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1 Introduction

We present a new robust compound step strategy for multirate time integra­
tion methods. The strategy applies to DAEs and to time-dependent PDEs as
well. We will compare this to other known strategies like Slowest First and
Fastest First and modern ones that involve some form of a compound step
integration during the process.
The circuit equations can be written as a DAE system of equations

!£[q(t, x)] +j(t,x) = O.
dt

(1)

We assume that some partitioning is given that distinguishes between "slow"
and "fast" varying components Xs and XF. In this case (1) can be written as

:t[qF(t,xF,XS)] +jF(t,xF,XS) = 0

~[qS(t,xF'XS)] +jS(t,xF,XS) = 0

(2)

(3)

Ordinary multirate time integration aims to integrate (2)-(3) to a same accu­
racy using different time-steps Hand h, in which H » h. We intend to apply
the approach to mixed signal simulation in which digital and analog circuitry
are combined. The digital part often shows latent time behaviour, while the
analog part often shows time varying activity. In addition, on the digital part
less accuracy is needed than on the analog part. This gives way to combine
multirate time integration with distributed tolerances.
Because circuit simulators usually apply Backward Differentiation Formula
(BDF) methods as time integrator we will consider multirate time integration
for the most simple one, the Euler Backward method.
The Slowest First strategy integrates first (2) for Xs using extrapolated val­
ues for XF and step-size H. Next (3) is integrated repeatedly for XF using
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interpolated values of Xs and step-size h.
The Fastest First strategy simply starts with (3). The first approach bene­
fits from being better suited when dealing with automatic step-size control
mechanism. However both methods have weak stability properties, due to the
extrapolation involved [2]. For this reason we were led to study implicit meth­
ods. Interesting ones can be cast in the following General Compound Strategy,
in which q = !f, and 0 < a ~ 1 is just a parameter:

ALGORITHM 1 A General Compound (G. C.) Strategy

Compound phase: Solve for x~+q and x~+<>q :

qF(X~+<>q,xs) - qF(x'F,XS) + aHjF(x~+<>q,xs) = 0

Xs - Xs - a(x~+q - xs) =0

qS(XF,X~+q) - qs(x'F, xs) + HjS(XF,X~+q) = 0

, <> n 1 (n+<>q n ) 0XF-XF-;:; xF -XF =

(4)

(5)

(6)

(7)

Refinement phase: Solve for X~+i+l (j = 0, ... ,q - 1):

qF(X~+i+l,X~+i+l) _ qF(X~+j, x~+j) + hjF(X~+i+l, X~+i+l) = 0 (8)

X~+i+l _ Xs + j + 1 (x~+q - xs) = 0 (9)
q

Here (4)-(7) form a "Compound Step" in which Xs is determined at
t = t n + qh = t n + H, together with implicitly determined XF. If a = 1,
this" Compound Step" is just the result of Euler Backward with a large step
H, which is easy to implement. If a = ~, the solutions x~+q and x~+l are
simultaneously calculated. This option corresponds to the multirate method
described in [1,3] (but for Runge-Kutta and Rosenbrock-Wanner methods).
Integration of (8) is the "Refinement Step" for the fast part. It uses interpo­
lated values x~+j+l as expressed in (9).
Clearly the GC step methods solve a larger system during the Compound
Step phase than in the Slowest First or the Fastest First strategies. However,
in most mixed signal applications the size of the digital parts exceeds that
of the analog part several times. The GC step methods have much better
stability properties than the Slowest First or the Fastest First strategies as
conjectured by [4] and which is proved in [5]. For instance, considering the
next two-dimensional test equation

( ;~) = (~~~ ~~~) (~~)
"---v--"

A

the following stability conditions for A are derived in [5]:

(10)
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SF GC GC (a =1)

all < 0 all < 0 all < 0
a22 < 0 aall + a22 < 0 all + a22 < 0

la12a211 < lalla221 -alla22 - 2aa~1 < a12a21 -alla22 - 2a~1 < a12a21

a12a21 < alla22 a12a21 < alla22

In the sequel we assume a = 1, which is the most robust choice. We will
demonstrate that this strategy elegantly fits hierarchical circuit definition.
Furthermore, the impact of the partionining will be considered.

