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Stability of monolayers and bilayers in a

copolymer-homopolymer blend model

Yves van Gennip∗, Mark A. Peletier∗
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Abstract

We study the stability of layered structures in a variational model for diblock copolymer-

homopolymer blends. The main step consists of calculating the first and second derivative of

a sharp-interface Ohta-Kawasaki energy for straight mono- and bilayers. By developing the

interface perturbations in a Fourier series we fully characterise the stability of the structures

in terms of the energy parameters.

In the course of our computations we also give the Green’s function for the Laplacian on

a periodic strip and explain the heuristic method by which we found it.

Keywords: block copolymers, copolymer-homopolymer blends, pattern formation, varia-

tional model, partial localisation, Green’s function for Laplacian on a strip
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1 Introduction

1.1 Localised and partially localised patterns

Localised patterns are observed in a wide variety of systems, including experimental systems
such as the Belusov-Zabotinsky reaction [50], nonlinear optics [44, 42], vertically shaken granular
media [48, 46], and Bose-Einstein condensates [43], and also in idealised systems such as the Swift-
Hohenberg equation [10, 40, 41, 45] or networks of reacting cells [27]. More recently objects have
been observed that are only partially localised: structures in two dimensions, for instance, that are
‘thin’ in one spatial direction and ‘long’ in the other. Such partially localised patterns have been
observed in Nonlinear Schrödinger equations [11, 5, 1, 2, 3], Gierer-Meinhardt-type systems [12],
and even in scalar nonlinear elliptic equations [25, 26, 24]. In addition, the membrane that
surrounds each living cell, for instance, is such a structure [22, 6, 32].

In this paper we study an example of energy-driven partial localization, arising in the study of
mixtures of diblock copolymers with homopolymers. Such mixtures feature two opposing forces: a
repelling force between different polymer types favours separation into homogeneous phases, while
covalent bonds between some of the repelling polymers impose an upper limit on the separation
length. As a result a wide variety of patterns are observed (both in physical and in numerical
experiments), ranging from spheres [21, 31, 49, 51], cylinders [20], dumbbells [30], helices [17],
‘labyrinths’ and ‘sponges’ [23, 19, 30], ‘ball-of-thread’ [23], layered structures [20, 21, 30, 51], and
many more.

Our focus is on layered patterns, consisting of two or more parallel layers of roughly uniform
thickness. In each layer the composition is dominated by one of the polymer types, and in the
separation into layers one can recognise a phase separation phenomenon triggered by the repelling
forces between polymer types. In addition to their interest as particular patterns in copolymer-
homopolymer blends, such layered structures are examples of energy-driven partial localization.

∗Dept. of Mathematics and Computer Science, Technische Universiteit Eindhoven, PO Box 513, 5600 MB
Eindhoven, The Netherlands (e-mail: y.v.gennip@tue.nl, m.a.peletier@tue.nl)
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The main goal of this article is to understand the (in)stability of such layered structures in
this simple model of copolymer-homopolymer blends.

1.2 Diblock copolymers and blends

Diblock copolymers are polymer molecules that consist of two parts (blocks) called the U part
and the V part in this paper, with corresponding volume fractions given by the functions u and v.
As described above, the interaction between the two types of polymers is the net result of two
opposing influences. On the one hand the U and V parts repel each other, leading to a tendency of
the U and V phases to separate; on the other hand the U and V polymers are chemically bonded
together in a single diblock copolymer molecule, forcing both polymers to remain close to each
other. As a result of these two types of interaction, the separation between the U and V phases is
restricted to length scales of the order of the molecule size.

We consider systems that contain, in addition to the diblock copolymers, some type of ho-
mopolymers, that we call the 0 phase. The system therefore contains three phases, and because of
an assumption of incompressibility we can use the functions u and v to describe the distributions
of the three phases.

In [7] the following energy is derived:

F(u, v) =







c0

∫

SL

|∇(u + v)| + cu

∫

SL

|∇u| + cv

∫

SL

|∇v| + ‖u − v‖2
H−1 if (u, v) ∈ K,

∞ otherwise,

where the coefficients ci are nonnegative (and not all equal to zero), SL is a periodic strip TL ×R

(where TL is the one-dimensional torus of length L), and the set of admissible functions is given
by

K :=

{

(u, v) ∈ (BV (SL))
2

: u(x), v(x) ∈ {0, 1} a.e., uv = 0 a.e., and

∫

SL

u =

∫

SL

v

}

.

Since unconstrained minimisation will lead to the trivial structure u ≡ v ≡ 0, the natural problem
to look at here is minimisation under constrained mass, i.e. with the constraint

∫

SL
u =

∫

SL
v = M

for some M > 0.
Under the extra restriction u + v ≡ 1—no 0 phase—the functional F is a well-known sharp-

interface model for diblock copolymer melts [33, 8]. The sharp-interface character of this model,
known in the physics literature as the strong-segregation limit, is recognizable in the fact that the
variables u and v are characteristic functions, implying that at each point in space only one phase
is present. The underlying diffuse-interface model is well studied [29, 15, 14, 28, 34, 8, 35, 36, 37,
38, 47, 39] because of the interesting pattern formation phenomena it exhibits.

The first three terms of F can be recognised as the sharp-interface manifestation of the repelling
forces between the U, V, and 0 polymers. The last term, the H−1-norm, is a remainder of the
chemical bond between the U and V polymers and penalises large-scale separation of the U and
V phases.

1.3 From one-dimensional to two-dimensional structures

A layered structure with perfectly straight layers can be described by functions u and v of one
spatial variable. In a companion paper [16] (see also [7]) we study this one-dimensional case and
give a full characterization of global minimisers.

One of the results in that paper is that every constrained-mass global minimiser on R is a
concatenation of equal-width monolayers. A monolayer is shown in Fig. 1: a structure, described
by a pair of functions (u, v), in which the supports of u and v are adjacent intervals of equal
length—or, in the higher-dimensional context, adjacent layers of equal width (see Figs. 1a and 1c).

For small constrained mass, the global minimiser in one dimension is a monolayer. For slightly
larger constrained mass, the global minimiser switches to a bilayer, a pair of monolayers joined
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back to back (Figs. 1b and 1d). As the constrained mass further increases the global minimiser
switches to structures of increasing numbers of monolayers (see [16]).

In the present paper we are interested in the stability properties under F of a particular subset
of two-dimensional mono- and bilayer structures:

• For both mono- and bilayers we assume that the layer thickness is such that the energy-to-
mass ratio F/

∫

u is minimal among all such layers;

• For monolayers we assume that cu = cv, i.e. that the interface penalization is the same for
U-0 and V-0 interfaces.

Both restrictions arise from our interest in thin, partially localised structures in R
2, as is explained

in detail in Appendices A and B.

x2

U V
0

1

(a) A one-dimensional monolayer

x2

UV V
0

1

(b) A one-dimensional bilayer

x1

x2

U

V

L

δm

(c) A straight monolayer on the periodic
strip SL

x1

x2

U

V

V

L

δb

(d) A straight VUV bilayer on the periodic
strip SL

Figure 1: Mono- and bilayers on a strip as trivial extensions of one-dimensional structures

1.4 Stability of mono- and bilayers in two dimensions

The aim of this paper is to investigate the stability of these mono- and bilayers in two dimensions.
Since the functions u and v are forced to be characteristic functions of sets, the only admissible
perturbations are changes in the supports of these functions. In this paper we only consider local
stability with respect to perturbation of the position of the interfaces; other perturbations, such as
those that change the topology of the structure are disregarded (see the discussion in Section 6).

Specifically, we consider perturbations of the interfaces that are periodic with period L along
the length of the layer, and therefore we assume a domain that is periodic in one direction (x1) and
unbounded in the other (see Fig. 1). Because of this periodicity each perturbation of an interface
is given by a periodic function p : TL → R

3 (for the monolayer) or R
4 (for the bilayer), where each
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component is the lateral displacement of one of the interfaces. By expanding the perturbations in
Fourier modes, and using the usual vanishing of cross terms of different frequency, the positivity of
the second derivative of the energy reduces to the positivity of the energy on each Fourier mode.

Fourier modes have a natural scale invariance: the kth Fourier mode on the interval of length L
is equivalent to the 1st Fourier mode on an interval of length L/k. This allows us to establish
the stability with respect to the first Fourier mode as a function of L, rescale for the stability
properties of the kth mode, and aggregate the results.

Using this approach we show in Section 4 that for the monolayer of optimal width is linearly
stable with respect to mode-1 perturbations iff

cu

2cu + c0
≥ f1(L/δm),

where f1 is an explicit function given in (27). By combining all Fourier modes we find

Theorem 1.1. Assume cu = cv. The monolayer of optimal thickness is linearly stable iff

cu

2cu + c0
≥ f(L/δm) (1)

where
f(ℓ) := sup

k≥1
f1(ℓ/k).

The functions L/δm 7→ f1(L/(kδm)) are shown in Fig. 2a.

25 50 75 100 125 150 175

0.1

0.2

0.3

0.4

0.5

0.6

L/δm

f1(L/(kδm))

(a) The monolayer; plotted are the curves L/δm 7→
f1(L/(kδm)) for k = 1 . . . 20

25 50 75 100 125 150 175

0.1

0.2

0.3

0.4

0.5

0.6

L/δb

g1(L/(kδb))

(b) The bilayer; plotted are the curves L/δb 7→
g1(L/(kδb)) for k = 1 . . . 20

Figure 2: The graphs of the functions L/δm 7→ f1(L/(kδm)) and L/δb 7→ g1(L/(kδb)) (k =
1, . . . , 20) portray the curves in parameter space that separate the parts where the first twenty
Fourier modes of the second variation for the monolayer (Figure 2a) and bilayer (Figure 2b) are
positive and negative. If cu/(2cu + c0) < f1(L/(kδm)) the kth Fourier mode is negative for the
monolayer, if the reverse inequality holds the mode is positive. Similarly for the bilayer the kth
Fourier mode is negative if (cu +cv)/(c0+cu +2cv) < g1(L(kδb)). The leftmost curve in each figure
corresponds to the first order Fourier mode, the order increases towards the right. Note that the
positivity of the parameters cu and c0 implies that cu/(2cu + c0) ≤ 1

2 as indicated in Figure 2a by
the dashed line.

For a bilayer a similar result holds:

Theorem 1.2. The VUV-bilayer of optimal thickness is linearly stable iff

cu + cv

c0 + cu + 2cv
≥ g(L/δb) (2)

where
g(ℓ) := sup

k≥1
g1(ℓ/k)

and g1 is given by (21).
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In Fig. 2b the functions L/δb 7→ g1(L/(kδb)) are shown.
From Figures 2a and 2b one might think that curves belonging to higher orders remain below

curves of lower orders. The blow-ups in Figure 3 however clearly show that this is not the case.

20 25 30 35 40 45 50

0.57

0.58

0.59

0.61

L/δm

µ

(a) Blow-up of Fig. 2a

20 25 30 35 40 45 50

0.61

0.62

0.63

0.64

0.65

L/δb

ζ

(b) Blow-up of Fig. 2b

Figure 3: A blow-up of the graphs in Figure 2. Curves corresponding to different Fourier modes
clearly cross

Figure 4 summarises the stability properties of both the mono- and the bilayer. In Fig. 4a the
vertical axis is restricted to the interval [0, 1/2] to reflect the value set of the left-hand side of (1).
This implies that monolayers can only be stable if L is sufficiently small, and even then only for
a subset of the coefficients c0, cu, and cv; for sufficiently large L the monolayer is unstable for all
choices of interface penalization.

For the bilayer the situation is different: here the condition (2) allows for both stability and
instability at all values of L. The function g is bounded from above (away from 1), implying that
a threshold α exists such that

cu + cv

c0 + cu + 2cv
≥ α =⇒ Bilayer is stable for all L.

From Fig. 4b we estimate that α ≈ 0.65.

0 0.2 0.4 0.6 0.8 1

0

0.1

0.2

0.3

0.4

0.5

ν

χ

+

+/−

(a) Monolayer

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

υ

ζ

+

+/−

(b) Bilayer

Figure 4: The sign of the second derivative operator for the mono- and bilayer of optimal width.
+/− indicates indeterminate sign, due to the negativity of one or more eigenvalues. Along the
horizontal axes are plotted ν = e−2πδm/L and υ = e−2πδb/L. The vertical axes show µ = cu/(2cu +
c0) and ζ = (cu + cv)/(c0 + cu + 2cv). These figures are based on a calculation involving Fourier
modes up to and including order 100
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1.5 Directions of instability

For the functional F one may imagine a number of different evolution problems, such as gradient
flows based on the L2, H−1, or Wasserstein metrics. Under such an evolution the straight mono-
and bilayer structures are stationary. If they are unstable, the evolution will amplify small devi-
ations and move away from the straight configurations. While the perturbations are still small,
the main contribution of the evolution will be in the directions of the eigenvectors of the second
variation belonging to the (most) negative eigenvalues.

For the monolayer there is, for each Fourier mode, one eigenvalue that can become negative (for
the first Fourier mode: E2 in Lemma 4.12; other modes follow by rescaling as above) and there are
two which are always positive. Each component of the corresponding eigenvectors is associated
with the deformation of one of interfaces in the layer. A cartoon of the (possibly) unstable
deformation direction is given in Figure 5a, the two stable directions are shown in Figures 5b
and 5c.

