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Diffusion of a heteropolymer m a 

multi-interface medium 

F. den Hollander' 

"-LV. Wilthrich t 

March 18, 2003 

Abstract 

vVC cOIlsider a hctcropolYlIwI', cOIlsisting of an i.i.d. concatenation of hydrophilic and 

hydrophobic monomers, in the presence of water and oil arranged in alternating layers. 

The hctcropolYlIwI' is modelled by a directed path (( Si )iE':'10) where the vertical component 

lives OIl Z) and the layers arc horizontal with equal width. The path measure for the vertical 

component is given by that of simple random walk multiplied by an C"Al)OIlcntial weight factor 

that favors matches and disfavors mismatches between the monomers and the medium. vVc 

study the vertical motion of the hctcropolymcr as a fUIlction of its total length n when the 

width of the layers is dn and the parameters in the exponential weight factor are such that the 

heteropolymer tends to stay close to an interface (:ilocalized regime"). In the limit as n ~ Xl 

and under the condition that limn~(X; dn/ log log n = Xl and limn~(X; dn / log n = 0, we show 

that the vertical motion is a diffusive hopping between neighboring interfaces on a time scale 

exp[,ydn (1 + o( 1)) L where ,y is computed explicitly in terms of a variational problem. An 

analysis of this variational problem sheds light on the optimal hopping strategy. 
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1 Introduction and main result 

1.1 One-interface heteropolymer. \Ve begin by describing the on,,"~interface model that was 

studied in Bolthausen and den Hollander [3]. This model has two ingredients: 

1. S = (S;)iENo: a simple random walk on Z; Px, Ex denote its probability law and expecta

tion, given So = ;C. 

2. W = (W;)iEN: an LLd. sequence of random variables taking the values ±1 with probability 

1/2 each; JP', IE denote its probability law and expectation. 

Fix A E [0, :)0), hE [0,1) and n E N. Given w, define a transformed probability law on path 

space by putting 

p~O,n) (S) (w) = (O,~) • exp {A t b.(Si)(Wi + h)} Px (S), 
Zx (w) i=l 

where Z~O,n)(w) is the normali/,ing partition sum and 

b.(S;) = { sign(S;) 
b.( Si- d 

if Si fc 0, 

if Si = O. 

(1.1) 

(1.2) 

We view p~O,n) as modelling the following situation. Think of (i, S;)iENo as a directed polymer 

on Z2, starting at (O,;r;), consisting of monomers represented by the bonds in the path. The lower 

half plane is water, the upper half plane is oiL The monomers are of two different types, occurring 

in a random order indexed by w. Namely, Wi = -1 means that monomer i is hydrophilic, Wi = + 1 

that it is hydrophobic. Since b.( S;) = -1 when monomer i lies in the water and b.( S;) = + 1 

when it lies in the oil, we s""'" that the weight factor in (1. 1) encourages matches and discourages 

mismatches for the first n monomers. For h = a both types of monomers interact equally 

strongly with the water and with the oiL For h E (0,1), on the other hand, the interaction 

strength is asymmetric: the hydrophobic monomers interact more strongly with either solvent 

than the hydrophilic monomers, resulting in the heteropolymer to prefer the oil in the upper 

half plane over the water in the lower half plane. The parameter A is the overall interaction 

strength and plays the role of inverse temperature. I 

The olK~interface model is self-averaging: 

Theorem 1.1 ([3], Tlworem 1) For- ever-y A E [0,:)0) and h E [0, 1) ther-e exists a deter-ministic 

nv.mber- q)(\ h) sv.ch that 

lim ~logZ(o,n)(w) = q)(A,h) 
n--+oo n 0 

JP' - a.s. and in L I (JP'). (1.3) 

j Note that the second line in (1.2) makes the interaction act on bonds rather than on sites. Also note that 

(1.1) makes perfect sense for 'x) It E R but that only the indicated range of 'x) It is relevant. 
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The function q) is the specific free enerYlY of the heteropolymer. It is continuous, nondecreasing 

and convex in both variables, and satisfies q)(A, h) 2: Ah. This lower bound comes from the 

following estimate, which uses the strong law of large numbers for w: 

Let 

Z6o,n)(w) 2: Eo[ exp {\~ l!.(Si)(Wi + h)} I{Si > 0 Ifl:S i:S n}] 

exp { Ahn + \~ Wi} Fh [Si > 0 If 1 :S i :S n] 

exp{Ahn + o(nn () (n- I / 2 ) , lP' - a.B. 

D = ((\h): q)(A,h) = Ah}, 

[. = ((\h): q)(A,h) > Ah}. 

(IA) 

(1.5) 

In view of (IA), intuitively, D corresponds to the situation where the heteropolymer moves away 

from the interface in the upward direction ("deloca!i/,ed regime"), while [. corresponds to the 

situation where the heteropolymer stays close to the interface and manages to place more than 

half of its monomers in their preferred medium ("loca!i/,ed regime"). It turns out that both 

these situations occur: 

Theorem 1.2 ([3], Thwrem 2, Equation (0.8)(iH) and Corollary 1) For every A E (0,:)0) there 

exists an herA) E (0,1) sv.ch that the hetempolymer is 

localized 
(1.6) 

delocalized if h 2: herA). 

Moreover, A f-t herA) is continv.ov.8 and non-decreasin!l on [O,:)OJ, with herA) ~ CIA as A + 0 

and 1 - herA) ~ C2!A as A -+:)0, for some C I , C2 > o. 

1 

D 

o 

Fig. L Qualitative picture of A H IIc(A). 

In Biskup and den Hollander [2] various path properties were derived that confirm the above 

intuitive description. In the deloca!i/'ed regime D the heteropolymer intersects the interface with 
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/'ero frequency in the limit as n -+ :)0 ([2], Thwrem 4). In the locali/'ed regime L, however, 

this frequency is strictly positive, and the excursions away from the interface are exponentially 

bounded both in length and in height ([2], Thwrem 3). In Albeverio and Zhou [1] it was proved 

that for ,\ E (0,:)0) and h = 0 both the maximal length and the maximal height of an excursion 

are of order logn ([1], Thwrem 5.3 and Theorem 6.1). The same holds true throughout the 

locali/'ed regime L by the estimates in [2]. 
The on,,~interface model defined in (1.11.2) was introduced in Garel, Huse, Leibler and 

Orland [5], and early studies include Sinai [13] (h = 0) and Grosberg, I/,railev and Nechaev 

[6] (w periodic). Recent results on related olK~interface models appear in ~1aritan, Riva and 

Trovato [10], ~1artin, Causo and Whittington [11], and Orlandini, Rechnit/'er and Whittington 

[12]. 

1.2 Multi-interface heteropolymer. In the present paper we study a version of the above 

model where the water and the oil are arranged in alternating horiwntal layers. For n E N, 

we choose a layer thickness dn E 2N (an even number for reasons of parity). The interfaces 

separating the layers are located at the heights 

while the (+I)-layers resp. the (-I)-layers span the heights 

D;; = U dn [(2k, 2k + 1) n Z], D;; = U dn [(2k-I,2k)nZ]. 
kENo kENo 

In analogy with (1.11.2), the probability law of the heteropolymer is defined as 

'(O,n) • _ 1 ,{ L:n 
. ,. } Pxd (S)(w)-,(O) exp'\ ~dn(S,)(W,+h) Px(S), 

, n Z l,n ( ,) . 
x)dn w 1=1 

1 Z' (O.n) ( ). 1 l' . . . d 
W lere x;d

n 
W IS t le nOrIna lyang partitIOn SUIn an 

if Si E D;i, 

if Si E D;;, 
if Si E iJDw 

(1.7) 

(1.8) 

(1.9) 

(LIO) 

Here, we use the hat-superscript to distinguish the multi-interface model from the olK~interface 

modeL 

Our first result is a comparison of the multi-interface model with the olK~interface model on 

the level of the specific fr,,'e energy. 

Theorem 1.3 For- every,\ E [0,:)0), h E [0,1) and Jor- ever-y seqv.ence (dn ) sv.ch that limn-+oo dn 
= :x;, 

JP' - a.B. and in L I (JP'). (1.11) 
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This result says that for any diverging layer width the two models have the same specific free 

energy and hence the same phase diagram (SIC'e Tlworem 1.1 and Fig. 1). Intuitively, this result 

is plausible: as the interfaces move apart, the heteropolymer "gets to see only one interface at 

a time". \Ve will SIC'e that the limit dn -+ :)0 makes the multi-interface model tractable. 

1.3 Path behavior in the localized regime. \Ve now come to the main result of this paper. 

Our goal is to analy/,e the path behavior for the multi-interface model in the locali/'ed regime 

L, in particular, we want to describe how fast the heteropolymer hops betwIC'en the interfaces. 

