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In this paper, we consider an inventory problem with two demand classes having different
priorities. The appropriate policy of rationing the available stock, that is reserving some stock
for meeting prospective future demand of preferred customers at the expense of deliberately
losing some of the currently materialized demand of lower demand class(es), relies on the
estimation of the future demand. Utilizing current signals on future demand, which we
refer to as imperfect Advance Demand Information (ADI), decreases uncertainty on future
demand and hence it may help making better decisions on when to start rejecting lower
class demand. We develop a model that incorporates imperfect ADI with inventory ordering
(replenishment) decision and rationing available stock. In a two-period setting, we show some
structural properties, solve the rationing problem, and propose a solution methodology based
on Monte Carlo simulation for the ordering problem. We conduct empirical tests to measure
the impact of system parameters on the expected value of imperfect ADI, and consequently
we provide managerial insights as to when the utilization of imperfect ADI becomes more
valuable.

Keywords: Inventory/production; Advance Demand Information; Customer Reliability;

Periodic Review; Demand Classes; Rationing; Monte Carlo Simulation

1 Introduction and Related Literature

Consider a style goods manufacturer delivering shipments for two distinct markets (say,

to local retailers and to overseas buyers). Local retail stores have priority over the overseas

buyers. The manufacturer’s planning horizon is simply divided into two periods with possibly

different lengths. At the beginning of the first period the manufacturer has pre-season order

information from its customers in the form of soft commitments, that are subject to revisions
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within terms of their mutual contracts. Based on the pre-season order information and

the on-hand available inventory produced during the pre-season, the manufacturer makes

a decision on how much additional goods to produce within the first period that will be

available for the second period. After the customer order information are transformed into

hard order commitments, the manufacturer decides on how much of the overseas customers’

demand to satisfy and how much stock to reserve for the second period, by also taking into

account the order information for the second period. This scheme fits into quality flexibility

environments with different customer priorities and availability of order information.

The order information in the example above is a form of Advance Demand Information

(ADI), which is a term that refers to the information on future demand in general. If

the customers place their orders prior to their requirements, this constitutes perfect ADI. In

many cases however, the available information on future demand -or the information that can

be collected and processed in rather easy and inexpensive ways particularly due to advances

in information technologies- includes impurity and uncertainty. We refer to this kind of ADI

where there is an early indication of prospective future orders as “imperfect ADI”. A simple

example is a company that uses sales representatives to market its products, in which case

the collection of sales representatives’ information as to the number of customers interested

in a product can generate an indication about the future sales of that product, hence it

constitutes imperfect ADI. Other applications include internet retailing, Vendor Managed

Inventory (VMI) applications and Collaborative Planning, Forecasting, and Replenishment

(CPFR) environments. In the remainder of the text we use the terms ADI and imperfect

ADI interchangeably -unless noted otherwise-, since we consider the imperfect case in this

paper.

In today’s competitive market conditions, customer differentiation is becoming increas-

ingly important. In our style goods manufacturer example, local retailers may have priority

over the overseas customers -or the other way around- for reasons such as contractual agree-

ments that guarantee some high service level, or higher sales volume. Differentiated customer

classes not only may have relative priority over each other, but they may also have different

ADI structures.

The concept of differentiated customer priorities, or different demand classes, indeed ex-

ists in almost all kinds of service or goods production systems. Among many other examples,

consider a spare part in a production environment that is of vital importance for a machine,

which can also be used for another machine for rather minor purposes. In this case, these
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two machines constitute two different demand classes for the spare part. In a restaurant with

limited seats, when the only remaining space is a large table, a single customer is probably

of not the same value (in economic terms) as a group of customers. Because, if the single

customer is seated, there is a risk of losing a group of customers that might arrive while all

the tables are occupied.

In our problem environment, there are two demand classes (or customer classes). We

refer to the preferred customer class as class-1 and the other one as class-2.

An appropriate policy to handle the problem of facing demand from different classes is to

reserve some part of the stock for the use of higher priority customers only, which is known as

“(inventory) rationing policy”. Demands from both classes are to be met until the inventory

level drops down to a critical rationing level, but only class-1 demand is to be met if the

inventory level is below that critical rationing level. This results in backordering some class-

2 customers with the intention of avoiding (or decreasing the number of) probable class-1

backorders. However, an optimal rationing policy, that is the amount to be rationed and its

dynamic relation with some other possible factors (time, lead times, remaining lead times,

ADI, number and importance of demand classes, etc.) depends on the problem environment

and it is yet an open question in a general context.

While making the critical decision of starting to reject customers with an expectation

of future demand from preferred customers, it may be very important to know more about

future demand. Therefore, current signals on future demand could be utilized for making

better decisions on when to start rejecting lower class demand. In this paper we investi-

gate the impact of using imperfect ADI when two distinguished demand classes exist. The

questions that we attempt to answer are: What is the optimal way of allocating the in-

ventory among the demand classes under imperfect ADI? How can the ordering policies be

determined in that case? How do the system parameters affect the value of imperfect ADI?

In what follows, we review the related literature on ADI and inventory rationing briefly.

Hariharan and Zipkin (1995) show that perfect ADI improves the performance of a continuous-

time inventory system in the same way as a reduction in lead-times. Gallego and Özer (2001)

model perfect ADI through a vector of future demands and show the optimality of a state-

dependent order-up-to policy in a discrete-time setting. Dellaert and Melo (2003) deal with

the lot-sizing problem in a similar environment. Karaesmen et al. (2002) consider a capac-

itated problem under perfect ADI and stochastic lead times. They model the problem via

a discrete time make-to-stock queue. We refer the reader to Karaesmen et al. (2003) for a

3



recent literature survey and treatment of perfect ADI in production/inventory systems.

The literature on different forms of (imperfect) ADI has been rapidly increasing in re-

cent years. Treharne and Sox (2002) consider a problem where the demand in any given

period arises from one of a finite collection of probability distributions. They model the

demand as a composite-state, partially observed Markov Decision Process and show that a

state-dependent base stock policy is optimal for their problem environment. DeCroix and

Mookerjee (1997) consider a periodic-review problem in which there is an option of purchas-

ing demand information at the beginning of each period. They consider two levels of demand

information: Perfect information allows the decision maker to know the exact demand of the

coming period, whereas the imperfect one identifies a particular posterior demand distribu-

tion. They characterize the optimal policy for the perfect information case. Van Donselaar

et al. (2001) investigate the effect of sharing uncertain ADI between the installers of a project

and the manufacturers, in a project-based supply chain. The uncertainty in their setting

arises from incompleteness of the selection of installers and manufacturers. Thonemann

(2002) elaborates further on a similar problem in which there is a single manufacturer and

a number of installers. He considers two types of ADI: Information on whether or not the

installers will place an order, and information on which product they will order. Zhu and

Thonemann (2004) consider a problem that consists of a number of customers that may pro-

vide their demand forecasts. These forecasts are employed to improve the demand forecast

of the retailer through an additive Martingale model of forecast evolution. Assuming a linear

cost associated with the number of customers that share information, they investigate the

relation between the optimal number of customers to contact and the problem parameters.

Although different priorities for some classes of customers is a commonly faced situation,

the literature in this field only recently started to expand. Among the existing studies, none

considers employing ADI, to the best of our knowledge. In the content of supply chain

contracts, Tsay et al. (1999) refer to inventory rationing problems as extremely difficult

and consider them as generally intractable. Vericourt et al. (2002) state, as an addition to

the reason of the limited amount of research on this topic, that rationing problem is often

viewed as an operational decision rather than a strategic one, and hence disregarded in the

contracts. According to their empirical results, however, inventory rationing turns out to be

important.

One of the pioneering works that models different demand classes is by Veinott (1965).

He considers a periodic review model in which each period is divided into small subperiods.
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Production or procurement decisions can only take place at the beginning of a (major) period.

All demand in a subperiod is met as long as there is enough stock, in decreasing priorities. He

introduces the concept of “critical levels” describing a possible critical level rationing policy

without analyzing it. Topkis (1968) elaborates on this idea and builds a similar periodic

review model, again made up of small subperiods. He proves that the optimal policy can

be described by a base stock ordering amount in a period and a set of critical rationing

levels in each subperiod. Another study by Evans (1968) confirms the results of Topkis in

an environment with two customer classes. They both assume zero lead time for ordering,

and the critical rationing levels in each subperiod depend on the remaining time until the

end of the period. Nahmias and Demmy (1981) compare the effect of rationing on the fill

rate against a traditional system with no rationing, for two demand classes. Cohen et al.

