binding of a sentence by means of ι can either be a term or a set (therefore
we find ιZ(S) both in the Bt- and in the Bσ-list).

Examples:
The term ιn∈N(2 < n < π) describes natural number 3.
The set ιU : SET (3 ∈ U ∧ |U | = 1) describes the singleton set {3}. (The declaration

U : SET expresses that U is a set. See also section 2.7.1.)

2.5.3 The Noun-binder

Since nouns (to be precise: indefinite noun phrases) are first-class citizens in WTT, they are
treated similarly as sets. Consequently, next to set comprehension, we allow noun compre-
hension, i.e. the construction of a noun describing a type in noun-format. For noun compre-
hension we introduce the binder Noun. It is used for an indefinite description: ‘a such and
such, such that . . . ’. Hence, the general format of a phrase with Noun-binder is: NounZ(S),
i.e. ‘a noun saying of Z that S’.

Examples: The noun Nounx∈R(5 < x < 10) represents ‘a real number between 5 and 10’.
And NounV : SET (|V | = 2) is ‘a set with two elements’.
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2.5.4 The Abst-binder

The Abst-binder abstracts from a term t, a set σ or a noun ν and delivers a noun. It is the
formal counterpart of the modifier ‘for some . . . ’.

Examples of the three kinds of nouns AbstZ(t/σ/ν):

(E ≡ t) Abstn∈N(n2) represents ‘a term n2 for some natural number n’, i.e. ‘the square
of some natural number’.5

(E ≡ σ) Abstn∈NSetx∈R(x > n) represents ‘a set {x ∈ R |x > n} for some natural
number n’, i.e. ‘an interval of the form (n,∞)’, with n ∈ N.

(E ≡ ν) Abstn∈NNounx∈R(10n ≤ x < 10n + 1) represents ‘a real number in the interval
[10n, 10n + 1) for some n’, i.e. ‘a non-negative real number which, written in decimal
notation, has a zero at the position just before the decimal point’.

Notes.
(1) The Abst-binder is useful and compact. It enables one to put the abstraction quantifi-

cation on the outside of the expression. However, a noun constructed with the Abst-binder
can always be rewritten into one without it. We show this by rewriting the examples in a
form without Abst, viz.:
(E ≡ t) Abstn∈N(n2) Nounk∈N∃n∈N(k = n2),
(E ≡ σ) Abstn∈NSetx∈R(x > n) NounV : SET ∃n∈N(V = Setx∈R(x > n)),
(E ≡ ν) Abstn∈NNounx∈R(10n ≤ x < 10n + 1) Nounx∈R∃n∈N(10n ≤ x < 10n + 1).

Note that in each of these examples, an ‘inside’ ∃ takes over the role of the ‘outside’ Abst.
(2) In the third case, the Abst-binder, transforming a noun into a noun, closely corresponds

to the
⋃

-binder, transforming a set into a set. This can be expressed by the following abstract
transformation:
(AbstZ(ν))↑=

⋃
Z((ν)↑ ).

See the third example:
⋃

n∈N Setx∈R(10n ≤ x < 10n + 1) is the set of all real numbers in
some interval [10n, 10n + 1). This set can also be written in a form without

⋃
, viz.:⋃

n∈N Setx∈R(10n ≤ x < 10n + 1) Setx∈R∃n∈N(10n ≤ x < 10n + 1).
Note again the ‘inside’ ∃, this time in the place of the ‘outside’

⋃
.

2.5.5 The Adj-binder

Adjectives, being first-class citizens as well, can be constructed with the Adj-binder. One can
read AdjZ(S) as: ‘the adjective saying of Z that S’.

Example: Adjn∈N(∃k∈N(n = k2 + 1)) is an adjective saying of a natural number that it is
a square plus 1. One could give this adjective a name, say ‘oversquare’ and consequently say
things like ‘5 is oversquare’ or ‘Let m be an oversquare number’.

5Note the difference between Abst and λ: the term λn∈N(n2) is the function mapping n to n2, whereas

Abstn∈N(n2) is an arbitrary element of the set {n2 |n ∈ N}. Note also that ‘Nounn∈N(n2)’ is syntactically

incorrect, since n2 is not a statement, and also absurd: its natural reading ‘an n in N such that n2’ makes no

sense.
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2.6 Phrases

Now that variables, constants and binders have been treated, we can give an abstract syntax
for the various phrase categories. Phrases can be terms, sets, nouns or adjectives:

t = Ct(
→
P) | BtZ(E) | Vt

σ = Cσ(
→
P) | Bσ

Z(E) | Vσ

ν = Cν(
→
P) | Bν

Z(E) | αν

α = Cα(
→
P) | Bα

Z(E)

Examples of Ct(
→
P), Cσ(

→
P), Cν(

→
P) and Cα(

→
P) were given in section 2.4.1, examples of BtZ(E),

Bσ
Z(E), Bν

Z(E) and Bα
Z(E) in section 2.5.

The combination αν gives a (new) noun which is a combination of an adjective and a noun.
Examples: ‘isosceles triangle’, ‘convergent series’.

Note that variables ranging over nouns or adjectives are missing in this scheme, just as in
section 2.3: such variables are not required in either CML or WTT.

2.7 Statements

Abstract syntax for the category of statements is:

S = CS(
→
P) | BSZ(E) | VS

Examples of CS(
→
P) were given in section 2.4.1. An example of BSZ(E) (with the ∀-binder

for BS) was given in section 2.5.

2.7.1 Typings and declarations

A typing statement or typing , expresses the relation between something and its type. In WTT
we have five kinds of typings, depending on the nature of the type. This type can be: SET

(the type of all sets), STAT (the type of all statements), a set, a noun or an adjective. Each
of these statements relates a subject (the left hand side) with its type6 (the right hand side).
Abstract syntax for the set T of typing statements (a subcollection of S) is:

T = σ : SET | S : STAT | t : σ | t : ν | t : α

In words: ‘σ is a set’, ‘S is a statement’, ‘t is an element of σ’, ‘t is ν’, ‘t is α’.

Examples of these five cases: ‘Setn∈N(n ≤ 2) : SET ’, ‘p ∧ q : STAT ’, ‘3 ∈ N’,7 ‘AB : an
edge of 4ABC’, ‘λx∈R(x2) : differentiable’.

Clearly, T is a subcollection of CS(
→
P), the set of relational statements, with symbol ‘:’ as

special element in CS . See also section 3.7.

6Also called the predicate.
7As this example (again) shows, we often replace t : σ by t ∈ σ, with abuse of notation.
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In its turn, a subcollection of the typings is formed by the declarations, Z, where the
subject is a variable. A declaration is meant to introduce a new variable of a certain type.8

Z = Vσ : SET | VS : STAT | Vt : σ | Vt : ν

Here the variable Vσ, VS or Vt is the introduced or declared variable.
Subscripts of binders (see section 2.5) can be taken from Z.

2.8 Definitions

An important category in WTT is the category D of definitions. Definitions introduce a new
constant.

Remark 2.8.1 We only regard non-recursive definitions. This is comparable to the situation
in systems for Type Theory like the pioneering system Automath (see [De Bruijn 70]) and
the most prominent system of today, Coq, which is based on the Calculus of Constructions
(see [Coquand and Huet 88]). In both systems, recursion is not a basic operation and must
be simulated if necessary. However, in more recent versions of Coq (e.g. [Coq 96]), inductive
types have been incorporated.

Similarly, WTT as it is now has no recursion operator or direct possibilities for recursive
definitions. It is a subject for future research to extend WTT with recursion.

We distinguish between phrase definitions Dϕ and statement definitions DS :
D = Dϕ | DS .

Phrase definitions fix a constant representing a phrase (section 2.8.1). Statement defini-
tions also introduce a constant, but embedded in a statement (section 2.8.2).

In definitions, the newly defined constant is separated from the phrase or statement it
represents by the symbol ‘:=’.

Remark 2.8.2 We have decided not to include definitions for binders. The main reason is,
that the set of binders used in mathematics is relatively stable, new binders are only seldom
necessary. On the other hand, it is not very hard to include binder definitions in the syntax.9

2.8.1 Phrase definitions

There are four kinds of phrase definitions:

Dϕ = Ct(
→
V ) := t | Cσ(

→
V ) := σ | Cν(

→
V ) := ν | Cα(

→
V ) := α

The newly defined constants in these definitions are Ct, Cσ, Cν or Cα, respectively.

8There are no declarations with an adjective as type. This seems strange, at first sight, since it is usual to

write things like: ‘Let f be differentiable’. It is our opinion, however, that such a sentence is used in either one

of the following two cases: (1) as an elliptic version of the introduction of a new variable with a noun (not an

adjective) as type: ‘Let f be a differentiable function’, or (2) as an assumption about an f which is already

known (not new), and hence as a typing statement, not a declaration.
9Abstract syntax for binder definitions could be:

DB = B
t/σ/ν/α/S
Z (E) := t/σ/ν/α/S.
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Note that the parameters occurring after the C in the left hand side of each definition
must be variables. The reason is of course, that a definition should be as general as possible
and hence may ‘depend’ on a list of variables. Later, when using the definition in a certain
situation, all these variables must be ‘instantiated’ according to that situation.

Examples of the four kinds of phrase definitions are:

(C ≡ Ct) the arithmetic mean of a and b := 1
2(a + b),

(C ≡ Cσ) R+ := Setx∈R(x > 0),

(C ≡ Cν) a unit of G with respect to · := Noune∈G(∀a∈G(a · e = e · a = a))10,

(C ≡ Cα) prime := Adjn∈N(n > 1 ∧ ∀k,l∈N(n = k · l ⇒ k = 1 ∨ l = 1)).11

The variable lists in the four examples are: (a, b), ( ), (G, ·), ( ). As we will see in chapter 3,
these variables must be introduced (‘declared’) in a context (see also section 2.9). For the
first definition, such a context can be e.g. a : R, b : R. For the third definition the context is:
G : SET , · : G → G. Both contexts consist of declarations only.

However, definitions may also depend on assumptions. This is reflected in section 2.9,
where it is stated that a context consists of a list of declarations and assumptions. For an
example, take the definition of the natural logarithm (this is again case C ≡ Ct):

ln(x) := ιy∈R(ey = x) .

Here variable x has to be declared in a context, for example: x : R, x > 0. This is a
declaration: x : R, introducing x of type R, followed by an assumption: x > 0, stating that
the introduced x is positive.

In general, definitions are not complete without such a context. That is to say, the ‘ground
has to be prepared’ before the actual definition is stated.

In the following chapter 3 it turns out that in ‘weakly well-typed’ definitions, the variables
in variable list

→
V are the same as the declared variables in the context, and listed in the same

order. (The assumptions occurring in the context are not accounted for in the parameter list
of a WTT-constant.)12 E.g., in the first example, the parameter list of ‘the arithmetic mean’
is ‘(a, b)’, which is the exactly the same as the list of the declared variables occurring in the
context ‘a ∈ R, b ∈ R’.13

An instantiation of a defined notion is the use of a defined constant, thereby replacing the
variables occurring in the variable list, by actual terms or sets.

Examples of instantiations of the first example definition are: ‘the arithmetic mean of 3
and 6’, or, for given x: ‘the arithmetic mean of x and x2’.

10Of course, a · e = e · a = a is a sugared version of e.g. a · e = a ∧ e · a = a.
11Here obviously ∀k,l∈N . . . acts as a syntactic sugaring of ∀k∈N∀l∈N . . ..
12In Type Theory, however, variables ‘inhabiting’ assumptions are added to the variable list.
13Since such a parameter list can be reconstructed from the context in which the definition is embedded,

these parameter lists (or parts of it) are often omitted.
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2.8.2 Statement definitions

We introduce the following category of statement definitions:

DS = CS(
→
V ) := S

The newly defined constant in this statement definition is CS .

Example:
(C ≡ CS) a is parallel to b := ¬∃P : a point(P lies on a ∧ P lies on b).

Again, we need a context to make the definition self-contained. This context is, for exam-
ple:

a : a line, b : a line
(i.e., ‘Let a and b be lines’).

Note that the notion ‘is parallel to’ can only be considered as a two-place relation, and
therefore its definition must be a statement definition. In other cases, things are not so clear
and the WTT-user has to make a choice.

For example, the definition of ‘x is the opposite of y’ can be treated as a statement
definition, similarly to the one above:

(1) x is the opposite of y := x + y = 0,

with context consisting of e.g. x : R, y : R. Here we have the case C ≡ CS .
But it is also possible to define the same notion in a phrase definition (to be precise: a

term definition), as follows:

(2) the opposite of y := ιx∈R(x = −y).

Now the context is only y : R and we have the case C ≡ Ct.
The difference is whether one considers ‘(is) the opposite of’ to be a relation or a function.

The latter choice allows more freedom, since a phrase definition can always be used as part
of a sentence, but not the other way round. For example, if one chooses for (2), then it is
possible to instantiate this definition in a phrase:

‘the opposite of 5’,

but also in a sentence:

‘−5 = the opposite of 5’.
Likewise, it is more flexible to define the phrase (in this case: the noun) ‘a unit of (G, ·)’

than to define the statement ‘e is a unit of (G, ·)’.

2.9 Contexts

A context Γ is a list of declarations (from Z) and statements (from S):

Γ = ∅ | Γ,Z | Γ,S



2.10. LINES 21

A declaration Z occurring in a context represents the introduction of a variable of a certain
(already known) type. A statement S in a context stands for an assumption.14

We repeat two examples of contexts which we gave before:

x : R, x > 0 ,

a : a line, b : a line .

For more examples we refer to chapter 4.

2.10 Lines

A line l contains either a statement or a definition, relative to a context:

l = Γ . S | Γ .D

The symbol . is used as separation marker between the context and the statement or
definition (in that context).

Examples of lines:

x : N, y : N, x < y . x2 < y2 ,

x : R, x > 0 . ln(x) := ιy∈R(ey = x) .

The first line above contains a statement (it is of the form Γ . S), the second contains a
definition (and is of the form Γ .D). Again, more examples can be found in chapter 4.

2.11 Books

A book B is a list of lines:

B = ∅ | B ◦ l

A simple example of a book consisting of two lines is the following:

x : R, x > 0 . ln(x) := ιy∈R(ey = x)
∅ . ln(e3) = 3 .