For technical reasons we will not analy/,e the jump process between the interfaces of the 

layers, but rather betwIC'en the middle lines of the layers, i.e., iJDn + dn/2. The reason is that the 

oil/water medium is symmetric with respect to these middle lines. Let us therefore introduce 

the stopping times 

f(u) = inf{i E No: Si = udn/2} 1\ inf{i E No: Si = -u3dn/2}, u = ±1. (1.12) 

If So = 0, then f(u) is the first time that S hits a middle line of a u-Iayer. Furthermore. let us 

define TO = ° and the stopping times 

inf{ i E No: lSi - Sol = dn }, 

Tl 0 (irk + Tk for kEN, 
(1.13) 

where (ii denotes the tinK~shift by i. If So E iJDn + dn/2, then Tk is the k-th jump time between 

the middle lines of the layers. In terms of these quantities, the number of hits of middle lines 

up to time t after time f( + 1) is given by 

t E [O,n], (1.14) 

and the vertical displacement at time t relative to the height at time f(+l) is given by 

t E [O,nj. (1.15) 

Similar formulas can be written down with f( -1) instead of f( + 1), but we choose to follow the 

jumps starting from the first hit of a middle line of a (+1 )-layer. 

Theorem 1.4 Let (\ h) E L. Fix a seqv.ence (dn ) sv.ch that 

(I) 

(II) 

lim dn/loglogn =:)0, 
n-+oo 

lim dn/logn = 0. 
n-+oo 

(1.16) 

Then ther-e exists a constant X(A, h) E (0,:)0) sv.ch that, v.1!.der- the annealed measv.r-e IE g; P,~J~)' 
the pr-ocess (StltE[O,n] is a simple random walk on dnZ with i. i.d. random waitin!l times whose 

var-iance at time mi. satisfies 

= -X(A,h), !t, E (0,1). (1.17) 
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Equation (1. 1 7) says that 

eX(A,h)dn{l+O(I» = average jump time between middle lines of layers. (1.18) 

1.4 Discussion of Theorem 1.4 and analysis of X(A, h). We begin by explaining the two 

conditions in (1.16). The results cited in Section 1.1 for the one-interface model, in combination 

with Thwrem 1.3, tell us that in the locali/'ed regime [. the heteropolymer is tied down to 

the interfaces in iJDw The excursions away from iJDn have a typical length of order one and 

a maximal length and height of order log n. Condition (II) therefore guarantees that the het

eropolymer jumps betw"",,,n the interfaces many times prior to time n (Le., the medium is "not 

too macroscopic"). On the other hand, condition (I) guarant"""'s that the heteropolymer does 

not jump too frequently, so that between jumps it stabili/,es near an interface (Le., the medium 

is "not too microscopic"). \Ve do not know whether log log n is optimal as a lower bound, but 

it is important in our proof. 

The proof of Theorem 1.4 shows that there exist constants Xo (>., h), (J ± 1, such that 

eXq(A,h)dn{l+O(I» = average crossing time of (J-Iayers, (1.19) 

which implies that 

X(A,h) = X-I(A,h) V X+I(A,h). (1.20) 

In the course of the proof of Tlworem 1.4 we give an explicit description of Xo(>" h) in terms 

of a variational problem involving a one-interface model with one neutral solvent (s"",,, (4.14.2) 

and (4.18)). An analysis of this variational problem leads to the following qualitative picture. 

Theorem 1.5 For every A E (0, :)0): 

(i) X-I(A,O) = X+I(>"O). 

(ii) On [0, herA)), h f-7 X-I (A, h) is continv.ov.8 and non-decreasin!l, while h f-7 X+I (>., h) is 

continv.ov.8 and non-increasin!l. 

(iii) limhth"(A) X+I (>., h) = O. 

? 

o h 
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Fig. 2. Qualitative picture of h H Xc(A, h) for (J ± 1 and A E (0,00). 



In view of (1.20) and Thwrem 1.5(iiil, we have 

X(>.,h) = X-l(>',h). (1.21) 

i.e., the variance in (1.17) is dominated by the average crossing time of the (-I)-layers, which 

is at least as long as the average crossing time of the (+ 1 )-layers. This comes from the fact 

that the heteropolymer prefers to wander off into the (+I)-layers as soon as h > O. In view 

of Thwrem 1.5(iiil, on the phase transition line separating L from D (see Fig. 1) the average 

crossing time of the (+I)-layers vanishes on time scale cdn . \Ve have no control over how the 

average crossing time of the (-I)-layers behaves in the delocali/'ed regime D, but we expect it 

to be smooth across the phase transition line (s(''C the dotted line in Fig. 2). 

\Ve are unable to prove strict monotonicity of h f-7 Xq(\ hl, as suggested in Fig. 2. 

1.5 Some future challenges. Here is a list of some open problems that merit closer investi

gation: 

(1) Is there a version of (1.17) for the quenched rather than the annealed model, i.e., for lP'-a.s. 

all w with respect to P,~J~) (w)'! \Ve expect that the answer is yes, with the same X, because 

of the ergodic tlworem for w. A proof can probably be worked out with the help of the 

"decoupling of excursions" argument in Section 3. 

(2) What can we say about the hopping in the delocali/'ed regime D'! Since the crossing of 

the (-I)-layers is harder than in the locali/'ed regime L, we expect the jump process to 

further slow down (s(''C the dotted line in Fig. 2). 

(3) What happens when the layer widths are random, say, layer k has width Ykdn with (Yk)kE?: 

i.i.d. random variables that are bounded away from 0 and :x/I The underlyingjump process 

betw(.'Cn layers will be a random walk in random environment. 

(4) The present paper is a first attempt to move away from the simple geometry of a single flat 

interface. \Ve are ultimately interested in situations where the two media mix "as droplets 

of oil floating around in water". Can anything be said for such more complicated models'! 

A toy model in this direction is studied in den Hollander and Whittington [7]. 

1.6 Outline. In Section 2 we prove Tlworem 1.3 and derive a number of preparatory lemmas. 

In Section 3 we provide a decoupling argument through which the probability law of the lengths 

of the successive excursions can be estimated in terms of that of a single excursion. In Section 4 

we give asymptotic estimates for the latter. In Section 5 these estimates are used to prove 

Tlworem IA. Tlworem 1.5 is proved in Section 6. 
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2 Proof of Theorem 1.3 and preparations 

This section contains the proof of Thwrem 1.3 as well as thr"'e technical lemmas (Lemmas 2.1 

2.3) that will be lK'eded along the way. In Section 2.1 we look at partition sums, in Section 2.2 

at excursion lengths. 

2.1 Asymptotic behavior of partition sums. We start with the proof of Tlworem 1.3, which 

together with Tlworem 1.2 shows that Fig. 1 is the phase diagram also for the multi-interface 

modeL Throughout the sequel we write 

n 

Hn,dn (w, S) =,\:L ildn (Si)(Wi + h) (2.1) 
1=1 

to denote the Hamiltonian of the multi-interface heteropolymer defined in (1.9) and 

n 

Hn(w, S) = ,\:L il(Si)(Wi + h) (2.2) 
1=1 

to denote the Hamiltonian of the olK~interface heteropolymer defined in (1. 1). 

Pr-oof of Theorem 1.3. The proof is based on a folding argument applied to the random walk S. 

\Ve assume that So = O. 

Define qo = 0 and 
inf{i E N: Si E iJDn \ {SoH, 
ql 0 (i~k + qk, kEN. 

(2.3) 

i.e., qk is the k- th crossing time of a layer, and 

sup{O < i < ql: lSi - S~l I = IS~(l - S~l 1/2}, 
e I 0 (i~k + qk, kEN. 

(2.4) 

i.e., ek is the last hitting time of a middle line of a layer prior to time qk. Also define 

Nn = sup{k E No: qk:S n}, (2.5) 

i.e., the number of layer crossings up to time n. Obviously, fVn :S n/dn . 

Next, define a folding map S f-7 S' for S = (S;)7=0 and S' = (Sn7=0 as follows. Put S;O) = Si 

for 0 :S i :S n. For 1 :S k :S Nn , define recursively 

{ 

(k-I) 
(k) _ Si 

Si - (.k-I) _ (k-I) 
2S'k Si 

if 1 :S i :S ek, 

ifi > ek, 
(2.6) 

and set S' = S(Nn ). Thus, we successively reflect the tail of the path at the heights ±dn /2. The 

important observation is that sUPO<:i<:n IStl < dn, S~k = 0 for 0 :S k :S Nn , and 

(2.7) 
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the latter implying, via (2.12.2), that 

(2.8) 

Therefore we n"",d only worry about how many paths S are mapped onto a single path S'. 

To that end, define R o = 0 and 

inf{i E N: Si E iJDn}, 

R1o(illk+Rk, kEN. 
(2.9) 

i.e., Rk is the k-th hitting time of an interface. Pick any path S' with sUPO<:i<:n IStl < dn . We 

can defold S' whenever 

sup IStl = dn /2, (2.10) 
Ilk~l (S')<:i<lldS') 

But this event can occur at most n/dn times and therefore S' is the image of at most 2njdn 

paths S. Hence, using (2.8) we get 

and similarly 

L exp{Hn,dn(W, S)} Tn 
S 

')~. ;mp(l~;~n IS:I<dn 

< 2njdn ZAO,n)(w) 

z(O,n)(W) > 
O)dn 

')~. ;mp(l~;~n IS';I<dn 

> Tnjdn Lexp{Hn(w,S)P-n 
S 

Tnjdn ZAo,n) (w). 

