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Diffusion of a heteropolymer in a,

multi-interface medium

F. den Hollander *
MLV, Wiithrich !

March 18, 2003

Abstract

We consider a heteropolymer, consisting of an 1.i.d. concatenation of hydrophilic and
hydrophobic monomers, in the presence of water and oil arranged in alternating layers.
The heteropolymer is modelled by a directed path (4. 5;) e, , where the vertical component
lives on Z, and the layors are horizontal with equal width. The path measure for the vertical
component is given by that of simple random walk multiplied by an exponential weight factor
that favors matches and disfavors mismatches between the monomers and the medium. We
study the vertical motion of the heteropolymer as a function of s total length » when the
width of the layers is d,, and the parameters in the exponential weight factor are such that the
heteropolymer tends to stay close to an interface (“localized regime”). In the limit asn - oo
and under the condition that im,, . d./ loglogn = oo and tm,, . 4.,/ logn = 0. we show
that the vertical motion is a diffusive hopping between neighboring interfaces on a time scale
explxda (1 + o(1))]. where x is computed explicitly in terms of a variational problem. An
analysis of this variational problem sheds light on the optimal hopping strategy.
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1 Introduction and main result

1.1 One-interface heteropolymer. We begin by describing the one-interface model that was
studied in Bolthausen and den Hollander [3]. This model has two ingredients:

1. 8 = (S}ien,: a simple random walk on Z; P,, E, denote its probability law and expecta-

tion, given Sy = 2.

2. w= (wi)ien: an Lid. sequence of random variables taking the values &1 with probability
1/2 each; P, E denote its probability law and expectation.

Fix A & [0,00), h € [0,1) and n € N, Given w, define a trapsformed probability law on path

space by putting

exp )\iﬁh(&}(wg+h} P (5), (1.1}

=31

(0,m) Vo

where Zf’ﬂ} (w} is the normalizing partition sum and
sign(S;) i 8 #0,

A(S) =
(%) A(Sis1) iF S =0

(1.2}

We view Pi°™ as modelling the following situation. Think of (¢, S;}ien, as a directed polymer
on Z?, starting at (0, 2}, consisting of monomers represented by the bonds in the path, The lower
half plane is water, the upper half plane is oil. The monomers are of two different types, occurring
in a random order indexed by w. Namely, «w; = —1 means that monomer ¢ is hydrophilic, w; = +1
that it is hydrophobic. Since A(S;} = —1 when monomer ¢ lies in the water and A(S;) = +1
when it lies in the oil, we see that the weight factor in (1.1) encourages matches and discourages
mismatches for the first n monomers. For A = 0 both types of monomers interact equally
strongly with the water and with the oil. For A € (0,1}, on the other hand, the interaction
strength is asymmetric: the hydrophobic monomers interact more strongly with either solvent
than the hydrophilic monemers, resulting in the heteropolymer to prefer the oil in the upper
half plane over the water in the lower half plane. The parameter A is the overall interaction
strength and plays the role of inverse temperature, !

The one-interface model is self-averaging:

Theorem 1.1 ([3], Theorem 1) For every A € [0, 20) and h € [0, 1) there exists o deterministic
number (N, k) such that

limn é log Zél}’n) (w) = (M h) P~ a.s. and in L' (P}, (1.3}

n—00 T

'Note that the second line in {1.2) makes the interaction act on bonds rather than on sites. Also note that
{1.1) makes perfect sense for A,k € B but that only the indicated range of A,k is relevant.



The function ¢ is the specific free energy of the heteropolymer. Tt is continuous, nondecreasing
and convex in both variables, and satisfies ¢(\ h} > Ah. This lower bound comes from the
following estimate, which uses the strong law of large numbers for w:

T
Zée’n)(w) = E’G[{—:Xp {)\ S A(S) (wy -+ h)} S >0V <i< n}}

]

s : (1.4)
= exp{)\fm-é—)\ng}Pg[Sg>0\f1gigﬁ] ’
g
= exp{Mn +o(n)} O (n~1/?), P—as.
Let
T = {(Mh): d(NR) = AR}
L = {(Mh): ¢(A\h) > Ah].

In view of (1.4}, intuitively, D corresponds to the situation where the heteropolymer moves away

(1.5)

from the interface in the upward direction (“delocalized regime”), while £ corresponds to the
situation where the heteropolymer stays close to the interface and manages to place more than
half of its monomers in their preferred medium (“localized regime™). It turns out that both
these situations ocour:
Theorem 1.2 ([3], Theorem 2. Equation ((1.8)(iii} and Corollary 1) For every A € (0, 00) there
exisis an he(A) € (0, 1) such that the heteropolymer is

focalized  if 0 < h < he(A), (1.6)
delocalized if b > he(A). '

Moreover, A v ho(X) s continuous and non-decreasing on [, 00), with he(N) ~ ChA as A | @
and 1 = he(A) ~ Co /X as X =+ oo, for some C,Cy > 0.

{ A

Fig. 1. Qualitative picture of A — A (A}

In Biskup and den Hollander [2] various path properties were derived that confirm the above

intuitive description. In the delocalized regime D the heteropolymer intersects the interface with



zero frequency in the limit as » -» 20 ([2], Theorem 4). In the localized regime £, however,
this frequency is strictly positive, and the excursions away from the interface are exponentially
bounded both in length and in height ([2], Theorem 3). In Albeverio and Zhou [1] it was proved
that for A € (0, 2} and 2 = 0 both the maximal length and the maximal height of an excursion
are of order logn ([1]. Theorem 5.3 and Theorem 6.1}. The same holds true throughout the
localized regime £ by the estimates in [2].

The ope-interface model defined in (1.1-1.2) was introduced in Garel, Huse, Leibler and
Orland [5], and early studies include Sinai [13] (h = 0} and Grosberg, lurailev and Nechaev
6] (w periodic). Recent results on related one-interface models appear in Maritan, Riva and
Trovato [10], Martin, Causo and Whittington [11], and Orlandini, Rechnitzer and Whittington
[12].

1.2 Multi-interface heteropolymer. Iu the present paper we study a version of the above
model where the water and the oil are arranged in alternating horizontal layers. For n € K,
we choose a layer thickness d; € 2N (an even number for reasons of parity}. The interfaces
separating the layers are located at the heights

ap, Ly (1.7}
while the (+1})-layers resp. the (—1)-layers span the heights

U dul@h2k+1)nZ), Dy = dnl(2k~1,26)NZ]. (1.8)
kel keNg
In analogy with (1.1-1.2}. the probability law of the heteropolymer is defined as

exp )\iﬁkdw(&}(wwrh} P (8), (1.9)

=

£ )= st
a d

where Z (0.m) (cb} is the pormalizing partition sum and

+1 if 8; ¢ D,
Ag (8 =4 -1 if S e D, (1.10)
Ag, (S 1) if S € 9D,

Here, we use the hat-superscript to distinguish the multi-interface model from the one-interface
model.
Onur first result is & comparison of the multi-interface model with the one-interface model on

the level of the specific free energy.

Theorem 1.3 For every A € [0,20), h € [0,1) and for every sequence (dy,) such that iy, o dy,

= 0,

tm —i()n G(}dﬂ}(w} = ¢(\h)  P—as and in L'(P). (1.11)
n

To— 0



This result says that for any diverging layer width the two models have the same specific free
energy and hence the same phase diagram (see Theorem 1.1 and Fig. 1). Intuitively, this result
is plausible: as the interfaces move apart, the heteropolymer “gets to see only one inferface at
a time”, We will see that the Himit d,, — oo makes the multi-interface model tractable.

1.3 Path behavior in the localized regime. We now come to the main result of this paper.
Our goal is to analyze the path behavior for the multi-interface model in the localized regime
L, in particular, we want to describe how fast the heteropolymer hops between the interfaces.
For technical reasons we will not analyze the jump process between the interfaces of the
layers, but rather between the middle lines of the layers, Le., 9D, +d, /2. The reason is that the
oil/water medium is symmetric with respect to these middle lines. Let us therefore introduce

the stopping times
7o) =inf{i € Ny: 8; = ad,/2} Anf{i € Ny: 8§ = —ald,/2}, o= 41 (1.12}

If Sy =0, then 7(a) is the first time that § hits a middle line of a o-layer. Furthermore, let us

define 7y = 0 and the stopping times

i) = inf{i € Np: |85 — 8o = dy},

(1.13)
Thet = Ti08, +1 for ke lN

where #; denotes the time-shift by . If 8y € 9D, +d,, /2. then 7, is the k-th jump time between
the middle lines of the layers. [n terms of these quantities, the number of hits of middle lines

up to time ¢ after time 7(+1) is given by

th = [sup {]‘il = N{}I T © f}ﬂ_;_'g} + ‘f‘(-f‘l} < f} + E:[ E{’f(—i—l)gi}? te [U,TL]: (§§4}
and the vertical displacement at time ¢ relative to the height at time 7(41) is given by
gi = (STy{M;OQ%(+;)Jr?"(+.l) e ”?"(Jri)) 1{'?“{%”3:{}? te [U?n]’ (EE‘B}

Similar formulas can be written down with 7(—1) instead of 7(+1), but we choose to follow the
jumps starting from the first hit of a middle line of a (+1)-layer.

