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Chapter 1 

Introduetion 

This thesis deals with the processing of a magnetic ceranûc material known as (Mn,Zn)­

ferrite. lts excellent electromagnetic properties have led to numerous commercial applications. 

In this thesis, attention is given to the conventional production route of this material, with 

emphasis on the relevant properties. In this introductory section, the position of (Mn,Zn)­

ferrite in the broad spectrum of materials is indicated. 

Scope of this thesis 

Optimum product properties are obtained when the material . is homogeneous. The 

homogeneity of the product is influenced by all stages of the processing. Three stages can be 

distinguished: preparatien of the powder, compaction of the powder into the product shape 

and bonding the powder at elevated temperatures (sintering). During the preparatien of the 

powder, agglomerates are formed. Agglomerates are groups of loosely-bonded particles, which 

lead to inhomogeneity after sintering. Therefore, it is essendal to reduce the number of 

agglomerates before sintering. This is achieved by pressing the powder into a homogeneaus 

compact. The compaction process is therefore analysed in detail. 

During compaction, the density increases through reduction of the porosity. Significant 
is the development of the pore size distribution (PSD). In section 2, the use of techniques 

capable of measuring the PSD is analysed. In subsequent sections, approaches to model the 

powder pressing process are developed. In sectien 3, an empirica! approach, which relates the 

overall density to the applied pressure, is presented. This approach indicates the relative 

signficance of compaction parameters. On a smaller scale, an approach using representative 

cells is developed to model the processes underlying compaction (section 4). Combining this 

model and the evolution of the PSD allows identification of agglomerates. Because data on 

the initia! stage of compaction is linûted, the filling of the die is investigated using a three­

dimensional representation {section 5). An alternative interpretation of the evolution of the 

PSD using the concept of fractal sealing is developed in section 6. This approach is also 

useful for identifying agglomerates. 

The applied pressure varles with the position in the die on account of friction with the 

confming surfaces. Quantification of this effect is important when pressing powder into 

complicated product shapes. Therefore, an approach based on data obtained from compaction 

and strength tests is developed in section 7. Incorporating this model in a fmite element 

scheme and simulating density distributions is presented in section 8. Finally, in chapter 9, 

an overview of the results is presented. 
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1.1. Classification of materials research 

Matenals research deals with the preparatiori and properties of existing and new 

materials. A dîstinction is usually made between metals, organic and inorganic materials. An 

important subclass of inorganic matenals is formed by ceramics. These are matenals 

containing compounds of metals with oxygen, nitrogen and/or carbon. On the basis of the 

atomie structure, three main categories of cerarnics can be distinguished: 

• crystalline cerarnics, whose atomie structure may be represented by a three-dimensional 

lattice ftlled with spheres .. When the material contains more than one type of metal, the 

atomie arrangement often corresponds to a basic structure named after the frrst material 

found to have the structure. Many ferrites belong to this group. 

• non-crystalline ceramics, such as glass, where the arrangement of atoms is practically 

random. 

• glass-ceramics, where crystalline and glassy regions are present. Old-fashioned matenals 

like bricks as well as modern matenals like 'Macor' belong to this category. 

An alternative classification distinguishes cerarnics which have been used for centuries and 

those which have emerged more recently. The latter category is subdivided according to 

functionality. Using current terrninology: 

• traditional ceramics, such as pottery, glass, etc. 

• technica! ceramics: 

• functional ceramics, which are primarily selected for their magnetic, electric, optical or 

chemica! properties. 

• structural ceramics, which are chosen on account of their strength. 

In table 1.1, a number of applications of technica! cerarnics are given together with the 

chemica! constituents. 
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Table 1.1: Overview of applications of technical ceramics 

Function Application Composition 

Magnetic Inducible magnets (Mn,Zn)Fe20 4 

Permanent magnetS BaFeJPJ9 

Electric Capacitors BaTi03, SrTi03 

Semiconductors for use in Mg(Al,Cr,Fe)20 4, 

temperature sensors Co2A120 4, BaTi03, 

(NTC, PTC thermistors) sic, voz 
Insulation material for A}z03, BeO, MgO, 
use in IC's AIN 

Transducers, oscillators Pb(Zr,Ti)03 

Superconductors Bi2Sr2CaCuz08+li 
YBazCuP7-B 

Solar battery cells CdS-Cu2S 

Oxygen sensors ZrOz 

Op ti cal High pressure Na vapour Al20 3 
lamp tubes 

Laser material Y20 3-Th02 

lnfrared detectors PbTi03 

Data storage material (Pb,La)(Zr,Ti)03 

Chemical Gas sensors ZnO, Sn02, Fez03 

Humidity sensors MgCr20 4-Ti02, . 

ZnCr20 4-LiZn V04 

Catalyst carrier, zeolite Si02 

Thermal Infrared radiators Zr02, Ti02 

Mechanica! Cutting tools A}z03, TiC, TiN 

Wear resistant matenals Al20 3, Zr02 

Heat resistant materials SiC, Alp3,Si3N4 

Biologica! Artificial bones, joints, Ca(OH)P04, Al20 3 
teeth 
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1.2. Introduetion to ferrites 

Perrites is a collective denominator for compounds based on Fe and 0 which possess 

excellent electromagnetic properties. Two main types can be distinguished: 

• spinel ferrites, with the general formula MeFe20 4, where Me stands for a divalent metal 

(e.g. Feu, Mnu, znu, Co2+, Niu, Mg2+). 

• hexagonal ferrites. with the general formula MeFe120 19, where Me represents an alkaline 

earth (e.g. Bau, Sr+). 

The atomie unit cell of spinel ferrites is cubic and has three directions of easy magnetization. 

In the absence of electtic current or magnetic fields, the orientation of the magnetic moments 

is random, so that spinel ferrites are non-magnetic. In hexagonal ferrites, the magnetic 

moment is always oriented parallel to the c-axis. The term hexagonal refers to the structure 

of the unit cell. By aligning the magnetic moments during processing, a permanent magnet 

can be created. On account of this difference in magnetic properties, spinel and hexagonal 

ferrites are termed softand hard magnetic matenals respectively. 

Table 1.2: Applications of some important ferrites 

Structure 

Spinel 

Hexagonal 

Elements 

(Mn,Zn)-ferrite 

(Ni,Zn)-ferrite 

(Mg,Mn)-ferrite 

(Li,Zn)-ferrite 

Ba-hexaferrite 

Sr-hexaferrite 

Applications 

transfarmer cores 
inductor cores 
yoke rings 
recording heads 

(same as (Mn,Zn) variety) 

microwave elements 

antenna rods 

segments for DC motors 
loudspeakers 

(same as Ba variety) 

In this thesis, polycrystalline spinel ferrite with composition M11o.66ZI1o.25Fe2 o<J04 has been 

investigated. The material contains three types of spinel ferrites (MnFe20 4, ZnFe20 4 and 

FeF~04). Variatiens in the ionic radii of Feu, Mnu and znu are "absorbed" by the spinel 

structure so that the material is single phase. Given a suitable microstructure, ferrites with this 
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composition can have the following electromagnetic properties: 

• high initia! permeability Jli 

• Jow coercivity ~ 

• high saturation magnetisation B, 

• low remanence B, 

• low power loss PL 

These properties are a function of the frequency and the temperature. The temperature where 

the magnetisation becomes zero is known as the Curie temperature Tc. The main magnetic 

properties are illustrated in fig.l.l. 

Magnetisation 
B 

Remanence 
B 

r 

Coercivity 
H 

c 

Saturation 

mag~isation B5 

Permeability f.J.. 
I 

Applied field H 

Fig.I.I: Typical B-H loopfora Fe-excess (Mn,Zn)-ferrite. Note that the area enclosed by the 

loop rejlects the contribution of hysteresis to the power tossPLof the material during Use. 

The power loss PL is attributed to the effect of hysteresis and eddy currents. Eddy current 

losses may be reduced by increasing the resistivity of the materiaL In practice, this is 

achieved by adding smal! amounts of CaO and Si02• Previous studies [1] have revealed that 

an optimum addition of either oxide exists. Because the solubility of these oxides in the spinel 

latticeis low, they migrate to the grain boundary during sintering. At the grain boundary, they 

form a second-phase, which increases the mobility of the grain boundaries. Si02 may induce 

exaggerated grain growth if it is unevenly distributed, but no effect is observed below a 

critica! content [2]. 
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1.3. Magnetism of (Mn,Zn)-ferrite 

The excellent electromagnetic properties of (Mn,Zn)-ferrite are determined by the 

chemica! composition and the homogeneity of the materiaL Although this study is focussed 

on the relation between the homogeneity and the processing, it is useful to briefly review the 

relation between the electromagnetic properties and the chemica! composition. 

Magnetism originates from the spin of unpaired electrons. Alignment of the spins occurs 

when an atom has more than one singly-occupied orbital. Consequently, the largest rnagnetic 

moment is theoretically possible in elements with a partially filled f-subshell (7 orbitals) such 

as the lanthanides (e.g. europium, dysprosium and gadolinium). Although permanent 

magnetism is observed in these materials, it is weak on account of complex interactions 

between the electrons and the relatively large size of the atoms. These factors cause elements 

of the first series of the transition metals (iron, co balt, nickel) with partially filled 3d-subshell 

to form stronger magnets. 

In ionized form, divalent manganese (Mn2+) and trivalent iron (Fe3+), with half-filled 3d­

subshells, have potentially the largest magnetic moment The magnetic properties, however, 

also depend on the interaction with the anion. For example, a sirnple oxide such as MnO is 

diamagnetic because the bonding of Mn2+ with the anion, oxygen (Oz.), neutralizes the 

unpaired spins. 

Ferrimagnetism occurs when the magnetic moments of the metal ions is opposite but 

unequal in size, so that a net magnetic moment is observed. More complex oxides, like all 

spinel ferrites, belong to this category. Relevant in this respect is the distinction between 

normal and inverse spinel structures. In the case of normal spinels, the trivalent ions are 

located in the octahedral interstices with the divalent ion occupying the tetrahedral interstice. 

With inverse spinels, the divalent ion has changed places with a trivalent ion. 

In a normal spinel, the magnetic moments of the two Fe3+ ions are opposite on account 

of the interaction between the octahedral interstices and therefore cancel out Any magnetism 

then results from the divalent metal ion. This explains the relatively high (saturation) 

magnetization of manganese ferrite. Zinc ferrite, by contrast, is diamagnetic because the outer 

subshell of Zn2+ is completely filled. 

A combination of manganese and zinc ferrite is found to have a higher saturation 

magnetization B, than manganese ferrite. A qualitative explanation is based on the inequality 

of tetrahedral ( )ttt and octahedral [ loet interstices. Assuming that manganeseis divalent only, 

it is found that about 20% of the Mn2+ is located in the octahedral interstices. In formula: 

Divalent zinc ions, always found in tetrahedral interstices, are able to reduce the amount of 

Mn2+ in the octahedral interstices, which irnproves the saturation magnetization B,. Zinc ions 
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are also thought to prevent oxidation of divalent manganese to Mn3+ [2]. 

In this (Mn,Zn)-ferrite, the excess iron remains divalent. The arnount of excess iron 

corresponds to the amount of Fel-+- required for (magnetic) anisotropy compensation at the 

operaring temperature of (Mn,Zn)-ferrite products [3]. A secondary maximum in the 

permeability is observed when the magnetic anisotropy is zero. A reduced parrial oxygen 

pressure during the final processing stage (sintering) is required to prevent mddation of the 

Fel-+- to Fe3+, which shifts the secondary maximum to higher temperatures. The opposite is 

observed if the parrial oxygen pressure is too low. 

These considerations make (Mn,Zn)-ferrite particularly suitable as a soft magnetic 

· material, although careful processing is required. 

1.4. Processing of (Mn,Zn)-ferrite 

The manufacture of (Mn,Zn)-ferrite products by a conventional cerarnic process consists 

of the following stages: 

weighing and mixing of the raw materials (Fez03, MnC03 and ZnO). 

• pre-sintering to obtain chemical homogeneity. 

• milling to yield particles of smaller than 1 pm. 

• addition of water and (organic) binder to form a slurry. 

• spray-drying the slurry to produce granulate. 

• forrning the granulate into a product by die compaction. 

• sintering of the compact. 

Optimization and attuning of each stage is required to yield . products with the desired 

properties. Besides mechanica! and electromagnetic properties, dimensional properties are 

relevant. The importance of each property will be briefly discussed in sections L4.2 to 1.4.4. 

All three types of product properties are strongly influenced by the physical and chemica! 

homogeneity, which is discussed in section 1.4.1. 

1.4.1. Homogeneity 

Homogeneity is defmed at four levels that differ in nature and scale: 

• macroscopie (> 1 mm): 

• large-scale phase- and/or structural inhomogeneity (e;g. cracks) 

• mesoscopic (10 - 100 pm): 

• phase- and/or crystallite structure inhomogeneity within distinct regions 

• microscopie (0.01 - 10 pm): 

• crystallite-pore inhomogeneities: 
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• pores of varying size 

• extended defects such as: 

• line defects (e.g. dislocations) 

• plane defects (e.g. errors in the superposition of layers) 

• volume defects (e.g. clusters of particles) 

• atomie ( < 1 nm): 

• point defects such as vacancies and substituted ions. 

The physical structure of a material is measurable down to a microscopie level, where it is 

called the microstructure. The microstructure refers to the pore and grain size distributions 

as well as the connectivity of the pores, pore and grain boundary surface areas, etc. An 

indication for the physical homogeneity is given by the breadth of the size distributions. The 

chemica! structure is observed down to the atomie level, rnaicing chemica! homogeneity 

relevant on all scales. 

1.4.2. Mechanical properties 

The main mechanica! property of interest is strength. Ferrite products are brittie and 

therefore susceptible to damage during use. When the local stress intensity exceeds a critica! 

value upon contact with another material, cracks are formed. These grow in the lateral and 

transversal directions. Lateral cracks may cause the product to break (fracture), while 

transversal cracks near the surface are responsible for loss of material during machining and 

chipping when in use. In general, maximum resistance to crack propagation is achieved when: 

• pores are small and the pore size distribution is narrow. 

• grains are uniform in size. 

• intercrystalline bonding is strong and unaffected by the presence of second-phases on the 

grain boundaries. 

• residual stresses are compressive. 

These characteristics have hearing on the microstructure of the product and the chemica! 

composition. When manufacturing (Mn,Zn)-ferrite products, the chemica! composition is 

selected in consideration of the desired electromagnetic properties. Therefore, the maximum 

attainable resistance to fracture is obtained by optimizing the microstructure. In genera!, a 

uniform microstructure is considered advantageous. Control of the microstructure requires that 

both the physical and chemica! homogeneity are optirnized during processing.This is achieved 

by the following measures: 

• using raw matenals with high chemica! purity. 
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• adding specific dopes which promate the sinter rate and lead to uniform grain growth. 

• multi-stage or prolonged presintering. 

• milling the calcined material to particles of an optimum size with a narrow partiele size 

distribution. 

• producing granulate with uniformly stacked particles. 

• removing all intergranular porosity during compaction. 

• adapting the sintering cwve (temperature and oxygen content in the atmosphere as a 

function of time) to yield high-density products with the correct grain size. 

1.4.3. Electromagnetic properties 

The electromagnetic properties are determined by the chemica! composition, the chemica! 

homogeneity and the microstructure of the product. 

Obtaining a material with the desired composition is complicated by an increase in the 

Fe-content resulting from attrition of the iron milling balls and evaporation of Zn during 

sintering [4]. The fermer may be corrected for by adjusting the initia! composition. Restricting 

the evaporation of Zn requires adaptation of the sintering process. An option is to increase 

the parrial pressures of oxygen or zinc in the sinter oven. 

The maximum size of single-domain grains is roughly 3 pm [5]. In products with Jarger 

grains, the grain size distribution is not critica!. Residual porosity should be minimized 

because pore space reduces the saturation magnetization. Furthermore, pores should be evenly 

distributed, which requires a high physical homogeneity. 

1.4.4. Dimensional properties 

Dimensional properties concerns the shape and size of the product. H prescribed 

tolerances are exceeded, post-processing is required. Therefore, control of product dimensions 

is important. This is achieved by optimization of the parameters of the pressing and sintering 

stages, where the product is formed and densified. With the specified product size, dies are 

designed on the basis of the (optimum) compact density and shrinkage during sintering. 

Compaction parameters should be optimized to produce a physically homogeneaus compact, 

while sinter parameters should be selected to yield the specified shrinkage without affecting 

product shape or the desired microstructure. These conditions generally make use of 

specialized equipment necessary. 

H variatien of compaction and sinter parameters alone is not sufficient, granulate 

properties have to be modified. Characteristics of the granulate, determined by the process 

stages prior to compaction, are: 

• the binder. Significant is the type and content as well as the distribution within the 

granules. 
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• the size distribution of the granules. 

• the particles. Relevant are physical aspects, such as the size distri bution and staclcing within 

the granules, as well as chemical aspects, such as the degree of conversion to spinel ferrite 

and the distribution of various oxides. 

Suitable granulate should have excellent flowability and readily deforrn under pressure. 

Furtherrnore, compacts or deforrned granulate should possess sufficient strength to be handleçl. 

Finally, stacldng of the particles affects the sinter behaviour. As a rule, spherical particles 

with high chemica! homogeneity yield optimum sinter behaviour. 

In conclusion, both types of homogeneity are important for optimum properties. 

However, a rough subclassification is possible: physical homogeneity has the largest effect 

on the mechanica! and dimensional properties, while chemical homogeneity is more important 

for the electromagnetic properties. 

l.S. Optimization of the compaction of granulate 

Optimization of the compaction process requires attuning of the process parameters of 

all the processing stages. For the compaction of (Mn,Zn)-ferrite granulate, the following 

sequence is suggested: 

1) establish the dimensions of the final product. Relevant aspects include: 

• electromagnetic properties. Note that the permeability and the power loss vary with the 

composition and microstructural parameters such as the grain size and the density. 

• sparial constraints, imposed by ongoing trend towards miniaturization. 

2) select a suitable granulate. Issues include the sprayability of the slurry used to produce 

the granulate, the type and content of the binder used and the bulk density of the 

granulate. 

3) establish the optimum pressed density. This is a trade-off between the homogeneity of 

the compact and die wear. 

4) design a compaction process which produces compacts with the optimum density. With 

complex-shaped products, compaction from two sides in several stages may be required. 

5) sinter the compacts and deteimine whether the duferences in the local shrinkage are 

within the set lirnits. 

In the following chapters, techniques are developed which facilitate or accelerate the 
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optumzation of the compaction process. These have hearing on the characterization of 

granulate properties, the determination of the optimum density and prediction of the density 

distribution within the compact. 
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Chapter 2 

Physical homogeneity: the use of porosimetry 

2.1. Significanee of the physical homogeneity 

In view of the influence of physical homogeneity on the properties of (Mn,Zn)-ferrite 

products, it is necessary to characterize the physical homogeneity experimentally. Various 

types of physical homogeneity can be distinguished. On a macroscopie level, high 

homogeneity implies that there are no visible cracks. Cracks may be formed during sintering 

if local variations in the microscopie homogeneity of the compact are large. The latter also 

produces shape irregularities, which affects the dimensional properties. 

Given the importance of homogeneity, it is necessary to characterize of the 

microstructure of the 'green' and fmal product. An ideal microstructure is represented by 

equisized grains with residual porosity evenly distributed throughout. In other words, high 

physical homogeneity is reflected by narrow size distributions. 

Control of the fmal microstructure requires knowledge of consolidation behaviour of the 

'green' product. This is determined by the parameters of the compaction and sintering 

processes and the granulate properties. During each process stage, densification occurs 
through reduction of porosity. However, during sintering, grain growth impedes the rate of 

densification. 

Measuring pore size distributions during processing provides insight into the evolution 

of the physical homogeneity. Because pore size distributions cannot be determined in situ, two 

types of samples are collected: compacts pressed to various densities and partially sintered 

products which are quenched in air. The pore size distributions are measured with: 

- mercury intrusion porosimetry (MIP). 

- nitrogen adsorption porosimetry, referred to .as the BET technique, after Brunauer, Emmett 

and Teller. 

The objective of this section is to analyze the interpretation of raw data obtained with these 

techniques. Important aspects are the accuracy and the reproducibility in general and when 

applied to (Mn,Zn)-ferrite compacts or products. 
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2.2. Analysis of tbe MIP technique 

2.2.1. Introduetion 

Mercury intrusion porosimetry (MIP) makes use of the non-wetring property and high 

surface tension of liquid mercury. Mercury will notflow into (small) cavities, pores or cracks 

spontaneously unless pressure is applied (fig. 2.1). The intruded volume of mercury as a 

function of the applied pressure constitutes the raw data of this technique. In the secdons 

2.2.2 and 2.2.3, interpretation of the pressure in terms of a pore size and shape has been 

evaluated by developing a new set of equations. Once the relation between pore volume and 

pore size is established, the pore size distribution can be obtained. Furthermore, detailed 

attention is given to the accuracy and reproducibility of the pore size distribution. 

All measurements were performed with the Micromeritics 9310 PoreSizer apparatus. The 

resolution of the AD convertor was such that the smallest measuring interval is about 0.15 

% of the total measuring range of 200 MPa. This restricts the number of data points to 670, 

which limits the accuracy of the experimental pore size distribution. 

Fig. 2.1: Non-wetting property of mercury. With mercury, the contact angle e is larger than 

90 o (left), whereas, with most liquids, e is smoller than 90 o (right). 

2.2.2. Derivation and application of the intrusion equation 

Pores are modelled as simple non-connected channels. The condition of equilibrium states 

that the mechanica! work, dW, should balance the change in surface energy, dG. If the 

pressure is raised slowly, equilibrium is maintained continuously. The mechanica! workis 
given by: 

dW = PdV (2-1) 

where P is the pressure and dV the volume change. The surface energy is somewhat more 

complicated. Consider a three-phase system solid(s)/vapour(v)/liquid(l). The change in free 

energy, at constant P and T, is given by: 

(2-2) 

where y is the surface energy at the various interfaces and dA the change in interfacial area. 
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In the following, the swface energy is assumed to be equal to the surface tension. During 

intrusion, the area of the solid covered with mercury is equal to the area originally covered 

with gas so that A,1=A..=A. This simplifies eq. (2-2): 

dG = (y,l- y,.)dA + Yt.dAiv (2-3) 

All three surface tensions are present along the boundary where mercury, solid and vapour 

meet They are related by the Young-Dupré equation: 

Ysv - Ysl = Y1vcos(S) (2-4) 

This yields: 

dG = Y1.( -cos(8)dA + dA1.) (2-5) 

At equilibrium, eqs.(2-1) and (2-5) are equal: 

PdV = Y1v( -cos(8)dA + dA1.) (2-6) 

The quantity dA1• is usually assumed to be zero, i.e. the area and shape of the cross-section 

is constant, since inadequate Wormation on the change of cross-secti.onal area is available. 

Accordingly, with y'=y1• cos(S): 

P = -y'dA/dV (2-7) 

For pores with regular geometry, it is possible to derive general expressions for the area A 

and volume V: . 

A = J (a.Arl{r)) dr 

V = J (avrl(r)) dr (2-8) 

where a.A and <Xy are shape-dependent constants and l(r) the length of pores with size r. For 

an infinitesimal change in the area covered and the volume intruded: 

or 

dA = a.Arl{r) dr = Bl(r)dr 

dV = a.vrl(r) dr = Al(r)dr 

dA/dV = a.J(<Xyr)= B/A (2-9) 
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where B and A denote the boundary and area of the channel cross-section respectively. The 

ratio aA/ay effectively represents a shape factor characterizing the geometry of the pore. 

Combining eq. (2-7) and (2-9) produces the relation between the pressure P and the pore 

'size' r: 

(2-10) 

In genera!, the pores are assumed to be cylindrical. If we associate r with the radius, the shape 

factor aA/ay equals 2. Consequently, eq. (2-10) becomes: 

P = -2y'/r 

= -2Y1v cos(9)/r (2-11) 

This corresponds to the equation originally proposed by Washburn [1], which is the most 

widely applied intrusion equation. 

The surface ten si on y and ·contact angle e vary according to the chemica I nature of the 

sample and its structure. Though no consensus exists in the literature, the following general 

values have been adopted: 

y = 48.5 10"2 N/m 

e = 13o· 

The use of these values yields good correspondence when cernparing the average pore size 

deterrnined with MIP and SEM [2,3). 

Mercury will not fJll a distribution of pore sizes at one pressure. Mercury will only 

penetrate into the smaller cavities when the pressure is further increased. Therefore the 

volume of intruded mercury at one pressure is a result of penetratien into all pores larger than 

a particular size. The cumulative pore volume measured in this way as a function of pressure 

serves as a starring point for further interpretation. 

2.2.3. Alternative pore shapes 

The application of mercury intrusion porosimetry (MIP) is extended if it is possible to 

derive an indication of the shape of the pores or if a shape other than the cylindrical shape 

can be used for the interpretation. In order to incorporate the shape factor aJCJ.y, introduced 

in the previous subsection, an alternative denvation is considered. 
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a ) 

Fig. 2.2: Representation of elementary pare shapes used to interpret MIP data. 

Table 2.1 lists a.A/Cty for the geometries shown in fig. 2.2 as well as the physical interpretation 

of the 'size' r in eq. (2-9). 

Table 2.1: Shape factors and interpretation for various model pore geornetries 

Shape a.A/CJ.v r 

cylinder with radius r 2rt/rt = 2 2rcr/(2rtr) = r 
cube with edge L 4/1 = 4 4L1/(4L) = L 

block with n cubes (2n+2)/n --+ 2 2nL1/(L(2n+2)) --+ L 

Given that the cross-sectien of a pore has a constant and known shape, the use of the shape 

factors in table 2.1 is not restricted by the assumptions underlying the denvation of the 

intrusion equation based on work equilibrium (section 2.2.2). In order to verify the validity 

of this statement, a mechanica! denvation is considered. Applying the Young-Laplace 

equation for pressure duferences over any curved surface to an infinitesimally small area: 

(2-12) 

where r1 ',r1 ' are the principal radii of curvature of the mercury-vapour interface. Subscripts 

v and Hg represent vapour and mercury respectively. The total pressure difference over the 

meniscus is given normalized integration of the radii over S: 

(2-13) 

Salution of the integral in eq. (2-13) requires Wormation on the shape of the boundary of the 
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(pare) cross-section, which is usually not available. In the case of a circular cross-section, the 

principal radü are given by: 

(2-14) 

where r denotes the principal radius of curvature of the pare. 

In the absence of information on the shape, one has to assume a shape and verify the 

validity for a certain material from experimentally obtained data. The most simple, open­

ended three-dimensional shape is that of a cylinder. With the circular cross-sectien ex tending 

into the plane, the principle radü at the boundary of a cylinder at any depth are similar to 

these of a two-dimensional circle. Substituting r1 and r2 in eq. (2-13) with eq. (2-14) and 

recognizing that PH,~Pv: 

PHs = - yJ (2cos(9)/r)dS/J dS (2-15) 

Since ris a constant, eq. (2-15) is integrated with respect to S: 

PHs = - 2-"::os(S)/r (2-16) 

The denvation shows that, for pare shapes ether than the cylinder, a spatial description of the 

mercury meniscus is required in order to solve eq. (2-13). Because such descriptions are 

highly complicated, this affects the entire farm of eq. (2-16), so that merely adapting the 

shape factor F is not sufficient. Furthermore, the pare size distriburlen is only fully 

detemûned for cylindrically shaped pores. In all other cases, a smearing of the pare size 

distribution occurs. Finally, in practical situations, the shape of the meniscus is expected to 

deviate in a random manner, which makes the use of more complicated pare shapes than the 

cylinder suspect 

2.2.4. Pore size distribution 

A pare size distribution (PSD) indicates the volume of pores of a particular size present. 

Using MIP data, the PSD is defined as the differential volume of pores V as a function of the 

pressure P: 

PSD = dV/dP (2-17) 

Recognizing that P=C/r, where C is a constant and r the pare radius: 

dP = Cd(l/r) = - C/rdr (2-18) 
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Substituting dP in eq. (2-17): 

PSD = (-r/C) dV/dr (2-19) 

Note that physical significanee of the dimension of the PSD, [m5/N], is unit volume per unit 

pressure. 

2.2.5. Accuracy of MIP 

The accuracy of MIP is detennined by the measurement technique and the interpretation 

of the raw data. the compressibility of the components within the apparatus. Relevant is 

expansion of the glass burette and compression of the mercury and the sample. By measuring 

the intrusion without a sample, the net effect of the glass expansion and mercury compression 

is found as a function of pressure. Sample compression is only measurable if the sample is 

non-porous. 

The effect of compressibility can be corrected by calculating the coefficients of 

compressibility. Under isothermal conditions, the compressibility coefficient l3 is defined as 

follows: 

13 =- lN(dV/dP)y (2-20) 

Throughout the pressure range of interest (1-2000 bar), 13 varles linearly with the pressure P 

[4]: 

(2-21) 

Combining eqs.(2-20) and (2-21), foliowed by integration with respect to pressure, yields: 

(2-22) 

Expansion of ln(VN0) in a Taylor series yields: 

ln(VN0) = t:.. VN0 - (t. VN0?!2 + ... (2-23) 

where t. V=(V-V0)N0• As the ratio t. VN0 is small, higher ordertermscan be neglected. Eq. 

(2-23) becomes: 

(2-24) 
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The volume change due to compressibility is due to both mercury and glass: 

A. V(overall) = A. V(mercury) - A. V(glass) (2-25) 

The individual contributions are represented by eq. (2-24), so that eq. (2-25) contains four 

parameters. 

The measured intrusion duringa measurement without sample increases non-linearly with 

pressure. Because the curve has no extremes within the pressure range under consideration, 

numerical determination of at most two parameters is justified. Therefore, the coefficients for 

mercury, being relatively invariant, are taken from literature [5]: 

~0(mercury) = (4.02 ± 0.02)10"11 Pa"1 

~1(mercury) = (1.3 ± 0.2 )10"20 Pa·2 

The volume of mercury intruded as aresult of compression was fitted to eq. (2-25) using the 

least-squares criterium. The following compressibility coefficients ~ for the glass of the 

burettewere determined: 

~0(glass) = (2.85 ± 0.11)10"11 Pa·' 

\31(glass) = (0.0 ± 0.6 )10"20 Pa·2 

The validity of this approach can be verified by determining the compressibility of the glass 

with the pulse-echo technique. For this purpose, a sample of burette glass is prepared with 

two plan parallel faces. The longitudinal and transverse wave veloei ties, which were measured 

at 10 and 5 MHz respectively, were found to be: 

v1 = 5.542 km/s 

v. = 3.466 km/s 

where v1 is the longitudinal and v, the transverse wave velocity. The compressibility ~ was 

calculated from these values together with the density of the glass (2.22 g)cm3). Using the 

formula for isotropie materials, the loss tangent was found to be smaller than 0.15, so no 

correction for damping is required. The resulting value for ~0, 3.09 10"11 Pa·', compares 

favourably with the value determined from MIP. 

The accuracy of the pulse echo technique was verified by measuring the compressibility 

of borosilicate (type 142) glass. The value of ~a was found to be 3.16 10·11 Pa·', which 

compares well with the values in the literature [5]. This confirrns that the correction of MIP 

data is performed with reliable data. 
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The compressibility ~of non-porous solids may be determined by extending eq. (2.27): 

~::..V = ~::.. V(Hg) - ~::.. V(glass) + ~::.. V(sample) (2-26) 

When the ~·s of glass and mercury are known, the remaining volume change can be 

attributed to compression of the sample. The compressibility of the sample is also 

characterized with ~0 and ~~- Using two fully-dense synthetic materials, polyethylene (PE) and 

rubber, the accuracy of this technique is investigated. The following coefficients have been 

determined with MIP: 

~0(PE) = (4.43 ± 0.32) 10"10 Pa·' 

~,(PE) = (-1.5 ± 0.1) 10·18 Pa·2 

~0(Rubber) = (2.06 ± 0.26)10.8 Pa·' 

~,(Rubber)= (-4.5 ± 0.7) 10·17 Pa·2 

Comparison with literature values shows good correspondence when consirlering the large 

range of chemica! compositions of PE and rubber [4,5]: 

~0(PE) = 3.2 10·'0 Pa·• 

~1(PE) = -2.5 10·18 Pa·' 

~0(Rubber) = 2.0 10"8 Pa·2 

~,(Rubber) = -5.0 10·17 Pa·2 

After correcting for the compressibility of mercury and glass, the accuracy of MIP is obtained 

by analysing a ftlter membrane produced by ANOTEC Separations. SEM photos taken 

perpendicular to the surface indicate that these membranes have a regular pare structure with 

a narrow pare size distribution. The median pore size of three types of membranes (specified 

average pore size: 0.02, 0.1 and 0.2 )lm) was deterrnined with MIP and image analysis of 

SEM photos. With the latter, the pore size was deterrnined by averaging the size of 100 

randomly-intersected pores. Results are given in table 2.2. 

Table 2.2 shows that the difference between the direct (image analysis) and indirect 

determination (MIP) of the mean pare size is small. Therefore, the MIP technique gives an 

accurate impression of the pare size (distribution). Furthermore, the lirnited influence of the 

compressibility correction is clearly demonstrated. 
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Table 2.2: Determination of accuracy of MIP 

Specified size Measured pore size 

(pm) MIP (corrected) Image analysis 1!.. MIP (uncorrected) 

(pm) (pm) (%) (pm) 

0.02 0.0738 0.0743 0.67 0.0730 

0.1 0.1020 0.1032 1.16 0.1015 

0.2 0.1139 0.1160 1.81 0.1137 

2.2.6. Reproducibility of MIP 

The reproducibility of MIP is detennined by measuring the pore size distribution of a 

series of 9 (Mn,Zn)-ferrite campacts with similar densities. The density of the compact can 

be found from mass m and sample volume V or from the theoretical density 12th combined 

with the total sample and pore volume. In equations: 

Q =m/V (2-27a) 

or 

(2-27b) 

where V P is the total pore volume of the sample. Comparison of the den si ties indicates 

whether all pores are introdeel during a MIP measurement 

Table 2.3: Reproducibility of compaction and MIP 

Binder: acrylic IJ, die diameter: 14.09 mm, compaction pressure: 125.0 MPa 

Pore size 

Density 

Mean 

0.1282 pm 

2.649 g/cm3 

Standard deviation 

0.0030 pm 

0.038 g/cm3 

Table 2.3 shows that the reproducibility of MIP measurements is good. 

Variation (%) 

2.34 

1.44 

Summarizing, we conclude that, although the precise interpretation of the MIP data is 

difficult, the methad yields reproducible results, which correspond well with results from 

independently deterrnined data. 
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2.3. Nitrogen adsorption technique 

2.3.1. Introduetion 

Measurable quantities of nitrogen are absorbed on solid surfaces at temperatures close 

to the temperature at which liquefaction of nitrogen occurs (77.2 K). When nitrogen is passed 

into a previously evacuated chamber, the pressure in the chamber is determined by the volume 

of nitrogen adrnitted and the volume adsorbed on the surface. Two types of adsorption can 

be distinguished: physical adsorption, where the molecules are bonded to the surface by van 

der Waals interaction, and chemisorption, where molecules are bonded to the surface 

chemically. The difference between these types of adsorption is shown in fig. 2.3. 

Energy 

0 

Dissociation 
energy 

surface and gas 
molecule 

~ Physical adsorption 
Chemica} adsorption 

Fig. 2.3: Schematic representation of adsorption. On account ofthe smaller bonding energy,m 

physical adsorption is a jaster and reversible process than chemisorption. Often physical 

adsorption preceeds chemisorption, lowering the activadon energy required to dissociate the 

diatomic gas molecules. 

The surface area is proportional to the volume of nitrogen required to form a monolayer. 

In practice, two extremes are distinguished: the surface is covered by a monolayer only or by 

an infinite number of layers. In both cases, the layers are only complete when the pressure 
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in the chamber approaches the saturation pressure of nitrogen. When a chemica! reaction 

occurs between the nitrogen and the surface, it is realistic to assume that the coverage consists 

of a monolayer only. Without this interaction, formation ofmultilayers occurs. This difference 

is reflected by the relation between the pressure and the adsorbed volume of nitrogen V•ds• 

which is known as the adsorption isotherm (fig. 2.4). Note that the pressure is normalized 

with P0 , which is defined as the saturated equilibrium (vapor) pressure of nitrogen at 77.2 K. 

Adsorbed 

volume 

0 
Relati ve pressure p/p 0 

1 

Fig. 2.4: Adsorption isotherm when i) chemisorption and ii) physical adsorption occurs. 

The surface area can be represented by a finite number of adsorption sites when the 

cross-sectional area of nitrogen is known. By assuming that all sites are equivalent, the 

relation between the adsorbed volume of nitrogen, the volume required for monolayer 

coverage and the pressure in the chamber can be modelled. Two prominent tnodeis will be 

briefly discussed. Both models require that equilibrium exists in the chamber, i.e. the rate of 

adsorption equals the rate of desorption. Por monolayer coverage, an equation known as the 

Langmuir isotherm is obtained: 

V .JV mooo = KP/(1 + KP) (2-28) 

where v.ds = adsorbed volume of nitrogen 

V mono = volume of nitrogen in a monolayer 

K = adsorption parameter 

P = pressure 

For multilayer coverage, an isotherm due to Brunauer, Emmett and Teller (BED is derived: 
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V.JVmono = CP/((P.-P)(l-(1-C)(PIP.))) (2-29) 

where Cis an interaction parameter and P. the saturation pressure of nitrogen. Because either 

equation contains an additional parameter (K respectively C), more than one point (V.ds, P) 

is required to determine V mono· Through rearrangement; linear expressions are obtained. For 

the Langmuir isotherm: 

lNads = lN mono + l/{V monoKP) (2-30) 

A plot of lN.ds versus liP allows determination of V mono from the intercept and K from the 

slope. For the BET isotherm: 

(2-31) 

Plotring P/(V.ds(P.-P)) versus PIP. yields C and Vmono· The latter can be converted to the 

surface area A given the density of liquid nitrogen and the cross-sectional area of molecule 

of nitrogen. The suitability of either model is deterrnined by the goodness-of-fit. In genera!, 

the BET isotherm applies because nitrogen is relatively inert. 

The shape of pores in a sample can be determined if reference measurements are 

available. Reference measurements should reflect the thickness of the adsorbed layer on a flat 

surface as a function of the pressure. If a graph of the adsorbed volume v.ds versus the 

thickness of the reference layer for similar pressures is linear, the sample contains no pores. 

An increase of the slope of the graph indicates the presence of cylindrical pores, where 

condensation occurs on account of the curved .surfaces. On the other hand, a decrease of the 

slope at higher thicknesses indicates that the pores are slit-shaped. This shape limits the 

thickness of the layer whilst reducing the surface area where nitrogen can be adsorbed. 

All measurements were performed with a Omicron Omnisorp 100. In this apparatus, a 

continuous flow of nitrogen is administered into the sample burette. The corresponding 

ambient pressure is also measured continuously. This principle achieves a higher resolution 

when compared to periadie introduetion of fixed volumes into the sample burette. However, 

a disadvantage of the continuous introduetion is higher sensitivity to extemal disturbances. 

