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Introduction

The modelling of the EM behaviour of electronic structures nowadays in-
volves a broad frequency range and coupling of analog and digital behaviour.
Much research and increasing computational resources enabled the designers
in the past decades to simulate complicated and large structures. One of
the approaches to make this modelling feasible is Model Order Reduction.
In this approach one tries to capture the essential features of a large model,
into a smaller, a more easy to handle model. A wide range of different tech-
niques has been proposed and investigated in the last few decades. Especially
Krylov-subspace methods have proved themselves to be very suitable for this
area of application (eg. [2], [4], [6] and [8]). Many of these methods guarantee
preservation of passivity, which makes them even more interesting.

However, implementing the methods straightforwardly is not enough to
make them applicable for real-life applications. In order to make the meth-
ods accurate, efficient and suitable for large systems, extra attention and
mathematical knowledge is needed. In this paper we will focus on the or-
thogonalisation of the Krylov space, which is seen to be of importance. Spe-
cial attention is paid to the orthogonalisation of a Block Krylov space. Also
some directions to cheaply avoid parts of the redundancy in the Krylov space
methods are pointed out in this paper.
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Krylov subspace methods

Modelling of an electronic structure can lead to a Differential Algebraic Equa-
tion (DAE), which form now on will be considered in this form:

(C
d

dt
+ G)x(t) = Biu(t)

y(t) = BT
o x(t), (1)

where C ∈ IRn×n,G ∈ IRn×n, Bi ∈ IRn×p and Bo ∈ IRn×p In the very common
case that C is singular this model is not an ODE, but a DAE. The models
we consider here can be derived in several ways. It can for instance be a
transmission line model, a PEEC model or an FDTD model with spatial
discretizations. In general the matrices G and C are real and constant in
time.

This system of equations can be transformed to the frequency domain
with a Laplace transform:

(sC + G)X(s) = BiU(s)

Y(s) = BT
o X(s) (2)

When the state space vector in frequency domain X(s) is eliminated, a trans-
fer function is obtained:

H(s) = BT
o (G + sC)−1Bi, (3)

H(s) ∈ C p×p. This transfer function gives a direct relation between input
and output of the system and is therefore a compact description of the system
behaviour in the frequency domain.

Model Order Reduction methods attempt to approximate the behaviour
of the system with a smaller model. A Krylov-subspace method generates a
Krylov subspace based on some input matrix B and some generating matrix
A:

Kq(B,A) = [B,AB, . . . ,AqB] (4)

The actual definition of B and A depends on the method of choice. For
instance, in the method Laguerre-SVD [4] for some choice of α ∈ IR, the
input matrix is defined as:

(G + αC)−1Bi (5)
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and the generating matrix is:

(G + αC)−1(G − αC) (6)

In general, for the basis of the Krylov space, say V, the following basic
property holds:

AVm = Vm+1H for all m, (7)

for some matrix H. Here the notation Am means the first m columns of the
matrix A.

In a next step the system matrices are projected onto an orthonormal
basis of the Krylov space. This can be done explicitly; the matrices of the
reduced system are then defined as:

Gq = VTGV Cq = VTCV

Biq = VTBi Boq = VTBo

If the dimensions of the space are smaller than the dimensions of the original
system, an order reduction is achieved. Some methods, like [7] make use
of the matrix H as defined in (7). The projection is then implicit. Others
define two Krylov spaces [2], which are orthogonal with respect to each other.
Other details about Krylov subspace methods can be found in [4], [6] and [8]
and many other papers.

Orthogonalisation

The columns in the Krylov space

Kq(b,A) = [b,Ab, . . . ,Aqb] (8)

gradually converge to the dominant eigenvector of the matrix A, i.e. the
eigenvector of A associated to the largest eigenvalue. This causes the Krylov
space to be very ill-conditioned. Next to that, it becomes hard to calculate
an accurate orthogonal basis of this space, because the columns become sim-
ilar to each other. If the orthogonalisation is done after the generation of
the space, as proposed in the Laguerre-SVD method [4], the convergence of
the method stagnates. We advocate here to orthogonalizes during the gen-
eration of the columns. In that case more directions than only the dominant
eigenvector can be calculated accurately and severe numerical artefacts are
avoided. We therefore propose to orthogonalize the newly generated vectors
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immediately after generation. We have been using Modified Gram-Schmidt
for this and in there we orthogonalize against all previously generated vec-
tors. After the newly generated columns are made orthogonal with respect
to all previously generated columns, they are normalized. This procedure
costs some computation time, but the accuracy of the method is drastically
increased in all directions. Also numerical artefacts are avoided.

Next to this, we propose to apply a second refinement on the orthogonal-
isation, in order to ensure orthogonality up to the machine precision. This
is needed in some critical problems, to ensure the preservation of stability
during time domain simulations of the reduced model.