In chapter 4 we give several examples of (short) WTT-books.

14According to our syntax, such an assumption – being a statement – can also be a declaration – being a

statement with a variable as subject. However, our typing rules for contexts (see chapter 3) will ensure that

there is no newly introduced variable in an assumption, so it is always clear whether a context statement

represents the introduction of a new variable, or an assumption.



Chapter 3

A derivation system for WTT

In this chapter we develop a derivation system for WTT. A WTT-book constructed with this
derivation system obeys the syntax given in the previous chapter, hence such a book is well-
formed (cf. 2.1). However, the derivation rules only give a subset of the well-formed constructs
obtained with the abstract syntax of chapter 2, since the rules enforce that those constructs
obey certain (weak) typing requirements. Constructs obtained by repeated application of
the derivation rules, we therefore call weakly well-typed . The overall properties of weakly
well-typed constructs can be summarized as follows:

• All constructs obtained with the derivation system have a weak type, which corresponds
to a linguistic category.

• The derivation system is syntax-driven in the sense that for each (sub-)goal in a deriva-
tion, only one rule is applicable.

On a smaller scale, the derivation system has the following properties:

• There are no free variables in a book which has been constructed with the derivation
system.

• Each occurrence of a variable and each occurring constant has a fixed weak type.

• Each occurring binder has a fixed weak input-type and a fixed weak output-type.

• Each occurrence of a (sub-)formula in a weakly well-typed book has a fixed weak type.

A book which has been constructed with the derivation system of this chapter, is trans-
parently structured. Yet, it has a great resemblance to an ordinary mathematical text: see
the examples in chapter 4. Therefore, a weakly well-typed book can be seen as a natural for-
malization of mathematics, highlighting a number of characteristic features of mathematical
texts. Among these features are:

• A WTT-book reflects the line-for-line development of the original mathematical text,
in the order of the lines which form the WTT-book.

22
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• The important role of contexts, both for (mathematical) statements and for (mathe-
matical) definitions, is made explicit in a WTT-book .

• The translation also preserves the modular construction of a mathematical sentence
(either a statement or a definition), with constituents of different linguistic character:
terms, sets, nouns, adjectives, statements.

• There is an important role for defined constants with parameter lists, which can be
instantiated.

• Binders of different sorts are incorporated.

One can also consider a WTT-text to be a first step towards a complete formalization into
Type Theory (see chapter 5). It is said that Type Theory is the natural formalism for such
a formalization and there are many examples to support this claim: think e.g. of Automath,
‘a language for mathematics’ ([Nederpelt, Geuvers, de Vrijer 94]), being defined in the late
sixties and applied to express numerous mathematical subject matters. Other examples are
the well-known theorem provers Coq ([Coq 96]) and LEGO ([Luo and Pollack 92]), developed
in the nineties and now in a stage of being widely applicable. These systems, and several
others, are firmly embedded into Type Theory.

However, it should be noted that the type restrictions of WTT are only weak. Conse-
quently, a successful formalization of a mathematical text into WTT does not at all guarantee
that its mathematical content is in any sense ‘meaningful’. A prerequisite for the construc-
tion of a sensible WTT-text is that the person writing this text has a mathematical subject
in mind, which he chooses to express in this formalism, as faithfully as possible. But only
a further translation into Type Theory will give a complete picture, which still has to be
‘authorized’ by the original text writer: ”This is (or is not) what I had in mind”.

3.1 Weak types

We now discuss the derivation system in general. The main feature is that the derivation
rules enable one to extend a weakly well-typed book B with a line l, in order to form a new
weakly well-typed book B ◦ l. This is the case if the added line l obeys certain weak well-
typedness requirements itself, relative to the book B. Since a line l always has the form Γ .S

or Γ . D, with statement S or definition D (see section 2.10), we also have to consider weak
well-typedness of a context Γ relative to a book B, and weak well-typedness of a statement S

or a definition D relative to a book B and a context Γ.
For establishing the different forms of weak well-typedness, we need a notion of weak typing

between an entity and its weak type. This relation is denoted by a bold-faced colon ( : ). As
weak types, denoted by W, we use the following eight entities, corresponding to a subset of
our linguistic categories given in section 2.1:

W = book, cont, term, set, noun, adj, stat, def.
They stand for ‘books’, ‘contexts’, ‘terms’, ‘sets’, ‘nouns’, ‘adjectives’, ‘statements’ and

‘definitions’.
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Hence, for example, B : book expresses that the weak type of B is book (or: B is a weakly
well-typed book) and n : noun expresses that the weak type of n is noun.

We also introduce a notion of (relative) derivability . We use the bold-faced symbol ` for
this notion. We distinguish between three formats for derivability, in the form of so-called
judgements:

(1) The judgement that B is a weakly well-typed book:

` B : book.

(2) The judgement that Γ is a weakly well-typed context relative to book B:

B ` Γ : cont.

(3) The judgements that t is a weakly well-typed term, etc., relative to book B and context
Γ:

B; Γ ` t : term,

B; Γ ` s : set,

B; Γ ` n : noun,

B; Γ ` a : adj,

B; Γ ` S : stat,

B; Γ ` D : def.

In the sections below, we first discuss the preface of a book B, meant to establish weak
type information about all constants occurring in B but not explicitly defined in B.

In the presentation of our derivation rules we follow the construction of the various weak
types bottom up. In most of the rules we assume that we already have a weakly well-typed
book B and a weakly well-typed context Γ relative to B. We start with variables and constants
relative to B and Γ. Next, we discuss the construction of phrases beginning with a binder
and of phrases in general. Thereafter, we give derivation rules for sentences (statements and
definitions).

Finally, we give rules for contexts (relative to a book) and for books themselves.
We end the chapter with a list of relevant properties of the derivation system.

A list of all derivation rules given in this chapter, can be found in Appendix B.

Notation 3.1.1 As we said, we often start from the assumption that B is a weakly well-
typed book and Γ a weakly well-typed context relative to B. For convenience, we abbreviate
the corresponding pair of premisses: ` B : book, B ` Γ : cont, by: OK(B; Γ).

3.2 The preface

As we saw before, a book B is a list of lines Γ . S and/or Γ . D, where each S in such a line
is a statement and each D a definition.

Definition 3.2.1 We say that l ∈ B if l is one of the lines constituting B.
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In the case that line l is a definition, it contains exactly one defined constant (see sec-
tion 2.8.1 and 2.8.2).

Definition 3.2.2 Let l ∈ B and suppose that l is a definition line Γ . D where D is of the
form c(x1, . . . , xn) := Φ. Then the defined constant of the definition line, or defcons(D), is
c.

Moreover, defcons(B) = {defcons(D) |Γ′ .D is a line of B, for some Γ′}. We call these
constants the internally defined or internal constants of B.

All parameterized constants occurring in a book B outside a definition, represent defined
notions, with instantiated parameter lists. Such a constant may be internally defined, but
this is not necessarily the case: B usually is a text-fragment , being part of a larger text, the
rest of which is omitted. Consequently, a parameterized constant occurring in a book B can
‘stand on its own’, i.e., needs not have a corresponding definition being part of a line inside
B. Such constants are called externally defined or external constants (relative to B).

Example 3.2.3 – In many books the constants N and R will be used without proper definition.
(Both N and R are parameterized constants with empty parameter list.)

– One also uses many other well-known constants without recalling their definition, such
as
√

. (This constant needs a parameter list of length one, e.g.,
√

5). See again the examples
in chapter 4.

– Another well-known constant is ‘ ln’, which will be an external constant for many WTT-
books. It has one declared variable in its context. The corresponding definition line, which
will probably not occur in the book B under consideration, is for example,

x ∈ R, x > 0 . ln(x) := ιy∈R(ey = x),

with declaration x ∈ R, so x is the declared variable1. Note that a prerequisite for this
definition of ‘ ln’ is, that ‘ e’ has already been defined beforehand.

When using (instantiating) the constant ‘ ln’, we need a parameter list of length one, e.g.,
ln(5). Note that 5 matches with x since it belongs to the same linguistic collection t (of
terms).

In order to be able to judge weak well-typedness of the externally defined constants, we
extend a book B on the front side with a preface, consisting of a list of constants, together
with the weak types of its parameters and the resulting weak type of the constant. In fact,
it is not essential for the derivation system how the external constant is exactly defined, we
can suffice with a description of the weak types connected with such a constant, in particular:
which weak input-types are expected for the parameters of the constant, and what is the
weak output-type of the constant.

Definition 3.2.4 We denote a preface for a book B by pref(B). All constants mentioned in
this preface, are collected in the set prefcons(B).

If c ∈ prefcons(B), then in(c) is the list of the weak types of the parameters of c, and
out(c) is the resulting weak type of the full construct c(. . .).

1x > 0 is an assumption, i.e. a statement which is not a declaration, see section 2.8.1.
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Example 3.2.5 A preface for a book B could look like:

constant weak types weak type
name in out

R ( ) set√
(term) term

+ (term, term) term

∪ (set, set) set

→ (set, set) set

≥ (term, term) stat

∧ (stat, stat) stat

So, for example:
– R has no parameters and is a set. So in(R) = ( ) and out(R) = set.
–

√
is a constant with one parameter, a term, and delivers itself, again, a term. Hence,

in(
√

) = (term) and out(
√

) = term.
– ≥ is a constant with two parameters, both being terms, delivering a statement.
– In the case of the preface above for book B, prefcons(B) = {R,

√
,+,∪,→,≥,∧}.

We assume that a preface for a book B, describing the weak (in- and out-)types for all the
externally defined constants of B, is constructed by the book-writer himself, on the basis of
his or her personal knowledge of mathematics. In the following sections, we implicitly suppose
that each book B is extended with an appropriate preface pref(B).

Remark 3.2.6 When translating a given mathematical text into WTT, the translator has to
construct the preface himself, by collecting all external constants occurring in that text and
determining the appropriate weak in- and out-types. This is necessary for establishing the
well-typedness of the translation of the given text.

However, apart from the construction of this preface, it may be very useful to adorn the
WTT-text with other information present in the original mathematics text, namely about the
structure of the text or about its coherence. The latter information is lost in the WTT-
translation, but is very welcome when one decides to translate the obtained WTT-book, in its
turn, into Type Theory.

For instance, the original text possibly has interesting labels attached to paragraphs or to
subtexts, such as ‘Theorem 5.2’ or ‘Proof’. Moreover, the original text may have many inter-
mediate statements about interdependencies in the text, which are very useful when translating
further into Type Theory. Think of comments such as ‘Use Theorem 5.2’, ‘by the definition
of c’ or ‘using formula 2.1’. (Recall that WTT does not take into account whether a text is
logically or mathematically valid, whereas validity is an essential requirement for a possible
formalization in Type Theory.)

Therefore, it may be good practice to add, apart from the preface, two columns on either
side of a WTT-book B, one with useful labels labeling lines in B, and another with comments
going with specific lines. This makes it much easier for the translator of a WTT-book into
Type Theory who does not have access to the original text.

See the example in section 4.4 for a practical situation.
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3.3 Variables

The list decvar of declared variables of a context Γ is defined as follows:

Definition 3.3.1 (1) If Γ = ∅, then decvar(Γ) = ∅.

(2a) If Γ = Γ′, x : A and x 6∈ decvar(Γ′), then decvar(Γ) = decvar(Γ′), x.

(2b) Otherwise, if Γ = Γ′, S, then decvar(Γ) = decvar(Γ′).

That is to say, decvar(Γ) collects all subject variables of declarations in Γ, in the order in
which they appear in Γ,2 but decvar(Γ) ignores the possible subject variables occurring in
assumptions in Γ. (See also sections 2.8 and 2.9.)

Now the derivation rule for variables is3:

OK(B,Γ), x ∈ Vt/σ, x ∈ decvar(Γ)
B; Γ ` x : term/set

(var)

Notation 3.3.2 Here we combine two cases, distinguished by the slash ‘/’. In the first case,
x ∈ Vt, the conclusion is: B; Γ ` x : term. In the second case, x ∈ Vσ, we get: B; Γ ` x : set.
We also use this abbreviation convention below.

Hence, each declared variable in Γ has weak type term or set, relative to B and Γ.

3.4 Constants

We have the following derivation rules for constants. The first rule concerns internal constants,
defined in the book, the second rule concerns external constants for which the weak in- and
out-types are given in the preface of the book.

Constants defined internally in B are divided into phrase definitions for terms, sets, nouns
and adjectives and statement definitions. See section 2.8.1 and 2.8.2.

The derivation rule for internal constants is:

OK(B; Γ), Γ′ . D ∈ B,
decvar(Γ′) = x1, . . . , xn, defcons(D) = c ∈ Ct/σ/ν/α/S ,

B; Γ ` Ai : W if B; Γ′ ` xi : W (i = 1, . . . , n)
B; Γ ` c(A1, . . . , An) : term/set/noun/adj/stat (int−cons)

Note that the list of declared variables of Γ′, viz. x1, . . . , xn, is the same as the variable
list following the defined constant c in the definition line Γ′ . D (this follows from the rule
(int−def), see section 3.8). Otherwise said: D ≡ c(x1, . . . , xn) := . . . . Hence, the
above derivation rule determines how such a c(x1, . . . , xn) can be instantiated, with result

2The order in the decvar list of a context Γ is reflected in the order of the variables in the variable list

going with any constant defined with respect to Γ. See section 3.4.
3The abbreviation OK(B, Γ) is defined in Notation 3.1.1.
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c(A1, . . . , An). The rule above expresses that an instantiation is only allowed if each variable
xi becomes replaced by a formula Ai of the same weak type W as xi (see also example 3.2.3).

If c is an external constant of B, then it has weak in- and out-types as given in the preface
of B. For such constants we have the following derivation rule:

OK(B,Γ), c external to B, in(c) = (κ1, . . . , κn), out(c) = κ,
B; Γ ` Ai : κi (i = 1, . . . , n)

B; Γ ` c(A1, . . . , An) : κ
(ext−cons)

A special kind of external constants is the pair ↑ and ↓ (see section 2.4.2). They also have
weak in- and out-types, given in the following list:

constant weak type weak type
name in out
↑ (noun) set

↓ (set) noun

We assume that the last mentioned list is always part of the preface of a book B. Hence,
expressions with ↑ or ↓ can also be derived with the rule (ext−cons) above.