2.3.2. Pore size distribution 

The pore size distribution obtained from BET measurements is based on processing of 

the desorption isotherm rather than the adsorption isotherm. This is a result of the irnproved 

stability of adsorbed molecules when compared to adsorbing molecules [6]. Quantitative 

interpretation makes use of the Kelvin equation, which can be derived on thermadynamie 

grounds [7]. This equation relates the relative pressure P/P0 at which adsorbed gas will 
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spontaneously evaparate to the principal radii of curvature of the pore: 

where R =gas constant= 8.3144 J/mol/K 

T = temperature = 77.2 K 

P0 = saturation pressure of nitrogen at 77.2 K 

P = ambient pressure 

Y.v = surface tension of liquid nitrogen = 8.85 103 N/m 

e = the contact angle in the pore = o· 
Vm = moJar VOlume Of nitrogen = 3.469 105 m3/moJ 

r1,r2 = principal radü of curvature 

25 

(2-32) 

For cylindrical pores, r1 and r2 both equal the pore radius r. Because only the relative pressure 

PJP and the pore size r will vary strongly, eq. (2-32) can reduced to: 

r = 9.55/ln(PJP) [nm] (2-33) 

The adsorbed volume of nitrogen V.c~s is known as a function of the relative pressure. 

However, v.ds refers to the volume of gas adsorbed. In order to relate to the actual pore space, 

V.c~s is converted to the liquid volume V1• At 77.2 K, the ratio of the gas and liquid density 

is 1.54 10"3• In equation: 

(2-34) 

Plotring V1 versus r as a function of the relative pressures yields the pore size distribution. 

This framewerk has been refmed by developing increasingly sophisticated theories. These 

are based on the experimentally-supported assumption that nitrogen will remain adsorbed on 

the pore wallafter the centre of the pore has emptied [8,9,10,11,12,13]. The thickness of the 

layer has been determined in model systems and has led to various correlations and tables. 

The best known semi-empirica! equation is due to Halsey [10], who correlated the thickness 

t directly to the relative pressure: 

t = a(5/ln(PJP)) (2-35) 

where a is the thickness of a monolayer of nitrogen. Usually, the value of a is taken to be 

0.354 nm, which is less than expected on the basis of the cross-sectional area of a nitrogen 

molecule (= 0.162 nm2). In a liquid state, however, this is considered acceptable. The 



26 Chapter 2 

effective pore radius is then given by summation of the Kelvin pore radius derived from eq. 

(2-31) and the thickness which remains af ter desorption: 

(2-36) 

where rk is the pore radius found from eq. (2-33). Because both rk and t vary with the relative 

pressure only, a pore size distribution is found. 

A further refinement assumes that the thickness of the layer that remains adsorbed will 

gradually decrease with decreasing pressure. It has been experimentally found that, for every 

relative pressure, the thickness of the layer has an equilibrium value. This value is further 

detemûned by the pore radius. The volume desorbed due to decrease in the thickness of layers 

in partially emptied pores is then substracted from the volume attributed · to pores of a size 

given by eq. (2-34). With this approach, due to Broekhoff and de Boer [11,12), the pore 

volume corresponding to the largest pores is calculated fust. Then the pore volumes 

corresponding to (increasingly) smaller pores are found after correcting for the desorption due 

to thinning of the layers in all larger pores. The equilibrium values of the thickness are 

tabulated and require interpolation at the required relative pressure. 

The most actvaneed refinement is due to Le Cloux [13], who found that the interaction 

of nitrogen with the pore wall affects the equilibrium thicknesses deftned by Broekhoff and 

de Boer. The interaction is of a chemical nature, and can be expressed in the BET parameter 

C (see previous section) obtained from the BET-plot Essentially, Le Cloux extends the 

Broekhoff-de Boer approach by using five tables, which contain equilibrium thicknesses valid 

for a certain range of C. 

2.4. Statistical analysis 

A single-peaked pore size distri bution can be characterized in terms of position, breadth 

(at some height) and shape. When the distribution is discretized, the data can be processed 

to yield characteristic parameters. A con~istent technique to derive these parameters is to 

calculate the moments fit of the distribution. Moments are defined about an arbitrary r0: 

(2-37) 

The fust moment (i=l) with respect to the origin (r0=0) is the average or mean pore size rm. 

This quantity indicates the position of the distribution. In order to characterize the distribution, 

all other moments are defmed about the mean pore size so that r0=rm. For i>l: 

(2-38) 
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The secend moment (i=2) represents the varianee er. The standard deviation cr is a measure 

for the width of the distribution. The standard deviation relative to the mean yields a 

dimensionless quantity known as the coefficient of varlation v: 

(2-39) 

Higher moments describe the shape of the distribution. These are generally normalized by 

dividing with the standard deviation cr to the power i. For i>2: 

ffit' = rnjd (2-49) 

The third moment (m3') is the skewness and represents the degree of assymmetry of the 

distribution. The parameter m3' has a positive value if the tail to the right of the peak is 

Jonger than the tail to the left. The skewness of perfectly symmetrie peaks is necessarily zero. 

Finally, the kurtosis (11\j') indicates the degree of peakedness of the distribution. lt is 

usually interpreted relative to the so-called normal distribution. The kurtosis of a normal 

distribution is 3. Distributions having relatively higher peaks have higher values for the 

kurtosis, whereas relatively flat-topped distributions have lower values. 

Besides the parameters obtained from moments, other convenient measures are possible. 

For example, the position of the distribution may also be characterized by the mode, which 

is the pore size at which the peak has the maximum value. Another useful measure is the 

median which corresponds to the pore size at which half the pore volume is intiuded. 

Pore size distributions may consist of more than one distinct peak. Because simultaneous 

characterization is subject to arbitrary conditions, these peaks should be analysed seperately 

using moments. 

2.5. Characterization of (Mn,Zn)-ferrite products 

2.5.1. Introduetion 

Because the MIP and BET techniques span complementary pore size ranges, they are 

theoretically an excellent combination for characterization of the complete pore size 

distribution. Unfortunately, there are some restrictions. The main restrietion is that both 

techniques require open porosity because closed porosity is not measurable. During 

compaction and sintering, where the total pore volume is continuously decreased, the fraction 

of closed porosity increases. In the following subsections, aspects relevant to the application 

of either technique are presented. 
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2.5.2. BET technique 

Pore size distributions measured with BET essentially reflect the irregularity of the 

partiele surface because the interpartiele pores are too large to be measured. Even though the 

pores decreasein size with the density, the interpartiele pore size is still 0.08 pm at a density 

of 3.2 g/cm3, which is a relatively high compact density (see sectien 3.4). A measurement 

using ferrite particles has been performed in order to measure the volume of surface pores, 

caviti.es and cracks. By evacuati.ng the granulate for 16 hours at 250 oe prior to the 

measurement, the binder bonding the particles is removed. The measured volume of pores is 

found to be negligible. This indicates that the ferrite particles have relatively smooth surfaces. 

Consequently, the BET technique is less suitable for pore size analysis of particles and 

campacts than might be expected beforehand. 

2.5.3. MIP technique 

An accurate measurement with the MIP technique requires that pores have a specific, 

constant size. The presence of necks can lead to overestimation of the volume fracti.on of 

small pores. However, because necks are likely to yield at lower pressures than required to 

force mercury through through them, rapid filling can occur at lower pressures. This would 

lead to overestimation of the volume of larger pores. These contradictory mechanisms obscure 

the significanee of the pore size distriburlen measured with MIP. 

A) B) 

Fig.2.5: Pore structure which is A) ideally suitedfor MIP measurement andB) corresponding 
to the real structure. 

In accordance with the above, one or at most two disti.nct peaks are observed in practice. 

Measurement of the extrusion curve shows that hysteresis occurs but the reproducibility is 

poer. This can be attributed to the physical change in the structure during intrusion (14]. 

Interpretarlon of the measured curve in terms of pore size is not unambiguous either: 

pores are assumed to be cylindrical. This is expressed in the shape factor uA/CJ.y of the pore, 

which is the ratio of the perimeter and cross-sectional area. For cylinders, a.A/rJ.v has a value 

of 2 (see sectien 2.2.2). Other pore shapes lead to complications in the derivation: the shape 
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of the mensicus of the introding mereury in non-eireular cross-sections ean, in theory, be 

predieted for ideal cases only. 

Despite the many assumptions, results of MIP cernpare favourably with datafrem other 

measurements. They also make the search for irnprovements of the accuracy, through 

varlation of y and e with pressure and correction for the compressibility, questionable. 

Compared with the BET technique, however, the MIP technique finds more application 

in view of the large fraction of porosity which is intruded during a measurement. The pore 

volume is attributed to pores ranging in size from 0.01 to 2 pm. With the unit eell approach 

introduced in sectien 2.3, further interpretation of MIP data is sought 

2.5.4. Software 

Computer programs have been written in Turbo Pascal 5.0 for the MIP and BET 

techniques. Each program consists of two parts: i) a program for data acquisition and ii) a 

program for data processing. Routines for input from or output to the disk drive, plotter, 

printer, keyboard or console are used by all the programs. The user interface consists of a 

series of menus, which, for both cases, contains options not present in the software supplied 

by the manufacturer of the apparatus. For the acquisition of data, the programs offer greater 

flexibility through an increase of the number of data points and the measurement options. For 

the processing of data, additional features such as the compressibility correction (MIP) and 

the choice of various theories (BET) is included. These programs have been used to perferm 

all porosirnetry measurements during this study. 
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Chapter 3 

Analysis of the compaction of (Mn,Zn)-ferrite granulate 

3.1. Introduetion 

Compaction setves to mold powder into the product shape whilst reducing the pore space 

between the powder particles. The latter is accompanied by an increase in the number of 

cantacts between the particles, which enhances the cohesive strength of the powder. When 

the · powder has sufficient strength to be handled, it is called a compact However, with 

(Mn,Zn)-ferrite powder, addition of an organic binder is required to imprave the strength. 

Because the binder has to be removed during the subsequent sintering process, a minimum 

of binder is used. In order to distribute the binder uniformly over the powder surlace, the 

binder is dissolved in water befare being mixed with the powder. The resulting slurry is 

spray-dried to yield granulate, which consists of agglomerated particles. Because the 

agglomerates, known as granules, represent preconsolidated units, the stress gradients which 

occur during compaction are initially reduced. This contributes to reduction of the local 

differences in the density. Consequently, the use of granulate is advantageous both in terms 

of compact strength and compaction behaviour. 

When pressing (Mn,Zn)-ferrite granulate, two types of friction are distinguished: 

• intemal friction, which relates to friction between the ferrite particles and between the 

granules. 

• extemal friction, which refers to friction between the granulate and the containing surlaces 

(die wall and punch). 

The magnitude and variatien of the frictional farces is determined by the compaction 

parameters. Three groups of parameters are distinguished: 

• granulate binder type and content, granule and ferrite partiele size, hardness. 

• process pressure, pressing velocity, pressing mode, die wall roughness and hardness, 

mode of fllling . 

• product density, shape and size. 

The effects of intemal and extemal friction are investigated separately by varying the compact 

shape and size. In tablet-shaped compacts, the compact properties are determined mainly by 

the effect of intemal friction (section 3.3). Altematively, in campacts with a large length-to­

diameter (LID) ratio and/or small dimensions, the effect of extemal friction is more 

pronounced (section 3.4). 

The compact properties of interest are the density and the homogeneity. The density is 
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related to the porosity through the theoretica! density (i.e. the zero-porosity density). Using 

mercury intrusion porosimetry (MIP), the porosity and corresponding pore size distribution 

are experimentally determined. Analysis of the complete compact produces averaged 

(position-independent) data. Because of the effect of external friction, the microstructure 

varies with the position in the compact. Therefore, sections of compacts have been analysed. 

Given insight into the effects of internal and external friction, a compaction model is 

established (section 3.5). This model is then used to analyse the density distribution in a cup­

shaped compact ('potcore') as a function of the compaction parameters (section 3.6). 

Compaction technology 

Compaction of granulate occurs when force is applied in one or more directions. The 

following pressing modes are distinguished: 

• in one direction: this process is known as uniaxial compaction, because granulate is 
compressed by punch displacement parallel to the axis of the die. When both the lower and 

upper punch are movable, the granulate can be compacted from two sides. This is either 

performed simultaneously or sequentially. The latter is referred to as phased compaction. 

• in two directions: this process, called cylindrical compaction, consists of two compaction 

steps. Granulate is prepressed uniaxially and placed in a rubber bag. The rubber bag is 

attached to a punch which is positioned in a pressure chamber filled with fluid. The 

granulate is compressed by 1) punch displacement in the axial direction and 2) fluid 

pressure in the radial and circumferential directions. 

• in three directions: simultaneous compaction in three principal directions requires that the 

granulate, packed in a rubber bag, is submerged in a fluid. When the fluid pressure is 

raised, the granulate is compacted isotropically. Before placing the granulate into a rubber 

bag, it is pressed into the required shape. Contrary to cylindrical compaction, the rubber 

bag and compact are evacuated prior to the isotropie compaction. 

During this study, the following pressing modes were used: 

• uniaxial compaction: 

• smgle-sided 

• double-sided 

• simultaneous ("synchronous") pressing 

• sequential ("phased") pressing 

• isotropie compaction. 
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A) B) C) 

Fig.3.1: Schematic representation ofthe various pressing modes. Options: A) in one direction, 
either single or doub/e-sided, B) in two direenons and C) in three directions. 

In general, the density of the compact can be correlated to the maximum applied pressure. In 

order to obtain a constant density tbraughout the compact, a suitable mode of pressing is 

selected. Single-sided pressing to a high pressure is sufficient when producing cylindrical 

campacts with a smalllength-to-diameter (LID). However, when pressing cylindrical campacts 

with large LID ratio's or complex shapes, double-sided pressing is required. In this case, the 

punch displacement from either side has to be specified. 

Specification of the punch displacement instead of the maximum pressure requires 

sophisticated pressing equipment Control of the punch displacement is influenced by the 

pressing velocity and knowledge of the compliance of the apparatus. This is especially 

significant when pressing smal! compacts. 

3.2. Material, pressing equipment and analysis techniques 

The {Mn,Zn)-ferrite used has the following composition: M11o.66Z11o.25Fez_0P 4• Quantities 

of raw matenals corresponding to this composition are mixed, prefrred and milled to produce 

particles with an average size of 2 pm. Slurries are prepared by mixing the particles with 

water and one of the following binders: 

• acrylic supplied by Rohm and Haas (denoted as acrylic n. 
• acrylic supplied by Roehm (denoted as acrylic JD. 
• polyvinylalcohol (PV A) supplied by Hoechst 

• mixture of PV A and acrylic li. 

The content of the binders varles slightly: 

• acrylic I : 1.25 mass % 

• acrylic li : 0.86 and 1.70 mass %. 
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• PV A : 1.0 mass % 

• mixture : 0.72 mass % 

The solids content of each slurry is maintained at 70 %. Spray-drying yields granulate with 

individual granules varying in size from 60 to 500 pm. 

Compacts are pressed in dies made from hardened steel of the type N1019 (composition 

1.65C-12Cr-W-Mo-V). Die diameters range from 14.0 to 28.12 mm. The wall roughness of 

all dies is less than 0.09 pm (R!IS0/0.8mm normal procedure). Both manual and automatic 

pressing equipment constructed by Fontijne, National Forge, Müller and Federhoff is used for 

compaction of tabiets and cylindrical products. Potcores are pressed with equipment at TNO­

Apeldoorn. 

Pore size distributions are measured with a Micromentics PoreSizer (type 9310). 

Densities are found by measuring the mass with a Sartorlus balance (type MP-2002, accuracy 

0.1 mg) and the dimensions with a Heidenhahn extensometer (type MT-30, accuracy 1 pm). 

3.3. Influence of internal friction 

The effect of intemal friction is investigated through analysis of samples obtained from 

the cores of tablet-shaped compacts (thickness 4 mm, diameter 44 mm). The combination of 

the small LID ratio and the sample location rninirnizes the influence of friction with the die 

wall. The following compaction parameters are expected to strongly influence the pore size 

distribution of the sample: 

• granulate parameter : type of binder 

• process parameters 

• product parameter 

: pressure, pressing velocity and pressing mode. 

: density 

Of these parameters, the density and the pressure are directly related. The nature of this 

relation is exarnined separately in chapters 6, 7 and 8. Because application of pressure 

produces both normal and shear stresses during compaction of granulate in a die, only 

varlation of the overall density is considered. Two extremes of each parameter were selected: 

• binder type (*) : acrylic II - mixture 

• density (**) : 2.6 - 3.2 g/cm3 

• pressing velocity : 0.35 - 7.00 cm/s 

• pressing mode (***) : three-phased - synchronous 

(*) In this study, binders are distinguished by the strength of campacts produced with 

them. Compacts which contain acrylic II are typically much stronger than compacts 
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of the same density containing a mixture of acrylic and PV A. 

(**) The density of 2.6 g/cm3 is the minimum density at which compacts with both types 

of binder have sufficient strength. Increasing the density requires an exponential 

increase of the pressure. Therefore, a density of 3.2 g/cm\ which equals 62.6 % of 

the zero-porosity density, is high for all practical purposes. 

(***) Three-phased pressing is performed as follows: frrst only the upper punch moves, then 

joined by the die wall and finally only the upper punch again. During the rniddle 

phase, the die wall is moved faster in order to sirnulate movement of the lower punch. 

Synchronous pressing is simulated by moving both punch and die wall move in the 

same direction at the same velocity. 

Tablets were pressed for all combinations of these parameters although it was not possible 

to press tabiets to 3.2 g/cm3 synchronously. The cubes were cut from the centre of each tablet 

with a diamond saw after securing the tabiets with double-sided tape. An indication of the 
physical homogeneity was obtained by measuring the pore size distribution with MIP. 

Characterization of the pore size distribution with the mean pore size is given in table 3.1. 

Table 3.1: Mean pore size (in pm) of compacts pressed with selected parameters 

Pressing mode Three-phased Synchronous 

Velocity (cm/s) 0.35 7.00 0.35 7.00 

Binder type Density (g/cm3) 

Acrylic II 2.6 0.15 0.15 0.15 0.15 

3.2 0.08 0.08 

Mixture 2.6 0.16 0.15 0.15 0.15 

3.2 0.08 0.09 

Table 3.1 indicates that the mean pore size is mainly influenced by the compact density, while 

the effects of binder, pressing mode and velocity are negligib1e. The insensitivity to the binder 

type suggests that the pore size is deterrnined by the size of the ferrite particles. This is 

understandable when consictering that the binder only constitutes 5 volume-% of the solid 

materiaL Variations in the arrangement of the particles, and therefore the pore size, are not 

observed for variations of the pressing mode and velocity. It is possible that the variations are 
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not large enough to abserve an effect on the pare size. 

Table 3.1 shows that the mean pare size decreases with the density. A quantitative 

relation is obtained from analysis of a series of 8 tablet-shaped compacts. The mean pare size 

for each compact is given in table 3.2. 

Table 3.2: Mean pare size as function of the density of the compact. 

Binder type: acrylic IJ, die diameter: 14.1 mm, compact mass: 2.0 g 

Pressure Density Mean pare size Pressure Density Mean pare size 

(MP a) {g/cm3) ()lm) (MP a) (g/cm3) ()lm) 

68.1 2.64 0.16 168.9 2.89 0.13 

93.3 2.78 0.15 194.1 2.93 0.12 

118.5 2.83 0.14 219.3 2.96 0.12 

143.7 2.89 0.13 244.5 2.98 0.11 

It fellows from table 3.2 that the mean pare size is linearly related to the density. Using linear 

regression, the following relation is obtained: 

r =- O.l34Q + 0.513 (3-1) 

This relation is valid for unirnadal pare size distributions, i.e. consisring of a single peak. 

Below a density of 2.8 g/cm\ however, a second peak is observed to the right of the main 

peak. Although this peak becomes larger as the density decreases, it is still relatively small 

at the lowest density in table 3.2. Therefore, the use of all the points in table 3.2 for the 

determination of the parameters in eq. (3-1) is justified. 

The emergence of a second peak indicates the presence of another type of pores. This 

is understandable in view of the structure of granulate: pores between the granules are 

signficantly larger than pores between the particles inside the granules. Alternatively, the 

second peak could reflect the presence of relatively large pores inside the granules. Such 

pores are observed when the granules contain distinct clusters or agglomerates of particles 

which are formed during the granulation process. 

When more than one peak is observed, these should be characterized separately. A 

suitable measure is then the rnadal pare size, which corresponds to the size where a peak 

reaches its maximum value. 
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3.4. Influence of external friction 

The effect of friction between the granules and the containing surfaces is investigated by 

analyzing axisynunetric compacts with large length-to-diameter (LID) ratio's. A suitable shape 

is the (massive) cylinder. Because external friction introduces density gradients, the pore size 

distribution of the whole compact reflects the sum of the local pore size distributions. In order 

to identify the local variations, cylindrical compacts with respectively a low (2.46 g/cm~) and 

a high (2.96 g/cm3) density have been sectioned and analysed with MIP. The density 

distributions derived from MIP measurements are given in figs. 3.2 and 3.3. 

2.67 2.54 2.42 2.41 1.97 

2.54 2.53 2.35 

2.51 2.54 2.34 2.30 2.22 1.97 

2.51 2.30 2.31 2.10 2.09 

2.44 2.45 2.39 2.25 2.16 2.12 

2.38 2.47 2.40 2.38 2.08 

Fig. 3.2: Density distribution in a cylindrical campacts as measured with MIP. The dashed 

fine coincitks with the centre of the compact. Compact characteristics: bintkr acrylic /, 

tknsity 2.46 g!cnr' (left) and 225 glcm3 (right), diameter 28.1 mm and height 32.4 mm. 

Compaction molk: sing/e-sitkd uniaxial pressing. Note that variations in the tknsity are 

relatively larger in the low-tknsity compact. 

Fig. 3.2 shows that the highest density is found in the corner directly belowthe punch. This 

indicates that friction between the wall and the particles retards the flow of particles. Near 

the wall, this leads to a relatively high density at the top and a low density at the bottorn of 

the compact Towards the centre of the compact, the density always decreases. The effect of 

external friction on this trend appears to be limited. 

In fig. 3.3, the density distribution in high-density campacts is shown. Note that the 

trends are sirnilar but less obvious to these in fig. 3.2. This leads to the important observation 
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that the density profiles are independent of the overall density. 

3.17 3.05 3 .00 2.98 

3.04 3.01 2.94 2.97 

2.96 2.98 2.87 2.96 

i) ii) 

Fig. 3.3: Density distribution in cylindrical campacts as measured with MIP. Compact i) 

contains acrylic II binder (density 3.01 glcnr) while compact ii) contains a mixture of PVA 

and acrylic II binder (density 2.97 glcnr). Both campacts have a diameter of 18.1 mm and 

a height of 18.4 mm. Compaction mode: single-sided uniaxial pressing. 

3.5. Compaction model 

The density distributions given in section 3.3 are used to establish a qualitative model 

for uniaxial die compaction. A model can be based on a dynamic representation of the flow 

of granules, agglomerates and particles. Alternatively, a static representation can be used 

which is based on the equilibrium of the farces. Because both approaches produce the same 

result, a model based on both representations is developed. 
When the punch is moved into a die filled with granules, the granulate resists movement 

of the punch. However, upon application of force, the granules are deformed. This process 

increases the number of mutual contacts, which increases the resistance to compaction. It is 

assumed that the imposed force is balanced by friction between the ferrite particles rather than 

friction between the granules (internal friction). Deformation of the granules produces radial 

farces which are ultimately balanced by the die wal!. These radial farces generate friction 

between the die wall and the granulate (external friction), which opposes axial displacement 

Therefore, the gradient in the axial compaction force is enhanced near the die wall. 

Consequently, the largest axial compaction force is expected near the die wall directly below 

the punch. Consictering that the local density is proportional to the locally applied force, it 

follows that the density near the die wall decreases with increasing distance to the punch. 

Note the radial force exerted on the die wall is reduced by friction between the granulate and 

the punch. The bottorn of the die produces a similar effect. The model is represented in fig. 

3.4. 
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Fig. 3.4: Compaction of granules in an axisymmetric die. The granules are represented by 

blocks. Friction between granules and the wal! has a local effect only although it is larger 

than friction between the granules themselves. This implies that the axial density gradient is 

larger near the die wall than in the centre of the compact. Note that the radial granule 

displacement is zero. 

Note that the granules in fig. 3.4 are large compared to the die dimensions and deform as a 

whole without displacing radially. In practice, the applied force is mainly balanced by intemal 

friction of the particles within the granules. This implies that the density fluctuates with the 

size of the particles. When consictering the density on the scale of a number of granules, the 

compact can be regarded as a continuum. This representation is advantageous when rnadelling 

and simulating the density distribution in campacts without considering the indivdidual 

particles and granules: only significant trends in the density have to be traced. 

The effect of the punch and the die bottorn on the density distribution in the compact is 

different When the punch moves downwards into a die, granulate is forced to move in the 

same direction. However, the granules also tend to move outwards in order to relieve the 

applied force. Near the die wall, this radial movement produces an increase in the local 

density. On the ether hand, near the bottorn of the die, the downward movement of the 

granules is restricted, which also increases the local density. Because friction with the die wall 

has reduced the axial compaction force along the die perimeter, the radial density at the 

bottorn of the die is the highest in the centre of the die. 

The effect of both mechanisms is determined by the ratio of the partiele size and die 

diameter and the length-to-diameter (LID) ratio of the compact. Other compaction parameters 

are considered less significant. For example, the die wall roughness, expressing th~ 

irregularity of the die surface, is typically in the order of 0.1 pm, which is much smaller than 

the size of the particles (- 1 pm). As a result, the die wall can be represented by a smooth 

surf ace. 
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The proposed model interprets the movement of granulate during compaction. It requires 

the assumption that the initial distribution of granulate in the die is homogeneous. In practice, 

differences in the granule size, density and packing exist, causing local density variations. 

When these dilierences are significant, the continuurn approach is invalid. 

Post-compaction effects such as the influence of force during ejection and relaxation of 

the compact are also not included. The force required to eject the compact increases with the 

density of the compact. When the compact consists of small particles, large cracks can 

develop during ejection. In practice, this effect can be suppressed by the presence of a 

suitable binder. Relaxation of the compact, or expansion due to recovery of elastic 

deformation, increases with the density of the compact This partially alleviates density 

gradients but also distorts the shape of the compact. However, the latter is relatively 

insignificant compared to the distartion of the shape after sintering a compact containing 

density gradients. 

3.6. Analysis of poteores 

The term potcore refers to products with a cup-shaped geometry. A potcore can be 

subdivided into two distinct sections: the tablet-shaped bottorn and the ring-shaped rim. After 

compaction, the density of these sections should be equal: variadons in the density within the 

compact lead to differential shrinkage during the subsequent sintering process. The latter 

could produce cracks or make polishing or grinding of the product necessary. 

When pressing the bottorn and the rim separately, it is relatively easy to obtain campacts 

with a constant density throughout. Single-sided uniaxial compaction is generally sufficient 

to obtain homogeneaus tablet-shaped compacts. With the ring-shaped rim, double-sided 

uniaxial pressing can be employed to minimize the density gradient which results from 

internal and extemal friction. The difficulty with pressing potcores is that the bottorn restricts 

the double-sided pressing of the rim. This can lead to a significant variadons of the density 

in the rim. Similarly, the density in the bottorn section varles because the resistance offered 

by the central rod is much larger than the resistance offered by the granulate in the rim. 

Consequently, the density near the die wall is always slightly lower than the density in the 

centre of the compact. 

The pressing of potcores is governed by displacements rather than pressure in order to 

obtain campacts with the desired dimensions. The fllling height of the rim and the bottorn are 

based on the dimensions of the potcore and the required density. Note that the filling height 

of the bottorn and the rim may have be modified on account of the movement of granulate. 

The density gradients in a potcore can be reduced by optimizing the pressing action. As 

a starting point, the double-sided pressing of a potcore in two stages is considered. When 

pressing the rim frrst, the density of the bottorn near the die wall always remains higher than 

the density in the centre of the bottom. The opposite is observed when pressing the bottorn 
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frrst: the density in the centre of the bottorn is always higher than the density of the bottorn 

near the die wall. The aceurenee of opposite radial gradients indicates that an optimum in the 

pressing process exists. Because the radial density gradients in the bottorn lead to the 

formation of circumferential cracks during sintering, the optimum pressing process must be 

established. This requires subdivision of the pressing process into more than two stages. A 

process consisting of three stages could proc~ as follows: frrst, the punch at the potcore 

bottorn end imposes a part of the required displacement Subsequently, the punch at the 

potcore rim end compacts the rim before the punch at the other end completes its scheduled 

displacement 

Axial density gradients in the rim are inevitable and can only be minimized by lowering 

the internal and external friction. The internal friction between the particles can be reduced 

by addition of suitable lubricants during the granulation process. External friction, on the 

other hand, can be lowered by i) addition of a suitable lubricant to the granulate (eg. Zn­

stearate), ii) lowering the roughness of the internal die surfaces and iii) increasing the 

hardness of the internal die surfaces. The latter can be achieved by coating the die wal! with 

materials which possess a high hardness (e.g. tungsten carbide, titanium carbide). 

The influence of internal and external friction on the magnitude of the density gradients 

in the rim depends on the length and thlckness of the rim. The dimensions of the potcores 

investigated are shown in fig. 3.5. 

:::::::1 mm 

10 mm 

- ...__ -
< 15 mm > 
< > 

1 mm 

Fig. 3.5: Two-dimensional representation of the potcores analysed in this study. The 

dimensions are relatively smal/ in order to establish the effects encountered during 

miniaturization. 

Potcores have been pressed in three stages (1, II and III) with the pressing equipment of TNO­

Apeldoorn using granulate containing acrylic I binder. Two parameters are varied: i) the 

subdivision of the punch displacement at the potcore bottorn end (fig. 3.6) and i i) the pressing 

velocity. Both parameters could influence the movement of granules from the rniddle section 

of the bottorn to the rim or vice versa. 
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Fig. 3.6: Three-stage ·compaction of a potcare with smal/ initia/ displacement (top) and a 

large initia/ displacement (bottom). Note that the total displacement in either direction is 

similar: only the subdivision of the displacement of the punch at the bottorn of the potcare 

is varied. 

Table 3.3 compares the scheduled displacements with the experimental values for two 

different pressing velocities. 

Table 3.3: Scheduled and actual displacements (in rrun) 

Stage Scheduled Velocity Stage I Stage 11 Stagem 

I 0.25 1 rrun/s 0.47 10.73 0.73 

11 11.0 

m 0.75 10 rrun/s 0.68 I0.78 0.62 

I 0.50 I rrun/s 0.59 10.83 0.59 

11 11.0 

m 0.50 10 rrun/s 0.82 I0.88 0.35 

I 0.75 I rrun/s 0.80 10.82 0.26 

11 11.0 

lil 0.25 10 rrun/s 1.05 10.79 0.09 
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Table 3.3 indicates that the scheduled displacement for stage I is exceeded for both velocities. 

Note that this effect becomes more significant with increasing velocity. Furthermore, the 

scheduled displacement is not realized for stage II, while the sum of the displacements during 

stage I and III is notconstant Although these problems can be partly alleviated by correcting 

for the compliance of the pressing equipment, table 3.3 illustrates the difficulty of 

displacement-controlled pressing of small compacts. 

Insight into the density distribution is obtained by sectioning the potcore into four parts: 

three rings originating from the rim and the bottom. The density distribution of each part is 

measured with mercury intrusion porosimetry (MIP). Results are given in table 3.4. Table 

· 3.4 (page 44) shows that, for the velocity of 1 rnm/s, the influence of the initial displacement 

on the density distribution is strong. Note that the largest density is observed in the bottorn 

for the intermediate initial displacement With the velocity of 10 mm/s, the differences in the 

density are smaller for comparable initial displacements. For the largest initia! displacement, 

the den si ties become comparable with those present at the velocity of 1 mm/s for a smaller 
(actual) initia! displacement In other words, a relatively high velocity and short initial 

pressing stage is advantageous in terms of the homogeneity, although the density in the upper 

rim section remains significantly larger than the other densities. Note that it is not clear 

whether these results apply for potcores with other dimensions. 

Table 3.4: Density distribution of sectioned potcores (in g/cm3) 

Displacement (mrn) 0.25-11.0-0.75 0.50-11.0-0.50 0.75-11.0-0.25 

Velocity (mm/s) 10 10 10 

Upper rim 2.94 3.00 2.93 2.93 2.98 3.01 

Middle rim 2.67 2.77 2.59 2.66 2.70 2.72 

Lower rim 2.63 2.73 2.59 2.66 2.51 2.50 

Bottom 2.62 2.73 2.72 2.74 2.49 2.42 

Table 3.4 indicates that the effect of the pressing velocity becomes significant when the effect 

of external friction is large. The mode of pressing, on the other hand, becomes relevant when 

the compact has a more complex geometry than the cylinder. 

The pore size distributions present in the potcore sections is obtained with the MIP 

measurement. The distribution are characterized in terms of the mean pore size and the 

standard deviation. Results are presented in tables 3.5 to 3;7. 
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Table 3.5: Mean pore size and standard deviation of the pore size distribution 

Scheduled displacements (rnrn): 0.25-11.0-0.75 

Velocity = 1 mm/s 

Position Mean (1Jm) Std. dev. (!lm) Mean (!lm) Std. dev. (1Jm) 

Upper rirn 0.11 0.06 0.10 0.07 

Middle rirn 0.16 0.09 0.14 0.08 

Lower rim 0.16 0.09 0.14 0.08 

Bottom 0.17 0.10 0.15 0.09 

Table 3.6: Mean pore size and standard deviation of the pore size distribution 

Scheduled displacements (rnrn): 0.50-11.0-0.50 

Velocity = 1 mm/s 

Position Mean (pm) Std. dev. (pm) Mean (!lm) Std. dev. (pm) 

Upper rirn 0.12 0.06 0.11 0.07 

Middle rim 0.16 0.09 0.14 0.08 

Lower rirn 0.18 0.11 0.14 0.08 

Bottom 0.16 0.10 0.15 0.09 

Table 3.7: Mean pore size and standard deviation of the pore size distribution 

Schedu1ed displacements (mm): 0.75~ 11.0-0.25 

Velocity = 1 mm/s 

Position Mean (!lm) Std. dev. (!lm) Mèan (!lm) Std. dev. (1Jm) 

Upper rirn 0.11 0.07 0.10 0.06 
Middle rim 0.14 0.08 0.15 0.08 
Lower rim 0.17 0.09 0.19 0.12 
Bottom 0.18 0.10 0.18 0.10 

Comparison of these results indicates that the influence of the pressing velocity and the mode 
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of pressing on the pore size distri bution is negligible. This confrrms the results of sectien 3.3. 

3.7. On the homogeneity of compacts 

The homogeneity can be defined as a measure for the irregularlty in the packing of the 

particles. The latter can be expressed in tenns of the standard deviation of the pore size 

distribution. Insight into the fluctuation of the standard deviation is obtained by analysing 

campacts pressed with a controlled varlation of the compaction parameters. Details of the 

experirnental setup have been given in sectien 3.3. Table 3.8 lists the standard deviation 

derived from the measured pore size distributions. 

Table 3.8: Standard deviation (in pm) of the pore size distribution 

Pressing mode Three-phased Synchronous 

Velocity (crn/s) 0.35 7.00 0.35 7.00 

Binder type Density (g/cm3) 

Acrylic II 2.6 0.08 0.08 0.08 0.07 

3.2 0.04 0.04 

Mixture 2.6 0.08 0.08 0.08 0.08 

3.2 0.04 0.04 

A more general expression for the homogeneity is obtained by normalizing the standard 

deviation with the mean pore size. This quantity corresponds to the coefficient of varlation 

of the pore size distribution. Because the homogeneity intuitively increases when the standard 

deviation decreases, the u se of the complement is proposed: 

(3-4) 

where ~ is the homogeneity with respect to the pore size distribution, sP the standard 

deviation and r the mean pore size. Combining the data in tables 3.1 and 3.3 indicates that 

the homogeneity Sp is constant and equals 0.5. Therefore, it is concluded that the homogeneity 

ÇP is independent of the density in the range of densities considered. 

The deficition of the homogeneity has been based on characterization of differences in 

the paclcing structure. However, the significanee of this definition depends on two aspects: 
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the influence of the homogeneity on the compact strength and on the occurrence of 

differential shrinkage during sintering. 

The strength of a compact is influenced by the packing of the particles, the type of 

binder bonding the particles and the toading conditions. The packing of the particles can be 

characterized using the porosity and the pore size distribution. With decreasing porosity, the 

strength of the compact increases while the (average) size of the pores decreases. This 

indicates that large pores are more detrirnental for the strength than small pores. Thus the 

definition of the homogeneity based on the standard deviation of the pore size distribution 

only has limited significanee for the strength of the compact. Similarly, the presence of more 

than one peak at lower compact densities implies that the inverse of mean pore size is also 

not a suitable measure for the strength. 

An alternative is to consicter the higher-order moments of the pore size distribution. The 

definitions in section 2.5 show that the values of the higher-order moments are increasingly 

influenced by the larger pores of the pore size distribution. Because a similar reasoning 

applies for the strength, the higher-order moments could provide an indication of the strength. 

The suitability of two higher-order moments, the skewness and kurtosis, is investigated. 

By attributing the increase in strength with increasing density to the compression of the 

largest pores, it can be assumed that the reduction in size of these pores is much larger than 

the reduction in size of the bulk of the pores. In other words, the largest pores are compressed 

preferentially. Therefore, in theory, the skewness decreases with the density. The kurtosis, on 

the other hand, is a measure for the ratio of the height and breadth of the distribution. The 

relation with the strength is therefore less obvious than is the case with the skewness. 

The skewness and the kurtosis have been determined for the pore size distributions of 

all compacts measured with MIP. For all measurements, the skewness and kurtosis appear to 

be coupled: a high skewness is accompanied by a high kurtosis and vice versa. However, the 

correlation of the skewness and kurtosis with the density is not clear. Although a certain 

varlation in the strength of compacts of a sirnilar density is expected, the trend that the 

strength increases with the density should be obvious. Instead, the skewness and kurtosis are 

strongly influenced by the measurement technique used. This is understandable because the 

corresponding pore volume is smal! and the size of the pores approaches the largest pore size 

which can be measured. The latter implies that fluctuations in the initial measurement 

conditions become apparent, which is reflected in a poor accuracy and reproducibility of the 

initia! section of the pore size distribution. Consequently, the definition of homogeneity is not 

modified in order to have more bearing on the strength of the compact. The relation between 

the strength and the density, however, will be exarnined in chapter 7. 

The occurrence of differential shrinkage during sintering is related to the presence of 

axial density gradients in the compact. Radial gradients, on the other hand, are generally 

smaller and vary with the axial position. Consequently, the characterization of axial density 
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gradients is relevant for the predietien of differentlal shrinkage. Density gradients are reflected 

in the pore size distributlon making the homogeneity defined with eq. (3-4) a suitable 

measure. However, the pore size distri bution is not known as a functlon of the axial position. 

Therefore, differences in the homogeneity are not automatlcally reflected in differentlal 

shrinkage. 

3.8. Discussion and condusion 

A qualitative compaction model based on the analysis of intemal and extemal friction 

has been developed. Experimental input for the model is obtained by measuring the pore size 

and density distributions present in the compact with MIP. Results indicate that, for 

cylindrical compacts, the type of binder, the pressing velocity and mode of pressing have little 

influence on the physical structure for a given pressure. By contrast, the relation between the 

pressure and the density is strong: upon increasing the pressure, the density increases and the 

mean pore size decreases. It is found that, for densities between 2.6 and 3.0 g/cm3, the mean 

pore size decreases linearly with the density. Note that, below a density of 2.8 g/cml, a 

secend peak emerges. This indicates that different types of pores can be found in the 

granulate. This is due to the nature of the granulate, in which at least two solid units 

(particles, granules) can be distinguished. 

