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INTEGRITY CHECKING 
IN DEDUCTIVE DATABASES; 

AN EXPOSITION. 

R.R. Seljee 

Co-operation Centre 
Tilburg and Einhoven Universities 

ABSTRACT. 

Relational systems are extended in several ways. We consider extensions with rules and integrity 
constraints to so-called deductive databases. There are several problems in handling these rules 
and constraints. One problem is to check, in an efficient way, the integrity of a deductive database 
when an insertion or deletion is made. There exist several integrity maintenance methods. All 
these methods avoid a full check of the integrity constraints in order to keep them efficient. 
Therefore, the database is supposed to be consistent before a transaction is made. We take 
a look at one of the most efficient methods proposed by Bry, Decker and Manthey. They determine 
from the updates, rules and constraints and without accessing the fact base the so called update 
constraints which have to be checked in the updated database. These constraints are instantiations 
of the constraints that are relevant to the update. Although this method is more efficient than 
other ones, it is still susceptible of improvement. Our goal in this article was to show by some 
well-chosen examples that in some regards the proposed method is still very inefficient. By these 
examples it becomes clear where the inefficiencies come from; they were not mentioned in the 
article of Bry, Manthey and Decker. 
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§O INTRODUcnON:REIATIONAL DATAB~ RULES, IN1EGRITY CONSTRAINTS, DEDUCTIVE 
DATABASES, INTEGRITY ENFORCEMENT 

Most commercially available database systems are based on the relational database model. In this relational 
model facts are stored in tables. Tables contain explicit data. A relational database management system 
(RDBMS) takes care of fast retrieval of information from a database. Besides explicit information tables 
also contain implicit information. In conventional relational systems the derivation of implicit from 
explicit information is left to the user. There is a growing need to delegate such derivations to the system. 
We can do this by extending a relational database with deductive rules. In that case, we speak of a deductive 
database. 
On the basis of the next example, consisting of a PARENT-table and a GRANDFATHER-table, we 
shall illustrate the extensions mentioned above of a conventional RDBMS.l) 

PARENT-table 

I NAME II AGE II FATHER II MOTHER I 
ALEX 15 CARL JANE 

JANE ? PETER LUCY 

JACOB 38 PETER LUCY 

CARL 41 LEON ANNE 

LEON ? JACK ? 

GRANDFATHER-table 

I NAME II GRANDFATHER I 
ALEX LEON 

ALEX PETER 

LEON JACK 

Besides storing facts, there is a great need to store general knowledge about the universe of discourse 
in the database. Both rules and integrity constraints represent such knowledge. 

RULES 

Rules are added to make implicit knowledge explicit. As we see in the PARENT-table, JANE and JACOB 
are siblings, because their FATHER and MOTHER are PETER and LUCY for both of them. By adding 
a rule like "People who have the same parents are siblings", we represent the knowledge of the sibling 

1) In this example the tables are not physically present in the database. Normally, for reasons of maintenance \. 
of the database the date of birth of an individual is restored. In order to keep the problem clear we store 
the age of all individuals in OUf tables. So, in fact our tables are views. 
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relation. Now, a deductive database management system must take care of answering questions about 
siblings using this rule and the PARENT-table. 
Rules are also used to make explicit knowledge implicit. Sometimes this means a considerable saving 
of space, as will be pointed out in the next example. Instead of one big GRANDFATHER-table in the 
database, we could simply state one rule: "the FATHER of a MOTHER or FATHER of an individual, 
is the GRANDFATHER of that individual". With this rule and the already existing PARENT-table we 
could generate the GRANDFATHERs of individuals from the PARENT-table. 

INTEGRITY CONSTRAINTS 

Integrity constraints do not generate facts but check if the database is consistent. Under no circumstances 
do we want the database to give erroneous or contradictory information. Database transactions may 
affect the integrity of the database, as will be shown by the following example. In the PARENT-table 
we see that JANE is the MOTHER of ALEX. The age of JANE is unknown. Suppose the age of JANE 
is added to the database. If we want to insert "8 years" for her age, then the conventional systems would 
allow that without objection. However, there is some inconsistency with respect to our knowledge of 
the universe of discourse. JANE is mother and may never be 8 years old. So, the addition of a certain 
age can lead for several reasons to a database which does not agree with our knowledge of the universe 
of discourse. The next scheme will show several of these reasons. 

