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Abstract. Current image enhancement in televisions can be improved
if the image is analyzed, objects of interest are segmented, and each seg-
ment is processed with specifically optimized algorithms. In this paper
we present an algorithm and feature model for segmenting grass areas in
video sequences. The system employs adaptive color and position models
for creating a coherent grass segmentation map. Compared with previ-
ously reported algorithms, our system shows significant improvements in
spatial and temporal consistency of the results. This property makes the
proposed system suitable for TV video applications.

1 Introduction

Image enhancements in current flat display TVs are performed globally (on
the entire image)as in the conventional contrast and brightness adjustments, or
locally (on a selected part of the image) as in sharpness enhancement, considering
the local statistical properties of the image. For example, some enhancement
filters operate along the edge axis, or select a partial set of pixels that are likely
to be part of a single object [1]. The local adaptation is typically based on simple
pictorial features of the direct neighborhood, rather than considering the true
semantic meaning of the object at hand. It is therefore understandable that
the obtained picture quality is sub-optimal as compared to a system that locally
adapts the processing to the true nature of the objects. Object-based adaptation
can be realized if the image is analyzed by a number of object detectors, after
which object are segmented and processed with optimized algorithms [2]. Having
object detectors in a TV system also enables semantic-level applications such as
indoor/outdoor classification, sports detection, semantic-based selection of the
received or stored video, or aiding the emerging 3D-TV systems.

Grass fields are frequently seen in TV video, especially in sports programs
and outdoor scenes. At the pixel level, grass detection can be used for color
shifting and sharpness enhancement, and preventing spurious side effects of other
algorithms such as the unintended smoothing effect of noise reduction algorithms
in grass areas, by dynamically adapting the settings of the noise filter.

TV applications require that the detection results are pixel-accurate and spa-
tially and temporally consistent, and that the algorithm allows for real-time
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implementation in an embedded environment. Spatial consistency means that
the segmentation results should not contain abrupt spatial changes when this
is not imposed by the values of the the actual image pixel. Video applications
also demand that the segmentation results do not exhibit abrupt changes from
frame to frame when the actual image does not contain such abrupt changes. We
refer to the latter as temporal consistency. Our algorithm takes these require-
ments into account and produces a probabilistic grass segmentation map based
on modeling the position and the color of grass areas.

The remainder of the paper is organized as follows. In Section 2 we review the
previously reported work on real-time grass segmentation for TV applications.
Section 3 discusses the properties of grass fields and the requirements of TV
applications, Section 4 describes the proposed algorithm, Section 5 presents the
results and Section 6 concludes the paper.

2 Related Work

Previously reported work on grass detection for real-time video enhancement
includes a method [3] that is based on pixel-level color and texture features. The
color feature is in the form of a 3D Gaussian function in the YUV color space,
and the texture feature uses the root-mean-square of the luminance component.
These two features are combined to form a pixel-based continuous grass-
probability function. Due to the pixel-based approach of this method, the re-
sulting segmentation contains significant noise-like local variations, caused by
the changing texture characteristics in grass fields. As a result, a post-processed
image using this method can contain artifacts due to the mentioned local varia-
tions in the segmentation map.

As a solution to this problem, [4] proposes to average the results of a pixel-
based color-only grass-detection system using blocks of 8×8 pixels. The obtained
average values are then classified to grass/no-grass classes using a noise-
dependent binary threshold level. Although the applied averaging alleviates the
previously mentioned problem of pixel-level local variations in the segmentation
map, the proposed hard segmentation causes a different type of variations in
the segmentation result, namely in the form of the nervousness of the resulting
8×8 pixel areas. Such hard segmentation is obviously inadequate for applications
like color shifting. Even for less demanding applications like noise reduction, we
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Fig. 1. Overview of the proposed system: starting with image analysis, followed by
modeling the color and position of grass areas, and finally segmenting the grass pixels
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found that the hard segmentation leads to visible artifacts in the post-processed
moving sequences.

We propose a system that builds upon the above-mentioned methods, thereby
benefiting from their suitability for real-time implementation, while considerably
improving the spatial and temporal consistency of the segmentation results. The
proposed system (Fig. 1) performs a multi-scale analysis of the image using color
and texture features, and creates models for the color and the position of the
grass areas. These models are then used for computing a refined pixel-accurate
segmentation map when such accuracy is required by the application.