On account of intemal and extemal friction, the pressure varles as a function of the 

position in the compact. Consequently, the density also varles within the compact. The 

varlation of the frictional forces can be predicted by consictering an axial cross-sectien of the 

compact. Near the punch, the magnitude of the frictional farces is relatively large. This 

produces a relatively high-density zone. Because this zone can balance relatively large farces, 

the axial compaction force decreases, producing an axial density gradient In the radial 

direction, the highest density is found in the corner between the die wall and punch as a result 

of extemal friction. Because of this high local density, the axial compaction force near the 

die wall is lower than in the centre of the compact As a result, the density in the bottorn 

corner is lower than the density in the centre at the bottorn of the compact. This shows that 

the radial density gradient at the top and bottorn of the compact are opposite. 

The magnitude of the density gradients depends on the dirnensions the compact (length 

L, diameter D), as well as the applied pressure: the higher the pressure, the smaller the 

gradients. While the model is able to predict density gradient gradients in uniaxially-pressed 

cylindrical compacts, additional considerations are required when the geometry of the 

compact is more complex. For example, the density distribution in the potcore is influenced 

by the pressing velocity and the mode of pressing. Varlation of these parameterscan be used 

to manipulate the movement of granules during compaction. The optimum combination, . 

however, varies from case to case. 
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Modelling compaction with representative cells 

4.1. Introduetion 

Data obtained from experiments is related to the structure of (Mn,Zn)-ferrite granulate 

during compaction using series of cells. Each series of cells represents the development of 

a particular type of substructure. With (Mn,Zn)-ferrite granulate, two substructures are readily 

identified: the paclcing of the granules and the paclcing of the ferrite particles. Within the 

granules, the particles form clusters which, if distinct, are known as agglomerates. The 

packing of agglomerates represents a third type of substructure. Identification of the presence 

of agglomerates is relevant when optimizing the processing of ferrites. 

Experimental data consists of the overall porosity and the pore size distribution of 

compacts. The porosity and density can be determined from the mass and compact dimensions 

or using mercury intrusion porosimetry (MIP). The latter also measures the pore size 

distribution of the compact, which can be characterized with statistica! parameters. ModeHing 

the evolution of the pore size distribution during compaction allows identification of the 

substructures. 

In section 4.2, experimental data obtained from the analysis of (Mn,Zn)-ferrite compacts 

with increasing densirles is presented. This data is used to establish a three-stage model of 

compaction. The development of the substructures during these stages will be represented by 

series of cells. Construction and characterization of the cells is presented in sectien 4.3, while 

correlating the series of cells with the experirnental data is done in sectien 4.4. Aspects of the 

model are verified with scanning electron microscepy (SEM) in sectien 4.5. 

4.2. Experimental data and compaction model 

4.2.1. Definition of the. porosity 

The porosity e of a sample with volume V, is defmed as: 

(4-1) 

where v. is the void (= pere) volume, which is measured with MlP. The total volume V, is 

found by measuring the sample dimensions. Recegnizing that granulate censists of selid 

particles and peres, eq. ( 4-l) can be rewritten as: 

e=Vj(V.+VJ (4-2a) 

er 

(4-2b) 
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where v. is the solid volume, which equals the volume öf the ferrite particles and organic 

binder. 

V 
s 

V 
p 

V 
a 

V 
g 

Fig. 4.1: Definition of the porosity e. The porosity is the ratio of the total void volume and 

the total volume. The void volume consistsof the volume of pores between the particles (VP), 

the agglomerates (V,.) and the granules (Vg). This makes other definitions of the porosity 

possible: for example, the porosity between the granules is the ratio of Vs and the total 

volume. 

The pore volume measured with MIP is smaller than the actual pore volume on account 

of pores which are not intruded. This produces differences in the porosity determined with 

or without the measured v •. Therefore, porosities based on the pore volume measured with 

MIP are indicated as & '. In view of the double dependency of c' on V. in eq. ( 4-2a), the 

definition of c' given by eq. (4-1) is preferred. Therefore: 

& E 1- V/VI (4-3a) 

(4-3b) 

It is necessary to take the difference between & and & ' into account when configuring cells. 

Sirnilarly, the density Q deterrnined using the measured pore volume v. is denoted Q '. 

Using eqs.(4-3a) and (4-3b): 

(4-4a) 

(4-4b) 

where Qlh is the theoretica! density of (Mn,Zn)-ferrite corrected for the presence of organic 
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binder and m the mass of the sample. The difference between & and e' measured for 

(Mn,Zn)-ferrite campacts is given in table 4.1. The data is measured with the equipment listed 

in section 3.2. 

Table 4.1: Comparison of the den si ties 12 and Q' 

Density Q Overall porosity e Density 12' Pore porosit)i e' 

(g/cm3) (%) (g/cm3) (%) 

2.31 54.8 2.40 53.0 

2.42 52.6 2.68 47.6 

2.55 50.1 2.76 46.0 

2.72 46.8 3.09 39.5 

2.98 41.7 3.40 33.5 

Platting Q versus Q' produces a linear correlation: 

Q' = 1.45(!- 0.91 (4-5) 

The goodness-of-fit is reflected in the correlation coefficient which equals 0.9904. Eq. (4-5) 

indicates that below a density Q of 2.0 g/cm3, (!' is smaller than 12· This suggests that the 

pores become increasingly inaccessible once the compact has been forrned. Therefore, eq. (4-

5) only applies when the density is at least 2.0 g/cm3; otherwise Q' is equal to (!. 

The densities quoted in this section are based on the overall porosity e on account of the 

practical significance. Where necessary, eq. (4-5) can be used to transfarm Q into Q'. 

4.2.2. Subdivision of porosity 

Granulate consists of randomly-packed granules, which contain ferrite particles. It is 

postulated that the particles form clusters known as agglomerates. Using this representation, 

three types of pores can be distinguished: pores between the granules (intergranular porosity), 

pores between the agglomerates (interagglomerate porosity) and pores between the particles 

(interparticle porosity). The size of the pores between each type of solid unit is proportional 

to the size of the unit When assuming that the initial packing of the solid units is sirnilar, the 

following classification can be made: 

where r is the average pore size. 
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Units: 

granule 

Pore types: interpartiele 

interagglomerate 

intergranular 

agglomerate ----:7"78~~­

particle 

Fig. 4.2: Subdivision of pore space. The si ze of the pores is roughly proportionaf to the si ze 

of the granules, agglomerates and particles. The size of agglomerates, which cannot be 

directly measured, will be derived from the model. 

The initial pore size distribution based on the subdivision in fig. 4.2 consists of three peaks. 

The volume of each type of pores present is reflected by the area under each peak. Given the 

total volume Vv deterrnined from the sample dimensions, the porosity e' can be split into 

three contributions: 

e' = VjVt 

(4.6) 

where subscript g stands for granules (intergranular porosity), a for agglomerates 

(interagglomerate porosity) and p for particles (interparticle porosity). 

It is postulated that, during compaction, the largest pores are compressed preferentially. 

Using this concept, three stagescan be distinguished. During the fust stage, the intergranular 

pores decrease in size until the distinction with interagglomerate pores has disappeared. 

During the second stage, the interagglomerate pores and remainder of the intergranular pores 

are compressed until their size corresponds to the size of interpartiele pores. Finally, all three 

types of pores are compressed. 
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Pore size distributions of (Mn,Zn)-ferrite compacts have been measured with MIP (fig. 

4.3). The minimum density is 2.31 g/cm3, which corresponds to the density where the 

compact has sufficient strength to be handled. 
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Fig. 4.3: Cumulative pore size distributions of (Mn,Zn)-ferrite compacts. The average size of 

the granules is 80 )mi. The measured curves show that two types of pores are present in the 

compacts. Compact densities: A) 2.31 glcm3, B) 2.42 glcm3, C) 2.55 glcm3, D) 2.72 glcm3 and 

E) 2~98 glcm3• 

The two types of pores can either be pores between particles and agglomerates or pores 

between particles and granules. In the latter case, there are no agglomerates in the granules. 

At this stage, the presence of agglomerates is assumed. 

The volume of interagglomerate pores is estimated from fig. 4.3 by extending the 

intruded volume curve below the shoulder. The pore volumes are subsequently converted to 

the interagglomerate and interpartiele porosity with the following equation: 



54 Chapter 4 

= (VN.)(l-r].'/Q,J (4-7) 

Note that Q' is related to the actual density Q through eq. (4-5). The correlation of e. and eP 

with the density is found to be approximately linear. Expressed in equations: 

e. = 47.1 - 17.0Q (4-8) 

eP = 52.9 - 2.6Q (4-9) 

The pore size distribution is obtained from fig. 4.3 by platting the derivative dV/dr versus the 

pore size r. The peaks of the pore size distribution can be characterized in terrns of the pore 

size at which a maximum is observed. This corresponds to the modal pore size. Table 4.2 lists 

the values for the curves shown in fig. 4.3. 

Table 4.2: Evolution of modal pore size during compaction. 

Density Q Interpartiele rnadal Interagglomerate modal 

(g/cm3) pore size (pm) pore size (pm) 

2.31 0.19 1.00 

2.42 0.17 0.94 

2.55 0.15 0.40 

2.72 0.12 0.24 

2.98 0.11 (0.11) 

3.19 0.08 (0.08) 

Data in parenthesis indicates that the pore size distribution consists of a single peak only. At 

the density where the distinction between the size of intra- and interagglomerate pores 

disappears, the interagglomerate porosity is not zero. By definition, the remaining 

interagglomerate porosity is classified as interpartiele porosity. A sinûlar transition occurs at 

lower densirles when intergranular and interagglomerate pores are equal in size. The 

intergranular porosity which remains at this density is classified as interagglomerate porosity. 



Representative cells 

Porosity 
ê, 

pl 

Density p 

Pare size 
r 

55 

Fig.4.4: Relation between the types ofporosity and the tknsity during compaction. Shownare 

the total (t), intergranular (g), interagglomerate (a) and interpaniele (p) porosity. The 

extrema[ tknsities are the bulk (b) and the theoretica[ (th) tknsity. The transition tknsities 

(}1 and (}2 correspond to a tknsity where the pore sizes of two types of porosity coincitk. 

Remaining pore volume of the initially larger pores is adtkd to the volume of the smaller 

points. This produces the sharp local variations in the individual porosities. 

The data obtained with MIP (fig. 4.3) only provides infonnation on the porosity for a range 

of densities between (2! and 0th· In order to model the entire density range, the transition 

densities must be determined. In addition, the progress of the individual porosities outside the 

range limited by Q 1 and Q2 must be established. 

At densirles below the fust transition density Q1, the interpartiele porosity is considered 

to be unaffected. The interagglomerate porosity, on the ether hand, is reduced by deformation 

of the granules. Assuming that this reduction in porosity equals the intergranular porosity 

remaining at Q 1, Q1 corresponds to the bulk density plus the total intergranular porosity. The 

second transition density Q2 is obtained by assuming that the residual interagglomerate 

porosity is small. The value of Q2 is then given by the density where the interagglomerate 

porosity becomes zero. Eq. ( 4-8) can be used to deterrnine Ch These considerations are 

illustrated in fig. 4.5. 
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Fig. 4.5: Determination of the transition densities ei and Q2• Provided that Bi and 02 are 

smalt, ei and e2 arefoundfrom intersecdons with the Q axis. Q 1 equa/s the sum ofthe bulk 

density and tota/ intergranu/ar porosity. (h equals the minimum density where a single-peaked 

pore si ze dis tribution is found. 

Given two transition densities, a three-stage model based on the porosity can be derived. The 

corresponding evolution of the packing structure is investigated in sectien 4.3. 

4.3. Construction of representative cells 

4.3.1. Analysis of the compaction process 

The increase in density corresponds to a decrease of the three types of porosity. The 

relation between each type of porosity and the density is modelled as a three-stage process 

(section 4.2.2). The porosity types are associated with the presence of three types of solid 

units: particles, agglomerates and granules. During compaction, these units are subject to: 

- rearrangement : change of mutual position 

- deformation : change of shape 

- compression : change of volume 
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The effect of these processes varles with the density and the type of solid involved (table 4.3). 

Note that, at the transition between stages, the distinction between two types of solid units 

disappears. 

Table 4.3: Relation between compaction stages, compaction mechanisms and solid types 

Stage Granules Agglomerates Particles 

1 Rearrangement No change No change 

Campression Rearrangement No change 

Deformation 

2 Campression Rearrangement 

Deformation 

3 Rearrangement 

Deformation 

The development of structure during the compaction stages is represented by cells constructed 

with gran)lles, agglomerates or particles. In the following, equations are derived for cells 

constructed from particles. Because granules, agglomerates and particles are initially 

considered to be spherical, the cells are conceptually sirnilar and the same equations apply 

for granules and agglomerates. 

Three-dimensional cells require information on the connectivity of pores or the number 

of cantacts between the particles. Because details on the latter are unknown, two-dimensional 

cells are used. Particles are represented by their cross-sections in cells whose layout is 

governed by the following rules: 

- the cell edges are of equal length. 

- the cell particles are equisized. 

- the cell particles are positioned at two locations only: 

- the eentres of the particles coincide with the intersectien of the cell edges. 

- the particles are bisected by the cell edge. 

- the distance between the eentres of neighbouring particles is constant. 
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The resulting symmetry allows denvation of correlations relating the cell porosity to the pore 

and partiele sizes. In addition, a number of parameters characteristic for the three processes 

are defined: 

- rearrangement: 

- the number of particles covering the cell. This number is termed the coordination N. 

- the number of corners of a cell N0 • 

- the relative length of the cell edge, expressed as the ratio of the edge length L and the 

partiele radius rP. 

- deformation: 

- the sphericity of the particles 'I'· which is defmed as the ratio of a pseudo partiele size 

rp.d and the undeformed size rP: 

(4-10) 

The pseudo partiele size rp.d corresponds to the radius of curvature of the section 

hordering the pore. 

- compression: 

- the compression ratio of the particles À., which indicates the size of a compressed partiele 

rp.c relative to the uncompressed size rp,o: 

(4-11) 

Note that deformation and compression requires the particles to be directly adjacent, which 

implies that the L/rP ratio equals 2. The significanee of these parameters is illustrated in fig. 

4.6. 
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& ~ ~ 
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Fig. 4.6: Definition of cell parameters: i) coordination N, ii) nwnber of corners Ne, iii) edge 
length-to-particle si ze ratio LlrP' iv) sphericity 'I' and v) compression ratio A.. 

A cell is considered to be representative when the experimental ratio of the modal pore and 

partiele sizes (r/rp)••P matches with the cell ratio (r/rp)uu for the same porosity. The relation 

between the cell porosity and the cell ratio (r/rp)e.u is derived for various arrangements of the 

particles or granules in the following subsection. 

4.3.2. Classification of cells 

The compaction process is represented by cells, which are contigured in a similar 

manner. Three distinct series are shown in fig. 4.7. Series of cells where all particles cover 

a corner, i.e. N=Ne, are denoted isocornered cells (fig. 4.7(i)), while series of cells with a 

fixed geometry, i.e. Ne=constant, are termed isogeometrie cells. Figs. 4.7(ü) and 4.7(ili) show 

isogeometrie cells which differ according to the transition between successive coordinations: 

- stepwise elangation of the cell edges, i.e. an increase of the edge length L is accompanied 

by a change of coordination N (fig. 4.7(ü)). 

- continuons elangation of the cell edges, with the coordination N increasing when the cell 

edge length has increased by 2rP (fig. 4.7(üi)). 
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i) 

ii) 

iii) 

Fig. 4.7: Families of cells 

i) all particles adjacent, N=N0 

ii) all particles adjacent, N multiple of No 

iii) continuously expandable, N multiple of No 

4.3.3. Basic relations for N, Ne and L/rP 

Chapter 4 

Although the cell is covered by N particles, only a fraction of each partiele is located 

. inside the cell. The con tribution of a corner partiele is proportional to the corner angle a, 

while a partiele bisected by a cell edge contributes halfits surface (see fig 4.7). Defrning the 

effective number of particles N.tr in the cell: 

- for isocornered cells: N.tt = N0a./21t (4-12a) 

- for isogeometrie cells: N.lf = N0a/21t + (N-N0)/2 (4-12b) 

With polygons, the corner angle a depends solely on the number of corners N0 : 
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(4-13) 

Recalling that N=N0 for isocornered cells, substitution of a in eqs.(4-12a) and (4-12b) yields 

identical expressions for N.« for both types of cells: 

N.« = N/2- 1 (4-14) 

The overall porosity e (eq. 4-3a) equals the cell area not covered by particles: 

e = 1 - N.ff!tr/IA 

(4-15) 

where A is the area of the cell. In practice, the porosity varies with the measurement 

technique: the porosity e' according to eq. (4-3b) differs on account of pores not intruded. 

Fig. 4.8: Subdivision of pore area. The central pore is bounded by the largest circle which 

fits in the pore area of the cell. Duringa MIP measurement, the central poreis intrudedfirst. 

Given that all pores are accessible, the difference between e and e' is attributed to pores 

which are too small to be intruded. Therefore, subdivision of the pore area in the partiele cell 

as shown in fig. 4.8 is proposed. The size of the shaded circle, which accupies a large 

fraction of the pore area, corresporids to the modal pore size r of the smallest type of pores 

measured with MIP. Because a single cell is used to represent these pores, the size 
distri bution of these pores is not modelled. Therefore, it is postulated that the remaining pore 

area is not intruded duringa MIP measurement Consequently, an expression for the porosity 

e' is obtained: 
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e' = rtr/A (4-16) 

If the subdivision of pore area is correct, eqs.(4-15) and (4-16) can be combined: 

(4-17) 

Eq. ( 4-17) allows direct determination of the coordination N from experimental quantities. 

The validity of the proposed subdivision can be checked by comparison of the 

experimental and theoretica! difference between e and e ' . The theoretica! difference deth is 

given by: 

(4-18) 

Expression for the cell area 

The denvation of a general expression for the cell area A is illustrated in fig. 4.9. 

N = 3 

a= 60° 

-~ 
.':'Q'. 

x = rp tan(a/2) 

N = 4 

a= 90° 

·· · · · · · ··~· 

x 
:-:-./.. 

Fig. 4.9: Determination of cell area A. The area A is found by i) dividing the cel/ into Ne 

equivalent subsections, ii) calculating the area of one subsection and iii) multiplying by Ne. 

The cell area A is a function of edge length Land the cell geometry, expressed in the number 

of corners Ne and the corner angle a.: 

(4-19) 
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Simplifying eq. (4-19) through substitution of a. with eq. (4-13): 

(4-20) 

Expression tor the edge length L 

The edge length L is related to the partiele and pore radü through the cell geometry 

(fig.4.10). The pore radius corresponds to the largest inscribed circle. 

' 

,,'r 
' rpcos(a./2) 

v------_.//~--

I 
I 
I I 
I I 

kr ~ 
I p I 
I • 

Fig. 4.10: Relation between edge length L, the centre-to-corner distance Le and the corner 

angle a.. In this case, where N=Ne, Lc equa/s the sum of the po re and partiele radius (r+rp). 

Le = L/(2cos(a./2)) 

or 

(4-21) 

When N equals Ne, the size of the central pore is limited by the corner particles, so that the 

centre-to-corner distance Le equals the sum of the partiele and pore radii. The value of Le is 

larger than the sum if the central pore is bounded by particles on the cell edges. The latter 

occurs when N is larger than Ne. lf we define the ratio <p by: 

(4-22) 
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Substitution of Le in eq. (4-21) yields: 

(4-23) 

For isocornered cells (N=Ne, L/rp=2, q>=l), an expression for the pare-to-partiele ratio is 

obtained: 

(4-24) 

The value of cp varles as a function of N and Ne. Figs. 4.11 and 4.12 show the derivation of 

cp for the square and triangular geometries. 

Fig. 4.11: Limitation of the si ze of the central po re in cells with square ge ometry (Ne=4 ). 

When N=Ne, q>=l while for N>Ne, cp=-./2 . 

Fig. 4.12: Limitation ofpore sïze in cells with triangular ge ometry (Ne=]) . When N=Ne, q>=l. 

For N>Nc, q> varies with the number of particles bisected by the eelt edge, denoted NP: when 

NP is even, q>=2Nsin(arctan(3-./3!N))!3-./3, while when NP is odd, q>=2. Note that cp is not 

dejined for N=6 where the particles are adjacent. 
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Expressions (or the porosity 
The general expression for the cell area A (eq. 4-19) can be used to express the porosity 

e as a function of N, Ne and L/rp (eq. 4-14): 

e = 1 - (N/2 - I)m/IA 

(4-25) 

Sirnilarly, the alternative porosity e' (eq. 4-16) follows from eqs.(4-20) and (4-24): 

(4-26) 

In cells where all particles are directly adjacent, the· three parameters are related: 

L/rp = 2N/Ne (4-27) 

U se of eq. (4-27) reduces the number of independent parameters in eqs.(4-25) and (4-26) to 

two. 

4.3.4. Basic relations for 'I' 
The process of deformation is deterrnined by the initial arrangement of the particles, 

which is characterized by N, Ne and L/rp. Given values forthese parameters, relations between 

the deformation parameter, the sphericity 'lf, and the porosity are derived. The sphericity 'I' 
is the ratio of the local radius rp,d and the undeformed partiele radius rP: 

(4-28) 

'I' is unity when the particles are undeformed and zero when completely deformed. 

During deformation, the volume of the particles is constant. Consequently, the cell area 

occupied by particles is also constant. When the particles are completely deformed, the 

interpartiele pore space is zero. The area occupied by the particles then equals the total cell. 

area A: 

(4-29) 

Substifuting N.rr with eq. (4-14) and rewriting: 



66 Chapter 4 

or 

(4-30) 

where C1 = 47t(N/2-1 )tan( 180/NJ/Nc. S ubstitution of L/rP in eq. ( 4-25) relates the cell porosity 

to 'Ijl: 

(4-31) 

This allows verification whether the actual deformation process corresponds to the process 

as depicted in fig. 4.13. 

EE 
'1/1=1 0<'1/1<1 '1/1=0 

Fig. 4.13: Deformation in cells where Nc=N=4. The boundary is progressively flattened by 

thefour neighbouring particles. Note that the corner sections are semi-circles with radius rp.d· 

4.3.5. Basic relations for À. 

Campression is reduction of the size of granules or agglomerates through reduction of 

the porosity within these units. This decrease is expressed in the compression ratio À.: 

(4-32) 

where rp.c is the compressed radius and rp.o is the initial radius. Campression only occurs when 

the granules or agglomerates are directly adjacent. In addition, it is assumed that all granu1es 

or agglomerates are compressed isotropically, which implies the geometry of the cell does not 

change. Consequently, only compression of isocornered cells is considered. 

Parameters associated with rearrangement (N, Ne, L/rp) have constant values during 

compression. However, compression decreases the cell area A. The relation with the 

compression ratio À. is found by camparing the initial cell area Ao and the compressed cell 

area: 
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(4-33) 

The cell area occupied by the granules or agglomerates consists of solid and pore space. In 

view of the correlation between the size and the cell area (eq. 4-32), tWo relations are 

obtained. For granules: 

(4-34) 

where subscripts s, p and arepresent solid, partiele and agglomerate respectively. A similar 

relation is obtained for agglomerates, which are only compressed after intergranular pores 

have been compressed to the same size: 

(4-35) 

In the present model, the subdivision of cell area is translated to porosities. Converting eqs.(4-

33) and (4-34): 

(4-36a) 

(4-36b) 

where e. is the fraction of cell area occupied by the solid. 

4.3.6. Relation between two- and three-dimensional rnadelling 

The packing of two- and three-dimensional cells containing equisized particles are not 

directly comparable. For example, a two-dimensional cell with coordination 3 with all 

particles directly adjacent has a porosity of 9.3 %. In a three-dimensional equivalent, the three 

in-plane particles could forrn the base of a tetrahedron, which has porosity of 22.0 %. 

Similarly, a two-dimensional cell with coordination 4 has a (minimum) porosity of 22.4 %, 

while its three-dimensional derivative, a pyramid, has porosity of 27.9 %. 

In three-dimensional packings, tetrahedrons and (bi)pyramids are the most common cell 

geometries. In practice, however, numerous packing geometries are encountered. Therefore, 

it is difficult to link the porosities of two- and three-dimensional representations. As a rule, 

the porosity in a three-dirnensional cell will be higher. 



68 Chapter 4 

The density measured with MIP relates to a three-dimensional structure. However, 

denvation of the pore size distribution from MIP data is based on a two-dimensional model: 

pores are represented as cylindrical channels. Consequently, interpretation with two­

dimensional cells are inline with MIP measurements but do constitute an approximation. In 

view of the geometrie assumptions underlying this rnadelling approach, further refinement is 

not considered to be useful. 

4.4. Characterization of the compaction process 

4.4.1. Introduetion 

The processes which occur during the three compaction stages are used to identify the 

cell layout which is specific for the compaction of (Mn,Zn)-ferrite granulate. This provides 

insight into the effect of variations in the granulate properties and process parameters. The 

celllayout is derived from the (development of) pore size distributions measured with MIP. 

The methodology of modeHing compaction with representative cells is illustrated with 

the following granulate: 

- binder type : PV A 

- bulk density : 1.4 g/cm1 

- tap density : 1.55 g/cm3 

- average granule diameter : 80 pm (as determined with laser diffraction) 

- average partiele diameter : 1.0 pm (as determined with sedimentation analysis) 

4.4.2. Existence of agglomerates 

The compaction model presented in section 4.3 consists of three consecutive stages. At 

the transitions between two stages, the si ze distinction between two types of pores disappears. 

With MIP, only uni- and bimodal pore size distributions are measured (fig. 4.3). This allows 

for two options: either the experimentil. data relates to the secend and third compaction stages 

or the compaction process consists of two stages only. If the latter is the case, it indicates that 

there are no clearly distinguishable agglomerates within the granules. 

In order to identify the types of pores which are measured, the validity of a two-stage 

model is tested. In this model, the porosity consists of interpartiele and intergranular pores. 

During the frrst stage, the granules are first rearranged, then deformed and compressed. This 

produces simultaneous rearrangement of the particles within. The secend stage cammences 

when the pore size distribution consists of a single peak only. During this stage, 

rearrangement and deformation of the particles occurs. 

During the frrst stage, the change in porosity due to compression ~cc of the granules 

equals the change in porosity due to rearrangement of the particles, given by eq. (4-8): 
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(4-37) 

The change in intergranular porosity as a result of compression and deformation is given by 

eq. (4-8). Therefore, the change in porosity due to deformation equals: 

(4-38) 

Deformation and compression reduce the size of the central pore between the granules. 

Incorporating 'I' and À. in eq. (4-24): 

r/rp = 'lfÀ.(l/sin(1t/NJ - 1) (4-39) 

The choice of Ne is determined by the coordination of the granules after filling. In two 

dimensions, isocornered cells with coordination 3 represent the closest-packed state. Given 

that this condition is obtained after tapping the granulate, the intergranular porosity then 

equals 9.3 %. With a tapped density of 1.55 g/cm3, complete compression of the intergranular 

pores occurs at a density of 2.02 g/cm3• This value is much lower than the transition density 

determined from a series of MIP measurements, which indicate that the transition occurs at 

2.78 g/cm3 (see fig. 4.3). Therefore, a cell with coordination 4, which has a (minimum) 

porosity of 22.46 %, is used to represent the packing of the granules. The intergranular 

porosity then elisappears at a density of 2.68 g/cm3, a value which shows better 

correspondence. 

After tapping, the size of the central pore between the granules equals 16.6 pm. 

Subsequent compression and deformation reduces the size of the intergranular pore. Table 4.2 

lists the measured intergranular pore size as a function of the density. If the two-stage model 

is correct, the evolution of the intergranular pore size can be predicted using calculated values 

for 'I' and À.. 

A theoretica! equation for the difference in porosity due to deformation is established by 

defining the tap density (1.55 g/cm3) as reference state, where 'I' is unity. Using eq. (4-30): 

(4-40) 

where C1 = 1t(2N-4)tan(1t/NJ/Nc. The effect of compression on the pore size is expressed with 

eq. (4-36). Note that, when using eq. (4-36), the porosities are calculated using a density 

corrected for the effect of deformation. 

At a density of 2.31 g/cm3, .óed equals 0.109 while .óec equals 0.019. Using eq. (4-40), 

'I' is found to be 0.66, while eq. (4-36) yields a À. of 0.98. Substituting these values in eq. (4-

39) indicates a pore size of 10.7 pm, which is considerably larger than the measured size of 
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1.0 pm. Similar differences are found for the other densirles in table 4.2. This implies that the 

two-stage model cannot be used on the basis of the present data and interpretation. At the 

same time, the existence of agglomerates as distinct structural units is proved. 

4.4.3. Compaction of granules 

After filling, the structure of the loosely-packed granules can be represented by two types 

of cells: isogeometrie cells with coordination 3 or isocornered cells. The difference between 

these cells is contained in the parameter varied: with isogeometrie cells, the ratio L/rp is 

variabie while, with isocornered cells, the coordination N varies. In the absence of details 

which permit determination of the type of cells, an approach based on the definition of the 

structure after tapping is adopted. The latter corresponds to an optimum packing which is 

represented by a cell with coordination 3 where all granules are directly adjacent The 

difference between the tap and the bulk density is due to rearrangement of the granules. 

Because the nature of this rearrangement is not defined, a cell representing the initia! packing 

of the granulate is not configured. However, the cell representing the tapped granulate can be 

used as a starring point for configuring cells at higher densities. 

The model proposed in section 4.2 states that when the size of intergranular pores equals 

the size of the interagglomerate pores, the granules lose their identity. The density at which 

this occurs corresponds to the density where the intergranular porosity has disappeared. Given 

an intergranular porosity of 9.3 % in the tapped state, the first transition density Q 1 equals 

2.02 gjcm3 for this type of granulate. This value is consistent with the experimental data 

because it is lower than 2.31 g/cm3, the density at which only pores between agglomerates 

and particles are measured. 

4.4.4. Compaction of agglomerates 

Agglomerates are clusters of particles inside the granules. It is important to determine 

the density at which agglomerates lose their identity. In addition, the size and packing of 

agglomerates within the granules is of interest. These details can be obtained by interpretation 

of the pore size distributions obtained with :MIP. 

The density at which the size of the pores between particles and agglomerates is equal 

corresponds to the density where the pore size distribution consists of a single peak. Using 

the data shown in fig. 4.2, this second transition density Q2 is found to be 2.78 gjcm3• This 

is the minimum density at which the compact is physically homogeneous. 

Deterrnination of the initial packing of agglomerates requires reconstruction of the 

compaction behaviour at low densities, where MIP data on the evolution of the pore size 

distributions is not available. During the frrst compaction stage, agglomerates are subject to 

rearrangement on account of compression of the granules. This leads to changes in the 

coordination N and/or the ratio L/rP. The corresponding change in the interagglomerate 
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porosity is un.known but expected to be relative1y small. At the end of the fust compaction 

stage, the agglomerates are all directly adjacent, so that further compaction produces 

deformation and compression. The effect of these processes on the interagglomerate pore size 

is monitored with MIP. At the onset of the third compaction stage, the agglomerates have 

been braken down, and only the individual particles can be distinguished. 

During the second compaction stage, two relations are known: the development of the 

interagglomerate pore size and the interagglomerate porosity as a function of the density. The 

porosity versus density relation, given by eq. (4-8), indicates that at the fust transition density 

(2.02 g/cm3), the interagglomerate porosity is 12.8 %. At the fust transition density, the 

agglomerates are directly adjacent, which corresponds to an isocornered cell. The porosity of 

an isocornered cell with coordination 3 is only 9.3 %, a cell with coordination 4 (porosity 

22.5 %) is more suitab1e. Given this choice, the development of the pore si ze can be modelled 

to provide an estimate of the average agglomerate size. 

Rearrangement leads to directly adjacent agglomerates at a density of 2.02 g/cm3• Further 

compaction therefore leads to deformation and compression. Comparison of eq. (4-37) and 

(4-38) indicates that the effect of deformation is much more significant than that of 

compression. Therefore, an initia! estimate is based on the assumption that the change in 

interagglomerate porosity is due to deformation only. In equations: 

'lf = (l/(0.17(Q-2.02)/1t+0.25)-1t)/(4-1t) (4-41) 

and 

(4-42) 

Characteristic values of r versus Q are given in table 4.2. Using eqs. (4-41) and (4-42), an 

initia! agglomerate diameter of 5.7 pm is found. With the partiele diameter being 1.0 pm, 

agglomerates consist of on average 65 particles. The latter estimate is based on the 

assumption that the particles are equisized and close-packed. 

During compaction, the calculated size of the agglomerates decreases, which could be 

caused by compression. Another possibility is that fragmentation of agglomerates occurs. This 

process has not been considered in this model but will be investigated in the section 5. 

4.4.5. Compaction of particles 

The largest fraction of pore space present in granulate is located between the particles, 

i.e. interpartiele porosity. Deterrnination of the initia! packing of the particles is of interest in 

order to judge whether irnprovements are possible. In addition, determination of the 

mechanism underlying the process of rearrangement is useful on account of its effect on the 

compaction behaviour. 

Table 4.4 shows the evaJution of the interpartiele porosity during the compaction stages. 
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Table 4.4: Development of the interpartiele porosity eP 

Stage 

2 

3 

Beundarles {g/cm3) 

Lower Upper 

1.4 

2.02 

2.78 

2.02 

2.78 

5.11 

Porosity (%) 

eP = 47.7 

eP = 52.9 - 2.6Q 

&p = 100 - 19.6Q 

Chapter 4 

Process 

No change 

Rearrangement 

Rearrangement/deformation 

Three mechanisms representing rearrangement are possible. These are characterized by a 

variabie N, N. and L/rp respectively. An indication of the applicable mechanism fellows from 

analysis of the porosity in combination with the pare size. Given the high interpartiele 

porosity during the initial stages of compaction (table 4.4), isocornered cells (N=N •• L/rP = 

2) are likely to contain pores which are much larger than the particles. For example, a cell 

with a coordination of 7 has a porosity of 46.0 % and a central pare which is 1.3 times rP. 

In practice, however, the interpartiele pores (average radius: < 0.2 pm) are significantly 

smaller than particles (average radius 0.5 pm). The two ether options are isogeometrie cells 

with expandable celledges (N, N. constant, L/rP variable) and isogeometrie cells with directly 

adjacent particles (only N. constant). In the latter, the pores-te-partiele ratio r/rp is even larger 

than in isocornered cells with the same coordination. In isogeometrie cells with constant N 

and variabie L/rp, however, high porosities and relatively small pores can be realized. Befare 

calculating L/rP' a suitable coordination N (= NJ has to established. 

Determination of the correct coordination is based on matching the theoretica! and 

experimental size of the pores. In practice, the initial pare-to-partiele size ratio r/rp is roughly 

0.4. This value becomes smaller during rearrangement and deformation of the particles during 

compaction. Therefore, the cell with a suitable coordination has a r/rP ratio which can be 

smaller than 0.4. Only coordination 3 satisfies this criterium with a minimum r/rp of 0.155. 

The next coordination (4) has a minimum r/rP of 0.414. 

Matching the initia! interpartiele porosity (47.7 %) to the cell porosity reveals that the 

initial L/rp ratio is 2.63, which corresponds to a pare size of 0.26 pm. 

4.5. Verification of the model 

4.5.1. Introduetion 

In this section, the validity of two important assumptions underlying the model developed 

in this chapter are investigated. The fust assumption relates to the shape of the granules, the 

agglomerates within the granules and the individual particles: these are initially considered 
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to be spherical. The actual shapes are assessed in sectien 4.5.2. In addition, the shape of the 

particles after compaction is examined in sectien 4.5.3. 

The second assumption is that the largest pores are preferentially compressed. Given 

distinct classes of pores, this assumption enables the definition of a transition density. The 

latter represents the density at whichthe largest pores present are sufficiently compressed to 

match the size of the next largest pores. It has been derived from interpretation of MIP data 

that initially three classes of pores are present ( sectien 4.4.2). This implies that two transition 

densities can be distinguished. The significanee of these transition densities is examined with 

scanning electron microscopy (SEM) in sectien 4.5.4. SEM images are obtained using a beam 

voltage of 30.1 kV. 

4.5.2. Initia! shape of granules and particles 

On account of their size, the initia! shape of the granules is readily observed with optica! 

microscopy. By centrolling the properties of the slurry and the spray-drying conditions, 

perfectly spherical granules can be produced. In practice, granules occasionally fuse during 

the latter stages of spray-drying (fig. 4.14). 

Fig. 4.14: Granule produced by spray-drying observed with SEM. Protruding from the 

granule is a smaller granule which has become attached dw·ing spray-drying. The presence 

of large agglomerates within the granule is not observed. 
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Fig. 4 .14 indicates that the assumption in the model that granules are spherical is appropriate. 

Fig. 4.15: Bonding between two granules fused during spray-drying. Note that the particles 

at the swface form an intricate network which is regu/ar from a macroscopie point of view. 

The shapè of the particles is influenced by the nature of the raw matenals and the initia! 

powder processing stages (mixing, presin tering, milling). SEM images confirm the expectation 

that the particles have a partly rounded but not necessarily spherical shape. Consequently, the 

representation of particles in the model with spheres is an approximation. 

The shape ofagglomerates of particles in the granules is determined by the distri bution 

of relatively large pores in the granules. The model prediets that, when assuming that the 

agglomerates are spherical, these consist of roughly 65 particles. In two dimensions, the 

diameter of the agglomerate then equals 5 to 6 partiele diameters (-= 5.7 pm). Fig. 4.16 shows . 

that agglomerates are diffièult to detect from a two-dimensional image of the surface of a 

granule. However, the COn$iderable variation in the size of the pores could indicate the 

presence of agglomerates. 

Because it is likely that the bonding of the particles in the agglomerates is stronger than 

the bonding between the agglomerates, agglomerates can possibly be isolated by carefully 

fracturing a granule. However, there is no guarantee that this does notaffect the agglomerate. 

In this study, granules have been split with a razor blade. The cross-section of a granule is 

shown in fig. 4.17. 
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Fig. 4.16: (top) Outer swface of 

a granule as observed 

with SEM. 

Fig. 4.17: (bottom) Cross-sectionat 

sulface of a granule as 

observed with SEM. 

Note the inclination of 

the cross-section. 

75 
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Fig. 4.16 and 4.17 indicate that agglomerates within the granules are not readily identified. 

Therefore, representing agglomerates with spheres is a simplification. 

4.5.3. Partiele deformation during compaction 

The model assumes that the particles are only deformed at high densities, when 

rearrangement of the particles is sufficiently restricted. Table 4.3 indicates that, according to 

the model, this state occurs at densities well above the second transition density, which equals 

2.78 g/cm3• The validity of this postulare is checked by pressing a rèctangular compact 

(dimensions: 5 x 6 x 55 mm) from granulate containing a mixture of acrylic II and PV A to 

a density of 3.05 g!cm3• Because shear stresses, which could induce fracture of the particles, 

are largest along the die wall, a SEM image of the si de of the compact is shown in fig. 4.18. 