I The inserted age of Jane: II Reason why we reject this age: 

24 years The age difference between her 
and her son is 9 years. 

80 years Her son was born when she was 
65 years old. 

146 years Human beings will never be this 
old. 

Integrity constraints which prohibit undesirable situations like the ones above are: 

"The age of a mother is at least 14 years", 
"Women don't have babies after their 50th birthday", 
"The difference between the age of a parent and his/her child is at least 14 years", 
"The maximum age of a human being is 120 years". 

DEDUCTIVE DATABASES 

I 

As we stated earlier, deductive databases are an extension of conventional databases, because besides 
facts also rules are stored. Some problems have to be solved, because conventional RDBMSs have no 
facilities to handle rules. However, the logic programming language PROLOG does have this capacity. 
An interface between PROLOG and a database query language enables us to combine rules with a RDBMS. 
Now one should search for efficient methods in order to be able to use these rules within RDBMSs. 

3 



INTEGRITY CHECKING IN DEDUCTIVE DATABASES; AN EXPOSITION 

LOG I C 

r-----------------------------,-----------------------------1 
LOGIC : RELATIONAL i 

PROGRAMMING: DATABASES I 
I I 
I I I 

~ 
I .r THEORY I THEORY 

LOGIC I 
PROGRAMMING I DATABASES I 

I I 
I I 

ImJ.l~m.nIIlIIOn 
I 

Imp I. m • J till t Ion 
I I 

I I I 

~ ~t 
I 

,.~\/~ ... 
I 

I I I I .~/ I 
I I 

prolog/sql I 
PROLOG RDBMS I 

I interface I 

D E Due T I v E--J-

I 
I 

DATABASES I 

Our coupling will be achieved by choosing for the following strategy: 
I) Instead of extending a logic programming system with database management facilities, we 

want to extend an (existing) relational database management system with logic programming 
facilities. A lot of time and money has already been invested in developing advanced, efficient 
and safe relational database management systems. It is not feasible and above all not necessary 
to do this work all over again. 

2) We start from the most current implementations, which result from the theory oflogic programming 
and the theory of databases when we are implementing new concepts. We choose PROLOG 
to be our logic programming language and SQL to be our query language. SQL is the most 
current query language used in relational systems. 

To describe deductive databases the theory of logic programming is coupled to the database theory. 
The scheme above shows that logic plays a dominant role in this. Logic is used not only as the basis 
for the theory of logic programming, but also to describe databases formally. The coupling between 
the theory oflogic programming and the database theory will be brought about through logic. Important 
work in this area has been performed by Gallaire, Minker and Nicolas. ([GAL 78], [GAL84], [MIN88], 
[MKR88]). 
They conceive a database as a first order theory from which the answers to the queries and the integrity 
constraints have to be deduced by means of an appropriate proof procedure. This theory consists of 
a logical translation of facts and rules which are stored in the database. 
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INTEGRITY ENFORCEMENT 

With large database systems it is not feasible for the user of the system to check all their integrity constraints. 
That is why we try to lay down this responsibility with the system. 
To handle integrity constraints efficiently, we assume that the database obeys the integrity constraints 
before a transaction is carried out. Notice that this is a simplification. After a transaction the database 
will then be put to the test of the integrity constraints. If they are not fulfilled, then an analysis should 
be given of which facts and/or rules from the database are responsible for violating them. 
The "simplification theorems for checking the integrity" occurring in the literature take the line mentioned 
above. These theorems give conditions by which we can conclude whether or not a database is consistent 
with the integrity constraints after a transaction. Lloyd, Sonenberg and Topor ([LL087]), Lloyd and 
Topor ([LL086], [LL085]) formulate and prove these theorems for deductive databases; they are a 
generalization of comparable simplification theorems for relational databases which were proved by 
Nicolas ([NIC82]). 

There are serious problems of fioding efficient ways to check the integrity conditions in deductive databases. 
Because rules generate facts, a transaction may cause a considerable change in the state of the database 
and therefore may influence the integrity a great deal. It will be clear that one must search for efficient 
methods to decide which actions have to be taken in order to maintain the integrity. 
In this connection, useful articles are those of Decker ([DEC86J) and Sadri and Kowalski ([SAD88]), 
who give sound and complete proof procedures to check the integrity of deductive databases. These 
procedures are extensions of resolution, which is used by PROLOG, in order to be able to reason not 
only about facts but also about rules. 