Theorem 1.4 Let (M h} € £. Fiz a sequence (d,} such thai

(1)  Hm d,/loglogn = o,
T30

1.16
(I1y  bm d,/logn =0. (1.16)
T— 00

Then. there exists o constant x (A, h) € (0, 00) such that, under the annealed measure E ®f’é%f} ,

the process (S-ﬁ}i(:“;l}}n] is a simple random walk on d,2 with i.4.d. random waiting ftimes whose
variance at fime un satisfies
oo (Sunt| = =x(\ b}, u € (0,1). (1.17)

ro
B&Fs i

1
Lim 0 fog Va,

n—00 dZ un



Equation (1.17) says that

eXAMdnUHoll)] = gyerage jump time between middle lines of layers. (1.18)
1.4 Discussion of Theorem 1.4 and analysis of x(\,h). We begin by explaining the two
conditions in (1.16). The results cited in Section 1.1 for the one-interface model, in combination
with Theorem 1.3, tell us that in the localized regime L the heteropolymer is tied down to
the interfaces in 8D,,. The excursions away from @D, have a typical length of order one and
a maximal length and height of order logn. Condition (II) therefore guarantees that the het-
eropolymer jumps between the interfaces many times prior to time n (ie., the medium is “not
too macroscopic”). On the other hand, condition (I) guarantees that the heteropolymer does
not jump too frequently, so that between jumps it stabilizes near an interface (i.e., the medium
is “not too microscopic” ). We do not know whether loglogn is optimal as a lower bound, but
it is important in our proof.

The proof of Theorem 1.4 shows that there exist constants x, (A, b}, o £ 1, such that

eXe A (1H0l1) — ayerage crossing time of o-layers, (1.1%)

which implies that

x(Ah) = x 1 (A RY x (A R). (1.20)
In the course of the proof of Theorem 1.4 we give an explicit description of x, (A A) in terms
of a variational problem involving a one-interface model with one neutral solvent (see (4.1-4.2)

and (4.18}}). An analysis of this variational problem leads to the following gualitative picture.

Theorem 1.5 For every A € ({1, 00):

(i) x—1(A0) = x4 (A, 0).

(i) On [0, he(N)), h v x_1(A h) is continuous and non-decreasing, while h ++ x4 (M h) is
continuous and non-increasing.

(44i) limpap, 0y x+1 (A A} = 0.

0 he(A) h
6
Fig. 2. Qualitative picture of kv x, (A 1) for ¢ £ 1 and A € (0, oc).



In view of (1.20) and Theorem 1.5(i-ii}, we have
x(AAY=x_1(Ah). (1.21)

i.e., the variance in (1.17} is dominated by the average crossing time of the (—1)-layers, which
is at least as long as the average crossing time of the (+1)-layers. This comes from the fact
that the heteropolymer prefers to wander off into the (+1}-layers as soon as A > 0. In view
of Theorem 1.5(iii}, on the phase trapsition line separating £ from 7 (see Fig. 1) the average
crossing time of the (+1)-layers vanishes on time scale ¢". We have no control over how the
average crossing time of the (—1)-layers behaves in the delocalized regime D, but we expect it
to be smooth across the phase transition line (see the dotted line in Fig. 2).

We are unable to prove strict monotonicity of A — x,(\, h), as suggested in Fig. 2.

1.5 Some future challenges. Here is a lst of some open problems that merit closer investi-
eation:

(1) Is there a version of (1.17) for the quenched rather than the annealed model, i.e., for P-a.s.

all w with respect to PD(Z;:) (w)? We expect that the answer is yes, with the same y, because

of the ergodic theorem for w. A proof can probably be worked out with the help of the

“decoupling of excursions” argument in Section 3.

(2) What can we say about the hopping in the delocalized regime D7 Since the crossing of
the (—1}-layers is harder than in the localized regime £, we expect the jump process to

further slow down (see the dotted line in Fig. 2).

(3) What happens when the layer widths are random, say. layer £ has width Yid,, with (Yyeez
i.i.d. random variables that are bounded away from 0 and co? The underlying jump process

between layers will be a random walk in random environment.

(4) The present paper is & first attempt to move away from the simple geometry of a single flat
interface. We are ultimately interested in situations where the two media mix “as droplets
of oil floating around in water”. Can anything be said for such more complicated models?
A toy model in this direction is studied in den Hollander and Whittington [7].

1.6 Qutline. [n Section 2 we prove Theorem 1.3 and derive a number of preparatory lemmas.
In Section 3 we provide a decoupling argument through which the probability law of the lengths
of the successive excursions can be estimated in terms of that of a single excursion. In Section 4
we give asymptotic estimates for the latter. In Section 5 these estimates are used to prove
Theorem 1.4, Theorem 1.5 is proved in Section 6.



2 Proof of Theorem 1.3 and preparations

This section contains the proof of Theorem 1.3 as well as three technical lemmas (Lemmas 2.1~
2.3} that will be needed along the way. In Section 2.1 we look at partition sums, in Section 2.2
at excursion leneths.

2.1 Asymptotic behavior of partition sums. We start with the proof of Theorem 1.3, which
together with Theorem 1.2 shows that Fig. 1 is the phase diagram also for the multi-interface

model. Throughout the sequel we write

Hy g, (@, 8) = A f: Ag,, (8w + h) (2.1)

ezl

to denote the Hamiltonian of the multi-interface heteropolymer defined in (1.9) and

Hy(w,8) =X zn: A5} ws + h) (2.2}

i=1
to denote the Hamiltonian of the one-interface heteropolymer defined in (1.1).
Proof of Theorem 1.3. The proof is based on & folding argument applied to the random walk S.

We assuine that Sy = (.
Define 7y = 0 and

m = inf{ieN: 8§ €aD,\{5}}. (2.3)
N1 = O 9% + g, ke I ’
ie., . is the k-th crossing time of & layer, and
4l = sup{0 < i<y |85 S??j.i = IS?’?EI ~ Sy, |/2}, (2.4)
bhpr = £yo (}ng + 7k, ke R,
ie., £, is the last hitting time of a middle line of & layer prior to time 7. Also define
Np = suplk € Np: mp < 0}, (2.5)

i.e., the number of layer crossings up to time n. Obviously, A, < n/d,.
Next, define & folding map § — S* for § = (8}, and §° = (8}, as follows. Put Sgn) = 5;
for 0 <i < n. For 1<k < N,, define recursively

(k) Sgkii) i1 <i<F, X
5 = oglth—1) _ olb—1) o0 o, (2.6)
= g i > 25

and set §* = §Wn). Thus, we successively reflect the tail of the path at the heights ==d,, /2. The
important observation is that suppeic, 1S5 < dp, S;, =0 for 0 £ k < Ny, and

Ay (S =A(5) for<i<n, (2.7}



the latter implying, via (2.1-2.2}, that
andﬁ(w: S) = Hn(w: S*) (28)

Therefore we need only worry about how many paths S are mapped onto a single path §%.
To that end, define By = (0 and

R’ = inf{ie N: 8§ €abD,},

(2.9
Ry = Ryobpg, + By, keN,

i.e., Iy is the k-th hitting time of an interface. Pick any path §* with suppc;c, 5] < dn. We
can defold §* whenever

sup {95 =d,/2, 1<k < N(S). (2.10)
By (S )<< Ry (S7)

But this event can occur at most n/d, times and therefore §° is the image of at most 27/%

paths S. Hence, using (2.8) we get

Zgmhw) = D exp {Hyg, (w8} 2"
S

< phidn Z exp {Hp(w, 8%} 27" (2.11)
8% supgcicy 1Sri<dn
/ .
< 2V )
and similarly
~ '). —
@) 2 > ew{Hy(w 82"
St suPgeicy [Silddn
= Z exp{H,(w, §"}}277 (2.12)

871 SuPge i<y 197 <dn
> Q*R/d“Zexp{ffn(waS)}Qﬂ
S

2 n/dn Zél}"n) (w).

We next consider the partition sum for the multi-interface model up to time 2n restricted to

the endpoint Sop, Iying in an interface:
5(0.2 ‘ .
Zétégi:dﬁ(w) = Ej ]:{')Xp{ﬂznjagﬁ (w, 8}, Sop € dDﬂ] (2.13)

The following lemma says that this restriction has no effect on the specific free energy.



