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For some ill conditioned BVP the ill-conditioning is due to a lack of a proper dichotomy of the
solution space. For such problems we suggest a regularisation technique, by effectively solving a

similar problem but subject to an integral BC (being a pertwbation of the given one). It is indi
cated why this improves the conditioning and also how this in1luences the.JlCcuracy of the numer
ical solution.
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1. Introduction

Consider the BVP

(1.1)

(1.2)

dx
di=L(t)x+!(t), -1~t~ 1

M_1 x(-I)+M 1 x(1)=b,

where vectors are E R" and matrices E Ril"

It is well known that the conditioning of (1.1) + (1.2) is closely related to the dichotomy of the

ODE (1.1), cf. [1]. By the latter we mean the following: Let there exist a constant 1C, a fundamen

tal solution ~t) of (1.1) and an orthogonal projection P such that the following estimates hold

(1.3a) l~t)P«1»-I(S)II~K, t>s

(1.3b) I ~t)(l-P) «1»-I(s)lI~ K, t < s,

then the ODE (1.1) is said to have a dichotomy with threshold 1C.

Unless the BC (1.2) are chosen such that they do not "control" the modes (<<1»(t) Pel C E lR} at

the left point t =-1, and the modes (<<1»(t) (I -P) c ICE R} at the right point t = I, we have a

"well-conditioned problem", with condition number - K (cf. [1], where also a kind of converse

was proven: given well-conditioning O(K) we have a dichotomy with threshold O(~». Recently,

it was also shown (cf. [2]) that if we have a multipoint, or even integral BC, say

1

(1.4) f M('r) x('t) dt = b,
-1

then we can indicate a more complex structure of fundamental modes: not only do we have ones

that do not grow (in nonn) more than a factor K for increasing t or decreasing t, but also ones that

may increase initially and then decrease. Although this more general structure is not necessarily

present, it is essential that an appropriate interval condition controls such a mode when it is, in

order to have a well-conditioned problem.

Reversing the argument a little, ill-conditioning may be caused by modes, having the above

described behaviour (Le. are increasing on some interval (-1,1) and decreasing on (T, 1». In

such cases a different BC might "stabilize" the problem. This idea has induced the present inves

tigation, of which we only give a brief account in this paper: We like ~ find such an (integral)

BC, being a perturbation of (1.2), so that modes, not of either type as described in (1.3a) or

(1.3b), are controlled; this may be considered as a regularization of (1.1), (1.2). The usual price

for such a procedure is that we are solving a nearby problem at best. However, by a judicious

choice of this perturbed BC and given moderate accuracy requirements, this may lead to a reason

able strategy. In particular, the proposed method improves error bounds obtained for the original

problem. In section 2 we consider a simplified but instructive case. In section 3 we show how we

may deal with more general situations.
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2. A simple example

In order to demonstrate the regularisation idea let us first examine a simple example, which

allows for explicit analytical treatment: Consider the ODE

{

.lx, -1::;/<0

dx= \
dt -£ x, 0 < I::; 1 ,

where x is a scalar function.

A general basis solution (is a fundamental. solution here) is given by

{

ef/P., -1::; I::; 0
(2.2) cK/) = e-(/P. 0::; I::; 1.

The graph ofep(x) is given in Fig. 2.1.

-1 o

Fig. 1.2

1

Hence we see that there exists no dichotomic fundamental. solution, with a dichotomy constant

uniformly bounded in Eo Consequently, no possible choice for a two point Be can make a related

BVP well-conditioned.
f

In order to investigate the effect of integral Be, let us compute v(/) :=Jep(~) d't. We obtain
o

(2.3a)

(2.3b)

f

",(I) = Jep('t) d't = £[ ef/P. - e-1/P.] , t::; 0
-1

f

",(I) =Jep('t) d't =£[ 2 - e-1/
p. - e-(/P.] , 1~ o.

-1
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The graph ofv(t) is given in Fig. 2.2.