Lloyd, Sonenberg, Topor, Nicolas, Decker, Sadri and Kowalski basically follow several principles. If 
a transaction has caused a violation of the integrity conditions, then the system will look for a possibility 
to cancel one or more deletions, changes and insertions. If this is not possible, the whole transaction 
will be cancelled. Only new facts are to be blamed for violating the integrity constraints. This means 
that in order to check the consistency of the database with respect to the integrity constraints we don't 
have to consider the whole database and its integrity constraints, but only the facts occurring in the 
transaction and the related integrity rules. 

Extensions of the considerations mentioned above are thinkable. For example 

how can we allow rules in transactions; In their integrity proof Sadri and Kowalski ([SAD88]) 
also take rules into account. For instance, we may want to add the rule "when x is PARENT 
of y and y is PARENT of z, then x is GRANDPARENT of z" to the PARENT-table. 
how can we involve facts, which were present in the database before the transaction, in restoring 
the integrity? It may be possible that these facts are not correct, and therefore they should 
playa role in restoring the integrity. Notice that this doesn't mean that the database before 
a transaction is inconsistent with its specified integrity constraints. For example, the previously 
given PARENT-table is consistent with the specified integrity constraints, even if 15 wrongly 
has been inserted as the age of ALEX. Suppose we would like to insert JANET with ALEX 
as her FATHER. Then there will be an inconsistency with the integrity constraint which says 
that a parent must be at least 16 years old. The cause of the inconsistency is not the new appearence 
of JANET, but the already existing occurrence of the age of ALEX in the PARENT-table. 
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what happens if we add new integrity constraints to a transaction? Until now we assumed 
me database to satisfy integrity constraints which were previously specified. Integrity constraints 
played a rather static role. 

§1 INTEGRITY CONSTRAINTS 

Integrity constraints ensure that the data in the database always make sense. 
We distinguish several kinds of integrity constraints such as 

Column and Domain constraints, 
Entity and Referential integrity, 
User-defined integrity constraints. 

For a better comprehension of these different and sometimes interrelated conceptions we give a short 
description of each sort of constraint. For more information about these and other relational concepts 
we refer to [BR089j, [COD90j, [DAT90j, [MAI83j, [ULL88j. 

1-1 COLUMN & DOMAIN CONSTRAINTS 

A domain in relational terms is the set of all unique values permined to appear in one or more specified 
columns. 
To start with one can specify a simple property, common to all values of a certain basic data type. For 
instance, the values of the column "Day_otweek" consist of at most eleven characters, and the values 
of the column " Account_number" is an integer number from 10000 to 99999. This is what we call a 
column constraint. Further limitation of these values is specified in the domain definition. We call this 
limitation of values the domain constraint. Suppose in our "Day_oCweek" column only the following 
values can occur: 

Monday, 
Tuesday, 

Wednesday, 
Thursday, 

Friday, 
Saturday, 
Sunday. 

We can give this list a name, say "Day_names". Then "Day_names" is the domain from which "Day 
oC week" can pick the values. 
The domain concept plays a significant role in the relational model for the following reasons. 
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A RDBMS contains an area in which all information about a column is stored. In such a column 
declaration area several items occur. A domain specification is one of these items. Instead 
of giving the whole domain specification in each column declaration area, a reference to this 
specification, which is declared in another area of the management system, the domain declaration 
area, is given. This means a reduction of redundancy, which exists if the same domain specification 
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should be declared for several columns. For instance, instead of declaring a list of all days 
of a week in the column declaration area every time a column contains values of this list, 
we state in this area that a column contains values of type "Day_names". In the domain declaration 
area we specify which values correspond with the type "Day-names". 
For each operation (e.g. join) acting on two tables a check must be made to see if the operation 
has any meaning. Consider, for instance, the join of two columns A and B of which the value 
is an integer of eight digits, but A contains account numbers and B fiscal numbers. In this 
case jOining these two columns should not be allowed. To solve this problem we can specify 
two different domains, one of account numbers and one of fiscal numbers. Before applying 
an operation it must be checked if the related columns contain the same type of information. 
In other words, if they pick values of a common domain. This check can take place at compile 
time. 
As the example of account numbers and fiscal numbers shows, the domain concept plays a 
major role in distinguishing the semantics of the facts stored in the database and therefore 
allows all sorts of integrity maintenance. 