(2.11 ) 

(2.12) 

Since limn-+oo dn = :)0, Tlworem 1.3 is now a consequence of Tlworem 1.1 and (2.112.12) . 

• 
\Ve next consider the partition sum for the multi-interface model up to time 2n restricted to 

the endpoint S2n lying in an interface: 

-(O,2n) .- [, , . 1 ZO,Of)n,dn(w) -Eo exp{H2n ,dn(W,S)},S2n E iJDn . (2.13) 

The following lemma says that this restriction has no effect on the specific free energy. 
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Lemma 2.1 FOT every A E [O,:)OJ, h E [0,1) and fOT every seqv,ence (dn ) sv,ch that limn-+oo dn = 

:)0, 

, 1 ,'(O,2n) ,_ 
hm -logZOOf) d (w) - q)(\h) 

n--+oo 2n ) n; n 
lP' - a,s, and in LI (lP'), (2,14) 

Pmof of Lemma 2,1, Using the stopping time HI defined in (2,9), we have for mEN, 

m-I 
'(O,2m) , "" (O,2k) , , , ZO,OlJn,dn (w) + L., ZO,OlJn,dn (w)Eo [exp {H2m- 2k,dn (1}2kw, S)}, HI > 2m - 2k] 

k=O 
m-I 

'(O,2m) , "" (O,2k) , , ,_ ZO,OlJn,dn (w) + L., ZO,OlJn,dn (w)Eo [exp {H2m- 2k,dn (1}2kw, S)}, HI - 2m - 2k] 
k=O 

Fh [HI> 2m - 2k] 
x (2,15) 

Fh [HI = 2m - 2k] 

m-I Z'(O,2k) (')E [, {H (I)' O)} H - 2 2k] '(O,2m) L OJ)/),d W 0 exp 2rn-2k)dn 2kW , >./ , I - ra ~ < Z, (w) + ---"'-, ,-"-,,n=, n'--------=--;-:c---=--~------
O,OlJn,dn Po [HI = 2m - 2k] , 

k=O 

Here, the first line is a renewal relation, while the second line uses that the excursion starting 

from an interface at time 2k stays within a single layer until time 2m, Next we apply the folding 

argument from the proof of Thwrem L3: for 1 E N we fold the part of the path that lies between 

inf{ i > 0: Si = dn /2} and sup{O < i < 21: Si = dn/2} into the layer (0, dn) nN with symmetry 

axis dn/2, Then we get 

Fh [HI = 21] > Po [HI = 21, S21 = 0] 

2Po [Si E (0, dn) for 0 < i < 21, S21 = 0] 
2lj'd > 2xT nPo[Si>OforO<i<21,S21=0] 

> T2Ijdnclll-:lj2, 

(2,16) 

Substituting (2,16) into the last line of (2,15) to estimate the denominator of the summand, we 

find the second inequality in 

(2,17) 

The first inequality is trivial. Together with Thwrem L3 this yields the claim, 

• 
2.2 Estimates on large excursions. Our next lemma is a large deviation result for the 

restricted partition sum defined in (2,13) and for the successive excursion lengths, both in the 

locali/'ed regime [, Recall from (L5) that q)(A, h) > Ah for (A, h) E [, 
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Lemma 2.2 Assv.rne that (A, h) ELand limn-+oo dn = :)0. 

(i) Fo1' all E E (0, q)(\ h) - Ah) the1'e exists a oe > 0 sv,ch that 

[
1 '(02n) ] lP' 2n log ZO,(9f)n,dn (w) < q)(A,h) - E :S O(I)exp{-oe n }, (2,18) 

(ii) The1'e exists a constant" > 0 sv,ch that, fo1' all KEN and all rnk E 2N (1 :S k :S K) with 
~f( 
L..k= I rnk :S n, 

(2,19) 

Fmof of Lemma 2.2. The proof is similar to that of Lemmas 3 and 4 in Biskup and den Hollander 

[2], Lemma 2,1 is needed for the proof of (il, while (i) is needed for the proof of (ii), The reader 

is referred to [2] for details, 

• 
\Ve close this section with an estimate on the maximal excursion length away from an inter

face, For I, n E N, define 

n1n = sup {(Rk ;\ I) - (Rk-l ;\ In, 
kEN 

Le" the maximal excursion length up to time l. 

(2,20) 

Lemma 2.3 Assv.rne that (A, h) ELand limn-+oo dn =:)0, The1'e exist" > 0 and (;2> 0 sv,ch 

that fo1' all ( > 0, 

(2,21 ) 

Fmof of Lemma 2,3, For ( > 0 and n E N we have 

IE g; p(O,n) [ndn > (100' n] O)dn n b ' 

n-(logn-l 

< :L IE g; i;~)~) lSi E iJDn, (RIo Ii;) ;\ (n - i) > (logn] 
1=0 

n-(logn-l n-i 

:L :L IE g; i;~)~) lSi E iJDn, Rl 0 Iii = k] (2,22) 
1=0 k=(logn+l 

n-(logn-l n-i 

< :L :L IE g; i;~)~) [RIo Iii = k I Si E iJDn] 
1=0 k=(logn+l 

n-(logn-l n-i 

:L '" IE g; p(O,n-i) [R - k] L O)dn 1-, 

1=0 k=(logn+l 
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Using Lemma 2.2(ii), we see that there exist constants" > 0 and C:l > 0 such that for all ( > 0, 

This proves the claim with C2 = C:l" - I • 

3 Decoupling of excursions 

n-(logn-l n-i 

< L 
1=0 k=(logn+l 

< -I -f.( 
nC:Jfi, n '; (2.23) 

• 

This section contains thr"'" further lemmas (Lemmas 3.13.3) in which we estimate the proba

bility law of the lengths of the successive excursions in terms of that of a single excursion. The 

latter will be estimated in Section 4. In Section 3.1 we look at the effect of adding a bridge 

point, in Section 3.2 we derive the decoupling estimates. 

3.1 Adding a bridge point. We begin by estimating how much it costs to do an additional 

hitting of an interface. For ( > 0 and I, n E N, define the event (recall (2.20)) 

Af = {n1n :S (logn}. (3.1) 

Lemma 3.1 Assv.me that limn -+oo dn =:)0. For- all ( > 0 ther-e exists C4 > 0 sv.ch that for- all 

bE 2N, 

P• (O,n) [An] < ' d:lP' (O,n) [An," E iJD ] 
O)dn ""n - C4 n O)dn ""n' r.7 b n , (3.2) 

Pr-oof of Lemma 3.1. For bE 2N, define 

(3.3) 

i.e., the last hitting time of an interface prior to time b. For simplicity we assume that b :S 
n - ( log n. Then we have 

Eo [exp{ Hn,dn (w, 8)},.4;:] = Eo [exp{ Hn,dn (w, 8)},.4;:, LO = b] 

+ L Eo [exp{ Hn,dn (w, 8)},.4;:, b - LO = I, HI 0 tlo =1']. (3.4) 
2'5,l+r'S,( log n 

The case b> n - (logn is analogous, but we have to restrict the sum in (3.4) to 'I' :S n - b. Let 

us estimate the last term in the above inequality for fixed I, 'I'. The important observation is 

that, on the event {b- LO = I, HI 0 tlo = 'I'}, ~dn (8;) has the same sign for all b -I < i :S b+ ,/'. If 

we want to do an additional hitting of an interface in this interval, then all we have to do is to 

make sure that the hitting of the interface is in fact a reflection at the interface, since this does 

12 



not change the sign of ~dn (S;) and hence leaves the Hamiltonian Hn,dn (w, S) in (2.1) invariant. 

Consequently, 

Eo [exp{Hn,dn(W,S)},.4;:,b-Lb =I,HI o(ib =1'] 

:S 2Eo [exp{ Hn,dn (w, S)}, A~, b - Lb = I, HI 0 (ib =1', SL' = SUlOO,] 

= 2 :L Eo [exp{Hb-l,dn (w, S)},A~_I' Sb-l = z] 

xEz [exp{HI+T,dn((ib-IW,S)},Af+T,HI =1+r,SI+T =z] (3.5) 

xEz [exp{ Hn-(b+T),dn ((ib+TW, S)}, A~-(b+T)] 

= Eo [ exp{ Hn,dn (w, S)}, A~, HI 0 (ib-l = I, H2° (ib-l = 1 +1', 

Sb-l = Sb = Sb+T E iJDn] 

2Po [HI = 1 +1', SI+T = 0] 
x~~--~~--~--~~~~--~ 

Po [HI = I, H2 = 1 +1', Sl = SI+T = 0] 

The inequality uses the fact that paths may be reflected in middle lines because the medium is 

symmetric with respect to middle lines. A standard calculation for simple random walk gives 

that 

Po [HI = rri, Sm = 0] =: :L cos
m (~ ) sin

2 (~) (3.6) 
n Ikl<dn 

(s(''C e.g. Hughes [9], equation (3.291)). It is therefore easily s(.'Cn that the ratio in the last term 

in (3.5) is bounded above by c4d~ uniformly in I, 'I'. Inserting this bound into (3.5) and the 

resulting estimate into (3.4), we obtain 

Eo [exp{ Hn,dn (w, S)},.4;:] 

:S c4d~ (Eo [exp{ Hn,dn (w, S)},.4;:, Lb = b] 

+ :L Eo [ exp{ Hn,dn (w, S)},.4;:, HI 0 (ib-l = I, H2° (ib-l = 1 +1', 
2'5,l+r'S,(logn 

Sb-l = Sb = Sb+T E iJDn] ) 

= c4d~Eo [ exp{ Hn,dn (w, S)}.4;:, Sb E iJDn]. 