Lemma 2.1 For every A € [0,00), h € [0, 1) and for every sequence (dy) such that g, e dp =
i E (D Zn) o 1 . 1 p
im — log Zo 5D, a, (W) = (A ) P —a.s. and in L (P). (2.14)

T O T?
Proof of Lemma 2.1. Using the stopping time R; defined in (2.9), we have for m € N,

0,2 0,2 {2k
éic’inm)(w) = Zéla:g;) ﬁ )+ Z Zﬂlc’ﬂl)i dy, (w) Eo [LXp{HZm 2, di (B, S}} iy > 2m -~ Qk]

0,2 (0.2
= Zélag:)dn + Z anapi a, (W Ep [exp { Homop g, (Porw, S)}, By = 2m - 2k]

5 ER; > 2 — 2]‘3]
Py By = 2m — 2k|

(2.15)

(0,2%
Z(n 2m) _E‘ ?i[ Z(}lc’ﬂi)i dn ‘:U}El} [ﬁxp '{HZm 2k dy (f}zkw S } Ry = 2m — Qk]
0,010 dn (@ Py [Ry = 2m — 2k]

A

Here, the first line is a repewal relation, while the second line uses that the excursion starting
from an interface at time 2% stays within a single layer until time 2m. Next we apply the folding
argument from the proof of Theorem 1.3: for [ € N we fold the part of the path that Hes between
inf{i > 0: S =d,/2} and sup{0 < i < 2[: 5; = d,/2} into the layer (0, d,) NN with symmetry
axis d, /2. Then we get

Po[Br=2l] = Pyl =218y =0]

= 2P [8; € (0,d,) for 0 < i < 21, Sy = 0] (2.16)
> 2x 272 P8 = 0 for 0 < i< 21, Sy = 0]
> 27 W T,

Substituting (2.16} into the last line of (2.15} to estimate the denominator of the summand. we

find the second inequality in

Zl%iz)dn < Zéodzm) (14 e 227 dn 32 Zéﬂaiv}?:)dﬁ (2.17)

The first inequality is trivial. Together with Theorem 1.3 this yields the claim.

2.2 Estimnates on large excursions. Our next lemma is a large deviation result for the
restricted partition sum defined in (2.13) and for the successive excursion lengths. both in the
localized regime £. Recall from (1.5) that ¢(X, h) > M for (M A) € L.

10



Lemma 2.2 Assume that (A h} € £ and limy_ o0 dp = 200
(i} For all £ € (0, (N h}) — M) there exists o 8. > 0 such thai

P [2 log Zé%‘fgi g, (@) < P(AR) — s} < O(1yexp{—é.n}, n = 0. (2.18)

(t1) There exisis o constand k£ > O such that, for all K € N and all my € 2N (1 < k < K) with
3 ,i;_l e ST,

K
E® Py By — By = my for 1< k< K] < O(1) [ exp{—rmu}. (2.19)
o b

Proof of Lemma 2.2. The proof is similar to that of Lemmas 3 and 4 in Biskup and den Hollander
[2]. Lemma 2.1 is needed for the proof of (i), while (i) is needed for the proof of (ii). The reader
is referred to [2] for details.

]

We close this section with an estimate on the maximal excursion length away from an inter-
face. For {,n ¢ N, define
R = :ug{(ﬂk ALY = (Rp—y A}, (2.20)
€

i.e., the maximal excursion length up to time /.

Lemma 2.3 Assume that (\h) € £ and Bing,_ oo dy, = o0, There exist s > 0 and ¢o > 0 such
that for all { > 0,

E@ Péndﬂ} [Rf*" > (log wl < epn' T, n— oo (2.21}

Proof of Lemma 2.3. For > 0 and n € N we have

E® Pgl}dn) ['Rd“ > (log w}

n—{logn—1
< ST E®BYV[S €D, (R ot} Aln—i) > (logn]
faml)
n—Clogn—1
= Z Z E @ By [S; € 0Dy, Ry o 8; = k| (2.22)
() fezz g]egn%i
n— Q]Ogn I
< > Z E® P [Ri o8 =k| 8 € 0D,
izl fpzmm (,l(}gn—é—'i
n—{logn—1

- 3 Z E® B[R =K.

iz=() k=Clogn+1

11



Using Lemma 2.2(ii), we see that there exist constants £ > 0 and ¢3 > 0 such that for all { > 0,

n—C{logn—1

n—i
E & }?’D{G’”) [Rf;‘ > (log n} < Z Z cyexp]—rk}
izl k=Clogn+1
< negs tn RS, e (2.23)

This proves the claim with ¢ = e3s™!.

3 Decoupling of excursions

This section contains three further lemmas (Lemmas 3.1-3.3) in which we estimate the proba-
bility law of the lengths of the successive excursions in terms of that of a single excursion. The
latter will be estimated in Section 4. In Section 3.1 we lock at the effect of adding a bridge

point, in Section 3.2 we derive the decoupling estimates.
3.1 Adding a bridge point. We begin by estimating how much it costs to do an additional
hitting of an interface. For { > 0 and [,n € N, define the event (recall (2.20))

[ = {Rf"‘ < Ciﬂgn}' (3.1)

Lemma 3.1 Assume that liny, .o dy = oo, For afl { > 0 there exists ¢4 > 0 such thai for all
b e 2R,
- }( 7 }( [ ]
EDD{EJ:) AN < c:{;d;}éf%{:a:) AT, S, € 9D,], n - 00, (3.2)

Proof of Lemmma 3.1. For b € 2N, define
Lt = sup{0 < k < b: S, € 9Dy}, (3.3}

i.e., the last hitting time of an interface prior to time . For simplicity we assume that & <

n— ¢ logn. Then we have

By lexp{ Hy g, (w0, )} AT = By [expl Hyg, (w.9)} A% 20 =)

+ Y B [{-)xp{ffmdﬁ (w, 8)L, AT b— L} =1, Ry 08, = ;] . (3.4)

2<i+r<Clogn
The case b > n — { logn is analogous, but we have to restrict the sum in (3.4) to r < n—b. Let
us estimate the last term in the above inequality for fixed [,». The important observation is
that, on the event {b—L¥ = [, Ryo 8, = r}, Ay, (S} has the same sign for all b—{ < § < b+r. If
we want to do an additional hitting of an interface in this interval, then all we have to do is to

make sure that the hitting of the interface is in fact a reflection at the interface, since this does

12



not change the sign of Ay (S;) and hence leaves the Hamiltonian H, 4 (w, S} in (2.1) invariant.
Consequently,

By [exp{H (6 $)} AL b= 10 = L1 08, = 1]
< 2B [exp{Ho g, (051} AL D — LY = LRy 98, = 7. Sy = S,

=2 > Fy lexp{Hy_14, (w, )} A1 8ot = 2]

zE80,
% B, [exp{Hr a, (0o, SV} AL By = 1 v, Sy = 2] (3.5)

[LXP{H (birydy Borrw, SHE AL shw)}
0 [exp{ff”nfdﬁ (w,S) LA R0y =1L Ryoby  =1+r,
Sy =8y = Sp4r € 3914

4 25 [RE =147 54 = U]
R}[R[ mlﬁRzmg‘l_?'gS!mS!_;_rmO]’

The inequality uses the fact that paths may be reflected in middle lines because the medium is
symmetric with respect to middle lines. A standard caleulation for simple random walk gives
that

1 wk o [ Tk
PRy =m, S, =0 =— Z cos™ (—) sin? (—) (3.6}
dn, Tl cl, dy,

(see e.g. Hughes [9], equation (3.291)). It is therefore easily seen that the ratio in the last term
in (3.5) is bounded above by cyd? uniformly in {,r. Inserting this bound into (3.5) and the
resulting estimate into (3.4}, we obtain

By [QXI)'{and-n (‘:"" S}} "A’R,n]

< c:./;dfé (E’g [{—;xp{ﬂ“ﬂ:dn w,8)} AL }Lb = f}}

+ > ED{"XD'{HM-,; (w, )AL R oy =1L Ryothy =1+,
2<t+r<Clogn

Sy =8 =8, ¢ aDﬂ] ) (3.7)

= ey} By {exp{ﬂmdn (w. S}IAL, S € (‘}D%}

Divide by Eglexp{H,, 4, (w,S)}] to get the claim (recall (1.9}).
n

3.2 Decoupling estimates for excursion tirnes. We now come to our two main decoupling

estimates. For fixed w, the successive excursion lengths are dependent. Lemmas 3.2-3.3 below

13



(0, .
show that, under the annealed measure E & PG dn) they can be decoupled at the price of an

error term. Recall (1.12-1.13).