3 Design Considerations

3.1 Observation of Grass Properties

Grass fields can take a variety of colors, between different frames or even within
a frame. The color depends on the type of vegetation, illumination and shadows,
patterns left by lawn mowers, camera color settings, and so on. Consequently,
attempting to detect grass areas of all appearances is likely to result in a system
that erroneously classifies many non-grass objects as grass (false positives). For
this reason, we have limited ourselves to green-colored grass (commonly seen in
sport videos).

Despite having chosen a certain type of grass, the color can still vary due
to shadows. We address this by accounting for color variations within the im-
age, with a spatially-adaptive color model that adapts to the color of an initial
estimate of grass areas.

The typical grass texture is given by significant changes in pixel values. The
variations are most prominent in the luminance (Y component in YUV color
space), and exist far less in the chrominance (U and V) components (see Fig. 3).
This high-frequency information in chrominance components is further sup-
pressed by the limited chrominance bandwidth in recording and signal trans-
mission systems [5]. To make the matters worse, the chrominance bandwidth
limitation in digitally coded sources often leads to blocking artifacts in the
chrominance values of the reconstructed image, resulting in spurious texture
when the chrominance components are used for texture analysis. Therefore, we
use only the luminance component for texture analysis.

The characteristics of grass texture varies within a frame, based on the dis-
tance of the grass field to the camera, camera focus and camera motion. To cap-
ture a large variety of grass texture, we employ a multi-scale analysis approach.
Grass texture can vary locally due to shadows caused by other grass leaves, or
due to a local decrease in the quality of the received signal (blocking artifacts
or lack of high frequency components). Therefore, we perform a smoothing op-
eration on the created models to prevent the mentioned local texture variations
from abruptly influencing the segmentation result.
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3.2 Application Requirements and Implementation Considerations

Our primary target is to use our grass detector for high-end TV applications,
such as content-based picture quality improvement. This means that the algo-
rithm should allow for real-time operation, that it should be suitable for imple-
mentation on a resource-constrained embedded platform, and that the detection
results should be spatially and temporally consistent to avoid artifacts in the
post-processed image. We have considered the above-mentioned issues in the
design of our algorithm.

– Firstly, we have chosen for filters that produce spatially consistent results
and yield smooth transitions in the color and position models.

– Secondly, we have avoided using image-processing techniques that require
random access to image data. This allows for implementation of the al-
gorithm in a pixel-synchronous system. The reason behind this choice is
that video-processing systems are often constructed as a chain of processing
blocks, each block providing the following one with a constant stream of
data, rather than having random memory access.

– Thirdly, we have avoided processing techniques that need large frame mem-
ories for (temporary) storage of the results. For example, the results of the
multi-scale analysis are directly downscaled to a low resolution (16 times
lower than input resolution), without having to store intermediate informa-
tion.

– Lastly, we perform the computationally demanding operations, such as cal-
culations involved in model creation, in the mentioned lower resolution. This
significantly decreases the amount of required computations.

4 Algorithm Description

In this section, we describe the proposed system in detail. The system is com-
prised of three main stages, as shown in Fig. 1. The Image Analysis stage com-
putes a first estimate of the grass areas. We call this the initial probability of
grass. Using this initial probability, we create two smooth models in the Mod-
eling stage for the color and the position of the grass areas. While the position
model can be directly used for certain applications like adaptive noise reduction
or sharpness enhancement, other applications, such as color shifting, require
a pixel-accurate soft segmentation map. The Segmentation stage calculates this
pixel-accurate final segmentation map, using the created color and position mod-
els and the image pixel values. The following sections elaborate on the mentioned
three stages.

4.1 Image Analysis

In Section 3, we observed that grass areas can take a variety of colors due to
illumination differences (shadows, and direct or indirect sunlight). RGB and
YUV are the two common color formats in TV systems. In an RGB color system,
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Fig. 2. Schematic overview of image analysis stage. The initial grass probability is
calculated for the image in three scales. The results are downscaled and combined to
produce the multi-scale initial grass probability.

each component is a function of both chrominance and luminance, while the
luminance and chrominance information in a YUV color system are orthogonal to
each other. This means that the UV components are less subject to illumination,
and therefore we chose the YUV color system for image analysis.

Color: Despite the inherent separation of luminance and chrominance informa-
tion in the YUV color format, we observed a slight correlation between the
luminance and chrominance components for grass areas. Figure 3 depicts the his-
tograms of grass-pixel values in the YUV domain, where the correlation between
luminance and chrominance can be seen in the left-most (YU) graph. Our pur-
pose is to approximate this cloud of pixels, using a 3D Gaussian function. This is
done by estimating the parameters of this 3D Gaussian using Principle Compo-
nent Analysis in the training phase. The parameters consist of the center (mean
grass color), the orientation of the main axes and the variance along these axes.
During the analysis phase, the pixel values, (Y, U, V ) are translated by the men-
tioned mean grass color, and rotated by the axes angles to create the transformed
values Yr, Ur, Vr. The color probability (Pcolor) is then computed by

Pcolor = e
−

((
Yr

σy1

)2
+

(
Ur

σu1

)2
+

(
Vr

σv1

)2
)

, (1)

where σy1, σu1 and σv1 are the standard deviations of the corresponding axes.