Divide by Eo[exp{Hn,dn(W,S)}] to get the claim (recall (1.9)). 

(3.7) 

• 
3.2 Decoupling estimates for excursion times. \Ve now come to our two main decoupling 

estimates. For fixed w, the successive excursion lengths are dependent. Lemmas 3.23.3 below 
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show that, under the annealed measure IE g; P,~J~)' they can be decoupled at the price of an 

error term. Recall (1.121.13). 

Lemma 3.2 Assv.me that limn-+oo dn = :)0. For- all ( > 2/" ther-e exists C5 > 0 sv.ch that for

all N E N and Ii 2: dn /2 (O:S i :S N) with 

N 

L (Ii + (logn):s n (3.8) 
1=0 

the followin!l is tr-v.e as n -+ :)0: 

IE g; P,~J~) [{i(+1) :S 1o} n Dh 0 (:If(+I) - Ti-I 0 (:If(+I) :S q] 
< I-K,( . f II ( dG IE p' (O.n) [, (( l)i) < I An] I-K,() (39) 
_ C2U + lYCn~ ... )N}. C5 n 2) O,dn T - _ iJ""-n + C2U ... 

1Ely 

Pr-oof of Lemma 3.2. After applying Lemma 2.3, we can restrict ourselves to events contained 

in An- Fix any IN C {O, ... ,N}. Throughout the proof we assume that n is large enough. 

First we consider the case 0 E IN' Using the inequality 

z(O,n) ( .) > Z(0,2m) (.)Z(0,n-2m) ((:I, .) 
O)dn w _ O)ODn;dn W O)dn 2mW , o :S 2m :S n. (3.10) 

the independence on disjoint time intervals and Lemma 2.3, we have (variables with the wrong 

parity automatically cancel) 

IE g; P,~J~) [{i( +1) :S 1o} n Dh 0 (:If(+I) - Ti-I 0 (:If(+I) :S q, A:;: ] 

to (logn 

< L L 1Eg;P,~~9~~~,~(~[f(+1)=to,Rlo(:lto=1'0,ArcJ+To] 
to=dn/ 2ro=dn/2 

xlE g; p(O,n-(to+TO» [ (3.11) 
O)dn 

{i(-I):S II -I'o} n Qh-I 0 (:If(-I) - Ti-2 0 (:If(-I):S q'A~_(to+TO)] 

(

to (Iogn 

'" '" IE [p~ (O,to+ro) [, () R" An] p~ (O,n) [ An]] < L., " L., " O,OlJo,do T + 1 = to, I 0 Uto = '1'0, to+TO O,do "n 

to=dn j 2ro=dnj2 

+C2n I-K,() X sup IE g; P6~n-to) [ 
dn:::;to:::;lo+(logn . n 

{f(-I):S ld n JJh-1 0 (:If(-I) - Ti-2 0 (:If(-I) :S q,A:;:-to]' 
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Note that the term under the supremum is of the same type as the one in the left-hand side of 

(3.11) but with i(+1) replaced by i(-I) due to a change of layer (recall (1.12)). To the first 

term on the right-hand side we can apply Lemma 3.1. Ind"",d, choose Ii = to + '1'0, to estimate 

p(O,n) [.4;:] 
O)dn 

d:l p' (O.n) [An " iJD ] < (;4 n o)dn ""-nJ r.7to+ro E n 

which gives 

Z(O,tO+TO)( ·)E [, {H ((i. '»} An ] 
, :J O,{)Vn;dn W 0 exp n-(to+ro))dn to+roW, f. , n-(to+ro) 

< C4 dn • (O.n) , 
ZO,dn (w) 

to (logn 

L L IE [PJ~9~~~,d~ [f(+1) = to,R I 0 (ito = 1'0, Arc,+TOl f;~J~) [.4;:]] 
to=dn/ 2ro=dn/2 

(3.12) 

:S c4d~ IE 2l f;~J~) [i( +1) :S 10,.4;:]. (3.13) 

Next we consider the case 0 if: IN' Define ko = inf{k E No;k E h,}. For kENo, define 

lk = 2::7=0 Ii' Then, using (3.12), we obtain as in (3.11), 

IE 2l PJJ~) [{ i( +1) :S lo} n i6h 0 (if(+I) - Ti-I 0 (if(+ I) :S l;}, A~] 

< (tt' 'fn IE[PJ~9~j::dn ho-' 0 (if(+I) = t,R I 0 (ito =r,Af+Tl PJJ~) [.4;:]] 
t=O 

I .• ) • (0 n-t) [ +C2n -K,( x _ sup IE 2l F;"d
n 

O:::;t:::;lk(l~ j +( logn 

{i((-I)ko):s Iko}n n {Ti-ko o (if((_I)kO) -Ti-ko-I o (if((_I)kO) :S l;},.4;:-t] 

i=ko+l 

'j 2' . • (0 n ) [ 
:S (c4d;' + C2n -K,() x _ sup IE 2l F;"d

n 
0 (3.14) 

n-lk(l~j +(logn:::;no:::;n 

{i((-I)ko):s Iko} n n {Ti-ko 0 (if((_I)kO) - Ti-ko-I 0 (if((_I)k(lj:S li},.4;:o]. 
i=ko+l 

Iterating the above decoupling argument, we obtain the claim for Co = 2c~. Note that 

c2n2 - K
,( :S c4d~ for large n because ( > 2/ fi,. 

• 
Lemma 3.3 Assv.rne that limn-+oo dn =:)0. For- all ( > 0 ther-e exists C4 > 0 sv.ch that Jor- all 
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N E N and Ii E N (0 :S i :S N) the followin!l is tr-v,e as n -+ :)(): 

IE 2l f;~~~) [{i( +1) II n > lo} n D {(T, 0 li f ( + I») II n - (T,-I 0 lif ( + I») II n > l;} ] (3,15) 

:S C2n I-K,( + IT (C4d~ IE 2l f;~~~) [f ((-In II n > Ii - (log n, A~l + C2nl-K'() , 
1=0 

Fmof of Lemma 3.3. The proof is similar to that of Lemma 3.2. Therefore we only indicate 

where the two proofs differ. Abbreviate ntO,TO = n - (to + '1'0)' Then, as in (3.11), we have 

IE 2l f;~~~) [{i(+l) II n > to} n D{(Ti 0 lif(+I») II n - (Ti-I 0 lif(+I») II n > l;},~ ] 
n (logn!\(n-to) 

'" '" IE p'(O,tO+TO) ['( 1) - t R " ( t ) - .. An 1 < L L 2) O){)Vn;dn T + 1\ n - "0, 1 0 Uto 1\ n ~"O - '0, to+ro 
to=lo+ I To=dn/2 

X sup IE 2l f;~~~to.,o) [{i(-I) II ntO,TO > II -ro} n (3.16) 
l(l~t(l~n ~ 

dnI2~r(l~( log n!\(n-to) 

Q {( Ti-I 0 li f ( -I)) II ntO,TO - (Ti-2 0 lif ( -I)) II ntO,TO > I,}, A~to"o ] . 
Now we can deduce the claim in the same way as for Lemma 3.2, using in addition that {f( -1) II 

k > II -ro} C {f(-I) II n > II - (logn} for dn /2 :Sro:S (logn and O:S k:S n. 

• 
Lemmas 3.23.3 provide an upper bound for the probability that the lengths of the first N 

excursions from the middle line of a (+ 1 )-layer do not excE.'ed, respectively, excE.'ed II , ... , Ly , for 

N arbitrary. These bounds will be used in Section 5 to prove Theorem 1.4. 

4 The first-passage time 

In the previous section we have decoupled the excursions. In the present section we derive the 

key estimates that involve a single excursion. In Section 4.1 we look at a one-interface model 

with one neutral solvent, which plays a key role in the variational problem for X(.\' h) in Theorem 

1.4 that will be introduced in Section 4.2. In Section 4.3 we use this variational problem to derive 

upper and lower bounds for the first-passage time. 