Fig. 4.18: Ferrite particles in campacts viewed sideways. Note that a vertical groove, created 

by an irregularity in the surface of the die wall, passes through the centre of the image. 

Comparison of the particles in fig. 4.16 and 4.18 reveals that the particles are not significantly 

deformed at a density of 3.05 g!cm3• Consequently, fracture of the particles only cammences 

at higher stresses, which correspond to a higher density. Therefore, the assumption that 

particles only deform at high densities is reasonable. 
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4.5.4. Significanee of transition densities 

The two transition densities in the model have been detennined for the compaction of 

granulate containing PV A binder. The frrst transition density (2.02 g/cm3) depends on the 

tapped density of the granulate while the second transition density (2.78 g/cm3) is detennined 

from pore size distributions measured with MIP. 

The tapped density is related to the bulk density of the granulate, which varies with the 

granule size distribution and the density of the granules. Preliminary investigations indicate 

that the effect of the granule size distribution on the bulk density is limited: composed size 

distributions in the range of 60 to 450 fJm produce only slight variations in the bulk density. 

This indicates that the range of granule sizes is too narrow to affect the paclcing of the 

granules. Varlation of the granule density, on the other hand, is clearly reflected in the bulk 

density. 

The granulates containing acrylic ll binder and a mixture of acrylic ll and PV A have a 

higher bulk density than the other granulates used in this study (1.50 g/cm3 versus 1.40 

g/cm3). In view of the corresponding tapped densities (1.65 g/cm3 versus 1.55 g/cm3), the first 

transition density for the mentioned granulates will be 2.12 g/cm3 instead of 2.02 g/cm3• 

Throughout this study, the pore size distributions measured with MIP have been invariant 

to the type of granulate: differences in the type and content of binder, the granule size and 

density do not affect the pare size distribution of compacts. Therefore, the second transition 

density holds for all granulates. Note that only a change in the partiele size distribution is 

likely to affect the second transition density. 

The difference between the frrst and second transition densities reflects the 

interagglomerate porosity. Since the first transition density varies with the granule density 

while the second transition density is constant, it fellows that increasing the granule density 

during spray-drying reduces the interagglomerate porosity. In order to verify this conclusion, 

granulate containing acrylic II binder is pressed to various densities in a die. The surface of 

the granulate directly below the punch is subsequently observed with SEM. Figs. 4.19 to 4.22 

show the deformation of the granules as a function of the density. 

Fig. 4.19 shows that the Joosely-packed granules are initially fractured. According to 

the model, at this density, the intergranular pores are the largest pores present, which appears 

to be correct. Fig. 4.20 shows the density just above the frrst transition density (2.12 g/cm3). 

The intergranular and interagglomerates pores are now assumed to be equal in size. Fig. 4.21 

shows that the size of intergranular pores is increasingly reduced. Finally, the density in fig. 

4.22 exceeds the second transition density. According to the model, the pore size distribution 

consists of a single peak. Apart from a few isolated pores, this appears to be the case. 

Fig. 4.20 reveals no details about the agglomerate structure within the granules. However, 

in view of the size of the granules, interagglomerate pores of a size similar to that of the 

intergranular pores can be present within the granules. 
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Fig. 4.19: Granulate pressed to 1.81 glcn? 

Fig. 4.20: Granulate pressed to 2.25 glcm3 
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Fig. 4.21: Compact swface (density 2.64 glcm3) 

Fig. 4.22: Compact swface (density 2.96 glcm3) 
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This would imply that the interagglomerate pores are much larger than the agglomerates 

themselves. Because MIP tends to underestimate the pore size, this implication is nat 

unreasonable. 

Alternatively, the displacement of the granules at the die surface could differ from that 

in the bulk. Up to now, SEM images have been made of the outer granules of the granulate 

mass or compacts. In order to detennine whether these are representative, granulate containing 

acrylic II binder is pressed .to three different densities. Subsequently, these have been 

fractured through bending. The fracture surfaces are shown in figs. 4.23 to 4.25. 

Fig. 4.23 shows that at a density of 1.81 g/cm3, no bonding between the granules exist. 

Because deformation is still relatively insignificant, the increase in density is mainly due to 

rearrangement of the granules. Fig. 4.24 shows that at a density cif 2.39 g/cm3, which is higher 

than the first transition density (2.12 g/cm3), the bonding between the granules is still weak 

so that the granules break out as a whole. Note that at the same time the granules are 

significantly deförmed and compressed, resulting in a lower interagglcimerate porosity within 

the granule. lf pores between the particles in the agglomerates had been compressed instead, 

the bonding between the particles would have been more apparent. This is additional evidence 

for the presence of large pores within the granules, which are also termed interagglomerate 

pores. Finally, at a density of 2.89 g/cm3, which is higher than the second transition density 

(fig. 4.25), the bands between the particles have become sufficiently strong for the granules 

to fracture. This is an indication that the homogeneity is high. 

Fig. 4.23: Granulate pressed to 1.82 glcm3• 
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Fig. 4.24: Fractured compact (densîry 2.39 glcnr) 

Fig. 4.25: Fractured compact (2.89 glcm1) 
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The SEM images confirm that the model captures many aspects of compaction and offers, to 

a eertaio extent, a faithful representation of the evolution of the structure. Possibly the size 

of the interagglomerate pores is underestimated as these are initially less accessible than the 

intergranular pores during a MIP measurement. 

4.6. Discussio.n and condusion 

The approach using representative cells provides insight into microstructure of the 

granulate before and after compaction. Knowledge of the initial structure allows assessment 

of the influence of the process stages preceding compaction. These determine, among others, 

the partiele size distri bution and the packing of the particles in the granules. Fig. 4.14 shows 

the initial structure of (Mn,Zn)-ferrite granulate containing PV A binder. 

Fig. 4.26: Schematic representation of the initia/ structure of granulate in the tapped state 

(not to scale) 

Fig. 4.14 shows that three types of solid units are present: granules, agglomerates and 

particles. Because these solid units have significantly different sizes, three classes of pores 

are expected. However, pore size distributions of compacts measured with MIP show at most 

two distinct peaks. Using a model basedon two-dimensional representative cells, it is shown 

that the third peak has disappeared at the densities where a compact has been formed. 

Consequently, a two-stage compaction model is incapable of correctly characterizing the 

development of the pore morphology. In view of the capability of the three-stage model to 

repreSent the compaction process, the assumption that the largest pores are compressed 

preferentially is substantiated. 

Further evidence of the structure of granulate during compaction is obtained from SEM 
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images. These indicate that the model correctly represents several aspects of the compaction 

process. On account of the highly irregular nature of the partiele pacldng and the difficulty 

in observing agglomerates, it is likely that agglomerate packing cannot be characterized with 

a single representative cell. In addition, the granule size and density will also influence the 

size and shape of agglomerates. Based on these considerations, a 'realistic' initia! 

microstructure is given in fig. 4.27. Future work will have to be based on such a type of 

microstructure. 

Fig. 4.27: Schematic representation of a granule (left) and (agglomerated) particles (left). 
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Chapter 5 

Modelling compaction using the concept of fractal sealing 

5.1. Introduetion 

The concept of fractal sealing applies to structures or processes which are self-similar. 

Self-similarity implies that the structure or process is the same when observed on a 

different scale. In this chapter, the use of fractal sealing for the characterization of 

powders and the compaction of powders is assessed. With respect to the powder, the 

analysis is focussed on characterization of the partiele shape, the partiele size distribution 

and the packing of the particles. Subsequently, the concept of fractal sealing is used to 

characterize the evolution of structure during compaction of the powder. Initially assuming 

that the concept of fractal sealing applies, the fractal dimension D serves as a 

characteristic parameter in each case. 

Significanee of the fractal dimension D 

The fractal dimension D is a characteristic measure for self-similar structures or 

processes. The notion of self-similarity is illustrated in fig. 5.1. 

Fig. 5.1: Self-similar structures. The shaded squares represent zones where a property is 

observed. When the scale factor M increases from 3 to 9, the initially shaded zones are 

found to contain subzones where the property is absent. Because of self-similarity, the 

number of shaded subzones within each of the squares shaded at M=3, equals the total 

number of shaded squares at M=3. 
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In the following, the fractal dimension D is derived using fig. 5.1. For illustrative 

purposes, the mapping in fig. 5.1 is assumed to refer to a cross-sectional view of loosely­

packed particles. Only squares where no particles are found are blanc; all other squares are 

shaded. This allows definition of the fraction of the total surface area ~ occupied by 

shaded squares fM: 

(5-1) 

where N is the number of shaded squares and ~ is the edge length of a square 

corresponding toa scale factor M. Recognizing that AfLM2 equals M 2 (see fig. 5.1): 

(5-2) 

The number of shaded squares N increases with increasing scale factor M. However, on 

account of progressive blanking of squares, the increase in N is smaller than the 

corresponding increase of M 2• Consequently, fM decreases with increasing scale factor M. 

An expres si on for this relation has been derived from fig. 5.1: 

(5-3) 

where f0 is the invariant fraction covered and M0 the invariant scale factor. Invariant 

indicates that independenee of the scale factor M. Fig. 5.2 shows some computed curves. 
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Fig. 5.2: Relation between the fraction of the area covered fM and the scale factor M. 

With increasing M , fM appears to reach a constant value. 
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The parameter M. represents the ratio of the successive edge lengths in a structure where 

self-similarity is observed. In the example given in fig. 5.1, f. equals 8/9 and M. is 3. In 

order to characterize the curves in fig. 5.2 with a single parameter, an expression in terms 

of the invariants f and M. is required. Substituting fM in eq. (5-3) with eq. (5-2), taking the 

logarithm and çiividing by In(M) yields: 

ln(N)!ln(M) - 2 = ln(f.)!ln(M.) (5-4) 

Note that the right hand side of eq. (5-4) has a constant value. This allows definition of 

the fractal dimension D: 

D = ln(N)/ln(M) (5-5a) 

(5-5b) 

= ln(f~/ln(M) + 2 (5-5c) 

The relation used to determine the fractal dimension depends on the type of data available. 

This approach can be generalized to characterize any structure by adapting the 

dimension of the cover d and the significanee of the overall dimensions, which is 

expressed in a factor C: 

(5-6) 

Table 5.1: Diroension of covers and the significanee of C (eq. 5-6) 

Cover d c 

point 0 total number P, 

unit line total length L, 

unit surface 2 to tal area A,. 
unit volume 3 total volume V, 

The value of D is smaller or equal to the dimension of the cover d. The interpretation of 

non-integer values is given in table 5.2. Values smaller than zero are unrealistic while 

values larger than three only occur when an additional dimension (e.g. a property) is 
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available. 

Table 5.2: Non-integer values of D 

Range 

0<0<1 

1 < D < 2 

2 < D < 3 

Interpretarlon 

line with gaps 

surface with holes 

volume with pores 

5.2. Fractal characterization of the granulate 

5.2.1. Introduetion 

87 

The compaction process is strongly influenced by the nature of the granulate. Two 

types of properties can be distinguished: static properties, such as the partiele size 

(distribution), the partiele shape and the partiele packing, and dynarnic properties, which 

are related to the deformation behaviour of the particles. In this section, relations based on 

the concept of fractal sealing are used to characterize the static properties of the particles. 

The data consists of two-dimensional images which are generated numerically. In sectien 

5.2.2, the fractal characterization of a single partiele is presented. This analysis yields a 

series of parameters which essentially reflect the partiele shape. Given insight into the 

characteristics of single particle, the analysis is extended to ordered pack:ings of particles 

(section 5.2.3). 

Fractal characterization of (Mn,Zn)-ferrite granulate is focussed on the packing of the 

granules (section 5.2.4). The structure of the packing present after filling of the die can 

influence the density distribution of the compact if i) the compact has a low density (see 

chapter 4) or ü) the granules are relatively large when compared with the size of the die. 

The granule pack:ing is simulated using models which differ with regard to the effect of 

friction between the granules. 

5.2.2. Single partiele 

The fractal dimension D of a solid partiele is 3, or, when considering its cross­

section, 2. Note that these values are only measured when the mapping covers the partiele 

exactly. With irregularly-shaped particles, this requires optimization of the mapping. 

However, optirnization of the mapping removes all details of the partiele shape. This can 

be avoided by introducing a standard mapping technique. Restricting attention to the 
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analysis of two-dirnensional images, a square grid is used. With a square grid, the scale 

factor M is easy to define: when no subdivisions are present, M is unity, otherwise M 

equals unity plus the number of subdivisions. 

The following technique is proposed: frrst, a square which circumscribes the partiele 

is defined. Subsequently, the square is arbitrarily subdivided into 49 squares (= 7x7) to 

form a grid. Now the number of squares which do not cover part of the partiele are 

counted and denoted N'. The grid is then refmed by subdividing each square into 4 

squares (= 2x2). Again the number of squares which do notcover the partiele are counted. 

Halving the edge length can be repeated until a perfect mapping is obtained. With a 

perfect mapping, every square of the grid is either completely covering or completely 

beside a partiele. 

The fractal dimension D, given by eq. (5-5), is independent of the magnitude of the 

scale factor M because it is based on the concept of fractal sealing: the fraction of solid 

present within each square which previously did not appear to cover any solid, has a 

constant value. When mapping a partiele with the standard mapping technique, an increase 

of the scale factor M only impraves the definition of the partiele contours. Squares not 
covering part of the partiele, will not do so for any larger scale factor. Consequently, the 

fractal dimension D as determined with the standard mapping technique is only valid for a 

single scale factor M. This dependency will be indicated with a subscript M: 

DM = ln(Nf-N' M)!ln(M) 

= ln(N~/ln(M) (5-6) 

where NM is the number of squares covering (part of) the partièle for a partielular scale 

factor M. 

Fig. 5.3. illustrates that a perfect mapping, i.e. where the boundary of the partiele 

coincides with the boundaries of the covering squares, is not sufficient to determine the 

fractal dimension D when using the standard mapping technique. 
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D = 1.8928 D = 1.9343 D = 1.9526 D = 1.9629 

Fig. 5.3: Succesive pelfect mappings of a square partiele (or pore). The fraction of the 

grid area occupied is constant (= 1!9), but the fractal dimension is not constant. When 

fractal sealing is present, the fractal dimension remains constant while the fraction of the 

grid area which appears to be occupied increases. 

Given a perfect mapping, the fractal dimension DM approaches 2 when the scale 

factor M is infinitely increased. The trend of DM can be predicted with eq. (5-6) as long as 

the mapping is perfect Using the standard mapping technique, comparison of two 

successive grids denoted by subscripts i and i+ 1 yields two relations: 

(5-7a) 

N'i+1 = 4N\ (5-7b) 

Eq. (5-7a) applies for all successive grids after the initia! grid where M1+1 ,;. 7M1• Eq. (5-

7b) is the result of perfect mapping. Substituting Mand N' in eq. (5-6): 

(5-8a) 

(5-8b) 

Combination of eqs. (5-8a) and (5-8b) links the fractal dimensions D1 and D1+1: 

Di+1 = (D1 ln(M;) + 2 ln(2))/(ln(M1) + ln(2)) (5-9) 

Eq. (5-9) can be generalized to relate the fractal dimensions of any two grids after the 

initial grid: 
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Di+• =(Di ln(~) + 2n ln(2))/(ln(MJ + n ln(2)) (5-10) 

Eq. (5-10) illustrates the influence of the initia! scale factor Mi: the sinaller M 1 is, the 

faster DM approaches 2. Because M 1 is arbitrary, the variatien of DM can be controlled. 

The fractal dimension DM approaches 2 for large values of M irrespective of the 

shape of the particle. However, if the mapping is not perfect, a higher scale factor is 

required to observe this trend. This is due to a strenger increase of N' on account of 

boundary effects, which makes the coefficient in eq. (5-7b) larger than 4. 

In order to obtain a perfect mapping with the standard mapping technique, three 

conditions must be fulfll.led: 1) the partiele cross-section to be square, 2) the edge length 

to be a multiple of the size of covering squares and 3) the boundary of the partiele must 

coincide with the boundary of the covering square. The variatien of the fractal dimension 

DM for inperfect mappings is analysed using the cross-section of a perfectly-spherical 

particle. Fig. 5.4 illustrates that, with a circular cross-section, the orientation of the grid 

has no influence. 
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Fig. 5.4: Mapping of the cross-section of a spherical partiele with a grid containing 142 

subspaces (M=l4). 

When the scale factor becomes large, the fractal dimension DM approaches 2 and the 

fraction of the grid area occupied by the partiele reflects the theoretica! value. In fig. 5.4, 

the theoretica! fraction equals rc/4 (= 0.7854). On the other hand, when the scale factor 

becomes small, the fractal dimension DM also becomes 2 because the squares always cover 

part of the cross-section. The evolution of the fractal dimension DM and fM using the 

standard mapping technique is given in table 5.3. 
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Table 5.3: Fractal dimeosion DM for a circular cross-section (fig. 5.4) 

Scale factor fM Fractal dimeosion Fractal dimeosion 

M (*) DM DM(**) 

1 1.0000 2.0000 2.0000 

7 0.9184 1.9562 1.9562 

14 0.8776 1.9505 1.9677 

28 0.8469 1.9501 1.9744 

56 0.8163 1.9500 1.9788 

112 0.8023 1.9533 1.9819 

224 0.7937 1.9573 1.9843 

00 0.7854 2.0000 2.0000 

(*) fM is the fraction of the grid area occupied by squares covering part of the particle. 

(**) according to eq. (5-10), valid fora perfect mapping. 

Table 5.3 shows that the fractal dimeosion DM passes through a minimum. The fractal 

dimeosion has a value of 2 when 1) a perfect mapping is obtained (very large M) or 2) the 

grid is coarse (small M). Table 5.3 also confmns that the fractal dimeosion DM approaches 

2 faster than when the mapping is perfect. Because the fractal dimension DM always 

increases with the scale factor when the mapping is perfect, it is postulated that the 

minimum of DM corresponds to a pseudo-perfect mapping. 

· The series of fractal dimensions DM provide a fmgerprint of the shape of the particle. 

When expressed in terms of a single parameter, the minimum value of DM could be used. 

A complication, however, is the influence of the grid orientation: for non-eireular cross­

sections, the values of DM are not invariant with respect to rotatien of the grid. This 

greatly restricts the application of this technique. 

5.2.3. Ordered partiele packing 

The standard mapping technique proposed in the previous sectien can be used to 

analyze pacldng of particles. Given a two-dimensional representation of packed particles, a 

square grid is placed on a central sectien of the image. As with a single non-eireular 

cross-section, the position of the grid affects the fractal dimension. This influence can be 

reduced by avoiding discontinuities at the grid boundary and ensuring that the grid covers 

a sufficiently large number of particles. Because the number of subdivisions of the grid is 

frnite, too many particles reduce the sensitivity of the technique. Therefore, an optimum in 

the ratio between the edge length of the grid and the size of the particles has to be 
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established. 

Packed particles are treated as a single irregularly-shaped particle. In order to allow 

comparison with a single spherical particle, regular packings of equisized spherical 

particles are constructed (fig. 5.5). 
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Fig. 5.5: Two-dimensional representations of packed spherical particles. When 

characterized in terms of representative cells, a square geometry (left) and a triangular 

geometry (right) are observed. 

Note that the ratio of the partiele and the grid size is 1 : 14/3. The fractal characterization 

of the packings in fig. 5.5 is given in tab1e 5.4. 

Table 5.4: Fractal dimension DM for partiele packings (fig. 5.5) 

Square packing Triangular packing 

Scale factor M fM (*) DM fM (*) DM 

1.0000 2.0000 1.0000 2.0000 

7 1.0000 2.0000 1.0000 2.0000 

14 1.0000 2.0000 1.0000 2.0000 

28 0.9362 1.9802 1.0000 2.0000 

56 0.9043 1.9750 0.9971 1.9993 

112 0.8206 1.9581 0.9668 1.9928 

224 0.7965 1.9580 0.9435 1.9893 

00 0.7854 2.0000 0.9069 2.0000 

(*) fM is the fraction of the grid area occupied by squares covering particles. 
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The lower fM values of the square packing are reflected in lower values of the fractal 

dimension DM for large values of M. It is a property of the standard mapping technique 

that the minimum fractal dirnension DM decreases with increasing porosity. 

The single partiele analysed in sectien 5.2.1 corresponds to the square packing. 

Comparison of the series of fractal dimensions (table 5.3 and 5.4) after correcting for the 

relative size of the particles reveals a difference in the third decimal. This reflects the 

effect of the random positioning of the grid. As a result, the interpretation of the fractal 

fingerprint shouid be restricted to two decimals. 

5.2.4. Packing of granules 

The fractal characterization of actual packings is investigated by simuiaring the 

packing of granules in a die. A simulation program, written with Turbo Pascal 5.0, 

represents the filling process as follows: the granule enters the die at a random radial 

position. Subsequently, the granuie falls until it hits another granuie or the bottorn of the 

die. When two granules collide, the course of events is determined by friction between the 

granules and the associated stability of the packing. Because data on the friction between 

the granules is not availabie, two extremes are simulated: infinite friction and zero friction. 

With infmite friction, the granuie sticks to the granule at the position where impact has 

occured. Because the granuies stick to each other irrespective of the structure, an open 

packing is obtained. With zero friction, the granule slides off a stationary granule until it 

reaches a stabie position. A stabie position is obtained when the granuie is at the Iowest 

point, where it is supported by at least two granuies. 

By positioning the granuies one-by-one, it is assumed that the interference between 

falling granules is negligibie. The simulation process is illustrated in fig. 5.6. 

0 

Fig. 5.6: Simulation of the packing of granules. The initia[ radial position of the granuie 

is random. Subsequently, the granule drops until it hits another granule or the bottorn of 

the die. In case of infinite friction, the granule is fixed to the position where contact is 

made (top right), whiie, in case of zero friction, the granuie setties in a stabie position 

(bottom right). 
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Note that, when the friction is zero, granules can settie against the die wall. Other effects, 

such as granules bouncing off the wall, are not considered. The characteristic pack:ing 

obtained when the friction between the (equisized) granules is infinite is shown in fig. 5.7. 

Fig. 5.7: Simu/ation of granule packing when the friction between the granules is infinitely 

large. All packings have an open structure where the direction in which the particles drop 

can be clearly distinguished. 

Similarly, the characteristic paclcing obtained when assuming zero friction between the 

granules is shown in fig. 5.8. 

Fig. 5.8: Simu/ation of granule packing when the friction between the granules is zero. 

Note that the majority of the granules fonn cells with coordination three and Jour. 
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The packings shown in figs. 5.7 and 5.8 have been analysed using the covering technique 

previously described. Results are shown in table 5.5. 

Table 5.5: Fractal dimension DM for partiele packings (figs. 5.7 and 5.8) 

Infmite friction Zero friction 

Scale factor M fM (*) DM fM (*) DM 

1.0000 2.0000 1.0000 2.0000 

7 1.0000 2.0000 1.0000 2.0000 

14 0.9796 1.9922 1.0000 2.0000 

28 0.8712 1.9582 1.0000 2.0000 

56 0.7136 1.9162 0.9656 1.9958 

112 0.5807 1.8848 0.9045 1.9834 

224 . 0.4709 1.8608 0.8404 1.9732 
00 < 0.4709 2.0000 < 0.8404 2.0000 

(*) fM is the fraction of the grid area occupied by squares covering partieles. 

Clearly, the assumption of infinite friction between the granules is not applicable. This 

type of structure could be expected in systems where i) anisotropy is encountered and ii) 

the effect of gravity is insignificant. The sputtering of thin films of atoms can serve as an 

example. The eppesite case, that of zero friction between the partieles, leads to much 

denser pack:ings. Cernparisen of tables 5.4 and 5.5 indicates that this packing can be 

characterized with a mixture of cells with coordination 3 and 4. This corresponds with the 

result obtained in chapter 4. Therefore, zero friction between the granules provides a more 

realistic representation of the pack:ing of granules. 

The pack:ings simulated up to now contain equisized granules only. However, 

simulations with three sizes of granules produce slightly denser packings which only has a 

minor effect on the series of fractal dimensions DM. Consequently, the relation between 

the granule size distribution and the series of fractal dimensions DM is not apparent. 

However, the concept of fractal sealing can be used to characterize the granule size 

distribution itself. Unfortunately, this removes the influence of the packing structure. 

Characterization of the partiele size distribution with sedimentation data is presented in 
sectien 5.3.3. 
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5.3. Fractal characterization of compaction 

5.3.1. Introduetion 

In this section, the determination of the fractal dimension D for four different aspects 

of the compaction process is developed. Reeall that the concept of fractal sealing is based 

on the process of coverage, which can be applied to either the solid structure or the pore 

structure. When covering the solid structure, the size of the pores determine the scale 

factor M and the edge length ~· When covering the pore structure, it is the size of the 

particles which determine the values of M and ~· 

The pore size distribution measured with mercury intrusion porosimetry (MIP) can be 

characterized with the fractal dimension D (section 5.3.2). Because this represents the 

structure at a single density, the evolution of the fractal dimension D as a function of the 

density is of interest. The characterization of the initial partiele size distribution obtained 

from sedimentation analysis reflects the effect of previous processing stages (section 

5.3.3). 

The determination of the fractal dimeosion D of the pore size distribution is subject to 

considerable scatter. Therefore, a single, average pore size is used to represent the pore 

size distribution. Deterrnination of the fractal dimeosion D for a single scale factor M is 

presented in section 5.3.4. Again, the evolution of the fractal dimeosion as a function of 

the density is of interest. 

The relation between the average pore size and the density can also be modelled 

when assuming that the compaction process is itself governed by the concept of fractal 

sealing. Therefore, the comparison of two stages of compaction can be characterized with 

a fractal dimeosion D. This novel interpretation of the fractal dimeosion is presented in 

section 5.3.5. 

5.3.2. MIP data 
The intrusion of mercury into smaller pores as the pressure is increased, is 

conceptually similar to the process of covering the solid structure (section 5.1). After 

filling the larger pores, smaller pores in the initially solid structure become accessible as 

the pressure is further increased. This corresponds to replacing the solid matter by cubes 

of decreasing size. 

MIP data consists of the cumulative pore volume as a function of pressure. Accepting 

the above sirnilarity, the cumulative intruded pore volume is directly related to the total 

fraction covered fM through the total volume vt. Using the Washburn equation, the 

pressure can be converted to the pore radius, so that both the scale factor M and the edge 

length ~ are known. This allows determination of the fractal dimension D. 

In view of the assumption that pores are cylindrical, covers other than a cube are 

considered. Options are given in table 5.6. 
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Table 5.6: Volume covers 

Cover 

Cube 

Sphere 

Block 

Cylinder 

Principal dimensions 

Edge E 

Radius r 

Edges E, length L 
Radius r, length L 

97 

Unit volume 

In the absence of experimental information on the shape of clustered particles, the analysis 

is generalized to suit all types of covers. 

Starring point in the analysis is subdivision of the total volume V1 into the solid and 

pore volumes: 

V 1 = v. + v. (5-11) 

where subscripts s and v stand for solid and void respectively. hnaginary cover units are 

placed in all zones where ferrite particles are present Note that the size of the cover unit 

corresponds to the size of the largest pores present Subsequently, cover units of 

decreasing size are placed within the largest units exposing the smaller pores present. In 
mathematica! terms: 

(5-12) 

where Vc is the volume of a cover unit The value of N depends on the scale factor M and 

the fractal dimension D (eq. 5-5a), while M is related to the characteristic length ~ and 

the total volume vt through eq. (5-6): 

(5-13) 

With arbitarily shaped cover units, ~ is not obvious. Therefore, ~ is defined as a 

measure of the si.ie of a representative plane in the cover unit. This measure is indicated 

as the principal dimension x. The ether principal dimensions, y and z, can be expressed in 

terms of using constants C1 and Cz: 
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z/x = Cz 

In a structure where fractal sealing occurs, C1 and Cz are independent of the magnitude of 

x. Note that when the cover is characterized by a single dimension, C1 and Cz are unity. 

Expressing the volume of a cover Vc in terms of its principal dimensions: 

(5-14) 

where Cc is shape factor. Substituting N and Vc in eq. (5-12) produces: 

(5-15) 

Selecting the pore radius r to represent the principal dimension x is useful when 

interpreting MIP data. The fractal dimension D is then found from a plot of ln( -dV jdr) 

versus ln(r): 

ln( -dV jdr) = ln(V,013CcC1Cz(3-D)) + (2-D)ln(r) (5-16) 

Eq. (5-16) shows that fractal sealing occurs if a (partly) straight line is observed. Realistic 

values of D are between 2 and 3, so that the graph should slope downwards. The intercept, 

by definition where ln(r) is zero, yields the product C1Cz given values of D, Cc and V,. 

If the cover 1s characterized by two principal dimensions only, either C1 or Cz is 

unity. This allows determination of the unknown constant from the intercept. For 

cylindrical cover units, the constants are C0=7t, C 1=1 and Cz=L/r. Consequently, the use of 

alternative cover units yields an additional characteristic parameter in the form of the 

aspect ratio L/r. 

5.3.3. Sedimentation data 

Because sedimentation analysis requires suspension of the partieles, fractal analysis is 

restricted to characterization of the partiele size distribution and not the arrangement 

within a compact. However, characterization of the partiele size distribution is useful on 

account of its effect on the porosity within the granules. 

Sedimentation data consists of the mass of particles present as a function of the 

partiele size. Assurning a constant partiele density, the mass is proportional to the volume 

of particles of a particular size. The analysis then proceeds sirnilarly to the analysis of 

MIP data. Defming a representative volume V" which can be divided into a solid and a 

void volume: 

V,= V,+ V. (5-17) 
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Assuming the concept of fractal sealing applies, the number of particles N required to fill 

the void volume V v is a function of the scale factor M. Representing the particles as ideal 

spheres and substituti.ilg N with eq. (5-13), eq. (5-17) becomes: 

V =V +4V 0137tr3-Dn I s t p f.J (5-18) 

where rP is the radius of the particle. Differentiating with respect to r and taking the 

naturallogarithm yields: 

(5-19) 

Plotti.ilg In( -dV jdrp) versus ln(rp) yields the fractal dimension D. 

5.3.4. A veraged compaction data 

When a size distribution consists of a single, sharp peak, fractal sealing can only 

occur over a narrow size range. In this case, an alternative interpretation is proposed: the 

fractal dimension D is only used to characterize the material for a single scale factor M. 

The required material characteristics are obtained in the following derivation. Defining fM 

(eq. (5-1) fora three-dimensional structure: 

(5-20) 

Assuming the concept of fractal sealing is valid, N can be substituted with eq. (5-13): 

(5-21) 

The significanee of fM depends on the nature of the available data. When ~ corresponds 

to the average pare size r, fM represents the total solid fraction, or the complement of the 

porosity. Given the average partiele size rP, fM equals the porosity. Note that ~ is defrned 

as the average size rather than the size of the smallest pore or partiele present 

Apart from ~ and fw the fractal dimension D is related to the total volume V,. 

During compaction, the decrease of V, can be expressed as: 

V,= VJ(l-e) = m/(Qth(l-e)) (5-22) 

where V, is the solid volume. Because V, is considered invariant throughout compaction, 

V, is the ratio of the mass m and theoretica! (or zero porosity) density Qth· Substituting V,, 

fM and ~ in eq. (5-21), given either the pore size r or the partiele size rP: 
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(5-23a) 

or 

(5-23b) 

During compaction, the pore size r decreases while the partiele size rP remains constant. 

Values for D from eqs. (5-23a) and (5-23b) are therefore necessarily different. 

The dependency of D on the mass m as expressed by eq. (5-23) complicates the 

interpretation of D: it is desirabie that samples with identical porosities and average pore 

sizes have the same fractal dirnension D, irrespective of the mass. 

5.3.5. Compaction process data 

The concept of fractal sealing is applied to the compaction process itself by ex tending 

the approach using averaged data. The fractal dirnension now relates the reduction in the 

pore size to the increase in density. Recognizing that the complement of the porosity is 

proportional to the density: 

(5-24) 

Substituting (1-e) in eq. (5-23a) yields: 

or 

(5-25) 

Comparison of two (compaction) states eliminates the dependency on the mass and the 

theoretica! density: 

or 

D= 9 (5-26) 

The minimum value of D is 3. As D approaches 3, the number of pores sharply increases: 

pores are compressed to form numerous smaller pores. 

For three-dirnensional structures, the fractal dimension only has a physical 

significanee for values between 2 and 3. Therefore, it is more appropriate to denote D in 

eq. (5-26) as the fractal exponent D •. The difference with the traditional fractal dimension 
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is a result of variatien of the scale factor M, which is normally relative to the initial 

volume. During the compaction process, the scale factor M is not only determined by the 

pare size, which equals ~. but also by the reduction in volume. The latter effectively 

reduces the scale factor M, thereby increasing D. 

0=3.53 

Fig. 5.9: Significanee of the fractal exponent D during compaction. The cross-section of a 

pore is represented· by a blanc square. With an increasing number of blanc squares, D 

approaches a minimum va/ue of 3 (in two dimensions: 2). Note that D varies 

independently of the porosity which is equal for the compacted granulate (right). 

Eq. (5-26) applies to a unirnadal pare size distribution. During the fust two stages of the 

compaction process, the pare size distriburlen consists of more than one peak. Because the 

pores are compressed simultaneously, the change in density is not related to the change in 

a single pore size. One option is to relate the volume of each type of pores to the pore 

size. Camparing two states: 

9 D=-------=-------
(3 + ln((l - e~/(1 - e1))/ln(r.jr1)) 

(5-27) 

Note that e2 and e 1 are based on the theoretica} density of the ferrite. Eq. (5-27) has the 

setback that it does not aceomadate the simultaneous compression of different types of 

pores. 
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5.4. Fractal characterization of the compaction process 

5.4.1. MIP analysis 
The fractal dimension D is detennined from the pore size distribution of compacts by 

transforming MIP data with eq. (5-16). A typical plot is shown in fig. 5.10. 

1 

-1 

-3 

-5 

-7 L..-~--'--~----'------' 

-6.00 -3.33 -0.67 2.00 

ln(r) 

Fig. 5.10: Transformation of MIP data. Intervals where dV!dr is negative are avoided by 

omitting the downward point (see insert). Fitting linear relations to the left and right 

sections of the curve produces unrealistic values forD. However, the best fit using all the 

data points produces values forD between 2.7 and 3 (in this example D=2.92). 

The duferenee between the best fit and the transformed data indicates that the significanee 

of fractal sealing in compacts is lirnited. 

The reproducibility of the fractal dimension D determined with MIP has been verified 

by measuring 9 compacts using a similar measurement profile (264 pressure points). The 

density of the compacts was 2,82 g/cm3 with a standard deviation of 1.5 %. The fractal 

dimension was found to be 2.86 with a standard deviation of only 0.03. The corresponding 

varlation (0.0 10) is smaller than the varlation in the average pore sii.e (0.023) obtained 

from the same measurement. This indicates relative insensitivity to measurement errors. 

However, using different or less pressure points during a MIP measurement significantly 

affects the absolute value of D. In other words, MIP measurements do not guarantee an 

accurate assessment of D. Therefore, it is recommended to use a standardized 

measurement profûe. 

With decreasing compact density, the preserree of interagg1omerate pores is reflected 
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in the pore size distribution, which then consists of two peaks. The peak attributed to the 

(large) interagglomerate pores produces a shoulder to the right in fig. 5.4. The reduction of 

the slope of the curve fitted through all points decreases the fractal dimension D. Because 

the contribution of the interagglomerate pores increases with decreasing compact density, 

the fractal dimension D is continuously decreased. 

Consequently, the fractal dimension D increases during compaction, which appears to 

be consistent with the standard interpretation: a . denser structure generally has a higher 

fractal dimension. However, the decrease of the total volume during compaction reduces 

the increase of the scale factor. As a result, the fractal dimension D could also decrease 
during compaction. This aspect is discussed in section 5.3.4. 

5.4.2. Sedimentation analysis 

The partiele size distribution measured with sedimentation analysis is transforrned 

using eq. (5-19). A typical plot is shown in fig. 5.11. The data shown in fig. 5.11 has not 

been smoothed because this affects the value of the fractal dimension D. However, 

smoothing the data using a 4.00 % fast Fourier transfarm operation removes the spread. 

This indicates that considerable measurement noise is present which is probably due to 

instability of the X-ray beam. Furtherrnore, sedimentation analysis with ferrite particles is 

complicated by the mutual (magnetic) attraction of particles. This leads to overestimation 

of the partiele size and, consequently, a lower fractal dimension D. 
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0.00 

-1.60 

:Po -3.20 
-e 
> -e 

I -..e -4.80 

-6.40 

-8.00 
-1.00 0.50 2.00 3.50 5.00 
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Fig. 5.11: Transformation of sedimentation analysis data. Although a satisjactory best fit 

is obtained, the actual correlation is poor on account of the spread: the correlation 

coefflcient is only 0.75. The fractal dimension has a value of 2.79. Note that the daia has 

not been smoothed. The granulate suspension was prepared with 50 % ethylene glycol and 

50% water and mixed ultrasonica//y for 4 minutes. 

5.4.3. A veraged compaction data 

The scale factor is based on the ratio of the local and the total dimensions. Local 

dimensions are either the average pore or partiele size. The average pore size depends on 

the compaction stage (section 4). lnitially the pore size distribution consists of three peaks, 

which disappear sequentially during compaction. During the fmal stage, only the peak 

attributed to the interpartiele pores remains. This stage, starring at a density of 2.78 g/cm3, 

can be characterized with the averaged data approach. The average partiele size is 

considered constant during compaction and is approximately 0.5 pm. Two aspects make 

the approach based on particles unattractive: 

- because the partiele size i.s constant, the fractal dimension varles with the porosity and 

the total volume or mass only. 

- because the particles are larger than the interpartiele pores, the process of covering 
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pores is not accurate. 

Therefore, particles are covered with pores whose size is established with MIP as a 

function of the density (section 4.2). The fractal dimension detennined from eq. (5-19a) 

varles between 2.95 and 2.98. This insignificant varlation is the consequence of the large 

scale factor: with pores less than 10"6 m in size and a volume of roughly 10"6 m3, the scale 

factor is in the order of 10'. 

5.4.4. Compaction process data 
By camparing two compaction states, the streng influence of the scale factor on D is 

avoided. The fractal exponent D. is found as a function of the density using the MIP data 

presented in sectien 4.3 (fig. 5.12). 

The particles remain intact during compression so that the increase in the number of 

pores during compression is limited. By contrast, the agglomerates are fragmented to farm 

numerous smaller pores. This explains the lower value of the fractal exponent 
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Fig. 5.12: Development of the fractal exponent D •. The value of each point is determined · 

by camparing successive states. The average value follows from comparison of the lowest 

and the highest density. 



106 Chapter 5 

5.5. Discussion and condusion 

The concept of fractal sealing has been applied to characterize the structure of 

granules, campacts and the compaction process itself. With respect to the packing of 

granules, the limited significanee of the fractal dimension D is demonstrated from analysis 

of images. However, the determination of the fractal dimension from mercury intrusion 

data indicates a number of interesting features. 

Characterization of compact structures indicates that the fractal dimension D increases 

during compaction while the fractal exponent D. is constant for a particular type of pores. 

The two approaches are complementary: the increase in the fractal dimension D indicates 

that rearrangement of the particles occurs while the fractal exponent D. shows that this 

rearrangement leads to fragmentation of the agglomerate substructure. 