Lemma 3.2 Assume that Hmp_oo dp = 00, For all { > 2/k there exists ¢5 > O such thai for
el NeNand l; > d, /2 (0 <i < N) with

N

Z i+ logn) < n (3.8}

=l

ihe following is true as n — oor

(0.n})
LE@PGd

{F(+1) S o} ){mie ey = Tims 0 B4 < 51‘}}

=

Sen' ™+ it ] (\}d"E:@R}(G“}[ (-1 <14, A7) +c2n“*"<?). (3.9)

SO 1 | N,
I {0, N} el
Proof of Lemma 3.2. After applying Lemma 2.3, we can restrict ourselves to events contained

in A,. Fix any Iy < {0,...,N}. Throughout the proof we assume that n is large enough.
First we counsider the case 0 € /y. Using the inequality

207 w) 2 2y g @) 20T B}, 0 < 2m <, (3.10)

the independence on disjoint time intervals and Lemma 2.3, we have (variables with the wrong

parity automatically cancel)

{Om}
E‘@%dn

{F(+1) < lo} N [ Ym0 By = T 0 By = li}ng}
faml
lg) Ogn

0,2+
Z Z E® R;(l(?Ig :;I){ (+§) = thRE © Hm = ”"G:A?U_;_m:l
tomadn f2 romdy /2

(O {t :
xE® By "”"”[ (3.11)

{r(-1) =l =ro} N ﬂ{ﬂ 1ol = Tigo by S lz‘}:Aﬁ_(tﬁm}}

famd

o gl(}gn _}t ) (_)
! + (
( STY B[RRI+ = b0, Ry o By = o, AL, | B [AT)]

tomdn /2 romsdn /2

eon! TR ) x sup E& Pnl}d“ o)
dp<to<iog+{logn

{F=1 < b} {Hrmo 0 0pay = Timz 0 05y < L), %I(}} :
=2

14



Note that the term under the supremum is of the same type as the one in the left-hand side of
(3.11) but with 7(+1) replaced by 7(—1) due to a change of layer (recall (1.12}). To the first
term on the right-hand side we can apply Lemma 3.1. Indeed, choose b = £y + 5, to estimate

Pom AT < endyy B (AT, Siger, € ODn] (3.12)
{01 :
< o d3 Zlglf?lg_:rgj (w}EG [eXp{Hn—(iu—%m),dn (Hiu—i-mw: S} } Az—(t(}—i—rg)]
— (/!i T Z{G"R’) (w) 1
0,d5,

which gives

lo Clogm

]
: {0 g+ ~ (0,
Z‘ Z E {Pl?(lﬁign ,?;;) [T(“{“E) =ty By oty = ?\G?A'?u-?-m] pﬂ(ld:) [A”%]:l
tomdy f2romdn f2

< endd E@ BT [#(41) < b, AT (3.13)

Next we consider the case 0 ¢ fy. Define ky = inf{k ¢ Ny;k € Iy} For b € Ny, define
I = fol} l;. Then, using (3.12), we obtain as in (3.11},

{F(+1) S W} im0 By = Tim1 @ Oz = L1 AR

tmz]

{0}
Eefy

thg-1 Clogn
S(E e

£ (0,0 + (0,
Pm}(,léi}:,)dn {T"ﬁu—'i oy =t oy =7, ?Jrr] Pé,lai:) [ﬁ]j}

+egn! ™| x sup E® }?’l%:_i}
0t <y, i +Clogn )

{%((_E)kﬂ} < g 0 ﬂ {Ticky © 87’“((—[)"0} = Tikg—1° g'}*((—l)"ﬂ} = li}:Aﬂnt}

immhg+1

< (c:./;df& + eon? TR x sup E g Pl

) 0,ds (3.14)
n—lpg1HClogn<no<n

N
{"?((“1}%) Sl 0 ﬂ {Ticgg @ 9&((;2)&;:) — Ti—kg—1° 3?«((4)%) s ff};%({l'

[ECLTE

Iterating the above decoupling argument, we obtain the claim for ¢; = 2¢Z. Note that
con® " < eqd? for large n because ¢ > 2/,

Lemma 3.3 Assume that lim, . d, = oo, For all { > 0 there exisis ¢q > O such thai for oll



NeWMandl; € N (0<i<N) the following is true as n - o0:

(0,
E® P’M:)

N
{TA'(%“E) AN > ll}} N ﬂ{(?‘f o f:’;,n(Jr_[)) An—(r_o f:};n(Jr;)} AN l'[}} (3.15)

gl

< pon! TR 4 H (c;;di E® }60(%:) ka ((wé)i) An o> - (logn, A7) + c;gnl’*"c).

2t}

Proof of Lemma 5.5, The proof is similar to that of Lemma 3.2, Therefore we ounly indicate
where the two proofs differ. Abbreviate ny,,, = n — (ty + ro). Then, as in (3.11}, we have

(0.7}
Ee

=31

{FCr1) An > Do} O [0 B An = (i 0 85 An > lez}s%jl

n lognaln—tg)

50,8+ ~
e > Y TR Al An b o0, Ao = 1) = i A )
tomig+1 rgmafﬁfQ

o {0, e ~ E ,
X sup E® P’D{fa:f‘” o) [{T(“l} A Tiggrg > 0 = 1o} 0 (3.16)
lgstpsn ’
dp /2<ro<{log nA{n—tq)

ﬂ{(T‘i—l 2 {2}?(,;)} A ity g ™ (T‘i—iZ O 8?‘{71)) A Titg.re > l‘i}?Agm,m} .
(=
Now we can deduce the claim in the same way as for Lemma 3.2, using in addition that {7(—1)A
k>l —rpb C{r(=1)An >l —~logn} for d,/2 < rg < logn and 0 < k < n.

|

Lemmas 3.2-3.3 provide an upper bound for the probability that the lengths of the first NV
excursions from the middle line of a (41}-layer do not exceed, respectively, exceed Iy, ..., Iy, for
N arbitrary. These bounds will be used in Section § to prove Theorem 1.4,

4 The first-passage time

In the previous section we have decoupled the excursions. In the present section we derive the
key estimates that involve a single excursion. In Section 4.1 we look at a one-interface model
with one neutral solvent, which plays a key role in the variational problem for x (A, A} in Theorem
1.4 that will be introduced in Section 4.2, In Section 4.3 we use this variational problem to derive

upper and lower bounds for the first-passage time.

4.1 A one-interface model with one neutral solvent. For m € 2N and o = &1, define
(recall (2.13}))
yOm oy o Ao S (wi+ h)}
0,802, ,dp V7 2((},171) . ’
0,000, dy (w)

(4.1)
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Lemma 4.1 For every (M h) € L and o = £1 there exisis o determinisiic number js(A\, h) €
(0,00} such ihat, for every sequence (d}) with Him, . d, = oo,

1 ;
lim — loglE [Yr}(%iﬂ}d (wa)} = —fta (A, B} (4.2}

n—o0 2

Proof of Lemnma 4.1. For m € 2N and ¢ = £1, define

i
Ep [(,Xp{)\zm S - U}(U-'z + h}} s 13 = (}]

YO () = (4.3)

Note that the interaction is peutral for the o-layers (o = £1). Using the folding argument from
the proof of Theorem 1.3, we see that

D I dny 02 (4 ) < YUl L (w,o) < 220/ y O (g g, (4.4)

so it suffices to prove that
o {0,2n) :[ A
lim on l() LE]:Y (w, o)} = —ps(Ah). (4.5}

For m, [ € 2N we have, using the independence of w on digjoint time intervals,

log I {Y(G;m—i—l) (w U):l

=logk !
]:(,Xp { ZmH (Si) = o) {wi + h}} PO m = O:l
1 ,
<logE A (4.6}
‘_Eﬂ [exp{ Zm% (85} = a){w; + h}} S = St = O:l
= log E ]:Y"(Dfm) (w, (J'}:[ + logE ]:Y{Gf” (w, (J'}:[ .
Hence m — log E [ Y "7 (w, 0}] is a subadditive sequence, which implies (4.5) with
1 i
(A R) = inf — 1§ 9=E[Y’(G=Z“) 5 } 4.
fo(A k) = inf o log (w, ) (4.7)

It remains to prove that i, (A, A} € (0, o). Using Chebychev’s ineguality, we see that

log £ ]:Y(D,‘Zn) (w, (J'):I

=~ loglE | Ep

exp {)\Z Hewy + h)} ,Sap = UH (4.8}

> —4M1 + R)n.
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s0 pla(A 1) < 2M1 4+ A). On the other hand,
E [Y(“?“) (w, =1} + Y02 (g, +§)}

(1/2) {,xp{ A (wf+h}}+(1/2}()}(;){)\2?2-@(%%}?,}}

= 2E (1.9)
B, {{,xp{)\z A8 (ws +h}}  Sor, mo}
2 (0,27
=_——— B P77 [T =2nl,
By[Ty = 2n] [ 0,0 7 ﬁ]]‘
where 11 = inf{k € M: 5, = 0} and PGG ) is the path measure defined as
1 n
2
PD(D n)(S} e P exp {)\ Z A(S ) (w; + h)} Lig,, =01 0 (5), (4.10)
0,0 i=1

with ZéG ) the normalizing partition sum. From Biskup and den Hollander [2], Lemma 4, we
know that for every (A, h) € £ there exists a 5 > 0 such that

E [PD{GDZR) = 271.]} < exp{~2sn}. N =+ o0, (4.11)

Moreover, we know that Py[T) = 2n] > (¢gn) %2 Hence (4.9) yields

1 i 1 i ‘
5 log [Y(sz?z) (w, U}] < 5 log | [Y{G,Zn) (w,—1) + y(0.2n) (w, —I-E}}
7 7
1
< 2 flog 2 + (3/2} log{egn) — 2kn] . n-oo.  (4.12)
i

So pra(MR)Y 2 k>0

4.2 Variational formula for x(\. h).

Lemma 4.2 Assume thot liny, .o dn, = o0, For y > 1 and every nonnegaiive sequence (&)
such thaot Hiny, o6, = 0,