(1988) consider a discrete time (s,S) inventory model with two demand classes, but without

rationing (that is, upon observing demands, class-1 demand is attempted to be met, followed

by class-2 demand, without reserving any amount to avoid possible class-1 backorders in the

following periods). They develop a heuristic that generates reasonable s and S values.

Nahmias and Demmy (1981) are the first to build a continuous review model -an (s,Q)

model- with rationing. Their purpose in that model is again to compare fill rates, rather

than optimization. Moon and Kang (1998) extend the research of Nahmias and Demmy

(1981) to several demand classes and compound Poisson demand. Melchiors et al. (2000)

also extend the work of Nahmias and Demmy (1981). They evaluate expected cost terms for

a similar (s,Q) model. They propose a procedure for computing parameters that minimizes

the cost function they derive, based on enumeration and bounding. Deshpande et al. (2003)

consider a similar (s,Q) problem with rationing, but unsatisfied demand being backordered

instead of lost, and without assuming at most one outstanding order. They propose an

efficient algorithm to determine the near-optimal solution. Teunter and Klein Haneveld

(1999) consider another continuous review model, a continuous review variant of the model

of Topkis (1968) and Evans (1968), for two demand classes with a backorder cost proportional

to the length of the backorder period. They propose “remaining time policies” in which the

amount of inventory that should be rationed depends on the remaining time until the next

procurement opportunity if the lead time is zero, and on the remaining time until the orders

to arrive if there is a positive deterministic lead time.

Sobel and Zhang (2001) consider a model with two demand classes with the difference

that class-1 demand is deterministic and must be met whereas class-2 demand is stochastic
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and can be backordered (without rationing). For a fixed setup cost, they show that the

optimal replenishment policy is of a modified-(s,S) type. Frank et al. (2003) extend their

analysis to the case where rationing of the stochastic demand is possible. They characterize

the optimal replenishment policy in the lost sales case, which turns out to have a complicated

structure.

Another branch of rationing literature relies on queuing theory. Ha (1997b) models a

rationing problem with several demand classes and lost sales as a single server make-to-

stock queue and shows the optimality of a set of monotone rationing levels with Poisson

arrivals and exponential production times, i.e. in an M/M/1 setting. Ha (1997a) conducts

a similar analysis for the backordering case with two demand classes. He shows that in

that case the optimal ordering policy is of order-up-to type and optimal rationing policy is

given by a monotone switching curve, such that the critical rationing level is decreasing in

the number of the class-2 backorders in the system, again for an M/M/1 setting. Dekker

et al. (2002) derive fill rate and average cost terms for Poisson demand and general lead

time, for a lot-to-lot model with lost demand and several demand classes. They also propose

some efficient solution methods without assuring optimality. Vericourt et al. (2002) extend

the study of Ha (1997a) to a several demand classes case. They characterize the optimal

rationing policy, which turns out to be a set of critical rationing levels. They also propose

an algorithm to compute those critical rationing levels. Vericourt et al. (2001) compare this

optimal policy with two other policies. They also compute the optimal parameters under a

fill rate constraint.

Our work weakly relates with the literature on dynamic pricing with inventory consid-

erations (or similarly to revenue management), as a part of that literature focus on market

environments where there is no opportunity for inventory replenishment over the remaining

part of the period or selling season (see Elmaghraby and Keskinocak (2003) for a recent

review). Under such an environment, the rationing policy reserves the available stock for

the preferred customers, without considering a price change.

In this study we consider a two-stage problem where an ordering quantity decision is

made in the initial stage, and how much of the low-priority demand to ration is decided in

the second stage. We consider two streams of customers (high priority and low priority),

each facing independent stochastic demand. Imperfect information on the demand for each

stage is available. The objective is to minimize the expected total inventory-related costs.

The contribution of this study can be summarized as follows:
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a. We present and analyze a model that incorporates use of imperfect ADI in the presence

of customer classes. Specifically, we model a decision problem in which rationing

decision follows the ordering decision (with a time lag).

b. We show the effect of using imperfect ADI on the rationing decision.

c. We characterize the behavior of the optimal rationing policy under imperfect ADI.

Additionally, we obtain useful structural properties of the problem posed.

d. We present computational analysis that provides valuable managerial insight for the

design and operation of such systems.

The rest of this paper is organized as follows. In Section 2 we discuss our problem

environment and present the solution to stock rationing problem under imperfect ADI when

two demand classes exist. We develop a Monte Carlo simulation-based solution to inventory

ordering problem in Section 3. We examine the value of information aspect of ADI on

rationing decision in Section 4. Finally, we present our conclusions and discuss possible

extensions in Section 5.

2 Modeling Framework and Rationing Problem

In this study we explore the characteristics of the solution to the complicated question of

integrating imperfect ADI in inventory rationing and replenishment. In specific, we focus

on a problem with one ordering (replenishment) decision and one rationing decision. The

objective is to minimize the expected total inventory-related costs. We assume linear holding

and lost sale costs. The notation is introduced as need arises, but we summarize our major

notation in Table 1 for the ease of reference.

2.1 Description of the Model

Class-1 demand (the demand class with higher priority) is either immediately satisfied or

lost. Class-2 demand is accumulated until the end of the period and unmet demand at the

end of the period is lost. Each unit of lost demand from a class-1 customer incurs a cost of

b1 to the system, and each unit of lost demand from a class-2 customer incurs a cost of b2,

such that b1 > b2.
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Table 1: Relevant Notation

Kn : Generic random variable denoting the size of the ADI available at the
beginning of period n (n = 1, 2)

kn : Size of the ADI available (observed) at the beginning of period n
(n = 1, 2)

Di
n(kn) : Random variable that denotes the demand from class-i customers that

occurs in period n, if the size of ADI that is available at the beginning
of period n is kn, for i = 1, 2, n = 1, 2

Dn(kn) : Random variable denoting the total demand in period n, for n = 1, 2.
di

n : Realization of Di
n(kn), that is the actual demand from class-i customers

that occurs in period n, for i = 1, 2, n = 1, 2
dn : Realization of Dn(kn)

Gi
n(w|kn) : Distribution function of Di

n(kn), for i = 1, 2, n = 1, 2
Gn(w|kn) : Distribution function of Dn(kn), for n = 1, 2

x : Inventory on-hand at the beginning of period 1
Q : Amount ordered at the beginning of the first period
y : Inventory position at the beginning of the second period
bi : stockout cost per unit lost sale for demand class i
h : inventory holding cost per unit per period

There are two decision epochs in the planning horizon. After collecting the initial ADI, k1,

an ordering decision is made at the beginning of the first period. Production (or procurement)

lead-time is one period and there is a starting inventory of x on hand. Therefore, the other

decision to make is how much of the class-2 demand to ration at the end of the first period.

The amount ordered at the beginning of the first period is not available at the instance of

this rationing decision. During the first period, imperfect ADI on the demand of the second

period, k2, is collected and this information is available while making the rationing decision

at the end of the first period. The end of the second period is the end of the planning

horizon, therefore all of the demand from class-2 customers are attempted to be met at the

end of the second period. We note that the periods are not necessarily of the same duration.

Let Di
n(kn) be the random variable that denotes the demand from class-i customers that

occurs in period n, if the size of ADI that is available at the beginning of period n is kn,

for i = 1, 2, and n = 1, 2, and let di
n denote the realization of Di

n(kn), that is the actual

demand. Note that we consider kn as all of the available ADI on both class-1 and class-2

demands. In other words, there exists information that affects demand from both classes.

This generalization makes it possible to cover cases such as ADI for the demand classes being
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separately available, or ADI being available on only one demand class. In order to simplify

the notation, we suppress kn and denote the random variable for demand as Di
n. The model

can be adjusted depending on the most likely relation between imperfect ADI and demand

to be realized. For example, if ADI is separable for the demand classes, then Di
n would stand

for Di
n(ki

n).

We define Dn = D1
n + D2

n to denote the total demand in period n, for n = 1, 2. Let Q be

the quantity ordered at the beginning of the first period, and let x be the initial inventory

level in the system. The following order of events take place: At the beginning of the first

period, k1 is observed, and Q is ordered. At the end of the first period, d1
1, d2

1, and k2 are

observed, x is made available to meet d1
1 as much as possible, the rationing decision is made,

and accordingly d2
1 is met to the extent allowed by the rationing decision. At the beginning

of the second period, Q is received. Finally, at the end of the second period, d1
2 and d2

2 are

observed, d1
2 is met as much as possible, and the remaining items on hand, if any, are made

available to meet d2
2.