4.1 A one-interface model with one neutral solvent. For rn E 2N and (J = ±1. define 

(recall (2.13)) 

( 4.1) 
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Lemma 4.1 Fo1' eve1'Y (A, h) ELand u = ±1 the1'e exists a dete1'ministic nmnbe1' p,q(A, h) E 

(0,:)0) sv,ch that, fo1' eve1'Y seqv,ence (dn ) with limn-+oo dn = :)0, 

1· 1 1 o'IE [v(0,2n) (.)] (' I) 1111 - 0" "07lJ d W,U = -p,q A, I. 
n--+oo 2n )! n) n 

( 4.2) 

Pmof of Lemma 4.1. For rn E 2N and U = ±1. define 

( 4.3) 

Note that the interaction is neutral for the u-layers (u = ±1). Using the folding argument from 

the proof of Thwrem 1.3, we s""'" that 

so it suffices to prove that 

lim ~ log IE [y(0,2n) (w, u)] = -p,q(\ h). 
n--+oo 2n 

For rn, I E 2N we have, using the independence of w on disjoint time intervals, 

log IE [ y(O,m+l) (w, u)] 

_ 100 ' IE [ 1 ] 
-" Eo [exp {A I:;~tl(l!.(S;) - U)(Wi + h)} ,Sm+l = 0] 

< 100 ' IE [ 1 ] 
-" Eo [exp {A I:;~tl(l!.(S;) - U)(Wi + h)} ,Sm = Sm+l = 0] 
= log IE [y(o,m)(w,u)] + log IE [y(O,I)(w,u)]. 

Hence rn f-tloglE [y(O,m)(w,u)] is a subadditive sequence, which implies (4.5) with 

-p,q(A, h) = inf ~loglE[y(0,2n)(w,u)]. 
n?l 2n 

It remains to prove that p,q(A, h) E (0, :)0). Using Chebychev's inequality, we see that 

log IE [y(0,2n) (w, u)] 

( 4.4) 

( 4.5) 

( 4.6) 

(4.7) 

2: -loglE [EO [exp { A~(l!.(S;) -U)(Wi +h)} ,S2n = oJ] (4.8) 

2: -4A(1 + h)n, 
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so IJ.q(\ h) :S 2A(1 + h). On the other hand, 

IE [y(0,2n)(W, -1) + y(0,2n)(w, +I)] 

[

(1 / 2)eXp {-A I:f::l (Wi +h)} + (1/2)exp.{ A I:f::l (Wi + h)}] 
= 2IE 

Eo [exp {A I:f::ll!.(Si)(Wi + h)} • S2n = 0] 
- 2 [(0,2n) - ] - [ _ ]IE 1=;1.0 [Tl - 2n] , Fh Tl - 2n . 

where Tl = inf{k E N: Sk = O} and 1=;~~/n) is the path measure defined as 

{ 
2n } (0,2n) _ 1 , . ,. 

1=;,,0 (S) - (0,2n) exp A L l!.(S,)(w, + h) l{.'i2n =0}Fh(S), 
Zo;o 1=1 

( 4.9) 

(4.10) 

with Z6~12n) the normali/,ing partition sum. From Biskup and den Hollander [2], Lemma 4, we 

know that for every (A, h) E [. there exists a " > 0 such that 

[ (0,2n) [ - ]] , { .} IE 1=;,,0 Tl - 2n :S exp - 2/'i,f1. , 

~10r<Xlver, we know that Fh[Tl = 2n]2: (cGn)-:lj2. Hence (4.9) yields 

~ log IE [y(0,2n) (w, cr)] 
2n 

< 

< 

4.2 Variational formula for x(\ h). 

~ log IE [y(0,2n) (w, -1) + y(0,2n) (w, +I)] 
2n 
1 

- [log 2 + (3/2) 10g(cGn) - 2/'i,f1] , n -+ :)0. 
2n 

(4.11 ) 

(4.12) 

• 

Lemma 4.2 Assv.me that limn -+oo dn =:)0. For- y 2: 1 and ever-y nonne!lative seqv.ence (En) 

sv.ch that limn -+oo En = 0, 

(4.13) 

wher-e 
I(y) = Y + 1 100 Y + 1 + Y - 1 100 Y - 1. 

2 b Y 2 b Y 
(4.14) 

Pr-oof of Lemma 4.2. This is an elementary large deviation estimate for simple random walk, 

based on a combinatorial expression similar to (3.6). Indeed, I(y) is y times the relative entropy 

f y+ I, + y- I , " 1 ' . ,. I , + I , o 2y (}+l '2i}(}-1 \\It 1 respect to 2(}+1 2(}-1-

• 
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We note that the rate function y f-7 I(y) is strictly decreasing with limy.l I(y) = log2 and 

limy-+ooI(y) = O. 

For Cl E (O,fJ,q(>', h)), we next define 

Let yq(cd denote the maximi/'er, i.e., 

We have 

and 

lim Xq(>., h, cd = Xq(>., h, 0) = Xq(\ h), 
cdO 

lim yq(cd = yq(O) = yq, 
cdO 

(4.15) 

(4.16) 

(4.17) 

Xq(>., h) = min {yfJ,q(\ h) + I(y)} E [fJ,q(>., h), fJ,q(>., h) + log 2]. (4.18) 
y2: 1 

Define 

(4.19) 

The quantity X(>', h) will be analy/,ed in Section 6. 

4.3 First-passage time. In this section we derive upper and lower bounds for the first-passage 

time involving X(>', h) (Lemmas 4.34.4). It is now that conditions (1.16)(1) and (1.16)(II) come 

into play. 

Lemma 4.3 Assv.me (1.16)(1). FOT all C2 > 0 and 1 E N. 

(4.20) 

Pr-oof of Lemma 4.3. \Ve borrow an argument from the proof of Lemma 6.2 in Albeverio and 

Zhou [1]. For u = ±1 and c E (0,1/2), we estimate (recall (1.12)) 

IE g; PJ)~) [f (u) :S I, A::] 

(4.21 ) 
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Let us first consider the case p = ° and u = L \Ve estimate 

IE g; p'~~n) [Sk = 0, Rl olh E [(j - l)Edn , (j + l)EdnL max Sk+i 2: dn /2, A::] 
) n l'!:i'!:UjOOk 

= 2 IE g; P,~J~) [Sk = 0, RIo 'h E [(j - l)Edn , (j + l)EdnL 
max Sk+i 2: dn /2, Sk+lllo0k = 0, A::] 

I S:1S: Uj oOk 

:S 2 IE g; P,~J~) [Sk = 0, RIo 'h E [(j - l)Edn , (j + l)EdnL 
max Sk+i 2: dn/2, Sk+(j-l)edn :S 2Edn, A::] 

I <:i<:(j-l)edn 

l(j+ I )ednJ 
< 2 '" IE [y(o,m) (w, +1)] - L...t O,{)Vn;dn 

m=l(j-l)ednJ 

xPo [Rl 2: (j - l)Edn , max Si 2: dn/2, S(j-l)edn :S 2Edn] . 
I <:i<:(j-l)edn 

(4.22) 

In the last line we recall (4.1) and use that after time k the path returns to the interface for the 

first time at time k + rn (the inequality is uniform in k). The cases p = 1 and/or u = -1 are 

analogous. Inserting the estimates into (4.21), we obtain 

IE [y(o,m) (w, u)] 
O,{)Vn;dn 

(4.23) 
k=O j=Lt+lJ m=L(j-l)ednJ 

xPo [Rl 2: (j -l)Edn, max Si 2: dn /2, S(j-l)edn :S 2Edn] . 
I <:i<:(j-l)edn 

Next we use Lemmas 4.14.2. Pick E2 > 0, and pick El E (O,Po(>.,h)) so small that 

Ixo(\ h, Ed - Xo(\ h, 0)1 :S E2/3. Furthermore, pick E = En such that En -+ ° and Endn -+ :)0 

as n -+ :)0. Then 

IE g; P,~J~) [f (u) :S I, A::] 
r~ 11 l-l fndn-

:S (L: :L (2Endn + 1) exp { - (j - l)Endn [Po(>', h) - Ed - dnI ((j - l)En) + dnE2/3} 
k=O 

r~ 11 l-l e;dn-

:S 4:L :L 3Endn exp {-dnXo(>', h, El) + dnE2/3} (4.24) 
k=O 

• 
For <5 > 0. define 

tn =exp{<5dn}. (4.25) 

To prove the next lemma, we chop our time horiwn n into intervals of length tn. 
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Lemma 4.4 Assv.rne (1.16)(1) and (1.16)(II). For- all E:l > 0 and lEN, 

IE 2l FJ)~) [1' (u) ;\ 0 > ltn, A~l :S (1 - exp {-dnXq(A, h) - dnE:l}) I , (4.26) 

Pr-oof of Lemma 4.4. Throughout the proof we assume that 0 is large enough. For ;r;, V E Z, 

define (recall (1.9)) 
'(O.n) (o)() '(O.n)(o 10 )( ) Px;y;dn >./ W = PX;dn >./ 1.7tn = Y w. 