I 2
I

I
I

-1

If we consider the augmented system

o
Fig. 2.2

1

(2.4)
-IS t < 0

0< tS I,

Then, clearly, a fundamental solution, O(t), is given by

(2.5) O(t) =[~g ~J .
As can be seen, the first column of O(t) is strongly increasing on (-1, 0) and almost constant on

(0, 1) for £ J.. O. However, this choice of fundamental solution is also very skew, Le.

span«~t), ",(t)l) ~ span«O, Il).

Therefore a better choice ofO(t) (cf. [4,p 88]) is the following

A [ ,(t) --eKt)] A 1 A 2
(2.6) O(t)= ",(t) 2-",(t) =[0 (t) 10 (t)].

A graph of I 0.1 (t) I and II 0 2 (t) I is given in Fig. 2.3.

1) In this paper" .1 means I .Iz
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Fig. 2.3

-1 o 1

We conclude that the augmented system (2.4) has a dichotomic fundamental solution n(t) with a

moderate dichotomy constant, uniformly in £! lbis consequence lies' at the heart of the idea we

want to exploit in this paper.

First let us consider a (non biased) BC for (2.1):

(2.7) x(-l)+x(l)=b, be JR.

We obtain for the Green's function G (t. s) of (2.1), (2.7).

{

eIl(t) Q-I e-1f
£ ell-I (s). t > s

(2.8a) G (t • s) = -,(t) Q-I e-1f£ ell-I (s). t < s •

where we derive Q from the Be (2.7):

(2.8b) Q = 2e-1f
£.

H we take e.g. t > s we find

{

1. e(r )I£. t < 0, S < 0

(2.9) G(t.s)= te(-r )I£. t>O.s<O

1. e(-rff)l£. t > O. s > O.
2

For t < s a similar type of result can be given, from which we conclude that

(2.10) max I G(t, s) I =1. el/
£.

t,.r 2

lbis bound for I G(t, s) I of course confirms the lack of suitable dichotomy as was apparent from

(2.2), cf. [1].

Let us now consider a regularised BC, cf. (2.7)
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1

(2.11) x(-I)+x(l)+/) Jx(-r) d-r= b.
-1

Of course /) in (2.11) should be taken fairly small, in oIder not to perturb the BC too much.

On the other hand we see that (2.1) + (2.11) can be viewed as an augmented system (2.4), satisfy

ingtheBC

(2.12) [101 [XC-I)] +[1/)1 [XCI)] _[b]
o IJ y(-I) OOJ y(I) - 0 .

The crucial point here is that the row vector (I,/) in the right BC matrix is "controlling" the

non-increasing mode 0.1 (t), and the better the larger /) is. On account of the moderate dichotomy

constant ofn(t) we therefore may expect a conditioning constant for (2.4) + (2.12) - ~, as com

pared to - e 1/£ for (2.1) + (2.7) (cf. (2.10».

We shall woIt. this out in a slightly different way now, by considering the Green's function,

G(t, s), for (2.1) + (2.11) directly. We obtain

(2. 13a)

(2. 13b)

where

G(t,S)=~(t)Q-l (e-1/£+ /) 'f/(s» ,-1 (s) , t>s

G(t, s) =-cHt) Q-l (e -1/£ +&(2-",(s») .-1 (s), t < s ,

(2.17)

Ifwe take (e.g.) t > S, we find (cf. (2.9»

{

e(' )1£ *(e-lI£ + /)£ e61E ~£ e-1/£) , t < 0, S < 0

(2.15) G(t , s) == ( 2e-1I£ + 2 £/)'. eH )Ia .(e-1/a + h e61£~£ e-1/£) , t > 0, S < 0
eH )Ia .(e-lI£ + 2/)£ -/)£ e- IJ£ -/)£ e....I£) , t > 0, S > o.

