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ON THE CONDITIONING OF MULTIPOINT AND
INTEGRAL BOUNDARY VALUE PROBLEMS*

F. R. DE HOOG" AND R. M. M. MATTHEIJ:

Abstract. Linear multipoint boundary value problems are investigated from the point of view of the
condition number and properties of the fundamental solution. It is found that when the condition number
is not large, the solution space is polychotomic. On the other hand, if the solution space is polychotomic
then there exist boundary conditions such that the associated boundary value problem is well conditioned.
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1. Introduction. Consider a system of first-order ordinary differential equations

(1.1) y := y’-Ay =f, O< < 1

where A LT"(0, 1) and f6 L’(0, 1). We are interested in the solution of (1.1) that
satisfies the multipoint boundary condition (BC)

N

(1.2) Y := E niy(ti) b.
i=1

Here, 0 tl <" < tN 1 and the matrices B nn, k 1, , N, have been scaled
so that, for instance,

N

(1.3) BiBf L
i=1

The restriction tl 0, tN 1 has been introduced for notational convenience and
is not restrictive provided we allow for the possibility that B0 0 and Bu 0.

One of the simplest examples of a multipoint boundary value problem is that of
a dynamical system with n states which are observed at different times. Further examples
and a description of numerical schemes for the solution of such equations may be
found in [12], [1], and [11].

From the theory of boundary value problems, (1.1), (1.2) has a unique solution
if Y is nonsingular for any fundamental solution Y of (see, for example, Keller
[8]). In the sequel we assume this is the case. Then, given any fundamental solution
Y of (1.1), we may write the solution of (1.1), (1.2) as

(1.4) y(t)=(t)b+ G(t, s)f(s) ds, 0<= t<= 1

where

(1.Sa) (t) := Y(t)( y)-i
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and

(1.5b)

k

t) E BidP( tj)dp-l(S), tk < S < tk+l, > s,
i=l

G(t, s)=
dP(t) BidP(t)dP-(s), tk<S<tk+l, t<s.

i=k+l

The function G is the Green function associated with (1.1), (1.2).
We can now use (1.4) to examine the conditioning of (1.1), (1.2). Let l" [denote

the usual Euclidean norm in R and define

Ilull:=suplu(t)l, u [t(0, 1)3

Ilu[I,- lu(t)l dt, ue[L,(O, 1)1".

Then it follows from (1.3) that

(1.6)
where

(1.7a)

and

(1.7b)

:- sup la(t, s)l
tS

/3 := sup I(t)l.

The quantities a, /3 defined by (1.7) serve quite well as condition numbers for the
boundary value problem in the sense that they give a measure for the sensitivity of
(1.1), (1.2) to changes in the data. Consequently, if a or/3 is large, we may expect to
have difficulties in obtaining an accurate numerical approximation to the solution of
(1.1), (1.2).

If a is of moderate size, the solution space of (1.1) has properties that can (and
should) be used in the construction of algorithms for calculating an approximate
solution of (1.1), (1.2). For the two-point case (i.e., N 2), de Hoog and Mattheij [5],
[6] have shown that the solution space is dichotomic when a is not too large. A
dichotomic solution space (see 4 for a more detailed discussion of dichotomy)
essentially means that nonincreasing modes of the solution space can be controlled
by boundary conditions imposed on the left while nondecreasing modes can be
controlled by boundary conditions imposed on the right. This concept is the basis for
algorithms using decoupling ideas (see, for example, [10], [11]). The aim of this paper
is to generalize the results of [5], [6] to (1.1), (1.2) with N_-> 2. In this case the notion
of dichotomy has to be generalized, and it turns out that, for well-conditioned problems,
the solution space consists of modes that can be controlled at one of the points
t,..., tN (see 4). This has allowed us to generalize the ideas of decoupling to
multipoint problems, but that is discussed elsewhere [7].

In general we may say that if N> n there is a redundancy in the number of
conditions involved. It is therefore crucial to pick precisely n appropriate points from
which modes are actually controlled by suitable conditions. It is quite natural to
consider then a limit case of multipoint BC, viz., an integral condition (which
incidentally generalizes two and multipoint conditions in an obvious way), so

(1.8) y := B(r)y(r) dr= b.
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Such BC arise directly when Lp norms are used to scale the solution (possibly after
linearization) as in eigenvalue problems.