1
i _i 18 > i > 2 My < S ““‘I “ 4.;‘-
i - log Py | Ry = ydy,  Jax Si 2 dn /2, 8ya, < endy (y). (4.13)
where +1 +1 1 1
y y Yy = Yy =
I(y) = log log . 4.14

Proof of Lemma 4.2, This is an elementary large deviation estimate for simple random walk,
based on a combinatorial expression similar to (3.6). Indeed, 7(y) is y times the relative entropy

of y+i

5 dyp1 + Y S L5, with respect to : 5+; + 3 15 4.
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We note that the rate function y ~+ I(y) is strictly decreasing with limgy, I{y) = log2 and
lim, .o I(y) = 0.
For ey € (0, 115 ( X, )}, we next define

Xo (A h,e1) = ngxll{y [fa(MRY =]+ T(y)}. (4.15)
¥=
Let 4, (21} denote the maximizer, ie.,

XU(A: h;&‘;} = ya(si} [iu'a()\: h) - 5%] + I(y(;(é‘;}). (4'§6}

We have
hil% XJ()\s hoer) = XJ()\s h,0) = XG’()\ﬂ hy,
Sl

lim o (e1) = 4o (0) = o .
and
Xo (A h) = min {ype (A B) + 1(y)} € [ (X ), o (A, ) + log 2], (4.18)
Define
x(A ) =max {x_1(MR), x (AR (4.1%)

The quantity x(\, ) will be analyzed in Section 6.

4.3 First-passage time. In this section we derive upper and lower bounds for the first-passage
timme involving x(A. k) (Lemmas 4.3-4.4}. It is now that conditions (1.16)(I) and (1.16)(I]} come
into play.

Lemma 4.3 Assume (1.16)(1}). For alles >0 and | € N,

E® %(an) Ty < LAY <lexp{—x,(\ hdy +cody}, -~ 00, (4.20)

Proof of Lemma 4.3. We borrow an argument from the proof of Lemma 6.2 in Albeverio and
Zhou [1]. For 0 = +1 and ¢ € (0,1/2), we estimate (recall (1.12))

E @ Py [7(7) < 1, A7)

IREE
Z > Z;IIE 2 £ {Sk = p(ody). By o O € [(7 ~ Dedy, (7 + Ledy),
=|T41] p=t

ax  (—1)P0Sp.; > 2'.”}
'Eggg?é}?o{?k( oSk 2 dnf2 + pdp, Aj;

(4.21)
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Let us first consider the case p = 0 and ¢ = 1. We estimate

E@ﬂé%ﬂ}[Skm();REO(?kE[(j—l}srd (G + Vedn], | max Sy 2 df2 Aﬂ}
K

=9 IE@I%Z”)[S%:(}SR[ 08y € [(j ~ Dedy, (7 + Ded,],

max S > dn /2. 80 = ”]
'ES‘Z:SR;GE?R k+1 2 Té/f, k+Rqob;, "A'n,

<2Ew® Péndn) [SK’ =0, By o by € [(j — Vedn, (7 + 1)edy], (4.22)
max  Spi 2 dn /2,80 1), < ?Sfffquﬂ

1<i<(i—1)edy

LGi+1jedy ]
<2 3 E [

~L0;
Yl}(lﬁ?}i) Ay (w, +§)}
| (7—1)eds |

<Py | Ry 2 (G Vet xS, 2 /2,801, < 250
< —1)edy

In the last line we recall (4.1} and use that after time k the path returns to the interface for the
first time at time & + #n (the inequality is uniform in k). The cases p = 1 and/or ¢ = —1 are

analogous. Inserting the estimates into (4.21), we obtain

E® P [7 (o) < LAY

VISER 0 Gedn)

<~1>: 3 S B[R (@) (4.23)

k=0 j= Lg‘?‘EJ me=={i—1)edy ]
xPy iRy 2 (§ — 1)ed,, L S 2 dn /2,50 _1en < 2ed,] .
o{ r2 (=1 n g dax, | Siz /2. 80— 1)ed, = ffﬂ]
Next we use Lemmas 4.1-4.2. Pick g5 > 0, and pick £, € (0., (A h)) so small that
X (A 1) = Xo (A B, 0)] < 2o/3. Furthermore, pick ¢ = &, such that g, - 0 and epd;, -~
as n -~ oo, Then

E® By [ (o) < 1 A7)

Slogw
’“ £ty 'l]

Y S (2enddp + 1) exp { = (j = Vendn (1o (0 ) = 1] = dn (= L)en) + dnea/3 |
k=0 = L—Jr.lj

1o
| [SRE-1]

< 42: Z 3endn exp {—dpxa (N hoe1) + dpea/3} (4.24)

k=0 j=| ok-+1]
< 121 logn exp {—dpxa (A R O) + d, 220 /3) . 7 — X

For § > @, define
tn, = expldds }. (4.25)

To prove the next lemma, we chop our time horizon n into intervals of length ¢,.
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Lemma 4.4 Assume (1.16)(1) and (1.16)(II). For all e3 > 0 and [ € N,

E® }?’énd:} [# () An > U, AP < (1 —exp {—dyxo (A R} = dna;;})l? = 00, (4.26)

Proof of Lemma 4.4. Throughout the proof we assume that n is large enough. For x.y € Z,
define (recall (1.9})

P (8)w) = P8 | S, = y)(w). (4.27)

For | € N we have (putting xp = 0)

E @ PO [#() An > I, AL

i—1
L0,
=E® P ﬂ {Eg% |78kt 14+ dn /2| < dn} AE}
L

-1

1
gD Z H (4.28)

B,y (w} Tyt Jompbdy f2<d, V<<l k=0

% (thﬁ . d 7, (D:Eﬁ N I (G' _“n .
(P“ﬂ“kzv’ﬁki's s [[25?& [U& * danE < dmAg} Zﬁksﬁij«é«isdn) (f}kiww}zgfis;‘n )(f}“ﬁ(‘b)}

< B

{
50,0 ) I
< | E max P(,l‘ Ytmax (oS b dn /2 < dn, AN (w .
- ( [%y: aatdp /2] jaydn /2] <dn % TN l<f§'éﬁl i il I iy, T ( )

To estimate the right-hand side. we fix x,y such that |ox + d, /2| < d,, and oy + d,/2| < d,,.
Define }E’ﬂfg} to be the following measure for the random walk S:

,(D:tﬁ} . i A(Dgtﬁ} . . . . . m , y
Pﬂny'dn(s}(w} - P:Lda (8 I A?ﬁ‘ [g§%§ﬁ [US'I + dﬂr'zgl < J{in/fg‘ Sin - y) (E"‘}‘ (4‘29}

i.e., the path is conditioned to start at x at time (, to end at ¢ at time #,. to stay inside the
height interval (—3d, /2, d,/2} and to not make excursions longer than { log#,. Then

I (D,fn} . 3 R _(Gzt'ﬁ} ; . y
PO | 0S4 a2 < 7] @) P | e 1854 a2 < | (@)

7(03571) . . N
T—F {[g%{n oS+ dn /2] = dn] (w).
(4.30)
Our goal is to estimate the last term on the right-hand side.
Let
I, = [tn/2.t/2 -+ 3¢ logn),
Cr., 18: there are no iy, 4y, iy € I,, with ¢; < 4y < {3 such that (4.31}

S‘i; & aDn IS‘iz - S‘ij_{ = (173/2 IS‘Z?;«; - S‘igl = d’r&//g}
i.e., Cy is the event that there are no two half-crossings of a layer in the time interval 7. Define
sp = 2|y,dy /2] (recall (4.17}}) and note that s, < (logn for large n by (1.16}(11}. Define

ci(n) = taj2+Clogn.  as(n) = tn/2 +C logn + s, (4.32)
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and note that [o(n) - (logn, ag(n) + ( logn] < I, < [0,,] for large n. We have

Pl(if;i [gmx laS; + dp /2 >d] w}

}5(6 otn) [Egla}_( o8 + dn /2 = dpy) 8 ay(n) = St}z(n) € {0, —ad,}| (w) (4.33)

59,

Xplzjfg) [Sm(n) o Saz(n) & {0 *“Udn}l Cfn:l (éb} Pal}yt;) [CI ] (w}

Let us first look at the second term on the right-hand side of (4.33), which we write as

aGyt;) [Sm(n) - Scu ny € '{O “Udn}l C{ﬁ] (w)

e Pi(}yt;i [Sm(n) ‘;Suz (n) Stls (n) = '{O —U(fﬂ} C{n] ( P;:l;t; [‘Sa;(n) & {0 —gdy, Hcfn:l((é"‘} }
4.34

To the second term on the right-hand side of (4.34) we can apply the same argument as in the

proof of Lemma 3.1, to obtain

E’fyt;i {exp{}:ﬂ_n( L8, nmx oS +dn /2] < 3d,, /2, Ay, .C), }

e

< ead} BL3) [ exp (H.9). Sty € {0, ~addn}. (4.35)
Jmax [08; + dn/2| < 3y ,?Q;AWC;“].