Remark 3.4.1 For a more efficient implementation of the derivation system described in
this chapter, one may treat internally defined constant just as the externally defined ones.
This can be done by listing the internally defined constants in a preface-like form, giving only
their names and the calculated weak in-types and out-types. This is sufficient information for
establishing weakly well-typedness for expressions containing constants. Otherwise said: after
the line in which a constant c has been defined, the only information needed about c concerns
its weak in- and out-types.

In case one chooses the above treatment of internally defined constants, the (int−cons)
rule can be dismissed and the (ext−cons) rule can be renamed to (cons), with the provision
‘c external to B’ removed from the premisse. 4

3.5 Binders

As explained already in sections 2.5 and 2.6, phrases can begin with a binder , as in ιZ(S).
In the previous section we discussed how to register weak in- and out-types for external

constants in a preface.

Binders, as well, have fixed weak in- and out-types. For example, binder ι (see section 2.5.2)
takes a statement and delivers a term or a set (the subscript Z is not important, in this
respect). Below we give a list describing the weak types corresponding to all binding symbols
used in section 2.5:

4This remark is due to Roel Körvers.
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binder weak type weak type
name in out
min (term) term∑

(term) term

lim (term) term

λ (term) term

ι (stat) term/set/stat

Set (stat) set⋃
(set) set

Noun (stat) noun

Abst (term/set/noun) noun

Adj (stat) adj

∀ (stat) stat

Definition 3.5.1 For binder b, we denote the in-type by in(b) and the out-type by out(b).

For expressions constructed by means of a binder b we also have a derivation rule:

OK(B; Γ, Z), b ∈ B, in(b) = (κ1), out(b) = κ2, B; Γ, Z ` A : κ1

B; Γ ` bZ(A) : κ2
(bind)

Note the role of the subscript Z: since A may depend on the subject variable of the
declaration Z, we require that B; Γ, Z ` A : κ1, i.e., ‘A is correct with respect to book B and
context Γ extended with declaration Z’. (This shift of Z from the context to the subscript
is also present in the formation rule and the abstraction rule of Type Theory, with which
ΠZ(A) and λZ(A) are formed and typed.)

3.6 Phrases

Now we have derivation rules for all constructs mentioned in the abstract syntax of section 2.6:
variables, constants with parameter lists and expressions with binders. We only miss the
special combination αν of an adjective and a noun. The derivation rule concerning this
linguistic construction is the following:

OK(B; Γ), B; Γ ` n : noun, B; Γ ` a : adj
B; Γ ` an : noun

(adj−noun)

Hence, our weak typing system allows an adjective to be combined with a noun.

3.7 Statements

The derivation rules given above also suffice for the constructs given in the abstract syntax
for statements (see section 2.7). This includes constants CS for statements, as well as logical
quantifiers covered by the linguistic construct BSZ(E).

For typings, there are two kinds of derivations, dependent on the ‘level’ of the statement:
the first kind is for a statement of the form s : SET or S : STAT , saying that s is a set or
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that S is a statement, the second is for statements of the form t : s/n/a, expressing that term
t has type set s, noun n or adjective a.

Both kinds can be treated with the rule (ext−cons) given above, provided that we take
the following list in our standard preface:

constant weak types weak type
name in out
: SET (set) stat

: STAT (stat) stat

: (term, set/noun/adj) stat

Note that for the first kind of typing, for example s : SET , we consider ‘: SET ’ to be a
unary constant, taking as weak in-type (set) and having weak out-type stat. This unary
behaviour is necessary since SET is a constant not covered by our linguistic categorization.

For the second kind of statement we consider ‘:’ to be a binary constant, as expected.

3.8 Definitions

For internal definitions, we have the following derivation rule:

OK(B; Γ), B; Γ ` t/s/n/a/S : term/set/noun/adj/stat,
decvar(Γ) = x1, . . . , xn, c ∈ Ct/σ/ν/α/S , c 6∈ prefcons(B) ∪ defcons(B)

B; Γ ` c(x1, . . . , xn) := t/s/n/a/S : def
(int−def)

Remark 3.8.1 Sometimes the first part of the parameter list of a defined constant is omitted,
since it can be reconstructed by listing the declared variables (see section 3.3) of the context.
This, however, is a form of sugaring, and not according to the rules.

3.9 Contexts

The rules for the weak type cont, for contexts, start with the rule for the empty context:

B : book
B ` ∅ : cont

(emp−cont)

Next, we have two rules for adding a declaration to the context:

OK(B; Γ), x ∈ Vσ/S , x 6∈ decvar(Γ)
B ` Γ, x : SET / STAT : cont

(set/stat−decl)

OK(B; Γ), B; Γ ` s/n : set/noun, x ∈ Vt, x 6∈ decvar(Γ)
B ` Γ, x : s/n : cont

(term−decl)

Finally, there is a derivation rule for the addition of an assumption. Note that the state-
ment S below, as we said before, can be a typing x : A. The x, however, cannot be ‘new’ with
respect to Γ, since B; Γ ` S : stat. (This is a consequence of Lemma 3.11.1, (1).) Hence, S

cannot be a declaration.
OK(B; Γ), B; Γ ` S : stat

B ` Γ, S : cont
(assump)
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3.10 Books

Books are lists of lines, containing either a definition or a statement in a context. As a start,
we have a derivation rule stating that the empty book is derivable:

` ∅ : book
(emp−book)

Finally, we only need a rule saying that every weakly well-typed line with respect to a book
B, either containing a statement or a definition, may lead to a weakly well-typed extension
of B:

OK(B; Γ), B; Γ ` S/D : stat/def
` B ◦ Γ . S/D : book

(book−ext)

3.11 Properties of the derivation system

The following general properties hold for the derivation system as described above. (Proofs
can be founds in [Kamareddine and Nederpelt 2001].)

Lemma 3.11.1 (1) There are no free variables in a line and, hence, in a book. To be
precise: if B; Γ ` S : stat or B; Γ ` D : def, then all free variables in S or D are
declared variables of Γ.

(2) All constants occurring in a book are either internally defined or introduced in the pref-
ace. For all occurrences of internal constants which are not ‘defining occurrences’,5

there is a defining line preceding this occurrence in which this constant is the defined
constant.

This lemma is a consequence of lemma 3.11.3(2) and 3.11.4(2), see below.

Remark 3.11.2 The second part of this lemma implies that an internally defined constant
has no other occurrence in its defining line.

Note that one may define a notion of binding for constants, where the place of binding is
either a defining occurrence or the occurrence in the preface. With this notion of binding, we
can express the second part of this theorem as: There are no free constants in a book with
appropriate preface.

Next, we reformulate a number of properties which are important in Type Theory (see
[Barendregt 92]), for our WTT-case. We write Φ : W for: formula Φ has weak type W. As
usual, FV (Φ) stands for the set of free variables in Φ.

Lemma 3.11.3 (Free Variables lemma)

(1) If B ` Γ : cont, then the declared variables in Γ are distinct.

(2) If B; Γ ` Φ : W then FV (Φ) ⊆ decvar(Γ).
5A ‘defining occurrence’ of a constant c is an introduction of c in a definition line Γ . c(x1, . . . , xn) := . . .

occurring in the book B.
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(3) If B ` Γ : cont where Γ ≡ Γ′, x : A, Γ′′ or Γ ≡ Γ′, A, Γ′′, then FV (A) ⊆ decvar(Γ′).

Lemma 3.11.4 With the notion of binding for constants as explained in the previous remark,
we can also add a Free Constants lemma (here FC means the set of ‘free constants’):

(1) If ` B : book, then the defined constants in B are distinct.

(2) If B; Γ ` Φ : W then FC(Φ) ⊆ prefcons(B) ∪ defcons(B).

(3) If B ` Γ : cont where Γ ≡ Γ′, x : A,Γ′′ or Γ ≡ Γ′, A, Γ′, then FC(A) ⊆ prefcons(B)∪
defcons(B).

Lemma 3.11.5 (Uniqueness of Types lemma)
If B; Γ ` Φ : W1 and B; Γ ` Φ : W2, then W1 ≡ W2.

For the following lemma’s, we need the notions of subcontext and subbook:

Definition 3.11.6 (1) B′ ⊆ B (B′ is a subbook of B) if ∃B′′ : B ≡ B′ ◦B′′.

(2) Γ′ ⊆ Γ (Γ′ is a subcontext of Γ) if ∃Γ′′ : Γ ≡ Γ′,Γ′′.

(3) Let B be a book. A definition c(x1, . . . , xn) := t/s/n/a/S is compatible with B if
c 6∈ prefcons(B) ∪ defcons(B).

The following lemma is also called Weakening lemma:6

Lemma 3.11.7 (Thinning lemma)

(1) Let ` B : book and B′ ⊆ B. Then:

(1a) If B′; Γ ` Φ : W where if Φ is a definition then it is compatible with B, then
B; Γ ` Φ : W, and

(1b) If B′ ` Γ : cont then B ` Γ : cont.

(2) Let B ` Γ : cont, Γ′ ⊆ Γ and Φ is not a definition. Then B; Γ′ ` Φ : W implies
B; Γ ` Φ : W.

The following lemmas concern typability of subbooks, subcontexts and subformula of a
weakly well-typed book.

Lemma 3.11.8 (Subbook and Subcontext property)

(1) Let ` B : book and B′ ⊆ B. Then ` B′ : book.

(2) Let B ` Γ : cont and Γ′ ⊆ Γ. Then B ` Γ′ : cont.

6An extended form of this lemma can be found in [Kamareddine and Nederpelt 2001].
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Lemma 3.11.9 (Subformula property)
Let ` B : book and B ≡ B′ ◦ Γ . Ψ ◦B′′. Then:

(1) B′ ` Γ : cont.

(2) B′; Γ ` Ψ : stat/def.

(3) For every subformula Φ of Γ, ∃W,∃Γ′ where Γ ⊆ Γ′ : B′; Γ′ ` Φ : W.

(4) For every subformula Φ of Ψ, ∃W,∃Γ′ where Γ ⊆ Γ′ : B′; Γ′ ` Φ : W.

In WTT, there is only one sensible reduction relation, namely ‘definition unfolding’. We
use symbol δ→ for this relation and call it ‘δ-reduction’. Its definition is as expected:

Definition 3.11.10 Let ` B : book and Γ . c(x1, . . . , xn) := Φ a line in B. Then δ→ is the
compatible relation on subterms of B generated by

c(A1, . . . , An) δ→ Φ[xi := Ai],
provided that the occurrence of the latter constant c is not the ‘defining occurrence’ in

the defining line mentioned. As δ-reduction depends on the book in question, we write
B ` c(A1, . . . , An) δ→ Φ[xi := Ai].

The relation δ→→ is the symmetric, transitive closure of δ→.

Here Φ[xi := Ai], as usual, stands for the simultaneous substitution of xi by Ai in Φ. Now
we have:

Theorem 3.11.11 (Strong Normalisation; Uniqueness of Normal Form)
Let ` B : book. For all subformulas Ψ occurring in B, relation δ→ is strongly normalizing

(i.e., definition unfolding inside a well-typed book is a well-founded procedure). Moreover, the
normal form is unique.

Corollary 3.11.12 (Church Rosser)
If B ` Φ δ→→ Φ1 and B ` Φ δ→→ Φ2, then there exists Ψ such that B ` Φ1

δ→→ Ψ and
B ` Φ2

δ→→ Ψ.

Theorem 3.11.13 (Subject Reduction)
If ` B : book, B; Γ ` Φ : W and B ` Φ δ→ Ψ, then B; Γ ` Ψ : W.

Other valid lemma’s in WTT are:

Lemma 3.11.14 (Substitution lemma)
Let B; Γ, x : A ` x : term/set and B; Γ ` A′ : term/set.

(1) If B ` Γ, x : A,∆ : cont, then B ` Γ,∆[x := A′] : cont.

(2) If B; Γ, x : A,∆ ` Φ : W and Φ is not a definition, then

B; Γ,∆[x := A′] ` Φ[x := A′] : W.



34 CHAPTER 3. A DERIVATION SYSTEM FOR WTT

Lemma 3.11.15 (Condensing lemma)

(1a) If B ` Γ, x : A,∆ : cont and x 6∈ ∆, then B ` Γ,∆ : cont.

(1b) If B; Γ ` S : stat and B ` Γ, S,∆ : cont, then B ` Γ,∆ : cont.

(2a) If B; Γ, x : A,∆ ` Φ : W, Φ is not a definition and x 6∈ ∆,Φ, then B; Γ,∆ ` Φ : W.

(2b) If B; Γ ` S : stat and B; Γ, S,∆ ` Φ : W, then B; Γ,∆ ` Φ : W.

The derivation system for WTT also has the following nice property:

Theorem 3.11.16 Derivations are syntax-driven.

That is to say, in order to verify that a certain formula has a certain weak type, there is
at most one derivation rule applicable. Hence it is easy and straightforward to check weak
typing.

The syntax-driven behaviour of WTT can also be expressed in a Generation lemma, for
which we refer to [Kamareddine and Nederpelt 2001].

Finally, we state the following corollary:

Corollary 3.11.17 (Decidability of weak type checking and weak typability)

(1) Weak type checking is decidable, i.e., there is a decision procedure for the question

B; Γ ` Φ : W ?.

(2) Weak typability is computable, i.e., there is a procedure deciding whether an answer
exists for

B; Γ ` Φ : ? and if so, delivering the answer.



Chapter 4

Examples

In this section we give four examples of mathematical texts and their translation into WTT.
We also discuss some syntactical properties of the WTT-texts, showing how they fit in our
formal syntax of chapter 2. Moreover, we give an idea how the WTT-texts can be obtained
with the derivation system of chapter 3.

4.1 Example 1

Our first example is a simple phrase, taken from a mathematical text:

[*1] ‘the square root of the third power of a natural number’

We give two possible translations into WTT:

Translation 1.1: Nounx:R∃n:N(x =
√

n3)
Translation 1.2: Abstn:N(

√
n3)

Note that translation 1.1 is more informative in that it gives the final type of the noun
(viz. R), but that translation 1.2 is more compact.