U
V

(a) The (possibly) un-
stable deformation direc-
tion

U

V

(b) One of the stable di-
rections

U

V

(c) The other stable di-
rection

Figure 5: One (possibly) unstable and two stable first order Fourier modes of deformation for the
monolayer; see Section 4

For the bilayer two eigenvalues are always positive, and two eigenvalues may also become
negative. For the first Fourier mode the dependence of the sign of the latter two on the parameters
L/δb and ζ is given in Figures 6a and 6b. We recognise in the second figure the first order curve
(k = 1) from Figure 2b; a similar curve for the first figure would always stay below the curve from
the latter one, which is why its influence is not recognisable in Figure 2b.

0 2 4 6 8 10

0

0.2

0.4

0.6

0.8

1

L/δb

ζ

−

+

(a) The sign in parameter space of the
eigenvalue corresponding to the eigenvalue
G+ of the reduced matrix B̃1 in the proof
of Lemma 4.5

0 25 50 75 100 125 150 175

0

0.2

0.4

0.6

0.8

1

L/δb

ζ

−

+

(b) The sign in parameter space of the
eigenvalue corresponding to the eigenvalue
G− of the reduced matrix B̃1 in the proof
of Lemma 4.5

Figure 6: The black patches in parameter space indicate where two of the eigenvalues of the first
Fourier order second variation operator for the bilayer become negative

The (possibly) unstable deformation directions are shown in Figures 7a and 7b, the stable ones
in Figures 7c and 7d.
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U

V

V

(a) One of the (possibly)
unstable deformation di-
rections

U

V

V

(b) The other (possibly)
unstable deformation di-
rection

U

V

V

(c) One of the stable di-
rections

U

V

V

(d) The other stable di-
rection

Figure 7: Two (possibly) unstable and two stable first-order Fourier modes of deformation for the
bilayer. For details see the discussion in Section 4

2 Definitions and conventions

2.1 Problem setting

The domain of definition is the strip SL := TL × R, where TL is the one-dimensional torus of
length L, i.e. the interval [0, L] with the endpoints identified. For functions on SL the H−1-norm
is defined by convolution:

Definition 2.1. For f ∈ L∞(SL) and compact support,

‖f‖2
H−1 :=

∫ L

0

∫

R

f(x1, x2)G ∗ f(x1, x2) dx2dx1, (3)

where G is the Green’s function of the operator −∆ on SL. We define the space H−1(SL) as the
completion of

{f ∈ L∞(SL) : supp f compact}
with respect to the norm in (3).

Note that φf := G ∗ f satisfies −∆φf = f on SL. We repeat the definition of F and K for
convenience.

Definition 2.2. Let c0, cu, and cv be real numbers. Define

F(u, v) =











c0

∫

SL

|∇(u + v)| + cu

∫

SL

|∇u| + cv

∫

SL

|∇v| + ‖u − v‖2
H−1 if (u, v) ∈ K,

∞ otherwise,

where the admissible set is given by

K :=

{

(u, v) ∈ (BV (SL))
2

: u, v ∈ {0, 1} and uv = 0 a.e., and

∫

SL

u =

∫

SL

v

}

.

We will require that all ci are non-negative and at least one of them is positive.
Another, equivalent, form of the functional will be useful, in which the penalisation of the three

types of interface U-0, V-0, and U-V, is given explicitly by surface tension coefficients dkl:
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Lemma 2.3. Let the surface tension coefficients be given by

du0 := cu + c0,

dv0 := cv + c0,

duv := cu + cv.

Then

F(u, v) =

{

du0HN−1(Su0) + dv0HN−1(Sv0) + duvHN−1(Suv) + ‖u − v‖2
H−1 if (u, v) ∈ K,

∞ otherwise.

where Skl is the interface between the phases k and l:

Su0 = ∂∗ suppu \ ∂∗ supp v,

Sv0 = ∂∗ supp v \ ∂∗ suppu,

Suv = ∂∗ suppu ∩ ∂∗ supp v,

and ∂∗ is the essential boundary of a set.

The essential boundary of a set consists of all points in the set that have a density other than 0
or 1 in the set; see e.g. [4, Chapter 3.5].

Proof of Lemma 2.3. The main step in recognising the equivalence of both forms of F is noticing
that, for characteristic functions of a set, such as u, v and u + v, the equality

∫

Ω

|∇u| = HN−1(∂∗ suppu ∩ Ω)

holds.

Remark 2.4. Non-negativity of the ci is equivalent to the condition 1

0 ≤ dkl ≤ dkj + djl for each k 6= l 6= j 6= k. (4)

This condition can be understood in several ways. If, for instance, duv > du0 + dv0, then the U-V
type interface, which is penalised with a weight of duv, is unstable, for the energy can be reduced
by slightly separating the U and V regions and creating a thin zone of 0 inbetween. A different
way of seeing the necessity of (4) is by remarking that the equivalent requirement of non-negativity
of the ci is necessary for F to be lower semicontinuous in e.g. the L1 topology. Note also that
demanding that at least one ci is positive is equivalent to requiring at least two dkl to be positive.

2.2 Fourier transformation

To clarify the notation we use, we will explicitly define the Fourier series we are using. For future
reference we will also state some results we will need.

Definition 2.5. Let f ∈ L2 (TL), then we will denote by f̂ ∈ L2(Z; C), the Fourier transform
of f :

f̂(k) :=
1√
L

∫ L

0

f(x)e−2πixk/L dx,

and by aj and bj, j ∈ N, the Fourier coefficients of f with respect to the normalised basis of cosines
and sines:

a0 :=
1√
L

∫ L

0

f(x) dx,

aj :=

√

2

L

∫ L

0

f(x) cos

(

2πxj

L

)

dx,

bj :=

√

2

L

∫ L

0

f(x) sin

(

2πxj

L

)

dx,

1The indices j, k, l take values in {u, v, 0} and the dkl are taken symmetric in their indices, i.e. dvu = duv etc.
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Remark 2.6. The f̂(k) from Definition 2.5 give the Fourier coefficients of f with respect to the

normalised basis of complex exponentials. The relations between the coefficients f̂(j) and aj , bj

from the same definition are as follows: f̂(0) = a0 and, for j ≥ 1, f̂(j) = 1√
2
(aj − ibj), f̂(−j) =

1√
2
(aj + ibj), aj = 1√

2

(

f̂(j) + f̂(−j)
)

and bj = i√
2

(

f̂(j) − f̂(−j)
)

.

Remark 2.7. In the notation of definition 2.5 we have

f(x) =
a0√
L

+

√

2

L

∞
∑

j=1

aj cos (2πxj/L) +

√

2

L

∞
∑

j=1

bj sin (2πxj/L) ,

f(x) =
1√
L

∑

q∈Z

f̂(q)e2πixq/L,

where the convergence is in the L2 topology.

Without proof we now state the well-known theorem of Parseval (see e.g. [18, Lemma 13.14]
or [13, p. 27]). Our choice of normalization is such that the constant in Parseval’s theorem is 1,
i.e. such that the Fourier transform is isometric.

Theorem 2.8 (Parseval’s theorem). Let {eq}∞q=1 be the orthonormal basis of L2(TL) given by

eq(x) := 1√
L

e2πixq/L. For f, g ∈ L2(TL), we have

∫ L

0

f(x)g(x) dx =
∑

q∈Z

f̂(q)ĝ(q).

In the particular case when f and g are both real-valued, this gives

∫ L

0

f(x)g(x) dx = f̂(0)ĝ(0) + 2Re

∞
∑

q=1

f̂(q)ĝ(q)

= af,0ag,0 +

∞
∑

j=1

af,jag,j + bf,jbg,j .

Corollary 2.9. Let p1, p2, p3 ∈ L2((TL), then

∫

TL

∫

TL

p1(x)p2(x − y)p3(y) dx dy = L1/2
∑

q∈Z

p̂1(q)p̂2(q)p̂3(q).

3 Geometrical derivatives of the energy

In this section we will take a look at the stability of two-dimensional periodic monolayer and
bilayer configurations. First we need to determine under which conditions these structures are
stationary points of the functional F . For the bilayer this will be done in Section 3.1, after which
we compute the second variation for a bilayer in Section 3.2. We will give analogous results for
the monolayer in Section 3.3. In Section 4 we will use these results to derive the explicit stability
criteria of Theorems 1.1 and 1.2.

Of the two possible bilayer structures—UVU and VUV—we only discuss the VUV structure.
The results for the UVU structure follow from exchanging the roles of u and v.
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3.1 Bilayer: admissible perturbations and stationarity

The VUV bilayer of optimal width is a structure given by functions (u0, v0) with

u0 := χ
TL×[−δb,δb]

and v0 := χ
TL×[−2δb,−δb]∪[δb,2δb]

, (5)

where δb := 3

√

3
4 (c0 + cu + 2cv) [16]. The set of admissible boundary perturbations of this structure

is only restricted by regularity and the equal-mass constraint:

Definition 3.1. The set of admissible perturbations is characterised by

Pb :=

{

p ∈
(

W 1,2(TL)
)4

: 2

∫

(p1 + p3) =

∫

(p2 + p4)

}

. (6)

For p ∈ Pb and ε > 0 we define a perturbed structure (uε, vε),

uε(x1, x2) =

{

1 if x2 ∈
(

−δb − εp3(x1), δb + εp1(x1)
)

,
0 otherwise,

vε(x1, x2) =

{

1 if x2 ∈
(

−2δb − εp4(x1),−δb − εp3(x1)
)

∪
(

δb + εp1(x1), 2δb + εp2(x1)
)

,
0 otherwise.

We also introduce the subset of perturbations that conserve mass:

PM
b :=

{

p ∈ Pb :

∫

(p1 + p3) =

∫

(p2 + p4) = 0

}

(7)

Note that since W 1,2(TL) ⊂ L∞(TL), the pair (uε, vε) belongs to K for sufficiently small ε.
A picture of a bilayer of optimal width with perturbations p is shown in Fig. 3.1.

δb + εp1(x1)

2δb + εp2(x1)

−δb − εp3(x1)

−2δb − εp4(x1)

x1

x2

U

V

V

Figure 8: The bilayer of optimal width with perturbations

Remark 3.2. We should stress the difference between the two mass constraints (6) and (7). The
constraint (6) is equivalent to the condition that uε and vε have the same mass. This property is
a basic element of the original model of block copolymers.

The additional condition (7) expresses the requirement that
∫

uε and
∫

vε both equal the
mass

∫

u0 of the unperturbed bilayer; perturbations without this property are meaningful in a
situation where the joint mass of uε and vε may change. The functional F is stationary under
mass-preserving changes (see Lemma 3.4 below); but as can be inferred from equation (11), the
functional is not stationary under perturbations that do change the mass.

Definition 3.3. We say that the bilayer of optimal width is stationary with respect to the admis-
sible perturbations Pb (or PM

b ) if, for all p ∈ Pb (or all p ∈ PM
b ),

d

dε
F(uε, vε)

∣

∣

∣

∣

ε=0

= 0.

Stationarity for the monolayer of optimal width is defined analogously.

10



Lemma 3.4. The VUV bilayer of optimal width is stationary with respect to all p ∈ PM
b .

Proof. Choksi and Sternberg calculate the first and second variations of a related functional [9],
and their method can be adapted without much difficulty to the functional F . Here we give a
self-contained proof.

Since the interfaces of the bilayer are straight, the derivative of the interfacial terms with
respect to the perturbation is zero for all p ∈ Pb:

d

dε

(

c0

∫

SL

|∇(uε + vε)| + cu

∫

SL

|∇uε| + cv

∫

SL

|∇vε|
)∣

∣

∣

∣

ε=0

=

=
d

dε

[

duv

∫ L

0

(
√

1 + ε2p′1
2 +

√

1 + ε2p′3
2

)

dx + dv0

∫ L

0

(
√

1 + ε2p′2
2 +

√

1 + ε2p′4
2

)

dx

]∣

∣

∣

∣

∣

ε=0

= 0. (8)

For the derivative of the H−1-norm, let η ∈ C(R) and compute

d

dε

∫

SL

η(x2)uε(x) dx
∣

∣

∣

ε=0
=

∫ L

0

d

dε

∫ δb+εp1(x1)

−δb−εp3(x1)

η(x2) dx2

∣

∣

∣

ε=0
dx1

=

∫ L

0

(

p1(x1) η(δb + εp1(x1)) + p3(x1) η(−δb − εp3(x1))
)

dx1

∣

∣

∣

ε=0

= Lη(δb)

∫

p1 + Lη(−δb)

∫

p3. (9)

Similarly,

d

dε

∫

SL

η(x2)vε(x) dx
∣

∣

∣

ε=0
= L

[

−η(δb)

∫

p1 + η(2δb)

∫

p2 − η(−δb)

∫

p3 + η(−2δb)

∫

p4

]

. (10)

Let G be the Green’s function from Theorem 5.1, then

d

dε
‖uε − vε‖2

H−1(SL)

∣

∣

∣

∣

ε=0

=
d

dε

∫

SL

|∇G ∗ (uε − vε)|2 dx

∣

∣

∣

∣

ε=0

= 2

∫

SL

∇G ∗ (u0 − v0)

[

d

dε
∇G ∗ (uε − vε)

]

ε=0

dx

= 2
d

dε

∫

SL

∇G ∗ (u0 − v0)∇G ∗ (uε − vε) dx

∣

∣

∣

∣

ε=0

= 2
d

dε

∫

SL

[

G ∗ (u0 − v0)
]

(uε − vε) dx

∣

∣

∣

∣

ε=0

Setting η(x2) := [G∗ (u0−v0)](x1, x2) (which is independent of x1, because u0−v0 is independent
of x1) we calculate by the Fourier series (29) (or by remarking that this is a one-dimensional
situation) that

η(x2) = −1

2

∫

R

|x2 − y|(u0 − v0)(0, y) dy,

from which it follows that η(δb) = η(−δb) and η(±2δb) = 0. Therefore η ∈ C(R) and thus we
obtain from (9) and (10) that

d

dε
‖uε − vε‖2

H−1(SL)

∣

∣

∣

∣

ε=0

= 4Lη(δb)

∫

(p1 + p3)
(7)
= 0. (11)

11



3.2 Second variation for a bilayer

We express the components pi of a given perturbation p ∈ Pb as a Fourier series (see Section 2.2):

pi(x) =
ai,0√

L
+

√

2

L

∞
∑

j=1

ai,j cos

(

2πxj

L

)

+

√

2

L

∞
∑

j=1

bi,j sin

(

2πxj

L

)

. (12)

The equal-mass condition in (6) translates into

2 (a1,0 + a3,0) = a2,0 + a4,0. (13)

We also write

aj := (a1,j , a2,j , a3,j , a4,j) and bj := (b1,j , b2,j , b3,j , b4,j) .