Texture: Texture is a frequently-used feature in image-segmentation applica-
tions [6]. In case of grass detection, the texture feature helps in distinguishing
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Fig. 3. Histogram of grass-pixel values in the YUV domain, taken over grass areas of
a training set, including cloudy, sunny and shadow conditions. Left: U vs. Y, Middle:
V vs. Y, Right: : U vs. V.

grass areas from other green objects. In Section 3.1 we motivated the choice
of the luminance component for texture analysis. We found that grass has a
random, noise-like texture and does not show any unique spatial regularity. In
fact, we did not find a way for general distinction between the grass texture and
the image noise. Therefore, we subtract the texture measured from image noise
from the total measured texture in our texture calculation. As a result, the grass
texture can be masked by image noise when the amount of noise exceeds the
measured grass texture. For this reason, the texture feature is only useful for
images containing a moderate amount of noise. Additionally, the texture fea-
ture will provide little information when grass images are taken from a very far
distance, or when the quality of the video material is low.

Despite these limitations, texture was found to be a useful feature for sep-
arating grass from smooth grass-colored surfaces. As texture measure, we use
the Sum of Absolute Differences (SAD) between adjacent pixels in a 5×5 pixels
analysis window. The texture metric PSAD is calculated as

SADhor(r, c) =
w∑

i=−w

w−1∑
j=−w

|Y (r + i, c + j) − Y (r + i, c + j + 1)| ,

SADver(r, c) =
w−1∑

i=−w

w∑
j=−w

|Y (r + i, c + j) − Y (r + i + 1, c + j)| ,

PSAD =
SADhor + SADver − TSAD

NSAD
, (2)

where SADhor and SADver are the horizontal and vertical SADs respectively,
and TSAD is a noise-dependent threshold level. Further, r and c are the coor-
dinates of the pixel under process, w defines the size of the analysis window,
and factor 1/NSAD normalizes the SAD to the window size. PSAD is further
clipped and normalized to a maximum value so that it has the nature of a prob-
ability (Ptexture). In the remainder of this paper, we will refer to Ptexture as a
probability.
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Fig. 4. Modeling and Segmentation stages of the algorithm. Left - Modeling: creating
the color and the position models using the initial grass probability. Right - Segmen-
tation: pixel-accurate soft segmentation of grass areas.

Multi-scale Analysis: In Section 3 we observed that the grass texture contains
local variations caused by the camera focus, shadows and local image-quality dif-
ferences (in digitally coded material). In order to capture the grass texture un-
der these different conditions, we have adopted a multi-scale (multi-resolution)
image-analysis approach. Using multi-scale analysis, the texture that is not cap-
tured in one analysis scale, may still be captured in another scale. Figure 2
depicts the mentioned multi-scale image analysis. Here, the initial grass proba-
bility is calculated for three different scales of the image, the image in each scale
being half the size of the image in the previous scale. The resulting grass prob-
abilities (Initialprob.S01, S02, S04 in Fig. 2) are then downscaled to a common
resolution (Initialprob.S01@S16, S02@S16, S04@S16 at the right-hand side in
Fig. 2) and combined together using the Maximum operation (MAX block in
Fig. 2) to produce the multi-scale initial grass probability (Initialprob.MS@S16
in Fig. 2). The reason for downscaling is to limit the computation and memory
requirements in the modeling stage. The downscale factor (16) was chosen as a
tradeoff between lower computation and memory requirements, and spatial res-
olution of the models, when the input image has Standard Definition resolution.

Three scales of analysis proved to be sufficient for capturing the grass texture.
Using lower resolutions for image analysis will lead to a reduced spatial resolution
of the initial grass probability, causing spatial inaccuracy of the position- and
color models and the eventual segmentation map.

We have considered several measures to reduce the computational complexity
and the required memory. Firstly, the calculated initial probabilities of all scales
are directly downscaled to a low common resolution (S16 in Fig. 2). Secondly,
by avoiding the need to store the intermediate (higher resolution) results in the
memory, we achieve a high memory efficiency. Thirdly, modeling stage operates
on lower resolution images, which considerably decreases the amount of required
computations.