Clearly, I G(t , s) I attains its maximum value for t =0, s =-1, so (a similar bound follows for

t < s), so

(2.16) max I G(t, s) I = I+/)£-/)£ 1
2e-1I£ + 6£ :::: 26£ '

assuming e-1/
£ «/)£.

Now consider a nonhomogeneous problem,

{

..!.(X+/(t»' -ISt<O
dx £
-= 1
dt -- (x +I(t», 0 < tS I,

£

where I (t) is chosen such that (2.17) possesses a (uniformly bounded) particular solutionp.

Define the following BC (cf. (2.7), (2.11»



(2. 18a)

(2. 18b)

B x :=x(-l)+x(l)

1

Ell X :=x(-l)+x(1)+~ Sx('t)d't.
-1
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The for the exact solution of (2.17), (2.7) there exists a constant c* such that

(2.19a)

where

(2. 19b)

x(t) =III (t) c* +p (t),

2e-lIe c* =b -B p.

By requiring max I x(t) I =0(1), we see that

(2.20) c*=O(1).

(so I b-B P I = o(e-1/e». Now consider the following two solutions:

LetxO(t) satisfy (2.1) and (2.11), then there exists a constant CO such that

(2.21a)

where

(2.2Ib)
1

2(e-lIe+E~)Co=b-EIIP=b-Bp-~ Sp('t)d't.
-1

Let Xl (t) satisfy (2.1) and the BC

1

(2.22) Ell Xl =b + ~ JX
O ('t) d't.

-1

Then

(2.23a)

with

(2.23b)

Remark 2.24. Given p (t) (which can be computed without employing any (global) BC, we can

stably find both CO and c1 by evaluating (2.21a) and (2.23a) at t =O.

From (2.21b) and (2.23b) we can thenformal1y find c* by

(2.25) 2 (e-1/e +E~) c 1 - 2E~ cO =b -BP =2" e-lIe c*

The idea here is that co, C1 can be found in a fairly stable way and that, if the cancellation errors

in (2.25) are within certain limits, we can use this form for computing c* and obtain X (t) via

(2. 19a).

Using (2.19b) in (2.21b) we find



(2.26) CO = O(e-I/E)+O(~) =O(..!.)
2(e-I/E +E~) E'

assuming again e-lIE « E~.

Similarly we obtain from (2.23b)

- 8-

(2.27)

Hence, given a machine accuracy EM' we find for the numerically computed c· , csay (cf. (2.25»

(2.28) Ie - c· I =O(~ EM e l/E
) ,

whence we find for the numerically computed solution x (t), x(t) say (cf. (2.19a»

(2.29) I oX (t) - x(t) I =O(~EM e I/E
).

If we compare this error bound with the one that would result from solving (2.1), (2.7) directly,

(or through (2.19b» viz. O(EM e
llE

) (cf. (2.10» we see that this method gives better results indeed.

Of course, we have a natural constraint on the magnitude of~. For if we solve the "regularized"

EM
system we should expect errors 0(~), cf. (2.16).

Concluding we obtain that ~ must satisfy

(2.30a) ~ ..!. < ~< TOL -liE
TOL E - - EM e ,

which is only meaningful if

(2.30b) TOL> -'h """--_E e .
EM



-9-

3. Some generalisations

In this section we shall sketch the more general situation of a BVP where the fundamental solu

tion <I>(t) is not dichotomic with a fairly moderate dichotomy constant, but instead the following

holds

Assumption 3.1 Let there exist orthogonal projections PI, P 2 , P 3, such that PI +P 2 +P 3 = /,

rank(P I) + rank(P2) + rank(P 3) =n, and a moderate number 1C such that

(i) I <I>(t) PI <I> (srI liS lC, t~ s

(ii) I <I>(t)P2 cI>(s)-IIIS lC, tS s

(iii) I <I>(t)P2 <1>-1 (s)IIS lC, o> t~ S

1

(iv) glb (J <I>(-t) dt)~ C , c not small.
-I

Remarks 3.2.