The determination of the fractal dimension D of the compact structure is complicated 

by the fluctuations in the log-log plots obtained with MIP. This is understandable in view 

of the distinct types of pores present. The best option is to take determine the linear 

relation fitting all data points. In this way, the effect of local variations is reduced. The 

thus determined fractal dimension has significanee for pores ranging over 3 orders of 

magnitude in size. During compaction, an increase of the fractal dimension is observed. 

Although the reproducibility is high, the accuracy is doubtful. 

The building blocks of the structure, ferrite particles, have been characterized with the 

fractal dimension. At best, the fractal dimension provides an alternative to the 

characterization of the partiele size distribution with statistica! parameters. This reflects the 

effects of previous processing steps (mixing, pre-sintering, rnilling). However, the limited 

correlation makes the accuracy of the fractal dimension doubtful. 

Finally, the compaction process is characterized with the fractal exponent D •. When 

D. approaches 3, fragmentation of the pores occurs. This is a result of smaller particles 

filling cavities between larger particles or the disintegration of agglomerates. Because the 

presence of agglomerates is proved by the cell approach introduced in section 4, it 
provides a quantitative measure for characterization of agglomerates. 

The approach using D. can be extended to the sintering process. During sintering, the 

material shrinks although the pores become larger. Using eq. (5-27), this leads to values 

for D. between 0 and 3. 
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0•0.76 

0•1.54 

Fig. 5.13: Significanee of the fractal exponent D, during sintering. As the porosity 

decreases, the average pore size increases. In two-dimensions, the fractal exponent 

approaches 2 when the pore growth is more pronounced. 
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Analysis of compaction curves 

6.1. Introduetion 

A compaction curve represents the relation between the density of a powder and the 

required compaction pressure (fig. 6.1). This relation is strongly influenced by the conditions 

under which it is measured. Therefote, the influence of the measuring condinons is analysed 

frrst (section 6.2). Subsequently, the influence of important compaction parameters is 

investigated (section 6.3). Parameters varled are: 

• the binder type and content 

• the die diameter 

• the die-wall roughness 

• the granule size 

Finally, the compaction curve is interpreted with a model, which allows predietien of the 

strength of the compact. Because the compact strength is detennined by the binder type and 

content, it provides a rapid indication of the suitability of binders. 
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Fig. 6.1: Compaction curve obtained when pressing (Mn.Zn)-ferrite granulate. 
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6.2. Measurement of compaction curves 

Compaction curves are obtained by single-sided compaction of granulate in a cylindrical 

die. The density is obtained either during compaction by recording the displacement of the 

punch or after compaction by measuring mass and volume of the compact. Measuring the 

density during compaction has two advantages: 

• only a single compaction experiment is required. 

• the compaction curve is also recorded at densirles below the density where the compact has 

sufficient strength to be handled. 

However, measuring the density after compaction is more realistic because it includes the 

effects associated with ejection and relaxation. Ejection of the compact from the die requires 

pressure because the compact is jammed in the die. This can produce further compaction, 

especially because the compact is moved in the direction opposite to which it was compacted. 

Relaxation is the spontaneons expansion of the compact volume which cammences after 

ejection. This occurs on account of the recovery of elastically-deformed binder and particles. 

Although the largest effect of relaxation is observed immediately after ejection of the 

compact, further expansion occurs in the course of time. The expansion is determined by 

factors such as compact density, binder type, atmospheric conditions (humidity, temperature) 

and the compliance of the pressing equipment. Fig. 6.2 shows the two types of compaction 

CUIVes for the same granulate. 

Density P 
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ii) 
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, 

/ ...... _ ........... -------
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Fig. 6.2: Compaction curves obtained by i) continuously measuring the density and the 

applied pressure and ii) measuring the compact density as ajunetion ofthe maximum applied 
pressure. 

Note that the density is plotteel versus the logarithm of the pressure instead of the pressure. 

This is a more convenient representation because it often yields (l()cally) linear correlations. 
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Fig. 6.3: Compaction curves obtained by measuring the density i) during continuous 

compaction, ii) during discontinuous compaction and iii) after compaction and ejection. 

In order to establish the reason for the difference between the curves in fig. 6.2, a third 

method, based on discontinuous compaction, is devised: the pressure is held constant until the 

displacement of the punch, which is related to the density, has reached a stabie value. Upon 

instating a constant punch pressure, further rearrangement of the particles increases the 

density. This rearrangement occurs on account of relaxation in a confmed space. Fig. 6.3 

shows that the density achieved with discontinuous compaction is initially higher than 

obtained with continuous compaction. This is due to temporal rearrangement of the granules, 

which reduces the resistance to compaction. No further rearrangement occurs when the two 

curves converge. The density and the pressure at which the curves converge become smaller 

with decreasing die diameter. This observation supports the proposed explanation because 

granule rearrangement is expected to be less in smaller dies. 

Above a density of 2.3 to 2.5 g/cm3, the discontinuously-measured compaction curve 

coincides with the compaction curve obtained from compacts. This suggests that compaction 

due to relaxation in the die is more significant than the combined effects ·of ejection or 

relaxation outside the die. 

6.3. Characterization of compaction curves 

6.3.1. Introduetion 

Three types of compaction curves have been recorded, which are meastired directly in 

a continuous (i) ordiscontinuous (ii) manner or indirectly with campacts (iii). Characterization 

of these compaction curves is required in order to establish the influence of the process 

parameters. Two pressure ranges are distinguished which are separated by the pressure where 

the three curves join. This transition pressure also coincides with the density where campacts 
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have sufficient strength to be handled. Hence it corresponds to the origin of the compaction 

curve obtained by measuring the density of compacts. The range below this pressure is 

denoted as zone I, above this pressure zone Il. 

A two-parameter equation of the following form is suitable to represent the curves in 

either zone: 

Q = A log(P) + B (6-1) 

where A and B are empirica! compaction parameters. Parameter A represents the 

compressibility of the granu1ate while parameter B reflects the density of the initia! packing. 

Fig. 6.4 depiets the sections which are characterized. Note that the initia! stage of 

continuously-measured curves is not considered because of poor reproducibility. In the 

following sections, the influence of granulate and process conditions on the parameters is 

determined. 
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Fig. 6.4: Interpretation of sectioned compaction curves. Only sections which are 

approximate/y linear are shown. These are characterized by equations of the fonn e = A 

log(P) + B, where A and Bare parameters obtained by regression. 

6.3.1. Influence of the granulate 

Two aspects are investigated: the type of binder and the size of the granules. With 

respect to the type of binder, the compaction curves are measured by recording 30 pressure­

density points discontinuously (method ii). The parameters of zone I are determined from 

approxirnate1y 20 points while the remaining points are used to calculate the parameters of 

zone Il. The resu1ts fora number of binders are presented in tables 6.1 and 6.2. 
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Table 6.1: Influence of binder type and content on the compaction curve (zone I) 

Technique: discontinuous pressing, die diameter: 12.0 rrun, roughness: < 0.05 pm 

Binder Content A B Correlation Density range 

type (wt-%) (g/cm3) (g/cm3) coefficient (g/cm3) 

Acrylic I 1.25 0.50 1.13 0.9995 1.95 - 2.35 

Acrylic II 0.86 0.51 1.16 0.9987 1.94 - 2.47 

Acrylic II 1.70 0.53 1.15 0.9971 1.70- 2.50 

Mixture 0.72 0.52 1.18 0.9999 1.68- 2.44 

PVA 1.00 0.58 0.99 0.9998 1.55- 2.33 

Table 6.1 shows that for zone I the granulate containing PV A binder displays different 

compaction behaviour. 

Table 6.2: Influence of binder type and content on the compaction curve (zone II) 

Technique: discontinuous pressing, die diameter: 12.0 rrun, roughness: < 0.05 pm 

Binder Content A B Correlation Density range 

type (wt-%) (g/cm3) (g/cm3) coefficient (g/cm3) 

Acrylic I 1.25 0.66 0.76 0.9998 2.36- 2.90 

Acrylic 11 0.86 0.69 0.70 0.9987 2.48- 2.93 

Acrylic II 1.70 0.73 0.72 0.9971 2.51 - 2.99 

Mixture 0.72 0.59 1.02 0.9999 2.45 - 2.94 

PVA 1.00 0.69 0.73 0.9998 2.34- 2.98 

Table 6.2 shows that the compaction curve of granulate containing a mixture of binders (PV A, 

acrylic II) is markedly different. The large value of B indicates that the initia! paclcing of the 

granulate is dense and that the compression of intergranular pores proceeds more efficiently 

than with the other granulate. However, intherelevant range of densities (2.4-2.9 g/cm3), the 

granulate containing 1.70 wt-% of acrylic II requires the lowest compaction pressure. Because 

the differences are minor, a tentative conclusion is that the binder has no effect on pressure­

density relation in zone II. 

The compaction curve in zone II is also deterrnined by measuring the density of a series 
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of compacts, which have been subjected to a flxed pressure. For each type of binder, 10 

compacts with densirles between 2.4 and 3.2 g/cm2 have been measured. Table 6.3 shows the 

values of the compaction parameters. 

Table 6.3: Influence of the binder type on the compaction curve (zone ll) 

Technique: measuring compacts, die diameter: 18.0 rnm, roughness: < 0.05 pm 

Binder type A 

(g/cm3) 

Acrylic I 

Acrylic II (*) 

Mixture 

PVA 

(*) contains 0.86 wt-% binder. 

0.63 

0.64 

0.62 

0.68 

B Correlation 
(g/crn3) coefficient 

0.83 0.9995 

0.87 0.9998 

0.93 0.9966 

0.74 0.9971 

Comparison of tables 6.3 and 6.4 shows that, with the exception of PV A granulate, the values 

of A and B differ. This could be attributed to elastic relaxation and varlation in the diameter 

of the die (see section 6.3.2). 

When constructing a compaction curve using the data in tables 6.1 to 6.3, the transition 

density between zone I and II is given by the intersection of the respective curves. Table 6.4 

gives the transition densirles by using table 6.1 for zone I and tables 6.2 or 6.3 for zone 11. 

Table 6.4: Transition density between zone I and II. 

The compaction curve in zone I is measured discontinuously. 

Binder Content Zone II: Zone II: 

type (wt-%) pressing discontinuously measuring compacts 

Acrylic I 1.25 2.31 2.31 

Acrylic U 0.86 2.56 2.23 

Acrylic II 1.70 2.15 

Mixture 0.72 2.29 2.50 

PVA 1.00 2.36 2.50 
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All transition densities are located between 2.15 and 2.56 g/cm3, which corresponds to the 

range where the (large) intergranular pores are compressed and a compact is formed. 

The influence of the granulate size (distribution) is investigated by sieving acrylic 11 

(0.86 wt-%) into three fractions. The compaction curve of each of these fractions has been 

measured by recording 20 points discontinuously in zone I. 

Table 6.5: Influence of the granule size on the compaction curve (zone I) 

Die diameter: 25.4 mm, roughness: < 0.05 pm 

Granule size A B Correlation 

range (pm) (g/cm3) (g/cm3) coefficient 

106-150 0.58 0.95 0.9981 

212-250 0.58 0.95 0.9980 

355-425 0.58 0.95 0.9980 

Table 6.5 shows that the compaction behaviour of granulates with a narrow size distribution 

is similar. This is attributed to the relatively large diameter of the die. When the die is 

relatively small, the effect of friction with the wall is likely to produce an inhomogeneous 

packing of the granules. 

Comparison with acrylic IJ in table 6.1 shows that the narrow granule size distribution 

increases the pressure dependency of the compact density. However, the value for B of the 

sieved granulate is lower (0.95 versus 1.16), indicating that the packing after filling is less 

dense. As uesult, a narrow granule size distribtition only reduces the required pressure when 

the compact density is larger than 2.69 g/cm3• At this density, the intergranular pores have 

been compressed. This implies that the advantage of compacting packings of equisized 

granules only become apparent after the relatively larger intergranular pores have been 

compressed. 

6.3.2. Influence of the die characteristics 

Two aspects are analysed: the size of the die and the roughness of the die-wall. In table 

6.6, the influence of the die diameter is shown. The parameters A and B are determined from 

the re lation between the pressure and the density of series of 10 compacts. Table 6.6 shows 

that the value of B decreases strongly with the die diameter. This reflects an increasing effect 

of the die wall on the initia! pack:ing of the granules. Because the die diameter is much larger 

than the granules, the mode of f!lling will be of influence. During the experiments, the 
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granu1ate is passed through a funnel during filling of the die. However, no data on the filling 

process (e.g. rate, height above die) is availab1e. 

Table 6.6: Influence of die diameter on the compaction curve (zone II) 

Die-wall roughness: < 0.05 pm 

Die diameter LID ratio A B Corre1ation 

(mm) (-) (g/cm3) (g/cm3) coefficient 

14.10 0.36 0.65 0.77 0.9991 

18.09 0.33 0.64 0.85 0.9971 

28.12 0.33 0.62 0.94 0.9993 

Table 6.7 indicates the effect of wall roughness on the compaction curve parameters; 

Series of 10 compacts with varying densities were pressed each of the dies. 

Table 6.7: Influence of die-wall roughness on the compaction curve (zone ID 

Die diameter Wall roughness A B Correlation 
(mm) (pm) (g/cm3) (g/cm3) coefficient 

18.02 > 0.20 0.64 0.83 0.9987 
. 18.09 < 0.05 0.64 0.85 0.9971 

26.02 > 0.20 0.62 0.93 0.9992 
28.12 < 0.05 0.62 0.94 0.9993 

The positive effect of smoother walls is negligible: as long as the particles (average size: 0.5 

pm) are larger than irregularities in the surface of the die wall, no differences are observed. 

6.4. Interpretation of compaction curves 

6.4.1. Description of model 

Given the characterization of the experimental compaction curves, a theoretica! 

interpretation is soughl In this section, a model based on characterization of the state of stress 
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during compaction is presented. The state of stress can be represented in a second-order stress 

tensor, which contains six independent stresses. Fig. 6.5 illustrates the orientation of these 

stresses. 

~ cr xy 
XX 

(j 
yx 

(j 
yy 

Fig. 6.5: Schematic representation of the stresses acting on a cube. The size of the cube is 

arbitrary, varying between an infinitisemal volume and the whole body. With compaction, 

variations in the magnitude and orientation of the stresses within the granu/ate cannot be 

measured. Therefore, it is convenient to consider the stresses acting on the entire granulate 

mass in the die. 

The state of stress of the granulate in a die can be represented graphically with a Mohr circle, 

which is obtained by platting the normal stresses versus the shear stresses. The normal 

stresses, which act perpendicular to the surface, are given by crxx, cryy and crzz (see fig. 6.5). 

The stresses parallel to the surface are shear stresses, which will be indicated with 't instead 

of cr. Fig. 6.6 shows the Mohr circle for a three-dimensional state of stress. 

Fig. 6.6: Mohr circle representing a three-dimensional state of stress. The positions at which 

the Mohr circle intersects the cr-axis (zero shear stress) corresponds to the principal stresses 

(cr1, cr2, cr3). Note that any point on the Mohr circle can be reached by rotation of the body 

under consideration. 
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For modeHing purposes, it is necessary to reduce the number of variabie stresses. This is 

achieved by considering compaction in dies where an axis of symmetry is present. The axis 

of symmetry allows representation of the state of stress in two dirnensions. A two-dirnensional 

state of stress is charácterized by a major (cr1) and a minor (cr3) principal stress, which 

produce a single shear stress, as illustrated in fig. 6.7. 

(jl 

r 

r ----

Fig. 6.7: Mohr circle representing a two-dimensional state of stress. The figure above the 

Mohr circle shows the orientation of the stresses at a point (cr' ;t') on the Mohr' s circle. 

With a cylindrical die, it is convenient to use polar coordinates instead of cartesian 

coordinates. On account of symmetry, all shear stresses acting on the granulate in the 

circumferential direction are zero. Fig. 6.8 shows the stresses acting on granulate in a 

cylindrical die. 
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Fig. 6.8: Stresses during compression of cylindrical body. Using po/ar coordinates (r,e,z), 

the normal stresses in an arbitrary section are depicted (left) . The only remaining shear 

stresses are also shown (right). 
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Note that the normal stresses in the axial and radial direction (crz:z, crrr) are notequivalent to 

the principal stresses cr1 and cr3 defined in fig. 6.7. However, the sum of the normal stresses 

in any orthogonal coordinate system, given by the trace of the stress tensor 2· is constant 

Therefore the following equality holds: 

(6-2) 

A Mohr circle represents a stabie situation, which implies that the stresses acting on a 

differential element are balanced. Equating the stresses in the axial direction: 

ocrufàz + fir..)or + 't.)r = 0 (6-3) 

Similarly, in the radial direction: 

ocr,/dr + crjr + o-rrfdz - creJr = 0 (6-4) 

Finally, in the circumferential direction: 

ocreJ'àr + creJr - crjr = 0 (6-5) 

In the following, it is assumed that the radial gradient in the circumferential stress is 

sufficiently small to be neglected. In that case, eq. (6-5) shows that the circumferential and 

radial normal stresses are equal. This sirnplifies eq. (6-4): 

(6-6) 

Because the shear stresses 'trz and 'tu are equal, the balances given by eqs. (6-3) and (6-6) 

contain four unknowns: crzz• crrr, cr99 and 'trz. This number is reduced to three when a 

correlation between crrr and crz:z is known. It is convenient to assume that crrr is proportional 

to crzz: 

(6-7) 

where K is a constant. Literature suggests that K has a value of approximately 0.5. 

Consequently, the Mohr circle is obtained by platting cr22 versus 't12• 

Upon application of pressure, the granulate is compacted until the irnposed stress is 

balanced by the intemal forces. When the applied pressure is removed, relaxation occurs, 

producing recovery of reversible or elastic deformation. The remaining irreversible or plastic 
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deformation is reflected in expansion of the Mohr circle. This evolution is known as 

hardening (fig. 6.9). 

T T 

Fig. 6.9: lsotropie and kinematic hardening. The evatution of Mohr circles in the leftfigure 

indicates isotropie hardening, which is characterized by a fixed position of the centre of the 

Mohr circle. During kinematic hardening, the centre of the Mohr circle shifts to higher 

stresses. The dashed lin.e tentatively indicates the path foliowed during uniaxial die 

compaction. 

When increasing the axial pressure (cru) during compaction in a die, the pressure exerted on 

the die wall (crn) is expected to increase. This implies that the hardening during die 

compaction is likely to be kinematic. In the following section, the evolution of the Mohr 

circles during die compaction is characterized in order to model compaction curves. 

6.4.2. Mathematica! formulation 

The model is focussed on characterization of the evolution of Mohr circles in order to 

derive an indication of the strength of the compact In the cr-'t plane, a measure for the 

strength of a compact is reflected by the shear stress required to produce failure when no 

normal stress is applied. This is denoted as the shear strength S of the compact The shear 

strength S of powders can be estimated by drawing a tangent to the left side of a series of 

circles. This line, known as the yield locus, has a constant slope for a single density of a 

particular powder. An increase of the powder density increases the values of the slope and 

the intercept. For the powder compaction, the yield locus has no formal significance: the 

tangent to the left side of the circle indicates when the weakest links are breken, i.e. when 

failure occurs. Compaction, on the other hand, requires that the strengest resistance is 

overcome, which is represented by the right side of the circle. As indicated in fig. 6.9, the 

path foliowed during uniaxial compaction is given by a line with formula 't=Vcr. However, 

the yield locus provides a link between the size of the circle and the strength S. 

Starting point for the model is recognition that the compaction curve consists of two 

distinct stages. During stage I, the granulate behaves as a powder without cohesive strength. 
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During stage ll, a compact has been formed whose strength increases with pressure. This 

difference is illustrated in fig. 6.10. 

I 

ÁS 

s 

11 

Fig. 6.10: Evafution of Mohr circles and corresponding yield locii during uniaxial die 

compaction. During stage I, the shear strength S is zero (left). During stage//, buildup of 

shear strength S is rejlected by the increase of the value of the intercept (right). 

The increase of the pressure during compaction is reflected in the increase of the major 

principal stress. Cernparing two Mohr circles repcesenting arbtirary compacti~n states allows 

definition of the increase of the isotropie pressure ó.cri: 

= 2(r - r.,)/(1 - K) (6-8) 

where r (= (cri - cr3)/2) is the radius of the Mohr circle and K is the ratio of the minor and 

major principal stresses. Note that ó.cri is not necessarily equal to the increase in the axial 

stress crzz during die compaction. The difference between the axial stress crzz, which equals the 

applied pressure P, and cri is illustrated in fig. 6.11. 

Fig. 6.11: Relation between the major principal stress cr1 and the axial stress cr ... With die 

compaction, cr" equals the pressure P. 
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A relation between Acr1 and Acrzz (= crzz - crzz.J is obtained by calculating the intersectien of 

the compaction path and the right side of the Mohr circle. The Mohr circle can be expressed 

as: 

(6-9) 

During die compaction, the ratio between the shear and normal stresses is constant and 

represented by v. Substituting 't with vcr yie1ds the following second-erder equation: 

(6-10) 

The 1arger stress of the so1utions of eq. (6-10) is the axial stress crzz: 

(6-11) 

Assuming that the relation between cr1 and cr3 is similar to the re1ation between criT and O"zz 

(eq. 6-7), eq. (6-11) can be simp1ified: 

(6-12) 

where C is a constant Consequently, Acrzz is directly proportional to Acr1• 

The next step is to link the radius of the circle to the slope and intercept of the yield 

locus. For stage I, when the yield locus passes through the origin, the following apply: 

r = sin(9+d9)cr1 

r. = sin(9)cr1 •• 

Recognizing that 0"1 = cr1 •• +Acr and substituting in eq. (6-8) yields: 

Acr1 = 2(sin(9+d9)-sin(9))cr1/(1-2sin(9+d9)(1-..K)) 

. Invoking the definition of a first-order differential: 

sin(9+d9)-sin(9) = d9 cos(9) 

(6-13) 

(6-14) 

(6-15) 

Simplifying eq. (6-14) with eq. (6-15) and considering infinitesimal changes in cr and 9: 
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dcr1 = 2 dB cos(B)cr/((1-2sin(B))(1~K)) 

or 

dcr/cr1 = 2 d9 cos(B)/((1-2sin(B))(1-K)) (6-16) 

Because 0'1 is proportional to O'zz (eq. 6-12), eq. (6-16) can be used to represent die 

compaction: 

dP/P = 2 dB cos(9)/((1-2sin(9))(1-K)) (6-17) 

The same methad is used to obtain an expression for dP during stage II. Additional terms 

are introduced by the inclusion of the shear strength S, which increases by dS when passing 

from one Mohr circle to another. The initial equation has the following form: 

dP = 2(P de cos(9)+dP sin(B+d9)-S dB sin(B)+dS cos(B+dB) )/( 1 .... K) 

(6-18) 

Evidence [1] suggests that the strength increases linear1y with the density. Because the density 

varles with the logarlthm of the pressure, the strength also varles with the logarithm of the 

pressure during stage 11. Expressed in equations: 

S = C'ln(P) 

and 

dS = (C'/P)dP (6-19) 

where C' is a proportionality constant. Substituting S and dS in eq. (6-18) produces anon­

linear equation which is difficult to solve analytically. Therefore, the relation between the 

strength S and the pressure P is approximated by the frrst term of the Taylor expansion: 

S = C'P (6-20a) 

and 

dS = C'dP (6-20b) 

Substituting S in eq. (6-18) and consictering an infmitesimal change in 8: 

dP/P = 2( cos(8)-C' sin(B)) dB/(( 1-2sin(9)+C' cos(B))( 1-K)) (6-21) 

Eqs. (6-17) and (6-21) can be integrated to yie1d a pressure-density relation when the relation 

between dB and the change in density, dQ, is known. Numerous options can be found in [2]. 
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For lack of further details, d9 is taken to be proportional to dQ. Integration produces an 

equation which is similar in form to the compaction curve equation. The equation is sirnilar 

for stage I and IJ, although the constants have different values. 

where Qlh is the theoretica! (or fully-dense) density, C1 a constant and where subscript o refers 

to the initia! state. For stage 1: 

1/C1 = 2cos(9)/((1-2sin(9)(l-K)) (6-23) 

For stage IJ: 

l/C1 = 2( cos(9)-C' sin(9) )/( (l-2sin(9)-2C' cos(9))( I +K)) (6-24) 

Eq. (6-22) therefore contains 5 parameters: P0 , Q0 , 9, K and C'. Of these, K can be measured 

independently using strain gauges. Previously published results (e.g. [3]) suggest that K varies 

slightly with the applied pressure: at low and high pressures, K is larger than at intermediate 

pressures. A good approximation is to use K = 0.5. 

When characterizing the compaction curves with equations of the form Q = Aln(P) + B, 

two parameters can be determined. For stage I, Q0 equals the bulk density of the granulate 

after filling the die. Because C' is zero during stage I, Po and 9 can be established. The 

density at which the transition between stage I and stage 11 occurs can be found from 

experimental data. Assuming that 9 is constant tbraughout the compaction process, Po and C 

can be determined for stage IJ. Table 6.8 shows the parameters as determined for a number 

of binders. 

Table 6.8: Model parameters determined for various binders 

Stage 2 2 I 2 

Binder 12o po Co po cl e cl C' 

Acrylic I 1.4 3.5 2.3 256 0.23 0.72 0.30 0.0179 

Acrylic IJ (*) 1.5 4.6 . 2.5 434 0.23 0.71 0.3I 0.0192 

Acrylic IJ (**) 1.5 4.6 2.5 287 0.23 0.69 0.32 0.0200 

Mixture 1.5 4.1 2.5 349 0.23 0.69 0.27 0.0070 

PVA 1.4 5.1 2.3 202 0.26 0.61 0.31 0.0062 
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(*) Contains 0.86 wt-% binder 

(**) Contains 1.70 wt-% binder 

Note that a lower bulk density translates to a lower density at which the transition between 

the two stages occurs. The corresponding transition pressures are also lower for a lower bulk 

density. When calculating C, the strength parameter, large differences are found between the 

various binders despite the similarity of the compaction curves. This is due to the complex 

dependency of C1 on 0 and C. 

6.43. Verification of the model 

Direct verification of C' is not possible because a pure shear test, i.e. a test where the 

normal stresses are zero, is not available. Therefore diametral compression of compacts is 

used as an altemative. The test involves measurement of the crushing strength of ring-shaped 

compacts placed sideways. The test procedure is illustrated in fig. 6.12. 

Force F 

K ~~ ~ 
K 16 mm ~ 

Fig. 6.12: Diametral compression test 

Compression rate: 
20 mm/min 

Length ring (L): 
10 mm 

Inner diameter (d .) 
I 

Outer diameter (d0 ) 

Six ring-shaped campacts were pressed to densirles of 2.7 and 3.0 g/cm3 using three of the 

previously exarnined granulates. The strength S found with the diametral compression test is 

calculated as follows (DIN 30911 part 2): 

(6-25) 

where F is the force at which the rings breaks. 
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The strength is derived from compaction cwves as follows: fust, the pressure 

corresponding to the densirles of 2.7 and 3.0 g/cm3 is obtained from table 6.2. The pressure 

and the corresponding C' (table 6.8) are then substituted in eq. (6-20a). Comparison of the 

strength determined with either method is given in table 6.9. 

Table 6.9: Strengthof campacts 

Binder 

Acrylic I 

Mixture 

PVA 

Acrylic I 

Mixture 

PVA 

2.7 

3.0 

Strength S (MPa) Strength S (MPa) 

Diametral compression Compaction cwves 

1.38 1.55 

0.41 0.57 

0.72 0.55 

2.66 4.43 

1.57 2.21 

1.12 1.81 

Table 6.9 indicates that, with a single exception, the strength deterrnined from the compaction 

cwve is larger than the strength deterrnined with the diametral compression test. This trend 

could be attributed to the difference in the definitions of the strength. This can be explained 

by considering the representation of the state of stress in the (cr;t) plane. During compaction, 

the Mohr circle expands while its centre moves to the right (fig. 6.10). This process is known 

as kinematic hardening (fig. 6.9). The envelope of all Mohr circles up to certain size is known 

as the yield surface, which indicates the transition from elastic to plastic deformation of the 

compact. Because the Mohr circle expands, the left slope of the yield surface is positive. 

When the compact breaks during a diametral compression test, a point on the yield surface 

is obtained. Because the compact is in tension, this point is located on the negative cr-axis. 

Consequently, the strength deterrnined with diametral compression is always smaller than the 

pure shear strength. 

Table 6.9 also shows that the diametral compression strength increases with the density. 

This indicates that the size of the Mohr circle becomes larger than predicted by a yield 

surface which is tangent to all smaller Mohr circles. A tentative explanation is that the 

hardening behaviour is both of a kinematic and isotropie nature (fig. 6.13). Note that the 

combination of kinematic and isotropie hardening shown in fig. 6.13 provides an indication 

only: other combinarlans may occur in practice. 
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Fig. 6.13: Evolution of Mohr circles based on kinematic hardening only (left) and a 

combination of isotropie and kinematic hardening (right). The yield surface is given by a 

dashed line when it is tangent to intermediale circles as it the case with kinematic 

hardending. 

6.5. Discussion and condusion 
The detennination of the strength S from the compaction curve is based on 

characterization of this curve with two linear relations. The parameters of these relations are 

obtained from the two distinct linear sections observed when compacting granulate. A 

complete characterization is obtained because the intersection between the two linear relations 

is on the curve. The transition indicates that a change occurs in the mechanisms underlying 

the compaction process. This change in compaction behaviour is not necessarily related to the 

strength of the granulate. Note that the strength is influenced by a number of chemical and 

structural characteristics. One of these, the interstitial pore size, varies with the density and 

can be related to the underlying compaction mechanisms (see chapter 4). However, the 

variation of other characteristics, notably the cohesion between particles, agglomerates and 

granules, as a function of the density is unknown. Consequently, the model can only be 

applied to powders which display a kink in the compaction curve at a density where a 

compact is just formed. Therefore, the use of the model for powders where the intersecdon 

is not positioned on the compaction curve is questionable. 

For the compaction of granulate, the model allows rapid estimation of the compact 

strength. Table 6.9 shows that the relative strength of campacts with different types of binder 

is confumed by the analysis of the compaction curve for the density of 3.0 g/cm3• For the 

lower density (2.7 g/cm3), however, this trend is not equally obvious. 

The magnitude of the strength determined from the compaction curve is generally larger 
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than the strength measured with the diametral compression test This difference cannot be 

entirely attributed to the occurence of a combination of isotropie-kinematic hardening instead 

of kinematic hardening only. This can only be the case if the ratio's between the change in 

strength and the change in density are similar, which is not the case (table 6.9). 

Finally, table 6.9 reveals an interesting difference between granulate containing a mixture 

of PVA and acrylic and PV A only. Between a density of 2.7 and 3.0 g/cm3, the strength of 

the compact with a mixture of binders becomes larger than the strength of the compacts with 

PV A binder only. A possible explanation is that the softer nature of the mixture of binders 

facilitates improved adhesion between the particles. 

References 

I. D. Niesz et.al.,'Streogth Cbaracterizatioo of Powder Aggregates ', Ceramic Bulletin, vol.Sl, oo. 9 ( 1972), 677 ·680. 

2. D.Duuvic,' A Three-Stage Descriptioo of Powder Compactioo', Science of Sin tering, vol. 22, no. 1 (1990), 11-19. 

3. J. Williams et.al.,'Measurement of Static Stresses on tbe Wallof a Cylindrical Container for Particlulate Solids', 

Powder Technology, vol. 50 (1987), 163-175. 

Suggested reading: 

M. Es-Saheb,'Powder compaction interpretation using the power law', Joumal of Materials Science, vol. 28 (1993), 

1269-1275. 

K. Kawalàta, K.·H. LUdde,'Some Considerations on Powder Cernpression Equations', Powder Technology, no. 4 

(197onl). 61·68. 

N. Stanley-Wood, M. Sarrafi,'Variations in, and Relationships of Surface Area, Intemal Angle of Friction and 

Compact Diametral Fracture Strength with Degree ofCompaction', Partiele Systems Characterization, vol. 5 (1988), 

186-192. 

N. Stanley-Wood, A. lbrahim,' A Correlation between Angle of Friction, Angle of Failure Plane and Strengtb for 

Compactsof Tartaric Acid, Microcrystalline Cellulose and Mixture of the Two', Powder Technology, vol. 51 (1987), 

151-157. 

S. Strijbos, 'Phenomena of the Powder-Wall Boundary During Die Compaction of a Fine Oxide Powder', Ceramurgia 

International, vol. 6, no. 4 (1980), 119·121. 

P. Vermeer,'A double harelening model for sand', Géotechnique, vol. 28, no. 4 (1978), 413-433. 

J. Windheuser, J. Misra, S. Eriksen, T. Higuchi,'Pbysics of Tablet Cernpression XIII', Joumal of Pharmaceutical 

Sciences, vol. 52, no. 8 (1963), 767-772. 



Chapter 7 

ModeHing compaction using mechanica} tests 

7.1. Introduetion 

During compaction, the density increases on account of three processes: rearrangement, 

deformation and compression of the powder. Models for these processes (see chapter 4) can 

be derived assuming that the state of stress is simHar throughout the powder. With die 

compaction, however, the stresses within the powder vary because force is applied in the axial 

direction only. As a result, internat and extemal friction lead to stress gradients which are 

reflected by local variations in the density. Because variations in the density are detrimental 

for the mechanica! and dimensional properties, it is necessary to model the compaction 

process on a local scale in order to optimize compaction parameters or granulate properties. 

The following approach is adopted: fliSt, suitable mechanica! tests are used to 

characterize the compaction behaviour of the powder. Subsequently, the space within the die 

is discretized into elements whose compaction behaviour corresponds to that of the powder. 

The compaction process is then simulated by applying force on the elements directly below 

the punch and calculating the deformation of all elements. The influence of the die wall is 

incorporated by including a force at the die wall which resists compaction. This approach 

allows deterrnination of the density distribution within the compacted powder irrespective of 
the shape of the die. In this chapter, the compaction behaviour of granulate based on 

mechanica! tests is established. The procedure to calculate the density distri bution is presented 

in chapter 8. 

7.2. Review of mechanica! tests 

Two types of tests are considered: these performed on campacts and those performed on 

granulate. With the fermer, campacts are subjected to loading under well-defmed 

circumstances. Three tests of this type are used: 

• three-point bend test: loading of a simply-supported rectangular compact at midspan. 

diametral compression test: loading of a cylindrical compact positioned sideways. 

• free compression test: axial loading of an upright cylindrical compact 

These tests provide insight into the deformation behaviour of the whole compact. · 

Furtherrnore, the force required to break the compact provides a measure for the strength. 

Breaking of the compact is associated with failure, a process which can be represented by 

strain-softening plastic flow: in the process of breaking, interpartiele bands are severed, so 

that the stress supported by the compact decreases. On the ether hand, two tests relating 

directly to the deformation of granulate are used: 
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• die compaction test: ax.ialloading of granulate which has been placed in a cylindrical die. 

• isotropie compaction test loading of precompacted granulate from every angle. 

These tests reflect yielding of the granulate, which can be modelled as strain-hardening plastic 

flow. 

The difference between these tests is illustrated by platting the normal and shear stresses 

experienced by the compact or granulate. Each of the tests accupies a characteristic position 

in the (cr,t)-plane. The position of each tests can be explained as fellows: 

• three-point bend test: during bending of a simply-supported compact, the upper sectien of 

the compact is in compression, while the bottorn sectien of the compact is in tension. When 

the compact is sufficiently narrow, only the normal stress along the ax.is is significant 

Along the bottorn plane, the compact is in tension. When considering the bottorn plane, this 

test is located on the (negative) cr-axis. 

• diametral compression test: a circumferential normal stress ensures that the surface of the 

compact is in tension. The normal stress produces an equally large shear stress within the 

compact, so that diametral compression is positioned on the cr='t line left of the t-axis. 

• free compression test: because the edges of the compact support no stress, the ax.ial normal 

stress produces a shear stress within the compact As a result, free compression is placed 

on the cr='t axis right of the t-axis. 

• die compaction test: the shear stress within the granulate mass is smaller than with free 

compression because the die walls support stress. The ratio between the normal and shear 

stresses is approximately constant. This test is positioned close to the (positive) cr-axis. 

• isotropie compaction test: after compaction of the granulate into a tablet shape, it is packed 

and subjected to pressure from all sides. On a macroscopie scale, no shear stresses can 

exist. Therefore, isotropie compaction is located on the (positive) cr-axis. 
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A) B) C) D) E) 

Fig. 7.1: Mechanica/ tests 

A) three-point bend test D) die compaction test 

B) diametral compression test E) isotropie compaction test 

C) free compression test 

The position of a test in the (a;t)-plane is uniquely defmed when platting a yield surface. The 

yield surface represents the combinations of normal and shear stresses where the transition 

from elastic to plastic defonnation is observed. Because this transition is influenced by the 

density, the yield surface is plotted for a single density. 

For the tests performed on campacts of a certain density, defonnation is assumed to be 

elastic until the compact breaks. Therefore, the position of these tests is deterrnined by the 

state of stress which produces failure. During the tests perfonned on granulate, elastic and 

plastic defonnation occur simultaneously. Because the density is deterrnined by the plastic 

strain, the process of loading is interrupted to allow recovery of elastic strain to take place. 

The state of stress careesponding to a certain density defines the position on the yield surface. 

For the isotropie compaction test, the position on the cr-axis is deterrnined by the pressure 

applied as a function of the density. Deterrnination of the position of the die compaction test 

is complicated by the presence of shear stresses. For compaction in an axisymmetric die, the 

normal stress cr experienced by the granulate can be written as: 

a = ( cr, + cr, + a9)/3 (7-1) 

where a, is the axial, cr, the radial and a 9 the circunûerential nonnal stress. Eq. (7 -1) can be 

sirnplified by assurning that the circunûerential stress a 9 and the radial stress a, are equal. 

The shear stress 't in the (r,z)-plane is the difference between the axial and radial normal 

stresses: 

't = cr, - a, (7-2) 
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Because the radial stress crr is unknown, a further assumption is required. In chapter 6, the 

ratio of the axial and radial normal stresses is taken to be constant and equals 0.5. This 

enables determination of the position of the die compaction test. 

/ 

(A) 

Failure 

/ 
/ 

/ 
/ 

Yield 

(E) 

Fig. 7.2: Representation of the yield sulface based on mechanica/ tests. The yield sulface, 

which indicates when plastic deformation cammences (failure tests) or continues (yield tests), 

is validfor a single density only. 

A) three-point bend test D) die compaction test 

B) diametral compression test E) isotropie compaction test 

C) free compression test 

Upon increasing the density; the yield surface expands. In chapter 6, it was shown that the 

yield surface coincides with the largest Mohr circle. Although the mechanica} testsprove that 

the yield surface is elliptical, a similar trend is expected (fig. 7.3). 

Failure 

T C) // 
/ 

/ 
/ 

Fig. 7.3: Expansion of the yield sulface with increasing density. 

Yield 
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7.3. Densification and deformation 

Instead of distinguishing mechanica! tests on the basis of normal and shear stresses, an 

alternative classification is developed to extend the interpretation of the mechanica! tests. For 

this purpose, the densification and deformation behaviour during the tests is considerded. 

Densification refers to the change in density given a fixed compact shape, while deformation 

denotes the change in shape given a constant compact density. Pure densification occurs 

during the isotropie compression test because the shape of the compact is, in principle, not 

affected. Similarly, pure deformation occurs during the three-point bend test, where the 

density is approximately constant. With the other tests, a significant change in the density and 

the shape of the compact is observed. Note that, in the (cr;t)-plane, both the isotropie and 

three-point bend tests are located on the cr-axis. 