In both cases it is easy to verify that the translation is a weakly well-typed noun. We
check this for translation 1.2. We start with a preface incorporating all external constants of
the phrase:

constant weak types weak type
name in out

(i) 3 (term) term

(ii)
√

(term) term

(iii) N ( ) set

(iv) Abst (term) noun

As an exercise, we give the categories (see chapter 2) of all subexpressions of the phrase
in translation 1.2:

35
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subexpression category
n t

n3 t√
n3 t

n t

N σ

n : N Z
Abstn:N(

√
n3) ν

We now give a derivation for the fact that Abstn:N(
√

n3) is a noun. For this purpose, we
have to derive

B; Γ ` Abstn:N(
√

n3) : noun
for some B and Γ. In this case, it is clear that B = Γ = ∅. We assume that n belongs to

the set Vt of term variables:

(∗) n ∈ Vt

The desired derivation is (numbers i, ii, iii and iv refer to the preface):

(1) ` ∅ : book (emp−book)
(2) ∅ ` ∅ : cont (emp−cont, 1)
(3) ∅; ∅ ` N : set (ext−cons, 1, 2, iii)
(4) ∅ ` n : N : cont (term−decl, 1, 2, 3, ∗)
(5) ∅;n : N ` n : term (var, 1, 4, ∗)
(6) ∅;n : N ` n3 : term (ext−cons, 1, 4, i, 5)
(7) ∅;n : N `

√
n3 : term (ext−cons, 1, 4, ii, 6)

(8) ∅; ∅ ` Abstn:N(
√

n3) : noun (bind, 1, 4, iv, 7)

This derivation is given in the format of forward reasoning : we start with smaller subex-
pressions and build larger ones. Of course, the derivation can also be developed in the format
of backward reasoning or, otherwise said, in the goal-directed manner. In that case we start
with the ultimate goal (line (8)) and investigate how this goal can be reached. The only
applicable rule to get line (8) is (bind). This gives new goals, generated by the main symbol
(Abst) and (iv). These goals are the judgements written in lines (1), (4) and (7), and so
forth. Note that our derivation system is syntax-driven in the sense that for each goal, only
one rule is applicable.

We vary a bit on this example and look at the following statement :

[*2] ‘8 is the square root of the third power of a natural number’

For the translation, the easiest thing is to use our previous example, obtaining the state-
ments:

Translation 2.1: 8 : Nounx:R∃n:N(x =
√

n3)
Translation 2.2: 8 : Abstn:N(

√
n3)

But in this case, there is a shorter and more elegant translation possible, viz. the ‘logical’
statement:



4.2. EXAMPLE 2 37

Translation 2.3: ∃n:N(
√

n3 = 8)

Remark 4.1.1 The last mentioned example shows, that the ‘ordinary’ mathematical formulas
(so without our extension with nouns and adjectives) are often good enough for translations of
a mathematical text into a formal form. In the case above, translation 2.3 is quite satisfactory,
albeit that translations 2.1 and 2.2 are, in a sense, ‘closer’ to the original text.

However, when definitions enter the stage, then the extension with nouns and adjectives,
and hence with Noun, Abst, Adj, ↑ and ↓, is more appropriate. See sections 4.2, 4.3 and 4.4
for examples.

Now look at the statement:

[*3] ‘The square root of the third power of a natural number is non-negative’

Again, we can use translations 1.1 or 1.2:

Translation 3.1: ∀y:R(y : Nounx:R∃n:N(x =
√

n3) ⇒ y ≥ 0)
Translation 3.2: ∀y:R(y : Abstn:N(

√
n3) ⇒ y ≥ 0)

But here, again, a considerably simpler and more ‘traditional’ translation is possible:

Translation 3.3: ∀n:N(
√

n3 ≥ 0)

Remark 4.1.2 The above examples show, that the translation of a mathematical text into
WTT is not ‘compositional’. Look at the indefinite article ‘a’ as it occurs in the phrases [*1]
or [*2]: ‘. . . the third power of a natural number’. Its translation is Noun, Abst or ∃, see 1.1,
1.2, 2.1, 2.2 and 2.3. However, when embedding it in statement [*3], then none of these roles
can be maintained: in all three cases 3.1, 3.2 and 3.3, the translation of article ‘a’ is changed
into ∀.

This non-compositionality is present in several places in the translation process. It has to
be said that the indefinite article ‘a’ is an especially versatile word. It may have roles Noun,
Abst, ∃ or ∀, as shown above, but still other roles are possible, in particular: the introduction
of a variable in the context of a definition. For the latter, see section 4.3. The ‘versatility’ of
the definite article ‘the’ is hardly less.

4.2 Example 2

Our second example concerns a definition and its application. Consider the following mathe-
matical text:

Definition A Fermat-sum is a natural number which is the sum of two squares
of natural numbers.

Lemma The product of a square and a Fermat-sum is again a Fermat-sum.
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A translation into WTT could be:

a Fermat-sum := Nounn∈N∃k∈N∃l∈N(n = k2 + l2)
∀u: a square∀v: a Fermat-sum(uv : a Fermat-sum)

This small WTT-book B consists of two lines, one being a definition and the other a
statement. Both lines have an empty context. So the abstract format of B is:

∅ . D ◦ ∅ . S .
Note how the defined constant ‘a Fermat-sum’, a noun, is used in the statement following

the definition. The noun ‘a square’ is not defined in B, hence the text assumes that the
definition of this noun has been given beforehand: it is an external constant to B. Hence, it
has to be incorporated in the preface when applying the derivation rules in order to establish
` B : book.

4.3 Example 3

Our third example is from mathematical analysis. It contains the definitions of ‘difference
quotient’ and of ‘differentiable’ and a statement using the latter definition:

‘Definition. Let h 6= 0, let f be a function from A to R, a ∈ A and a + h ∈ A.
Then f(a+h)−f(a)

h is the difference quotient of f in a with difference h. We call f

differentiable at x = a if limh→0
f(a+h)−f(a)

h exists.

The function
√
|x| is not differentiable at 0.’

Both definitions require a context. We use the ‘flag notation’ to build the context in the
translation of this text:

(1)  A ⊆ R

(2)  f : A → R

(3)  a ∈ A

(4)  h ∈ R

(5) h 6= 0

(6) a + h ∈ A

(7) the difference quotient of f := f(a+h)−f(a)
h

(8) f is differentiable at a := limh→0
f(a+h)−f(a)

h exists

(9) ¬(λx:R(
√
|x|) is differentiable at 0)

We discuss the details of this flag-structured WTT-book below. First, we explain the flag
notation and its advantages over the notation in WTT-format as described in chapter 2.

The flag notation is a shorthand for dealing with contexts: since (parts of) contexts are
frequently repeated in succeeding lines, it saves space to allow multiple use of context entries
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(declarations and assumptions). A second advantage of the flag notation is that the structure
of a WTT-book is more easily visible.

Remark 4.3.1 We emphasize explicitly that the flag notation is no more than ‘sugaring’,
flags do neither exist in the WTT-syntax, nor in the derivation system for WTT. The flag
notation provides for a certain ‘view’ on WTT-texts which can be helpful for a human reader,
e.g. when examining or inspecting a formalized mathematical text in an electronic library.

The above flag-text is the ‘sugared’ version of the book given below. For convenience we
first abbreviate:

Γ1 = A ⊆ R, f : A → R, a : A, h : R, h 6= 0, a + h ∈ A

Γ2 = A ⊆ R, f : A → R, a : A

The book matching the above flag-text consists of the ◦-concatenation of the following
three lines:

Γ1 . the difference quotient of f := f(a+h)−f(a)
h

Γ2 . f is differentiable at a := limh→0
f(a+h)−f(a)

h exists
∅ . ¬(λx:R(

√
|x|) is differentiable at 0)

Notice how the context administration works in the flag notation. For example, the part

A ⊆ R, a : A, f : A → R

needs not to be repeated for the definition in line (8), since it is still ‘open’ (the three
flagpoles of lines (1) to (3) are still present in line (8)). In example 4 (see section 4.4) we
show again how convenient the flag notation is.

We now discuss the details of the above WTT-book.

• Each context element is separately placed in a ‘flag’. The attached ‘flagpole’ registers
how long the context element is supposed to be present. Nesting of the flags fixes the
order of the context elements.

• Context elements can be either declarations or assumptions. In order to visualize the
difference, we start declarations with symbol ‘ ’. (The symbol ‘ ’ ‘points at’ the
declared variable.)

• Note that the indefinite article ‘a’ occurring in the noun ‘a function’ in the original text,
is translated here into the flag in line (2). We pointed at this possibility in Remark 4.1.2.

• In the WTT-book there are only bound variables. Notice for example that all free
variables in line (8) are bound in the context lines (1) to (3).

• In translating the original mathematical text into (flag-style) WTT-format, we added
the declaration of A, which was not explicitly stated in the mathematical text.

• Note that the statement a ∈ A is translated as a declaration, whereas a + h ∈ A is an
assumption. (Both statements are treated similarly in the original mathematical text.)
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• The context elements containing h are rather arbitrarily arranged in the original math-
ematical text. We concentrate these elements in lines (4) to (6). This enables us to
make a smooth use of the context administration: for the definition in line (8) we just
skipped – i.e. cut the flagpoles of – the context elements (4) to (6). As a matter of fact,
h is a bound variable in limh→0

f(a+h)−f(a)
h and should not be declared in the context.

Moreover, the assumptions h 6= 0 and a + h ∈ A are not desired for the definition in
line (8). In general, it is of importance to find a ‘minimal’ context for a definition or
statement.

• In line (7) we have a phrase definition of the form Ct(
→
V ) := t. (See section 2.8.1.)

The parameter list of the constant ‘the difference quotient’ is (A, f, a, h), but only f is
accounted for in the WTT-book. (A more precise formulation would be to write: ‘the
difference quotient of f in a with difference h (where f has domain A)’.)

• The definition in line (8) is a statement definition, corresponding to the abstract format
CS(

→
V ) := S. (See section 2.8.2.) Of the parameter list (A, f, a) of the constant ‘is

differentiable at’, we only find f and a in the book. The definition can also be given
as a phrase definition (namely as the definition of the adjective ‘differentiable’), in the
format Cα(

→
V ) := α. (See section 2.8.1.) This case is elaborated below.

• The limit-binder limh→p can be considered to be a (non-binding!) constant of three
variables, lim(p, X, g), defined beforehand in a context consisting of the three declara-
tions p ∈ R, X ⊆ R, g : X → R. That is, we consider limh→p g(h) to be an alternative
notation for lim(p, X, g), with X the domain of function g. In line (8) we have the
instantiation

lim(0, X, λh∈X
f(a+h)−f(a)

h ),

with X = {x ∈ R|a + x ∈ A ∧ x 6= 0}.

• The existence of the limit as required in line (8) should also have been defined before-
hand, in a piece of mathematical theory stating:

(1) The definition of the limit-property of a function g : X → R with respect to a point
p on the real x-axis. This property is expressed in an existential statement (probably
with ε’s and δ’s), for example in the statement definition:

g has the limit-property in p :=
∃l∈R∀ε∈R+∃δ∈R+∀x∈X\{p}(|x− p| < δ ⇒ |g(x)− l| < ε)1

(2) The theorem that if the limit-property holds, then the existing l is unique.

(3) The definition of lim(p, X, g) as being this unique l, again under the assumption
that the limit-property holds.

Now ‘lim(p, X, g) exists’ is equivalent to ‘g : X → R has the limit-property in p’.

1This is a statement definition of the form CS(
→
V ) := S. It needs a context with p, X and g as declared

variables.
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• In line (9), parameters A, f and a of the statement ‘f is differentiable at a’ are instanti-
ated with R, λx:R(

√
|x|) and 0, respectively. The resulting statement needs no context.

The same holds for its negation with the logical constant ¬.

We give an alternative translation into (flag-styled) WTT where ‘differentiable (at)’ is
defined as an adjective. Since f : A → R becomes a subscript declaration in this translation,
it should be left out of the context for statement (8′). (Lines (1) to (7) are the same as before,
in line (9′) we employ the typing symbol ‘:’ instead of the verb ‘is’.)

(1)  A ⊆ R

(2)  f : A → R

(3)  a ∈ A

(4)  h ∈ R

(5) h 6= 0

(6) a + h ∈ A

(7) the difference quotient of f := f(a+h)−f(a)
h

(8′) differentiable at a := Adjf :A→R(limh→0
f(a+h)−f(a)

h exists)

(9′) ¬(λx:R(
√
|x|) : differentiable at 0)

Derivations leading to either of the two WTT-books given above, need many small steps,
but can be constructed straightforwardly. We omit the derivations themselves. We only give
a number of remarks regarding these derivations:

• In line (1) of both WTT-books we type A by declaring it to be a subset of R. This
is not according to the rules. However, we may consider the ‘declaration’ A ⊆ R to
be shorthand for the proper declaration A : SET followed by the assumption A ⊆ R.
Another option is to rewrite A ⊆ R as A : ℘(R).

• Equality, addition, subtraction and division should also obtain weak types in the preface.
Their common weak in-type is (t, t), their weak out-type is t. The weak in-type of

√

is (t), the out-type is t. Logical operator ¬ has weak in-type (S) and weak out-type S.

• Function application as in f(a) and f(a+h) can be treated as a binary external constant
appl with weak in-type (t, t) and out-type t.

• In lines (9) and (9′) we use an internally defined notion (‘differentiable’). In both
translations, either as a constant for a statement or as a constant for an adjective, we
can apply rule (int−cons) for establishing well-typedness.

4.4 Example 4

Finally we give an example from elementary algebra. We consider the following theorem
together with its proof:
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Theorem. Let G be a set with a binary operation · and left unit element e. Let
H be a set with binary operation ∗ and assume that ϕ is a homomorphism of G

onto H. Then H has a left unit element as well.