Note that information as to the future demand is available in the system at both decision

epochs, namely k1 at the point of ordering decision, and k2 at the point of rationing decision.

This information should be utilized to make better ordering and rationing decisions.

This model fits better to products with a short life cycle, such as the style goods example

described in Section 1. Demand signals for such products may be of crucial importance,

especially if the possible number of replenishments is few. Our model considers such a

product with two epochs of ordering. The first ordering decision that is made with little or

no information on future demand (or future fashion), determines the initial inventory. As

more information on demand is collected, the decisions of both the second replenishment

and rationing available inventory during the lead time of the second replenishment are made

by utilizing this information. In such environments it is more likely that unmet demand is

lost due to competitive market conditions.

We also note that any kind of relation between ADI and demand can be considered in

our modeling framework. For instance, there can be separate information on each demand

class, which might be correlated as well. While explicit solutions may become difficult to

compute for some distributions and correlation structures, it is possible to apply numeric

methods and/or use approximations in those cases.

While we discuss our model in detail and show some structural properties in the rest of

the paper, the objective function can be summarized as:
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min
Q

EK2,D1

1
,D2

1

[

min
y

{

TRC1 + ED1

2
,D2

2

[TRC2]
}

]

† (1)

where y, as will be shown later, is an inventory level that defines the rationing level when

combined with Q and demand realizations of the first period, and TRC1 and TRC2 are the

total relevant costs for the system at the end of the first and the second period, respectively.

In Sections 2.2 and 2.3 we analyze the rationing problem which is depicted as the inner

minimization over y in (1), and subsequently we analyze the rest of the problem in Section

3.

2.2 Rationing Problem and Derivation of the Expected Cost Func-
tion

We elaborate on the problem using a backward recursion and first handle the rationing

problem at the end of the first period for a given set of parameters: initial inventory level

(x), amount ordered at the beginning of the first period (Q), realized demand from class-1

and class-2 customers in the first period (d1
1 and d2

1), and the size of ADI collected during the

first period (k2). The value of k1 is irrelevant at this point, since the first period demands

that depend on it have already been materialized. Similarly, the random variables D1
1, D

2
1,

and K2 are also irrelevant, since their realizations have already been observed. Demand is

either met fully, or partially, or not met at all, depending on the availability of on hand stock

and rationing decision.

Let R̃ be the non-negative critical rationing level such that if the inventory on hand after

meeting class-1 demand at the end of the first period is less than R̃, then all of d2
1 is decided

not to be fulfilled, and hence lost; otherwise, class-2 demand is met as long as on hand

inventory does not drop to a level less than R̃.

We note that the problem has a trivial solution if d1
1 ≥ x, as in this case all of the initial

stock will be used to satisfy class-1 customers.

Although it is possible to formulate the cost terms and hence the expected cost by making

use of R̃, the formulation gets rather complicated then. Therefore we consider another

variable, R, which is the inventory level right after meeting first period demand. Note that

R is related to R̃ in the following way:

†The subscripts of E are the random variables over which the expectation is taken.
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R =























0 if x < d1
1

x − d1
1 if x − R̃ ≤ d1

1 ≤ x

R̃ if x − R̃ − d2
1 ≤ d1

1 < x − R̃

x − d1 if d1
1 ≤ x − R̃ − d2

1.

(2)

R is the net reserved amount at the end of the first period, either due to deliberate

rationing or due to excessive or insufficient demand. Therefore, we refer to R as the ‘reserve

level’. The relation defined in (2) translates into the following.

R =
(

Min{(x − d1

1)
+, R̃}

)

+
(

x − d1 − R̃
)+

. (3)

A closer examination of (2) reveals the following points: First of all, if there is an excessive

amount of class-1 demand, then R equals zero, i.e. nothing is left to reserve after satisfying

class-1 demand partially. In this case, all of class-2 demand is lost as well as a part of

class-1 demand. Secondly, if the inventory level drops under the critical rationing level after

satisfying class-1 demand fully, then whatever left on hand will be reserved, losing all of the

demand from class-2 customers. Thirdly, if the inventory level is still more than the critical

rationing level after fully satisfying class-1 demand, then an amount that equals the critical

rationing level will be reserved if there is sufficient class-2 demand, losing class-2 demand

partially. And finally, if the total demand is not sufficient to drop the inventory level to a

point under the critical rationing level even after fully satisfying both classes of demand,

then whatever left after meeting all the demand will have to be reserved to the next period.

In this case, all of the demand is met at the end of period 1.

We refer to the optimal value of R as R∗, which is a function of x,Q, d1
1, d

2
1, k2, distribution

functions of period-2 demands, and cost parameters b1, b2, and h, as we derive in what follows.

Upon arrival of Q at the beginning of the second period, the system adjusts its inventory

level, which equals inventory position at that point, to

y = Q + R. (4)

But since Q is known at this point, finding R∗ is equivalent to finding y∗, i.e. the optimal

value of y. Therefore, rationing problem reduces to a modified newsboy problem with the

cost function as derived below.

Inventory related costs at the end of the first period, TRC1, can be stated as

TRC1 = b1(d
1

1 − x)+ + b2

[

R −
(

(x − d1

1)
+ − d2

1

)]

+ hR. (5)
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Note that there is no stochastic term in TRC1. We can substitute (4) in (5) to obtain

TRC1 = b1(d
1

1 − x)+ + b2

[

(y − Q) −
(

(x − d1

1)
+ − d2

1

)]

+ h(y − Q). (6)

Inventory related costs at the end of the second period, TRC2, can be stated as

TRC2 = b1(D
1

2 − y)+ + b2

[

D2

2 − (y − D1

2)
+

]+

+ h(y − D2)
+. (7)

One can use s (salvage cost) instead of h in (7) to take the end-of-horizon effect into

consideration. Combining (6) and (7), inventory rationing problem at the end of the first

period can be formulated as

Minimize y E[TRC|k2, d
1

1, d
2

1] = TRC1 + E[TRC2|k2, d
1

1, d
2

1]
† (8)

subject to Q + (x − d1)
+ ≤ y ≤ Q + (x − d1

1)
+

The constraints in (8) define the lower and upper bounds on the inventory level upon

arrival of Q at the beginning of the second period, respectively. Equation (3) reveals that

R ≥ (x − d1)
+ and R ≤ (x − d1

1)
+. In other words, the minimum amount that must

be reserved is what remains after meeting all of the demand in the first period, and the

maximum amount that can be reserved is what remains after meeting class-1 demand in the

first period, as discussed after defining R. Since y = Q + R, the constraints in (8) follow.

We refer to E[TRC|k2, d
1
1, d

2
1] as the “Expected Total Conditional Cost” (ETCC) and

for the ease of notation we drop d1
1, d

2
1 terms in E[TRC2|k2, d

1
1, d

2
1]. Consequently,

ETCC = TRC1 + E[TRC2|k2]. (9)

In specific,

E[TRC2|k2] = b1

∫ ∞

y
(w − y)dG1

2(w|k2) (10)

+b2

∫ y

−∞

∫ ∞

y−w1

(w1 + w2 − y)dG2

2(w
2|k2)dG1

2(w
1|k2)

+b2E[D2

2|k2]
∫ ∞

y
dG1

2(w|k2) + h
∫ y

−∞
(y − w)dG2(w|k2),

where G1
2(w|k2), G2

2(w|k2), and G2(w|k2) are the distribution functions of D1
2, D2

2, and D2,

respectively. We note that while the demand may be discrete, for the ease of exposition we

assume that demand distributions are continuous and E[TRC2|k2] is twice differentiable.

†We use the notation “E[TRC2|k2, d
1

1
, d2

1
]” to refer to E[TRC2|K2 = k2, D

1

1
= d1

1
, D2

1
= d2

1
], and similar

notation for the conditional part whenever there is no ambiguity.
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2.3 Properties of the Expected Total Conditional Cost Function
and the Optimal Reserve Level

Lemma 1 E[TRC2|k2] is convex in y, and hence in R, for a given Q ≥ 0 and for all k2.

Proof : Proof is provided in Appendix A.

Now we state the following theorem, which is used for solving the optimization problem

presented in (8).

Theorem 1 ETCC is convex in y, and hence in R, for a given Q ≥ 0 and for all k2.