A domain is used as a kind of derived data type. That is why it is also called an extended data type. 
(See [COD90]). 

1.2 ENTITY & REFERENTIAL INTEGRITY 

Before explaining the concepts of entity and referential integrity it is necessary to define some other 
concepts. We do this by the following example, illustrated by table I. Suppose, we have a table with 
the results of exams of all students of a high school in all subjects they have selected at the beginning 
of the school-year. If a student has not selected a certain subject, he will never do the corresponding 
exam. So, in the table related columns may contain values marked as inapplicable ("_"). If the student 
has not yet done an exam which he or she must do in the near future then the corresponding value is 
applicable but marked as unknown ("7"). In all other cases the values are applicable and known. 

I STUDENT_NAME I EN I FR I GR I MA I CH I PH I EC I HI I 
Nick James 7 7 ? 5 ? 6 

Jane Dickson 8 9 8 ? 6 8 

Peter McMann 6 5 7 7 8 6 - -

Table I. 

An inapplicable value in a column means that a regular value in this column can never occur. On the 
other hand, applicable values could be unknown at a certain time but are supposed to have a value. 

7 
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The names of the columns of a table are called attributes. The values of a row in a table are often called 
a tuple of the table. We represent tuples as follows. Let {A"A2, •.• ,AnJ be the collection of attributes 
of a table. A tuple t with values t"t" ... ,t" for the attributes A"A" ... ,An, respectively is denoted as: 

t = < A,;t, , A2;t, , ... , An;t" > 

or, if it is clear from the context which attributes belong to which values: 

t = < t"t, , ... , t" >. 

Let t be a tuple and {B"B2, ••• ,Bm J >;; {A"A2, ••• ,A.J. By tl{B"B2, ••• ,Bm J we mean the restriction oft to 
the attributes B"B2, ••• ,Bm: 

or shorter, when the context makes it clear: 

One or more attributes of a table can form a primary key or a foreign key. A ill is a collection of attributes 
ofa table of which the values provide for a unique reference to the tuples of the table. So, {B"B2, ... ,Bm J 
is a key of a table T, if for each pair of tuples s and t for which sl{B"B2, .•• ,Bm J = tl{B"B2, ... ,Bm J it 
holds that s = t. 
Note that trivially all attributes of a table form a key. 

A primary key'l is a key, for which elimination of an attribute means that it is no longer a key. So, 
the number of attributes of a primary key must be minimal. Consider, for instance, table II. The values 
of the attributes STUDENT_NR and NAME provide for a unique identification of values in the row, 
for if we know someone's name and student_nr we can say which tuple we deal with. 
So, {STUDENT_NR,NAMEJ is a key for table II. However, {STUDENT_NR,NAMEJ is not a primary 
key, because (STUDENT_NRJ is also a key, a primary key. 

I STUDENT_NR I NAME I MENTOR I CLASS I 
790123 Nick James Miss. F. White 6B 

801234 Jane Dickson D. P. Allison 4C 

781533 Nick James Miss. F. White 6B 

781635 Peter McMann Miss. F. White 6B 

Table II. 

2) In the literature, the concepts "primary key" and "foreign key" do not have well-established definitions. (See discussions 
in [COD90] en [DAT90]). We lOok !he definitions of Date ([DAT90]). 
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Note that in cases of two objects, also called entities, with the same values, the primary key provides 
for an unique identification of the objects. In our example, we have two different people with the same 
name "Nick James" in class 6B. They are distinguished by the values of the primary key consisting 
of the attribute "STUDENT_NR". 

A foreign ket) is the collection of attributes of a primary key used in another table in order to provide 
for a reference to entities identified by the primary key. A foreign key value provides for an unique 
link to the values stored in the table of the related primary key by the corresponding primary key value. 
So, for instance, the first column of table III is a foreign key for this table, connected to the primary 
key of table II. 

I STUDENT_NR I EN I FR I GR I MA I CH I PH I EC I HI I 
790123 7 ? ? 5 ? 6 -
781344 8 9 8 ? 6 8 - -
781533 6 5 ? ? 8 6 - -

Table III. 