Here we use the event C;, to avoid having to do the first step of (3.5}, since this step does not
apply when the endpoint of the path is fixed. Dividing the two sides of (4.35), we obtain

—1

}5{,035.,;) [L g (1) & {U?M(Tdﬂ}lctrn] (w) P ((qdé)

o (4.36)

The first term on the right-hand side of (4.34) we treat in a similar way. Combining the two
estimates, we obtain

it -2
P(Dt ) [Sa;(n) = Suz(n) & {U (Tl }|C;ﬁ]

1 j > (c./;d%)

(4.37)

Let us next look at the first term on the right-hand side of (4.33}. This term we can estimate

by
0.ty
pﬂflytdi [[gla’x IUSi + dnl'{gl = dn Sfl;(n) = Sflz(ﬂ) = {0 _Udﬂ}:! (‘:"")
= QYB(%;)njdn (90;(11)0»‘: a) Py [Eg§d§ S; > dn /2, B = 85, 5, = 0] (4.38)

Inserting (4.30), (4.33}, (4.37-4.38} into the right-hand side of (4.29} and using Lemma 4.5
below, we see that for g3 >0

3 7{9:63’1) s
e e B e, P | S g2 2 ) ) (139

den ) 33 =2 o [ (0,50
> ¢ dnes/d (554(5;1) E [Ynila;)ﬁ} 4 (@ O’}] P, [[gf\iﬁ S; 2 dnf2, ) = 55, S, = 0} ‘
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Finally, use Lemmas 4.1-4.2. Then we have for large n (recall that s, = 2[y,d,/2]),

. — (080}
E min P(,l'“ max oS + 2> d, ] (w
vyt foatrdy 2 oy, 2 cd, S lgfgtnl P2 2z | ()

2 (esld) ™ exp { = dy Lo 0o (V1) + T(o ()] = dy(Bea/4) ) (4.40)

> exp {—dnxa(\ 1) = dnes}.

4.4 Two inequalities. In the proof of Lemma 4.4 we have used the following:

Lemma 4.5 Let (\h) € L, and assume (116)(1} and (116Y(11}. Let 15;‘"};;31 (w) be the path
measure defined in (4.29). Then for o = £1:

(i)
E |y lon w, o min 15(,6’%") Cr 1w
[ 000 1 gyt loardy j2 Joy-rdn f2<dy TV Cral )
(1.41)
> E [Y”(D’n) a } i) min }5(,0’”1) IRICHP
= E oo, .4,(7) syt loatdn /2 joyrda 2l <d, TV (Gl (@)
(i)
E 1in F{D’iﬁ) Cr. 1 (w)] = expl—ed Ye >0, n > nple) 4.42
[‘T:yf §a$+agﬁ/2§:}55+dn/2§<dn :L-,‘y,dn[ n]( ) - I{ ??'} i - G( ) ( }
Proof of Lemma 4.5. (1) We will prove that
£ r Y”(D:n) N
(a) we=Yyapn g4 (w. o)
o (4.43)
(b) w~ min Pﬁ’ég) iCr, ] (w),
@yt |oatdn /2 Joyrdn f2]d, T
are both pon-decreasing when ¢ = +1 and both non-increasing when ¢ = —1. The claim will

then follow from the FKG-inequality applied to P (see Fortuin, Kasteleyn and Ginibre [4]).
We give the proof for ¢ = +1. The proof for ¢ = —1 is analogous.

(a) Fix 1 < j < n. Let w.w' besuch that w; = wifor 1 <i <nwithi jandw; = ~Luwj = +1

We have from (4.1} that

~(0,2n) ) (0,2r) i o
Yoo, 4, (W +1) 2 Yy gn 4 (w,+1) (4.44)
if and only
50,2 2N 4(0.2
Zoim @) < P 20500 (). (1.45)

With the help of the relation (recall (2.1}}

H‘.Zn,afﬁ (W', 8) = H&Zn,dn (w, S} + 20y, (SJ) (4.46)
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the inequality in (4.45) amounts to (recall (2.13))
Eo[ exp{Hon g, (&', 81}, San € ODn)
< By [exp{Han g, (. $)} 20 S, 8y, € 0D, ],

which is trivially true because Ay, (S;) € {~1,-1}.

(b) Let

By ={8: So=u S, =y. S € (=8d/2,d,/2) V1 S i St} VAL

Then
ZSEC’znﬁBﬁ’” exp{H, g, (w, 5}

> sepzy explHy, 4, (w, S)}
Fix 2,y & (—3d,/2,d,/2). Pick w,w’ as in the proof of (a). Then

Pya C(w) =

23,0,

PO, 1) = PO e (@)

if and only if
ST S0 @e(S)w) FS1)[e(S) - a(S2)] 2 0
G eBEY G850
where we abbreviate
(/Xp{Hi dn \ S)}
S w fis ?l \
p( )( ) ZS@Bx i (,Xp{th dn S)}

SeBy,

and

FSy=1{8eC ), g(8) =Pl gepry

(4.47)

(4.48)

(4.49)

Here we have again used (4.46). What (4.51) says is that under the probability measure p(w}

the functions f and g are positively correlated:

plw)fgl = plw)[flp(w)ly].

We will prove (4.54) with the help of the FKG-inequality. In order to do so, we need a partial

ordering on paths. To achieve this, we first reflect paths in the middie line at height —d,, /2. To

that end we rewrite (4.54) as

Alw)lfgi 2 plw)[flplw)ly]

with ¥(S)
exp{ Hy, 4, (w, §)}27 i
S e o Se BRY,
AENw) = > genzs exp{He, 4, ( w, 82NN '
where
gﬁ:?f o {S Sp = . Stﬁ =, S; € E_dﬂfgdnff?) Y1<i< tn} QA?{;
tn
N(S) = 3 1{Si = —dn/2}.
i=1
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Here we use that f. g are invariant under the reflection (recall (4.31) and the symmetry of the
medinm with respect to middle Hues), and now also 2,y € [—d,,/2,d,,/2).
On the set BV there is a natural partial ordering:

S < 8; if and only if [S1]; < [Se]i ¥1 < i < £y (4.58)

Let 8) v 5 and 87 A Sy denote the pointwise maximum, respectively, pointwise minimum of &

and 5. Then
Hy, g, (w, StV 8o} + Hyy g, (w0, St AS2) = Hy, g, (w,S1)+ Hy, g, (w, 82),
N(S v &)+ N(S1 A S} = N(5)+ N(52),
because. for each 4, either [S) Vv So); = [S1]; and [S1 A So); = [Se); or vice versa. Counsequently,
) (81 v 82)5(w) (St A 82) = Alw) (81 )p(w)(Se), VS, 52, (1.60)

ie., plw) satisfies the convexity condition needed for the FKG-inequality.

Now, both § — f(85) and § = g(8) are non-decreasing in the partial ordering defined by
(4.58). Hence we conclude that (4.55) indeed holds, and therefore also (4.50). Since .,y were
fixed arbitrarily. the same is true when in (4.50} we take the minimum over z,y. Since w was

fixed arbitrarily, this completes the proof of (b) in (4.43).

(ii) We give the proof for ¢ = +1. The proof for o = —1 is analogous. We will prove that
(a) niin }E’ﬂ}t; i [Cr ] (w) > min Fiifgi oA ICr, ] (w) Yw,

@, ye{—3dnf2,dn /2) zy€l—dn.0]

o (4.61)
(by E x,yéirgl—ign,e] Pﬁg}fgi’{“ [Cr,] (w)] > expi{—ed,} Ye >0, n > ngle),
where
PO (8)(w) = B0 (S | AL 8 € [, 0)VL S0 <t Sy =v) (@) (4.62)

1 B0 - . . . . -
with Pa{, a’,:) “* the same probability measure as in (1.9) but with the interaction “switched off

outside 1, i.e., with (2.1} replaced by

H" ) (w0, Sy =AD" A, (S)(wi+ h). (4.63)

iEdy

(a) By (4.50}, the left-hand side of (4.61)(a} is non-decreasing in w. Therefore we get a lower
bound by putting w; = —1 for all 1 <7 < n except 1 € I,,. Hence

ﬁ(nziﬁ} ch ] (w) - ZSECi.n ﬁBi’y QXI){Hg;}dn (w? S} - QA(l - h)j\[jrn(s)}
" T Ygemes exp{H"  (w,8) = 2M1 = R)N{M(S)}

.’I?,‘y,d-n (4'64}




where we recall (4.48) and define
NS = 3T A (S) = +1) (4.65)
1 <itn, i In
to be the number of bonds in the path over the time interval (0,%,) Y Z, that fall in a (+1)-layer.
Next. we do the reflection in the middle line at height —d,, /2, which gives
r.hus. (4.64) = 5(Cr, ) (w) (4.66)
with

{-)xp{Hg;‘:dn (w,8) —2M(1 - h}Nf;”(S)}Q’V(S)

— S e BYY, 4.67
S geppe exp{H" | (w, 8) = 2M\(1 — R)N{(§) )2V ) " (4.67)

pS) =

where we recall (4.57).
Crar next step is to remove the Niﬁ (8} with the help of the Holley-inequality (see Holley [8]).
To that end, let
Kn=1{8: Ni*(S)=0} (4.68)

and define

1{S € Ku} exp{H 4, (w. 5)} 2%

) v SEB (4.69)
ZSe{S’.ﬁﬁf WS e Ky} QXp{HtI:}dﬁ (w, )} 2N(S) n

AS)

We observe that 7 is stochastically larger than g in the partial ordering defined by (4.58), ie.,
STV S2)p(S1 A S2) 2 p(S1P(S2), V81, Se. (.70}

Indeed, if Sy & K, then S) A Sy € K, and Né"(S[ V Se) = Niﬁ(Sl). Together with (4.59}, this
proves (4.70). Since § — 1{5 € C;, } is non-decreasing in the partial ordering, as was noted

below (4.60), it follows from the Holley-ineguality that
pCr ) = p(Cr, ) (4.71)
Finally, we undo the reflection by removing the weight factor 2¥%), to obtain

!
ZSEC?}: NBLYNK, exp{ﬂiidn (w S) }
H
% sergror, DU HL, (@ 5))

which is equal to the right-hand side of (4.61}(a}).