Proof : TRC1 is linear in y, and E[TRC2|k2] is convex in y for all k2 from Lemma 1.

Therefore, their sum is convex in y for all k2. The same argument holds for R for any given

Q ≥ 0, since y = Q + R. This completes the proof. 2

One can find the optimal reserve level at the end of the first period as stated in the

following theorem.

Theorem 2 The optimal reserve level at the end of the first period is

R∗ = Max
{

Min
{

(y∗ − Q), (x − d1

1)
+

}

, (x − d1)
+

}

, (11)

where

y∗ =
{

min y|(b2 − b1)
(

1 − G1

2(y|k2)
)

+ (b2 + h)G2(y|k2) + h = 0
}

. (12)

Proof : We first note that ETCC = TRC1 + E[TRC2|k2]. From (6) we obtain

d TRC1

d y
= b2 + h.

We derive in Equation (26) of Appendix A that

d E[TRC2|k2]

d y
= (b1 − b2)G

1

2(y|k2) + (b2 + h)G2(y|k2) − b1.

Consequently, the first order condition is sufficient to find y∗, the minimizer of ETCC, as

stated in (12), due to Theorem 1. This result, combined with the boundary conditions that

are defined in (8), result in (11). We also note that there exists a solution to (12), because

limy→−∞
d ETCC

d y
= −b1+b2+h < 0, limy→+∞

d ETCC
d y

= b2+2h > 0, and due to the convexity

of ETCC by Theorem 1. 2

13



For the special case of perfect ADI on class-1 demand, that is when d1
2 is known with

certainty by the end of the first period, we show in Appendix B that y∗ = d1
2, which replaces

(12). This means that the ideal inventory level that the system would like to dedicate to the

second period is the class-1 demand that will be materialized in the second period, which

in this case is known with certainty right before the rationing decision. Reserving below it

would result in unmet class-1 demand in the second period, and reserving above it would

result in reserving for class-2 demand in the second period (that is, possibly losing actual

class-2 customers in the first period with an anticipation of class-2 demand in the second

period). Similarly, for the special case of k2 = 0, that is when the ADI realization turns

out to be zero, we have y∗ = 0 and R∗ = (x − d1)
+ which means that nothing should be

intentionally reserved for the second period.

Theorem 2 enables us to characterize the relation between optimal reserve level R∗ versus

Q and x, given that the rest of the system remains the same. We enumerate some of those

characterizing properties that relate R∗ with Q in Corollary 1, and those with x in Corollary

2.

Corollary 1 The following properties hold.

1. limQ→∞ R∗ = (x − d1)
+

2. If 0 ≤ Q < (y∗ − (x − d1
1)

+)
+
, then R∗ = (x − d1

1)
+

3. R∗ is a non-increasing function of Q

4.
dR∗

dQ
=

{

0 if Q < Ql or Q > Qu

−1 if Ql < Q < Qu,
(13)

where

Ql =
(

y∗ − (x − d1

1)
+

)+

, Qu =
(

y∗ − (x − d1)
+

)+

. (14)

Property 1 states that no intentional rationing should be done if Q is very large. Property

2 states that all what can be rationed should be rationed if Q is not sufficient to reach the

desired inventory level at the beginning of the second period. Property 3 states that increased

order quantity decreases the necessity to ration. Finally, property 4 states that for insufficient

or abundant Q, marginal change in Q does not affect R∗, since R∗ is solely determined by
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the initial inventory and first period demand in that case. For any Q in between, the system

reacts to a unit increase in Q by a unit decrease in R∗ to maintain the optimal inventory

level at the beginning of the second period, y∗ = Q + R∗.

Corollary 2 The following properties hold.

1. limx→∞ R∗ = ∞

2. If x ≤ d1
1, then R∗ = 0

3. R∗ is a non-decreasing function of x

4.
dR∗

dx
=

{

0 if x < xl or xm < x < xu

1 if xl < x < xm or x > xu,
(15)

where

xl = d1

1, xm = d1

1 + (y∗ − Q)+, and xu = d1 + (y∗ − Q)+.

Properties 1 and 3 state that for higher initial inventory levels there will be higher reserve

levels, without an upper bound. Property 2 assures that no class-1 demand is rationed.

Finally, property 4 translates into the following: If x is less than class-1 demand, then a

marginal change in x does not affect R∗, since nothing is reserved anyway. If x is more than

class-1 demand but not sufficient to reach the optimal inventory level at the beginning of

the second period (y∗), then the system will reserve all that it can. If x is sufficient to reach

y∗, then any x in excess will be used to meet class-2 demand and hence will not be reserved,

until all the demand is met. If x is any larger than that, then it will have to be left over to

the second period.

With the help of Corollary 1 and Corollary 2, the relation between R∗ and Q for a given

x, and the relation between R∗ and x for a given Q can be illustrated as in Figure 1, where

Ru = Max {(Min {y∗, (x − d1
1)

+}) , (x − d1)
+}, Rl = (x − d1)

+, and Rm = (y∗ − Q)+. If

Ql > 0, as in the illustration, then it turns out that Ru = (x − d1
1)

+.

3 Determination of the Initial Order Quantity

Now we proceed to the problem of deciding how much to order at the beginning of the

first period for a given k1 and x. In other words, we need to find the value of Q that
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Figure 1: Change of Optimal Reserve Level versus Order Quantity and Initial Inventory

minimizes the expected total inventory related costs for both periods, E[TRC(Q)]. Note

that E[TRC(Q)] = EK2,D1

1
,D2

1

[ETCC] = EK2,D1

1
,D2

1

[TRC1 + E[TRC2|k2]]. We first state the

following theorem.

Theorem 3 E[TRC(Q)] is convex in Q under the optimal reserve level policy that is defined

in Theorem 2.

Proof : Proof is provided in Appendix C.

Theorem 3 holds for any reserve level policy, provided that the reserve level, R, is twice

differentiable (piecewise) with respect to Q and the second derivative is zero, as shown in

Appendix C.

It is also interesting to observe that substituting (13) into (35) of Appendix C results in

dE[TRC2|k2]

dQ
=











(b1 − b2)G
1(Q + R|k2)

+(b2 + h)G(Q + R|k2) − b1 if Q < Ql or Q > Qu

0 if Ql < Q < Qu.
(16)

This result reveals that the marginal contribution of Q to E[TRC2|k2] within the limits

Ql < Q < Qu is zero. In other words, a decrease (or increase) of Q∗ by a marginal unit (as

long as it is still in the limits mentioned) will result in the same E[TRC2|k2], because the

system will adjust itself to exactly the same inventory position by reserving a unit more (or

less) for the second period.

We note that explicit computation of E[TRC(Q)] is difficult. Therefore, we propose

the following method based on Monte Carlo simulation in order to calculate approximate

expected total inventory related costs.
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Approximate Cost Evaluation Procedure (ACEP):

• Initialization: Set TotalCost=0

• Main Step: For Counter = 1 to NUM (a large enough number) do

– Generate a set of realizations k2, d1
1, and d2

1 from relevant distributions

– Determine the optimal reserve levels for these generated values using Theorem 2

and calculate the corresponding ETCC

– TotalCost = TotalCost + ETCC

• Output: Approximate E[TRC(Q)] as TotalCost / NUM.

ACEP approximates the value of E[TRC(Q)] for a given Q ≥ 0, by generating realizations

of K2, D
1
1, and D2

1, and taking the average of the optimal ETCC values that are calculated

for each realization. The remaining issue is to search for the optimal order quantity, Q∗, that

minimizes E[TRC(Q)]. Theorem 3 enables the use of any search algorithm that is designed

for (quasi)convex functions. In our empirical studies that we present in Section 4, we apply

golden section method.

4 Value of Information

In this section we consider the value of information aspect of ADI on rationing decisions. The

rationing decision is to determine the amount to reserve for the second period, possibly by

not meeting some portion or all of class-2 demand in the first period. At this instance, ADI

might help making a better rationing decision by decreasing the uncertainty on the demand

of the second period. We conduct empirical tests to find out under which circumstances

there exists higher value of this ADI.