For improving the performance of the aforementioned downscaling of the ini-
tial probabilities, we use a linear-filtering operation that works as follows. A pixel
in the higher-resolution image (the input of the downscaled block) will affect the



694 B. Zafarifar and P.H.N. de With

values of nine pixels of the low-resolution image according to a linear weighting
function. The weight is proportional to the the distance between the position of
the high-resolution pixel and the centers of the low-resolution pixels. The down-
scaled image obtained by this filtering method proved to be much more suitable
for moving video material, as compared to block averaging.

4.2 Modeling Grass

Color Model: In Section 3 we noticed that the grass is subject to differ-
ent illumination conditions. Using fixed color-centers for the final color feature
(Fig. 4-right) will lead to partial rejection of grass areas of which the color sig-
nificantly deviates from the color centers. We found that a better result can be
achieved by accounting for the color variation within an image using a spatially-
adaptive color model. The model in fact prescribes the expected color of the
grass for each image position. To this end, each color component (Y, U, and V)
of the image is modeled by a matrix of values of which the dimensions are 16
times smaller than the input image resolution. Each matrix is fitted to the corre-
sponding color component of the image using an adaptively weighted Gaussian
filter that takes the initial grass probability as a weight.

The calculation steps are as follows. First, the image is downscaled to the size
of the model, using color-adaptive filtering (denoted as Y UVPcolor−adaptive@S16
in Fig. 4-left). The color-adaptive filter reduces the influence of outliers, such as
extremely bright pixels caused by glair of the sun, on the values of the downscaled
image. The downscaled luminance component Y (r, c) is given by

Y (r, c) =

15∑
i=0

15∑
j=0

(YS01(16r + i, 16c + j) × PcolorS01(16r + i, 16c + j))

15∑
i=0

15∑
j=0

(PcolorS01(16r + i, 16c + j))

, (3)

where YS01 is the luminance component at the input resolution, PcolorS01 is the
color probability at the input resolution, and r and c are the position-indices of
the downscaled image.

Next, the color model is computed, using the downscaled representations by
(we present only the Y model, MY )

MY (r, c) =

h∑
i=−h

w∑
j=−w

(Y (r + i, c + j) × PgrassInit(r + i, c + j) × G(i, j))

h∑
i=−h

w∑
j=−w

(PgrassInit(r + i, c + j) × G(i, j))

,(4)

where Y is the downscaled luminance component, PgrassInit is the initial grass
probability, G is a 2D Gaussian kernel, h and w are the model dimensions, and
r and c are the model position-indices.
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Position Model: We noted in Section 3 that the texture of grass fields contains
micro-level variations. Achieving a spatially-consistent detection result requires
filtering of these local texture variations. Therefore, we model the positional
probability of the grass areas using a smooth position model. The position model
Mposition is obtained by filtering the initial grass probability PgrassInit using a
Gaussian kernel G as

Mposition(r, c) =

l∑
i=−l

l∑
j=−l

(PgrassInit(r + i, c + j) × G(i, j))

l∑
i=−l

l∑
j=−l

(G(i, j))

, (5)

where l is the size of the Gaussian kernel, and r and c are the model position-
indices.

The above-mentioned filtering procedures (Eqns. (3), (4) and (5)) use the
computationally demanding division operation. However, the total amount of
computations is significantly reduced thanks to the small dimensions of the mod-
els (16 times smaller than the input resolution, in both horizontal and vertical
dimensions).

Furthermore, to achieve a better temporal stability for moving images, we
employ recursive temporal filtering while computing the models.

4.3 Segmentation

When the position model is upscaled to the input image resolution, it produces
a map indicating the positional probability of grass for all image positions. This
probability map can be directly used for applications like adaptive noise re-
duction or sharpness enhancement. Other applications, such as color enhance-
ment, may require a pixel-accurate segmentation map, which can be computed
as (Fig. 4-right)

PgrassFinal = PcolorFinal × Pposition . (6)

Here, Pposition denotes the upscaled version of the position model. PcolorFinal

is the pixel-accurate final color probability, computed by a 3D Gaussian prob-
ability function that uses the YUV values of the image at the input resolution.
In contrast to the color feature used in the image analysis-stage (Eqn. (1)), the
center of the 3D Gaussian is not fixed here, but defined by the upscaled version
of the spatially varying color model. The standard deviations of the 3D Gaussian
are smaller than those applied in the image-analysis stage, which helps in reduc-
ing false acceptance of non-grass objects. Further, the texture measure has been
excluded in the final grass probability to improve the spatial consistency of the
detection.