Note that Table III without table II has no meaning. For, students, like Nick James of class 6B with 
mentor Miss. F. White, are doing exams and not numbers, like 781533. So, foreign keys are used for 
a link to entities to which the values in the rest of the table refer. 

Now, the concepts of entity and referential integrity for a database can be explained. When no column 
of a primary key contains a missing (i.e. inapplicable or unknown) value and no column of an foreign 
key an inapplicable value, then the database is said to fulfill the entity integritl) 
So, primary key values must always be known and foreign key values must be applicable but could 
be unknown. Informally, entities must be distinguishable from each other by the primary key value, 
and a foreign table (i.e. a table with a foreign key) must always contain references to entities, though 
they can be unknown. 

Interrelated with entity integrity is the concept of referential integrity. One speaks of referential integritl) 
if for every known foreign key value there exists an identical primary key value from the same domain. 
So, spoken informally a reference must be possible. 

Tables IV & V illustrate the concepts of entity and referential integrity. The database consisting of these 
two tables satisfies the entity integrity property, because every primary key value (i.e. value of student 
nr) is known in table IV and all foreign key values in table V are applicable. However, both tables do 
not satisfy the referential integrity property, because 781344 in table V refers to no primary key value 
in table IV. 

3) In the literature, the concepts "entity integrity" and "referential intcgrity" do not have well-established definitions. (See 
discussions in [COD90] en [DAT90]). We took the definitions of these concepts of Date ([DAT90]). 

9 
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I STUDENT_NR I NAME I MENTOR I CLASS I 
790123 Nick James Miss. F. White 6B 

801234 Jane Dickson D. P. Allison 4C 

781533 Nick James Miss. F. White 6B 

781635 Peter McMann ? 5C 

Table IV. 

I STUDENT_NR I EN I FR I GR I MA I CH I PH I EC I HI I 
790123 7 ? ? 5 ? 6 - -
781344 8 9 8 ? 6 8 -

? 6 5 ? ? 8 6 - -

Table V. 

1.3 USER-DEFINED INTEGRITY CONSTRAINTS 

This type of integrity constraint is a central issue in this paper. In this case, a user can specify constraints 
on the data stored in the database. We have given some examples in section O. Although our main concern 
in this paper is how the database management system has to preserve consistency with respect to these 
constraints, the responsibilities of the system should go far beyond that. For instance, the user must 
also have the possibility to specify the actions to be taken if some integrity constraint is violated. For 
example, if a supply shrinks and a certain level has been reached, then an order must go out. 

The intention is that the integrity maintenance mentioned above is the responsibility of the database 
management system. 

§2 AN INTEGRITY CHECKING METHOD FOR DATABASES 

From a logical point of view, a relational or deductive database can be looked at in two different ways. 
(See [GAL84]). 
First we have the model theoretic view. Here, the facts of the relational database are regarded at as an 
interpretation (or model) of the set of logical fonnulas corresponding to the integrity constraints. 
The logical fonnulas are evaluated under the intended interpretation. If they are true, the database can 
be seen as a model for the fonnulas (i.e. an interpretation in which all fonnulas are satisfied). A database 
is called consistent with respect to its specified integrity constraints iff it fonns a model for the logical 
fonnulas corresponding to the integrity constraints. 

10 
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Second we have the proof theoretic view in which the database is a fitst order theory from which integrity 
constraints (and queries also) may be deducible. If this is the case we call the relational database consistent 
with respect to the specified integrity constraints. Now. suppose a database transaction. which can be 
any collection of updates. additions and/or deletions of facts. takes place. Then the consistent database 
can change into an inconsistent one. Proof theoretically. the integrity of the database is preserved if 
all the old integrity constraints are still deducible from the new database. 

In this article. we describe the concepts from the model theoretic view. Then. the constraints are evaluated 
under the intended interpretation. which follows from all the facts in the database. A naive evaluation 
of the constraints will involve all these facts. Not only is this rather cumbetsome but also unnecessary 
provided that we have a consistent database before the transaction. It is obvious that inserting a fact 
only affects those integrity constraints that say something about this fact. When we insert a fact for 
which no constraint is applicable the database will also be consistent after this transaction. because after 
all the database was supposed to be consistent with its integrity constraints before the transaction. Evaluation 
of only the relevant integrity constraints turns out to be sufficient. 