Theorem 3.5. Using the notation introduced above, the second variation of F at the VUV bilayer
of optimal width (5) in the direction p ∈ Pb is given by

d2

dε2
F(uε, vε)

∣

∣

∣

∣

ε=0

= B0 (a0, δb) +

∞
∑

j=1

Bj (aj , bj , duv, dv0, L) ,

where

B0 (a0, δb) :=

4δb

{

−a2
1,0 − a2

3,0 + a1,0a2,0 + a3,0a4,0 − 4a1,0a3,0 + 3a2,0a3,0 + 3a1,0a4,0 − 2a2,0a4,0

}

,

and, for j ∈ N>0,

Bj (aj , bj , duv, dv0, L) :=

4π2j2

L2

[

duv

{

a2
1,j + a2

3,j + b2
1,j + b2

3,j

}

+ dv0

{

a2
2,j + a2

4,j + b2
2,j + b2

4,j

}]

+
L

πj

[

2

(

1 − 2πδbj

L

)

{

a2
1,j + a2

3,j + b2
1,j + b2

3,j

}

+
1

2

{

a2
2,j + a2

4,j + b2
2,j + b2

4,j

}

− 2 {a1,ja2,j + a3,ja4,j + b1,jb2,j + b3,jb4,j} e−2πδbj/L

+ 4 {a1,ja3,j + b1,jb3,j} e−4πδbj/L

− 2 {a1,ja4,j + a2,ja3,j + b1,jb4,j + b2,jb3,j} e−6πδbj/L

+ {a2,ja4,j + b2,jb4,j} e−8πδbj/L

]

.

The proof is given in Appendix C.

3.3 Variations for a monolayer

Analogous results also hold for monolayers as defined below. In the current subsection we will
state them. Since the proofs are completely analogous to the proofs for bilayers, we will not redo
the proofs.

The monolayer of optimal width is a structure given by functions (u0, v0) with

u0 := χ
TL×[0,δm] and v0 := χ

TL×[δm,2δm], (14)

where δm :=
(

3
2

)1/3
(c0 + cu + cv)1/3 [16]. The set of admissible boundary perturbations of this

structure is again restricted by regularity and the equal-mass constraint:

12



Definition 3.6. The set of admissible perturbations is characterised by

Pm :=

{

p ∈
(

W 1,2(TL)
)3

:

∫

(p2 − p1) =

∫

(p3 − p2)

}

.

For p ∈ Pm and ε > 0 we define a perturbed structure (uε, vε),

uε(x1, x2) =

{

1 if x2 ∈
(

εp1(x1), δm + εp2(x1)
)

,
0 otherwise,

vε(x1, x2) =

{

1 if x2 ∈
(

δm + εp2(x1), 2δm + εp3(x1)
)

,
0 otherwise.

We also define the subset of mass preserving perturbations:

PM
m :=

{

p ∈ Pm :

∫

(p2 − p1) =

∫

(p3 − p2) = 0

}

. (15)

A picture of a monolayer of optimal width with perturbations p is shown in Fig. 3.3.

εp1(x1)

δm + εp1(x1)

2δm + εp2(x1)

x1

x2 U

V

Figure 9: The monolayer of optimal width with perturbations

Lemma 3.7. The monolayer of optimal width is stationary with respect to all p ∈ PM
m .

Proof. Analogous to the proof of Lemma 3.4 we find that the first variation of the interfaces
with respect to all p ∈ Pm is zero. With G the Green’s function from Theorem 5.1 we define
η(x2) := G ∗ (u0 − v0)(x1, x2), which is independent of x1 as before. Using η(δm) = 0 and
η(0) = −η(2δm) > 0, we compute, as in the above mentioned proof,

d

dε
‖uε − vε‖2

H−1(SL) = 2Lη(0)

∫

(p3 − p1)
(15)
= 0. (16)

Note that by equation (16) the monolayer of optimal width is not stable with respect to
perturbations that are allowed to change the total mass, i.e with respect to p ∈ Pm \ PM

m .
Similar to (12) we express a p ∈ Pm in terms of its Fourier modes ai,j and bi,j and introduce

the notation
aj := (a1,j , a2,j , a3,j) and bj := (b1,j , b2,j , b3,j) .

Theorem 3.8. Using the notation given above, the second variation of F at (u0, v0) in the direc-
tion of p ∈ Pm is given by

d2

dε2
F(uε, vε)

∣

∣

∣

∣

ε=0

= M0 (a0, δm) +
∞
∑

j=1

Mj (aj , bj , du0, duv, dv0, L) ,

where
M0 (a0, δm) := δm (a1,0 − a3,0)

2
,

13



and, for j ∈ N,

Mj (aj , bj , du0, duv, dv0, L) :=

4π2j2

L2

[

du0

{

a2
1,j + b2

1,j

}

+ duv

{

a2
2,j + b2

2,j

}

+ dv0

{

a2
3,j + b2

3,j

}]

+
L

πj

[

2

(

1 − 2πδmj

L

)

{

a2
2,j + b2

2,j

}

+
1

2

{

a2
1,j + a2

3,j + b2
1,j + b2

3,j

}

− 2 {a1,ja2,j + a2,ja3,j + b1,jb2,j + b2,jb3,j} e−2πδmj/L

+ {a1,ja3,j + b1,jb3,j} e−4πδmj/L

]

.

Proof. Analogous to the proof of Theorem 3.5.

4 Stability

In this section we study stability of monolayers and bilayers with respect to the admissible per-
turbations. The bilayer will be treated in Section 4.2, the monolayer in Section 4.3.

4.1 Preliminary definitions and results

In this paper we only consider linear stability—whenever we use the words stable or unstable, this
refers to the sign of the second derivative:

Definition 4.1. Using the notation of Section 3, the VUV bilayer (monolayer) of optimal width
(u0, v0) is called stable iff

d2

dε2
F(uε, vε)

∣

∣

∣

∣

ε=0

≥ 0,

for every p ∈ PM
b (PM

m ), and unstable otherwise.

The following property simplifies the study of stability of the bilayers and monolayers.

Lemma 4.2. Using the notation from Theorem 3.5 we have, for any x, y ∈ R
4 and for j ≥ 1,

Bj (x, y, duv, dv0, L) = B1 (x, y, duv, dv0, L/j) ,

Bj (x, 0, duv, dv0, L) = Bj (0, x, duv, dv0, L) ,

Bj (x, y, duv, dv0, L) = Bj (x, 0, duv, dv0, L) + Bj (0, y, duv, dv0, L) .

Similarly, in the notation from Theorem 3.8 we have, for any x, y ∈ R
3 and for j ≥ 1,

Mj (x, y, du0, duv, dv0, L) = M1 (x, y, du0, duv, dv0, L/j) ,

Mj (x, 0, du0, duv, dv0, L) = Mj (0, x, du0, duv, dv0, L) ,

Mj (x, y, du0, duv, dv0, L) = Mj (x, 0, du0, duv, dv0, L) + Mj (0, y, du0, duv, dv0, L) .

Proof. This property follows from the definitions of Bj in Theorem 3.5 and Mj in Theorem 3.8.

4.2 Stability of the bilayer

Throughout this subsection we will use the notation as introduced in Section 3.2. Lemma 4.2
provides us with a simpler characterization of stability:
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Corollary 4.3. The VUV bilayer is stable iff

1. B0(a0, δb) ≥ 0 for all a0 ∈ R
4 satisfying (13), and

2. B1(x, 0, duv, dv0, L/j) ≥ 0 for all x ∈ R
4 and all j ≥ 1.

We therefore study B0 and B1 as quadratic forms on R
4 subject to (13) and investigate their

sign. Note that B0 and B1 can be identified with symmetric 4×4 matrices, and we will continuously
make this identification. Among other things that means we can speak of eigenvalues of B0 and
B1, and relate the sign of the quadratic forms to the signs of their eigenvalues.

Lemma 4.4. B0(a, δb) ≥ 0 for all δb > 0 and for all a0 ∈ R
4 satisfying (13).

Proof. The Lemma follows immediately from writing B0 as

1

4δb
B0(a0, δb) = −1

2
(2a1,0 − a2,0 + 2a3,0 − a4,0)

2
+

1

2
(a1,0 − a2,0 − a3,0 + a4,0)

2
+

1

2
(a1,0 + a3,0)

2
.

Lemma 4.5. Two of the four eigenvalues of B1 are nonnegative for all duv, dv0, and L; the other
two can be either positive or negative. Denote the smallest eigenvalue by λb

1(duv, dv0, L). Define

υ := e−2πδb/L, ζ :=
duv

duv + dv0
=

cu + cv

c0 + cu + 2cv
. (17)

There exists a function ζ1 ∈ C([0, 1]) (see (20)) such that

λb
1(duv, dv0, L) ≥ 0 ⇐⇒ ζ ≥ ζ1(υ).

Proof. Note that υ ∈ (0, 1) and, by conditions (4), ζ ∈
[

1
2 − cu+c0

2(c0+cu+2cv) ,
1
2 + cu+c0

2(c0+cu+2cv)

]

⊂ [0, 1].

Let x ∈ R
4. We now write

B1 (x, 0, duv, dv0, L) =
2L

π
B̃1 (x, ζ, υ) ,

where

B̃1 (x, ζ, υ) := −1

3
log3 υ

(

ζ
(

x2
1 + x2

3

)

+ (1 − ζ)
(

x2
2 + x2

4

))

(18)

+ (1 + log υ)
(

x2
1 + x2

3

)

+
1

4

(

x2
2 + x2

4

)

− (x1x2 + x3x4) υ + 2x1x3υ
2 − (x1x4 + x2x3) υ3 +

1

2
x2x4υ

4.

Note that when x1 = x3 = 0,

B̃1 (x, ζ, υ) = (1 − ζ)
(

x2
2 + x2

4

)

+
1

4

(

x2
2 + x2

4

)

+
1

2
x2x4υ

4 ≥ 0,

so that by the max-min characterization of the third eigenvalue λb
3, for fixed ζ, υ, we have

λb
3 = max

dim L=2
min

x∈R
4/L

|x|=1

B̃1(x, ζ, υ) ≥ min
x1=x3=0
|x|=1

B̃1(x, ζ, υ) ≥ 0,

implying that the largest two eigenvalues are always non-negative.
We now turn to the question of existence of admissible x such that B̃1 is negative, and we

simplify the problem by minimizing B̃1 with respect to x2 and x4 under fixed x1 and x3. The
stationarity conditions ∂

∂x2
B̃1 (x, ζ, υ) = 0 and ∂

∂x4
B̃1 (x, ζ, υ) = 0 lead to the equations

(

xopt
2

xopt
4

)

=
1

det A(ζ, υ)
A(ζ, υ)

(

υ υ3

υ3 υ

)(

x1

x3

)

,
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where

A(ζ, υ) :=

(

1
2 − 2

3 (1 − ζ) log3 υ − 1
2υ4

− 1
2υ4 1

2 − 2
3 (1 − ζ) log3 υ

)

.

Inserting these results into B̃1 gives

B̃1

(

x1, x
opt
2 , x3, x

opt
4 , ζ, υ

)

= (x1, x3)
z

B(ζ, υ) (x1, x3)
T

,

where the matrix entries of
z

B are given by

z

B11(ζ, υ) =
z

B22(ζ, υ) = log υ − 1

3
ζ log3 υ

− (3(−1 + υ2) − 4(−1 + ζ) log3 υ)(3(−1 + υ6) − 4(−1 + ζ) log3 υ)

9(−1 + υ8) + 8(−1 + ζ)(−3 − 2(−1 + ζ) log3 υ) log3 υ
,

z

B12(ζ, υ) =
z

B21(ζ, υ) = − (3υ(−1 + υ2) − 4υ(−1 + ζ) log3 υ)2

9(−1 + υ8) + 8(−1 + ζ)(−3 − 2(−1 + ζ) log3 υ) log3 υ
.