We may treat the (discrete) multipoint case separately from (1.8). However, as it
turns out, it is possible to construct a general mechanism that handles the integral BC
as well. The price to be paid for this is that our proofs will be based on functional
analytic arguments and thus are less constructive than could be given for the discrete
case. The reward though is that we have been able to get sharp bounds in our estimates,
sharpening even the bounds given for the two-point case in [6].

2. Notation and assumptions. In this section we review some basic results that we
need later in our analysis. For some general references regarding Green functions we
may consult, e.g., [2] and [9].

2.1. Boundary conditions and their normalization. Consider the general boundary
condition (BC):

(2.1) gy b

where 3 is a bounded linear operator from L’,I(0, 1) to R". Note that this includes
the BC of type (1.2) and (1.8) as well. By L]’,(0, 1) we mean those functions the first
derivative of which is in L]’(0, 1). We introduce the norm

Ilull: max lu(t)l, u t’,l(0, 1)
o<=t<_l

where

2

i=1

For any a e N", a rN is a linear functional from L’,[O, 1] to N. We define

Ilall:: sup laul
[lull 

p():= max

p,():= min
a

LZMMa 2.1. Let 0<p()<. en, there exists a matrix C such that

1

and

let

p,,(C)>-_
p’(E)

VE "’.
pl(E)

Proof If p,()= O, then the result is trivial. We therefore assume p,()> 0 and

={E t""Ip,(E)= I}.
Since p,(E) is continuous in E and is closed and bounded, it follows that there
is a matrix C such that

This is equivalent to the statement of the lemma.
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This now gives us the possibility of scaling the BC, cf. (1.3), in a meaningful way.
Assumption 2.1. In the sequel, we shall assume that the BC (2.1) has been scaled

so that

(2.2a) p J 1

and

(2.2b) pn()>pn(E)/p(E) VEa.
In addition to Assumption 2.1 we have the following assumption.
Assumption 2.2. Let (1.1), (2.1) have a solution for everyf L’(0, 1) and bRn.

n (0, 1) is the solution ofThen, JY R is nonsingular, where Y --,1,1

(2.3a) Y 0, Y(0) F

and F n is nonsingular.
On defining

(2.3b) (t) := Y(t)(Y)-,
we can write any function y L’.I(0, 1) as

y= y+(I-)y= y/ (y),(2.4)

where

(2.5a) y := (y),

(2.5b) cf:= (t, s)f(s) ds,

and is the Green function defined by

(2.6a)

with

f L’(O, 1)

(t, s) (t){n(t, s) (/-/( , s))}-(s)

I, t> s,
(2.6b) H(t, s)

0, < s

(cf. the special case (1.4), where is given by (1.2)).
Remark 2.1. The operator J in the term J(H(., s)) above should be interpreted

as an extension of J to an operator from Lo(0, 1) to Rn. Note however that a sensible
extension of to Lo(0, 1) is assured by the Hahn-Banach theorem.

Remark 2.2. is a projection from L’,(0, 1) onto the solution space { Yala }.
Given such a projection , we can define a linear operator

=Cy-

where C "" is a scaling matrix chosen so that (1.1), (2.2a), and (2.2b) hold. Lemma
2.1 ensures the existence of such a matrix.

Remark 2.3. It is easy to verify that the Green function has the form

(2.7) (t, sl={Y(t)(I-E(sl)y-l(s), t>s,
-Y(t)(E(s))Y-(s), t<s

where E L""(0, 1). Conversely, given a function of the form (2.7), we have

(., s)f(s) ds =f, fe L’i(O, 1).
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In addition, if we define

(y)(t):=y(t)- g(t, s)(y)(s) ds,

then

(y)(t)= y(t)- Y(t) y-l(s)(..Ty)(s) ds+ Y(t) E(s) Y-(s)(..Ty)(s) as

Y(t) Y-l(0)y(0)+ E(s)y-l(s)(Ty)(s) as

We can easily verify that is a projection. Thus, 3 defined by

y:- c g-(0y(0l+ (s g-(s((sll s

where C e N is a scaling matrix chosen so that (2.2a), (2.2b) holds, gives a bounded
linear operator for which is the associated Green function... ee’le. Let be a normed linear space of dimension k with norm
denoted by . and let * be the space of all linear functionals from N.