Deductive databases contain rules. By the generating capabilities of rules an inserted fact can lead to 
a great amount of induced updates. These induced updates can in their turn also affect the integrity 
of the database. So. in deductive databases integrity maintenance is more complicated than in relational 
databases. 

2.1 AN INFORMAL INTRODUCTION 

Integrity maintenance methods are intended to guarantee that all integrity constraints remain satisfied 
after an update, provided they were satisfied before. 
A method proposed by Bry, Decker and Manthey [BDM88] is described here. Their approach is different 
from others, because they compute relevant constraint instances which must be checked in order to 
prove the database to be consistent without accessing the fact base. This means that optimalization is 
possible before evaluating these constraint instances. 

As an introduction we will give an example for the relational case. 
Consider a company with several departments. Every department has one manager, which gives lead 
to one or more employees. Employees can be employed in several departments. We state the following 
integrity constraint: 

an employee who may work at several departments can temporarily be replaced by another 
person only if there is a manager of both employees who did not mark this other person 
as busy. 

Suppose employee Patrick has to be replaced because he is ill. Suppose a database is given in which 
we want to insert that Patrick will be replaced by John. It is not necessary to check again all integrity 
constraints together with all facts in the database. But it is sufficient to restrict outselves to the constraints 
that are relevant to this update. The following situations will be distinguished. 

11 
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Suppose it is already known that Patrick is replaced by John. lbis means that before the transaction 
this fact was already present in the database. So, the database does not change and neither 
does the integrity, because the database is supposed to be consistent before any transaction. 
So, in this situation no integrity check has to be made. Even stronger, facts already known 
to a database may not be inserted for a second time for they are no updates of the database. 
With large databases one has no idea of what the stored facts are, so a check must be made 
to skip "redundant" updates. 
Suppose this fact happens to be unknown to the database before the transaction; this means 
that it is not present in the database. Consequently, the fact is supposed to be false. (This assumption 
is called the closed world assumption). 
We can limit the amount of integrity checks in several ways. 
In the first place, we limit the collection of constraints to only relevant constraints. The inserted 
fact can influence the integrity by constraints in which something is said about replacing some 
person X by some person Y. Notice that it does affect the integrity by the constraint mentioned 
above. 
In the second place, given a relevant constraint, we can limit the collection of people which 
are represented in the database. It is not neccessary to check these constraints for all people. 
For instance, with our constraint it is only necessary to look for managers of Patrick and John 
who did not mark the substitute as busy, instead of checking this constraint for all people 
who have a manager. 
By these restrictions we derive a collection of so called simplified instances of the integrity 
constraints which have to be checked in order to prove the consistency of the new database. 

In the case of an update in a deductive database, rules can cause a considerable amount of induced 
updates. 
However, in this case one can construct certain compound constraints, to be called update constraints. 
In order to prove that the new database is consistent with the specified integrity constraints, the only 
thing to do is to prove that the update constraints are consistent with the fact base. In fact the deductive 
case can be reduced to the relational case. 

In the next section we formalize the concepts mentioned above. 

2.2 FORMAL DESCRIPTION 

In a deductive database we distinguish facts, rules and integrity constraints. These facts, rules and constraints 
will now be expressed in a logical language, the first-order predicate language. The symbols used in 
this language are (1) parentheses, (2) variables and constants, (3) predicate symbolS, (4) logical connectives 
like· (not), /\ (and), v (or), ~ (implication), and (5) quantifiers 'if (for all) and 3 (there exists). Throughout 
the paper we use uppercase letters to represent variables and lowercase letters or words to represent 
constants and predicate names. In our databases tef!I1s are supposed to be function-free, i.e. a term is 
a constant or a variable. We call p(t"t" ... ,[,,) an atomic formula, or shortly an atom, if p is a predicate 
symbol of arity n and t"t" ... ,[" are terms. An atomic'formula or its negation is called a literal. We also 
call atoms and negated atoms positive and negative literals respectively. The expressions allowed in 
this language, the well-formed formulas (wffs), are defined recursively as follows. 

i) Any literal is a wff. 