4.1 Problem Setting

In the tests that we conduct, we consider a structure in which ADI is available on class-1

customers only. Each individual information on demand is a prospective demand and it has

a probability, p, of being materialized as demand in the next period. The probability of

demand realization, p, may be referred to as “customer reliability level”, as well. While we

assume homogeneity of customer reliability levels for simplification, this is not a restrictive
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assumption. Consequently, the conditional demand distribution, D1
i , is Binomial with pa-

rameters ki and p, for i = 1, 2, which we approximate by normal distribution with mean kip

and variance kip(1−p). The distribution of class-2 demand is taken to be normal with mean

µ2 and variance σ2
2 in both periods, independent of D1

i and ki. We compare two policies for

operating the system of concern, in order to reveal the value of information: ADI-case and

NoADI-case. In both cases the decisions are made in an optimal manner, but only in the

ADI-case the system is operated under advance demand information (on class-1 demand).

For the sake of comparisons, the distribution of ADI is assumed to be known. We assume

a normal distribution with mean µK and variance σ2
K for ADI. Our general approach is to

obtain expected inventory-related costs for both of the cases and compare them. Before we

continue with discussing the details of our analysis, we first summarize our findings on the

value of ADI on rationing decision. The analysis of the test results reveals that ADI turns

out to be more valuable when

• demand variance is high

• relative importance of class-1 demand is high

• there is sufficient class-2 demand in the first period and there is sufficient initial inven-

tory

• order quantity plus the initial inventory in excess of the first period demand is close to

the expected class-1 demand of the next period plus some safety stock.

While the first three of these findings are rather intuitive, the last result was unexpected to

us prior to the experimentation phase. We discuss the intuition behind this result in Section

4.2.

In the remainder of this section, we explain our analysis and present our findings. We

start with the issue of optimal policies for the NoADI-case.

Optimal Reserve Level Under Lack of ADI

In order to find the optimal reserve level at the end of period-1, we use Theorem 2

as in the ADI-case. However, since ADI is not collected, the demand distributions in the

NoADI-case are observed as G1
2(y) and G2(y), instead of G1

2(y|k2) and G2(y|k2), respectively.

Consequently, equation (12) is replaced with
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y∗
NoADI =

{

min y|(b2 − b1)
(

1 − G1

2(y)
)

+ (b2 + h)G2(y) + h = 0
}

. (17)

The mean and the variance of D1
2 can be evaluated by conditioning on K2.

E[D1

2] = E
[

E[D1

2|K2]
]

= E[K2p] = pµK

V [D1

2] = E
[

V [D1

2|K2]
]

+ V
[

E[D1

2|K2]
]

= E[K2p(1 − p)] + V [K2p]

= p(1 − p)µK + p2σ2

K . (18)

Thus, class-1 demand distribution under NoADI-case can be reflected by

D1

2 ∼ N(pµK , p(1 − p)µK + p2σ2

K), (19)

and since D2
2 is assumed to be normally distributed with mean µ2, and standard deviation

σ2, the total demand in the second period under NoADI-case is normally distributed as well,

since it is the sum of two independent normal distributions. Hence,

D2 ∼ N(pµK + µ2 , p(1 − p)µK + p2σ2

K + σ2

2). (20)

Consequently, Theorem 2 is used in NoADI-case with the demand distributions being the

ones presented above. As a result, there exists a unique reserve level for any given set of

parameters at the end of the first period, as opposed to a variable reserve level that depends

on k2 in the ADI-case. Figure 2 illustrates this point. In both of the graphs in this figure, the

change of optimal reserve level as a function of ADI size is plotted for ADI- and NoADI-cases

under a certain set of parameters and a given Q. The value of Q is relatively smaller in the

left hand side graph compared to the one in the right hand side.† Note that information plays

a crucial role in making the optimal rationing decision, since the system reacts to available

information in the ADI-case by reserving a varying portion of class-2 demand that ranges

from none to all, unlike the NoADI-case with a fixed reserve level.

4.2 Experimentation

Computation of the Value of Information

The system state at the instance of the rationing decision is defined by x, d1
1, d

2
1, Q, and

k2, as well as cost parameters b1, b2, h, and distribution parameters p, µK , µ2, σK , and σ2. The

†While Figure 2 gives the impression that the optimal reserve level is piecewise linear in k2 in the ADI-case,
it is indeed (very slightly) nonlinear.
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Figure 2: R versus ADI size for two different Q values

approach we follow in order to reveal the value of information aspect of ADI in rationing

decisions is to generate k2 realizations, calculate corresponding optimal reserve levels and

relevant costs, average the costs out, and compare. Any realization that does not satisfy

k2 ≥ 0 should be disregarded or truncated to zero, because it would otherwise result in

V ar(D1
2) < 0 in the ADI-case.

The algorithm that is used for calculating the value of information is outlined below. We

present the algorithm in detail in Appendix D.

Algorithm for VoI on Rationing Decision (AVORD):

• Input: x, d1
1, d

2
1, Q, b1, b2, h, p, µK , µ2, σK , σ2

• Calculate TRC1 for NoADI-case

• Approximate E[TRC1|d
1
1, d

2
1] for ADI-case and E[TRC2|d

1
1, d

2
1] for both cases by con-

ditioning on a large number (NUM1) of k2 realizations from N(µK , σ2
K) distribution

and then averaging out

• Output:

%V oI = 100 ∗
E[TRC|d1

1, d
2
1]NoADI − E[TRC|d1

1, d
2
1]ADI

E[TRC|d1
1, d

2
1]ADI

We note that the performance measure considered above is the percent penalty of not

utilizing ADI (which we refer to as %V oI). Since the value of information (V oI) lacks

relativity, we report %V oI in the results.
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Since there is a fixed reserve level for the given input parameters in NoADI-case inde-

pendent of the value of k2, TRC1 in the NoADI-case does not change with k2, therefore it

suffices to compute it once. However, optimal reserve level depends on k2 in ADI-case, so

TRC1 is a function of k2. Therefore we take the average of TRC1 values conditioned on k2

realizations in this case, which we refer to as E[TRC1|d
1
1, d

2
1]ADI .

Description of the Tests Conducted

We conduct tests to examine the value of ADI on rationing decision as a function of

problem parameters. We first investigate which factors influence the value of ADI. Then we

conduct tests for a range of values of some parameters in order not only to comprehend the

effect of different values of those parameters on the value of information, but also to observe

the sensitivity of the %V oI.

We try different values of input parameters to investigate which values yield to increased

%V oI. We consider every combination of some fixed values of the input parameters, hence

our experimental design follows a full-factorial fixed-effects model. The values of the input

parameters (i.e. the levels of the factors) that we utilize in the experiment are provided in

Table 2.

Table 2: Values of Input Parameters
p 0.1, 0.5, 0.9
Q 0, 100, 200
x 10, 100

b1/b2 1.3, 10
b2FR 0.8, 0.95
µK 20, 200
µ2 10, 100
CV 0.05, 0.25
d2

1 10, 100

We fix h = 1 and set the cost parameters according to two considerations: b1/b2 being

close to 1 (since b1 > b2 + h must hold, we set b1/b2 = 1.3) and being 10; and the trade-off

between class-2 backorders and inventory holding (that is, b2/(b2 + h), which we refer to

as “b2FR”, resembling approximate “fill rate” as if there are no demand classes) being 0.8

or 0.95. The resulting sets of cost parameters are (b1, b2) = (5.2, 4), (40, 4), (24.7, 19), and

(190, 19). The coefficient of variation, CV , is taken as common to k2 distribution and D2
2

distribution at the same time. That is, σK/µK = σ2/µ2 = CV . We set d1
1 = 0 in all sets,
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because d1
1 is to be met from x in all cases and if d1

1 > x then there will be no inventory left

to ration at the end of the first period, and the value of information will trivially be zero.

These values of parameters result in 27 ∗ 32 = 1152 sets. Since we are interested in

revealing the characteristics of parameter sets that yield high %V oI rather than obtaining

confidence intervals on %V oI for each set, we only evaluate point estimates. Nevertheless,

we note that one might construct confidence intervals as well.

A sufficiently large run length (NUM1), that is the number of k2 realizations that will

suffice to estimate the values determined in AVORD with a specified precision, can be de-

termined by an appropriate statistical method. We followed a method provided by Law and

Kelton (1991), pp 538, based on a fixed number of replications. Nevertheless, we conducted

the experiments with a significantly larger run length to safely cover for some parameter sets

that might yield high variance.

Discussion of the Results

We conduct an analysis of variance (ANOVA) for this experiment on a model that includes

all of the main and two-way interaction effects. The main effects that are significant on

%V oI at 95% confidence level (and their respective p-values†) are µK (0.001), b1/b2 (0.003),

µ2 (0.004), x (0.005), d2
1 (0.017), p (0.023), and CV (0.028).