(a) Condition (iii) can be generalized to "turning points" other than 0 and modes within <I> (t) P 2

having different "turning points".

(b) Note that (iv) prevents "directional cancellation" (a necessary and nontrivial extra require

ment).

We now employ the same idea as used in the previous section. Rather than (1.2), consider the

Be:

1

(3.2) M -1 x(-l) + M1 x(l) + ~ Jx('t) d't = b.
-I

Define

(3.3a) Q =M_I <I>(-I)+M I <I>(l)

1

(3.3b) E = J<I>('t) d't.
-1

We shall only investigate the Green's function, of the BVP (1.1), (3.2), G6 (t , s) for t > s for t < s,

the analysis is similar. We obtain

I

(3.4) 06(t,S)=<I>(t) (Q+~E)-I [M_I cI>(-l)+~ J<I>('t)d't] <1>-1 (s).
-I

This leads to

Lemma 3.5. Let C =max(UM_II,IMIll Then I 06(t, s)IS 21C(C+U) 1<I>(t) (Q+~Erlll+ IC.
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Proof: Let s < 0 then

II

G6(I , S) =et»(1) (Q +~rl [M -1 et»(-I)+a Jet»(-r)d-r](P1+ P2 +P 3)/ c1>-1 (S)
-1

1

=-4»(1) (Q+aErl (M1c1>(1)+aJc1>(-r)d-r)PI .-l(S)+c.(t)PJ c1>-l(S)
II

II

+et»(I)(Q+~rl(M_1et»(-I)+a Jet»(-r)d-r)(P2 +P3)c1>-1(S) ,
-1

from which the assertion can easily be shown. For s > 0, we make a similar reformulation, now

grouping P 2 with PI instead. 0

In order to show which effect aE has on the conditioning, we have to make some additional

assumptions regarding directional well-conditioning. First, we note that it is not restrictive to

assume that PI, P 2 and P 3 are just diagonal blocks of the identity matrix. We have

Assumption 3.6.

(i) Let c1> (I) be normalized such that all columns assume a maximum norm of 1 for some

1[-1, 1].

(ii) Let the minimum angle between the columns of Q, and l1(a) the minimum angle between the

columns ofQ + aE, be bounded away from zero, say ~ := min(e, l1(a» > o.

Ifwe denote the jtlt column of Q by qj and the j-th column of Q + aE by qj(a), then we can deduce

from this assumption (cf. [3, p. 429]

Property 3.7.

I c1>(I) Q-ll1~ __...:;.1__

sin ~ min I qj II
j=1 ..

and

I c1>(I) (Q + aErll1~ 1 _

sin~ min II qj(a) I
j=1 ..

o

It can also be shown that the bounds in this property are fairly realistic. Consequently, (as is pre

cisely the case in section 2) we attribute ill-conditioning to min Iqj I being small.

Hence it is realistic to have

Assumption 3.8. Let c1> (I) (P 1+ P3) precisely have the last p columns equal to zero (so c1> (I) P2

precisely has the first (n-p) columns equal to zero). Then assume that. min Iqjll~ c, c not
}=1 """1'
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small and. min Iq,,_j II « c
j=Al••••,p-l

Identifying the constants c in assumptions 3.1 and 3.8, we immediately deduce from Property 3.7.

Corollary 3.9.

LetS». min Uqll_jl,thenRQ(I)(Q+6Er11l$ . IS
j=Alr••,p-l SID ~ C

o
Together with Lemma 3.5 this gives us
Corollary 3.10.

. 2x:(C+S)
Let 6» . mm Uq,,_jl, then II G6 (I , s)lI~ . J: + 1C.

j=Alr•.,p-l SID ., 6 c
o

We conclude that we have regularised our problem, i.e. max I G6 (I , s) U= 0( ~ ) » max IG (I , s) L
... 0',4

This fact can now be employed in the same way as it was done in section 2, cf. (2.18) ff. We

shall omit further details as the final result is essentially the same.
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