The eigenvalues of
z

B are

G−(ζ, υ) := 1 − υ2 + log υ − 1

3
ζ log3 υ +

3υ2(−1 + υ2)2

3(−1 + υ4) − 4(−1 + ζ) log3 υ

= (3(−1 + υ4) − 4(−1 + ζ) log3 υ)−1h−(ζ, υ),

G+(ζ, υ) := 1 + υ2 + log υ − 1

3
ζ log3 υ − 3υ2(1 + υ2)2

3(1 + υ4) + 4(−1 + ζ) log3 υ

= (3(1 + υ4) + 4(−1 + ζ) log3 υ)−1h+(ζ, υ),

with

h−(ζ, υ) :=

(

4

3
log6 υ

)

ζ2 +

(

−4

3
log6 υ − 4 log4 υ + (−3 + 4υ2 − υ4) log3 υ

)

ζ

− 3(1 − υ2)2 + 3(−1 + υ4) log υ + 4(1 − υ2) log3 υ + 4 log4 υ,

h+(ζ, υ) := −
(

4

3
log6 υ

)

ζ2 +

(

4

3
log6 υ + 4 log4 υ + (3 + 4υ2 − υ4) log3 υ

)

ζ

+ 3(1 − υ4) + 3(1 + υ4) log υ − 4(1 + υ2) log3 υ − 4 log4 υ.

Note that G− < G+, since for υ ∈ (0, 1), ζ ∈ [0, 1],

3(1 + υ4) + 4(−1 + ζ) log3 υ > 0, 3(−1 + υ4) − 4(−1 + ζ) log3 υ < 0,

and thus

G+(ζ, υ) − G−(ζ, υ) =
−2υ2

(

3(−1 + υ2) − 4(−1 + ζ) log3 υ
)2

(

3(1 + υ4) + 4(−1 + ζ) log3 υ
) (

3(−1 + υ4) − 4(−1 + ζ) log3 υ
) > 0.

We have now the following equivalences:

∀x ∈ R
4, B1 (x, 0, duv, dv0, L) ≥ 0 ⇐⇒ ∀x ∈ R

4, B̃1 (x, ζ, υ) ≥ 0

⇐⇒
z

B (ζ, υ) ≥ 0

⇐⇒ G− (ζ, υ) ≥ 0.

We prove the following characterization of the sign of G−:

G−(ζ, υ) ≥ 0 ⇐⇒ ζ ≥ ζ1(υ), (19)
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where

ζ1(υ) = (8 log3 υ)−1
(

9 − 12υ2 + 3υ4 + (4 log υ)(3 + log2 υ)

+{225 − 504υ2 + 342υ4 − 72υ6 + 9υ8 + (360 − 288υ2 − 72υ4) log υ

+144 log2 υ + (−120 + 96υ2 + 24υ4) log3 υ − 96 log4 υ + 16 log6 υ} 1
2

)

.

(20)

The function g1 mentioned in the introduction is related to ζ1 by

g1(ℓ) := ζ1

(

e2π/ℓ
)

. (21)

The details of this calculation can be found in Appendix D. This concludes the proof.

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

υ

ζ

G− > 0

G− < 0

(a) The sign of G−

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

υ

ζ

G+ > 0

G+ < 0

(b) The sign of G+

Figure 10: The sign in parameter space of the eigenvalues G− < G+. The boundary between the
two regions in the left-hand figure is given by ζ = ζ1(v).

Remark 4.6. The four eigenvalues of B̃1 from the proof of Lemma 4.5 are

1

72

(

45 − 36υ2 − 9υ2 + 36 log υ − 12 log3 υ

±
{

(

−45 + 36υ2 + 9υ4 − 36 log υ + 12 log3 υ
)2

− 144
(

9 − 18υ2 + 9υ4 + 9 log υ − 9υ4 log υ − 12 log3 υ + 12υ2 log3 υ + 9ζ log3 υ

−12υ2ζ log3 υ + 3υ4ζ log3 υ − 12 log υ4 + 12ζ log4 υ + 4ζ log6 υ − 4ζ2 log6 υ)
}

1
2
)

,

and

1

72

(

45 + 36υ2 + 9υ2 + 36 log υ − 12 log3 υ

±
{

(

45 + 36υ2 + 9υ4 + 36 log υ − 12 log3 υ
)2

+ 144
(

−9 + 9υ4 − 9 log υ − 9υ4 log υ + 12 log3 υ + 12υ2 log3 υ − 9ζ log3 υ

−12υ2ζ log3 υ + 3υ4ζ log3 υ + 12 log υ4 − 12ζ log4 υ − 4ζ log6 υ + 4ζ2 log6 υ)
}

1
2
)

.

Plotting the areas where these eigenvalues are negative shows that the eigenvalues with the plus
sign chosen for ± are positive everywhere for υ ∈ (0, 1) and ζ ∈ [0, 1]. The plots of the other two
eigenvalues correspond with those in Figure 10.

Collecting Lemmas 4.4 and 4.5 we can summarise the stability properties with the use of
Corollary 4.3 as follows:
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Theorem 4.7. Let ζ, υ, and ζ1 be as in Lemma 4.5. Define the functions ζ
j
, j ≥ 1, and ζ̃ by:

ζ
j
(υ) := ζ1(υ

j), ζ̃(υ) := sup
j≥1

ζ
j
(υ).

Then the VUV bilayer of optimal width (5) is stable with respect to all (mass-conserving) pertur-
bations in PM

b iff

ζ ≥ ζ̃(υ).

Remark 4.8. Note that the statement in Theorem 4.7 about the positivity of the second variation
also holds true if we allow the perturbations to come from the larger set of perturbations Pb, instead
of PM

b . However, as stated in Remark 3.2, the bilayer of optimal width is not stationary under
perturbations that do not preserve mass.

Lemma 4.9. Let ζ̃ be as in Theorem 4.7, then there exists c ∈ (0, 1) such that for all υ ∈ (0, 1),

ζ̃(υ) < c < 1.

Proof. First note that per definition of ζ̃ it suffices to show that there exists a c̃ ∈ (0, 1), such that
for all υ ∈ (0, 1),

ζ1(υ) < c̃ < 1.

Since ζ1 is continuous on the interval (0, 1) and goes to zero for υ ↓ 0 and to 5
2 − 1

2

√

69
5 for υ ↑ 1

(see Remark D.1), this is equivalent to

(8 log3 υ)(ζ1(υ) − 1) > 0.

By (42) we know that

0 <
((

9 − 12υ2 + 3υ4 + (4 log υ)(3 + log2 υ)
)

− 8 log3 υ
)2

<
(

225 − 504υ2 + 342υ4 − 72υ6 + 9υ8 + (360 − 288υ2 − 72υ4) log υ

+144 log2 υ + (−120 + 96υ2 + 24υ4) log3 υ − 96 log4 υ + 16 log6 υ
)

.

Taking square roots completes the proof.

Remark 4.10. To find out the stable and unstable first-order Fourier modes of deformation
for the bilayer, we compute the eigenvectors belonging to the positive and (potentially) negative
eigenvalues of B̃1 from (18). For the stable directions we find

a
s1

1 (ζ, υ) :=

(

1

12υ(1 + υ2)

(

f1(ζ, υ) −
√

f4(ζ, υ)
)

, 1,
2

υ

f2(ζ, υ) −
√

f4(ζ, υ)

f3(ζ, υ) +
√

f4(ζ, υ)
, 1

)

,

a
s2

1 (ζ, υ) :=

(

1

12υ(−1 + υ2)

(

g1(ζ, υ) −
√

g4(ζ, υ)
)

,−1,
2

υ

g2(ζ, υ) +
√

g4(ζ, υ)

g3(ζ, υ) −
√

g4(ζ, υ)
, 1

)

,

where

f1(ζ, υ) := −9 − 12υ2 + 3υ4 − 12 log υ + (−4 + 8ζ) log3 υ

f2(ζ, υ) := −9 − 3υ2(6 + υ2) − 12 log υ + (−4 + 8ζ) log3 υ

f3(ζ, υ) := 15 + 3υ2(4 + υ2) − 12 log υ + (−4 + 8ζ) log3 υ

f4(ζ, υ) := 9
(

9 + 40υ2 + 42υ4 + 8υ6 + υ8
)

+ 8 log υ
(

−3 + (−1 + 2ζ) log2 υ
) (

3(−3 − 4υ2 + υ4) − 6 log υ + (−2 + 4ζ) log3 υ
)

,

g1(ζ, υ) := −9 + 12υ2 − 3υ4 − 12 log υ + (−4 + 8ζ) log3 υ

g2(ζ, υ) := 9 − 3υ2(2 + υ2) + 12 log υ + (4 − 8ζ) log3 υ

g3(ζ, υ) := −15 + 3υ2(4 + υ2) + 12 log υ + (4 − 8ζ) log3 υ

g4(ζ, υ) := 9(−1 + υ2)2(1 + υ2)(9 + υ2)

+ 8 log υ
(

−3 + (−1 + 2ζ) log2 υ
) (

−3(3 − 4υ2 + υ4) − 6 log υ + (−2 + 4ζ) log3 υ
)

.
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The directions belonging to the eigenvalues that can become negative, corresponding to the eigen-

values G+ and G− of the reduced matrix
z

B in the proof of Lemma 4.5, are

a
u1

1 (ζ, υ) :=

(

1

12υ(1 + υ2)

(

f1(ζ, υ) +
√

f4(ζ, υ)
)

, 1,
2

υ

f2(ζ, υ) +
√

f4(ζ, υ)

f3(ζ, υ) −
√

f4(ζ, υ)
, 1

)

,

a
u2

1 (ζ, υ) :=

(

1

12υ(−1 + υ2)

(

g1(ζ, υ) +
√

g4(ζ, υ)
)

,−1,
2

υ

g2(ζ, υ) +
√

g4(ζ, υ)

g3(ζ, υ) +
√

g4(ζ, υ)
, 1

)

.

The direction of the perturbation a
u1

1 is depicted in Figure 7a. Here we have chosen the values
duv = 0.7, dv0 = 0.3, L = 5 and ε = 0.25. Similarly we get Figures 7b, 7c, and 7d using
perturbations a

u2

1 , a
s1

1 , and a
s2

1 .

4.3 Stability of the monolayer

We now redo the arguments for the monolayer of optimal width (14). Throughout this subsection
we use the notation of Section 3.3.

We can simplify M1 a bit by writing

ν := e−2πδm/L, κ :=
du0

du0 + duv + dv0
=

cu + c0

2(c0 + cu + cv)
, χ :=

dv0

du0 + duv + dv0
=

cv + c0

2(c0 + cu + cv)
.

Note the slightly different definition of ν than for the bilayer (17). Then, for all x ∈ R
3,

M1 (x, 0, du0, duv, dv0, L) =
L

π
M̃1 (x, κ, χ, ν) ,

where

M̃1 (x, κ, χ, ν) := −2

3
log3 ν

(

κ (x1)
2

+ (1 − κ − χ) (x2)
2

+ χ (x3)
2
)

+ 2(1 + log ν) (x2)
2

+
1

2

(

(x1)
2

+ (x3)
2
)

− 2 (x1 + x3 + x2x3) ν + x1x3ν
2.

We now can write
M̃1 (x, κ, χ, ν) = xT M̂(κ, χ, ν)x,

with

M̂(κ, χ, ν) :=





− 2
3κ log3 ν + 1

2 −ν 1
2ν2

−ν − 2
3 (1 − κ − χ) log3 ν + 2(1 + log ν) −ν

1
2ν2 −ν − 2

3χ log3 ν + 1
2



 .

This matrix is well defined for all κ, χ ∈ R, ν > 0, but note that the positivity of the parameters
ci, or equivalently conditions (4), translate into

0 ≤ κ ≤ 1

2
, 0 ≤ χ ≤ 1

2
, κ + χ ≥ 1

2
, (22)

and furthermore ν ∈ (0, 1) by definition.

Remark 4.11. As mentioned in the introduction, we assume throughout the paper that for the
monolayer the interfaces U-0 and V-0 are penalised equally strongly, i.e. du0 = dv0 or equivalently
cu = cv. Under this assumption χ = κ, and the inequalities above imply that χ and κ take values
in [14 , 1

2 ].
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Lemma 4.12. Let cu = cv. Two of the three eigenvalues of M̂(χ, χ, ν) are nonnegative for all
ν ∈ (0, 1) and χ ∈ [14 , 1

2 ]. The third eigenvalue is given by

E2(χ, ν) :=
1

12

(

e1(χ, ν) −
√

e2(χ, ν)
)

,

where ν ∈ (0, 1), χ ∈ [14 , 1
2 ] and e1 and e2 are given in (24) and (25). The sign of E2 is characterised

by
E2(χ, ν) ≥ 0 ⇐⇒ χ ≤ χ2(ν) (23)

with χ2 as given in (26).