2 Model Problem

Using Modified Nodal Analysis, in circuit simulation applications q(t, x) =
L e Beqe(t, B:x), in which qe is a local branch function. For instance, for a
(linear) capacitor C(a, b) between nodes a and b, qe = C and Be = ea - eb, in
which ea (resp eb) is a canonical unit vector with a 1 at place a (resp. b), and
zeros elsewhere. The operators Be are defined by the topology of the network.
They do not depend on t or on x. Similar results hold for the function j.
Assembly can be grouped to sub-circuits to fit hierarchical circuit definitions.
In this way

s

where B;x selects the unknowns at the sub-circuit level and

e

defines the assembly of qs inside the sub-circuit.
A simple model problem is shown in Fig. 1. With x = (V1 , %, iE, V3 , V4f ,

the functions q and j are given by

I

V1 R 1 V2 Va! R2 V4

Fig. 1. Simple model circuit; Fast at the left, Slow at the right
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CXl

o
q(t,x) = 0 , J(t,x) =

o
CX5

(11)

The source functions .Jk(t,X) may be defined by .Jk(t,X) = sin(wkt) with
Wl » W2· The role of i E of the short E serves to explicitly obtain the terminal
current between the fast and the slow part (the short E can be included
automatically as a "virtual" glue-elements by the simulator, see also section
3). In the refinement phase a current source can be used to define the outgoing
current of the slow part.
Several partitionings Pk may be considered. Here the following are considered:

• Pl: XI = [Vl' V2,iE, V3] and Xs = [V4].
• P2: XI = [Vl, V2,iE] and Xs = [V3,V4].

If a partitioning P is chosen, topological matrices Bland B s can be defined
in the same style as before to define for instance q(t, Bsx).
The Euler Backward Compound method (a = 1) proved to be very stable due
to the implicit extrapolation. Considering the last method more closely for
different partitionings, we observe that P l performs best. Results are shown
in Fig. 2. However, despite the less accurate results, due to the interpolation

• ~I~~ ~~:~ ~ f\ 'I~~'~\"
I J'I 11 /, II! II \.,.
,I, I \ I' If· II II/'!' iI t,I\" '1\

1,\ I .\ f \'.'1 \ I. I
l
I1.. , 1/ '1 '.'

\
1.. I 'I' '1 \II) II \'1

..• ~ vv ~ ~ ~ Iv V~

F"--"
~ 1\ I A.ft'i f' r: 'i ... i\l\ ,\ !I' Ii 1

1
'\ \ II Ii .

1\'/11, '\ '\ I .\ \ I' /1
1, ,.\1\ 1.... 1 Ii ,Ii. \. i' .

\1 I' II II'! III
1\ Iii \iii! 1\ 1\ I!/'Iil
\/\/1

1
'/1/ II \1/ \i III/ II

\I Ii I II \i ./11' 11 'I I'., il!i \. I 1/ 1.\\, II
. V vV i v \ V V V ~

/''''­I ... \.;: .. \
, './ \

/ \ ./\

\~.J':

Fig. 2. Results with Partitioning Pl (at the top) and Partitioning P2 (at the bot­
tom). Ri = 105 ,R = 10,C = 2.1O- l o,H = 0.16 and h = 0.032. Error(Pl(Vl ))::::;
Error(P2)(Vl ) ::::; 10-10

. Error(Pl(V2)) = 9.6310-7 < Error(P2(V4)) = 8.9210- 5
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error, partitioning P2 is very attractive, because it elegantly fits an existing
hierarchical evaluator: the main part of the partitioning is along the boundary
of the known sub-circuits 81 and 82 and thus this partitioning may even be
given by the user. In the algorithm 81 and 82 are treated as in ordinary
transient simulation (with their own step-size).

3 Interface treatment fitting hierarchical sub-circuits

At the interface, the partitioning concentrates in the" glue-elements" . A more
general glue-elements is shown in Fig. 3, from which it is clear how it can be
generated. For instance, it applies to sub-circuits of which two terminals of one
are connected to the same terminal of another. Note also that the connections
between the sub-circuits are treated more symmetrically. Now each short can
measure a particular terminal current. In the glue-elements this facilitates
particular implementations for multirate integration, also when dealing with
partitionings with more different multirate behaviour.

m
:..-.. ··.·E-r m:: >-- :. ., .. ., .

Fasr E2 E4 rlOW

i :

_ ,..... ····E;·······E;--·-- ....., _ m
:····_··ET"....

!~
Fast E -

i 2 h

L.····..E··~_ 3

Fig. 3. Generation and different role of glue-elements. In the compound phase (at
the left) shorts E 4 and E 5 allow to measure currents at the slow boundary. In the
refinement phase (at the right) these current values are used to define the current
sources JI and h. The boxes "fast" and "slow" can be treated as black boxes.
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