Proof. Take e′ = ϕ(e). Let h ∈ H. There is g ∈ G such that ϕ(g) = h. Then

e′ ∗ h = ϕ(e) ∗ ϕ(g) = ϕ(e · g) = ϕ(g) = h,

hence e′ is left unit element of H. �

A translation into WTT is:

(1)  G : SET

(2)  · : (G×G) → G

(3)  e : G

(4) e : a left unit element of G

(5)  H : SET

(6)  ∗ : (H ×H) → H

(7)  ϕ : G → H

(8) ϕ : a surjective homomorphism

(9) e′ := ϕ(e)

(10)  h : H

(11) ∃g∈G(ϕ(g) = h)

(12)  g : G

(13) ϕ(g) = h

(14) e′ ∗ h = ϕ(e) ∗ ϕ(g) = ϕ(e · g) = ϕ(g) = h

(15) e′ ∗ h = h

(16) e′ : a left unit element of H

(17) H has a left unit element

This book is a good example of the gains obtained by using the flag notation. In fact, the
book consists of five lines with contexts overlapping largely. Schematically denoted, the lines
are:

(1)− (8) . (9)
(1)− (8), (10) . (11)
(1)− (8), (10), (12), (13) . (14)
(1)− (8), (10) . (15)
(1)− (8) . (16)
(1)− (8) . (17)
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The first of these lines is a definition, the second to fifth are intermediate results (state-
ments), being part of the proof, and the last line expresses the theorem (a statement, as well).
Note that we made the choice to translate the proof first, and putting the theorem at the
end. (This is not necessary for the translation into WTT, but it makes a further translation
into Type Theory easier.)

We note the following about our translation:

• Lines (1) to (3) could be concentrated in the single declaration:

(1′)  (G, ·, e) : a groupoid with left unit element

and something similar for lines (5) and (6).

In fact, the use of WTT (or Type Theory!) in practice often ‘asks for’ such a kind of
abbreviations for dependent parts of a context (also called telescopes, see [Zucker 77]).

• Again we see that not all parameters are accounted for in the WTT-book. For example,
one is inclined to make lines (4) and (8) more specific in the following manner:

(4) e : a left unit element of G with respect to · ,

(8) ϕ : a homomorphism of G onto H with respect to · and ∗, respectively .

• Note that line (9) is a definition! This is not immediately visible in the original text:
‘Take e′ = ϕ(e)’, which suggests no more than an equality. But the fact that e′ is ‘new’
here immediately leads to the interpretation as a definition.

• We left out the parameter list for the newly defined constant e′ in line (9). As we said
before, this list can be reconstructed since it is equal to the list of the declared variables
occurring in the context of the definition. Hence, the ‘official’ format of line (9) would
be:

e′(G, ·, e, H, ∗, ϕ) := ϕ(e).

Moreover, in the subsequent uses of the constant e′ in lines (14) to (16), there should
be parameter lists as well behind each occurrence of constant e′. In this case, however,
the instantiations for the variables in the variable lists of e′ in lines (14) to (16) are
exactly the same as in the definition itself (so variable G is instantiated with G, variable
· with ·, etc.). This shows once more that it can be very economical to allow a shorter
notation for parameter lists such that reconstructable or unchanged heads of parameter
lists may be omitted. This is only sugar and can always be undone. (In Automath,
[De Bruijn 70], this is a syntactic feature.)

• Another thing is, that the context for the definition e′ := ϕ(e) in line (9) of the example
is larger than necessary. In fact, we could do with context G : SET , e : G, H : SET , ϕ :
G → H and corresponding parameter list (G, e, H, ϕ). In our example, however, we
keep close to the original CML-text, in which the local definition e′ = ϕ(e) is made in
the full context of the theorem.
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• Lines (12) and (13) are a direct consequence of our wish to avoid free variables in a
WTT-book. Note that g is a bound variable in line (11), but without line (12) it would
be a free variable in line (14)!

It is, in fact, a free variable in the original mathematical text. This is due to the habit in
mathematics to extend the scope of an existentially bound variable outside the formula
in which it is introduced:

‘There is g ∈ G such that ϕ(g) = h. Then . . . ϕ(e) ∗ ϕ(g) = ϕ(e · g) = ϕ(g) = . . ..’

The occurrences of g after ‘Then. . .’ are free! What is actually happening in such cases
is that the existence of such a g automatically induces the (silent) introduction of such
a g (for convenience called g again) outside the scope of the ∃-binder.2 Repair of this
sloppy habit is straightforward, by using the corresponding logical rule of ∃-elimination:

∃x∈U (P (x)), ∀x∈U (P (x) ⇒ r)
r

This rule is the background for lines (12) and (13), since lines (12) to (14) prove that

∀g∈G(ϕ(g) = h ⇒ e′ ∗ h = h),

which, together with (11) and ∃-elimination justifies the conclusion (15)!

Hence, the apparent ‘detour’ via lines (12) to (14) is necessary in order to mend a flaw
occurring frequently in mathematical texts. So this complication is not the fault of our
translation. On the contrary, the translation shows where mathematical language has
its weakness.

• Line (14) is a chain of statements: there are as many statements in this line as there
are =-signs, and maybe even one more: the ‘implicit conclusion’ e′ ∗ h = h, which is
repeated in (15) (but in a smaller context).

• The translation is as near as possible to the original text (but for the mending of the
sloppiness with the existential quantifier, see above). This implies that intermediate
results which one would expect in the formal version, are nevertheless left out. For
example, one could expect the following line preceding line (16), in the same context
(1) – (8):

∀h∈H(e′ ∗ h = h).

(This is the logical consequence of lines (10) and (15), due to the ∀-introduction rule.)

• It is important to note (again) that we omit all justifications in WTT-books. Our
reason for doing this is, that we want to have a rather simple syntax for WTT, which is
neither concerned with ‘meta-arguments’ about the logical or mathematical correctness,
nor with the interdependence of statements induced by these correctness arguments.
Hence, we find no words like ‘Since’, ‘Hence’ or ‘Because’ in WTT.

2In a more general sense, this is a case of what is called non-monotonicity . This is a discourse phenomenon

which appears frequently in natural language and which was one of the reasons for the development of DRT

(‘Discourse Representation Theory’, see [Kamp and Reyle 93] and [Eijck and Kamp 96]).
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The drawback of this is, that the argumentation structure of a book can become unclear.
This is mended when we make the next step: translating WTT into Type Theory. See
the following chapter.

However, as we mentioned in Remark 3.2.6, there is another solution: we may choose
to add to the WTT-book above, two columns on either side, one with labels and one
with comments.

In the label column, to the left of the sample WTT-text, we could write

– At line (9): ‘Proof start’ and ‘Definition’,

– At line (16): ‘Proof end’,

– At line (17): ‘Theorem’.

In the comments column, to the right of the text, we could write for example

– At line (11): ‘From (8)’ or ‘Because of (7), (8) and (10)’,

– At line (15): ‘∃-elimination on (11) and (12) to (14)’,

– At line (16): ‘From (10) to (15), ∀-introduction and definition of left unit element ’.

Again, we do not give a derivation for the WTT-book above. There are no special problems
in making such a derivation, the system of derivation rules shows the way to do this.



Chapter 5

From WTT to Type Theory

When a mathematical text has been properly expressed in Weak Type Theory, it fits in a
well-defined grammar, as given in chapter 2. Moreover, there is a derivation system for books
in WTT, as we showed in chapter 3. However, the typing requirements imposed by the
grammar or the derivation system are rather weak.

If we are interested in the mathematical rigour of a given text, it is advisable to move over
to a stronger theory, for example (a form of) Type Theory itself. For Type Theory has the
powerful property that a succeeded type-check of a certain proposition entails ‘correctness’
in the logico/mathematical sense.

In this chapter we discuss the possibilities of the adaptation of a WTT-book such that it
fits in Type Theory. It turns out that the first step is choosing an appropriate Type Theory
(section 5.1). The next step is the adaptation itself. Since WTT is, indeed, an ‘attenuated’
form of Type Theory, it is rather straightforward to indicate the aspects which have to be
changed or added in order to attain (full) Type Theory. The actual work that has to be
done to translate a WTT-book into Type Theory can, however, be considerable, since Type
Theory requires all the details, in a very precise manner. Another thing is that WTT has no
so-called ‘proof-objects’, i.e. terms embodying a formal justification of a proposition. These
proof-objects have to be added and this is not an easy job. It requires the skills of a person
having experience with Type Theory and having also a firm background in mathematics.

5.1 Choosing an appropriate Type Theory

Type Theories come in various versions, from simply typed λ-calculus via Pure Type Systems
to extended systems as underlying existing theorem provers such as Coq and LEGO.1 In
order to be able to successfully convert a WTT-book into Type Theory, we need at least the
power of λPω, as shown in the Automath project ([De Bruijn 70]). A version of λC (the
Calculus of Constructions) would even be more appropriate, since the parameter mechanism
accompanying constants is not fully covered by λPω (see [Franssen 2000]).

1For a classification, see [Barendregt 92]. We only consider here the so-called explicitly typed versions

(or type theories in Church-style), in which each variable is explicitly typed. Moreover, we do not consider

Martin-Löf Type Theory, which is based on a different principle.
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For a discussion of some problems arising when directly translating mathematical content
into Type Theory, see [Geuvers et al. 2001]. Also [Oostdijk 2001] is interesting in this respect.

In order to faithfully represent mathematical texts, some sort of constant administration
is indispensable. Defined constants are core entities of mathematical texts and make the
development of mathematical theories feasible.

Therefore, constants must be first class citizens in a Type Theory used for formalizing
mathematics, and hence also for a Type Theory which is intended for the completion of a
WTT-book. This has consequences for the choice which we make for the Type Theory. Below,
we discuss some possibilities. Thereafter we compare ‘books’ with single ‘judgements’. Finally
we list a number of points to be considered for choosing a Type Theory suited for WTT.

5.1.1 Extending Type Theory with constants

There have been several attempts to enrich Type Theory with definitions (and hence with
defined constants and parameters). See e.g. [Bloo et al. 2002], [Kamareddine et al. 2001],
[Severi and Poll 94] and [Laan 97]. An important rule in this respect expresses the typing of
an instantiation c(A1, . . . , An) of a constant c(x1, . . . , xn). Such a typing rule has the form:

if c is defined in a certain context as a of type T :

x1 : T1, . . . , xn : Tn . c(x1, . . . , xn) := a : T ,

then:

Aj : Tj [xi := Ai]
j−1
i=1 for j = 1, . . . , n

c(A1, . . . , An) : T [xi := Ai]ni=1

Note that each Aj must have the ‘proper’ type, namely the same type Tj as xj has, but
with the appropriate substitutions, viz. of Ai for the xi (i = 1, . . . , j− 1) occurring in Tj . The
reason is that, in a context x1 : T1, . . . , xn : Tn, a type Tj of xj may depend on the xi with
1 ≤ i < j. Thus, the instantiation replacing xi with Ai has also consequences for the type Tj .

Another general rule necessary for the dealing with constant, is a ‘constant reduction
operator’ (see also Definition 3.11.10), in the above case leading to a reduction of the form:

c(A1, . . . , An) δ→ a[xi := Ai]ni=1.

This reduction enables the ‘unfolding’ of a definition.
Many existing type systems with definitions incorporate all relevant constants inside

the judgement-under-consideration. Constants ‘global’ to a statement M : N in the type-
theoretical judgement2 Γ ` M : N may be introduced in a special kind of ‘declaration’,
embedded in the context Γ:

Γ = . . . , c(x1, . . . , xn) = a : T, . . .,

and ‘local’ constants may be introduced at the head of a subterm of either M or N as

d(y1, . . . , ym) = b : T ′ in t,

where t is the subterm in which the constant d occurs (with instantiated parameters).

2We recall that a judgement Γ ` M : N in Type Theory can be interpreted as: it is derivable that

expression M has type N in context Γ.
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In this manner, type systems with definitions maintain the same format as type systems
without. Note that in Type Theory, the notion ‘judgement’ is the largest entity and by
the incorporation of constants in a judgement as described above, this central status of the
‘justification’ is not disturbed. An advantage of this procedure is, of course, that the rich and
well-elaborated field of Type Theory can be fruitfully exploited.

5.1.2 Books versus judgements

A derivation in Type Theory is generally guided by the wish to ‘justify’ a certain judgement
(which will appear as the final conclusion of the derivation). A judgement in Type Theory
usually has the form Γ ` M : N , whereas in WTT the ‘inhabitant’ M of N is often omitted
(in particular when M codes a proof).

In mathematics, however, the ultimate construction is not the line, but the discourse (or
‘book’), which is a sequence of (interconnected) lines, expressing theorems, lemma’s, defini-
tions and other constructs. In this view, the discourse level is dominant over the judgement
level .

In Type Theory there has long been a tradition to dismiss theorems, definitions and the
like, in order to keep Type Theory simple and transparent. This is a theoretically immaculate
point of view, since definitions can be undone (‘unfolded’) by replacing a defined constant with
its ‘content’. Something similar holds for theorems and the like. But in a practical setting
we need these auxiliary notions, which are all covered by the notion ‘(defined) constant’. (An
intermediate solution is, as we observed above, to incorporate definitions in judgements, either
in the context (‘global definitions’) or in the statements themselves (‘local definitions’).)

We, however, prefer not to take the judgement, but the book as the central notion of the
Type Theory in which we translate mathematics. Since a book can be defined in Type Theory
as a sequence of judgements, this point of view widens the angle of observation. Above we
already gave good arguments to consider this possibility. We elaborate a bit on this subject:

• The Automath project, a pioneering form of Type Theory, uses the book as its cen-
tral entity. Such an Automath book has a great resemblance with what we call a
(WTT-)book. 3

Automath books consists of ‘lines’ (comparable with our WTT-lines) which all come in
one standard format4:

Γ . c(x1, . . . , xn) := M : N ,

expressing that, in context Γ, constant c – with parameters x1, . . . , xn – is a name for
M of type N . It follows that constants are ‘first class citizens’ in Automath. Such a
constant c can denote an ‘object’ M (which is the most common use of constants outside
Type Theory), but it can also be the name of a proof M of the proposition N . In the
latter case, the propositions-as-types character of Type Theory is applied.

3Automath, however, differs considerably from WTT in that it is a complete form of type theory, allowing

no gaps in the reasoning. That is to say: all logico-mathematical justifications are incorporated and its syntax

is involved to such an extent, that syntactical correctness entails mathematical correctness.
4We present Automath here in a format suited to Type Theory.
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In the Automath project it was shown that many sizeable corpora of mathematical texts,
taken from a great variety of areas in mathematics, can be translated into the above
described ‘book’-format. A computer program enables the final check of the translated
texts on syntactical correctness. This entails ‘logico-mathematical correctness’. Hence,
the book-format has proved to be an adequate format for the formalized representation
of mathematical texts.