HCr ) =

(4.72)

(b) The effect of “switching off” the interaction outside 7, is that the path measure in (0, £, 4 1,
is that of simple random walk. As we will see shortly, this fact will allow us to control the
conditioning that appears in (4.62}.
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Recall (4.31). Define

Dl = {S: 3ielt/2—((/Dlogn, tu/2: 5 € {0.~dy}},

Di = {S: € [tn/2+ (30)logn. t,/2 + (T¢/2}logn]: 8 € {0, —dy}},
Dy, = {5 e [t,/2,4,/2+ ((/2)logn] 37 € [t,/2 + (5{/2)logn. t,/2 + (3(} logn]:
Si € {0,—dy}, 8; € {0,—dy}}.
(4.73)
Then
(Al NA} NAL, NDL NDEND) C A, C (AL DAL NAL) (4.74)

with Aﬁn the event that po excursion in the left-half (i = 1} resp. the right-half (i = 2} of

(0.t5) \ I, exceeds { logn, and Ay, the same in I,. With this observation we can estimate

L in P ) @)
S e dyo PelAL NBL NDE N {8, 0 =a'})
Xﬁ;’idn (C_I.n NAL, B, Dy, N {StﬁfiZ%;}g g = yf})(w}
> nin XP@" (Afﬁ n Bifn ﬂ’D‘%i,, n '{Stn =y (4.75)
T amyei—ds 0 Zx’}y’éifd-n,l}} P@(Ai[n M Btln a {S'éﬁfiz — gr}}
Pyt 4, (Ar, 0 Br, NSy, p2sci0gn = ¥ )
x Py (A7, N B, N {8, =y}

with Bgﬁ the event that the path stays confined to [~dy,0] in the left-half (i = 1) resp. the
right-half (i = 2) of (0,#,) \ In, and By, the same in ;. Here, P, (S) is the path measure for
simple random walk and }?’;j"dn(S)(w} is the path measure for the heteropolymer in I, (as in
(1.9}}, both for the path starting from z.

Next, we estimate

s (A.75) 2 I x II(w) x 11 (4.76)
with
_ : 1 1 1 —
Hw) = y y}gl;i_lb . Pl (Cr,0D1, | AL, N Br, N {84, j243¢10gn = ¥ D (), (4.77)
irr = min Py (D | AL NBE NS, =y}

¥y €l—dn,0

Since #, > d2 by (4.25), the minimum over x in I and y in Z17 is not felt in the limit of large

n. Therefore we get
I IIT = expl—c(d,/2)/2(¢/2) logn} for some ¢ > 0, (4.78}

the right-hand side being the probability that simple random walk travels a distance d, /2 within
time ((/2)logn in order to hit the interface as required in (4.73). Since d,, < logn by (1.16)(11),
the latter is much larger than the bound in the right-hand side of (4.61)(b}.
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Thus, it remains to bound E(7f(w)). This is a quantity for the heteropolymer in 7, where
all the interaction with (0, £,) \ I, has vanished. First, we estimate

TH{w) > expl—c(d,/2)?/2((/2) log w} (C{n Az, OB, 0 S 24 310gn = 0}) (w)  (4.79)

by an argument similar to that in the proof of Lemma 2.1. (The event D is realized when the
path hits 0 at both ends of 7,,.) Second. we use that d, = log|f,| ~ loglogn by (1.16)(I), to
obtain that

i [ﬁ;}gn (Cro | Ar, VB, N (S, j2s310gm = 0}) (w}] = 1. (4.80)

Indeed, this follows from the result in Albeverio and Zhou [1] cited at the end of Section 1.2,
namely, in P-probability the maximal length and the maximal height of an excursion in the
interval I, are of order log |[,|. (In [1], Theorem 5.3 and Theorem 6.1, this result was proved
only for A = 0, but it carries over to 0 < h < A (A} by similar arguments; see in particular
Biskup and den Hollander [2], Theorem 3(e) and Lemma 4.) This, together with (1.16(11}),
finishes the proof.

]

5 Proof of Theorem 1.4

In this section we prove Theorem 1.4, which is our main result for the path behavior in the

localized regime £. The proof is based on an upper bound (Lemma 5.1} and a lower bound

(Lemma 5.2) for the quantity defined in (1.14}. The proof relies on Lemimas 3.2-3.3 and 4.3-4.4.
Recall (1.12-1.15}. It is clear that, under the annealed measure E ® Pgl}dn) . (S”t)tggg:n} is a

simple random walk on o, 7 with L.id. random waiting times, since the jump process

Np—1

(Snﬁg%("pg}—i—’?(—%?) - ‘ST;{M-;09%(+§)+‘?(-§-I)) )

- (5.1}

is an ii.d. sequence of random variables taking the values £d,, with probability 1/2 each and
the medium D, is symmetric with respect to the middle lines dD,, + d,/2. So it remains to
prove (1.17). Since

Var,, prlthid (L zm) Ea En(}dﬂ} [Sfin] - (iz E& E(G %) Evun - 1] s (5'2}

B&Fy 4,

the proof of (1.17} amounts to analyzing the asymptotic behavior of the expected mumber of
jumps Ny,,. This will be done in Lemmas 5.1-5.2 below and involves the quantity y(\, i) defined
in (4.19}.

Lemma 5.1 Let (A h) € L. Assume (1.16)(1) and (L16)(IT). For all £4 > O and u € (0,1},

E® E‘éodﬁ) [(Nyn] < unexp {-x (A h)dy, -+ eady} . - 00, (5.3}

28



Proof of Lemma 5.1. Throughout the proof we assume that n is large enough. Let us first
resume what we know from Lemmas 3.2 and 4.3. Choose x > 0 and ¢; > 0 according to Lemma
23, >0, =2+ )/ s> 2/sand g5 € (0, x_1(MAYA x11(A A)). Then for all ¥V € N and
LeN(0<i<N)with ., (i + Clogn) < n we have

N
E® };,D(an) T+ = hln ﬂ{ﬂ' 0 i1y = Tim1 00y < li}j} (5.4}

tmz]

0 if inf;l; < d, /2,

<
= (5n + inf I (Lexp{—x (0 hidn + s:)dn})) A1l otherwise,

{NC{D:“*N} [ISF 58
where &, = eyn' =% = eyexp{—(1 + {1 }logn}. Let us next define

Com = g p{XJ (A h)dy, “53‘113}“{“‘1?%/2 (5.5)
Pap = (E—H/xp{ Xo(A )y, + e5dy, + logdy}) .

If we put fg) = {U i N: < c:(_-g}-;jﬂ}? then for all § & Igj) we have
l; exp {—X(,;)-i()\;f%)dn +e5dn } < Poia = (1- ) n— oo (5.6)

Therefore (5.4) vields

Eo PO

N
0., |1T(F1) Slopn (V7m0 bri) = T 0 Brany < ff}j}

tmz]

< (5?2}{@;.%@} + H (lg exp {-X<_[);()\? Rydy, + e5ddy } Efe:’,if':' + 1?:%,:%;;)) E{_;,}f’zgdﬁfz}

(=
y
< 5 E{;”‘ 0, mli >dn 2} + H ( E)i}né{dn,@gl;(e(m.g};,_n} + E{f-ize(m-;}i,-n}) ‘ (5?)
=l
For N € Np, let (Xg,...,Xx) be the random vector in NV with distribution P given by
Pl {x< zf}} = rhs. (5.7). (5.8)
()
Define TE? = 0 and Tk(,[} = foe X;, k> 0. For t > 0, define
V V= sup {k € My Té'l_)[ < t} . (5.9
For k € {~1,....K(n,t)} with K(n.t) = LglognJ we have (recall (1.14))

E@PY [N 2 k+1] = E@PO" [nobn +7(1) <4 (5.10)
< Pl <

- p [fvf” >k 1] .
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Therefore we obtain from (5.10) that, for « € (0,1},

[2em /e /2}
K& El%(}d?:} [Nur] = Z E® ﬁénd:} [N > ]
k=0
K{nun)A|un/{d, /2]
_ > E@R [N >
k=0
L2 /e /23
+ > E By N > 4 o1

k=8 (nun i un f{ds /2) ] +1

- : un :
< Z P [Ngf > k} + ((@/’2} — K(n, fam)) P [N?ﬁ,? > K(n?un}}

k() N
< (; n un. N E) ® ]:EV{E):[
B (dn,/g}f{(?’zs fu,n) uT
< (logm)E [N{})]. -

Thus we are left with proving an upper bound for the expectation on the right-hand side of
(5.11), which only contains the random variables Xj.