For this set of parameters, we deduce from main effects plots that there is a higher

expected value of information on rationing decision when expected ADI size is high, relative

importance of class-1 customers (i.e. b1/b2) is high, expected class-2 demand of the second

period is low, initial inventory level is high, class-2 demand of the first period is high,

customer reliability level is high, and system variability (induced by k2 and D2
2) is high.

These results are mostly in line with intuition, as we briefly discuss in what follows.

Observation 1. When class-1 demand is not significantly more important than class-2

demand, and especially when both backorder costs are relatively low, then it does not pay off

to collect advance demand information, because the rationale for rationing (losing a class-2

demand deliberately and also facing a holding cost to avoid a possible loss of class-1 demand)

is low.

Observation 2. Higher values of expected ADI size and customer reliability level stand

for a higher expectation for class-1 demand in the second period. In that case, reservation

†“p-value” is the smallest level of significance that would lead to rejection of ANOVA null hypothesis,
and it should not be confused with customer reliability level, p.
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for the second period gets more critical, hence the value of information. Nevertheless, this

statement holds as long as the quantity ordered (Q) plus the initial inventory in excess of

the first period demand ((x − d1)
+) is not much less or much more than expected class-1

demand of the second period plus some safety stock. We discuss this issue later in this section.

We note that the importance of ADI is not necessarily only high when it signals a higher

prospective demand. Indeed, the average of the reserve levels for the ADI-case are mostly

lower than the fixed reserve level of NoADI-case in those sets that yield higher expected value

of information. In other words, “blindly” reserving in bulk with an expectation of higher

class-1 demand without having ADI is not necessarily better, because when the size of ADI is

low, it alerts the system for a prospective low class-1 demand, despite high expectation prior

to ADI realization (i.e. when E[K2] = µK is high but realized k2 is relatively low). These

arguments hold in a stronger sense when the variance of the ADI size and the variance of

class-2 demand are higher, hence the variance of the second period demand is high in total.

Observation 3. A low level of initial inventory, x, leaves less room for rationing, and

therefore the expected value of information is less in that case. A similar reasoning holds for

the amount of class-2 demand in the first period, d2
1. Nevertheless, there are some results

contradicting the former observation when d2
1 is also low. This is because when the initial

inventory is low and d2
1 is high, then the rationing decision changes only a small portion of

the first period costs (since d2
1 is relatively much higher), and it does not affect the second

period costs significantly either (since x is low); however, when x and d2
1 are both low, then

the rationing decision changes a significant portion of the first period costs, although the

argument for the second period costs still hold.

Observation 4. When the expected class-2 demand of the second period is low, then the

second period demand is mostly defined by class-1 demand. Therefore, ADI (which is on

class-1 demand in this experiment) becomes more important.

It should be noted that none of the factors that lead to higher %V oI can be effective only

by themselves. For example, if there is no initial inventory, then the value of information

will be zero, independent of all other factors, since there will be nothing to ration. Other

factors that trivially yield zero value of information themselves are the customer reliability

level being zero, coefficient of variation being zero, Q or x assuming a very high value

(theoretically when x + Q− d1 approaches infinity), µK and hence expected class-1 demand

of the second period being zero (if non-negative demand is assumed), class-2 demand of the

first period being zero, and the cost parameters being such that b1 ≤ b2 + h. Q = 0 is not
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in this list, because optimal reserve levels could very much depend on ADI when Q = 0 too,

depending on other parameters.

We also note that the interaction effects are mostly due to a similar reasoning as pointed

in the discussion above. For example, there appears to be an interaction effect for x and CV ,

with a p-value of 0.028. But this is mainly because %V oI is small for both values of the CV

when the initial inventory is small, i.e. x = 10. Larger CV yields larger %V oI when x = 100.

The Impact of the Selection of Q on the %V oI

The previous experiment does not make it very clear how the value of ADI changes as

a function of Q. Nevertheless, it appears that Q is close to the expected class-1 demand of

the second period (E[D1
2]) in most of the results with higher %V oI. Therefore, we conduct

another ANOVA, this time with the factor E[D1
2] (= pµK) instead of the factors p and µK .

The model includes all of the main and two-way interaction effects again. The main effects

that are significant on %V oI at 95% confidence level (and their respective p-values) are

E[D1
2] (0.000), b1/b2 (0.003), µ2 (0.004), x (0.005), d2

1 (0.016), and CV (0.026). The most

significant interaction effect is between Q and E[D1
2] with a reported p-value of 0.000.

With the purpose of gaining better insight on the sensitivity of %V oI with respect to Q

we fix a set of input parameters and apply AVORD with varying values of Q. The values

of the parameters in this set are p = 0.9, CV = 0.25, µK = 200, µ2 = 10, x = 100, d1
1 =

0, d2
1 = 100, b1 = 190, b2 = 19, h = 1. We note that the initial inventory is equal to the

first period demand in this set. The graph depicting the resulting %V oI versus Q values

is presented in Figure 3. A second set of parameters with only cost parameters changed as

b1 = 12, b2 = 5, h = 1 is also depicted on the same graph.

We also present the expected total cost figures, E[TRC|d1
1, d

2
1], for ADI- and NoADI-

cases with b1 = 12, b2 = 5, h = 1 in Figure 4. Expected total costs when rationing is not

allowed (ETRCNo-Rat) is also presented on the same graph for comparison purposes.

Observation 5. As a result of this test, we conclude that %V oI is especially high within

a range of Q, under the problem settings considered here. The reason why %V oI is not

significant for very low or very high values of Q can be explained as follows. For Q values

that are much smaller than the expected class-1 demand of the second period (which is 180

in this test), the optimal rationing policy is to reserve a large amount, if possible. But

since x = 100 in this test, the optimal policy is to ration most of it, if not all, even if k2

realization is relatively low. Similarly, for Q values that are much higher than the expected
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Figure 3: %V oI versus Order Quantity

class-1 demand of period 2, the optimal policy is to reserve very little, if any at all, even if k2

realization is relatively high. Observe that Figure 4 confirms this point, since the expected

costs of both policies converge to that with no rationing as Q increases. Therefore ADI is no

longer very critical in such cases. For Q values that are in between, ADI has a high value.

For the test with b1 = 190, b2 = 19, h = 1, the penalty of not utilizing ADI reaches values

up to 350.64% (when Q = 220), which equivalently corresponds to a cost saving of 77.81%

when ADI is utilized. For the test with b1 = 12, b2 = 5, h = 1, the penalty is as high as

66.93% (when Q = 170) -or the cost saving is 40.09%-. We also note that the values of Q

for which ADI is more valuable change according to cost parameters.

Observation 6. Figure 4 also reveals that the penalty paid for not rationing compared to

the optimal rationing policy is significant especially when the order quantity is smaller than

optimal. Moreover, for order quantities that are much smaller than the optimal, the majority
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of the penalty is due to not rationing, whereas for the rest the majority of the penalty is

due to not employing imperfect ADI in the rationing decision. There are still considerable

savings if rationing and imperfect ADI are used with the optimal ordering quantity. For the

set of parameters that generated Figure 4, %V oI is 16.25% when the system operates with

the optimal order quantity of 238. (The optimal policy under lack of ADI is not to ration

for that Q.)

We extend our analysis by examining the relation between Q and %V oI for different

values of initial inventory level x, because x and Q interact in determining the reserve level.

We note that the previous observations in this subsection (namely, Observations 5 and 6)

were made for an x value that did not exceed d1, which means that the only source to satisfy

the demand of the second period on top of the order quantity was rationing. In what follows

we let the values of the initial inventory vary.

The values of the parameters in this set are the same as the previous one, except for x

varying now and µ2 = 100 instead of 10. That is, p = 0.9, CV = 0.25, µK = 200, µ2 =

100, d1
1 = 0, d2

1 = 100, b1 = 190, b2 = 19, h = 1. The %V oI versus Q for different values of

x ≥ d1 are presented in Figure 5, and those for x ≤ d1 are presented in Figure 6. We note
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that when x ≥ d1 (where d1 = d2
1 in our current setting), then the individual values of x−d1

and Q are irrelevant as long as their sum remains unchanged. Because, x+Q−d1 is the lower

bound on y, that is x+Q−d1 is the minimum amount that will be available at the beginning

of the second period even if all d1 is met. Therefore, the absolute value of information is

the same† for the same x + Q − d1 values, and %V oI changes only due to relativity (since

the system cost increases for higher x). Consequently, when x ≥ d1, relatively higher %V oI

values seem to be attained within a range of x + Q − d1 that is not too high or too low

compared to the expected class-1 demand of the second period plus some safety stock.