With the isotropie compaction test, rearrangement, deformation and compression of the 

particles occurs. The average distance between the particles decreases as particles slide past 

each other. During this process, particles are deformed and compressed on account of the 
interpartiele friction. The sliding of particles is counteracted by the binder between the 

particles. However, the forces required to evereome interpartiele friction are much larger than 

the forces required to stretch or break the boncts formed by the binder. Therefore, the 

influence of the binder during compaction is relatively small. This is confirmed by 

comparison of compaction curves measured during compaction in a die (see chapter 6). 

With the three-point bend test, a concentrated force is applied to the top surface of the 

compact, which results in bending. The compact is compressed near the top side while the 

bottorn of the compact is in tension. Because the force required to compact particles is much 

greater than the force required to pull particles apart, compaction during the three-point bend 

test is negligible. Consequently, the force required to bend the compact is related to the 

strength and adhesive properties of the binder. Note that van der Waals attraction can also 

influence the cohesion of particles at short range. 

Modelling densification and deformation using macroscopie data requires that the 

compact or granulate is homogeneous. This implies that the response of the compact to force 

is sirnilar to the response of individual particles. On the scale of the particles, fluctuations in 

the force required to produce compaction are significant. Therefore, it is assumed that a cell 

exists whieh contains a representative arrangement of particles where this condition is met. 

The process of deformation is characterized using the data obtained from the three-point bend 

test. The significanee of the applicable parameters is discussed in section 7 .4.1. 

The process of densification has been characterized using representative cells in section 

4. This approach is based on characterization of the sparial arrangement of the particles rather 

than balancing the forces between the particles. Because the sirnulation of compaction is 

based on the latter, it is necessary to model data from the isotropie compaction test. The 

relation with the interpretation of the deformation behaviour is given in section 7 .4.2. 
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7.4. Modelling mechanical tests 

7.4.1. Characterization of deformation 

Deformation can be reversible (elastic) or irreversible (plastic) in nature. With elastic 

deformation, an increase of the strain produces an increase in the stress. When the loading 

of an elastically-deformed material is stopped, the irnposed strain is recovered. With perfect 

plastic deformation, on the other hand, straining occurs when the stress reaches a critica! 

value. This critica! stress is not exceeded as further loading only produces an increase in the 

plastic strain. 

The difference between elastic and perfect plastic deformation is illustrated by 

considering uniaxial Joading (free compression) of an arbitrary material. When the 

deformation is elastic, the stress and strain in the axial direction are related by: 

cr = Ee (7-3) 

where E is the elasticity modulus. When the deformation is plastic, the stress has a constant 

value: 

(7-4) 

where cry is the yield stress of the material. Fig. 7.4 illustrates the stress-strain curves for 

elastic and (perfect) plastic deformation. 

Stress 
() 

Strain ~ 

Stress 
() 

Strain ~ 

Fig. 7.4: Relation between stress and strain during uniaxial toading for elastic (left) and 

pelfect plastic (right) deformation. The stress and strain are measured in the axial direction 

only. The strain in other directions, although probably non-zero, is not represented. 

It is assumed that the stress-strain curve is not influenced by time. This implies that the stress 

is independent of the imposed strain rate. 

A material can exhibit both elastic and plastic deformation behaviour. Because plastic 
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deformation requires that a yield stress crY is exceeded, elastic deformation always precedes 

plastic deformation. Furthermore, strain-hardening can occur, which implies that the stress in 

the compact increases with increasing plastic deformation. Strain-hardening, which is a type 

of imperfect plastic deformation, can be expressed as follows: 

(7-5) 

where H is the plasticity modulus. Combined elastic and plastic deformation is illustrated in 

fig. 7.5. 

Stress 
(J 

Strain e 

Stress 
(J 

Strain e 

Fig. 7.5: Re/ation between stress and strain during uniaxialloading for elastic deformation 

followed by perfect (left) and strain-hardening (right) plastic deformation. 

Whereas elastic deformation is characterized by a linear relation between the stress and the 

strain, this is not necessarily the case for strain-hardening plastic deformation. Fig. 7.6 shows 

two further options. 

Stress 
(J 

Strain ê. 

Stress 
(J 

Strain e 

Fig. 7.6: Relation between stress and strain during uniaxial toading for elastic deformation 

followed by strain-hardening plastic deformation (left) and strain-hardening plastic 

deformation only (right). 

The strain-hardening behaviour in fig. 7.6 can be expressed with: 
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(7-6) 

where nis a hardening parameter. Note that eq. (7-5) is a special case of eq. (7-6), with n=l. 

The hardening parameter n varies between zero and unity because the strain is smaller than 

unity and increases with increasing stress. 

The determination of the yield stress cry depends on the presence of a clear transition 

between elastic and plastic deformation. Fig. 7.6 shows that the transition is difficult to 

establish when the initia! slope is steep. Furthermore, the stress·strain curves shown in figs. 

7.4 to 7.6 represent small changes in the strain only so that the density of the compact is 

practically constant With increasing compact density, the strength of the compact increases 

because the particles are in closer contact Therefore, the entire stress-strain curve changes 

with the density, as shown in fig. 7.7. 

Stress 
(j 

Strain t; 

. Fig. 7.7: Relation between stress and strain during unia.xial toading for strain-hardening 

plastic deformation. The curve shifts upwards as the density of the compaèt is increased. No te 

that the strain is small compared to the differences in the density of the compacts. 

The determination of the parameters E, H, cry and n as a function of the density provides a 

complete characterization of the granulate, especially with respect to the influence of the 

binder. This makes comparison of different types of binders possible; In section 7 .5.1, the 

experimental setup is outlined. 

7.4.2. Characterization of densification 

Densification expresses the increase of the density during the compaction of granulate. 

The density increases on account of partiele motion, which causes filling of the pores. The 

force required to move particles equals the force required to slide particles past each other. 

In this respect, densification and deformation are fundamentally different: as indicated in the 

previous section, deformation is govemed by the strength of the bands between the particles 

rather than friction between particles. Because the farces associated with friction are much 

larger, the two processes are nat comparable. 
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The process of densification can be represented in termsof the relation between the stress 

and strain. The main difference with the stress-strain relation representing deformation is the 

magnitude of the stress and the strain, whlch are much larger in the case of densification. The 

force required to slide particles pasteach other depends on the di stance between the particles, 

which decreases with increasing density. Fora single density, thls motion can be represented 

by strain-hardening plastic deformation. Because the force and the partiele motion are 

reflected in the stress-strain relation, iso-density curves can be plotted. Because the strain 

during compaction is large, the actual relation between the stress and the strain is obtained 

by conneering the curves at the strain corresponding to a certain density (fig. 7.8). 

Stress 
(J 

Strain e 

Fig. 7.8: Relation between stress and strain during densijication (dashed curve) constructed 

from four stress-strain points. The solid curves, representing strain-hardening plastic 

deformation, are not actually measured during compaction tests. Note that the solid curves, 

although simi/ar in shape to those shown the previous section, have a different significance. 

The stress-strain curve representing densification can be constructed when the measured strain 

completely determines the density. Reeall that a strain indicates the relative change in size 

in a single direction only. Therefore, without consictering shear strains, three normal strains 

have to be known in order to calculate the density. This condition is fulfilled during the die 

compaction test, where two normal strains are zero, and during the isotropie compaction test, 

where the normal strains are all equal (fig. 7 .9). 

The relation between the strain and the density is derived by camparing an arbitrary 

density with the initia! density of the uncompacted granulate. The ratio of these densirles is 

inversely proportional with the ratio of the volumes, so that they can be expressed in terms 

of the principal dimensions. By relating the actual dirnensions to the initia! dimensions, the 

strain is introduced. 
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Fig. 7.9: Definition of the strain measured with the die compaction test (left) and the 

isotropie compaction test (right). The strain /:J..,/L0 completely determz'nes the change in 

density. 

For the die and isotropie compaction tests, the relation between the measured strain and 

the density is unambiguous. However, with the diametral and free compression tests, 

assumptions with respect to the deformation behaviour of the compact during the test are 

required. With the free compression test, it is assumed that the shape of the compact remains 

cylindrical irrespective of the axial strain. Thls implies that two normal strains can 

characterize the change in density. With the diametral compression test, it is assumed that the 

unconfined edge remains circular during the test Therefore, progressive loading flattens the 

top and bottorn surfaces to an equal degree, while the curvature of edge increases. As a result, 

the cross-section can be subdivided into two equal semicircles and a rectangle in between. 

Because the length of the compact is assumed to be approximately constant throughout the 

test, two arbitrary strains are defined to characterize the change in density. The significanee 

of the relevant strains forthefree and diametral compression tests is illustrated in fig. 7.10. 
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Fig. 7.10: Definition of the strain for thefree compression test (left) and the diametral 

compression test (right). In bath cases, only the strain ALIL0 is measured. 
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Note that the strain given by Ad/d0 has to be known in order to establish a change in density. 

Table 7.1 lists expressions for the ratio of the initial (Q 0) and actual (Q) density which 

are derived using the strains illustrated in figs. 7.9 and 7.10. 

Table 7.1: Relation between the strain and the density 

Test 

Die compaction 

Isotropie compaction 

Free compression 

Diametral ~ompression 

Relative density 

o.JQ 

(1- eJ 

(1 - eJ3 

(1 - eJ(l + e.J2 

(1 - eJ(4(eL + e,J/rc + (1 - eJ) 

Direct measurement of the expansive strain ed during the test is not practical because 

fluctuations as a function of position, applied force and sample are large. Por similar reasons, 

interpretation of images of the compact during the test is not routinely perforrned. As a result, 

the change in density during these tests is not known. Therefore, the free and diametral 

compression tests can only be used to characterize the deformation behaviour at a single 

compact density. 

The die and isotropie compaction tests can be used to establish the densification 

behaviour of the granulate. The stress increases sharply with the strain for bath tests. In 

chapter 6, is is found that the density obtained during the die compaction test varled with the 

logarithm of the (axial) stress: 

Q. =A log(crJ + B (7-7) 

where A and B are constants. This empirica! equation can also be used to characterize 

densification during the isotropie compaction test. 

The process of densification is modelled using granulate containing acrylic ll binder. In 

section 7.5.2 to 7.5.4, the experimental setup for three of the four tests discussed in this 

section is given. Data for the die compaction test is taken from chapter 6. ModeHing 

compaction with these tests is developed in section 7.7. Note that, when the density is 

measured from compacts, only plastic or irreversible strain is observed. During compaction, 

the strain includes an elastic contribution. This elastic strain equals the relaxation of the 

compact, which · cammences when the imposed stress is removed. Measuring the density as 
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a function of the axial stress during the die compaction test results in different values for the 

parameters A and B (section 6.3). Because simulation of compaction requires that the elastic 

strain is taken into account, the phenomenon of relaxation is investigated in sectien 7.5.5. 

This could make adaptation of data obtained by testing compacts possible. 

7.4.3. Cbaracterization of strength 

During the tests where failure occurs, the force required to break the compact provides 

a measure for the strength. The dependency of the strength on the dimensions is removed by 

expressing the force in terrns of stress. The strength is therefore defmed as the stress at failure 

cr,. The significanee of the strength or stress at failure varies with the loading conditions, as 

is illustrated in fig. 7.11. Note that compressive stresses are positive. 

rr: + 
T: + 

0" : - rr: 

Fig. 7.11: Review of tests used to determine the strength. The indication of the normal ( cr) 

and shear ('t) stresses reflects the overall state of stress during the test. 

The compact is capable of resisting much larger compressive stresses befere failure occurs 

than when the stresses are tensile. Therefore, the largest strength is determined from the free 

compression test, foliowed by the diametral compression test and the three-point bend test. 

For the three-point bend test, the relation between the force and the stress is derived in 

sectien 7 .6.1. For the free compression test, the s.tress at failure is defmed as the axial stress. 

The stress in the axial direction is obtained by normalizing tJ:le force with the cross-sectional 

area. During the test, the cross-sectional area varies as a function of the axial position. The 

largest area is observed in the middle of the compact, where expansion of the compact at 

either end is opposed by friction with the confming surfaces. In order to characterize the 

entire compact, an average cross-sectional area could be used. However, on account of poor 

reproducibility, the stress at failure <1r is related ~o the initia[ cross-sectional area: 

crr = F/A = 4F/(7td/) (7-8) 

where d0 is the initial diameter Qf the compact. 

With the diametral compression test, the stress at failure is defined as the stress in the 

radial Joading direction. This stress is obtained by dividing the force required to produce 

failure by the area of the interface between the compact and the Joading surface. Initially, the 
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interfacial area is zero but it increases during the test on account of progressive flattening of 

the cross-section. The interfacial area A is the product of the (flattened) width d and the 

height h. The latter is assumed to be constant throughout the test and equals the initiallength 

of the compact. The width dat failure is detennined by the strains in the vertical (eL) and the 

horizontal (e.J directions. Because the expansive strain ed (see section 7.4.2) is unknown, a 

model to determine the width d is developed: it will be assumed that the width d is 

detennined by the intersectien with the initial circular cross-sectio.n (fig. 7.12). 

Fig. 7.12: Cross-section of a cylindrical compact during the diametral compression test. The 

initially circular cross-section is progressively flattened. 

Two relations are derived from the triangle shown in fig. 7.12: 

cos{cp/2) = (L0 - .1L)!L0 (7-9a) 

sin{cp/2) = d/{2L0 ) (7-9b) 

where cp is the corner angle. The sum of the square of a sine and eosine equals unity, so that 

the dependency on the corner angle cp can be removed: 

d = 2(2LaAL - M})112 (7-10) 

The stress at failure crc for diametral compression follows from: 

crr = F/A = F/(2(2LaAL - M})Inh (7-11) 

where h is the compact height. Values for the strengthare given in section 7.8. 
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7.5. Experimental 

7.5.1. Three-point bend test 

Series of reetangwar compacts have been pressed to densirles of 2.4, 2.6, 2.8 and 3.0 

g/cm3 using the following granulates: 

• acrylic II 

• mixture of acrylic II and PV A 

• acrylic I 

The addition of Zn-stearate should be beneficial for compaction because it acts as a Jubricant 

between the partiel es. In order to establish the effect of the Zn-stearate, two further granulates 

are prepared. These contain 0.05 and 0.20 wt-% of Zn-stearate respectively. 

The dimensions of all compacts are similar: height 6 mm, width 5 mm and length 60 

mm. The compacts are positioned upright and supported by two rollers which are 36 mm 

apart. The compact is loaded at midspan with a constant rate of 0.2 mm/s. The displacement 

in the vertical direction is denoted as the deflection ~· The relation between the deflection ~ 

and the force F which resists bending is shown in fig. 7 .13. 

Force 

(N) 

Deflection ~ (pm) 

Fig. 7.13: Characteristic force-deflection curve measured with the three-point bend test. 

Five compacts of each density and granulate are analysed. This number of tests produces an 

average variation of 5 % in the values of the strength or stress at failure crr. For high 

densities, the variation is smaller than the varia ti on observed at lower den si ties. The deflection 

~ at which the force reaches a maximum is in the order of 0.5 mm. Because this is relatively 

small compared to the compact height (6 mm), it supports the assumption that the compact 
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density is constant during a measurement. 

The relations between the force F and the axial stress cr and the deflection ~ and the 

strain e are developed in sec ti on 7 .6.1 . Given these re1ations, in terpretation of the stress-strain 

curve is presented in sectien 7 .6.2. 

7.5.2. Diametral compression test 

Tablet-shaped compacts are pressed isotropically using granulate containing acrylic II 

binder. The diameter of the compacts is approximately 24.5 mm, while the height is only 4.5 

mm. Three different densities are obtained by pressing to 1000, 2000 and 4000 bar. Fig. 7.14 

shows the characteristic force-deflection curve observed when the compact is subjected to 

diametral compression. 

Force 

(N) 

Deflection ~ (pm) 

Fig. 7.14: Characteristicforce-deflection curve measuredwith the diametral compression test. 

Five compacts of each density are compressed, which ensures that the variatien in the 

measured strength is less than 4 %. 

7.5.3. Free compression test 

Cylindrical compacts (diameter: 6.05 mm) are pressed uniaxially using granulate 

containing acrylic II binder. Three different densities are obtained by varying the axial 

pressure. The length-to-diameter (LID) ratio of all compacts is roughly equals 2, which is 

assumed to be sufficient to mitigate the effect of friction with confining surfaces. The force­

deflection curve measured during the free compression test is shown in fig. 7.15. 
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Force 

(N) 

Def1ection $ (pm) 

Fig. 7.15: Characteristic force-deflection curve measured with the free compression test. 

The reproducibility improves with increased density. In order to limit the variatien in the 

strength to 4 %, the number of compacts tested is 5, 6 and 9 for densities of 3.31, 2.93 and 

2.84 g/cm3 respectively. 

7.5.4. Isotropie and die compaction tests 
Tablet-shaped compacts are pre-pressed uniaxially to 680 bar using granulate containing 

acrylic II binder. Subsequently, the compacts are pressed isotropically to 1000, 1500, 2000, 

3000 and 4000 bar. The diameter of the fmal compact is approximately 24.5 mrn while the 

height is 4.5 mrn. The density of five compacts subjected to a similar pressure is averaged 

in order to obtain pressure-density points. These can be used to determine the isotropie 

compaction curve. Substituting the parameters in eq. (7-7): 

Q = 0.71 log(P) + 0.60 (7-12) 

where P is the isotropie pressure. At the lewest pressure used (1000 bar), the density is 

already 2.77 g/cm3, which is relatively high. However, packaging of the compact prior to 

isotropie compaction makes pre-pressing to a density where it can be handled necessary. The 

die compaction curve for the same granulate is taken from table 6.3: 

Q = 0.64 log(P) + 0.87 (7-13) 

where Pis the uniaxial pressure. Note that eq. (7~13) only applies for densirles above 2.23 

g/cm3 (table 6.4). 



144 Chapter 7 

Q = 0.64 log(P) + 0.87 (7-13) 

where P is the uniaxial pressure. Note that eq. (7-13) only applies for densities above 2.23 

g/cm3 (table 6.4). 

7.5.5. Recovery of elastic strain 

Cylindrical compacts have been pressed using granulate containing a mixture of acrylic 

11 and PV A binders. The compact diameter was measured inunediately after pressing with a 

Heidenhahn extensometer. Comparison with the die diameter provides an indication of the 

instantaneous relaxation in the radial direction. Subsequently, the compacts were stored in a 

chamber where a constant temperature (20 °C) and relative humidity ( 40 %) was maintained. 

Daily measurement of the compact dirnensions revealed that, after approxirnately one month, 

the compact dirnensions had reached stabie values. Comparison of the fmal compact diameter 

with the diameter inunediately after pressing indicates the post-compaction radial relaxation. 

Table 7.2 shows the relation between the radial relaxation, the compaction pressure and 

the length-to-diameter (LID) ratio of the compact. The diameter varles with the axial position 

where it is measured. Therefore, the diameter is measured at three positions: at either end and 

in the middle. The average value has been used to represent the diameter. It was found that 

the end of the compact which was directly below the punch always has the largest diameter. 

Table 7.2: Radial relaxation 

Uniaxial 

pressure 

(bar) 

1185 

1690 

Binder: mixture of acrylic II and PV A 

Compact diameter: 14.10 nun 

Initia! Instantaneous 

LID ratio relaxation 

(-) (%) 

0.28 0.27 

0.57 0.37 

0.95 0.42 

1.42 0.50 

0.17 0.48 

0.52 0.49 

0.66 0.50 

1.26 0.50 

Post-compaction Total radial 

relaxation relaxation 

(%) (%) 

0.29 0.56 

0.20 0.57 

0.17 0.59 

0.07 0.57 

0.21 0.69 

0.22 0.71 

0.18 0.68 

0.17 0.67 
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Table 7.2 shows that, for the lower pressure (1185 bar), the instantaneous radial relaxation 

increases with the LID ratio. However, because this trend is reversed in the period after 

ejection from the die, the total radial relaxation is approximately constant. At a pressure of 

1690 bar, the instantaneous radial relaxation is larger, although the dependency on the LID 

ratio is no Jonger observed. In terms of the total radial relaxation, an increase is observed with 

increasing pressure. 

The influence of the die diameter and the binder is investigated by pressing campacts in 

two dies with differing diameters and using two types of granu1ate. Results are given in tab1e 

7.3. Each value reflects the average of four compacts. 

Table 7.3: Total radial relaxation (initia! LID ratio= 0.3) 

Binder type Die diameter Pressure Total radial relaxation 

(mm) (bar) (%) 

Acrylic U 14.10 1185 0.63 

18.09 1185 0.56 

14.10 1690 0.69 

Mixture 14.10 1185 0.57 

PV A/acrylic II 18.09 1185 0.54 

14.10 1690 0.68 

The difference in relaxation as a result of the type of binder disappears with increasing 

compaction pressure while an increase of the die diameter reduces the radial relaxation. 

In the axial direction, only the post-compaction relaxation is measured. For the gramilate 

containing a mixture of acrylic ll and PV A binders, the relative change in compact height 

varies between 0.22 and 0.45 %, irrespettive of the density or the· LID ratio. The variatien 

is probably due to the variatien in the instantaneous axial relaxation, which cammences during 

ejection of the compact. The Jatter, which is expected to be relatively large, is difficult to 

measure accurately. 

A model of relaxation is developed using a microscopie representation. Ferrite particles, 

which are bonded by binder molecules, move closer tagether during compaction. During this 

process, the bonds between the particles are either stretched or braken. Because broken honds 

reduce relaxation, the binder consisting of a mixture of acrylic II and PV A is relatively brittie 

when compared with the acrylic II binder. This is confirmed by SEM images of the surface 
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of compacts pressed from either granu1ate (fig. 7.16). 

Fig. 7.16: Comparison of compacts pressedfrom granulate containing a mixture of acrylic 

11 and PVA (left) and acrylic Il only (right). The SEM images of the top surface of campacts 

pressed to 422 bar show that the bonding of a mixntre of binders is more brittle. 

Upon remova1 of the extema1 pressure, the stretched bonds tend to shorten, exercising force 

on the partic1es. This prompts partiele rearrangement, which increases the volume of the 

compact. The higher the density, the more the bonds have been stretched, and, therefore, the 

larger relaxation will be. Note, however, that relaxation is counteracted with increasing 

density by an increase of the number of broken bonds and hindrance from other particles. 

Especially the latter is significant because the difference in re1axation of the two granu1ates 

decreases with pressure. Near the compact edges, relaxation is less impeded by other particles. 

In addition, shear stresses near the edges during compaction produce significant stretching of 

the bands. Therefore, the relaxation of thin produèts is relatively large. 

The decrease of the density on account of post-compaction axial and radial compaction 

for a pressure of 1185 and 1689 bar is approximately equal: 0.7 %. Because relaxation is 

stimulated during ejection of the compact, the instantaneous relaxation is expected to be larger 

than the post-compaction relaxation. Therefore, relaxation wil! reduce the compaction density 

by an estimated 2 %. Therefore, differences between the compaction and the compact density 

are accounted for by relaxation when in the order of 2%. 
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7.6. Analysis of the three-point bend test 

7.6.1. Interpretation of measured data 

During the test, the force F which resists bending of the compact is measured as a 

function of the deflection $. For modelling purposes, it necessary to translate this data into 

a stress cr and strain e. Because the rectangular compacts have a smal! cross-section, the 

stresses in the cross-sectien are assumed to be negligible. Therefore, the force F produces a 

stress in the axial direction only. The magnitude of this stress varles with the vertical position: 

near the top, the stress is compressive while, near the bottom, the stress is tensile. The 

transition between compression and tension is given by a plane which supports no stress. 

Viewed sideways, the surface is indicated by the so-called neutral axis, whose length is 

always equal the initiallength of the compact Fig. 7.17 shows the compact during bending. 

Applied force F 

~ 
Neutral axis 

Extended 

Front view h 
L 

b 

Fig. 7.17: Three-point bend test. During bending, part of the compact is compressed while 

another part is extended. The transition between these parts is given by the neutral surface. 

Abbreviations: h = height, b = width, L = length between supports. 

In the elastic range of deformation, the axial stress can be expressed as fellows: 

cr = Mz/1 (7-14) 

where M is the bending moment, z the vertical coordinate and I the moment of inertia. For 

a simply- supported compacts, the bending moment M is given by: 

M = Fx/2 (7-15) 

where x is the horizontal coordinate. Consequently, the bending moment at rnidspan equals 
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FL/4. The moment of inertia I is found from: 

I= f z2 dA (7-16) 

where A is the cross-sectionat area (= bh). The moment of inertia I is defined relative to the 

neutral axis, which, for small deflections, is positioned halfway the compact. Expressing the 

area A in terms of the coordinates y and z and integrating between the top (z = h/2) and 

bottorn (z = -h/2) of the compact: 

(7-17) 

Substituting M and I in eq. (7-14) shows that the stress is proportional to the vertical 

coordinate z: 

(7-18) 

The stress of interest is the largest tensi1e stress, which is found at the bottorn of the compact 

(z = -h/2). Substituting z in eq. (7-18) provides the relation between the stress, force and 

compact dimensions: 

(7-19) 

Eq. (7-19) is valid in the elastic range of deformation. When the deformation is plastic, a 

modified form of eq. (7-14) can be used: 

(7-20) 

where n is the hardening parameter introduced in sectien 7 .4.1. The modified moment of 

interria Iu is given by: 

(7-21) 

Evaluating eq. (7-20) at z = -h/2 yields: 

cr = -FL(n+2)/2bh2 (7-22) 

When the hardening parameter n is unity, the elastic and plastic relations between the force 

and the stress are identical. Because the hardening parameter has a value between zero and 
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unity, the force required to produce a certain stress is larger when the deformation is (strain­

hardening) plastic instead of elastic. The combined use of theelastic relation (n=1) and the 

plastic relation (0<n<1) is not practical in view of the discontinuity in the stress when the 

yield stress is reached. Therefore, either theelastic (eq. 7-17) or the plastic (eq. 7-20) relation 

is used. 

The stress crin eq. (7-19) and (7-22) is negative by definition because it is a tensile 

stress. For the interpretation of the three-point bend test, this convention is reversed so that 

all stresses are positive. 

The strain e is obtained by assuming that the neutral axis farms a sernicircle. The 

sernicircle can be characterized with the radius of curvature, which is denoted R. The strain 

e is defined as the deflection $ relative to the radius of curvature R: 

e =$IR (7-23) 

Note that the radius of curvature decreases dWing bending of the compact Fig. 7.18 shows 

the relation between the radius R and the deflection $. 

fl\ 
1-q-\\ 

/ q:;f21 q:;f2 \ 

R I I \ R 
I I \ 

11 I \ 
I R-c~>l \\ 

I I 
I I \ I \ 

I I L/2 \ _______ l ______ _ 

L 

Fig. 7.18: Characterization of the neutral axis with a semicircle. Por re/atively small 

deflections, the spanLis assumed to be constant and equals the disrance between the points 
where the compact is supported. 

Using the representation in fig. 7 .18, the deflection $ and the radius ofcurvature R are related 

through the corner angle cp: 

cos(cp/2) = (R - $)/R (7-24) 
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Furthermore, the span L and the radius of curvature R are related through the corner angle 

cp: 

sin{cp/2) = L/2R (7-25) 

Eqs. (7-24) and (7-25) can be combined because the sum of the squares of the sine and eosine 

equals unity. The resulting equation is quadratic and is solved for the radius of curvature R. 

One of the solutions is trivial (R = oo) while the other solution yields the required expression 

for the radius of curvature R: 

(7-26) 

Substitution of R in eq. (7-23) relates the deflection 4> to the strain e through the distance L 

between the points where the compact is supported. In view of the assumption that the 

deflection is small compared to the span L, a simplified expression for the strain is obtained: 

(7-27) 

Eq. (7-27) is valid irrespective of the nature of the deformation. 

Stress-strain data, obtained by conversion of force-defleerion data, indicates that, after 

initial elastic deformation, non-linear strain-hardening plastic deformation occurs. In section 

7.4.1, a four-parameter (E, H, crY, n) model has been developed to characterize this behaviour. 

However, because a transition between elastic and plastic deformation is nol clearly observed, 

the yield stress crY is initially considered to be zero. The data is then interpreled in terms of 

plastic deformation only, which is characterized as follows: 

cr =He" (7-28) 

Note that the stress is related to the force through eq. (7-22), which includes the hardening 

parameter n. Therefore, the values of H and n are determined from a suitably modified eq. 

(7-28): 

F = 2bh2He"/(L(n+2)) (7-29) 

Values for the parameters H and nare given in section 7.6.3. 

Experiments where the bending process is terminated before the compact breaks indicates 

that the strain is partly elastic. Therefore, the lack of a clear transition suggests that plastic 

deformation is influenced by theelastic deformation. Up to now, plastic deformation has been 
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modelled as an independent process. The combined elastic and plastic deformation behaviour 

can be represented with a mechanica! model. In sectien 7 .6.2, a suitable mechanica! model 

is developed. 

7.6.2. Mechanical model 

The deformation behaviour of a compact is modelled with an arbitrary combination of 

mechanica! elements. The three basic elements are shown in fig. 7.19. 

I 
A) B) C) 

Fig. 7.19: Basic mechanica/ elements. 

A) spring, elastic behaviour given by cr = Ee 

B) dashpot, viscous behaviour given by cr = Tl deldt 

C) friction element, faiture when a = cr1 

Elastic deformation is instantaneous and modelled with Hooke's law. Plastic deformation, on 

the other hand, is represented by viseaus flow, which is governed by the viscosity Tl and the 

time t. Given a constant strain rate, the dashpot reflects perfect plastic deformation. Finally, 

the friction element snaps open when a certain stress is reached. On its own, this element can 

be used to model failure, where the strain becomes infmitely large and the stress becomes 

zero. However, it wil! be shown that, in combination with other elements, the friction element 

can also model the transition between elastic and plastic deformation, which is given by the 

yield stress ay. 
Representing a combination of elastic and plastic deformation behaviour requires that the 

mechanica! model contains bath a spring and a dashpot. Two fundamental combinations are 

illustrated in fig. 7.20. 
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Fig. 7.20: ModelsJor elasto-plastic deformation behaviour. When the spring and dashpot are 

in series, the strain e is the sum of the strain of either element, while the stress cr is simi/ar 

for both elements. When the elements are in parallel, a single strain e is dejined, so that the 

stress cr is partially supported by both elements. 

In order to establish which type of model represents the bending of a compact, stress-strain 

equations are derived. Pirst, an expression for the strain e is derived when a constant stress 

CJ0 is applied. Por a spring and dashpot in series, known as a Maxwell element, the strain e 

is given by: 

e = cro(liE + t/TJ) (7-30) 

Eq. (7-30) shows that the spring is extended at t=O, while extension of the dashpot can, in 

theory, continue infinitely. Por a spring and dashpot in parallel, known as a Kelvin element, 

the strain e is given by: 

e = CJ0 (1 - exp( -Et/T)))/E (7-31) 

Eq. (7-31) shows that instantaneous extension of the spring is resisted by the dashpot. After 

prolonged extension, the strain e stahilizes at the strain supported by the spring for the 

applied stress CJ0 • Although eqs. (7-30) and (7-31) illustrate the difference between the two 

types of models, neither represents the process of bending. During bending, the stress varies 

as a result of the imposed strain, which increases at a constant rate. When the strain rate is 

constant, expressions for the stress cr can be derived. Por the spring and dashpot in series: 

de/dt = (de/dt),pnng + (de/dt)dasbpot 
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= (dcr/dt)/E + cr/11 (7-32) 

The overall strain rate de/dt is constant and denoted e. Integrating eq. (7-32) with respect to 

the stress cr: 

cr = 11e(l - exp(-Et/11)) (7-33) 

For large values of the timet, the stress 0' is determined by the resistance of the dashpot only. 

When the spring and dashpot are in parallel, the strain rate of either element is equal to the 

overall strain rate: 

(de/dt),pring = (de/dt)whpot 

or 

(dcr/dt)/E = 0"/11 (7-34) 

Integration of eq. (7-34) with respect to the stress cr leads to a strain-rate independent 

equation: 

(7-35) 

where 0'0 is the initial stress. Because the strain rate is constant, the time t and the strain e 

are directly related: 

t = t/e (7-36) 

Eq. (7-36) can be used to substitute the time tin eqs. (7-33) and (7-35). For the spring and 

dashpot in series: 

0' = 11e(l - exp(-Ee/T1e)) (7-36) 

For the spring and dashpot in parallel: 

(7-38) 

Comparison of eqs. (7-37) and (7-38) reveals that only eq. (7-37) is capable of representing 

the measured stress-strain curve. Consequently, the bendingof a compact can be modelled 

with a spring and dashpot in series. Because the relation between stress cr and strain e is non­

linear, the parameters E and 11 cannot be determined from the measured stress-strain curve 
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by linear regression. Therefore an iterative scheme known as the Simplex method is used. 

With this method, the minimum difference between the measured and modelled stresses is 

sought in a space where the parameters are plotted along orthogonal axes. 

In practice, the initial deformation is found to be elastic. This behaviour can be 

incorporated into the elasto-plastic model using a friction element When the friction element 

is place parallel to the dashpot, the deformation is elastic until the yield stress cry is reached. 

Subsequently, the friction element snaps and the deformation becomes elasto-plastic. Fig. 7.21 

shows the assembly of this model. 

Fig. 7.21: Model for sequentia! elastic and etasto-p/astic deformation behaviour. When the 

stress reaches the yield stress cr1, a combination of elastic and plastic deformation behaviour 

is observed when subjected to a constant strain rate. 

Eq. (7-37) models the elasto-plastic deformation behaviour only. This implies that the elasto­

plastic stress and strain are zero when the yield stress cry is reached. This requires that the 

yield stress crY and corresponding strain are incorporated into eq. (7-37). The elasto-plastic 

stress cr.P is the difference between the actual stress and the yield stress crY: 

(7-39) 

The elasto-plastic strain e.P is zero when the time is zero. Therefore, the actual time t has to 

be corrected for the time which has elapsed prior to the onset of elasto-plastic deformation. 

Given a constant strain rate, the latter is given by cr.j(Ee). Subtracting this value from the 

time t (eq. 7-34) indicates the time during which elasto-plastic deformation occurs: 

t = (e - cr.jE)/e (7-40) 
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Substituting the elasto-plastic stress cr.P and time tin eq. (7-33) with eqs. (7-39) and (7-40) 

produces the applicable model equation for the elasto-plastic range of stresses: 

cr = cry + T)e(l - exp(-E(& - cry!E)/T)e) (7-41) 

Finally, breaking of the compact can be included in the model by positioning a secend 

friction element in series with the model shown in fig. 7.21. This friction element snaps open 

when the failure stress crr is reached. Prior to failure, the stress approaches a constant value. 

Consirlering the elasto-plastic model equation (eq. 7-39), a constant stress is found when the 

exponential contribution vanishes. The model equations for the entire range of stresses can 

now be established: 

cr = Ee for cr < cry (7-42a) 

cr = crY + T]e{l - exp(-E(e - cry!E)frle) for cry :5: cr < <tr (7-42b) 

(7-42c) 

Note that the stress cr becomes zero after failure has occured. The model contains three 

parameters: the elasticity modulus E, the viscosity T) and the yield stress cry. Because the 

failure stress crr is known, eq. (7-42c) provides an additional relation between the parameters. 

The viscosity T) in eq. (7-41) can then be substituted using the following relation: 

(7-43) 

This implies that only two parameters (E and cry) have to be determined from the measured 

stress-strain curve. Values for the parameters are given in the next section. 

7.6.3. Deternûnation of model parameters 

Two approaches to analyze the three-points bend test data have been developed in the 

previous sections. Comparison of the parameters from either approach provides a 

comprehensive characterization of the influence of the binder type. 

With the model presented in sectien 7.6.1, the measured force-deflection data is used to 

determine the values of the plasticity modulus H and the strain-hardening parameter n (eq. 

7-29). On account of the non-linearity, a two-parameter Simplex method is employed to 

determine the values in table 7 A. Note that the hardening parameter n becomes larger than 

unity for higher densities with the granulate containing a mixture of PV A and acrylic II 

binder. This indicates that the model is nat suitable for characterization of the stress-strain 
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data for this type of binder at these densities. 

The values of the parameters of the mechanical model developed in section 7 .6.2 are 

given in table 7 .5. 

Table 7.4: Plasticity modulus H and hardening parameter n 

Binder type Density H Varlation n Varlation 
(g/cm3) (x 106 Pa) in H (%) (-) in n (%) 

Acrylic ll 2.4 1.389 5.8 0.608 32.4 
2.6 2.928 6.2 0.334 11.3 
2.8 5.435 8.6 0.284 16.6 
3.0 7.995 4.5 0.243 3.4 

Mixture 2.6 2.029 21.3 0.877 35.8 
PV Nacrylic ll 2.8 3.485 7.1 1.843 6.7 

3.0 5.420 8.9 1.783 9.0 

Table 7.5: Elasticity modulus E, viscosity T] and yield stress cr1 

Binder type Density E Varlation T] Varlation cry 
(g/cm3) (x 107 Pa) in E (%) (x 106 Pas) inT] (%) (x Hf Pa) 

Acrylic ll 2.4 1.831 23.9 1.333 22.5 6.64 
2.6 5.018 11.6 4.575 3.8 0 
2.8 7.562 504 9.644 2.8 0 
3.0 10.272 3.3 13.476 5.8 0 

Mixture 2.6 1.890 24.7 0.153 239.2 10.55 
PV Nacrylic TI 2.8 2.400 4.4 1.217 10.1 29.61 

3.0 4.884 16.4 6.380 48.1 41.15 

Acrylic I (*) 2.4 2.769 8.6 4.378 3.5 0 
2.6 4.741 5.0 7.561 2.0 0 
2.8 7.309 10.7 11.076 5.6 0 
3.0 12.134 3.1 16.486 2.7 0 

Acrylic I (**) 2.4 2.721 2.0 3.953 7.4 9.58 
2.6 4.920 7.8 7.479 4.0 0 
2.8 7.953 8.4 11.083 4.8 0 
3.0 11.685 4.6 16.464 2.8 0 

(*) Actdition of 0.05 wt-% Zn-stearate 
(**) Actdition of 0.20 wt-% Zn-stearate 
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Table 7.5 shows that the yield stress cr1 is generally zero which indicates that the experirnental 

data can be modelled without taking elastic deformation into account separately. With 

granulate containing a mixture of PV A and acrylic II binder, however, the non-zero yield 

stress cr1 reflects the presence of residual stress in the compact This indicates that this type 

of binder is relatively brittle. Furthermore, the non-zero yield stress cr1 confrrms that the 

values of the hardening parameter n (table 7.4) are too large because an {elasto-) plastic 

. model alone cannot characterize the experirnental data. 

7.7. Modelling compaction behaviour 

7.7.1. Introduetion 
The weakness of models relating to the whole compact is their inability to predict density 

gradients within the compact quantitatively. Therefore, compaction has to be modelled on a 

Iocal scale. This requires that the granulate mass is subdivided into smaller elements. On 

account of internal and extemal friction, the force experienced by an element varles with its 

position in the compact. When the element deforms in a similar manoer as the granulate 

within, the local farces and displacements are related through the compaction behaviour of 

the granulate: In this section, the compaction behaviour of granulate subject to compaction 

in a die will be established. This enables the calculation of the local farces and displacements, 

which is presented in chapter 8. 