• A mathematical text has ‘naturally’ a line-for-line character when put on paper. This
is another argument to prefer ‘books’ over single judgements or lines. Not only rea-
sonings are built step by step (‘line by line’), but also theories, including the necessary
definitions, theorems and the like. Such lines are interdependent in the sense that all
kinds of notions introduced in previous lines may be used in later ones. This concerns
defined notions which may be used again (this is one of the most important motivations
for making a definition in the first place!), but also theorems and lemma’s which may
be used over and over again. This is standard procedure in mathematics. The use of
a constant or a theorem usually takes place in a different context, so instantiations of
variable lists are more rule than exception.

In order to give a good theoretical reflection of the interdependencies of the lines (‘judge-
ments’) in a book, it appears a good thing to preserve the separation between lines and
books. It is of course feasible to condense a ‘book’ into one ‘line’, by compressing all
necessary constants in the context (or in the heads of subterms) of the last line of the
book. The question remains whether the gains of this approach are higher than the
losses.

• In any practical application of Type Theory, also outside of mathematics, the need
for constants is felt immediately. This is not only for conceptual reasons – people like
to think in terms of entities and it is most convenient to give them a name in order
to have a good reference – but also for reasons of feasibility: terms in Type Theory
soon become forbiddingly large, the complexity of ‘pure’ typetheoretical terms grows
enormously. When one admits to give constants the rights of first-class citizens, then a
natural next step is to allow definitions as separate entities, as well. A definition is a
kind of judgement in its own right. Therefore it deserves its own place, as a separate
judgement between other judgements, and not hidden inside a judgement. This pleads
again for taking the book as the core notion for a Type Theory intended for mathematics.

5.1.3 Other desiderata

Apart from the points we mentioned in the two sections above about adding constants and the
advantages of books over lines or judgements, there are the usual, well-known decisions which
have to be taken before making the choice of an appropriate Type Theory. These concern
notions for which Type Theory is not immediately well-equipped. We mention a number of
them:

• Equality. There are two different kinds of equality which have to be taken care of (see
[Barendregt and Geuvers 2001]):
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– Definitional equality. This is the ‘equality’ implied by the reduction relations in the
type system, e.g. β (the λ-calculus reduction) and δ (the unfolding operation for
definitions). Both can be built in (equality is then decided by means of a derivation
inside the type system) or external (equality is decided outside the type system, it
is a ‘side condition’).

– Book equality. This is a user-defined equality, formulated inside the Type Systems.
It can be embedded in the type-theoretical frame: the equality of M and N , both
of type A, is justified by finding an inhabitant p of the type M =A N (and proving
that p : M =A N).

• Equivalences. A related question is how to deal with equivalence relations and equiv-
alence classes. The pair of a set V and an equivalence relation ∼ on V , is sometimes
called a setoid in Type Theory and treated as a special syntactic notion.

• Extensionality. Equality of functions can be of two kinds: intensional (‘equality of
functions is equality of algorithms’) and extensional (‘equality of functions is equality
of graphs’). In the latter case, there is a rule ‘extensionality’ which allows a derivation
of f =A→B g if ∀x∈A(fx =B gx). See again [Barendregt and Geuvers 2001].

• Equational reasoning. In mathematics, many calculations are part of a theory, es-
pecially in proofs. An example is:

ax2 + bx + c = a(x2 + b
ax) + c = a(x + b

2a)2 + c− b2

4a ,

of the form

expr1 = expr2 = expr3.

This is a condensed notation for:

expr1 = expr2 ∧ expr2 = expr3,

with possibly also includes the implicit conclusion that

expr1 = expr3.

Equational reasoning is required in many other instances, for example in using the rule

x + 0 = x

to establish that

(x + y + 0)× z = (x + y)× z.

Reasonings like this one should be expressible in the chosen Type Theory, preferably
without too many technical complications.

An alternative could be to call upon an external Computer Algebra system. Such a
system must then be fully reliable, otherwise there must yet come a translation of the
‘computer algebra calculation’ into a series of judgements in Type Theory.
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• Reasoning with a partial order. Similar remarks can be made regarding partial
orders, sometimes in connection with equational reasoning, e.g.:

given that t < q and q = p,

infer that t < p.

• Reflexivity, symmetry, transitivity. A related problem is how the Type Theory
deals with these three basic properties of relations. In practice, there is often an enor-
mous amount of bothersome ‘administration’ involved in proofs depending on these
notions. It would be nice to use a Type Theory which has a gentle ‘sugaring’ to deal
with this problem.

• Commutativity, associativity. Similar problems are connected with operations hav-
ing properties like these.

• Basic constructs. For basic constructs in mathematics, e.g. the set of reals, it is
always the question whether we should actually construct them in the Type System, or
introduce them axiomatically .

• Structures. Dependent structures like ‘group’, ‘ring’ or ‘metric space’ are tuples of sets
and operations, together with some specific properties. In Type Theory (and in WTT)
these become contexts. (For an example, see section 4.4.) Since a mathematician likes
to consider these structures as single objects (G is a group, S is a metric space), there
is a natural wish to make abbreviations for contexts. It is not yet quite clear how this
can be done in a transparent, easily applicable way.

• Partial functions. Although total functions are fundamental in Type Theory, due
to its lambda-calculus base, it is not immediately clear how partial functions can be
treated in Type Theory. For a possible approach, see [Kuper 93].

• Sets, subsets. Sets are easily representable in Type Theory, viz. as inhabitants of the
sort ∗ (or ∗s), but it is not immediately clear how subsets can be treated. A possibility
is to introduce a subset as the pair of a carrier set and a predicate on this set.

Note that there is an intrinsic difference between x ∈ V and x : V . In the first case, x

is an element of V , but it can also be an element of many other sets. In particular, if
V ⊆ W , then x ∈ W , as well. In the second case, however, x has type V and only type V

(up to conversion). As a consequence, if V ⊆ W , then x : W only if V is definitionally
equal to W .

Hence, the set-relation, and accordingly the subset-relation, have to be treated differ-
ently from the typing-relation. A possibility is to define sets and the subset-relation
in Type Theory, together with the rules concerning elementhood. Another possibil-
ity is to introduce subtyping in one way or another, with as a consequence the loss of
Uniqueness of Types. Several approaches have been investigated in the literature (see
e.g. [Plotkin et al. 94]).
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• Coercion. The notion of coercion is related to subtyping. Coercion is a frequently
used device in mathematics. For example, a function f : Z → Z can be applied to
a natural number n. Moreover, the result is an integer, but at the same time a real
number. These so-called coercions (namely coercing n to be integer, as well, and fn to
be real) can be incorporated in Type Theory, in different manners. For example, the
subset-mechanism with its properties can be used for this purpose.5

Coercions are also very convenient for using setoids. For example, let S be the setoid
〈V,∼〉 of set V and equivalence relation ∼ on V . Then a coercion of a setoid S to its
carrier set V has the effect that ‘t ∈ S’, which is syntactically incorrect, is transformed
into the correct ‘t ∈ V ’. This is in accordance with existing habits in mathematics: one
says ‘x is an element of the group G’, meaning that x is an element of the carrier set
of the structure G.

• Induction, recursion. Both notions should have an explicit counterpart in the Type
Theory. Again, one possibility is to internally define these notions in a Type Theory.
Another one is to use inductive types. See [Paulin–Mohring 93] or [Coq 96].

• Cartesian products or Σ-types. Again, here is a choice to be made: define pairs
and Cartesian products in the Type Theory, or use Σ-types.

• Choice of the logic. Type Theory usually is a logical framework , meaning that the
logic can be chosen (constructive logic, classical logic, . . . ). This choice has to be made.
In general, classical logic will be the obvious choice.

• Proof irrelevance. This is a well-known problem in Type Theory. For example, the
natural logarithm ln is a partial function on R. Hence, ln has two arguments: a real
number r, and a proof that this r is positive. Proof irrelevance entails that the numeric
outcome of applying ln to r does not depend on the actual proof p of r > 0.

5.2 Comparing WTT with Type Theory

Books in Weak Type Theory are richer than their translation into Type Theory on the one
hand, and poorer on the other hand. Below we give a list of some of the relevant differences
and we suggest what must be added or eliminated to a WTT-text (or to Type Theory) in
order to enable a feasible and trustworthy translation ‘WTT → Type Theory’.

• Richer

– First of all, WTT has constants, contrary to many Type Theories. Above, in
section 5.1.1, we suggested to extend Type Theory with constants.

– WTT has more linguistic notions than Type Theory. For example, it has nouns
and adjectives. Below (section 5.3.1) we discuss how these notions can be tailored
to Type Theory.

5Note that in WTT there is no need for coercions, due to the weakness of the weak types: for example, the

weak types of natural numbers, integers and reals are all the same, viz. term .
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– WTT allows many binders in its grammar, whereas Type Theory has only a few
(the λ, the Π and possibly the Σ.) We come back to this in section 5.3.2.

– WTT makes a clear distinction between propositions (‘relational or logical state-
ments’) and sets. This difference is not present in the simplest forms of Type
Theory, but it can easily be added. The most common way to do this is to split
sort ∗ into the sorts ∗s (for sets) and ∗p (for propositions). So S : ∗s expresses that
S is a set and P : ∗p says that P is a proposition. Then a : S expresses that a

is element of S. Via the propositions-as-types isomorphism we can now interpret
u : P as the fact that term u ‘proves’ proposition P .

– Definitions are first class citizens in WTT. In the previous section we discussed the
importance of definitions (in relation with constants) and we proposed to adapt
Type Theory in order to allow definitions. However, WTT has different kinds of
definitions, one for each of five linguistic categories (see section 2.8). These have
to be streamlined a bit, in order to guarantee a smooth transition to Type Theory.
We discuss this in section 5.3.3.

– We also pleaded in the previous section for a Type Theory with the notion book
rather than judgement as the basic entity.

• Poorer

– A WTT-book misses the argumentation structure of a mathematical exposition,
which is also essential for Type Theory (but not explicitly expressed there either).
This has to be repaired in the transition from WTT to Type Theory. We come
back to this in section 5.3.4.

– Related to this is the fact that Type Theory heavily depends on so-called proof
objects, i.e. inhabitants of propositions which embody a formal version of the proof
of the proposition. However, in WTT there are no proof objects at all. More than
that, the notion ‘inhabitant of a proposition’ is fully absent in WTT. This has to
be mended as well in the translation.

– In particular, all assumptions in a WTT-book must obtain a variable as proof
object. That is, if S is an assumption occurring in a context Γ, then it has to be
replaced by the declaration x : S for some fresh variable x. This has consequences
for the parameter lists of defined constants, which now have to be extended with
the new variables, and also for each place where a definition is used. (The length of
the parameter list of a defined constant is now equal to the ‘length’ of the context
of the definition.)

– A book usually contains only the main steps in a reasoning. That is, many in-
termediate steps are skipped and left to the understanding reader. In translating
WTT into Type Theory, however, all these intermediate steps have to be added
in some way or another. There are several strategic possibilities, for example:
first extend the WTT-text to a more complete WTT-text and then translate, or
translate directly and doing the extension/completion while translating.
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– The linguistic requirements of WTT are much too weak for establishing the cor-
rectness of a book. Hence, in the transition to Type Theory we have to add many
arguments in order to let the translation agree with the strict rules of Type The-
ory. (See also section 5.3.4.) For example, parameter lists of constants must obey
rather complicated conditions (see the previous section). Hence, each ‘use’ of a
definition brings along a set of proof obligations, which all have to be elaborated.

– The lastmentioned observation holds in particular for function application. Note
that functions and application are fundamental notions in Type Theory (which
is no surprise, since it is based on lambda calculus), in WTT they are much less
prominent. As a consequence, application of a function to an argument is only
linguistically restricted (both the function and the argument must be terms). In
the transition to Type Theory, it must be checked whether the argument ‘inhabits’
the domain of the function. This, again, is a proof obligation.

– There are many other proof obligations when translating a WTT-text into Type
Theory. This is not only the case when verifying the existence of a limit or the
existence of a unique element (ιx∈V . . .), but also in many, many cases where a
mathematics writer jumps over details or counts on the understanding reader,
whereas Type Theory forbids all unchecked transitions6.

– Filling in all the necessary steps omitted in a WTT-book, can have the effect that
the number of lines ‘explodes’. However, work in the Automath-project showed
that the ‘loss factor’ is rather constant, ‘something like 10 or 20’ according to de
Bruijn (see [Nederpelt, Geuvers, de Vrijer 94], p. 160).

Note that some of the notions which make WTT ‘richer’, in comparison with Type Theory,
ask for an extension of Type Theory (e.g. with constants and definitions). On the other hand,
there are also notions in the class ‘richer’ which can better be eliminated from WTT-texts,
before translating into Type Theory (e.g. nouns, adjectives, different formats for definitions).
The lastmentioned notions are introduced in WTT in order to do the ‘working mathematician’
a favor, since WTT thus stays close to the linguistic habits of humans-doing-mathematics.
For Type Theory, however, these notions are superfluous.

For those aspects in which WTT is ‘poorer’ than Type Theory, there is however only one
solution: extend a WTT-book in a suitable manner in order to transform it into a Type
Theory representation.

5.3 Translating a WTT-book into Type Theory

Below we give more details about some of the adaptations needed to translate a WTT-book
into Type Theory.

5.3.1 Nouns and adjectives

In WTT, nouns and sets play comparable roles. It is easy to switch between the two categories,
as section 2.4.2 shows: for each noun n there is a corresponding set n ↑, and for each set S

6But for the basic relation of β-reduction.
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there is a corresponding noun S ↓.
We assume that, as is now always the case, Type Theory is not extended with nouns and

adjectives (it could be a challenge, however, to invent such a Type Theory!).
Therefore, in the transition to Type Theory, we replace each noun by a set. E.g., we

translate the noun ‘a prime’ into ‘the set of all primes’, say ‘Pr’, and ‘an edge of d’ in ‘the
set of all edges of d’, say ‘Edge−set(d)’. The noun ‘a set’ gives no problems, in this respect:
its translation is SET , ‘the class of all sets’.7

Adjectives of WTT can be rephrased as predicates. For example, the adjective ‘Abelian’,
defined for groups, can be translated into the predicate type Ab, with e.g. the following
definition:

Ab = λ〈G,·,e,−1〉 : Structure−of−groups(∀x,y:G(x · y = y · x)).8

(The type of Ab is ΠG:Structure−of−groups(∗p) – a so-called Π-type – with ∗p the type of all
propositions. The Π-type mentioned is the type of all predicates over the class of groups.)