For the case where x ≤ d1, %V oI increases as x increases for all values of Q (which is in

line with our initial results that has already been discussed). Relatively higher %V oI values

in this case are attained within a range of Q that is not too high or too low compared to the

expected class-1 demand of the second period plus some safety stock.

Observation 7. Combining these two cases, we conclude that relatively higher %V oI

values are attained within a range of Q+(x− d1)
+ that is not too high or too low compared

to the expected class-1 demand of the second period plus some safety stock, under the ex-

†there are insignificant differences due to the simulation-based calculation of the expected costs
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Figure 6: %V oI versus Order Quantity for x ≤ d1

perimental settings that we consider.

The Impact of CV and p on the %V oI

We conduct further tests to investigate the behavior of %V oI as customer reliability level

(p) and the coefficient of variation (CV ) changes. We assume the same input parameters as

in the first test for %V oI versus Q, with b1 = 12, b2 = 5, h = 1, except for p and CV . We

let p vary between 0.1 and 1, and CV between 0.05 and 0.25. We also fix Q at 100. The

results of these tests are summarized in Figure 7.

Figure 7 confirms our previous observations about p and CV in general:

Observation 8. ADI increases as the coefficient of variation, hence the demand variance,

increases.

Observation 9. Other parameter levels are critical in any conclusion to draw about p, as

discussed before. %V oI is zero for small values of p in Figure 7, because the current value of

Q = 100 covers for expected class-1 demand in the second period (which is less than 40 for

p < 0.2) and the optimal rationing policy is not to ration. On the other hand, the percent

penalty of not utilizing ADI decreases for high values of p in that case, since the gap between
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the expected class-1 demand of the second period and Q decreases the relative importance

of %V oI.

5. CONCLUSIONS AND FUTURE RESEARCH

The main motivation of employing imperfect advance demand information (ADI) in an

inventory/production system in general is that it can improve the performance of the sys-

tem through decreasing uncertainty on future demand. When there are multiple demand

classes of different priorities, then the appropriate policy of rationing the available inventory,

that is reserving some stock for meeting prospective future demand of preferred customers,

comes at the expense of possibly losing some of the currently materialized demand of lower

demand classes. This delicate issue, after all, relies heavily on the estimation of the future
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demand, therefore utilizing current signals on future demand may be extremely important

as to making better decisions on when to start rejecting current demand.

In this paper we have developed a model that helps us investigate this problem in a

simplified environment. We analyzed a system that is made up of one ordering and one

rationing decision under two demand classes. Consequently, the rationing problem is solved

analytically. A Monte Carlo simulation-based procedure is developed to evaluate the total

expected inventory-related costs. Showing that expected cost function is convex in terms

of order quantity, an approach is suggested for determining the optimal order level. A

procedure is built to evaluate the expected value of imperfect ADI on the rationing decision.

Empirical tests are conducted for the normally distributed demand case to measure the

impact of system parameters on the expected value of imperfect ADI. Under the parameters

we considered, the results of these tests revealed that imperfect ADI is more valuable when

the demand variance is high, relative importance of class-1 demand is high, there is sufficient

class-2 demand at the first period and sufficient initial inventory to increase the flexibility to

ration, and the order quantity plus the initial inventory in excess of the first period demand

is close to the expected class-1 demand of the next period plus some safety stock. We show

that rationing becomes very effective if ADI can be utilized.

This study presents some issues of relevance with respect to the design and operation of

such systems. The following is a relevant list of issues for managerial insight:

a. Rationing is a difficult decision to apply in practice, as it may have an undesired

influence on low-priority customer demand. On the other hand, if the return of such an

action is significant then some incentives can be designed to prevent those undesirable

influences. We show that, in the environment we have described -the rationing decision

complemented by ADI-, the benefits can be sufficiently large (even though ADI is

imperfect).

b. The rationing decision is generally considered to be an operational decision, however

as shown in the computational analysis, especially if the system is operating with order

quantities that are smaller than optimal, the penalty paid for not applying the optimal

rationing policy can be significant. For order quantities that are much smaller than

the optimal, the majority of the penalty is due to not rationing, whereas for the rest

the majority of the penalty is due to not employing imperfect ADI in the rationing

30



decision. There are still considerable savings if rationing and imperfect ADI are used

with the optimal ordering quantity.

c. Imperfect ADI and rationing are two important characteristics that will improve system

performance where uncertainty, non-stationarity and long lead times are important

features of the inventory system considered.

We note that although we have assumed no set-up cost in the analysis, our model can

easily be extended to cover a positive set-up cost, as well. Nevertheless, extending the model

into a longer or infinite horizon multi-period structure is not as straightforward. Under a

general lead time assumption, increased dimensionality becomes an important issue in that

case. A multi-period structure disallows considering the ordering and rationing decisions

distinctly as we do in this paper, because optimality should be on both of those decisions in

every period. A possible approach could be to pre-set a rationing policy as a function of ADI

and then solve for Q, or vice versa. Another issue in the multi-period setting is the modeling

of the ADI structure. While increasing the complexity of the problem, a possible solution or

characterization could provide further insight. A natural extension is to handle the case of

several customer classes, which may be necessary both for generalization purposes and for

some possible applications. Instead of a single reserve level, there would be a reserve level

for each class except for class-1 in this case, which is more difficult to handle analytically. A

continuous review structure is another possible research direction. Rationing policies that are

not only functions of imperfect ADI, but also of the remaining lead times could be foreseen

as possible solutions in that case.

APPENDIX A. PROOF OF LEMMA 1

We show the convexity of E[TRC2|k2] in y by showing nonnegativity of its second deriva-

tive with respect to y for all k2.

d E[TRC2|k2]

d y
= −b1

∫ ∞

y
dG1

2(w|k2)

+b2

[(∫ ∞

−∞
D2

2dG2

2(w|k2)
)

g1

2(y|k2) −
∫ y

−∞

∫ ∞

y−w1

dG2

2(w
2|k2)dG1

2(w
1|k2)

]

−b2E[D2

2|k2]g
1

2(y|k2) + h
∫ y

−∞
dG2(w|k2)

= −b1(1 − G1

2(y|k2)) − b2Prob{D1

2 ≤ y,D2 ≥ y|k2} + hG2(y|k2), (21)
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where g1
2(y|k2) is the density function of D1

2 conditioned on k2, evaluated at D1
2 = y. Before

deriving the second derivative, we note that-

G1

2(y|k2) = Prob{D1

2 ≤ y|k2}

= Prob{D1

2 ≤ y,D2 ≥ y|k2} + Prob{D1

2 ≤ y,D2 ≤ y|k2} (22)

= Prob{D1

2 ≤ y,D2 ≥ y|k2} + Prob{D2 ≤ y|k2} (23)

= Prob{D1

2 ≤ y,D2 ≥ y|k2} + G2(y|k2). (24)

Equation (23) follows (22) since all demands are nonnegative. The terms in (24) can be

rearranged to yield

Prob{D1

2 ≤ y,D2 ≥ y|k2} = G1

2(y|k2) − G2(y|k2). (25)

Therefore, (21) can be further simplified as

d E[TRC2|k2]

d y
= −b1(1 − G1

2(y|k2)) − b2

(

G1

2(y|k2) − G2(y|k2)
)

+ hG2(y|k2)

= (b1 − b2)G
1

2(y|k2) + (b2 + h)G2(y|k2) − b1. (26)

Then,

d2 E[TRC2|k2]

d y2
= (b1 − b2)g

1

2(y|k2) + (b2 + h)g2(y|k2). (27)

(27) is nonnegative for all k2, because b1 > b2, and g1
2(y|k2) and g2(y|k2) are density functions

for all k2.

The above result holds for R for any fixed Q ≥ 0, since y = Q + R. This completes the

proof.

APPENDIX B. OPTIMAL RATIONING UNDER PERFECT ADI

Since we consider the perfect ADI on class-1 demand, d1
2 is known with certainty prior to

rationing decision. We can rewrite the total relevant cost function for the second period as

TRC2|k2 =

{

b1(d
1
2 − y) + b2D

2
2 if y ≤ d1

2

b2[D
2
2 + d1

2 − y]+ + h[y − d1
2 − D2

2]
+ if y > d1

2.
(28)

The expectation of (28) is

E[TRC2|k2] =

{

b1(d
1
2 − y) + b2E[D2

2] if y ≤ d1
2

b2E[D2
2 + d1

2 − y]+ + hE[y − d1
2 − D2

2]
+ if y > d1

2,
(29)
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whose derivative with respect to y is

dE[TRC2|k2]

dy
=

{

−b1 if y ≤ d1
2

−b2(1 − G2
2(y − d1

2|k2)) + h(G2
2(y − d1

2|k2)) if y > d1
2.