Proof. Since we are interested in the case where cu = cv we will take κ = χ from here on, which
turns the conditions (22) into 1

4 ≤ χ ≤ 1
2 . For the three eigenvalues of M̂1(χ, χ, ν) we compute

E1(χ, ν) :=
1

6
(3 − 3ν2 − 4χ log3 ν),

E2,3(χ, ν) :=
1

12

(

e1(χ, ν) ∓
√

e2(χ, ν)
)

,

where

e1(χ, ν) := 15 + 3ν2 + (12 − 4 log2 ν + 4χ log2 ν) log ν, (24)

e2(χ, ν) := 81 + 234ν2 + 9ν4 + 216 log ν − 72ν2 log ν + 144 log2 ν

− 72 log3 ν + 24ν2 log3 ν − 96 log4 ν + 16 log6 ν

+
(

216 log3 ν − 72ν2 log3 ν + 288 log4 ν − 96 log6 ν
)

χ

+
(

144 log6 ν
)

χ2. (25)

and we choose the minus sign for E2 and the plus sign for E3.
First note that v ∈ (0, 1) and χ ≥ 0 imply that E1 is always positive. E2,3 are real, since they

are the eigenvalues of a symmetric matrix and thus e2(χ, ν) ≥ 0 for all χ ∈ R and for all ν ∈ (0, 1).
Since for all x > 0 and χ ≤ 1/2 we have (1 − χ)x3 − 3x ≥ (1/2)x3 − 3x ≥ −2

√
2,

e1(χ, ν) = 15 + 3ν2 + 4
[

(1 − χ)| log ν|3 − 3| log ν|
]

≥ 15 − 8
√

2 > 0.

Combining this result with e2(χ, ν) ≥ 0, we conclude that E3(χ, ν) > 0 for all admissible χ, ν.
Thus, if there is a negative eigenvalue, it can only be E2.

To prove the statements in (23) we compute

1

16

(

e2
1(χ, ν) − e2(χ, ν)

)

= 9(1 − ν2) + 9(1 + ν2) log ν − 3(1 + ν2) log3 ν

+
(

6(−1 + ν2) log3 ν + 4(−3 + log2 ν) log4 ν
)

χ

−
(

8 log6 ν
)

χ2.

This expression is negative on (0, 1) if and only if χ ∈
[

1
4 , χ1(ν)

)

∪
(

χ2(ν), 1
2

]

and zero if and only
if χ = χ1(ν) or χ = χ2(ν), where

χ1,2(ν) :=
1

16 log6 ν

(

f(ν) ±
√

g(ν)
)

, (26)

with

f(ν) :=
(

6(−1 + ν2) + 4(−3 + log2 ν) log ν
)

log3 ν;

g(ν) := 96 log6 ν
(

3(1 − ν2) + 3(1 + ν2) log ν − (1 + ν2) log3 ν
)

+
(

6(−1 + ν2) log3 ν + 4(log2 ν − 3) log4 ν
)2

.
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The minus sign is chosen in χ1 while in χ2 we choose the plus sign. Plots of χ1 and χ2 are shown
in Figure 11.

It is left to prove now that χ1(ν) < 1/4 for all ν ∈ (0, 1). We will actually prove the stronger
statement χ1(ν) < 0, which follows from

g(ν) > 0 for 0 < ν < 1

⇐= f(ν)2 − g(ν) < 0 for 0 < ν < 1

⇐⇒ 3(1 − ν2) + 3(1 + ν2) log v − (1 + ν2) log3 ν > 0 for 0 < ν < 1

⇐⇒ 3
1 − ν2

1 + ν2
+ 3 log ν − log3 ν > 0 for 0 < ν < 1

w=− log ν⇐⇒ 3 tanh w − 3w + w3 > 0 for w > 0.

To prove that this last inequality holds, we define h(w) := tanhw − 3w + w3 and use tanh′ w =
1 − tanh2 w, to compute that h′′′(w) = 6 tanh2 w(−3 tanh4 w + 4) > 0. From this it follows by
integration that h(w) > 0 for all w > 0.

0.2 0.4 0.6 0.8

-5

-4

-3

-2

-1

ν
χ1

(a) Plot of χ1 away from ν = 1

0.2 0.4 0.6 0.8 1

0.1

0.2

0.3

0.4

0.5

ν

χ2

(b) Plot of χ2, with the admissible range
χ2 ∈ [ 1

4
, 1

2
] indicated

Figure 11

Remark 4.13. For the excluded endpoints 0 and 1 we find

lim
ν↓0

χ1 = 0, lim
ν↑1

χ1 = −∞,

lim
ν↓0

χ2 =
1

2
, lim

ν↑1
χ2 =

1

5
.

The limits for ν ↑ 1 were found by calculating the first terms in the Taylor expansion of χ1,2.

Figure 12 shows the parts of parameter space where E2 is positive and negative, both on the
admissible domain

(

1
4 , 1

2

)

for χ as well as extended to (0, 1).

Remark 4.14. Remark that the extra assumption cu = cv in Lemma 4.12 is equivalent to
assuming du0 = dv0, i.e. assuming equal penalisation for the U-0 and V-0 interfaces. In Section 1.3
it was explained why this choice is made.

Remark 4.15. Expanding E2 around ν = 1 gives

E2(χ, ν) =
4

45
(1 − 5χ)(1 − ν)5 + O

(

(1 − ν)
6
)

,

for ν ↑ 1. Since 1 − 5χ ≤ − 1
4 for χ ∈

[

1
4 , 1

2

]

we can conclude that for ν close to 1 (or equivalently
large L) the monolayer is unstable for all interfacial coefficients dij (or ci). This corresponds to
what is shown in Figure 12a.

Taking into account the assumption dv0 = du0, the condition 1− 5χ < 0 for negativity of E2 is
equivalent to duv < 3

2 (du0 + dv0). In [16, Theorem 8] we show that for a circular two-dimensional
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(b) Sign of E2 extended to (0, 1) for χ

Figure 12

monolayer the term in F/M (where M(u, v) :=
∫

SL
u) that is quadratic in the curvature is given

by

m

(

−1

2
(du0 + dv0) +

4

15
m3

)

κ2,

where m is the thickness of the layers and κ is the curvature. Taking m = δm we find that this
term becomes negative exactly as duv < 3

2 (du0 + dv0), showing that the (large) circular monolayer
loses stability at the same point as the flat monolayer on large domains. Note that conditions (4)
imply duv < 3

2 (du0 + dv0).

In order to compare the monolayer to the bilayer, we introduce the relative UV-interface
penalisation

µ := 1 − κ − χ =
cu + cv

2(c0 + cu + cv)
,

analogous to ζ for the bilayer in Lemma 4.5. Note that conditions (4) give µ ∈ [0, 1
2 ]. Figure 4a

shows the sign of E2 as a function of L/δm and µ. In terms of the surface tension coefficients,

µ =
duv

du0 + duv + dv0
,

µ is interpreted as the relative penalisation of the U-V interface.

Theorem 4.16. Let du0 = dv0 and let χ2 be as in Lemma 4.12. Define the functions χ
j

and χ̃ by

χ
j
(ν) := χ2(ν

j), χ̃ := inf
j≥1

χ
j
, µ̃ := 1 − 2χ̃.

The monolayer of optimal width (14) is stable with respect to perturbations in PM
m if and only if

µ ≥ µ̃(ν).

Proof. First we work with χ as in Lemma 4.12 and afterwards we translate the results into con-
ditions on µ. By Definition 4.1 and Theorem 3.8 in order to prove stability, we have to prove
that

M0 (a0, δm) +

∞
∑

j=1

Mj (aj , bj , du0, duv, dv0, L) ≥ 0,

for all admissible perturbations. Per definition we have M0 (a0, δm) := δm (a1,0 − a3,0)
2 ≥ 0. By

Lemma 4.12 we know that if (ν, χ) is such that χ ∈
[

1
4 , χ2(ν)

]

then M1 (a1, 0, du0, duv, dv0, L) ≥ 0
for all p ∈ Pm. By Lemma 4.2 now, we have for j ≥ 1,

∀aj , bj , Mj (aj , bj , du0, duv, dv0, L) ≥ 0 ⇐⇒ ∀a1, M1 (a1, 0, du0, duv, dv0, L/j) ≥ 0,
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thus we see that, if χ ∈
[

1
4 , χ̃(ν)

]

is satisfied, then, for all j ≥ 1, for all aj and for all bj ,
Mj (aj , bj , du0, duv, dv0, L) ≥ 0.

Now note that χ = 1−µ
2 and thus

χ ∈
[

1

4
, χ̃(ν)

]

⇐⇒ µ ∈
[

1 − 2χ̃(ν),
1

2

]

,

which proves the statement of the theorem.

To make the connection to the introduction, the function f1 is defined by

f1(ℓ) := 1 − 2χ2

(

e2π/ℓ
)

(27)

where χ2 is given in (26).

Remark 4.17. In Theorem 4.16 we only consider perturbations in PM
m , i.e. perturbations that

keep the total mass fixed. The statement about the positivity of the second variation still holds
if we consider the larger set of perturbations Pm, however, for these perturbations the monolayer
of optimal width is not a stationary point, as was noted after Lemma 3.7.

Remark 4.18. To find the stable and unstable first order Fourier modes of deformation we com-
pute the eigenvectors belonging to the positive eigenvalues of M̃1 (a1, χ, χ, ν) and to the eigenvalues
that are negative for some parameter choices. For the positive, stable directions we find

a
s1

1 (χ, ν) := (−1, 0, 1) ,

a
s2

1 (χ, ν) :=

(

1,
1

12ν

(

h1(χ, ν) +
√

h2(χ, ν)
)

, 1

)

,

where

h1(χ, ν) := −9 + 3ν2 − 12 log ν + (4 − 12χ) log3 ν,

h2(χ, ν) := 9
(

9 + 26ν2 + ν4
)

+ 8 log ν
(

3 + (−1 + 3χ) log2 ν
) (

9 − 3ν2 + 6 log ν + (−2 + 6χ) log3 ν
)

.

The direction belonging to the eigenvalues that can become negative, corresponding to the eigen-
value E2 of in Lemma 4.12, is

a
u
1 (χ, ν) :=

(

1,
1

12ν

(

h1(χ, ν) −
√

h2(χ, ν)
)

, 1

)

,

Figure 5b shows the monolayer with a perturbation corresponding to a
s1

1 . Here we have chosen
the values du0 = 1, duv = 0.7, dv0 = 0.3, L = 5, and ε = 0.25. Similarly we get Figure 5c using
perturbations a

s2

1 , and Figure 5a using a
u
1 .

4.4 Discussion and comparison

In Sections 4.2 and 4.3 we found conditions for the stability of monolayers and bilayers with respect
to some admissible perturbations. The main results are visualised in Figures 13 and 14 for the
monolayer and Figure 15 for the bilayer.

The monolayer is stable with respect to perturbations of the interface if µ ≥ µ̃, and the bilayer
is stable with respect to mass-preserving perturbations of the interface if ζ ≥ ζ̃.

µ̃ and ζ̃ display very similar overall behaviour. They both rapidly increase for small values of
L/δm or L/δb until they settle down around a value for µ or ζ close to 0.6. Around this value both
µ̃ and ζ̃ oscillate as with increasing L different Fourier modes become dominant. The similarity
is broken, however, by the restriction of µ to

[

0, 1
2

]

. Because of this the monolayer is unstable for
all values of L/δm greater than about 6, while the bilayer can be stable for all values of L/δb.

Remark that higher relative penalisation of the UV-interfaces, i.e. higher values of µ and ζ,
improves stability. For the bilayer a sufficiently high value of ζ even guarantees stability in the
sense discussed here.
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Figure 13: For the plots of µ̃ we have approximated χ̃ by min1≤j≤100 χ
j
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Figure 14: Plot of µ̃ showing the small-scale oscillations where different Fourier orders become the
dominant contributors.

5 Green’s function on a periodic two-dimensional strip

When computing the first and second variation of F for monolayers and bilayers in Section 3 we
required an explicit formula for the Green’s function of −∆ on SL. We now present this Green’s
function as well as its heuristic derivation.

The main result of this section is the following theorem.

Theorem 5.1. Define G : SL \ {(0, 0)} → R as follows:

G(x1, x2) :=
−1

4π
log

(

2 cosh

(

2πx2

L

)

− 2 cos

(

2πx1

L

))

. (28)

Then the equation −∆G(x1, x2) = δ(x1, x2) is satisfied with periodic boundary conditions G(0, x2) =
G(L, x2) and ∂

∂x1
G(0, x2) = ∂

∂x1
G(L, x2). Writing the Fourier expansion of G in x1 gives

G(x1, x2) = − 1

2L
|x2| +

1

2π

∞
∑

q=1

1

q
e−2π|x2|q/L cos

(

2πx1q

L

)

. (29)

We first present the heuristic method by which we found the Green’s function. The proof of
Theorem 5.1 is given in Section 5.2.

5.1 Heuristic

In this section we give an overview of the method by which we constructed the function G in (28).
The calculations in this section are formal, but the method may be applicable to other computa-
tions of Green’s functions. We proceed along the following steps:

A. Subtract a correction term to avoid blow-up in step D.
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lations where different Fourier orders be-
come the dominant contributors

Figure 15: For the plots of ζ̃ we have approximated ζ̃ by max1≤j≤100 ζ
j

B. Fourier transform the equation with respect to the non-periodic variable.

C. Solve the resulting equations.

D. Use contour integration to perform the inverse Fourier transform.

E. Find a closed expression for the Fourier series.

Step A: L > 0 is assumed fixed. We are looking for a Green’s function of −∆ on SL, i.e. a
function s(x1, x2) satisfying











− ∂2

∂x2
1

s(x1, x2) − ∂2

∂x2
2

s(x1, x2) = δ(x1, x2) on SL,

s(0, x2) = s(L, x2),
∂

∂x1
s(0, x2) = ∂

∂x1
s(L, x2).