Define a norm on * by

y*(x
(2.8) Ily*ll* sup, y* e *.

Ilxll
DEFIXO 2.1. A bounda of is any set___

{y* 7/’* IIIY* * --< 1 }

where

Hence, on taking norms

u I(t, )1.

such that

Ilxll sup y*(x) x r.
y*e

LEaMA 2.2 (for Auerbach’s lemma see [4, Lemma 4]). If is a closed boundary
of V" then there exist y* , yj 7/’; i, j 1,. , k such that

y*,(y) ,, Ily,*ll*-- 1, Ilyll-" 1, i,j 1,’’’, k.

Since {y* V’* Ily*ll*--< 1} is a closed boundary, Corollary 2.1 follows, immediately.
COROLLAIV 2.1. There exist y* V’*, y ; i, j 1,. , k such that

y*(y) a,, Ily,*ll* 1, Ily 1, i,j 1,..., k.

3. Conditioning of differential equations. In this section we consider the relation
between a and/3 and the effect of the normalization of the BC as in Assumption 2.1.
Recall that for y e L’.(0, 1) (cf. (2.4))

y(t)=.(t)dy+ c(t, s)(.Ty)(s) as.
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In addition to a and/3, it is also useful to consider. :- y(3y)-l..

Proof. The result follows immediately from the definition of pl() and
p.().

LEMMA 3.2. Let be a linear operator from L,I(0 1) to R", and let be the
constant associated with and the differential equation (1.1). en,

(1 + II ll ) , wher Y= Y(Y)-
oofi Let

Y(Y)- and f:= (.,s)f(s) ds,

where is defined similarly to in (2.6a), i.e., replaced by . Clearly, Y(Y)-
and consequently . That is, f (I-) and hence

us, (1 + I1 11 ) .
It is clear that the result of Lemmas 3.1 and 3.2 can be combined to give

& (1 +pl())a.
Since it has been assumed that (2.2a), (2.2b) hold, we obtain the estimate

(3.1) k (l+)a.
Note, however, that a and [[[[ are independent of the scaling (2.2a), (2.2b) but that
p(), p,(), and fl are not. Therefore we examine some of the ramifications of
Assumption 2.1.

LEMMA 3.3. p,() n-.
oof Let

={ala"}.
That is, are the linear functionals of the form a r. Since I, dim ()= n. For, define

Ilell sup
’y

o//. equipped with the norm I1" is an n-dimensional normed space. From Auerbach’s
theorem (Corollary 2.1), there exist ’ o//.., ’i e off.; i,j 1,. , n such that

ej" (i) ij, Ile;’ll*-Ile, ll- 1, i,j 1,..., n.

Clearly, for some E E R"",

Furthermore,

a rEJ aii
i=l

Va=(al,." ",a,)rER".
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Thus, p,(E) >- 1//-ff. In addition,

<--
i=1

Thus, o(EN)Nn/, and hence from (2.2b)

p,()P’(E)n-"
p(E)

For boundary conditions of the form (1.2) we can obtain somewhat sharper estimates.
LMMA 3.4. For given by (1.2) and satisfying (1.1), (2.1), we have

o()

where N1 is the number of nontrivial matrices B in (1.2).
Proo Without loss of generality, we take N N

N

llaTEI Z IBEral
i=1

i=1

N 1/2

N1/ E BiBfE T lal.
i=1

N BBErl/ On the other hand,

IlaEll Z ]BEal
i=1

e aTE E B,BEra la E Z B,BET
i=1 i=1

Thus, p.(EN) 1/(E E, B,BEr)-’I’/. Now if we take E (E,, B,B)-’/, then,
from (.b,

For an impoant class ofboundary conditions, the bound in Lemma 3.4 is attained.
LMMa 3.5. Let be given by (1.2),

N

2 rank (B)= n
i=1

and N be the number of nontrivial matrices B in (1.2). en,
()

< N;/.