A frrst consideration is that the overall compaction behaviour corresponds to the 

compaction behaviour on a Iocal scale as long as the Ioading conditions are similar. The 

Ioading conditions are reflected in the state of stress, which is characterized in terms of 

normal and shear stresses present in the granulate mass. The varlation of the state of stress 

with the type of mechanica! test has been illustrated by platting the normal stresses (er) versus 

the shear stresses ('t). Each state of stress has reference to a single state of strain, which 

characterized by the density (see section 7.2). This study is focussed on rnadelling the die 

compaction test, where both normal and shear stresses produce densification. The individual 

effects of the normal and shear stresses on the change of density can be modelled with the 

isotropie compaction and free compression tests. However, the state of stress during the die 

compaction test is unknown unless a value for ratio of the axial and radial normal stresses is 

assumed. Because the validity of this assumption is questionable, alternative approaches are 

developed. These vary with the dimeosion in which the die space is represented and 

subdivided into elements. 

Compaction in axisymmetric dies can be represented in a single dimeosion by 

consictering the axial direction only. Subsequently, the die space is subdivided into a series 

of equisized elements, whose compaction behaviour corresponds to the compaction behaviour 

of the whole granulate mass. Because the stress-straio relation for the whole granulate mass 
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is given by the compaction curve, the local displacements can be calculated once the local 

force is established. Note that the local force is deterrnined at the transition between two 

elements, which is known as a nodal point. When assurning that the local displacement is 

proportional to the change in density, an indication of the axial variatien in the density is 

obtained. 

In general, the radial variation in the density is not negligible, which makes a two- or 

even three-dirnensional approach necessary. Sirnilar to the one-dirnensional situation, the die 

space is subdivided into equisized elements which are connected at the nodal points. In order 

to subdivide the cylindrical die space into elements of equal size, ring-shaped elements with 

a triangular cross-sectien ('turban' elements) are defined. In two-dirnensions, these elements 

are represented with triangles (fig. 7.22). 

Fig. 7.22: Representation of the cylindrical diespace in one (left), two (middle) and three 

(right) dimensions. The elements are connected at the nodal points (circles). Note that the 

number of elements is arbitrary. 

In two-dimensions, triangular elements have an advantage over other element geometries 

because the condition of isotropy is automatically satisfied. Isotropy implies that the 

compaction behaviour of an element is independent of the direction in which force is applied. 

Therefore, as long as an element is significantly larger than a single granule, the condition 

of isotropy applies. When the element shape guarantees isotropy, the deformation of the 

element edges can be matched to the compaction of the granulate. The compaction behaviour 

of granulate is given by the (die) compaction curve, which includes the effect of external 

friction. Because the the effect of internal friction is much more significant, the deformation 

of the element edges can be modelled with the compaction curve. This approach is presented 

in sectien 8.2. 

Characterization of the compaction behaviour of granulate within a two-dirnensional 

element requires at least two parameters, which deterrnine the magnitude of the axial and 

radial displacements. This also applies to a . three-dimensional element when the element is 
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axisymmetric because the Jatter may be considered pseudo two-dimensional. Insection 7.7.2, 

the compaction behaviour of the granulate is derived using the three mechanica! tests where 

compression occurs (fig. 7.23). 

1 

Fig. 7.23: Mechanica[ tests where the granulate is subject to compression. 

7.7.2. Two- and three-dimensional interpretation 

The interpretation of the compression tests (fig. 7.23) is basedon the analysis of the state 

of stress and strain of the whole compact. Because the compact is subdivided into imaginary 

elements, the compact has to be homogeneaus on the scale of the elements. Therefore, the 

elements have to be significantly larger than the granules because variations in the stress­

strain relations occur at this scale. Consequently, no distinction between the effect of the 

processes underlying compaction (rearrangement, deformation and compression of the 

particles) on the stress-strain relations is made. Given sufficiently large elements, the 

condition of isotropy is fulfilled. In the following, it is assumed that the condition of isotropy 

applies at every stage of the compaction process. 

During the free compression test, the relation between the axial stress cr. and strain c. 
can be expressed as: 

(7-44) 

where H is an elasto-plastic modulus, which is determined from the slope of a stress-strain 

curve. On account of strain-hardening, the value of H varles with the density of the compact. 

Because the change in density during the free compression test is unknown, the elasto-plastic 

modulus H is determined as a function of the initia! density of the compact. 

During the free compression test, the normal stresses in the circumferential ( cr9) and 

radial (cr,) directions are zero at the unconfined surface of the compact. However, the radial 

normal strain e,, although not measured, is not zero. This indicates that the axial normal stress 

can produce a normal strain in the radial direction. The measurement of the radial strain 
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suffers from a lack of reproducibility on account of crack formation during the test. The 

general trend is that the radial normal strain increases with the axial normal strain. Therefore, 

a linear relation between the radial and axial normal strains is assumed: 

e/e, =- v (7-45) 

where vis the plastic Poisson's ratio. Substituting the axial strain e, with eq. (7-44) expresses 

the radial normal strain cr, in terms of the axial normal stress cr,: 

e, .. =- vcrJH (7-46) 

where e, .. indicates that the radial strain is caused by an axial stress. Note that the value of 

the elasto-plastic modulus H varies with the density of the compact. Therefore, the plastic 

Poisson's ratio v is also a function of the density. 

The plastic Poisson's ratio v can be determined from the isotropie compaction test after 

generalization of eqs. (7-44) and (7-45). On account of isotropy, the relation between a 

normal stress and strain in one direction is similar. Therefore, eq. (7-44) can be written for 

every direction: 

(7-47a) 

and 

e, = crjH (7-47b) 

and 

(7-47c) 

The influence of a normal stress on the normal strain in another direction is independent of 

the direction of the stress. Therefore, six equations similar to eq. (7-45) apply: 

e, .. = e9.z = - vcrJH (7-48a) 

and 

ez.r = e9.r = - vcrjH (7-48b) 

and 

e,.9 = e,.e = - vcrefH (7-48c) 

When assuming that superposition of strains is allowed, expressions for the normal strains in 

each direction are obtained by summing eqs. (7-47) and (7-48): 

e, = ( cr, - v( cr, + cr9) )lH (7-49a) 
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and 

e, = (cr, - v(cr. + cr9))/H (7-49b) 

and 

e8 = (cr8 - v(cr. + cr,))/H (7-49c) 

With the isotropie compaction test, the normàl stresses and strains are in theory equal in every 

direction. Therefore, eqs. (7-49a) to (7-49c) rednee to a single equation: 

e = cr(l - 2v)/H (7-50) 

The isotropie compaction test is used to establish the density of the compact as a function of 

the isotropie pressure. Because the density is related to the strain e (see table 7 .I) and the 

isotropie pressure equals the nonna! stress cr, the plastic Poisson's ratio can be determined 

as a function of the compact density. As a result, the plastic Poisson's ratio v reflects plastic 

densification only and corrects for the elastic densification expressed with the elasto-plastic 

modulus H. 

Relations for the elasto-plastic modulus H and the plastic Poisson's ratio v are derived 

in sectien 7.7.3. The validity of these relations can be verified by deriving a model equation 

for the die compaction test When assuming that the external friction is less significant than 

the intemal friction, eqs. (7-49a) to (7-49c) can be used. With compaction in a die, the normal 

strains in the radial (e,) and circumferential (e9) directions are zero when considering the die 

wall to be rigid. The normal stresses in the radial (cr,) and circumferential (cr9) directions at 

the die wal! are, however, non-zero. Therefore, combination of eqs. (7-49b) and (7-49c) 

allows expression of these stresses in · the axial normal stress cr •. 

(7-51) 

Substitution of the circumferential and radial stress in eq. (7-49a) produces arelation between 

the axial stress and strain for the die compaction test: 

(7-52) 

The density of compacts is related to the axial strain e, (see table 7.1) while the axial 

pressure equals the axial stress cr,. Comparison of the measured and predicted densities 

indicates the validity of this approach. 

Shear stresses develop when the normal stresses in the three prilleipal directions are not 

equal in magnitude. This is the case with the free compresssion and die compaction tests. 

However, the significanee of the shear stresses is limited: a shear stress (t) can only cause 
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a shear strain (y) in the same plane. The shear stress is assumed to be related to the shear 

strain 1inearly: 

(7-53) 

where G is the shear modulus. The relation between the shear modulus G and the elasto­

plastic modulus H is derived by consictering the loading of a compact in two directions. For 

example, when the normal stresses in the axial and radial direcdons are equal but eppesite 

(crz = -cr,), eqs. (7-49a) and (7-49b) become: 

ez = - e, = (1 + v)cr/H (7-54) 

where cr represents the axial or the negative radial stress. Using a Mohr circle representation, 

the major and minor principal stresses can be equated to the axial and radial stresses 

respectively. In this case, the shear stress 'tzr equals half the difference between the axial and 

radial stresses: 

(7-55) 

The shear strain Yzr is the difference between the axial and radial normal strains: 

(7-56) 

Substitution of the shear stress and strain in eq. (7-53) with eqs. (7-55) and (7-56) as well as 

the normal stress with eq. (7-54) relates the elasto-plastic modulus H to the shear modulus 

G: 

G = H/(2(1 + v)) (7-57) 

Using this relation, the compaction behaviour of the granulate can be modelled in two- or 

three dirnensions using the expressions for the e1asto-plastic modulus H and the plastic 

Poisson's ratio v as a function of the density. 

7.7.3. Correlations for compaction parameters 

The elasto-plastic modulus H is determined from the slope measured during the free 

compression test. Although the slope varies during the test, the effect of variatien of the slope 

on the density determined for the density compaction test is limited because the value of v 

changes accordingly. Therefore, the slope deterrnined up to maximum stress supportedby the 
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compact Analysis of 18 points reveals that the relation between the elasto-plastic modulus 

H and the density Q is linear in the range of densirles (2.77 < Q < 3.13 g/cm3) considered: 

H = (0.5106Q - 1.3045)109 (7-58) 

The correlation coefficient of the two parameters equals 0.994883. No te that the elasto-plastic 

modulus becomes smaller than zero when the density drops below 2.55 g/cm3• This is due to 

the nature of the compression test, which measures the loading of compacts rather than of 

granulate. This indicates that, below the density of 2.55 g/cm3, the compacts have insufficient 

strength to be measured. 

The values for the plastic Poisson's ratiovare obtained from the isotropie compaction 

test, which is modelled with eq. (7-50), and eq. (7-58). Analysis of 10 points shows a large 

variatien in the values of v as a function of the density Q. Therefore, a linear relation is 

fitted: 

Q = 0.0518Q + 0.2510 (7-59) 

The correlation coefficient of the two parameters is only 0.627117. Note that the plastic 

Poisson's ratio equals 1/2 when the density is 4.81 g/cm3• 

Substituting eqs. (7-58) and (7-59) in the model equation for the die compaction test (eq. 

7-52) shows that the predicted density is lower than the value given by the compaction curve 

for low (axial) pressures and higher at high pressures. The intersectien occurs at a density of 

approximately 2.9 g/cm3• This aspect, in combination with the limited density range Oarger 

than 2.55 g/cm3) make an alternative denvation of the parameters necessary. Because the die 

compaction test is also completely characterized by the parameters, it can be used instead of 

the free compression test Substituting the axial strain in eq. (7-52) with the density using 

table 7.1 yields: 

1 - Q,)Q = P,(l - 2~/(1 - v))/H (7-60) 

where P. is the pressure in the axial direction. Similarly substituting the strain in the model 

equation for the istropic compaction test (eq. 7-50): 

(7-61) 

where P1 is the istropic pressure. Combining eqs. (7-60) and (7-61) to eliminate the elasto­

plastic modulus H produces an expression for the plastic Poisson's ratio: 
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(7-62) 

Substituting the plastic Poissons's ratio in either the die or isotropie compaction model 

equation produces an expression for the elasto-plastic modulus H. The axial and isotropie 

pressures are related to the density through the respective compaction curves, given by eqs. 

(7-12) and (7-13). The use of these correlations to calculate the density distribution in the 

compact is presented in sectien 8.3. 

7.8. Strength of compacts 

The strength, which is defined as the stress required to produce failure, is determined 

with different tests. With the three-point bend test, the force is converted to the stress 

assuming the defonnation is completely elastic (eq. 7-19). The strength is given as a function 

of the density and binder type in table 7 .6. 

Table 7.6: Strength measured with three-point bend test (x 105 Pa) 

Density (g/cm3) 2.4 

Binder type 

Acrylic II 1.99 

Mixture 

Acrylic I 6.06 

Acrylic I (*) 4.38 

Acry1ic I (**) 4.20 

(*) Actdition of O;OS wt-% Zn-stearate 

(**) Actdition of 0.20 wt-% Zn-stearate 

2.6 2.8 

4.73 9.57 

1.23 5.33 

9.40 13.22 

7.56 11.17 

7.48 11.30 

3.0 

13.48 

9.34 

19.36 

16.44 

16.34 

Significant is the detrimental effect of the addition of Zn-stearate on the strength of the 

compact. Even with the actdition of Zn-stearate, the granulate containing acrylic I binder 

produces the strengest compacts. The low strength of the granulate containing a mixture of 

PV A and acrylic IJ indicates that the bands between the particles are relative1y brittle. 

The strength determined with the free compression (eq. 7-8) and diametral compression 

(eq. 7-11) tests is given in tab1e 7.7 fora selected densities. 
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Table 7.7: Strength measured with compression tests 

Binder type: acrylic ll 

Diametral compression (LID = 0.2) 

Density {g/cm3) Strength (x 105 Pa) 

2.77 

2.88 

3.13 

15.83 

24.05 

45.00 

Free compression (LID == 2.0) 

Density {g/cm3) Strength (x 105 Pa) 

2.81 

2.94 

3.31 

46.37 

57.06 

124.72 
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Tables 7.6 and 7.7 confmn that the strength increases when the applied stresses are 

compressive. 

7.9. Discussion and condusion 

Five mechanica! tests have been selected to study the deformation behaviour of 

(compacted) granulate. In sectien 7.2, the loading conditions during the tests are qualitatively 

characterized in terms of the normal and shear stresses present in the granulate. By conneering 

the positions of the tests in the (cr;t)-plane for a single density, an elliptical yield surface is 

constructed. The evolution of the yield surface with the density provides a model for the 

compaction process. An alternative classification of the tests based on the distinction between 

deforrnation and densification is presented in sectien 7 .3. This reveals that the three-point 

bend test is suitable for the characterization of the properties of the binder, while, with the 

other tests, densification has to be taken into account In section 7 .4, a comprehensive 

methodology to characterize the processes of deformation and densification is developed. In 

addition, the determination of the compact strength from the tests where failure occurs is 

presented. The experimental setup is described in sectien 7 .5. Furtherrnore, experiments 

relating to the expansion or relaxation of campacts after ejection from the die is presented. 

This data is relevant to link the density of campacts to the density during compaction. 

Unfortunately, the results indicate that a reliable correction is not possible. Insection 7.6, the 

interpretation of the three-point bend test is developed. The distinction between elastic, plastic 

and elasto-plastic deforrnation is clearly indicated. Results indicate that, on the basis of the 

deformation behaviour, two different types of binder have been analysed. With the mixture 

of PV A and acrylic Il binders, elastic deforrnation is foliowed by elasto-plastic deformation 

when a yield stress is exceeded. The acrylic I and Il binders show strain-hardening plastic or 

elasto-plastic deforrnation only. Images of campacts show that the mixture of PV A and acrylic 

ll binders leads to relatively widespread microcracking, which could be due to recovery of 

elastic deformation of the binder. Consequently, the mixture of PV A and acrylic ll binders 
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can be classified as relatively brittle. The observation that the campacts containing the mixture 

of binders are relatively weak supports this conclusion. 

In section 7.7, the compaction processis modelled on alocal scale. The latter implies 

that a number of granules are considered. This is necessary in order to satisfy the condition 

of isotropy, which is used to interpret the overall compaction behaviour during the tests. The 

relation between the tests for a similar density is gvien by a quasi-elastic model. The term 

quasi is due to the irreversible nature of the strain and the variation of the parameters with 

the density. The two main assumptions are that a linear relation exists between a stress and 

a strain in another direction and that strains are additive. The inability to predict the 

compaction curve when using the free compression and istropic compaction tests suggests that 

these assumptions may not apply when the parameters are density dependent However, 

combination of the die and isotropie compaction tests automatically fulfills this condition. 

In section 7 .8, the strength determined from the three failure tests is compared. Results 

confum that the strength increases when the stresses becomes compressive instead of tensile. 
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Chapter 8 

Simulation of die con1paction 

8.1. Introduetion 

Simulation of die compaction serves to determine the density distribution within the 

. compact. The density distribution can be characterized in tenns of the homogeneity Ç, which 

can be defined as follows: 

Ç = 1 - S/Qm (8-1) 

where s is a measure for the varlation of the density (e.g. the standard deviation) and O.m the 

average density. A high homogeneity has a positive effect on the compact strength and the 

uniformity of the shrinkage during sintering (fig. 8.1). Therefore, prediction of the 

homogeneity through simulation provides insight into the compact properties which is 

otherwise only obtained after extensive testing. 

Fig. 8.1: lnfluence of the homogeneity on the compact properties. The strength decreases 

when large differences in the local density are present. This is due to the presence of 

relatively large pores (left). When density differences occur on a larger scale (right), the 

shrinkage during sintering can vary locally. 

Review of simu/ation techniques 

The density on a 1ocal scale is determined by the packing of the particles. The most 

rigorous approach is therefore to balance the applied pressure with the stresses between the 

the particles and the die wall and the particles themselves. This requires that the initia! 

paclcing of the granules in the die and the particles within the granules is generated 
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numerically. Subsequently, a suitable algori~ and knowledge of the stick-slip behaviour of 

the particles is required to calculate the displacement of each particle. In view of the huge 

number of particles which have be considered and the enormous number of permutations, the 

input data and computing time requirementsl are excessively large. To date, this approach has 

only been fully developed for two-dimensidnal situations (e.g. [1,2]). 

An alternative is to identify a group of particles which is representative for the packing. 

After establishing the compaction behavi~ur of a single group, appropriate stresses are 

imposed on the groups adjacent to the punchland die surfaces. Because the groups are directly 

adjacent to each other, reduced stresses ar~ transmitted throughout the die. The cumulative 

deformation of the groups indicates the overall compaction behaviour of the granulate. 

A generalization of this approach is t~ consider the particles located in cross-sectional 

segments. The pressure applied by the punch is then balanced by the stresses acting on a 

series of segments. The number of segmer ts is determined by the relative height of the 
segment and the die. Fig. 8.2 illustrates the differences between these approaches by 

camparing the intirial filling of the die. 
I 

Fig. 8.2: Initia/ packing within the die w~n considering the particles individually (left), 

representative groups of particles (middle) or the particles in the cross-section of the die 

(right). The initia/ packing is not homogenequs only when individual particles are considered. 

This is due to the difference in size of thd pores between the particles, agglomerates and I . 
granules. 

Two of the three approaches in fig. 8.2 asEurne that the granulate mass is a continuum. In 
order to satisfy this condition, the represen tive groups or cross-sectional segments have to 

be sufficiently large. In this chapter, the s· wation of die compaction with the two models 
based on continuurn mechanics is investig~ted. 
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Continuurn mechanics models 

While the simuiatien based on groups of particles is capable of prediering both axial and 

radial gradients in the density, the simuiatien based on segments of the cross-sectien only 

indicates axial density gradients. Consequently, the simuiatien based on segments is adapted: 

flrst, the height of each segment is reduced to infmitesimal proportions. This relaxes the 

relation between the segment volume and the particles. By deflning an inflnite number of 

segments, the stresses acting on a single segment can be expressed in a differential equation. 

Subsequent integration reveals the development of the stress in the axial direction. The density 

distribution is obtained by taking the logarithm of the pressure. The model equation is then 

modifled to take radial variations in the stress into account by incorporating experimental 

data. This approach allows rapid assessment of the homogeneity of cylindrical compacts of 

any size when a limited set of experirnental data is available. Development of the model 

equation is presenteel in sectien 8.3. 

The simulation based on groups of particles is more sophisticated than the previous 

approach and therefore more flexible in terms of application. It requires speciflcation of 

granulate, process and product parameters. Granulate parameters relate to the compaction 

behaviour, which has been characterized in sectien 7.7 for the acrylic 11 binder. Process 

parameters include the compaction pressure, the pressing velocity and the mode of pressing. 

In sectien 3.3, it has been shown that compaction is rate-independent at normal compaction 

velocities. Therefore, the stress-strain relation is influenced by the density itself rather than 

the rate at which the density is reached. Therefore, the correlations derived in sectien 7.7 can 

be applied directly. The mode of pressing imposed during the simuiatien depends on the 

compact shape: with cylindrical or tablet-shaped compacts, single-sided uniaxial pressing is 

sufficient, while, with complex-shaped campacts such as potcores, double-sided sequentia! 

pressing is employed. Finally, product parameters are the shape and size of the compact as 

well as the overall density. A flrst estimate of the pressure required to obtain a certain overall 

density fellows from the compaction curve (chapter 6). 

With die compaction, friction between the die wall and the granulate has to be taken into 

account. This implies that knowledge of a further process parameter is necessary. 

Determination of the wall friction coefficient J.l is given in sectien 8.2. While the compaction 

behaviour of the granulate expresses the internal friction, the wall friction coefficient 

expresses the external friction. Combining the effects of internal and external friction enables 

the calculation of the simultaneous compaction of all groups with the fmite element method 

(FEM). This type of approach is presented from section 8.4 onwards. 
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8.2. Die wall friction 

Friction between the die wall and the anulate is expressed in terrns of the wall friction 

coefficient )l, which is defined as fellows: 

(8-2) 

where F,.R is the axial force required to movtb granulate along the die wall surface and F,.R is 

the radial force exercised by the granulate o the die wall. The value of )l is detennined with 

the experimental setup shown in fig. 8.3. 

I 

I 

I 
I 

I 
I 

I 

0.3 mm 

Fig. 8.3: Die wal/friction measurement. Granulate, which is indicated by the shaded sections, 

is precompacted befare being pressed against the central plate with a certain pressure.ln this 

study, a compaction pressure of2220 bar is used, while the test pressure amounts to 192 bar. 

Theforce required to move the central p/ate, producedfrom hardenened steel (type: NJOJ9), 

downwarcis at a velocity of 6 mmlmin, is measured. 

Granulates containing acrylic I and a mixture of acrylic II and PV A have been tested. For 

these granulates, the axial force F,,w is found to be independent of the rate with which the 

central plate is moved. Three measmements with each type of granulate are perforrned. For 

acrylic I, the wall friction coefficient }l equals 0.45, while for the mixture of binders, the 

value of )lis 0.43. Despite the significant difference between these binders (see sectien 7.6), 

the difference in the wall friction coefficient is small. Consequently, the wall friction 



172 Chapter 8 

coefficient f.1 is considered to be independent of the type of binder. The dependency of the 

wall friction coefficient on the dènsity of the compact is difficult to measure at low compact 

densities. Therefore, for simulation purposes, the wall friction coefficient f.l is constant and 

equal to 0.44 for all densities. 

8.3. Differential methad 

8.3.1. Axial stress model 

In this section, a model for simulating the density distribution in cylindrical campacts is 

investigated. Basis is the denvation of the axial stress distribution imposed during compaction. 

Consictering the stresses acting on an arbitrary segment located between the axial coordinates 

z+dz and z (fig. 8.4). 

CJ'zz 

z 

------------.._ r z + dz 

Fig. 8.4: Stresses acting on a cross-sectional segment with an infinitesimal height dz. Note 

that the segment where z=O is located directly below the punch. 

Balancing the difference in the stress applied on the upper and lower cross-sectional surfaces 

with the stress acting along the outer surface of the segment yields: 

(8-3) 

where R is the radius of the die, crzz the pressure applied on_ the cross-section and crz.R the 

axial stress at the die wall. Eq. (8-3) can be rewritten as: 
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(dcr.)dz)dz = -(2crz.RIR)dz 

or 

(8-4) 

Eq. (8-4) suggests that the axial gradient in the applied pressure is due to the axial stress 

actingalong the die wall. Thelatter, which expresses the effect of extemal friction, is related 

to the wall friction coefficient p. Rewriting eq. (8-2) in terms of stresses: 

(8-5) 

where cr,.R is the radial stress at the die wall. Assurning that the radial stress is proportional 

to the applied pressure crzz: 

(8-6) 

where kis a constant representing the effect of internal friction. Combining eqs. (8-4), (8-5) 

and (8-6) produces a relation which can be integrated: 

dcrJdz = -2kpcrJR (8-7) 

Integration between top of the granulate mass (z=O), where the axial stress equals the pressure 

P applied by the punch, and an arbitrary axial position yields: 

crJP = exp(-2kp2'/R) (8-8) 

Negleering the influence of ejection of the compact on the stresses in the compact, eq. (8-8) 

can represent the axial stress distribution in a compact of height L and radius R. 

Characterization of the stress distribution provides an indication of the compact homogeneity. 

After calculating the moments of the distribution, the homogeneity Ç with respect to the axial 

stress is obtained from eq. (8-1): 

Ç = R/(2kpL) (8-9) 

Eq. (8-9) indicates that the homogeneity Ç of a compact improves with a larger compact 

diameter D, a smaller length~to-diameter (LID) ratio and smaller values of the friction 

coefficients k and p. This conclusion, which is also valid in practice, indicates the relative 

significanee of the axial stress gradient. 

The axial stress can be translated to the local density, which is proportional to the 
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logarithm of the axial stress: 

(8-10) 

where 12. is the density at any ax.ial position and C!o is the density directly below the punch 

(z=O). Combining with eq. (8-8) relates the density to the geometry of the compact and 

friction coefficients: 

(8-ll) 

Eq. (8-11) shows that the density varles linearly with the axial position in the compact. This 

is the second important condusion derived from this model. In the next section, these 

conclusions are used in the development of a model which also takes the radial gradient into 

account. 

8.3.2. Gradient model 

The gradient model represents a novel technique for simulating the density distribution 

in cylindrical compacts. The density distribution, which can be characterized in terms of the 

homogeneity, is obtained by interpolating between measured local densities. The interpolation 

process is influenced by three quantities: the ax.ial density gradient ~C!z and the radial density 

gradients at the top ~C!r.t and at the bottorn of the compact ~C!r.b· In order to deterrnine these 

gradients, four local densities must be establishèd (fig. 8.5). 

r = R r = 0 

z = 0 
6.pr t 

I 
, 

I 

[l Compaction I 
16.p direction I a 
I 
I 

6.pr b 
z=L , 

Fig. 8.5: Characterization of cylindrical campacts for derivation of the gradient model. The 

(semi-) circles indicate the positions where the local density must be established. The density 

can be measured with porosimetry after sectioning a compact or by a non-destructive 

technique like X-ray absorption. Subscripts: r = radial, a = axial, t = top, b = bottom. 
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The axial density gradient .1~. can be used to determine the internal friction coefficient k in 

the axial stress model. Camparing the densirles at z=O and z=L with eq. (8-11): 

.1e2. = (Qz=O - Qz..J = 2kpL/R 

or 

k = .1o.RI(2pL) (8-12) 

The intemal friction coefficient k can be found from the measured density distributions 

presented in sectien 3.4. Given that the external friction coefficient equals 0.44 ( sectien 8.2), 

the internal friction coefficient is found to vary beiween 0.01 and 0.05. Note that the 

coefficient of internal friction can also be obtained from the slope of the yield locus of the 

granulate. In the literature, higher values of the friction coefficient are reported (e.g. [3]). 

Therefore, it is not clear whether the internal friction coefficient k in this model corresponds 

to the friction coefficient obtained from a yield locus. The 1atter, obtained from the slope of 

the tangent to the left side of the Mohr circle, can be determined with a Jenike shear cell. 

Pre1irninary measurements indicate that this friction coefficient equals 0.5 to 0.7 for (Mn,Zn)­

ferrite granuJate. 

The gradient model is based on modification of the axial stress model using ex perimental 

data. Recalling eq. (8-11) and introducing the compact height L: 

~z = Q0 - 2kpL(z/L)/R (8-13) 

Combining with eq. (8-12): 

(8-14) 

Eq. (8-14) suggests that the density at the top of the compact (z=O) is constant and equals ~o· 

However, given know1edge of the radial density gradient .1~r.t• eq, (8-14) can be adapted. In 

analogy to the linear variatien of the density with the axial position, it is assumed that the 

density a1so varies linear1y with the radial position. Redefming Q0 as the density in the top 

corner of the compact (z=O, r=R), eq. (8-14) becomes: 

(8-15) 

where .1(b = (~r=R- C2r=a) at the top of the compact (z=O). With eq. (8-15), the radial gradient 

at the bottorn of the compact is fixed. In order to take the actual radial gradient at the bottorn 

of the compact (.1Q,,b) into account an additional term is included: 
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Q = Q0 - ÓQ.(z!L) - ÓQ,/l - r/R) - (ll.Q,,t + ll.Q,,b)(z!L)(r/R) (8-16) 

where ll.Q,,b = (Q,..o - Qr-R) at the bottorn of the compact. Note that the gradients are defined 

to have, in theory, positive values: the highest density is expected in the top corner (z=O, 

r=R), followed by the top centre (z=O, r=O), bottorn centre (z=L, r=O) and finally, the bottorn 

corner (z=L, r=R). 

Eq. (8-16) can be used to predict the density at any position in a cy1indrical compact 

when the relevant gradients have been established. Fig. 8.6 shows the density distribution 

obtained when classifying the local density. 

Upper limit 

Lower limit 

3.00 2.85 2.70 2.55 2.40 

2.85 2.70 2.55 2.40 2.25 

Fig. 8.6: Simulated density distributions of campacts with a maximum density of 3.00 glcn? 

(= {}0 ). The distribution is symmetrie when the gradients are equal (left): 1:1(}. = Ó(},b = ll.Q,; 

= 0.15. In practice, the effect of external friction produces an asymmetrie dis tribution (right): 

21:1(}. = 2!:1(},b = Ó(},; = 0.3. 

When using porosimetry to determine the gradients, large campacts should be used to 

prevent averaging of the gradients. The gradients can then be used for smaller campacts with 

the same density and 1ength-to-diameter ratio. 
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Simulation of a measured density distribution, which has been presented in section 3.4, 

with the gradient model is shown in fig. 8.7. 

2.67 2.54 2.42 2.54 2.67 

2.54 2.53 2.35 2.53 2.54 

2.51 2.54 2.34 2.54 2.51 

2.51 2.30 2.51 

2.44 2.45 2.39 2.45 2.44 

2.38 2.47 2.40 2.47 2.38 

Ex perimental Simulation 

Fig. 8.7: Simu/ation of the density distribution in a cylindrical compact (diameter 28.1 mm, 

height 32.4 mm). Each grey shade indicates a density range of0.07 g!crrl. is obtained. 

Fig. 8.7 shows that goed correspondence between the measured and simulated density 

distributions is obtained. The simulation accentuates that the inversion of the radial density 

gradient is practically absent 

The homogeneity is calculated during the determination of the density distribution using 

eq. (8-1). For example, the homogeneity for the compact shown in fig. 8.7 is found to be 

0.983. This indicates that the differential shrinkage during sintering will be limited. 

The gradient model is a useful tooi for the deterrnination of the homogeneity in 

cylindrical compacts. However, the application to simulate the density distribution in other 

geometries is not obvious. Therefore, the more flexible fmite element method is developed 

in the following sections. 

8.4. Finite element metbod 

8.4.1. Introduetion 

In the present study, the compaction of granulate in axisymmetric dies is considered. 

Given this geometry, the granulate mass in the die is conveniently subdivided into ring-shaped 

elements with a triangular cross-section (fig. 8.8). 
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Fig. 8.8: Subdivision of the initia/ granulate mass into elements. Each ring-shaped element 

has three planes (left). In a two-dimensional representation, the edge of the plane coincides 

with a nodal point (right). 

In this study, every element is characterized with three noctal points, which are located along 

the edges ofthe element. During compaction, the compaction of an element is reflected in the 

displacement of its nodes. The noctal displacements (8) are related to the noctal strains (e) by 

arbitrary polynomials. In general form: 

(8-17) 

where .!land§ are veetors containing the noctal strains and displacements while!!, is a matrix 

linking the strain and the displacement The compaction behaviour of the granulate is 

characterized by the re1ations between the stress cr and the strain e. In general form: 

(8-18) 

where !2 is a matrix containing the stress-strain relation. In practice, the relation between the 

displacement and the force F rather than the stress cr is required: 

E=~ (8-19) 

where ~ is the element-stiffness matrix. Using the principle of virtual work, the force and 

stress are related as fellows: 

(8-20) 

Combining eqs. (8-17) and (8-18) and substituting Q produces an expression for the element­

stiffness matrix~ defmed in eq. (8-19): 

(8-21) 
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Summing the stiffness matrix for all e1ements produces the system-stiffness matrix _&: 

(8-22) 

The system-stiffness matrix relates the nodal displacements to the external forces E: 

E=&§ (8-23) 

Eqs. (8-17) to (8-23) form the basis of fini te element calculations [ 4]. The components of the 

· force and displacement veetors and thematrices!!, and Q. depend on the nature of the prob1em 

under consideration. In the following subsections, two different approaches are developed. In 
sectien 8.3.2, the granulate mass is represented by a two-dirnensional netwerk of trusses, 

which coincide with the vertices of ring-shaped elements. This approach has a significant 

· advantage in terrns of computing speed over the three-dimensional element model. The 
element model, which is based on subdivision of the granulate mass into ring-shaped 

elements, is presented in section 8.3.3. 

8.4.2. Truss model 

In this section, the axial cross-section of the die is modelled with a network of trusses. 

A truss network consists of bearns which are connected to each other through frictionless pin­

joints at either end of the beam. Force is exerted on the beam through these pin-joints only. 

Consequently, the deforrnation behaviour of the beam in the axial direction is given by: 

cr = (dcr/de)e 

where cr and e are the axial stress and strain. In section 7.7.1, it has been shown that the 

differential (dcr/de) is obtained from the compaction curve. Note that the strain can be 

expressed in terrns of the displacement 8 and the initia! 1ength L., of the beam: 

(8-25) 

Because only the stress-strain behaviour in the axial direction is considered, the matrices !! 
and Q. (eqs. 8-17 and 8-18) become scalar quantities. Using eqs. (8-24) and (8-25): 

B = 1/L., (8-26a) 

and 

D = dcr/de (8-26b) 
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In this application, the beam is characterized by its length L rather than its volume. In order 

to obtain a volume integral (eq. 8-21), a fictive cross-sectional area A is introduced which 

equals the radial cross-sectional area of the die. Because the latter is constant, the differential 

volume of the beam becomes: 

dV = AdL (8-27) 

Sustitution of B and D (eq. (8-26)) and dV (eq. 8-27) into eq. (8-24) followed by integration 

between 0 and L0 produces an expression for the element-stiffness K: 

K = (dcr/de)NL0 (8-28) 

Force can be applied on the nodes at either end of the beam. In a two-dimensional 

representation, the farces can be decomposed into two components. Similarly, the 

displacement of each node is given by two components. The force and displacement are now 

contained in the following vectors: 

F,,, ~r.l 

Fz.t 
=K 

öc.l 

Fr). ~r). 

(8-29) 

Ft.Z ~t.Z 

Because the beam is not bent during compaction, the force and displacement components are 

related through the orientation of the beam. The latter is expressed in terms of the angle a. 
wtuch the beam makes with the horizontal plane. Incorporating the influence of the orientation 

into the element-stiffness matrix leads to the following relation: 

coS'-a. sina.cosa. -cos2a. -sina.cosa: 

(dafde)A . sina:cosa sin2a: -sina.cosa. -sin2a. (8-30) K= 
Lo -coS'-a -sina.cosa cos2a sina.cosa 

-sina.cosa. -sin2a sina.cosa sin2a. 

8.4.3. Element model 

The cylindrical die space is subdivided into ring-shaped elements with a triangular cross-
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section. The deformation behaviour of these e1ements is given by the quasi-elastic density­

dependent model developed in section 7.7. The model contains four strains as a function of 

as many stresses. For detennination of the element-stiffness matrix, the inverse relation is 

required. Oefming the total strain e: 

(8-31) 

Summatien of the model equations in the three principal directions and substituting into the 

original equations yields: 

cr, = H(ve/(1 - 2v) + eJ/(l + v) (8-32a) 

crr = H(ve/(l - 2v) + Er)/(1 + V) (8-32b) 

cr9 = H(ve/(1 - 2v) + e9)/(l + v) (8-32c) 

Similarly, the shear stress t,.. is expressed in the shear strain Yrr.: 

(8-33) 

Eqs. (8-32) and (8-33) can be arranged in the matrix Q., which is defmed by eq. (8-18): 

1 V V 0 -- --
1-v 1-v 

a, 
V V 

e, 
-- 1 -- 0 

a, H(1-v) 1-v 1-v e, (8-34) 

"e (l+v)(1-2v) V V 1 0 ee -- --
t" 

1-v 1-v 
y" 

0 0 0 1-2v 
2(1-v) 

On account of symmetry of the die, each node has two degrees of freedom only: in the 

axia1 (z) and radial (r) direction. The nodal displacement in these directions varies linearly 
with the coordinates of the node: 

(8-35a) 
and 
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(8-35b) 

where ~ represents a set of arbitrary coefficients. Expressing eq. (8-35) in matrix form: 

~~ 

~2 

ÖT 

= 1: r z 0 0 

~I 
~3 (8-36) 

öt 0 0 1 r ~4 

~s 

~6 

Because the coordinates of the nodes are known, the components of the matrix in eq. (8-36) 

are substituted for each of the three element nodes, which are numbered i, j and k: 

a," 1 r, z, 0 0 0 ~1 

ö,J 1 rJ ZJ 0 0 0 ~2 

ÖT,k 1 r" z" 0 0 0 ~3 (8-37) 
=~A 

öt,l 0 0 0 1 r, Zt p4 

azJ 0 0 0 1 r, ZJ Ps 
öz.k 0 0 0 1 rl< z" PIS 

On account of continuity, eq. (8-36) is valid for every point within the element. Substituting 

the coefficients ~ in eq. (8-36) with eq. (8-37) relates the displacement of the element to the 

displacement of the nodes: 

(8-38) 
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In an axisymmetric geometry, four components of strain have to be considered. These are 

related to the two displacements as fellows: 

at>, 
ar 

&, at>, 
&, àz (8-39) 

ee ö, 

Yrz r 

at>, 
-. + 

ao, 
az ar 

Obtaining the partial derivatives from eq. (8-38) produces the following relation: 

&,) 

e, 0 1 0 0 0 0 a,J 
e, 0 0 0 0 0 1 o,.k (8-40) 

~-1 
&e lfr 1 z!r 0 0 0 öu 

Yrz 0 0 1 0 1 0 özJ 

&z.k 

Recalling that the nodal strains and displacements are related through the matrix!!, (eq. 8-17), 

an expression for the matrix !!, is obtained from eq. (8-40): 

a, aJ ak 0 0 0 

1 0 0 0 b, bJ bk 
B. =-
- 2ä c, CJ cl: 0 0 0 

(8-41) 

b, bJ bk a1 a1 al: 

where ll is the cross-sectional area of the element and a, b and c are coefficients which 

depend on the nodal coordinates: 
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(8-42a) 

(8-42b) 

(8-42c) 

where the coefficients cl;. dJ and dk are given by: 

Note that the coefficients c1, cl and ~ are a function of coordinates r and z, which implies that 

the strains are nat constant within the element. In order to obtain the element-stiffness matrix 

!S,. the matrix!!. is evaluated at a centreidal point whose coordinates (<r>,<z>) are given by: 

(8-43a) 

and 

<z> = (z1 + ~ + zJ/3 (8-43b) 

The differentlal volume of the ring-shaped element can be written as: 

dV = 2m dr dz (8-44) 

Substituting dV in eq. (8-24) yields: 

(8-45) 

The integral in eq. (8-45) may be approximated by: 

(8-46) 

8.4.4. Salution of equatians 

The fini te element methad consists of two stages: 1) determination of the system-stiffness 

matrix !$.. and 2) simultaneaus salution of the force-displacement equations. The system­

stiffness matrix ,!S., has been es tablisbed in the preceding secdons for two different approaches. 