As it turns out, the singularity in (0, 0) is strong enough to cause divergences when we calculate
contour integrals later on. In order to perform this integration we renormalise by subtracting a
correction term. The function w(x1, x2) := s(x1, x2) − 1

2L |x2| satisfies











− ∂2

∂x2
1

w(x1, x2) − ∂2

∂x2
2

w(x1, x2) = δ(x1, x2) − 1
Lδ(x2) on SL,

w(0, x2) = w(L, x2),
∂

∂x1
w(0, x2) = ∂

∂x1
w(L, x2).

Step B: In what follows we will use the notation from Definition 2.5. δ(x1, x2) − 1
Lδ(x2) is

a tempered distribution and thus so is − ∂2

∂x2
1

w(x1, x2) − ∂2

∂x2
2

w(x1, x2). We thus can apply the

x2-Fourier transform

f̂(α) :=
1√
2π

∫

R

f(x2)e
−iαx2 dx2

to both sides of the equation to yield

− ∂2

∂x2
1

ŵ(x1, α) + α2ŵ(x1, α) =
1√
2π

(

δ(x1) −
1

L

)

.

We write the solution as
√

2π ŵ = g − 1/(α2L), where

∂2

∂x2
1

g(x1, α) = α2g(x1, α) − δ(x1), g(0, α) = g(L,α),
∂

∂x1
g(0, α) =

∂

∂x1
g(L,α). (30)

Step C: For g we make the Ansatz

g(x1, α) = Aeαx1 + Be−αx1 + Ce−α|x1|.
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Using the distributional derivative

d2

dx2
1

e−α|x| =
d

dx

(

−αe−α|x|sgn(x)
)

= α2e−α|x| − 2αe−α|x|δ(x),

leads to

g′′(x1, α) = α2Aeαx1 + α2Be−αx1 +
1

2
αCe−α|x1| − 2αCδ(x1).

From (30) we now read C = 1
2α−1 and the periodic boundary conditions then give us

A
(

1 − eαL
)

+ B
(

1 − e−αL
)

=
1

2α

(

e−αL − 1
)

,

A
(

1 − eαL
)

− B
(

1 − e−αL
)

=
1

2α

(

−e−αL − 1
)

.

Combining these results in A = − 1
2α

(

1 − eαL
)−1

and B = 1
2αe−αL

(

1 − e−αL
)−1

, which lets us
conclude that

g(x1, α) =
e−αL − 1

2α(1 − cosh(αL))
cosh (αx1) +

1

2α
e−α|x1|.

Step D: Since
√

2π ŵ = g − 1/(α2L) we now need the inverse Fourier transformation of
g − 1/(α2L) to retrieve w. Define

h(x1, x2, α) :=
1

2π

(

e−αL − 1

2α(1 − cosh(αL))
cosh (αx1) +

1

2α
e−α|x1| − 1

α2L

)

eiαx2 ,

then

w(x1, x2) =

∫

R

h(x1, x2, α) dα.

We use countour integration to compute this integral. To this end define the following curves
γi : [0, π] → C, for r,R > 0:

γ1(t) := Reit, γ2(t) := Re−it, γ3(t) := −R +
t

π
(R − r),

γ4(t) := r +
t

π
(R − r), γ5(t) := −re−it, γ6(t) := −reit.

Then we have to compute

w(x1, x2) = lim
R→∞

lim
r↓0

(∫ π

0

h(x1, x2, γ3(t)) γ′
3(t) dt +

∫ π

0

h(x1, x2, γ4(t)) γ′
4(t) dt

)

. (31)

By the residue theorem we have

lim
R→∞

lim
r↓0

∑

i∈{1,3,4,5}

∫ π

0

h(x1, x2, γi(t)) γ′
i(t) dt = 2πi

∑

j

Resh(Pj),

lim
R→∞

lim
r↓0

∑

i∈{2,3,4,6}

∫ π

0

h(x1, x2, γi(t)) γ′
i(t) dt = 2πi

∑

j

Resh(Pj),

where Pj are the poles of h that lie in open upper half plane and open lower half plane respectively
and Resh(Pj) is the residue of h in Pj . It will turn out to be convenient to use the contour
constructed by concatenating γ1, γ3, γ4 and γ5 in case x2 ≥ 0 and the concatenation of γ2, γ3, γ4

and γ5 if x2 < 0.
As a function of α, h has poles in α = 0 and as cosh(αL) = 1 and simultaneously cosh(αx1) 6= 0.

This translates, via cosh(a + ib) = cosh a cos b + i sinh a sin b, into αL = 0mod 2πi. We conclude
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that the poles of h lie at α = 0mod 2πi
L . Computing the Laurent series of h, for example by using

a software package, we find

Resh(0) = 0, and ∀k ∈ Z \ {0}, Resh

(

2πik

L

)

=
−i

4π2k
e

−2πx2k

L cos

(

2πkx1

L

)

. (32)

For x2 ≥ 0 we want to compute lim
R→∞

∫ π

0
h(x1, x2, γ1(t)) dt. First note that for the factor eiReitx2

in the integrand we have

eiReitx2 = e−Rx2 sin teiRx2 cos t = (cos (Rx2 cos t) + i sin(Rx2 cos t)) e−Rx2 sin t.

Now cos (Rx2 cos t) and sin(Rx2 cos t) are bounded for R → ∞ and lim
R→∞

e−Rx2 sin t = 0, for

x2 > 0, t ∈ (0, π). We thus have

lim
R→∞

eiReitx2 = 0 for x2 > 0,

lim
R→∞

eiReitx2 = 1 for x2 = 0. (33)

Now we turn our attention to the other factor in integrand. Define, for fixed x1, L and t,

k(R) :=
cosh

(

Reitx1

)

1 − cosh (ReitL)

(

e−ReitL − 1
)

+ e−Reit|x1|.

Note that

h(x1, x2, γ1(t)) =
1

2πR
e−it

(

k(R) − 1

LR
e−it

)

eiReitx2 ,

and thus in order to prove that the contribution of the integral over γ1 goes to zero for R → ∞,
we need to show that k(R) is bounded in the limit.

Because e−Reit

behaves differently for R → ∞ depending on whether cos t is positive, zero or
negative, we should distinguish three different cases: t ∈ [0, π

2 ), t = π
2 and t ∈ (π

2 , π).
For t ∈ [0, π

2 ) we compute for every fixed positive x1

lim
R→∞

e−Reitx1 = 0, lim
R→∞

eReitx1 + e−Reitx1

1 − 1
2eReitL − 1

2e−ReitL
= 0,

which results in lim
R→∞

k(R) = 0.

For t = π
2 we have Reit = i sin t, which lets us compute

k(R) =
−1 + cos(RL sin t) − i sin(RL sin t)

1 − cos(RL sin t)
cos (R sin tx1)

+ cos(Rx1 sin t) − i sin(R|x1| sin t)

< ∞.

For t ∈ (π
2 , π] we compute

k(R) = e−Reit|x1|





(

1 + e2Reit|x1|
)(

e−ReitL − 1
)

2 − eReitL − e−ReitL
+ 1





= eReit(L−|x1|) 1 + e2ReitL

2eReitL − e2ReitL − 1
,

and so lim
R→∞

k(R) = 0.
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Combining these results on k(R) with (33) gives, for x2 ≥ 0,

lim
R→∞

∫ π

0

h(x1, x2, γ1(t)) γ′
1(t) dt = 0.

If x2 < 0 we use γ2 instead of γ1. We compute

eiRe−itx2 = (cos(Rx2 cos t) + i sin(Rx2 cos t)) eRx2 sin t,

and thus
lim

R→∞
eiRe−itx2 = 0 for x2 < 0.

Together with the calculations above on k(R) we now conclude that, for x2 < 0,

lim
R→∞

∫ π

0

h(x1, x2, γ2(t)) γ′
2(t) dt = 0.

For γ5 we first compute

lim
r↓0

1

2π

∫ π

0

(2γ5(t))
−1

e−γ5(t)|x1|eiγ5(t)x2γ′
5(t) dt = lim

r↓0

1

4π

∫ π

0

−r−1eitere−it|x1|e−ire−itx2 ire−it dt

= − i

4
. (34)

Furthermore we compute, for example by some software package,

lim
r↓0

1

2π

∫ π

0

(

−i

2

ere−itL

1 − cosh (reitL)
cosh

(

re−itx1

)

− i

rL
eit

)

e−ire−itx2 dt =
i

4
. (35)

We add (34) and (35) to arrive at

lim
R→∞

∫ π

0

h(x1, x2, γ5(t)) γ′
5(t) dt = 0.

Performing the analogous calculation for γ6 we find that the results analogous to (34) and (35)
both differ in their overall sign from (34) and (35) and thus we get

lim
R→∞

∫ π

0

h(x1, x2, γ6(t)) γ′
6(t) dt = 0.

This is consistent with the fact that the residue of the pole in α = 0 is zero.
Because the integrals along γ1, γ2, γ5 and γ6 all vanish, we use (31) and (32) to conclude

s(x1, x2) =
1

2π

∞
∑

k=1

1

k
e−

2π|x2|k
L cos

(

2πkx1

L

)

− 1

2L
|x2|.

Step E: We now have found a Fourier series expression for s. If x2 6= 0 we can rewrite this
into (28) as follows:

∞
∑

q=1

1

q
e−

2π|x2|q
L cos

(

2πqx1

L

)

= Re

∞
∑

q=1

1

q
e

2π
L

(−|x2|+ix1)

= −Re log
(

1 − e
2π
L

(−|x2|+ix1)
)

= − log
∣

∣

∣
1 − e

2π
L

(−|x2|+ix1)
∣

∣

∣

= −1

2
log

(

1 − 2e−
2π|x2|

L cos

(

2πx1

L

)

+ e
−4π|x2|

L

)

= −1

2
log

(

2e−
2π|x2|

L

(

1

2
e

2π|x2|
L − cos

(

2πx1

L

)

+
1

2
e−

2π|x2|
L

))

=
π

L
|x2| −

1

2
log

(

2 cosh

(

2π|x2|
L

)

− 2 cos

(

2πx1

L

))

. (36)
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5.2 Proof of Theorem 5.1

We now turn to proving the main result of this section.

Proof of Theorem 5.1. We first prove that G, as given in equation (28), satisfies the equation
−∆G(x1, x2) = δ(x1, x2) in the sense of distributions, i.e. we show that ∀φ ∈ C∞

0 (SL),
∫

SL

G(x1, x2)(−∆φ)(x1, x2) dx1 dx2 = φ(0, 0).

Note that the constant term − 1
4π log 2 implicitly present in (28) as the factor 2 in the logarithm

is of no importance here and so we will leave it out of subsequent calculations 2.
We write
∫

SL

G(x1, x2)(−∆φ(x1, x2)) dL = lim
ε↓0

∫

SL\B(0,ε)

G(x1, x2)(−∆φ(x1, x2)) dL

= lim
ε↓0

(

−
∫

∂B(0,ε)

G(x1, x2)∇φ(x1, x2) · ν(x1, x2) dH1

−
∫

SL\B(0,ε)

∆G(x1, x2)φ(x1, x2) dL

+

∫

∂B(0,ε)

∇G(x1, x2) · ν(x1, x2)φ(x1, x2) dH1

)

,

where B(0, ε) is the closed ball of radius ε and with the origin as center. ν is the unit outward
normal to SL \ B(0, ε), which means ν points into B(0, ε). Denote the three integrals by Iε, Jε

and Kε respectively. The integral Iε vanishes:

lim
ε→0

|Iε| ≤ lim
ε→0

‖∇φ‖∞
∫

∂B(0,ε)

|G(x1, x2)| dH1

= lim
ε→0

‖∇φ‖∞ 2πε

∣

∣

∣

∣

log

(

2π2

L2
(ε2 + O(ε4))

)∣

∣

∣

∣

= 0.

For Jε we calculate

∇G(x1, x2) = − 1

2L

[

cosh

(

2πx2

L

)

− cos

(

2πx1

L

)]−1(
sin
(

2πx1

L

)

sinh
(

2πx2

L

)

)

.

For notational convenience we will write C(x1, x2) := cosh
(

2πx2

L

)

− cos
(

2πx1

L

)

. Then we can
compute that at (x1, x2) 6= (0, 0)

∂2

∂x2
1

G(x1, x2) =
π

L2

(

C(x1, x2)
−2 sin2

(

2πx1

L

)

− C(x1, x2)
−1 cos

(

2πx1

L

))

,

∂2

∂x2
2

G(x1, x2) =
π

L2

(

C(x1, x2)
−2 sinh2

(

2πx2

L

)

− C(x1, x2)
−1 cosh

(

2πx2

L

))

,

which gives ∆G(x1, x2) = 0, from which it follows that ∀ε > 0, Jε = 0.
To determine limε→0 Kε we approximate G by GR2(x1, x2) = −(4π)−1 log(x2

1+x2
2), the Green’s

function of −∆ on R
2. Estimating the difference on ∂B(0, ε) by

|∇G(x1, x2) −∇GR2(x1, x2)| =

∣

∣

∣

∣

∣

− 1

2L

2πx1

L ~e1 + 2πx2

L ~e2 + O((x2
1 + x2

2)
3/2)

2π2

L2 (x2
1 + x2

2) + O((x2
1 + x2

2)
2)

+
1

2π

x1~e1 + x2~e2

x2
1 + x2

2

∣

∣

∣

∣

∣

= O((x2
1 + x2

2)
1/2) as x2

1 + x2
2 = ε2 → 0,

2The reason for adding it in (28) in the first place is to get a Fourier series without a term independent of x1

and x2.
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we calculate

lim
ε→0

Kε = lim
ε→0

∫

∂B(0,ε)

∇(G(x1, x2) − GR2(x1, x2)) · ν(x1, x2)φ(x1, x2) dH1

+ lim
ε→0

∫

∂B(0,ε)

∇GR2(x1, x2) · ν(x1, x2)φ(x1, x2) dH1

= 0 + lim
ε→0

1

2π

∫

∂B(0,ε)

x1~e1 + x2~e2

x2
1 + x2

2

· x1~e1 + x2~e2

(x2
1 + x2

2)
1/2

φ(x1, x2) dH1 = φ(0, 0).