5.3.2 Binders

We look at a number of binders in WTT and their translation into Type Theory form:

• The λ-binder stays as it is, since λ is also a primitive of Type Theory.

• Many common binders in mathematics can be reformulated as constants. We already
gave an example in section 4.3, where the limh→p–binder was transformed into the
constant lim.

• The ι-binder can also be rewritten as a constant, acting on a set (or a class of sets).
Examples:

ιn∈N(2 < n < π) 7→ iota({n : N|2 < n < π}),

ιU∈ SET (3 ∈ U ∧ |U | = 1) 7→ iota({U : SET | 3 ∈ U ∧ |U | = 1}).

• Another example concerns the
⋃

-binder:⋃
n∈N(Vn) = union{W : SET | ∃n∈N(W = Vn)}.

• In its turn, the set-binder {. . . | . . .} can be omitted by using either the notion of subset
or that of predicate. In the first case we make an appeal to a subset-notion being
incorporated in the chosen Type Theory. In the second case we identify a predicate
on A with the subset of all elements of A for which the predicate holds. (See also
section 5.1.3.)

• The Noun-binder should be replaced by the set-binder (and transformed as discussed in
section 5.3.1), the Adj-binder finds a counterpart in the predicate-binder, as expected.

7We use the word ‘class’ here, because ‘the set of all sets’ reminds too much of Russell’s paradox. This

paradox, however, is not applicable in Type Theory, due to the strict hierarchy of types.
8Here we consider a group to be a structure (a 4-tuple). See section 5.1.3 for this notion of ‘structure’.
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• The Abst-binder should be removed, as explained in section 2.5.4, Notes. That is, first
Abst must be translated into a combination of Noun and ∃ (see the examples in that
section), followed by a translation of Noun into the set-binder, as discussed above.

• The ∀-binder finds it natural counterpart in the Π-binder of Type Theory, the ∃-binder
can either be represented as ¬∀¬, or be transformed into the Σ-binder of Type Theory.

5.3.3 Definitions

In WTT we have five different formats for definitional lines (see sections 2.8.1 and 2.8.2).9 In
Type Theory, however, we need only one:

Γ . c(x1, . . . , xn) := M : N ,

expressing that, in context Γ, constant c is defined as M of type N . The parameter list
(x1, . . . , xn) of c can be omitted, as we explained before, since it is equal to the list of the
subject variables of Γ and can therefore be reconstructed.

It will be obvious how all five definitions of section 2.8 fit in the above format. As explained
in section 5.3.1, nouns are transformed into sets and adjectives into predicates. We give two
examples:

a divisor of n := Nounk∈N(∃l∈N(k · l = n)) 7→
n : N . Divisor−set(n) := {k : N | ∃l:N(k · l = n)} : ∗s,

positive := Adjx∈R(x > 0) 7→
Positivity := λx:R(x > 0) : R → ∗p.

5.3.4 Adding arguments

It is very usual to give ‘clues’ in mathematical texts about the coherence of that text. For
example, one may find metastatements like:

Applying Theorem 5.6, . . .
Since f is continuous, . . .
Hence, . . .
Following Definition 12, . . .
Combining these results, we obtain . . .

In WTT-books as we presented them in chapters 2 and 3, however, we omitted all in-
dications in the original mathematical text about the structure of that text. Hence, in the
translation of WTT into Type Theory, many of these motivations must be ‘reconstructed’.
In Remark 3.2.6 we suggested to save as many information as possible in two columns with
‘labels’ and ‘comments’. This can be very helpful in the translation, since the human making
the translation (with or without computer assistance) can use these clues as guidelines. As
a by-effect, it can make the WTT-text more understandable for a reader who has not the
original text at his disposal.

9We recall that this are the definitions of the form Ct/σ/ν/α/S(
→
V ) := t/σ/ν/α/S.
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5.3.5 The preface

In Type Theory, there is no such a thing as a preface. The constants occurring in a WTT-book
which are external to this book and accounted for in the preface, can possibly be translated
as primitive constants in Type Theory, that is as constants of a certain type with empty
content. So, instead of the line

Γ . a := M : N ,

we have now

Γ . a := primitive : N .

This will sometimes do. However, the unfolding of the definition of a has now become
impossible. Hence, in many cases all relevant facts about a have to be given explicitly in
Type Theory in order to make the translation ‘faithful’.

5.4 Example of a translation from WTT into Type Theory

In order to show how a translation from WTT into Type Theory could work out, we revisit
Example 4 (section 4.4). We only translate part of the text given in that section. This is
enough to demonstrate that things soon become rather complicated, but we hope to transfer
the feeling that such a translation is nevertheless feasible.

We assume that a form of Type Theory is chosen which allows books (i.e. sequences of
judgements or ‘lines’) and definitions. We do not specify exactly which Type Theory is the
basis of our translation below, but use only a kind of Type Theory format . This suffices,
in our opinion, to give the reader some insight in the process of translation from WTT into
Type Theory. We give six example Type Theory lines, with comments.

(1) We start with a definition of ‘surjectivity’ in Type Theory:
A : ∗s, B : ∗s, f : A → B . surj(A,B, f) := Πb:B∃a:A IS B (fa) b

Comments:
– This definition cannot be found in the original text, it is however necessary for estab-

lishing the correctness of the formalized proof. Note that for the derivation system of WTT,
it is sufficient to include the adjective ‘surjective’ in the preface, with weak in- and out-types
only. But for Type Theory, the full definition is required, because in each use of the defined
notion, there are many details which have to be checked.

– As before, we borrow the symbol . from WTT, where Type Theory judgements usually
put the symbol `.

– The symbol Π from Type Theory can be read as ∀ in the above case.
– The symbol ∃ is not a basic symbol of Type Theory. It has to be defined with the

appropriate axioms or rules, or constructively as ¬∀¬.
– The symbol IS stands for equality, IS B stands for equality on B. Equality and its

properties (reflexivity, symmetry, transitivity, Leibniz10) have to be formalized beforehand
(see section 5.1.3).

10Instead of ‘Leibniz’ one also says ‘replacement of equals by equals’. The Leibniz rule is: If p = q then

. . . p . . . = . . . q . . ., so the replacement of subexpression p by its equal q in a formula Φ, results in a formula

equal to Φ.
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(2) Next, we add the definition of ‘homomorphism’ to the Type Theory book:
A : ∗s,m1 : A → (A → A), B : ∗s,m2 : B → (B → B), f : A → B .

homomorphism (A,m1, B, m2, f) := Πa:AΠb:B IS B(f(m1ab))(m2(fa)(fb))
Comments:
– The binary operations m1 and m2 are given here in their Curry-ed versions: they take

arguments one by one, subsequently, and not as a pair. Another option is to use Cartesian
products (see also section 5.1.3).

(3) Next, we give a Type Theory version of the first line in the WTT-book of Example 4,
the definition ‘e′ := ϕ(e)’ (line (9) in the flag-structured version):

G : ∗s,H : ∗s, ϕ : G → H, e : G . image (G, H,ϕ, e) := ϕe

Comments:
– We embedded the definition here in the smallest possible context. (In the WTT-example

of section 4.4 the context was larger than necessary; cf. what we said about line (9) in that
section.)

– It turns out that the translation of this definition into Type Theory makes things more
complicated than desired! Instead of the short formula ϕe, we introduce here the ‘abbrevia-
tion’ (!) image (G, H,ϕ, e). Of course, an easy way out is to omit this definition altogether and
to use ϕe for every occurrence of e′ in the WTT-text. This would be a sensible intervention
of the translator.

Here, however, we want to keep close to the WTT-text in order to show what happens.
Hence, we keep this definition of ‘image’.

The problems mentioned arise of course from the fact that in the original WTT-text, the
author had a didactic purpose with the definition e′ := ϕ(e): the use of the primed symbol
e′ suggests the reader already that the ϕ-image of e will be the wanted left unit element of
H (as it indeed turns out to be). In Type Theory, however, the emphasis is on correctness,
not on didacticism. Therefore, a faithful translation into Type Theory can sometimes have
unexpected consequences.

(4) The following line gives a Type Theory translation of the second line of the WTT-book,
given in line (11) of the flag-version.

G : ∗s,H : ∗s, ϕ : G → H, p : surj (G, H,ϕ), h : H . ph : ∃g:G IS H (ϕg) h

Comments:
– Again, we need a smaller context here than in the WTT-text. Moreover, we split

the assumption ‘ϕ : a surjective homomorphism’ into two parts: ‘ϕ : a surjection’ and ‘ϕ :
homomorphism’, from which we here only need the first one.

– Note that an assumption in the context is treated on a par with a declaration in Type
Theory: the assumption itself is that ‘surj (G, H,ϕ)’ holds, which is expressed as the decla-
ration ‘p : surj (G, H,ϕ)’. The term p is a variable ‘inhabiting ’ surj (G, H,ϕ), with intended
meaning: let p be a proof of the assumption.

– In the same manner, the term ph is an inhabitant of ∃g:G IS H (ϕg) h, hence with the
intention of being a proof of that proposition. The fact that the relation ph : ∃g:G IS H (ϕg) h

does indeed hold in the given context, is a consequence of the rules of Type Theory, which
we do not discuss here.
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(5) The first equality in the third line of the WTT-book of section 4.4 (e′ ∗h = ϕ(e)∗ϕ(g),
see also line (14)) becomes in Type Theory:

G : ∗s, e : G, H : ∗s,m2 : H → (H → H), ϕ : G → H,h : H, g : G, u : IS H (ϕg) h .

. . . : IS H (m2(image (G, H,ϕ, e))h) (m2(ϕe)(ϕg))
Comments:
– Again, the context is shorter than in the WTT-version.
– We do not give the proof object, since this involves Leibniz (ϕg = h ⇒ m2(ϕe)ϕg =

m2(ϕe)h) and the formalization of Leibniz is rather complicated.
– Also, the definitional equality of image (G, H,ϕ, e) and ϕe plays a role. It depends on

the kind of Type Theory chosen, whether such a definitional equality must be determined
with a separate proof object, or that it is a consequence of an internal reduction (‘definitional
reduction’), comparable to β-reduction, for which no explicit justification is needed.

(6) We conclude with the second equality in the third line of the WTT-book, ϕ(e)∗ϕ(g) =
ϕ(e · g). This becomes:

G : ∗s,m1 : G → (G → G), e : G, H : ∗s,m2 : H → (H → H), ϕ : G → H,

q : homomorphism (G, m1,H, m2, ϕ), h : H, g : G, u : IS H (ϕg) h .

symm (H,ϕ(m1eg), (m2(ϕe)(ϕg)), qeg) : IS H (m2(ϕe)(ϕg)) ϕ(m1eg)
Comments:
– Here we need the second part only of the assumption that ϕ is a surjective homomor-

phism: q : homomorphism (G, m1,H, m2, ϕ).
– The proof object qeg proves that IS H ϕ(m1eg) (m2(ϕe)(ϕg)). Here we need a proof

for its symmetric variant, so with interchanged second and third argument. Therefore we use
the axiomatic property symmetry for equality, with definition:

A : ∗s,m : A,n : A, v : IS A m n . symm (A,m, n, v) := primitive : IS A n m

We stop here with the translation of Example 4, expecting that we have given the reader
some idea about what Type Theory is and how a WTT-text can be translated into Type The-
ory. We also tried to give an impression about how to solve some of the problems mentioned
in earlier sections of this chapter.



Chapter 6

Final remarks

In this chapter, we compare our work with that of others and we discuss future work on the
subject.

6.1 Comparison with other work

In the past, formal languages for mathematics (‘mathematical vernaculars’, ‘specification
languages for mathematics’, cf. Section 1.4) have often been developed in relation to theorem
checkers and theorem provers. Below we compare our WTT with a number of mathematical
vernaculars as have been developed in the past three decades. We subsequently discuss:
Automath-related systems, mathematical vernaculars behind theorem provers and stand-
alone systems.

6.1.1 Automath-related mathematical vernaculars

• A direct source of inspiration for WTT was the mathematical language WOT (‘Wiskun-
dige OmgangsTaal’, i.e. mathematical everyday language), [De Bruijn 79], which has
been devised by the international pioneer in Theorem Proving, N.G. de Bruijn (Eind-
hoven University, the Netherlands). The description of WOT was general and only
partially formalized. The language WTT is based on ideas employed in WOT, but it
is independent and worked out in details. As we have shown in the previous chapters,
WTT has a syntax and a derivation systems obeying all reasonable requirements and
is therefore fully formalized, in contrast with WOT.

• De Bruijn’s languages SEMIPAL and PAL [De Bruijn 70] are intended for the represen-
tation of the ‘administrative structure’ of mathematical texts. In both languages one
can account for contexts, parameter lists and variables (in PAL there are also types).
However, these languages are by nature insufficient to represent mathematical contents
and they miss therefore the expressivity necessary to comply with the safety criterion
(see Section 1.2).

• Another invention of de Bruijn was the mathematical vernacular MV1 [De Bruijn 87].
1In fact, de Bruijn was the one to coin the expression ‘mathematical vernacular’ which is now generally
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In MV, however, many choices of a logical and mathematical character have already
been made, which WTT still postpones. Moreover, MV incorporates certain correctness
requirements, there is for example a hierarchy of types corresponding with sets and
subsets. Therefore, MV is suited for a partial formalization of mathematical content,
but it is already ‘on its way’ to a full formalization. Hence, in our opinion, WTT is
‘closer by’ a given informal mathematical content than MV, so a WTT-like language
obeys more to the safety criterion.

Apart from this, MV has a description which differs considerably from that of WTT,
and MV has a syntax which is less compact and not as naturally confined as the syntax
of WTT. On the other hand, it is worth while to investigate whether MV (or a variant
thereof) is suited as a next stage of intermediate language in the direction of a full
formalization.