Note that, in bath cases, the matrix .Q depends on the density Q of the granulate. Because the 

density is related to the displacements through the strain, the system-stiffness matrix & is a 

function of the displacement Rewriting eq. (8-23): 
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(8-47) 

This dependency is a result of the strain-hardening nature of compactipn: in a one­

dimensional representation, the force F increases more than proportionally with the 

displacement ö. Consequently, the displacements .§ have to be determined using an iterative 

procedure by repeating stage 1) and 2) until sufficient convergence is obtained. 

The iterative calculation of the displacement vector is based on di vision of the total force 

into increments. The displacement vector corresponding to each increment of force is 

calculated and used to update the total di:;placement vector. Aftereach increment, the element 

stiffness is recalculated using the (int·ermediate) density distribution. This procedure is 

illustrated for the generalized one-dimensional case in fig. 8.9. Note that the relative 

magnitude of the force increments .dF is arbitrary. Because errors propagate during the 

salution process, the force increments óF are initially chosen to be significantly smaller. 

F total 

Force F 

.ó.F 

.ó.F 

.ó.F .....::~-----------

Displacement 

Fig. 8.9: Iterative determination ofthe displacement by adjusting the stiffness. Each iteration 

cycle is indicated with an arrow. No te that the force increments M' are increased during the 

calculation. 

On account of the non-linear nature of the force-displacement relation, an error is 

introduced in the calculated displacements. Therefore, the salution process is refined by 

applying a Newton-Rhapson type of iteration. After an increment of force, the difference 

between the calculated farces and the actual forces corresponding to the new displacements 

is considered. Given updated values for the stiffness, a set of displacements balancing these 

residual farces is determined. The set of displacements is subsequently used to correct the 

total displacement vector. Following recalculation of the stiffness, a further increment of force 

is applied. This procedure is illustrated in fig. 8.10. 
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Force F 

F 
total 

.6-F 

.6-F 

.6-F 

Displacement 

Fig. 8.10: lterative determination of the displacement with improved accuraey. Aftereach 

increment of force, the displacement is corrected by a single Newton-Rhapson type of 

iteration. No te that the incremental application of force is still required in order to prevent 

excessive unbalanced forces. 

The single Newton-Rhapson iteration used represents a trade-off between improved accuracy 

and calculation speed. 

During the calculation, the nodes can only move when this motion is physically realistic. 

Therefore, nodes which are positioned on the die wall cannot move outwards. Similarly, nodes 

located on the lower punch surface cannot move downwards. Whenever the motion of a node 

in a particular direction is restricted, the corresponding displacement is by definition zero. 

Consequently, the force acting in these directions is unknown. However, the radial force is 

of interest because the frictional force at the die wall is the product of the radial force and 

the friction coefficient Jl (section 8.2). Therefore, the interpretation of the wall friction 

coefficient is generalized by assuming that it nat only represents the ratio of two 

perpendicular farces but also of two opposite but parallel farces. In other words, the wall 

friction coefficient also indicates the ratio of the frictional force and the force applied by the 

punch along the die perimeter. Given the axial force acting on the perimeter nodes, the 

frictional force can be calculated. Because the frictional force has to be known befare the 

salution of the equations, the fust estimate of the frictional force is based on the assumption 

that the frictional farces are initially equal at each node on the perimeter. Mter an iteration, 

the frictional force is updated locally by calculating the axial farces acting on the nodes at 

the boundary. The non-linearity introduced by updating the frictional farces is found to be 

relatively small compared to the non-linearity resulting from updating the stiffness of the 

element. Therefore, the salution of the equations is not affected. 
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The nodal displacements § are calculated using the Gaussian eliminatien technique. This 

implies that the system-stiffness matrix ,& is fust reduced to its lower triangular form and 

then to its upper triangular form. The displacements are found from the ratio of the force and 

diagonal elements of the matrix ,&. 

8.5. Simulation results 

8.5.1. Introduetion 

A PC-based computer program has been written in Turbo Pascal 5.0 to perferm the 

· simuiatien procedures developed in the preceding sections. All calculations are carried out 

using variables with 7 to 8 significant digits. Because the system-stiffness matrix ,& is stored 

in the normal RAM memory, the number of nodes is Iimited to 63. This number is considered 

sufficient because the elements have to be relatively large in order to satisfy the condition of 

isotropy. 

The density distribution in two different compact shapes is simulated: a massive 

cylindrical compact and a cup-shaped compact known as the potcore. The cylindrical compact 

requires specificatien of the diameter of the die, the filling height, the density of the granulate 

mass (= 1.4 g/cm3), the friction coeffkient p (section 8.2) and the applied force F. The 

number of iterations is arbitrarily set to 10. 

With the potcore, more elaborate specifications are required because the compaction of 

potcores is displacement-controlled rather than force-controlled. Therefore, besides the initia! 

dimensions of the die (diameter of the bottom, thickness of the rim) and the filling height of 

the bottorn and the rim, the dimensions •:>f the potcare compact are specified. As a result, the 

salution process of the equations is modified: because the displacement of the nodes directly 

adjacent to the punch is prescribed, the required force can be calculated. Subsequently, the 

displacement of the ether nodes is found by assuming that the force due to wall friction is 

constant in the axial direction. In othe:r words, the wall friction force at all nodes on the 

perimeter is sirnilar although its magnitude is recalculated after each iteration. The wall 

friction force is then obtained by distributing the fraction of the total axial force which is 

balanced by wal! friction, over the nodes on the perimeter of the die, allowing calculation of 

the displacements of the nodes which are not located on the punch surface. Similar to the 

force-controlled simuiatien process, the total displacement is divided into fractions which are 

imposed on the nodes directly adjacent to the punch. After determination of all the 

displacements, the system-stiffness matrix is recalculated and the next increment is applied. 
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8.5.2. Cylinders and tabJets 

An actual and simulated density distribution are compared in order to verify the validity 

of the force-controlled simulation of compaction (fig. 8.11). The density distribution of a 

massive cylinder has been determined experimentally by measuring compact sections with 

mercury intrusion porosimetry. The experimental setup is described in section 3.4. The 

simulation is carried out with 90 three-dimensional ring-shaped elements, which are located 

on six levels. 

2.67 2.54 2.42 2.66 2.49 2.47 

2.54 2.53 2.35 2.54 2.41 2.39 

2.51 2.54 2.34 2.54 2.44 2.43 

2.51 2.30 2.52 2.44 2.44 

2.44 2.45 2.39 2.31 2.44 2.47 

2.38 2.47 2.40 2.37 2.50 2.52 

Fig. 8.11: Density distribution of a cylindrical compact determined experimentally (left) and 

by simu/ation (right). The simulated densities are obtained by averaging the density of the 

elements which are located in the sections measured with mercury intrusion porosimetry. 

Fig. 8.11 shows that the density distribution predicted by the simulation is indicative of the 

actual density distribution. Note that the type of binder represented in the simulation (acrylic 

11) is slightly different from the binder used during the compaction experiment (acrylic I). 

The homogeneity of the compact in fig. 8.11 can be expressed in terms of the parameter 

Ç (eq. 8-1). This parameter passes through a minimum when the density is increased from the 

filling density of the granulate (= 1.4 g/cm3) to the zero-porosity density (= 5.11 g/cm3). For 

each of the extrema! densities, the homogeneity Ç equals unity. The progress of the 

homogeneity Ç as a function of the density depends on the length-to-diameter ratio (LID) 

ratio of the compact: the lower the LID ratio, the higher the homogeneity Ç and the lower the 
density where the homogeneity Ç has its minimum value. 

Using the two-dimensional truss elements, the density distribution of tablet-shaped 

campacts is simulated. U pon increasing the LID ratio to values under 0.1, an interesting 
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inversion in the density distributon is observed: the density near the lower (stationary) punch 

is higher than the density near the upper punch (fig. 8.12). 

H 

M 

L 

L/D>l 

I 
I 

_j 

1 
I 

D Direction of compaction 

L M 

L/D~l L/D<l 

Fig. 8.12: Simu/ation of the density distribution in cylindrical compacts. Abbreviations: H = 

high, I = intennediate, M = medium, L = low. Note that the indications rejlect relative 

dijferences instead of absolute differences in density. 

The inversion is difficult to abserve experimentally: the differences in the density within 

tabiets are much smaller than the differences present in cylindrical compacts. Therefore, the 

practical significanee of this inversion is small, although it contradiets the model where 

internal friction produces a negative axial gradient in the density. A possible explanation is 

that the upper punch produces movement of the granules which results in enhanced 

compaction near the lower punch. 

Comparison of the simulation of density distributions using the truss and the element 

model shows that the truss model is significantly faster but less accurate than the element 

model. With the truss model, the gradient along the perimeter of the die is generally 

overestimated. 

8.5.3. Potcores 

The compaction of potcores requires double-sided pressing. Therefore, the simulation 

consists of two stages. During the frrst stage, the punch pressing the bottorn of the potcare 

is moved with a prescribed displacement Subsequently, the punch pressing the rim of the 

potcare is moved by a predetermined displacement Using the truss model, a typical 

simulation result is shown in fig. 8.7. 
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Fig. 8.7: Simu/ation ofthe compaction ofpotcores using a two-stage approach. The diespace 

is subdividedinto equisized elements {left) and subjeered to double-sided pressing. In thefinal 

state (right), the elements at the corner ofthe rim and the bottorn have exceeded the physical 

boundary. Potcare dimensions: bottorn diameter 20.0 mm, bottorn thickness 22 mm, rim 

height 82 mm, rim thickness 22 mm. 

Fig. 8.7 shows that the elements in the corner between the bottorn and the rim overlap with 

the central rod. This makes remeshing during the salution process necessary. Remeshing is 

the subdivision of the available die space with new elements while retaining the density of 

the original elements. The transfer of the density raises the question of the inter-element 

transport of granulate. It has been assumed that the density is related to the volume of an 

element because the granulate remains within the element throughout compaction. 

Consequently, the occurrence of overlap itself violates this condition, and remeshing only 

provides a partial remedy: it cannot prevent the tendency of elements to overlap with the 

middle pen. For this reason, remeshing is nat incorporated in the present simulation program. 

Simulation of the compaction of potcores shows that movement of granulate in the 

interface between the bottorn and the rim occurs. During the pressing of the bottom, granulate 

is forced into the rim. On account of the radial density gradient in the bottom, more granules 

are moved into the bottorn near the central rod. Therefore, a radial density distribution is 

obtained in the bottorn section of the rim. Subsequent pressing of the rim farces granules near 

the die wall from the rim into the bottom. Near the central rod, the high density obstructs 

granule movement Therefore, the radial density gradient in the interface between the rim and 

the bottorn is aggravated. 

The formation of the radial gradient presents difficulties when simuiaring the potcore 

with the truss model. When the elements in the rim are skewed during pressing of the bottom, 
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'buckling' can occur during pressing of the rim. This is due to the property of the truss model 

that force is applied at the nodal points only. With the element model, this problem is not 

encountered. 

8.6. Discussion and condusion 
In this chapter, techniques to simulate the density distribution are developed. Starting 

point is the assumption that the granulate is considered to be a continuum. Tlie most simple 

methad is based on rnadelling the stresses in the cross-sectien of the compact. This methad 

is not able to predict radial density gradients unless the model equation is adapted with 

ex perimental data. However, this methad does indicate the relative significanee of internal and 

extemal friction and allows predietien of the homogeneity of cylindrical compacts. 

Simuiatien of the compaction process with the finite element methad can be applied to 

any die geometry because small elements within the granulate are considered instead of the 

entire cross-section. Although the fmite element methad has been used previously for this 

purpose, the defmition of the constitutive behaviour as developed in chapter 7 reduces the 

complexity associated with the formulation of the fmite element method. Previously, elasto­

plasticity has been modelled with a yield criterium and associated flow rule. In this thesis, a 

direct (non-linear) approach is developed which requires only a single element-stiffness matrix 

whereas the traditional approach requires two element-stiffness matrices. As a result, this 

navel approach is sufficiently compact to be implemented on a PC. · 

The simuiatien results show that this approach is capable of predicting the density 

distribution with reasanabie accuracy and that trends in the density are faithfully represented. 

Because the simuiatien can be used for products with any geometry, the approach developed 

in this sectien can be used to reduce the number of experiments which are otherwise required. 
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Discussion and final remarks 

9.1. Framework of thesis 

This thesis is focussed on three aspects: a) the development of techniques for the 

characterization of physical structures (chapter 2), b) the denvation of roodels for powder 

compaction by characterization of the physlcal structure (chapters 3, 4 and 5) and c) the 

denvation of roodels for powder compaction through characterization of the state of stress 

(chapters 6, 7 and 8). 

Physical structures are characterized by measuring the pore size distribution. Two 

techniques have been studied: mercury intrusion porosimetry (MIP) and nitrogen 

adsorption/desorption, which is referred to as the BET technique. The MlP technique 

measures pores ranging from 0.01 to 2 pm, while the BET technique measures pores in 

the range of 0.005 to 0.02 pm. The size of the pores in actual campacts depends on the 

size of the smallest units, the particles. When using (Mn,Zn)-ferrite granulate, the particles 

have an average size of 1 pm, while clusters of particles ranging in size between 60 and 

300 pm arealso present Therefore, the BET technique only measures irregularities in the 

surface structure of the particles. The MIP technique, on the other hand, is capable of 

measuring the pores between the particles. Therefore, the data obtained with the MIP 

technique is of greater significanee and has been critically examined in chapter 2. 

Two main approaches to model the compaction process have been developed. One 

type of model is based on the evolution of the physical structure during compaction, while 

the other type is based on the evolution of the state of stress during compaction. With 

each approach, different details of the compaction process are revealed. 

In chapter 3, a qualitative model interprering the effects of intemal and extemal 

friction is developed. In principle, this is a continuurn approach, which allows predierion 

of density gradients in cornpacts. The validity of this approach is verified by measurement 

of the density and average pore size in sectioned campacts with MIP. 

In chapter 4, the evolution of the pore size distribution measured with MIP is 

modelled with representative cells. The paclcing of particles and granules are modelled 

with separate cells. After establishing the initial packing of the either type of solid, a 

predierion of the evolution of the pore size distribution can be made. Comparison with 

actual development enables the identification of other packing structures in the granulate. 

In chapter 5, the concept of fractal sealing is applied to characterize the evolution of 

the physical structure during the compaction process. First, the significanee of the 

characterization based on fractal sealing is investigated through analysis of images. 

Subsequently, the evolution of the pore size distribution measured with MIP is analysed. 

In chapter 6, the compaction curve, which reflects the relation between the pressure 
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and the overall density, is presented. It is found that the overall density varles linearly 

with the logarithm of the pressure in two successive pressure ranges. The transition occurs 

at a density where the compact has just sufficient strength to be handled. Therefore, the 

difference between the two zones is linked to the buildup of the compact strength. Using 

this observation when analyzing the state of stress during compaction allows predierion of 

the strength from the compaction curve. 

In chapter 7, data for the characterization of the state of stress is derived from 

analysis of selected mechanica! tests. Modelling of three-point bend test data allows 

characterization of the properties of the binder, while modelling of the free compression, 

die and isotropie compaction tests can be used to characterize the compaction behaviour of 

granulate. The compaction behaviour models are implemented .in a sirm.i.Iation program in 

chapter 8. This allows predierion of the density distribution in compacts, which can fmd 

application in the industrial ferrite production process. 

9.2. Results 

The measurement of pore size distributions with mercury intrusion porosimetry (MIP) 

has been critically exiunined; When rnadelling the pores as cylinders, it is shown that the 

intrusion equation is consistent with the underlying thermadynamie and mechanica! 

considerations. The use of other pore shapes is erroneous from a theoretica! point of view. 

When assurning that the pores are cylindrical, the method is usefu.l for measuring the pore 

size distribution present in compacts. This is not the case with the nitrogen adsorption 

technique, which only ineasures pores which are smaller than these found in compacts. 

No te that the minimum pore size in compacts is proportional· to the size of the particles 

unless the particles fracture during compaction. With (Mn,Zn)-ferrite, however, the 

particles remain intact up to relatively high densities (chapter 2). 

The compaction of (Mri,Zn)-ferrite powder can be modelled by analysing the effects 

of intemal and extemal friction. Internal friction, which refers to the interaction between 

particles, is found to be insensitive to the pressing velocity, the mode of pressing or the 

type of binder. lntemal friction is, however, a strong function of the state of stress, which 

correlates directly wit}l th( density: the higher the density, the greater the interpartiele 

friction and the larger the force required for further compaction of the particles. External 

friction, which refers to the interaction between particles and the die surfaces, has the 

same effect as intemal frictiOn on the compaction of the particles close to the die surfaces. 

Therefore, the effects of internal and extemal friction can be combined to predict the 

density distribution in compacts. For compacts with more complex geometries than 

cylinders (e.g. potcores), the. pressing velocity and the mode of pressing can also influence 

the density distribution (chapter 3). 

The (Mn,Zn)-ferrite powder consists of granules, which contains agglomerates of 

particles. On account of the difference in size between these solid units, three distinct pore 
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sizes are initially present in the granulate. The evolution of each class of pores during 

compaction has been modelled succesfully with two-dimensional representative cells. 

Relations characterizing the cell properties are developed using a novel classification of 

the processes which occur during compaction. Experirnental data are obtained from the 

analysis of compacts with MIP. Two aspects complicate the configuration of the cells: i) a 

compact is only formed at densities significantly larger than the initia! density and ti) the 

pore size distributions of compacts are uni- or bimodal rather than trimodal. Using the 

assumption that the largest pores are compressed preferentially, representative cells for the 

initia! structure of the granulate can be established. Based on this representatiori, it is 

shown that the bimodal distribution is due to pores between particles and agglomerates 

rather than pores between particles and granules. This proves the existence of 

agglomerates within the granules (chapter 4). 

The pore size distribution in compacts as measured with MIP can be characterized 

with the fractal dimension. However, the fractal dimension offers no significant advantage 

over conventional statistica! measures such as the mean pore size or the standard 

deviation. Similar to the mean pore size and standard deviation, the fractal dimension is a 

function of the compact density, increasing monotonously to its limit value of 3. 

Furthermore, the fractal dimension is highly sensitive to the measurement conditions. The 

latter is a result of the presence of only two distinct pore sizes in compacts. This 

effectively implies that the concept of fractal sealing is, at best. only valid for a narrow 

range of pore sizes (chapter 5). 

Determination of the fractal dimension from images using a grid shows that the 

fractal dimension varles with the number of subdivisions of the grid. The evolution of the 

fractal dimension as a function of the number of subdivisions is, however, not unique and 

depends on the initia! position of the grid. Therefore, a position-independent technique to 

determine the fractal dimension has been developed by relating the mean pore size to the 

total volume. When comparing two different pore sizes and corresponding volumes, the 

dependency on the mass of the sample can be removed. This makes defrnition of novel 

parameter, the fractal exponent, possible. The fractal exponent is larger than 3 when the 

pore size decreases with increasing density. Characterization of the evolution of the two 

peaks of the pore size distributions measured with MIP shows that the peaks represent 

pores between solid units with different sizes. This confmns that the original size 

distribution of the pores is determined by the size of the particles, agglomerates and 

granules (chapter 5). 

Uniaxial die compaction of (Mn,Zn)-ferrite granulate can be characterized by two 

successive linear correlations between the overall density and the logarithm of the 

pressure. Varlation of type and content of binder is found to influence the pressure-density 

relation. Another granulate property, the size of the granules, has no effect on the 

pressure-density relation. With respect to the die, it is found that the die-wall roughness 



196 Chapter 9 

has no effect, whereas varlation of the die diameter does: when the diameter is increased, 

the effect of external friction decreases. This results in a higher overall density for a given 

pressure, which is reflected in the correlations (chapter 6). 

The necessity to characterize the relation between the pressure and density with two 

correlations indicates the existence of a transition during compaction. In view of the 

densirles at which the correlations interseet (2.2 - 2.6 g/cm3), depending on the type of 

binder), a tentative explanation is that the transition is related .to the strength of the 

compact This observation is used to develop a model to determine the varlation of the 

strength of campacts with the type of binder. The model is based on the evolution of the 

state of stress represented by Mohr circles. Measurement of the strength with the diametral 

compression test confmns the validity of this model (chapter 6). 

In order to campare uniaxial die compaction with other types of compaction, two 

different classification method are developed. The frrst method is based on characterization 

of the applied normal and shear stresses. The second is based on · the distinction between 

deforrnation and densification, which indicate a change of shape and volume respectively. 

When subjecting a compact to bending, only deforrnation occurs because the compact 

breaks before overall densification can occur. Interpretation of the: deformation behaviour 

using data obtained with three-point bend test reveals the nature of the binder bonding the 

particles. Two types of binder are shown to exist: binders where elastic deformation 

precedes elasto-plastic deforrnation, and binders which only deforrn elasto-plastically. The 

strength of the latter is found to be significantly larger than the strength of the former. 

That the strength of a compact increases when the stresses are compressive rather than 

tensile follows from the comparison of the strength measured with the three-point bend, 

the diametral compression and the free compression tests (chapter 7). 

The compaction behaviour of (Mn,Zn)-ferrite is characterized. by developing a quasi­

elastic model. It differs from conventional elasticity models rn thilt the parameters are a 

function of the density. The parameters can be determined from the free compression and 

isotropie compaction tests, although the significanee is lirnited to densities where the 

granu1ate has sufficient strength to be denoted a compact. In order.to span the entire range 

of densities, the die compaction test is used instead of the free . compression test. This 

model is general in the sense that it represents the compaction behaviour on any scale 

above a certain minimum as long as the compaction conditions.are defined (chapter 7). 

The overall compaction behaviour can be predicted by combining the effects of local 

compaction using the finite element method. The necessary subdivision of the die space 

into elements is achieved by defining a truss framework, where compaction of the 

granu1ate is represented by deformation of the trusses, and by defming elements, which 

deforrn as a whole. The deformation behaviour of trusses is given by the pressure-density 

relation while the deformation of the elements can be characterized by the quasi-elastic 

model. The truss framework is computationally sirnpler and has been used to simulate the 
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compaction of cylinders and potcores. While simuiaring the Jatter, 'buckling' of trusses 

can occur. This is a consequence of applying force on the truss at the nodal points only. 

This can be avoided by using the more realistic elements to represent the granulate. For 

the compaction of a cylinder, the quasi-elastic model and the subdivision into elements is 

shown to be capable of accurate predierion of the density distribution (chapter 8). 

9.3. Discussion and final remarks 

Ceramic products are generally manufactured with a three-stage process. First the raw 

matenals are prepared in order to obtain a suitable powder. Subsequently, the powder is 

consolidated in the shape of the product. Finally, this so-called green product is sintered at 

. temperatures slightly below the melting temperature of the materiaal.This thesis describes 

an investigation into the most widely applied technique for the consolidation of ceramic 

powders: the dry-pressing of powder in a die. 

The goal of this investigation is to study the relation between the powder properties, 

the pressing conditions and the quality of the green product or compact. The compact has 

to meet two requirements: 1) the compact has to possess sufficient strength and 2) the 

density inside the product has to be uniform. If the latter condition is not met, differential 

shrinkage is observed during the subsequent sintering process. 

The models and results in this thesis are based on the compaction behaviour of a 

ceramic powder called manganese-zinc-ferrite <Mflo.66Zflo.25Fez_090 4). In practice, this type 
of powder is processed to products with numerous applications: from transfarmer cores to 

yoke rings (in TV sets) and radio antennae. The material owes this range of applications to 

its favourable electro-magnetic properties: a high electrical resistivity coupled to a high 

initia! permeability. 

After preparatien of the ferrite powder, it is mixed with water and a binder to form a 

slurry. This slurry is subsequently spray-dried, a process during which the particles ferm 

clusters called granules. Because the granules display an irnproved flowability compared to 

the original particles, the die can be filled more homogeneously. Furthermore, granules 

reduce local differences in the density which are created during compaction: granules 

represent partialiy consolidated units. 

The granulate can be characterized through the granule size distribution and the 

granule density. These influence the bulk density of the granules in the die and, 

subsequently, the compaction behaviour of the powder. In practice, the bulk density should 

be as high as possible in order to reduce the energy required to evaparate the moisture 

during spray-drying. Measurements of the bulk density inidicated that a braad . granule size 

distribution produces a slightly denser packing. In this way, the size of the pores between 

the granules is minimized. For small compacts, however, the use of small granules with a 

narrow size distribution produces a more uniform pore structure. The relation between the 

applied pressure and the density revealed that the broad granule size distribution is 
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advantageous: the density at each pressure is higher than the density of a granulate with a 

narrow size distribution. 

The density of the granu1es cou1d be influenced by adapting the volume of water 

added to the slurry. Measurements of the pore size distribution indicate that particles 
within the granules are spatially not distributed uniformly: the particles have formed 

agglomerates. These are separated by pores which are smaller than the pores between the 

granules and larger than the pores between the particles. When increasing the density of 

the granu1es, the formation of agglomerates in the granules is reduced. This increases the 

toughness of the granules and, consequently, the pressure required to force particles into 

the pores between the granu1es. This is conflrmed by a model which ir)terprets the relation 

between the applied pressure and the density during compaction: the kink which is 

observed shifts to higher densities when the density of the granu1es is increased. It was 

possible to relate the occurrence of the kink to the strength of the compact: befare the 

kink, the cohesion of the granules is too weak so that a compact does not yet exist 

whereas the cohesion has increased sufficiently after the kink. This explanation has been 

verifled experimentally and through a model which has been confirmed through indirect 

measurements of the strength. 

Because pore size distributions of campacts pressed from granu1es with different 

densities are similar, a tentative explanation is that the effect of the pores between 

granules and agglomerates on the strength is different. Consequently, the pores between 

the granules could have a more detrimental effect on the compact strength than the pores 

between the agglomerates. The differences between these pores are underlined during 

sintering, when pores between the granu1es initially increase in size while pores inside the 

granules disappear. 

In order to press compacts with sufflcient strength, the density of the compact should 

be signillcantly higher than the density where the kink is observed. The higher the density, 

the higher the required pressure. Pressing conditions, such as the roughness of the die 

wall, the geometry and size of the die, the mode of pressing and the binder, only have a 

small influence on the compaction behaviour. In practice, the density of campacts is a 

trade-off between the compact strength, die wear and machining requirements. A high· 

density increases the compact strength and reduces the shrinkage required during sintering. 

The latter reduces the effect of density Wadients in the compact, which, in turn, reduces 

the machining required to correct for differential shrinkage. However, a disadvantage of 

pressing compacts to high densities is that it promotes die wear. 

The spray-dried granules are generally spherical and contain pores. By optimizing the 

granule size distribution it is possible to obtain a higher filling density. This density is 

influenced by the binder: measurement of the strength of a compact subjected to tension 

and interpretation of the relation between the density and the applied pressure show that 

the binder has a significant influence on the strength. In other words, with one binder the 
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strength increases more sharply as a function of the density as with another binder. A 

suitable binder can therefore reduce the required compact density. 

· The influence of and differences between the binders are accentuated when the 

compact is subjected to tension. By interprering applied force versus displacement data 

with a model, duferences in the deformation and adhesion behaviour of the binders could 

be quantified. It was shown that the bonds between the particles which are formed by a 

mixture of polyvinylalcohol and acrylic are already irreversibly severed by low loads. The 

individual polyvinylalcohol and acrylic, on the other hánd, produced honds which could 

resist significantly higher loads. This leads to duferences in the strength of the compact 

A disadvantage of binders which adhere strongly to the particles is that these also 

tend to stick to the die and punch surfaces. This causes the particles or even granules to 

stick to these surfaces during ejection of the compact, which could produce surface cracks 

in the compact These considerations indicate that bath the choice of the granule density 

and the binder are subject to optimization. 

During compaction, axial duferences in the pressure exist, which produces local 

differences in the density. This could lead to chipping or fracture during ejection or 

transport of the compact Furthermore, if the axial density duferences are present 

throughout the cross-section, differential shrinkage will occur during the subsequent 

sintering process. As noted above, this makes machining (grinding) necessary. On account 

of these reasons, the density duferences in the compact should be minimized. 

In order to predict the density distribution, qualitative and quantitative models have 

been developed. These are based on balancing the farces acting on segments of the 

granulate in the die. The applied pressure is balanced by partiele-partiele friction and die 

wali-partiele friction. With this representation, the experimental density distribution in 

cylindrical campacts was simulated: the highest density is found in the corner directly 

below the punch and adjacent to the die wall. The density below the punch decreases 

inwards and axially. Near the bottorn punch, however, the radial density gradient is 

reversed: the density near the die wall is lower than in the centre. The duferences in the 

density can be lirnited by reducing the friction with the die wall by either coating the wall 

with a toughmaterial (e.g. W-C) or a lubricant (e.g. glycerin). Note that the addition of a 

lubricant to the granulate can reduce the friction between the particles but also severely 

affects the strength of the compact. In addition, the flowability of the granules is reduced 

while sticking to the die surfaces is increased. Therefore, the presence of a lubricant 

between the particles is not beneficia]. 

With complex geornetries such as the potcare the differences between the local 

densirles can be significantly higher than is the case with cylindrical geometries. With 

simulation, the duferences in density in potcores could be predicted for different modes of 

pressing. 
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List of symbols 

symbol significanee SI units 

A area mz 

B length of boundary m 
c constant Nm 
D fractal dimension 
D. fractal exponent 
E elasticity modulus Nm"2 

f fraction of surface covered with units 
F force N 
G Gibbs free energy Nm 

shear modulus Nm"2 

H (elasto-) plastic modulus Nm·2 

I moment of inertia m4 

K ratio of major and minor principal stress 
L length of edge m 

length in axial direction m 
m mass kg 
M scale factor 

bending moment Nm 
N number of units (e.g. particles) 
No number of corners 
p pressure Nm·2 

r radius m 
R gas constant Nm(Kmol)"1 

radius of curvature m 
s surface area mz 

T temperature K 
u displacement m 
V volume ml 

w work Nm 
z vertical coordinate m 
a. corner angle rad 
(XA, cty shape factors 

13 compressibility m2N·I 
y surface tension Nm"1 

e porosity 
Tl viscosity Ns/m2 
e contact angle rad 
À compression ratio 
Q density kg/m3 

cr normal stress Nm·2 
't shear stress Nm·2 

u (plastic) Poisson's ratio 
cp pore size correction factor 

'V sphericity 
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Summary 

This thesis contains an investigation into the compaction behaviour of granulated 

manganese-zinc"ferrite powder. The main goal is establishing relations between the 

properties of the granulate, the compaction conditions and the properties of the compact. 

Insight is obtained from analysis of the spatial structure of compacts, the relation between 

the compaction pressure and the density and the behaviour of compacts under various 

loading conditions. 

The compacts contain a pore size distribution which can be measured using 

porosimetry. The use of mercury intrusion and nitrogen adsorption has been evaluated 

(chapter 2). In view of the size of the pores in compacts, mercury porosimetry is more 

suitable than nitrogen adsorption. 

The influence of the compaction parameters on the density and the corresponding 

pore size distribution is investigated in chapter 3. Using this data, a qualitative model of 
the compaction process was established. 

Series of measured pore size distributions have been interpreted with two-dimensional 

representative cells (chapter 4). This approach is verified by direct (visual) observation. 

The application of the concept of fractal sealing for the characterization of images 

and pore size distributions follows in chapter 5. As with representative cells, this approach 

indicates that the granules contain agglomerates of particles. 

The relation between the compaction pressure and the density during compaction is 

deterrnined by the size, shape and packing of the ferrite particles. The relation is found to 

be insensitive to the compaction conditions. The relation does show a kink at a density 

where the granulated powder has just acquired sufficient strength to be denoted a compact. 

This observation has been modelled by analysing the state of stress during compaction. 

(chapter 6). It was concluded that the (shear) strength of the compact is reflected in the 

compaction behaviour. 

The behaviour of the compact varies with the loading conditions. By subjeering the 

compact to a tensile force, the influence of the binder was observed. A model has been 

developed to characterize the deforrnation of the binder. The compaction behaviour was 

established by subjeering the compact to various combinations of compressive and shear 

stresses (chapter 7). 

The compaction process has been simulated in order to predict the homogeneity of the 

compact. For this purpose, techniques which consider the granulate to be a continuurn 

have been successfully applied (chapter 8). 



202 

Samenvatting 

Dit proefschrift beschrijft een onderzoek naar het persgedrag van gegranuleerd 

mangaan-zink-ferriet poeder. Hoofddoel is het onderzoeken van de samenhang tussen de 

poedereigenschappen, de perscondities en de eigenschappen van het geperste produkt. 

Inzicht is verkregen uit de analyse van de ruimtelijke struktuur van persprodukten, de de 

relatie tussen de persdruk en de dichtheid en het gedrag van persprodukten onder 

uiteenlopende belastingen. 

De geperste produkten bevatten poriën van uiteenlopende groottes. De porie-grootte­

verdeling kan gemeten worden met behulp van porosimetrie. Zowel het indringen van 

kwik als de adsorptie van stikstof zijn op geschiktheid onderzocht (hoofdstuk 2). Gelet op 

de poriegrootte binnen geperste produkten is kwik.porosimetrie een geschiktere techniek 

dan stikstof-adsorptie. 

De invloed van perscondities op de dichtheid en de bijbehorende porie-grootte­

verdeling is onderzocht in hoofdstuk 3. Aan de hand hiervan kon een kwalitatief beeld van 

het persproces afgeleid worden. 

De interpretatie van gemeten porie-grootte-verdelingen met behulp van twee­

dimensionale ruimtelijke cellen is ontwikkeld in hoofdstuk 4. Aan de hand van direkte 

visuele waarnemingen is de geldigheid van het model geverifieerd. 

De toepassing van het principe van eigen gelijkvonnigheid om beelden en porie­

grootte-verdelingen te karakteriseren volgt in hoofdstuk 5. Evenals uit het model gebaseerd 

op ruimtelijke cellen volgt dat de granules agglomeraten van deeltjes bevatten. 

De relatie tussen de persdruk en de dichtheid tijdens het persen wordt bepaald door de 

grootte, vorm en pakking van de ferrietdeeltjes. De relatie blijkt ongevoelig te zijn voor de 

perscondities. De relatie vertoont wel een knik bij een dichtheid waarbij het geperste 

produkt net voldoende samenhang heeft. Deze waarneming is aan de hand van een analyse 

van de spanningstoestand gemodelleerd (hoofdstuk 6). Hieruit kon een relatie tussen de 

(afschuif-) sterkte van het geperste produkt en het persgedrag gevonden worden. 

Onder invloed van de soort belasting varieert het gedrag van het geperste produkt. 

Wanneer een trekbelasting opgelegd wordt, kan de invloed van de binder waargenomen 

worden. Teneinde het deformatiegedrag van de binder te karakteriseren, is een model 

ontwikkeld. Het persgedrag kon gemodelleerd worden aan de hand van een kwasi­

elastische beschrijving door het geperste produkt te onderwerpen aan verschillende 

combinaties van compressie- en afschuifbelastingen (hoofdstuk 7). 

Teneinde de homogeniteit van het geperste produkt te voorspellen, is het persgedrag 

gesimuleerd. Hiervoor zijn technieken die het granulaat beschouwen als een continuurn 

met goed gevolg toegepast (hoofdstuk 8). 
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1. De waarneming dat verhoging van de vochtigheid tijdens de opslag van 

granulaat dat polyvinylalkohol bevat, een toename van de sterkte van het 

persprodukt tot gevolg heeft, duidt op onnauwkeurigheid in de 

proefnemingen. 
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Titanale and Manganese Zinc Ferrite Agglomerates Containing Polyvinyl Alcohol', Ceramic 

Bulletin, vol. 60, no. 2 (1981), 212-220. 

2. Bij het bepalen van de spanning en de korrelgrootte in een materiaal dient 

meer dan èèn reflektie uit het Röntgen-diffraktie .patroon gebruikt te 

worden. 

V. Sankaranaranyanan, N. Gajbhiye, 'Low-Temperature Preparation of Ultrafine Rare-Earth 

Iron Garnets', Journalof the American Ceramic Sociery, vol. 73, no. 5 (1990), 1301-!307. 

3. De bepaling van de 'fractal' dimensie van twee-dimensionale beelden zoals 

voorgesteld door H. Schwarz en H. Exner is onjuist. 

H. Schwarz, H. Exner, 'The implemen/ation of the concept of fractal dimension on a semi­

automatic image analyzer', Powder Technology, 27 (1980), 207-213. 

4. Bij vergelijking van de deeltjesgrootte bepaald met transmissie-elektronen­

microskopie, Röntgen-diffraktie en stikstof-adsorptie dient expliciet 

rekening gehouden te worden met de onderliggende aannames. 

V. Sankaranaranyanan, N. Gajbhiye, 'Low-Temperature Prepara/ion of Ultrafine Rare-Earth 

Iron Garnets', Journalof the American Ceramic Sociery, vol. 73, no. 5 (1990), 1301-1307. 



5. Het bepalen van de echte vorm van de poriën aan de hand van indirekte 

meetmethoden, zoals kwikporosimetrie en stikstof-adsorptie, is niet 

mogelijk. 

Ö. Cebeci, 'The Intrusion ofConical and Spherical Pores in Mercury Intrusion Porosimetry' , 

Journal of Col/oid and Interface Science, 78 ( 1980), 383-388. 

6. De constatering van Zheng en Reed dat verkleining van de granulegrootte 

tot homogenere persprodukten leidt, is niet gebaseerd op experimentele 

analyse van het granulaat en het persgedrag. 

J. Zheng, J. Reed, 'Effects of Partiele Packing Characteristics on Solid-State. Sintering' , 

Journa/of the American Ceramic Society, 72 (1989), 810-817. 

7. Een relatie tussen de elasticiteits-modulusEen de dichtheid Q gebaseerd 

op de fractie van het korreloppervlak dat zich tussen de korrels bevindt, 

heeft alleen empirische betekenis. 

R. Cytermann, ' A New Way to Investigate the Dependenee of Elastic Moduli on the 

Microstructure of Porous Materials', Powder Metallurgy International, 19 (1987), 27-30. 

8. De populariteit van 'fractals' valt te verklaren uit de behoefte van 

onderzoekers om complexe verschijnselen met eenvoudige kentallen te 

beschrijven. 

9. De democratie zal gestimuleerd worden als verkiezingen buiten de 

schoolvakanties gehouden worden. 

10. Het is opmerkelijk dat Nederlanders spreken van uitnodigen waar er bij 

Duitsers, Engelsèn en Fransen sprake is van "in-nodigen". 