For lEN we have (putting ;r;o = 0) 

IE 2l FJ)~) [1'(u);\ 0 > ltn,A~l 

I-I 

II 

(4.27) 

(4.28) 

To estimate the right-hand side, we fix ;r;, V such that lu;r; + dn/21 < dn and luv + dn/21 < dn

Define P;~~d~ to be the following measure for the random walk S: 

px(Oy,tdn ) (S)(w) = Fx(Od,t n) (s I Af, max luSi + dn/21 < 3dn/2, Stn = V) (W), 
;';n ;n n'I:::;1:::;tn 

(4.29) 

i.e., the path is conditioned to start at ;r; at time 0, to end at V at time tn, to stay inside the 

height interval (-3dn/2, dn/2) and to not make excursions longer than (log tn- Then 

Fx(Oy,td
n) [max luSi + dn/21 < dn'A~] (w) 

;') n I '5:1 '5:t n 
< px(oy,td

n) [max luSi + dn/21 < dn] (w) 
;') n I:::; 1:::;tn 

1 - p(O,tn) [max luSi + dn/21 2: dn] (w). 
x,y)dn 1:::;1:::;tn 

Our goal is to estimate the last term on the right-hand side. 

Let 
In [tn/2, tn/2 + 3( log oj, 

{S: there are no iI, i2, i:l E In with i l < i2 < i:l such that 

Si, E iJDn, ISi2 - Si,l = dn/2, lSi" - Si21 = dn/2}, 

(4.30) 

(4.31 ) 

i.e., C I n is the event that there are no two half-crossings of a layer in the time interval In- Define 

Bn = 2lvqdn/2J (recall (4.17)) and note that Bn < (logo for large 0 by (1.16)(II). Define 

(XI (0) = tn /2 + (logo, (4.32) 
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and note that [nl(n)-(logn,n2(n) + (logn] eIn e [O,tn] forlargen. We have 

px(Oy,td
n) [max luSi + dn/21 2: dn] (w) 

;') n I:::; 1:::;tn 

> p(O,tn) 
- x,y)dn [ max luSi + dn/212: dnl Snl(n) = Sn2(n) E {O,-Udn }] (w) (4.33) 

I:::; 1:::;tn 

xP;~~d~ [Snl(n) = Sn2(n) E {O,-udn}ICln ] (w) P;~~~d~ [C ln ] (w). 

Let us first look at the second term on the right-hand side of (4.33), which we write as 

P;~~~d~ [Snl (n) = Sn2(n) E {a, -udn}1 Cln] (w) 

- p-(O,t n) [0 - ° 10 {O - A} C ] ( .) p-(O,tn) 
- x,y)dn >'/0] (n) - r./ o2 (n) >'/0] (n) E , (Ju,n, In W x,y)dn 

[Snl(n) E {a, -udn}1 Cln ] (w). 
(4.34) 

To the second term on the right-hand side of (4.34) we can apply the same argument as in the 

proof of Lemma 3.1, to obtain 

:S c4d~ E~~~~d~ [ exp {Ht n (w, S)} ,Snl (n) E {a, -udn}, 

max luSi + dn/21 < 3dn/2,Atn,Cln]' 
I '5:1 '5:t n 

(4.35) 

Here we use the event Cln to avoid having to do the first step of (3.5), since this step does not 

apply when the endpoint of the path is fixed. Dividing the two sides of (4.35), we obtain 

(4.36) 

The first term on the right-hand side of (4.34) we treat in a similar way. Combining the two 

estimates. we obtain 

(4.37) 

Let us next look at the first term on the right-hand side of (4.33). This term we can estimate 

by 

(4.38) 

Inserting (4.30), (4.33), (4.374.38) into the right-hand side of (4.29) and using Lemma 4.5 

below, we s""'" that for E3 > ° 
IE [ min p(O,tn) [max luSi + dn/21 > dn] (W)] (4.39) 

x,v: l(Tx+dn/2IJlcry+dn/21<dn x,y)dn l:::;i:::;tn -

2: e-dncx/4 (c4d~)-2IE[Yo(O,d;;)d (w,u)] Po [max Si 2: dn/2,R 1 = Bn,SIlI = 0]. 
;' n; n 1:::;1:::;Sn 
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Finally, use Lemmas 4.14.2. Then we have for large n (recall that Bn = 2 lyq dn /2J) , 

2: (c4d~) -2 exp { - dn [Yo (O)p.q (A, h) + J(yo(O))] - dn (3El! 4) } (4.40) 

2: exp {-dnXq(A, h) - dnE:J}. 

• 
4.4 Two inequalities. In the proof of Lemma 4.4 we have used the following: 

Lemma 4.5 Let (A, h) E L, and assume (1.16)(1) and (1.16)(II). Let p;~~~;;~ (w) be the path 

measu.r-e defined in (4.29). Then for- (J = ±1: 

(i) 

IE [
v(o.n) () . p-(o.tn) [C ] ( )] J:o:)J) d w,u nnll , ~d In W 

)! n; n x,v: l(Tx+dn/2IJlcry+dn/21<dn x,v) n 

> IE [v(o.n) ()]IE [ . p-(o.t n ) [C ] ( )] 
_ .I O:)J) d (J nnll , ~ d I W • 

)! n; n x,v: l(Tx+dn/2IJlcry+dn/21<dn x,v) n n 

(4.41 ) 

(ii) 

liE> 0, n 2: no (E). (4.42) 

Pr-oof of Lemma 4.5. (i) We will prove that 

(a) w f-t Y;1(,~~Jn,dn (w, (J), 

(b) w f-t min p(O,tn ) [C I ] (w), 
x,v: l(Tx+dn/2IJlcry+dn/21<dn x,y)dn n 

(4.43) 

are both non-decreasing when (J = +1 and both non-increasing when (J = - 1. The claim will 

then follow from the FKG-inequality applied to lP' (s(.'<3 Fortuin, Kasteleyn and Ginibre [4]). 

We give the proof for (J = + 1. The proof for (J = -1 is analogous. 

(a) Fix 1 :S j :S n. Let w,w' be such that Wi = wi for 1 :S i:S n with i fc j and Wj = -1,wj = +1. 

We have from (4.1) that 

(4.44) 

if and only 

(4.45) 

With the help of the relation (recall (2.1)) 

(4.46) 
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the inequality in (4.45) amounts to (recall (2.13)) 

Eo [ exp{ H2n ,dn (W', S)}, S2n E aDn 1 
:S Eo [ exp{ H2n ,dn (w', S)} ,,2'\[I-"<ln (.'ij)l, S2n E aDn 1 ' 

which is trivially true because lldn (Sj) E {-I, + I}. 

(b) Let 

Then 
- (0 t ) I: 'icC n13"'" exp{ Htn dn (w. S)} 

P n [C ](.) = ---=-c-"C"-n _n"------~------;------;c:~ 
xydn In W I:SE13~",exp{Htn,dn(W,S)} 

Fix ;r;, y E (-3dn /2, dn /2). Pick w, w' as in the proof of (a). Then 

p(O,tn ) [C ]( i) > p(O,tn ) [C ](.) 
x,y)dn In W _ x,y)dn In W 

if and only if 

:L :L p(Sd(W)P(S2)(W) f(Sd[g(Sd - g(S2)] 2: 0, 
s] EB~dl S2EB~dl 

where we abbreviate 

and 

(4.4 7) 

(4.49) 

(4.50) 

(4.51) 

(4.52) 

(4.53) 

Here we have again used (4.46). What (4.51) says is that under the probability measure p(w) 

the functions f and g are positively correlated: 

p(w)Lfg] 2: p(w) Lflp(w)[g]. (4.54) 

We will prove (4.54) with the help of the FKG-inequality. In order to do so, we n"",d a partial 

ordering on paths. To achieve this, we first reflect paths in the middle line at height -dn /2. To 

that end we rewrite (4.54) as 

p(w)Lfg] 2: p(w) Lflp(w)[g] (4.55) 

with 

(4.56) 

where 

tn (4.57) 
N(S) I: l{Si = -dn/2}. 

1=1 
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Here we use that .f, g are invariant under the reflection (recall (4.31) and the symmetry of the 

medium with respect to middle lines), and now also :1;, y E [-dn /2, dn /2). 

On the set B~'Y there is a natural partial ordering: 

if and only if (4.58) 

Let 8 1 V 82 and 8 I 1\ 82 denote the pointwise maximum, respectively, pointwise minimum of 8 I 

and 82. Then 

Htn,dn (w, 8 1 V 82 ) + Htn,dn (w, 8 1 1\ 82) 

N(81 V 82) + N(81 1\ 82) 
(4.59) 

because, for each i, either [81 V 82]i = [8di and [81 1\ 82]i = [82]i or vice versa. Consequently, 

(4.60) 

i.e., p(w) satisfies the convexity condition n"",ded for the FKG-inequality. 

Now, both 8 f-7 f(8) and 8 f-7 g(8) are non-decreasing in the partial ordering defined by 

(4.58). Hence we conclude that (4.55) indeed holds, and therefore also (4.50). Since :1;,Y were 

fixed arbitrarily, the same is true when in (4.50) we take the minimum over :1;, y. Since w was 

fixed arbitrarily, this completes the proof of (b) in (4.43). 