Block Arnoldi Orthogonalisation

When a system has more than one, say p ports, Bi has more has than one
column:

Bi = [b1,b2, . . . ,bp] (9)

For this system a Block Krylov space is built:

Kq(Bi,A) = [b1,b2, . . . ,bp,Ab1, . . . ,Abp, . . . ,A
qb1, . . . ,A

qbp] (10)

One can imagine that the size of the Krylov space grows with p and so the
approximation will be larger if the number of ports grows. Orthogonalisa-
tion and normalization in a Block Krylov space can be done in several orders.
For instance, one can add columns to the space one column at the time, or
one can add them in blocks. We state that in this case it is important to
preserve the basic property of a Krylov space given in (7). If this property is
violated, the generated approximation can be totally wrong. In experiments
we saw that for a corrupted Krylov space, already for very small Krylov
spaces of 8 columns, the transfer function of the approximation differed dra-
matically from the original function. The order of orthogonalisation in the
Block Arnoldi Algorithm, as proposed in PRIMA [6] is seen as a right order
to orthogonalize a Block Krylov subspace. Here, we also applied a second
orthogonalisation step, to ensure exact orthogonality.

The Block Arnoldi algorithm, to generate a Block Krylov space for Laguerre-
SVD, looks like this:

Solve V1 from (G + αC)V1 = B
V1R = qr(V1)
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for j = 1...q − 1
Solve W from (G + αC)W = (G − αC)B
for i = 1...j

Hij = VT
i W

W = W −ViHij

end
for j = 1...j

Θ = VT
i W

W = W −ViΘ
Hij = Hij + Θ

end
Vj+1Hi+1,j = qr(W)

end
Vtot = [V1, ...,Vq]

Redundancy

Krylov-subspace methods are known for their redundancy. The method is
relatively cheap, but it can contain a lot of information which is not really
needed for an accurate approximation. This is even worse if one realizes
that there is no known error bound for Arnoldi methods: Easily too large
approximations are generated. But even if we were able to stop in time, the
Block structure of the Krylov space leads to redundant approximation. Many
authors proposed therefore a combination of a Krylov-subspace method with
another method, to form a two-step method. In that approach, first a course
approximation is calculated with a cheap Krylov-subspace method. In a
second step the order of this approximation is decreased by a more expensive
but more controllable method like a Truncated Balanced Realization method
[5] or by Proper Orthogonal Decomposition [1]. In our research we discovered
that a lot can already be done, very cheaply, during the first run of the
Krylov-subspace method.

If a Block Krylov-space method is to be generated, it can occur that one
of the columns in a new block is almost zero or almost completely spanned
by the other columns in the block. In that case we want to stop iterat-
ing with this columns, while proceeding with the others. Simply removing
information from the space we project on, can lead to the same problems
we saw with careless orthogonalisation. With a modified way to calculate a
QR-decomposition in the Block Arnoldi Algorithm we are now able to stop
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iterating with any wanted column, at any wanted time, because still the basic
property of Krylov spaces holds for this algorithm. Details can be found in
[3].

Results

For example, we tested the proposed algorithm on a MNA formulation of
an RLC-circuit. The formulation consisted of matrices with size 695. The
system has 11 input/ouput ports. We generated a reduced model with 7
iteration of the Block Arnoldi algorithm. In the standard algorithm this
leads to a 77-sized system. Columns with norm smaller than the tolerance
10−12 were removed. Then in the 2-nd and 3-th iteration a column is removed
and the total system size is eventually 66. The approximation, however, is
identical to the approximation of size 77, generated by the ordinary PRIMA
algorithm. In the picture below, the magnitude of the (1,2) entry of the
transfer function of this system (dashed line) is compared with the transfer
function of the system of the same size, but generated by ordinary PRIMA
(dotted line) and with the transfer function of the full system (solid line).
The transfer functions are plotted for values of the frequency ranging from 0
to 2 GHz.
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We see that the approximation of the system where the redundant columns
are removed, forms a better approximation of the original transfer function
than an approximation of the same size, but without removal of redundant
columns.

Apart from the removal of columns, we also propose a way to remove un-
wanted poles from the system, without distroying the Krylov space property.
This can be done by an eigendecomposition. The reduced system is reason-
ably small to make the calculation of a full eigendecomposition feasible. This
decomposition gives us direct access to the poles of the reduced system and
the associated residues.

The most important reason to implement Krylov subspace methods was
their preservation of stability and passivity. This makes stable time domain
analysis of very large models of real-life electronic structures possible. The
preservation of stability is shown by an example of a model of the printed
circuit board, in the following picture. The input is a very steap input pulse
with a rise-time of 100 ps.
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Conclusions

We have shown that, to be able to apply Krylov subspace methods for Model
Order Reduction to large real-life problems, extra effort is needed. Firstly,
the accuracy of the method can be improved by orthogonalisation during
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the generation of the Krylov space. The Block Arnoldi algorithm is one
way to do the orthogonlisation in a correct way. This orthogonalisation
is sometimes needed twice. Further, converged columns can be removed
during the orthogonalisation step. This can be done without violating the
basic Krylov subspace properties. The proposed removal makes the reduced
models smaller and therefore less redundant.

All these improvements can be implemented easily in existing methods.
This all makes the application of existing methods to large real-life problems
feasible.
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