Taking these results together shows that limε↓0(Iε + Jε + Kε) = φ(0, 0) and thus −∆G = δ holds
in the sense of distributions.

To prove that the Fourier series in (29) corresponds to the Green’s function (28), let G be
given by (28) and G̃ by (29). Note that for every x2 6= 0 the series converges absolutely:

∞
∑

q=1

∣

∣

∣

∣

1

q
e−

2π|x2|q
L cos

(

2πx1q

L

)∣

∣

∣

∣

≤
∞
∑

q=1

(

e−
2π|x2|

L

)q

=
e−

2π|x2|
L

1 − e−
2π|x2|

L

,

so that by the calculation of (36) the partial sums
∑ℓ

q=1
1
q e−

2π|x2|q
L cos

(

2πqx1

L

)

converge pointwise

to G(x1, x2) for almost all (x1, x2) ∈ SL. Since the partial sums are all bounded by the L1-function
on the right hand side of (36) the Dominated Convergence Theorem yields G̃ ∈ L1(SL). Together
with G = G̃ a.e. on SL this shows that G = G̃ in L1(SL).

Remark 5.2. The Green’s function from theorem 5.1 is not uniquely determined. Adding a
term ax2 + b to G(x1, x2) for a, b ∈ R again yields a solution of the desired equations. Also note
that G(−x1, x2) = G(x1, x2) and G(x1,−x2) = G(x1, x2).

Corollary 5.3. Let G be as in (29) and let x2 ∈ R \ {0}. Then

∫ L

0

G(x1, x2) dx1 = −1

2
|x2|.

Proof. For all q ≥ 1,
∫ L

0

cos

(

2πqx1

L

)

dx1 = 0.

6 Discussion and conclusions

6.1 Comparing mono- and bilayers

In this paper we showed that bilayers can be both stable and unstable, depending on the pa-
rameters: when the U-V interface penalty is strong enough, relative to the penalties of the other
interfaces, the bilayer is stable. On the other hand, monolayers are unstable as soon as the strip
is wide enough to accomodate the unstable wavelengths, regardless of the values of the interface
penalization.

The bilayer can be thought of as two juxtaposed monolayers, and therefore the question presents
itself how the unstable mode of the monolayer is prevented in the bilayer context. The correct
answer seems to be that the unstable mode is actually not prevented at all; it continues to exist
in the context of the bilayer, as can be witnessed in Figures 5a and (especially) 7b.

The reason why this unstable mode does not make every bilayer unstable lies in the admissible
values of the coefficients, which are different in the two cases. For the VUV bilayer, for instance,
the value of the U-0 interface penalty du0 is irrelevant; therefore, by choosing du0 := dv0 +
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duv, every choice of duv and dv0 becomes admissible, and most importantly, the case of purely
U-V penalization (ζ ≈ 1, or dv0 ≈ 0) is therefore allowed. For the monolayer, however, the
conditions (4) imply that the two side interfaces (0-U and V-0) are necessarily penalised at least
half as strongly as the central (U-V) interface. Most of the white (stable) region in Figure 12b
therefore is inaccessible, and only the unstable region remains.

6.2 Comparison with [32]

In previous work ([32]), one of the authors (Peletier) and Röger studied a related functional,

Gε(u, v) :=











ε

∫

R2

|∇u| + 1

ε
d1(u, v) if (u, v) ∈ Kε,

∞ otherwise.

(37)

Here d1(·, ·) is the Monge-Kantorovich distance with cost function c(x, y) = |x − y| and

Kε :=

{

(u, v) ∈ BV(R2; {0, 1/ε})2 : uv = 0 a.e., and

∫

R2

u =

∫

R2

v = M

}

.

Apart from the choices c0 = cv = 0 and cu = 1, the main difference between F and (37) is the
different non-local term.

The scaling (constant mass but increasing amplitude 1/ε) implies that the supports of u and v
shrink to zero measure. The main goal in [32] was to investigate the limit ε → 0 and characterise
the limiting structures and their energy.

The main result, a Gamma-convergence theorem, can be interpreted as stating—in a very
weak sense—that the limiting structures are VUV-bilayers; in the limit ε → 0 these bilayers have
a thickness equal to 4ε and their curvature is bounded in L2. Most importantly, in connection
with the present paper, the limit energy depends on the curvature in a stable way: the energy is
minimal for straight bilayers and increases with curvature.

This result compares well with the results of this paper. The functional Gε of [32] penalises
only U-V and U-0 interfaces; the V-0 interface is free, or in terms of this paper ζ = 1. Both in [32]
and in the present paper we therefore find that bilayers of optimal width are stable, although the
precise results and their methods of proof are very different.

6.3 Comparison with ‘wriggled lamellar’ solutions

In a series of papers [28, 35, 36] Muratov and Ren & Wei investigate the stability of one-dimensional
layered (lamellar) structures for copolymer melts—the case u+v ≡ 1. They find that for a critical
value of the lamellar spacing the straight lamellar structures become unstable and a stable branch
of curved, ‘wriggled’ lamellar structures bifurcates. Muratov considers unbounded domains and
finds that the loss of stability happens at exactly the optimal value of the width: for any larger value
of the width unstable directions exist with very large wavelength. Ren and Wei consider bounded
domains, which provides a natural limit on the wavelength of perturbations, and consequently they
find that the at the optimal width the straight lamellar structures are stable, and the bifurcation
occurs at slightly larger width.

The system studied in this paper is different in that there are three types of interfaces, not
one; for comparison purposes one can identify the pure-melt case described above with the case
of pure U-V interface penalization for bilayers (ζ = 1). In this case the bilayer of optimal width
is stable, and this result mirrors the stability result of Ren and Wei for optimal-width lamellar
structures.

6.4 Generalizations and extensions

One might wonder whether the functional F depends in a smooth manner on the perturbations.
The calculation of the second derivative of the functional in the melt case done by Choksi and
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Sternberg [9] suggests that the second derivative of F depends continuously on W 1,2-regular
perturbations of the interfaces. In that case the functional F is of class C2, and the linear stability
analysis of the current paper automatically implies the equivalent nonlinear stability properties.

One can also wonder whether the class of perturbations that are considered—those described
by functions of the variable x1 ∈ TL—is not too restrictive. The class of all perturbations that
are small in L1, for instance, also includes many perturbations with small inclusions of one phase
in another, which are not covered here. We believe that these will generally be less advantageous,
since the results of this paper show that perturbations with fast oscillations are energetically
expensive. The same conclusion can be reached by a slightly different, heuristic argument as
follows. Within the class of uniformly bounded functions the H−1-norm is continuous with respect
to the L1 topology, and therefore to the area of the inclusion; for small inclusions, with a large
circumference-to-area ratio, a possible decrease in the H−1-norm is therefore dwarfed by the
increase in interfacial length associated with such an inclusion.

Note that the problem has not completely been non-dimensionalised; it is possible to rescale the
problem by the length scale L, resulting in a three-parameter problem (in the rescaled parameters
c0, cu, and cv). Instead we keep the length scale explicitly in the problem to illustrate the length-
scale dependence of the stability properties.

A Relevance of energy per unit mass for partial localization

Throughout this paper we concentrate on layered structures with a specific width: the width that
minimises the ratio of (one-dimensional) energy to (one-dimensional) mass. The origin for this
choice lies in our interest in partially localised structures, as we now explain.

Since we are interested in long thin structures, we might first ask ourself the question what
minimisers of F on the full domain R

2 look like if we restrict the admissible functions to be
rectangles with a fixed mass, oriented such that the long axis is parallel to the x1-axis.

If the rectangle has a large aspect ratio, the structure is roughly constant in the x1-direction.
We can interpret the rectangle then as a one-dimensional structure in the x2-direction, extended
trivially in the x1-direction and cut off at a certain length, a. In [16] it is proven that for such a
trivially extended one-dimensional structure the energy F per mass M is approximately equal to
the one-dimensional energy F1 per mass of the cross-section M1:

F
M =

F1

M1
+ O(1/a), for a → ∞.

Put differently: although the energy depends on the structure in a nonlocal manner, for large
mass (i.e. long rectangles) the energy is essentially equal to the one-dimensional energy of the
cross-section times the length of the rectangle. Effects near the cut off points are less important.

This implies that the miminiser of F in the class of rectangles with large constrained mass
should have a thickness M1 such that F1/M1 is minimal. Also when studying the stability of
layered structures, it thus makes sense to concentrate on structures of optimal width, in the sense
as described above.

In a monolayer of optimal width the U- and V-layers both have width [16]

δm :=

(

3

2

)1/3

(c0 + cu + cv)1/3,

while for the bilayer the thickness of the inner layer is

2δb := 61/3(c0 + cu + 2cv)1/3 (VUV) or 2δb := 61/3(c0 + 2cu + cv)1/3 (UVU).

B Relevance of the choice cu = cv for monolayers

The choice cu = cv for monolayers is similarly inspired by our interest in partial localization and
more or less forced upon us by the periodicity in the x1-direction. If the U-0 and V-0 interfaces

32



are penalised unequally, then a monolayer structure in R
2 likely will tend to curve, in order to

reduce the length of the ‘expensive’ interface at the expense of the ‘cheap’ interface.
When cu 6= cv, therefore, a straight monolayer is not even stationary under perturbations that

allow for curving of the whole monolayer. The setup in the context of the strip SL disallows such
curving over the whole length of the layer because of the periodicity in the x1-direction. Therefore
this instationarity is rendered invisible on SL. However, with our interest in partial localisation
in mind we make the choice cu = cv throughout this paper.

C Proof of Theorem 3.5

For the interfacial terms we directly compute from (8)

d2

dε2

(

c0

∫

SL

|∇(uε + vε)| + cu

∫

SL

|∇uε| + cv

∫

SL

|∇vε|
)∣

∣

∣

∣

ε=0

=

∫ L

0

(

duv

[

p′1
2

+ p′3
2
]

+ dv0

[

p′2
2

+ p′4
2
])

dx. (38)

In order to compute d2

dε2 ‖uε − vε‖2
H−1(SL)

∣

∣

∣

ε=0
we split up the norm as follows:

‖uε − vε‖2
H−1(SL) =

∫ L

0

∫ L

0

fε(x1, ξ1) dξ1 dx1, (39)

where

fε(x1, ξ1) :=
∫ −δb−εp3(x1)

−2δb−εp4(x1)

∫ −δb−εp3(ξ1)

−2δb−εp4(ξ1)

G(x − ξ) dξ2 dx2 +

∫ δb+εp1(x1)

−δb−εp3(x1)

∫ δb+εp1(ξ1)

−δb−εp3(ξ1)

G(x − ξ) dξ2 dx2

+

∫ 2δb+εp2(x1)

δb+εp1(x1)

∫ 2δb+εp2(ξ1)

δb+εp1(ξ1)

G(x − ξ) dξ2 dx2

− 2

∫ δb+εp1(x1)

−δb−εp3(x1)

∫ −δb−εp3(ξ1)

−2δb−εp4(ξ1)

G(x − ξ) dξ2 dx2 − 2

∫ 2δb+εp2(x1)

δb+εp1(x1)

∫ δb+εp1(ξ1)

−δb−εp3(ξ1)

G(x − ξ) dξ2 dx2

+ 2

∫ 2δb+εp2(x1)

δb+εp1(x1)

∫ −δb−εp3(ξ1)

−2δb−εp4(ξ1)

G(x − ξ) dξ2 dx2 (40)

We compute now one of these terms in its general form. Let n1, n2, n3, n4 ∈ {−2,−1, 1, 2},
r1, r2 ∈ {p1(x1), p2(x1),−p3(x1),−p4(x1)} and r3, r4 ∈ {p1(ξ1), p2(ξ1),−p3(ξ1),−p4(ξ1)}, then we
want to compute

I =
d2

dε2

∫ n2δb+εr2

n1δb+εr1

∫ n4δb+εr4

n3δb+εr3

G(·, x2 − ξ2) dξ2 dx2

∣

∣

∣

∣

∣

ε=0

.