(ii) We give the proof for (J = + 1. The proof for (J = -1 is analogous. We will prove that 

(a) min p(O,tn) [e l ] (w) 2: min p(O,tn),ln [e l ] (w) If w, 
x;YE(-:Jdn j2)dn j2) x,y)dn n x;yE[-dn;O] x,y)dn n 

(b) IE [ min p(O,t;;),ln [e l ] (w)] 2: exp{ -Edn } If E > 0, n 2: notE), 
x;yE[-dn;O] X,V) n n 

(4.61 ) 

where 

(4.62) 

with p;~d~n),ln the same probability measure as in (1.9) but with the interaction "switched off" 

outside In, i.e., with (2.1) replaced by 

H[:,dn (w, 8) =,\:L ildn (8i )(Wi + h). (4.63) 
iE In 

(a) By (4.50), the left-hand side of (4.61)(a) is non-decreasing in w. Therefore we get a lower 

bound by putting Wi = -1 for all 1 :S i :S n except i E In- Hence 

(4.64) 

25 



where we recall (4.48) and define 

N~n(8) = (4.65) 

to be the number of bonds in the path over the time interval (0, tn ) \ In that fall in a (+ I)-layer. 

Next, we do the reflection in the middle line at height -dn /2, which gives 

r.h.s. (4.64) = p(Cln)(w) (4.66) 

with 

(4.67) 

where we recall (4.57). 

Our next step is to remove the N~n (8) with the help of the Holley-inequality (see Holley [8]). 

To that end. let 

(4.68) 

and define 

(4.69) 

We observe that p is stochastically larger than p in the partial ordering defined by (4.58), i.e., 

(4.70) 

Ind"",d, if 8 2 E iCn , then 8 1 1\ 82 E iCn and N~n(81 V 8 2 ) = N~n(8d. Together with (4.59), this 

proves (4.70). Since 8 f-7 1{8 E Cln } is non-decreasing in the partial ordering, as was noted 

below (4.60), it follows from the Holley-inequality that 

(4.71 ) 

Finallv. we undo the reflection bv removirw the weio'ht factor 2,,(8). to obtain 
,,,' "b b 

(4.72) 

which is equal to the right-hand side of (4.61)(a). 

(b) The effect of "switching off" the interaction outside In is that the path measure in (0, tn ) \In 

is that of simple random walk. As we will s"", shortly, this fact will allow us to control the 

conditioning that appears in (4.62). 

26 



Recall (4.31). Define 

Din {So :liE [tn/2-((/2)logn,tn/2]: SiE{a,-linH, 

Din {So :Ii E [tn/2 + (3() logn, tn/2 + (7(/2)logn]: Si E {a,-linH, 

DIn {So :liE [tn/2,tn/2+((/2)logn] :ljE [tn /2+(5(/2)logn,tn /2+(3()logn]: 

Si E {a, -lin}' Sj E {a, -dnH. 
(4.73) 

Then 

(4.74) 

with At
n 

the event that no excursion in the left-half (i = 1) resp. the right-half (i = 2) of 

(a, tn) \ In exc"",,,ds (log n, and Aln the same in In. \Vith this observation we can estimate 

> rnin 
x;yE[-dn;O] I:X',Y'E[-dn,Oj Px(Ain n Bin n {Stn/2 = ;r;'}) 

xP;'~dJAln n BIn n {Stn/2+:l(logn = V'} )(w) 
( 2 2 { } X Py' Atn n Btn n Stn = V ) 

(4.75) 

with Bt
n 

the event that the path stays confined to [-dn , a] in the left-half (i = 1) resp. the 

right-half (i = 2) of (a, tn) \ In, and BIn the same in In. Here, Px(S) is the path measure for 

simple random walk and P;~dn (S)(w) is the path measure for the heteropolymer in In (as in 

(1.9)), both for the path starting from ;r;. 

Next, we estirnate 

r.h.s. (4.75) 2: I x II(w) x III (4.76) 

with 

I ndn Px(Din lAin n Bin n {Stn/2 = ;r;'}), 
x;x'E(-dn;O] 

II(w) n!in P;rd (e ln n DIn lAIn n BIn n {Stn/2+:l(logn = V'} )(w), 
x';y'E(-dn;O] ~ n 

(4.77) 

Since tn »d~ by (4.25), the minimum over ;r; in I and V in III is not felt in the limit of large 

u. Therefore we get 

I,III 2: exp{-c(dn /2)2/2((/2)logn} for some c > a, (4.78) 

the right-hand side being the probability that simple random walk travels a distance dn /2 within 

time (( /2) log n in order to hit the interface as required in (4.73). Since dn ~ logn by (1.16)(II), 

the latter is much larger than the bound in the right-hand side of (4.61)(b). 
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Thus, it remains to bound IE(II(w)). This is a quantity for the heteropolymer in In where 

all the interaction with (0, tn) \ In has vanished. First, we estimate 

2 • I ( ) II(w) 2: exp{ -c(dn /2) /2((/2) logn} PO,dn eln lAIn n BIn n {Stn/2+:l 10gn = O} (w) (4.79) 

by an argument similar to that in the proof of Lemma 2.1. (The event DIn is reali/'ed when the 

path hits 0 at both ends of Iw) Second, we use that dn »loglInl ~ loglogn by (1.16)(1), to 

obtain that 

(4.80) 

Ind"",d, this follows from the result in Albeverio and Zhou [1] cited at the end of Section 1.2, 

namely, in lP'-probability the maximal length and the maximal height of an excursion in the 

interval In are of order log IInl. (In [1], Tlworem 5.3 and Tlworem 6.1, this result was proved 

only for h = 0, but it carries over to 0 < h < herA) by similar arguments; s,,'" in particular 

Biskup and den Hollander [2], Theorem 3(e) and Lemma 4.) This, together with (1.16(II)), 

finishes the proof. 

• 
5 Proof of Theorem 1.4 

In this section we prove Theorem 1.4, which is our main result for the path behavior in the 

locali/'ed regime L. The proof is based on an upper bound (Lemma 5.1) and a lower bound 

(Lemma 5.2) for the quantity defined in (1.14). The proof relies on Lemmas 3.23.3 and 4.34.4 . 
• (0 n) -

Recall (1.121.15). It is clear that, under the annealed measure IE g; F;"d
n 

' (StltE[O,n] is a 

simple random walk on dnZ with LLd. random waiting times, since the jump process 

(5.1) 

is an LLd. sequence of random variables taking the values ±dn with probability 1/2 each and 

the medium Dn is symmetric with respect to the middle lines iJDn + dn/2. So it remains to 

prove (1. 17). Since 

(5.2) 

the proof of (1. 17) amounts to analy/,ing the asymptotic behavior of the expected number of 

jumps Nnw This will be done in Lemmas 5.15.2 below and involves the quantity x(\ h) defined 

in (4.19). 

Lemma 5.1 Let (A, h) E L. Assv.me (1.16)(1) and (1.16)(II). FOT all E4 > 0 and H, E (0,1), 

(5.3) 
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Pmof of Lemma 5.1. Throughout the proof we assume that n is large enough. Let us first 

resume what we know from Lemmas 3.2 and 4.3. Choose" > 0 and C2 > 0 according to Lemma 

2.3, (I > 0, ( = (2 + (Ill" > 2/" and C5 E (0, X-I (A, h) 1\ X+I (,\, h)). Then for all N E Nand 

Ii E N (0 :S i :S N) with 2::;:0 (Ii + (log n) :S n we have 

IE 2l f;~J~) [{T(+l) :S to} n Dh 0 1:17(+1) - Ti-I 0 I:If(+I) :S ld] (5.4) 

, { (" + "d::;",,[t (I, &, { Xl - 'I' (h, II )d" + ""'}) ) " 

if infi Ii < dnl2, 

~ exp {Xq('\' h)d" - c5d,,} + dnl2, 
~ (1 + exp {-Xq(A, h)dn + c5dn + log dn}). 

If we put I~) = {O:S i:S N: Ii < "(-I)i,n}, then for all i E I~) we have 

Ii exp {-X(_l)i (A, h)dn + c5dn} :S P(_I)i,n :S (1 - On)-I, 

Therefore (5.4) yields 

IE 2l PJJ~) [{T(+l) :S to} n i6h 0 I:If(+I) - Ti-I 01:17(+1) :S ld] 

otherwise. 