• The ‘mathematical language Automath’ [De Bruijn 70] requires mathematical content
to be completely formalized. It enables immediate ‘theorem checking’. By its amount
of details, it is far too complex to obey the safety criterion. However, it would be
interesting to compare WTT with Automath, especially as regards a ‘translation’ in
either of the directions. See also Section 6.2.

6.1.2 Mathematical vernaculars behind theorem provers

Presently, there is a great variety of theorem checkers and theorem provers. We mention
Automath [De Bruijn 70], Mizar [Rudnicki 92], NuPrl [Constable et al. 86], Coq [Coq 96],
Lego [Luo and Pollack 92], Alf [Altenkirch et al.], ΩMEGA [Benzmüller, Kohlhase et al. 97],
PVS [Owre et al. 92] and HOL [Gordon and Melham 93]. When implemented, many of these
systems provide help for the users, e.g. by offering a friendly user interface or by enabling the
use of tactics. These tactics are special instructions for the computer, in order to simplify
or develop the actual proof goal during the construction or check of a proof. Some of the
mentioned systems are based on a fully formalized language for mathematics, such as Coq.
In those systems, tactics are help routines for the user, but the final formalization is in the
underlying language. This is not the case with other systems like PVS, where a completed
proof is not a text with mathematical content, but only a listing of the tactics used.

A number of the theorem provers mentioned offer a mathematical vernacular in the WTT-
sense, i.e. an incomplete, textual representation of a mathematical content which has resem-
blance with an informal exposition. Below we discuss some of these.

• The theorem proving system Coq (the ‘Calculus of Constructions’, see [Coq 96]) in-
corporates in its documentation a kind of intermediate specification language, called
Gallina ([Gallina]). This ‘vernacular’ is a formally defined language meant for the
development of mathematical theories and to prove specifications of programs. The
intention is that it is usable as a ‘language of commands’ for Coq, helping the Coq-user
to stay closer to ‘normal’ intuition when proving a mathematical proposition. It is,
however, not meant as ‘a first step in formalization’ as WTT is, it has a rather specific

used for all kinds of ‘languages for mathematics’.
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form which does only distantly reflect a mathematical discourse in CML and it is also
not very adequate for the purposes exposed in this report.

• The mathematical vernacular proposed in [Dowek 90a] relies on the Calculus of Con-
structions (Coq). It provides instructive ‘labels’ (like Axiom, Definition, Hypothesis,
Statement, Proof). Moreover, a number of natural deduction rules are replaced with
more intuitive alternatives (e.g., ∃-elimination). The aims are clearly different from
ours: labels as the ones above are out of scope in our formalization and so are com-
ments about the (e.g. logical) structure, as is discussed in Remark 3.2.6. Moreover, since
WTT is not concerned with validity, the proof structure itself (e.g., natural deduction)
has no formal counterpart in our system.

Consequently, a Proof Synthesis Algorithm as in [Dowek 90b] has no direct application
in WTT.

However, when WTT is translated into more complete formal languages (see Sec-
tion 6.2), the ideas of Dowek will most probably be fruitful and inspiring.

• The aim of the project ΩMEGA (see for example [Benzmüller, Kohlhase et al. 97] or
[Siekmann and Hess 2001]) is to develop a software environment for the support of a
scala of theorem provers. It is geared towards an expert user, and not a typical math-
ematician. The built-in version of the ‘mathematical vernacular’ is meant to give the
user on request a mathematics-like computer ‘view’ of an already checked proof. It has
the same drawbacks as the mathematical vernacular of Coq.

• The basic language of Mizar [Rudnicki 92] is near to the safety criterion and it has
proven to be suited for expressing large corpora of mathematical content. Its syntax
is, however, rather complicated and it requires therefore much of an ordinary user to
become acquainted with it.

• As far as we know, none of the other theorem provers provides an independent language
for describing mathematical content in such a manner that the safety criterion is suffi-
ciently accounted for. The mathematical vernaculars as presented in those systems are
moreover (to our knowledge) not ready for immediate use, or even difficult accessible for
a mathematical user. (For an extensive overview of ‘systems implementing mathematics
in the computer’, see [Wiedijk].)

6.1.3 Other mathematical vernaculars

We finally mention a number of attempts in the direction of a ‘mathematical vernacular’ with
no direct connection to a theorem prover.

• In ‘Towards a Formal Mathematical Vernacular’ [Groote 92] proof constellations are
defined, with tactics as mappings from one constellation to another. The presented
ideas are meant for a manner of formalized proof construction which is closer than
usual to ‘normal’ mathematical behaviour. In some sense this is indeed the case, albeit
that the language presented still has a strong affinity with full-fledged type theory and
that it does not come very close to the original mathematics text.



6.2. FUTURE WORK 63

• The project ‘Implementing a Mathematical Vernacular’ [Luo and Callaghan 99] is still
in development. It is based on constructive Type Theory and aims at a much richer
structure than WTT does. For example, it must contain formal proofs and proof terms,
which are absent in WTT. A formal report on the syntax has not been published. See
also [Callaghan and Luo 98] about the Durham Mathematical Vernacular Project.

The same group of researchers is presently working on a new theorem prover (called
‘Plastic’) and an associated type-theoretic framework approach to interactive theorem
proving (see [Callaghan and Luo 2001] and [Callaghan et al. 2001]). Again, the objec-
tives are on the theorem proving side, not on the purely linguistic side of the spectrum
(as WTT is).

• In the Theorema project ([Buchberger 97]) existing computer algebra systems are ex-
tended with facilities for mathematical proving. The provers are designed to imitate
the proof style humans employ in their proving attempts. The proofs can be produced
in human-readable style. However, this is done by post-processing a formal proof in
natural language. This deviates from our approach, for which no formal proof needs to
be present. The natural language part of Theorema has little structure and restricts
itself to comments on the logical steps employed, which is a part that does not appear
in WTT. On the other hand, the linguistic facilities of WTT are absent in Theorema’s
natural language.

Moreover, the text style of Theorema (insofar as we could see) is not based on a formal
grammar for the textual language.

However, the ideas exposed in the projects above are worth while to be studied when
enriching WTT in the direction of a full formalization.

6.2 Future work

We list a number of items concerning possible future work.

• First of all, the syntax and derivation rules of WTT must be tested on a corpus of
mathematical texts which has considerable size and comes from various areas in math-
ematics. Former tests, though varied and carried out by many generations of students
(cf. Chapter 1), are not extensive enough to allow definite conclusions about WTT in
its present shape. The forthcoming tests should make appeal to a potential users group,
ranging from students to all sorts of mathematicians, both in the theoretical and the
applied field, and working in either teaching or research. This may lead to an adapted
form of WTT.

• In this testing stage, it should be considered whether certain forms of sugaring can
safely be added to WTT. This sugaring is probably desirable in order to make WTT an
acceptable language tool for the users, also in the experimental phase. For example, the
possibility of infix notation makes the text considerably better writable and readable for
humans. This holds to a lesser degree for other sugaring devices, such as the possibility



64 CHAPTER 6. FINAL REMARKS

of omitting empty parameter lists. Other examples are given earlier in this text; as
said before, in this report we deviate several times from the official syntax as given in
Chapter 2, only for reasons of readability (the law-abiding reader was supposed to undo
these acts of sugaring ‘on the fly’, whenever they occurred).

Another possible sugaring which may be advantageous is the use of ‘flags’ as employed
in Chapter 4. In the examples of that chapter, the benefits of the flag notation were
explained.

For enabling a consistent use of certain forms of sugaring, the syntax of WTT must be
extended. It may be preferable to do this in a kind of ‘shell’, built on top of WTT,
in order to maintain the safety criterion for WTT itself. The development of such a
sugaring-shell is user-driven and will probably ask for rather arbitrary decisions, with-
out much coherence. In this respect, the sugaring-shell differs considerably from the
underlying WTT syntax, which has – the author believes – a tighter structure and a
more mathematically-driven motivation.

• Next, it is desirable to implement WTT. A parser should be able to parse WTT-
expressions and to check whether such expressions obey to the grammar of Chapter 2.
If there is a syntax shell containing the sugaring possibilities, this should be considered,
as well.

Moreover, a (grammatical) type checker must be implemented which establishes the
weakly well-typedness of contexts, books etc. according to the derivation rules of Chap-
ter 3. User-friendliness of such a type checker is of importance, in order to make the
tool acceptable for mathematicians who wish to write (or translate) their text in(to)
WTT. This may ask for things as ‘flags’, but also for other aids such as pop-up win-
dows, appropriate input-output handling, interactive communication, possible storage
and retrieval of texts and contexts, et cetera.

• Another important feature is whether the WTT-syntax can be extended in such a man-
ner that a form of recursion is possible, both for recursive definitions and for recursive
functions. This may make WTT more powerful, just like the more recent forms of Coq
with recursion are better usable than the original version without it (compare [Coq 96]
and [Coquand and Huet 88]).

• Moreover, it is interesting to investigate how WTT can be enriched in the direction
of either (some form of) Type Theory, or another acceptable complete mathematical
language, such as that of Zermelo-Fraenkel Set Theory. One step in that direction is to
incorporate labels, proofs and proof methods. This encapsulates the label and comments
columns mentioned in Remark 3.2.6.

• It is conceivable that in this stage of the research, a chain of intermediate languages
between WTT and – for example – full fledged Type Theory is the best manner to
bridge the gap. In this case, translation protocols should be devised for each link of the
chain. For different transitions in this translation process, different specialists may be
the preferred executives: mathematicians, computer scientists, type theorists.
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It may be worth while to compare this research with work on (hierarchies of) specifi-
cation languages as has been done in computer science. Also, work on open terms in
proofs (cf. [Jojgov 2001]) may be helpful.

• In this process, it should also be investigated to what extent computer assistance can
be invoked in either the full transition process or in one of the translation stages, from
WTT to a completely formalized version of a mathematical text.

• Finally, it can be investigated how the results obtained can be made profitable for the
community of mathematicians, both in developing and in using mathematics, in several
degrees of precision. For example, easy access to WTT technology can be useful for
computer help in writing mathematics. On the other side of the spectrum, we have
the complete formalization of a certain text, which is suitable for a complete check
on correctness and subsequently for storage of correct mathematical knowledge in a –
publicly accessible – data base. We mentioned still more possibilities in the introducing
Chapter 1.
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Appendix A

List of abstract syntax rules

Metasymbols for the standard categories (p. 10)

level category symbol representative
atomic level variables V x

constants C c

binders B b

phrase level terms t t

sets σ s

nouns ν n

adjectives α a

sentence level statements S S

definitions D D

discourse level contexts Γ Γ
lines l l

books B B

• variables (p. 11)

V = Vt | Vσ | VS

• constants (p. 12)

C = Ct | Cσ | Cν | Cα | CS

• binders (p. 14)

B = Bt | Bσ | Bν | Bα | BS

• terms (p. 17)

t = Ct(
→
P) | BtZ(E) | Vt

• sets (p. 17)

σ = Cσ(
→
P) | Bσ

Z(E) | Vσ
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• nouns (p. 17)

ν = Cν(
→
P) | Bν

Z(E) | αν

• adjectives (p. 17)

α = Cα(
→
P) | Bα

Z(E)

• statements (p. 17)

S = CS(
→
P) | BSZ(E) | VS

• definitions (p. 18, 20)

D = Ct(
→
V ) := t | Cσ(

→
V ) := σ | Cν(

→
V ) := ν | Cα(

→
V ) := α | CS(

→
V ) := S

• contexts (p. 20)

Γ = ∅ | Γ,Z | Γ,S

• lines (p. 21)

l = Γ . S | Γ .D

• books (p. 21)

B = ∅ | B ◦ l

Other metasymbols (p. 11)

category symbol representative
expressions E E

parameters P P

typings T T

declarations Z Z

• expressions (p. 11)

E = t | σ | ν | S

• parameters (p. 12)

P = t | σ | S

• typings (p. 17)

T = σ : SET | S : STAT | t : σ | t : ν | t : α

• declarations (p. 18)

Z = Vσ : SET | VS : STAT | Vt : σ | Vt : ν
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List of derivation rules

OK(B; Γ) ≡ ` B : book, B ` Γ : cont (p. 24)

• variables (p. 27)

OK(B,Γ), x ∈ Vt/σ, x ∈ decvar(Γ)
B; Γ ` x : term/set

(var)

• constants (p. 27, 28)

OK(B; Γ), Γ′ . D ∈ B,
decvar(Γ′) = x1, . . . , xn, defcons(D) = c ∈ Ct/σ/ν/α/S ,

B; Γ ` Ai : W if B; Γ′ ` xi : W (i = 1, . . . , n)
B; Γ ` c(A1, . . . , An) : term/set/noun/adj/stat (int−cons)

OK(B,Γ), c external to B, in(c) = (κ1, . . . , κn), out(c) = κ,
B; Γ ` Ai : κi (i = 1, . . . , n)

B; Γ ` c(A1, . . . , An) : κ
(ext−cons)

• binders (p. 29)

OK(B; Γ, Z), b ∈ B, in(b) = (κ1), out(b) = κ2, B; Γ, Z ` A : κ1

B; Γ ` bZ(A) : κ2
(bind)

• phrases (p. 29)

OK(B; Γ), B; Γ ` n : noun, B; Γ ` a : adj
B; Γ ` an : noun

(adj−noun)

• definitions (p. 30)

OK(B; Γ), B; Γ ` t/s/n/a/S : term/set/noun/adj/stat,
decvar(Γ) = x1, . . . , xn, c ∈ Ct/σ/ν/α/S , c 6∈ prefcons(B) ∪ defcons(B)

B; Γ ` c(x1, . . . , xn) := t/s/n/a/S : def
(int−def)
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• contexts (p. 30)

B : book
B ` ∅ : cont

(emp−cont)

OK(B; Γ), x ∈ Vσ/S , x 6∈ decvar(Γ)
B ` Γ, x : SET / STAT : cont

(set/stat−decl)

OK(B; Γ), B; Γ ` s/n : set/noun, x ∈ Vt, x 6∈ decvar(Γ)
B ` Γ, x : s/n : cont

(term−decl)

OK(B; Γ), B; Γ ` S : stat
B ` Γ, S : cont

(assump)

• books (p. 31)

` ∅ : book
(emp−book)

OK(B; Γ), B; Γ ` S/D : stat/def
` B ◦ Γ . S/D : book

(book−ext)
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