In addition, (2.2a), (2.2b) hold if and only if
N

i=1

oo Let us assume without loss of generality that N

BBii 2
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and

W 1, wk =sign TIk Bk wiBi’oi k 2,..., N.
i=l

Now,

p,() max

E wiBiTli E "rl B Bii i
i=1 i=1 i=1

This result holds for all singular values , and we may therefore take [B[. Then
pl() (Ei=

In addition, for # O,

O(N) min
al k min

Ckn E,=, aTB,
laTBwI

Note that the last equality is not valid ifE rank (B) > n. Nor is it valid for an arbitrary
vector k. Thus,

k

P,()- (E,=, IBil)’/= N-’/’

which proves the first pa of the lemma.
Now let (2.2a), (2.2b) hold. From Lemma 3.4 and the result above

k N-l/2 IB,
i=1

Since, is an arbitrary singular value, all the singular values are equal, and using
(2.2a) we obtain that

N BBy N-t Then, as previously,Finally, let E=

o()e 1 and 0(N)N N/ BB 1.
i=1 i=1

Thus, O(N)= 1. In addition, as in Lemma 3.4,

(i=, BiBTi ) -1 1/2

N-l2

and since this is the best possible, (2.2b) holds.
We now have the tools to assess the condition numbers a,/3. Let us consider in

particular (1.1) and the multipoint BC (1.2),
N

Y Z B,y( t,),
i=1

for which we have the following useful properties"

(3.2) (t)B, G+( t, t,) G-(t, t,), i=1,...,N,
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where

(3.3a) G/(t, ti)= lim G(t, s), i= 1,..., N- 1,

(3.3b) G-(t, ti) lim G(t, s), 2,..., N,

(3.3c) G+(t, 1)=G-(t,O)=O.

THEOREM 3.1. For given by (2.1) and satisfying (2.2a), (2.2b), we have

2Nla
fl <--2Nice min (n, N1/2)

p.()-
N rank (Bi)= n,where N1 is the number ofnontrivial matrices B in (3.2). If, in addition

then <- 2Nla.
Proof Without loss of generality, we take N N. From (3.2), (3.3)

and hence
N

12) 1/2

I*(t)l --< E I*(t)B,
i=1

BiB

<=2aN/ BiB
i=1

1/2

The first result now follows from the inequality

pn J <: N1/2/ E BiBTi
i-=1

--1 1/2

1/2

and Lemmas 3.3 and 3.4.
N BiBTi)_I[1/2_N rank (Bi) n, it follows from Lemma 3.5 that }(Ei=IHowever, if Y i=

GN1/2 and this establishes the second part of the theorem. Iq

Thus, when is given by (2.1) and N is not too large, the single parameter a is
a suitable measure of the conditioning of the problem. However, as N c we cannot
bound/3 in terms of a using the results of Theorem 3.1, which suggests that in general
it is not possible to obtain such bounds. This is confirmed by the following example.

Example 3.1. Consider the problem

y y’ + ay,

;oNy= y(s) ds,

a>0.

for which c 1,/3 a(1 e-a) and pl() 1. Clearly,/3 becomes unbounded as a
Thus, in general both a and need to be addressed in a discussion of stability.

4. Polychotomy. For two-point boundary value problems (i.e., N-2) it has
become almost traditional to assume that the solution space

( t) {O( t)c c O"}
can be separated into a space

(t)= {O(t)Pclc"}, p2__ p

of nondecreasing solutions and a space

(t) {O(t)(I P)c c ff"}
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of nonincreasing solutions. In addition, if neither 5(t) nor @(t) is trivial (i.e., P 0, I),
it is usually assumed that the angle 0< r/(t) < r/2 between 5(t) and (t), defined by

ly(yl
cos r/(t) max

Yl’(t)’y2(t) lyl
is not too small. This has led to the following definition.

DEFINITION 4.1. The solution space is dichotomic if there exists a projector P and
a constant K such that

(4.1a) I(t)P-(s)l < , > s,

(4.1b) [dP(t)(I-P)dP-l(s)[<t, <s;
t is called the dichotomy constant.