As can be seen in Fig. 4-right, the color and the position models are up-
scaled (interpolated) by a bi-linear filter prior to being used for determining the
color probability. This interpolation is performed on-the-fly, without storing the
upscaled images in a memory.
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Fig. 5. Results comparison. Left: input, Middle: proposed in [4], Right: our proposal.

5 Experimental Results and Performance Discussion

The proposed algorithm can be trained for detecting grass of a certain color
range by choosing appropriate parameters for the color feature. For obtaining
these parameters for green-colored grass, we manually annotated the grass areas
in 36 images, which were captured under different illumination conditions such
as under cloudy and sunny sky, or with and without shadows. Using Principle
Component Analysis, we obtained the center, the orientation and the standard
deviations of the three axes the 3D Gaussian envelop around the annotated grass
pixels (see Fig. 3). We applied the trained algorithm to a test set containing
50 still images and 5 moving sequences, visually inspected the results and made
a side-by-side comparison with the algorithm proposed in [4]. The reason for this
subjective comparison is that we aim at an algorithm having a high spatial and
temporal consistency in the detection result, and at present, there is no metric
for such a performance requirement.

Compared with the existing algorithms, we observed a significant improve-
ment in the spatial and temporal consistency of the segmentation results, and
improved detection results in images containing grass with different illumina-
tions. We also found the proposed smooth probabilistic segmentation map to
be more adequate for image post-processing applications. In the following, we
discuss a few examples of the results.

Figure 5 compares the results of our proposal with that of [4]. We can see in
the middle column that the existing algorithm detects some tree areas as grass
(false positives). Similarly, false positives are found in the ground areas in the
middle of the grass field. Our proposal shows a clear improvement in these areas.
The improvement is due to a more compact modeling of the grass color values,
using the PCA analysis.
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Fig. 6. Results comparison. Left: input, Middle: proposed in [4], Right: our proposal.

Fig. 7. Results of the spatially-adaptive color model and the smooth position model.
Top-Left: input image, Top-middle: the position model, Top-right: the color model,
Bottom-left: segmentation result using fixed color model, Bottom-middle: segmentation
result using spatially adaptive color model, Bottom-right: result existing algorithm.

Figure 6 portrays a more complex, which is difficult for both algorithms.
First, we notice the false positives of the existing algorithm in the flower garden,
whereas these small green objects are filtered out in our proposal owing to the
smooth position model. Second, we notice that both algorithms have problems
with the tree areas at the top of the picture. Such false positives occur in our
algorithm on large, green textured areas (tree leaves). Lastly, we notice that our
algorithm produces lower probabilities in the smooth grass area at the top-right
side of the image, resulting in missing grass detection in that area. This is due
to the absence of texture in these areas. This false negative is not in the form of
abrupt changes, making the consequences less severe.

Figure 7 shows the benefit the adopted locally adaptive color model. We can
see that although there is a large difference in the color of sunny and shadow
areas, the resulting segmentation map (Bottom-middle) does not abruptly reject
any of these two areas. While the existing algorithm (Bottom-right) shows a
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deteriorated detection in the shadow, our algorithm (Bottom-middle) preserves
a positive detection of grass, albeit at a lower probability.

6 Conclusion

We have presented an algorithm for consistent detection of grass areas for TV ap-
plications, with the aim to improve the quality in the grass areas in the image.
For such applications, it is of utmost importance that the image segmentation
results are both spatially and temporally coherent. Not complying with this re-
quirement would lead to artifacts in the post-processed video. To achieve this, we
have modeled the grass areas using a spatially adaptive color model and a smooth
position model. The color model accounts for the large color range of the grass
areas within the image, which occurs particularly when the image contains both
sunny and shadowed parts. The position model ensures that local variations of the
grass texture do not abruptly influence the segmentation result. Furthermore, a
multi-scale image analysis approach helps in capturing different appearances of
grass. When compared to an existing algorithm, our system shows significant im-
provements in spatial and temporal consistency of the segmentation result.

During the algorithm design, we kept the limitations of an embedded TV plat-
form into account. As such, we avoid the need for storing intermediate results by
directly downscaling the analysis results to a low resolution, and by performing
the more complex computations at this low resolution. This approach decreases
the memory and computation requirements. Furthermore, the algorithm is suit-
able for implementation in a pixel-synchronous video platform. This is due to our
choice for analysis and modeling techniques which have a regular memory access
and deterministic computation requirement, as compared to techniques that re-
quire random access to image data, or exhibit a variable computation demand.
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