We can split up the integral over [n1δb +εr1, n2δb +εr2]× [n3δb +εr3, n4δb +εr4] into nine integrals
over the domains

[n2δb, n2δb + εr2] × [n3δb + εr3, n3δb], [n2δb, n2δb + εr2] × [n3δb, n4δb],

[n2δb, n2δb + εr2] × [n4δb, n4δb + εr4], [n1δb, n2δb] × [n3δb + εr3, n3δb],

[n1δb, n2δb] × [n3δb, n4δb], [n1δb, n2δb] × [n4δb, n4δb + εr4],

[n1δb + εr1, n1δb] × [n3δb + εr3, n3δb], [n1δb + εr1, n1δb] × [n3δb, n4δb],

[n1δb + εr1, n1δb] × [n4δb, n4δb + εr4].
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We compute two of these integrals. The others are computed in a similar vein. G2 denotes the
partial derivative of G with respect its second argument.

d2

dε2

∫ n2δb+εr2

n2δb

∫ n3δb

n3δb+εr3

G(·, x2 − ξ2) dξ2 dx2

∣

∣

∣

∣

∣

ε=0

=
d2

dε2

∫ r2

0

∫ 0

r3

ε2G(·, ε(x̃2 − ξ̃2) + (n2 − n3)δb) dξ̃2 dx̃2

∣

∣

∣

∣

ε=0

=
d

dε

∫ r2

0

∫ 0

r3

[

2εG(·, ε(x̃2 − ξ̃2) + (n2 − n3)δb) + ε2(x̃2 − ξ̃2)G2(·, ε(x̃2 − ξ̃2) + (n2 − n3)δb)
]

dξ̃2 dx̃2

∣

∣

∣

∣

ε=0

= 2

∫ r2

0

∫ 0

r3

G(·, (n2 − n3)δb) dξ̃2 dx̃2

= −2r2r3G(·, (n2 − n3)δb).

Another kind of integral we encounter is

d2

dε2

∫ n2δb+εr2

n2δb

∫ n4δb

n3δb

G(·, x2 − ξ2) dξ2 dx2

∣

∣

∣

∣

∣

ε=0

= − d2

dε2

∫ r2

0

∫ (n2−n4)δb

(n2−n3)δb

εG(·, εx̃2 + ξ̃2) dξ̃2 dx̃2

∣

∣

∣

∣

∣

ε=0

= − d

dε

∫ r2

0

∫ (n2−n4)δb

(n2−n3)δb

[

G(·, εx̃2 + ξ̃2) + εx̃2G2(·, εx̃2 + ξ̃2)
]

dξ̃2 dx̃2

∣

∣

∣

∣

∣

ε=0

= −
∫ r2

0

∫ (n2−n4)δb

(n2−n3)δb

2x̃2G2(·, ξ̃2) dξ̃2 dx̃2

= r2
2

(

G((n2 − n3)δb) − G((n2 − n4)δb)
)

.

Combining all integrals we find

I = −2r2r3G(·, (n2 − n3)δb) + r2
2

(

G(·, (n2 − n3)δb) − G(·, (n2 − n4)δb)
)

+ 2r2r4G(·, (n2 − n4)δb)

+ r2
3

(

G(·, (n2 − n3)δb) − G(·, (n1 − n3)δb)
)

− r2
4

(

G(·, (n2 − n4)δb) − G(·, (n1 − n4)δb)
)

+ 2r1r3G(·, (n1 − n3)δb) + r2
1

(

G(·, (n1 − n4)δb) − G(·, (n1 − n3)δb)
)

− 2r1r4G(·, (n1 − n4)δb).

Applying this result to (40) while keeping in mind that G(·,−x2) = G(·, x2), we find

fε(x1, ξ1) =
[

−8p2
1(x1) + 8p1(x1)p1(ξ1) − 2p2

2(x1) + 2p2(x1)p2(ξ1)

−8p2
3(x1) + 8p3(x1)p3(ξ1) − 2p2

4(x1) + 2p4(x1)p4(ξ1)
]

G(x1 − ξ1, 0)

+
[

4p1(x1) − 8p1(x1)p2(ξ1) + 4p2
2(x1) + 4p2

3(x1) − 8p3(x1)p4(ξ1) + 4p2
4(x1)

]

G(x1 − ξ1, δb)

+
[

8p2
1(x1) + 16p1(x1)p3(ξ1) + 8p2

3(x1)
]

G(x1 − ξ1, 2δb)

+
[

−4p2
1(x1) − 4p2

2(x1) − 8p2(x1)p3(ξ1) − 4p2
3(x1) = 8p1(x1)p4(ξ1) − 4p2

4(ξ1)
]

G(x1 − ξ1, 3δb)

+
[

2p2
2(x1) + 4p2(x1)p4(ξ1) + 2p2

4(x1)
]

G(x1 − ξ1, 4δb),

where we have used that in (39) the integrations over x1 and ξ1 are indistinguishable.
Note that for ξ ∈ TL, r ∈ R

∫ L

0

G(x − ξ, r) dx =

∫ L

0

G(x, r) dx = −1

2
|r|.
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Using this, as well as Parseval’s Theorem (Theorem 2.8 and Corollary 2.9) and the equality

Ĝ(q, r) = Ĝ(q, r) for r ∈ R, we find

d2

dε2
‖uε − vε‖2

H−1(SL)

∣

∣

∣

∣

ε=0

= −4δb

∑

q∈Z

(

|p̂1(q)|2 + |p̂3(q)|2
)

+ L
1
2

∑

q∈Z

[

{

8|p̂1(q)|2 + 2|p̂2(q)|2 + 8|p̂3(q)|2 + 2|p̂4(q)|2
}

Ĝ(q, 0)

− 8
{

p̂1(q)p̂2(q) + p̂3(q)p̂4(q)
}

Ĝ(q, δb)

+ 16p̂1(q)p̂3(q)Ĝ(q, 2δb)

− 8
{

p̂2(q)p̂3(q) + p̂1(q)p̂4(q)
}

Ĝ(q, 3δb)

+4p̂2(q)p̂4(q)Ĝ(q, 4δb)
]

. (41)

Adding the results (38) and (41), we get

d2

dε2
F(uε, vε)

∣

∣

∣

∣

ε=0

=

∫ L

0

(

duv

[

p′1
2

+ p′3
2
]

+ dv0

[

p′2
2

+ p′4
2
])

dx

+
√

L
∑

q∈Z

[

{

8|p̂1(q)|2 + 2|p̂2(q)|2 + 8|p̂3(q)|2 + 2|p̂4(q)|2
}

Ĝ(q, 0)

− 8
{

p̂1(q)p̂2(q) + p̂3(q)p̂4(q)
}

Ĝ(q, δb)

+ 16p̂1(q)p̂3(q)Ĝ(q, 2δb)

− 8
{

p̂2(q)p̂3(q) + p̂1(q)p̂4(q)
}

Ĝ(q, 3δb)

+4p̂2(q)p̂4(q)Ĝ(q, 4δb)
]

− 4δb

∑

q∈Z

(

|p̂1(q)|2 + |p̂3(q)|2
)

.

Because we have, for all q, q̃ ∈ N,

2

L

∫ L

0

sin

(

2πxq

L

)

sin

(

2πxq̃

L

)

dx =
2

L

∫ L

0

cos

(

2πxq

L

)

cos

(

2πxq̃

L

)

dx = δqq̃,

2

L

∫ L

0

sin

(

2πxq

L

)

cos

(

2πxq̃

L

)

dx = 0,

the integral over the derivatives in the second variation gives us

∞
∑

j=1

(

2πj

L

)2
[

duv

{

(a1,j)
2

+ (a3,j)
2

+ (b1,j)
2

+ (b3,j)
2
}

+dv0

{

(a2,j)
2

+ (a4,j)
2

+ (b2,j)
2

+ (b4,j)
2
}]

.

Because p is R
4-valued, p̂(q) = p̂(−q). Furthermore Ĝ(−q, x2) = Ĝ(q, x2) by equation (28).

This enables us to write terms as follows, for k, l ∈ {1, 2, 3, 4}:
∑

q∈Z

p̂k(q)p̂l(q)Ĝ(q, x2) = p̂k(0)p̂l(0)Ĝ(0, x2) + 2Re
∞
∑

q=1

p̂k(q)p̂l(q)Ĝ(q, x2).

Note that, for k ∈ {1, 2, 3, 4}, q ∈ Z \ {0}, we have p̂k(q) = 1√
2

(

a
(k)
q − ib

(k)
q

)

and p̂k(q) =

1√
2

(

a
(k)
q + ib

(k)
q

)

and thus (l ∈ {1, 2, 3, 4}):

Re p̂k(q)p̂l(q) =
1

2

(

a(k)
q a(l)

q + b(k)
q b(l)

q

)

.
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From the Fourier series (29) we get furthermore that

Ĝ(0, x2) = − 1

2
√

L
|x2|,

Ĝ(q, x2) =

√
L

4πq
e−2π|x2|q/L, for q ≥ 1.

Using these results in the expression for the second variation yields the desired result.

D Detailed calculations in the proof of Lemma 4.5

In this appendix we prove (19). Since 0 < υ < 1 we have 3(−1 + υ4) − 4(−1 + ζ) log3 υ < 0 and
thus G− < 0 ⇐⇒ h− > 0. Because 4

3 log6 υ, the coefficient in front of ζ2 in h−, is positive, we
know that h− is positive for ζ ∈ [0, ζ1(υ))∪ (ζ2(υ), 1], where ζ1,2 are the υ-dependent zeros of h−,
with ζ1 ≤ ζ2. These zeroes are given by

ζ1,2(υ) = (8 log3 υ)−1
(

9 − 12υ2 + 3υ4 + (4 log υ)(3 + log2 υ)

±{225 − 504υ2 + 342υ4 − 72υ6 + 9υ8 + (360 − 288υ2 − 72υ4) log υ

+144 log2 υ + (−120 + 96υ2 + 24υ4) log3 υ − 96 log4 υ + 16 log6 υ} 1
2

)

.

We take the plus sign in ζ1 and the minus sign in ζ2. In this way the negativity of (8 log3 υ)−1

ensures that ζ1 ≤ ζ2. Plots of ζ1 and ζ2 are given in Figure 16.
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Figure 16

We start by proving that 9 − 12υ2 + 3υ4 + (4 log υ)(3 + log2 υ) < 0 on (0, 1). The equation

υ
d

dυ

(

2υ4 − 2υ2 + log υ
)

= 8υ4 − 4υ2 + 1 = 0

has no real solutions on (0, 1) and so 1
2υ d

dυ

(

υ4 − 2υ2 + log2 υ + 1
)

= 2υ4−2υ2+log υ ≤ 0 on (0, 1],

with equality iff υ = 1. This in turn shows that 12υ d
dυ

(

9 − 12υ2 + 3υ4 + (4 log υ)(3 + log2 υ)
)

=

υ4−2υ2 +log2 υ+1 ≥ 0 on (0, 1], with equality iff υ = 1, from which 9−12υ2 +3υ4 +(4 log υ)(3+
log2 υ) < 0 follows. Consequently, since (8 log3 υ)−1 < 0, we have that ζ2 > 0.

Next we calculate

d

dυ

(

3 log υ − 3 +
6

υ2 + 1
− log3 υ

)

=
3

υ
− 12υ

(υ2 + 1)2
− 3

υ
log2 υ.

This is equal to zero if and only if log2 υ = (1−υ2)2

(1+υ2)2 , which leads to υ = e
− 1−υ2

1+υ2 . We will now prove

υ ∈ [0, 1] ∧ υ = e
−1+υ2

1+υ2 ⇐⇒ υ = 1.
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Since υ = 1 clearly satisfies the equation on the left, it remains to show that there are not more
solutions. We start by computing

d

dυ

(

e
−1+υ2

1+υ2 − υ

)

=
4υ

(1 + υ2)
2 e

−1+υ2

1+υ2 − 1;

d2

dυ2

(

e
−1+υ2

1+υ2 − υ

)

=
1

(1 + υ2)
4

(

−12υ4 + 8υ2 + 4
)

e
−1+υ2

1+υ2 .

On [0, 1] we have

d2

dυ2

(

e
−1+υ2

1+υ2 − υ

)

= 0 ⇐⇒ −12υ4 + 8υ2 + 4 = 0 ⇐⇒ υ = 1,

showing that d
dυ

(

e
−1+υ2

1+υ2 − υ

)

has at most one zero on [0, 1] and thus its only zero is at υ = 1,

which in turn shows that also e
−1+υ2

1+υ2 − υ has at most one zero on [0, 1], which is what we set out
to prove. This now leads us to conclude

d

dυ

(

3 log υ − 3 +
6

υ2 + 1
− log3 υ

)

= 0 ⇐⇒ υ = 1.

This means that 3 log υ − 3 + 6
υ2+1 − log3 υ has a minimum at υ = 1 and thus this expression is

positive on (0, 1). Then

((

9 − 12υ2 + 3υ4 + (4 log υ)(3 + log2 υ)
)

− 8 log3 υ
)2

−
(

225 − 504υ2 + 342υ4 − 72υ6 + 9υ8 + (360 − 288υ2 − 72υ4) log υ

+144 log2 υ + (−120 + 96υ2 + 24υ4) log3 υ − 96 log4 υ + 16 log6 υ
)

= −144(υ2 − 1)2 + 144(υ4 − 1) log υ − 48(υ4 − 1) log3 υ

= 48(υ4 − 1)

(

3 log υ − 3

(

1 − 2

υ2 + 1

)

− log3 υ

)

< 0. (42)

Note that this also proves that the expression in the square root in ζ1,2 is positive. Together with
8 log3 υ < 0 these inequalities give us ζ2(υ) > 1. These results lead to the conclusion that

G−(υ, ζ) < 0 ⇐⇒ ζ ∈ [0, ζ1(υ)).

The other sign possibilities for G− follow immediately.

Remark D.1. For the excluded endpoints 0 and 1 we find

lim
υ↓0

ζ1 = 0, lim
υ↑1

ζ1 =
5

2
− 1

2

√

69

5
,

lim
υ↓0

ζ2 = 1, lim
υ↑1

ζ2 =
5

2
+

1

2

√

69

5
.

The limits for υ ↑ 1 were found by calculating the first terms in the Taylor expansion of ζ1,2.
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