Although a projector always exists such that (4.1) is valid for some constant
we are primarily interested in the case when is of moderate size. In fact a more
precise definition would involve the size of t as well; we do not dwell on this, however.
It turns out that dichotomy is intimately connected with the conditioning of two-point
boundary value problems. Specifically, de Hoog and Mattheij l-5], [6] have shown the
following.

THEOREM 4.1. When N 2, there exists a projector P such that (4.1) holds with
t cr +4or. Alternatively, if (4.1) holds, then there exist matrices B1, B such
that cr <-

Thus, if N 2 and a is of moderate size, the solution space is dichotomic (i.e.,
is also of moderate size). Conversely, if the solution space is dichotomic, there is a

two-point boundary value problem for which the condition number is not too large.
However, a well-conditioned multipoint problem does not necessarily have a

dichotomic solution space as can be seen from Example 4.1.
Example 4.1. Consider the problem

For this example,

and hence

y’+2A(t-1/2)y:f
y(1/2) 1.

A>O,

CI)(t) exp (-A (t 1/2)2),

y( t) di)( t) + (P( t)-l(s)f(s) as,
1/2

a=l (for allA).

Thus the problem is well conditioned but the fundamental solution now increases on
the interval 0< <1/2 and decreases on 1/2< < 1. Such behavior is quite common in
multipoint problems. Indeed, the results of de Hoog and Mattheij [5], [6] can be used
to show that there exist projectors , i= 1,. ., N-1 such that

IdP( t)i-l(s)l < , ti < s < < ti+,,

I(t)(I-i)op-l(s)l<,, ti<t<s<ti+l,

where t is of moderate size if cr is not large. Thus, on each interval t < <
1,. ., N-1 the solution space is dichotomic.
However, the examination of a number of well-conditioned multipoint problems

has suggested that additional structure is present in the solution space. This leads to
the following generalization of dichotomy.
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DEFINITION 4.2. The solution space 6e(t) is polychotomic if, for some M e N, and
0= Xl--<x2 --<’’" --<x4 1, there exist projectors Pk, k= 1,’’’, M and a constant
such that

M

E Pk I, P,P PP,
k=l

k

(4.2a) (t) Y P-l(s) < K, Xk < S < Xk/I, > S,
j=l

M

(4.2b) (t) P-I(s) <, Xk<S<Xk+, t<s.
j=k+l

In 5 we show that the concept of polychotomy is closely related to the condition-
ing of multipoint boundary value problems in the sense that will be of moderate
size when a is not too large. It turns out that this relationship can be exploited in the
construction of efficient numerical schemes for the solution of (1.1), (1.2); this is
discussed in detail in [7].

5. Bounds for polychotomy. In this section we show how the condition number
can be used to obtain bounds for K. Initially we consider separable boundary conditions.

5.1. Separable boundary conditions.
DEFINITION 5.1. The boundary condition (1.2) is called separable if

N

Y rank (Bi)= n.
i=1

Thus for separable boundary conditions, the solution space consists of a number of
modes each ofwhich is controlled by a condition at one ofthe points when rank (Bi) 0.

We shall see that when the boundary condition (1.2) is separable, the solution
space is polychotomic with constant . Before we can show this, however, some
preliminary results are required.

LEMMA 5.1. If Ck R xn, k 1, , N
N N

Ck=I and rank(Ck) =n,
k=l k=l

then Ck, k- 1,..., N are projectors (i.e., CiC CCi 6ijC).
Proof The result follows from the arguments used in [6, Thm. 3.2].
LEMMA 5.2. For Ek R"", k= 1,’’’, N, let

N N

Ek I, Y rank (Ek)= n,
k=l k=l

and define

Y(t) kEkY-(s), t<s<ti+, t>s,

G(t,s)=
N

-Y(t) k=i+l EkY I(S)’ ti<s<ti+l, t<s,

where Y is a fundamental solution of (1.1). Then there exists a boundary condition

N

(5.1) Y:= 2 By(ti)
i=1
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satisfying rank (/i) rank (Ei) and

N

E iJTi N-1I
i=1

such that G is the Green function associated with (1.1), (5.1) and NI is the number of
nontrivial matrices