To handle E’[N}{JQ |, note that the X;’s do not have the same distribution: even ¢ corresponds
to o = +1, odd i to ¢ = —1. Therefore we need to further simplify the problem. Let Y = 0
and Vi = Xo: o+ X1, ¢ € N Then we have

N = sup {k € Ny: Tél_)[ < zm}

un

FAN

2sup {k e My Té;i[ < tm}
k
= 2sup {k & Ny : Z Y; < zm} (6.13)
FE

and

r ﬂ v < lf}jl = P ﬂ {Xoi—o + Xoip1 < li}}
Faml (=

N
< Ol pzany * L PHasicen) + L) (514)

¢ [

where we introduce
I>p> Bmpin+p 10— Priap 10 = 3/4, (5.15)
n—00
€ = €ty O 1y = dpy + Z sexp{x i (A Rydy — e } (5.16)
i=0,1
{2y _ g e r

Iy =121 l; <en}. (5.17)
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For N € Np, let (Z1,..., Zx) be the random vector in NV with distribution

N
Pz ng}} = r.ls. (5.14). (5.18)

=

Define Té“n = (0 and Téz} = f:::& Zy k€ N For w € (L, 1), define

N;é) = sup {k e Ny Téz) < un} . (5.19)

E® géodﬁ) (Nun] = 2(logn) E {’V;Efﬂ . (5.20)

Therefore it remains to caleulate
[8.8]
B {Nﬁfﬂ - ¥p ngfg > k}
[8.8]
e ZP Téﬁl < zm}

- Yr Tgfgl (k+1}dn$un-(k+é)dn}

R o35 (Kb 1 3ey
L fdn—1] L5 g

- 3 Z P [Téﬁ (ko L)y = U(en — dn}} (5.21)

Lnn [ minJ

|urfdn—1] p— Y ol el i
< S U S )
|unjeq|+1
. 1y
< epun” S fdy, + Z Z ( ? )pkﬁi(é—p}l
e kr k121

~ UTE
< epun” S dy, (:; + 2) (1—p)~h
n,
Iuserting this into (5.20) and recalling (5.16), we obtain that
E 2 E’éodﬁ) [Nun! < wunexp {~x(\ h)dy, + 2e5dn}, (5.22)

which completes the proof since £ is arbitrary.

Lemma 5.2 Let (A h) € £. Assume (1.16)(1) and (L16)(IT). For all £ > & and u € (0,1},

E® By y [Nun] 2 unexp{~x(\ h)dn — codn}, 1 — o0. (5.23)
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Proof of Lemma 5.2. Let us first resume what we know from Lemmas 3.3 and 4.4, Choose x > 0
and ¢ > O according to Lemma 2.3, {; >0, { = 24+ {1)/r > 2/k, &7 > O and § > 0. Then for
all NeNand; e N (0 €4 < N) we have

E® fso{l}df) {71(“{“1} An > ﬁn} i ﬂ{(?‘{ o f:};n(Jr;)} Am—(r_10 f?ﬂ;rg)) An > L?}j' (5.24)
faz]
0 if Z‘i L? = i,
?\; -
iz}
1 otherwise,

where L; = [; exp{dd, } —Clogn, 8, = con' % = cyexp{—(1+() log n}, and (+) is the condition

E Li<n and inf Ly exp{—x;_1y (A, A)dp — 2e7dp — 8dn} 2 1. (5.25)
N T
d

Again, our goal is to simplify the expression on the right-hand side of (5.25}. Under (#} we have

(1 —exp {—x_1p (N hydy, — erdn )Y < exp{—litexp {=x 1\ hydn, — evdy } }

< exp{~Lexp{erd,}} = 0(3,). (5.26)
Note that lim, .o &, = 0.
For N e N, let (X|,..., Xy} be the random vector in NV with distribution 7 given by
N 0 if Z'i L? = Ti,
P ﬂ {X? ~ L{}} - S+ (20,)Y if 30, Li < noand inf ::— > 1, (5.27)
i i ©n
= {1 otherwise,
where
en = expix(\ h)d, + 2e7d,, + 6d, ). (5.28)

Define Té:;) = () and Téig} = fm X;, k€ N. For t > 0, define
N{(z}) = sup {k € My T,g;) < t} . (6.29)
Using a similar argument as in (5.10), we see that for all k € Ny U {—=1},
E@ B0V [N, 2k +1]2 P [Nf‘) k4 é} (5.30)
and so we obtain, for v € (0,1},
E@ By Nl 2 E[NG)]. (5.31)

Thus we are left with proving a lower bound for the expectation on the right-hand side of (5.31).
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We have

&0 -
BN = 3P [V >4

k=i
s r .

= ZP Téﬁ < tm}
k=0
s r .

= Z P _Tk{»ﬁz — (k4 1ley <un - (k+ 1}%} (5.32)
fez=()

i I S SLT
|21 ey —1] Lcnwicnnj

= XX PRk = e~ d).
ki) el

un—(k+1)e,
R—ECyn
this term can be explicitly written down, so

) =Y (1 - (@ > (’QT)(AW-‘(%%#))

Sinee Hiy, o = o < 1, only the term with [ = 0 contributes asymptotically. But

kom0 beol

i [ en—1]
> " _ k—1
- Cn 511 * Z (1 25?%}

ki)
1-2 ,

= L 1= (1= 26,/% | (14 (1)) (5.33)

dn
_ ! ;25“ [E - OXp {w(:n%ﬂ(é + ()(1})}}

= (1= 28,) " (1+ (1)),

[userting this into (5.31), we obtain that
E® E’lgod?:) [(Nun] = wunexp {~x(\ h)dy, — erdy, — ddp} . (5.34)

which finishes the proof since £; and § are arbitrary.
Combining (5.2) and Lemmas 5.1-5.2, we obtain (1.17) in Theorem 1.4. The bounds (X, A) €

(0, 00} were already mentioned in (4.18-4.19}.

]
6 Proof of Theorem 1.5
In this section we prove Theorem 1.5. Recall the variational problem in (4.18},
Xa (A ) = infype (A h) + I{y)]. (6.1)
¥z
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where 1 is the rate function in (4.14) and 15 (A, b} is the guantity defined in (4.2}, Throughout
the proof, A € (0, oo} is fixed.

(i} It is immediate from (4.1-4.2) and the symmetry of P under the reflection w -+ —w that
s (A 0) = po g (A, 0). Consequently, o (A, 0) = x_ (A0} via (6.1).
(ii) Return to (4.3). Fix 0 < he < b1 < he(A) and write

m

exp {)\i(z}.(&;) — o} w; + h-g} = 0LM(8) exp {)\ > (A(S) = o) (w; + hg}} (6.2)
fam ] fam]

with

ki
O (8} = exp {)\(hl —ha} > (A(S) - a)} ‘ (6.3)
ds=1
It follows from (6.3} that, for any S,

exp{—2A(h; — ho)m} < @fg”‘)(fﬁ) <1,

6.4
1< 0% (8) < exp{2A(hy — ha)m}. (6.4

Consequently, for any w,
YO o 1) (A, ko) < YO o 413\ k1) € exp{2A(h1 — ho)m} YO o +15( N\, ko),
YO (o, 1) (N, ke expl—2X (At — ho)m} < YO (@, ~1)(X Ay ) S VO 1Y\, hy).
(6.5)
Via (4.5}, this shows that A ~ u, (X h) is continnous for ¢ = +1, non-increasing for ¢ = +1 and
non-decreasing for o = —1. Via (6.1}, this proves that h — x,(\ A} is continnous for o = 41,
non-increasing for ¢ = +1 and non-decreasing for o = —1.
(iii} By Jensen, Theorem 1.1 (see also Bolthausen and den Hollander [3], Lemmas 1 and 2), (4.3)
and the strong law of large numbers for w, we have
7= log E[Y 021 (i, 7] > =Ellog Y (w, 7)], (
| 6.6)
lim 5~ log[1/ YO (0w, a) = ¢(M\h) —a)h P~ a.s. and in L'(P).
B—00
Therefore fiy (A, k) < ¢(A, )~ cAh. Hence Ly, o) fir1 (A B) = 0. Thus B, 00 x41(A ) =
0, because inf,~ I{y) = I(o0) = 0.
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