(30)

Hence, we have

dE[ETCC]

dy
=

{

b2 + h − b1 if y ≤ d1
2

(b2 + h)(G2
2(y − d1

2|k2)) + h if y > d1
2.

(31)

This function is negative for the region y ≤ d1
2 since b1 > b2 + h and positive for the

region y > d1
2 since G2

2 is a distribution function. Consequently, E[ETCC] is decreasing in

y for y ≤ d1
2, and increasing in y for y > d1

2, which results in y∗ = d1
2.

APPENDIX C. PROOF OF THEOREM 3

In order to prove Theorem 3, we first show that ETCC = TRC1 +E[TRC2|k2] is convex

in Q for a given set of d1
1, d2

1, and k2 due to the nonnegativity of its second derivative with

respect to Q. We have already stated in (10) that

E[TRC2|k2] = b1

∫ ∞

y
(w − y)dG1

2(w|k2)

+b2

∫ y

−∞

∫ ∞

y−w1

(w1 + w2 − y)dG2

2(w
2|k2)dG1

2(w
1|k2)

+b2E[D2

2|k2]
∫ ∞

y
dG1

2(w|k2) + h
∫ y

−∞
(y − w)dG2(w|k2).

We replace y by Q + R (for R = R∗ in case of optimal reserve policy) in (10) to yield

E[TRC2|k2] = b1

∫ ∞

Q+R
(w − (Q + R)) dG1

2(w|k2)

+b2

∫ Q+R

−∞

∫ ∞

Q+R−w1

(

w2 + w1 − (Q + R)
)

dG2

2(w
2|k2)dG1

2(w
1|k2)

+b2E[D2

2|k2]
∫ ∞

Q+R
dG1

2(w|k2)

+h
∫ Q+R

−∞
(Q + R − w) dG2(w|k2). (32)

Note that R is a function of Q, so the derivation of (32) requires derivation of R with respect

to Q as well. (The derivative is given in (13) for R = R∗.) Let R′ = dR/dQ. Then,

d E[TRC2|k2]

d Q
= −b1

∫ ∞

Q+R
(1 + R′)dG1

2(w|k2)

+b2

[(∫ ∞

−∞
(1 + R′)wdG2

2(w|k2)
)

g1

2(Q + R|k2)−

∫ Q+R

−∞

∫ ∞

Q+R−w1

(1 + R′)dG2

2(w
2|k2)dG1

2(w
1|k2)

]

−b2E[D2

2|k2](1 + R′)g1

2(Q + R|k2) + h
∫ Q+R

−∞
(1 + R′)dG2(w|k2)
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= −b1(1 + R′)(1 − G1

2(Q + R|k2)) − b2(1 + R′)Prob{D1

2 ≤ Q + R,D2 ≥ Q + R|k2}

+h(1 + R′)G2(Q + R|k2) (33)

= −b1(1 + R′)(1 − G1

2(Q + R|k2)) − b2(1 + R′)(G1

2(Q + R|k2) − G2(Q + R|k2))

+h(1 + R′)G2(Q + R|k2) (34)

= (1 + R′)
[

(b1 − b2)G
1

2(Q + R|k2) + (b2 + h)G2(Q + R|k2) − b1

]

. (35)

Equation (33) translates into (34) due to (25). We also have

d TRC1/dQ = (b2 + h)R′.

Therefore,

d ETCC

d Q
= (1 + R′)

[

(b1 − b2)G
1

2(Q + R|k2) + (b2 + h)G2(Q + R|k2) − b1

]

+ (b2 + h)R′.

If d2R/dQ2 = 0, which is the case for R = R∗, the second derivative of ETCC with respect

to Q turns out to be

d2 ETCC

d Q2
= (1 + R′)2

[

(b1 − b2)g
1

2(Q + R|k2) + (b2 + h)g2(Q + R|k2)
]

.

(36)

We note that (36) is nonnegative for all k2, because (1 +R′)2 ≥ 0, b1 > b2, and g1
2(Q+R|k2)

and g2(Q + R|k2) are density functions for all k2. Consequently, ETCC is convex in Q for

a given set of d1
1, d

2
1, and k2.

Finally, we note that E[TRC(Q)] = ED1

1
,D2

1
,K [ETCC]. Consequently, since expectations

can be written as the limits of Riemann-Stieltjes sums, and the positive-weighted sum of con-

vex functions are convex -see, e.g. Heyman and Sobel (1984)-, we conclude that E[TRC(Q)]

is convex over Q as well.

APPENDIX D. ALGORITHM FOR VOI ON RATIONING DECISION

We first note that, for normal distribution

1 − G1

2(y|k2) = 1 − Φ





y − k2p
√

k2p(1 − p)



 (37)

and

G2(y|k2) = Φ





y − (k2p + µ2)
√

k2p(1 − p) + σ2
2



 , (38)
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where Φ is the standard normal distribution function, which cannot be evaluated explicitly.

However, there exists some accurate approximations to evaluate Φ, which can be applied to

(37) and (38). We use the approximation that is developed by Waissi and Rossin (1996) in

our empirical tests. Now we present our algorithm.

Step 0 Input: x, d1
1, d

2
1, Q, b1, b2, h, p, µK , µ2, σK , σ2

Set i = 0, TC1ADI = 0, TC2ADI = 0, TC2NoADI = 0

Step 1 – Calculate y∗
NoADI and R∗

NoADI by using Theorem 2 with demand distributions as

stated in (19) and (20)

– Calculate (TRC1)NoADI by using (5) with R = R∗
NoADI

Step 2 Increment i by 1

Step 3 Generate a k2 realization from N(µK , σ2
K) distribution

If k2 ≤ 0 then set k2 = 0

Step 4 – If k2 = 0 then y∗
ADI = 0 and R∗

ADI = (x − d1)
+. Else, calculate y∗

ADI and R∗
ADI

by using Theorem 2 with demand distributions as stated in (37) and (38)

– Calculate (TRC1)ADI by using (5) with R = R∗
ADI

– Calculate E[TRC2|k2]ADI from (10) with y = y∗
ADI

– Calculate E[TRC2|k2]NoADI from (10) with y = y∗
NoADI

Step 5 Set TC1ADI = TC1ADI + (TRC1)ADI ,

TC2ADI = TC2ADI + E[TRC2|k2]ADI ,

TC2NoADI = TC2NoADI + E[TRC2|k2]NoADI ,

Step 6 If i ≤ NUM1 (a large enough number) go to Step 2

Step 7 Set E[TRC1|d
1
1, d

2
1]ADI = TC1ADI/NUM1,

E[TRC2|d
1
1, d

2
1]ADI = TC2ADI/NUM1,

E[TRC2|d
1
1, d

2
1]NoADI = TC2NoADI/NUM1,

Step 8 Set E[TRC|d1
1, d

2
1]ADI = E[TRC1|d

1
1, d

2
1]ADI + E[TRC2|d

1
1, d

2
1]ADI ,

E[TRC|d1
1, d

2
1]NoADI = (TRC1)NoADI + E[TRC2|d

1
1, d

2
1]NoADI
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Step 9 Output: V oI = E[TRC|d1
1, d

2
1]NoADI − E[TRC|d1

1, d
2
1]ADI ,

%V oI = 100 ∗ V oI/E[TRC|d1
1, d

2
1]ADI ,

Some of the calculations in the above algorithm are conducted by making use of sim-

plifications and the above-mentioned approximation for Normal distribution. Although

dETCC/dy can be evaluated accordingly for a given y, it remains to find the value of y∗

that solves (12). But due to Theorem 1, dETCC/dy is a monotone non-decreasing function

in y. It can be shown that the absolute value of a monotone function is quasiconvex on the

region that it is defined. Therefore, |dETCC/dy| is quasiconvex in y and it is possible to

apply golden section method (or another appropriate search method) to find the value of y

that minimizes |dETCC/dy|. But |dETCC/dy| is minimized when dETCC/dy = 0 (which

is shown to exist in Section 2), hence the minimizer of |dETCC/dy| solves (12).
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