Proof Consider the LQT" decomposition

[El Y-I(t)IE2 Y-l(t2)]""" IENY-(tN)] LQr

where LR"n is lower triangular and nonsingular and QRN+I).. is orthogonal
(i.e., QrQ I). Now define B, Rn., k 1,..., N by

If we define

(t) := Y(t)(Y)-1,
we see that (t)= Y(t)L. Then it is easy to verify that t is the Green function
associated with (1.1), (5.1), viz.,

G(t,s)=

K

P(t) E ido(ti)do-l(s), > S,
i=1

N

--(t) E JiO(ti)o-l(s), t<S
i=k+l

can be identified with (t, s). El
The relationship between polychotomy and the condition number for separable

boundary conditions is now straightforward. Specifically we have the following
theorem.

THEOREM 5.1. If the boundary condition (1.2), is separable, then the solution space
is polychotomic with K <- t.

Conversely, if the solution space of (1.1) is polychotomic with constant , then there
exists a separable boundary condition (1.2), satisfying Assumption 2.1, such that a <-.

Proof If the boundary condition (1.2) is separable

and

Thus

and from Lemma 5.1,

N

E rank (Bi) n
i--1

N

E B,O(t,)= I (cf. (2.3b)).
i=1

N

E rank (BidO (ti)) n
i=1

Pi Bi( ti), i= 1," ", N

are projectors. On substituting for Pi in the Green function (1.5) and comparing the
resulting expression with the definition of polychotomy (see Definition 5.1), we find
that (4.2) holds with r a, M N and x ts.
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If on the other hand the solution is polychotomic, then

where

and

Y(t) PY-(s),

G(t,s)=l i=1M
l-Y(t),/P,Y-(s),

Xk S < Xk+1,

Xk S Xk+

M

E P, I, P,P PP, ,P.
i=1

t> s,

t<s

with

S= { Ya a a"}

Ily Ily +, y 5.

Clearly, 5 equipped with the norm I1" is a normed space of dimension n. In addition,

={y*6e*ly*(y)=cTy(t), I+1=1, 0_-<t_-<l

is a closed boundary for . Hence, from Auerbach’s lemma (Lemma 2.2) there exist

Y e , Yi e ; i,j 1,. ., n such that

Y]’(Y,) ,j, Ilyll*- 1, IlY, llo- 1, i,j= 1,’’’, n.

That is, there exist cjR’, Ic[=l, points t with 0<-t-<l, j=l,...,n and yi5,
i= 1,. ., n such that

(5.2) cy, (tj) o,
Furthermore,

and hence

(5.3)
Let

Thus,

c y t

cSc=0 ifi#jand t=tj.

y)( t) := y,( t)c y(
i=1

i=1

5.2. General boundary condition. We again turn to the general BC (2.1) and show
how we can select appropriate separable BC from them; this is based on the theory
given in 2.

Let

But from Lemmas 5.2 and 3.5 there exists a separable boundary condition of the form
(1.2) which satisfies Assumption 2.1 and is such that G is the Green function associated
with (1.1), (1.2) when N M and t x. [-!
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Hence

and, as in Lemma 3.2, we find that

In addition, we have

where

=< (n+ 1)c.

(5.4)
N

Y:= E Jy(t,),
i=1

(5.5)

IlB N-/ C - kth position,
0

and N is the number of distinct points in the set {t}. From (5.2), (5.3)

k=l

and hence from Lemma 3.5, the boundary ondition B defined by (5.5), which is dearl
separable, satisfies (2.2a), (2.2b). Finally from (5.2), (5.5)

I( t)[ Nll/2n 1/2.

Thus, we have shown the following theorem.
THEOREM 5.2. For a general BC (2.1) we can construct a separable BC of the

form y :i= iy(ti), with ti [0, 1], such that satisfies (2.2a) and (2.2b) and for
which (cf. (1.7))

: sup [(t)l n, :supl(s,t)[(nl).,
COROLLARY 5.1. If the BVP (1.1), (2.1) has a condition number a, then the solution

space is polychotomic with

(n+l).

Note that the result of this corollary is somewhat different from Theorem 3.16 of
[6], where bounds are derived for the two-point case. For large a we may therefore
say that this more general result is sharper, though not constructive.
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