(5.5) 

(5.6) 

:S (on 1 {IV + IT (Ii exp { -X( _I)i (,\, h)d" + c5dn} liE IV) + li~ IV))) l{i'lf li»dn/2} 
1=0 

'" 
i'!fli»dn/2} + II (P(-I)i,n 1{dn/ 2<:li<eH )i.n} + 1{li»eH )i.n})· (5.7) 

, 1=0 

For N E No, let (Xo, ... , X",) be the random vector in N"'+ I with distribution P given by 

P [n {Xi :S ld] = r.h.s. (5.7). 
1=0 

Define T~? = 0 and TP) = 2::7=0 Xi, k 2: O. For t 2: 0, define 

N?) = sup{k E No: Ti~l:S t}. 
For k E {-I, ... , K(n, t)} with K(n, t) = l(7o~tnJ, we have (recall (1.14)) 

IE 2l p(O,n) [N > k + 1] O)dn t - IE 2l PJJ~) h 0 I:If(l) + 1'(1) :S tJ 
< P [TP) :S t] 

p[Nf)2: k + 1]. 
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Therefore we obtain from (5.10) that, for !I, E (0,1), 

Lnn/(dn /2)J 
IE g; j;;(O,n) [N. ] - '" IE g; p(O,n) [N. > k] 

O)dn .L un - L O)dn .L un 

k=O 
f( (n,nn ),\ Lnn/ (d n /2)J 

'" IE" p(O,n) [N. > k] L <;J O)dn .L un 

k=O 
Lnn/(dn /2)J 

+ L IE g; p(O,n) [N. > k] 
O)dn .L un (5.11 ) 

k=f( (n,nn ),\ L nn/( dn /2)J + I 

~ [(I) ] (!I,n ) [(I) ] < L., P lYnn> k + (d
n

/2) - K(n, It.rl,) P lYnn> K(n, It.rl,) 
k=O + 

< ( !I,n ) [(I)] 
1 + ( ( - 1 E lYnn dn /2)K n, ml,) 

< (logn)E [lY,\~], (5.12) 

Thus we are left with proving an upper bound for the expectation on the right-hand side of 

(5.11), which only contains the random variables Xi. 

To handle E[lY,\~], note that the Xi'S do not have the same distribution: even i corresponds 

to (J = + 1, odd i to (J = - L Therefore we n"",d to further simpli(y the problem. Let 1';, = 0 

and Y; = X 2i - 2 + X 2i - l , i EN. Then we have 

and 

P [n {Y; :S ld] 
1=1 

lY,\~ = sup {k E No: Ti~l:S !In} 

< 2 sup { kENo: Tj~~ I :S !In} 

2 sup { kENo: t Y; :S ml} 

P [n {X2i - 2 + X 2i+ 1 :S ld] 
1=1 

N 

i',fl;:>dn } + II (pl{dn<:l;<en} + 1{1;:>en}) ' 
, 1=1 

where we introduce 

1> P > lim [P+l.n + P-l.n - P+l.nP-l.n] = 3/4, n--+oo ~ ~ ~ ~ 

en = e+l,n +CI,n = dn + L texp {X(-l);(\ h)dn - E5dn} , 
1=0)1 
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(5.16) 
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For N E No, let (Zl, ... , Z,,) be the random vector in N" with distribution 

P [n {Zi :S ld] = r.h.s. (5.14). 
1=1 

Define TJ2) = 0 and Ti2) = 2::7= I Zk, kEN. For H, E (0, 1), define 

N,\~ = sup {k E No: Ti2):s ml} . 

Using (5.105.14), we s""'" that for H, E (0,1), 

IE :0 E6~d~) [Nnn ] :S 2(log n) E [N,\~], 

Therefore it remains to calculate 

00 

LP [N,\~ > k] 
k=O 

~ [(2) ] L., P Tk+ I :S ml, 
k=O 
00 

LP [Ti~l - (k + l)dn:S ml- (k + l)dn] 
k=O 

, Lhn~(k+j)dnJ 
Lun;dn-lJ Cn d n 

L L P [Ti~l - (k + l)dn = l(en - dn )] 

k=O 1=0 

Inserting this into (5.20) and recalling (5.16), we obtain that 

which completes the proof since Eo is arbitrary. 

(5.18) 

(5.19) 

(5.20) 

(5.21 ) 

(5.22) 

• 
Lemma 5.2 Let (A, h) E L. Assv,me (1.16)(1) and (L16)(II). FOT all Er; > 0 and H, E (0,1), 

(5.23) 
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Pmof of Lemma 5.2. Let us first resume what we know from Lemmas 3.3 and 4.4. Choose" > 0 

and (;2> 0 according to Lemma 2.3, (I > 0, ( = (2 + (Ill" > 2/", c, > 0 and 0 > O. Then for 

all N E N and Ii E N (0 :S i :S N) we have 

IE 2l PJ)~) [{i( +1) II n > Lo} n 6 {( Ti 0 lif ( + I») II n - (Ti-I 0 lif ( + I») II n > L,} ] (5.24) 

1 
0 if 2::i Li 2: n, 

:S l(on + irlO ((1 - exp {-X(-I)' (A, h)dn - c,dn} )1, + On) ) III if (*), 

otherwise. 

LLi <n and (5.25) 

Again, our goal is to simpli(y the expression on the right-hand side of (5.25). Under (*) we have 

(1 - exp {-X(-l)' (A, h)dn - c,dn} )1, < exp {-Id exp { -X(-l)' (\ h)dn - c,dn}} 

< exp{-~exp{c,dn}} = o(on). (5.26) 

Note that limn-+oo on = O. 

For N E N, let (XI"'" X,,) be the random vector in N" with distribution P given by 

P [6 { Xi > Li }j { 0 if 2::i Li 2: n, 

On + (20n)" if 2::i Li < nand 

l 1 otherwise. 

where 

Define TJ:l) = 0 and Ti:l) = 2::7= I Xi, kEN. For t 2: 0, define 

NF) = sup { kENo: TF) :S t} . 

inf L, > l. 
i en -

Using a similar argument as in (5.10), we s""'" that for all kENo U {-I}, 

and so we obtain, for !t, E (0,1), 

IE 2l j;;(O,n) [N. 1 :> E [N.(nl )]. O)dn .L un _ ,~ 

(5.27) 

(5.28) 

(5.29) 

(5.30) 

(5.31 ) 

Thus we are left with proving a lower bound for the expectation on the right-hand side of (5.31). 
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We have 

00 

LP [N,\~ > k] 
k=O 

(5.32) 

Since limn -+oo nn-n(k;n1)en = H, < 1, only the term with I = 0 contributes asymptotically. But 

this term can be explicitly written down, so 

Lnn~-IJ (1- (on + ~ e ~ 1}_1)1+1(20n)I)) 
Lunjen-1J 

L (1 - 20n )k-l 

(5.33) 

Inserting this into (5.31), we obtain that 

(5.34) 

which finishes the proof since c, and 0 are arbitrary. 

Combining (5.2) and Lemmas 5.15.2, we obtain (1.17) in Thwrem 1A. The bounds X(A, h) E 

(0,:)0) were already mentioned in (4.184.19). 

• 
6 Proof of Theorem 1.5 

In this section we prove Theorem 1.5. Recall the variational problem in (4.18), 

(6.1) 
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where I is the rate function in (4.14) and I"q(\ h) is the quantity defined in (4.2). Throughout 

the proof, A E (O,:)()) is fixed. 

(i) It is immediate from (4.14.2) and the symmetry of JP' under the reflection w -+ -w that 

11+1 (A,O) = I"-I(A,O). Consequently, X+I(A,O) = X-I(A,O) via (6.1). 

(ii) Return to (4.3). Fix ° :s h2 < hI < he (A) and write 

with 

Ec)~"m)(s) = exp {A(h l - h2) ~(l!.(s;) - U)}. 

It follows from (6.3) that, for any S, 

Consequently, for any w, 

exp{-2A(h l -h2)rn}:S Ec)~:m)(S):S 1, 

1 :S Ec)(O:m)(S) :S exp{2A(h l - h2)rn}. 

(6.2) 

(6.3) 

(6.4) 

y(O,m) (w, +1)(\ h2) :S y(O,m)(w, + I)(A, hI) :S exp{2A(h l - h2)rn} y(O,m) (w, + I)(A, h2), 

y(O,m) (w, -1)(\ h2) exp{ -2A(hl - h2)rn} :S y(O,m) (w, -1)(\ hI) :S y(O,m) (w, -1)(\ h2). 
(6.5) 

Via (4.5), this shows that h f-7 I"q (A, h) is continuous for u = ± 1, non-increasing for u = + 1 and 

non-decreasing for u = -1. Via (6.1), this proves that h f-7 Xq(\ h) is continuous for u = ±1, 

non-increasing for (J = + 1 and non-decreasing for (J = ~ 1. 

(iii) By Jensen, Thwrem 1.1 (s(''C also Bolthausen and den Hollander [3], Lemmas 1 and 2), (4.3) 

and the strong law of large numbers for w, we have 

2~ loglE[y(O,2n)(w,u)] > 2~ IE [log y(O,2n) (w, u)], 

lim .-L log[l/y(O,2n)] (w, u) 
n--+oo 2n 

JP' - a.B. and in L I (JP'). 
(6.6) 

Thereforel"q(A,h):S q)(\h)-UAh. Hence limhth"(A) 11+1 (\ h) =0. Thuslimhth"(A)X+I(\h) = 

0, because infYo-I l(y) = l(:)()) = 0. 
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