12 
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If w, and W2 are wffs, then 
ii) (~w,), (w, v w,), (w, 1\ w2) and (w, ~ Vi) are wffs, and 

iii) V'X[w,(X)] and 3X[w,(X)] are wffs if X is free in w, and W2 respectively. 

( In V'X[w,(X)] (resp. 3X[w,(X)]) we call w,(X) (resp. w2(X)) the scope of V'X (resp. 3X). 
A variable X is bound by V'X (resp. 3X) if it occurs in the scope of V'X (resp. 3X). A variable 
X in an expression is caIled bound if it is bound by V'X (resp. 3X) or its occurrence is in 

V'X (resp. 3X). A variable is caIled m if it is not bound. ) 
iv) The only wffs are those given by i), ii) and iii). 

A fonnula is called closed, if it contains no free variables. Otherwise, it is called open. A fonnula in 
which no variables occur is caIled a ground fonnula. Facts, rules and constraints are defined as follows. 

facts: 

rules: 

Constraints: 

For instance, 

are ground atoms. 

are clausal fonn expressions B ~ ..y.A21\ ... I\An' where B is a positive literal and 
A"A2 , ••• ,An are literals, positive or negative. 
B and A,I\A,I\ ... I\An are called the head and the l2!21:i., respectively, of the rule 
B ~ ..y.A21\ ••• I\An. 
Moreover, a variable which occurs in B or in a negative literal of the body of the 
rule must also occur in a positive literal of the body of the rule. In other words, the 
rules are range-restricted. Suppose a variable in a negative literal A' of a rule R does 
not occur in a positive literal of the body of R. The instances of the head of the rule 
will depend of the database domain as a whole. Application of such rules would require 
a complete domain search, which is in most cases extremely inefficient. 

are closed first -order fonnulas which are also function-free. 
Moreover, we consider only a subclass of these fonnulas, namely the restricted quantified 
fonnulas. These fonnulas have one of the following fonns: 

I) true or false, 
2) 3X, ... 3Xn [A,I\ ... I\AmI\Q], 
3) V'X, ... V'Xn [( ~A,)v ... v( ~Am)vQ] 

or, equivalently, V'X, ... V'Xn [A,I\ ... I\Am~Ql, 
where m,~O, each Ai is an atom, i=I,2, ... ,m, each variable Xi occurs 
in one or more Aj ,j=I,2, ... ,m, and Q is an expression of the fonn descibed 
in 1),2) or 3) in which variables X" ... ,Xn are free. 

3X3Y3Z [p(X) 1\ r(X,Z) 1\ r(Y,X) 1\ (V'V'tW [~(V)v""XJ(V, W)]) 1 
is a constraint and 

V'XV'Y [~p(X,X)v""XJ(Y,Y,X)v (3 Z [~r(Z)])l 
is not. 
Constraints are supposed to be restricted quantified. Restricted quantified fonnulas are domain iodependent, 
i.e. the truth value of such a fonnula does not depend on any domain element other than those occurring 
in the relations A,I\ ... I\A,. that are explicitly mentioned in the fonnula. 

13 
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Throughout this paper we assume that updates are represented by literals. By U we represent an update 
to a database D. U is called an insertion (resp. deletion) if it is a positive (resp. negative) literal. Let 
U(D) denote the updated database. 

DEFINITION 1: 
An atom A is explicit in a database D if A appears in the fact base of the database. An atom 
A is implicit in D if it is not explicit but it is derivable from the rules and the facts of D. 

If U is an atom explicit in D, then the updated database U(D) is identical with D. 
If U is an atom not explicit in D, then U(D) is D augmented with U to the fact base. 

If U is a negative literal ~A and A is explicit in D, then the updated database U(D) is D without A 
in the fact base. 
If U is a negative literal ,A and A is not explicit in D, then U(D) is identical with D. 

DEFINITION 2: 
An update U to a consistent database D is permitted if U(D) is also consistent. 

DEFINITION 3: 
A constraint C is relevant to an update U iff the complement of U is unifiable with a literal in 
C. (Resolution is the supposed inference mechanism). 

To keep integrity constraint checking methods efficient, we want the constraints to be domain independent, 
in order to avoid validation of formulas for which the whole database domain is needed. A formula 
like for example 3X ,books(X,dahl), which represents a query such as "Give all books Dahl did not 
write", would require consideration of all domain elements in the database. So, by requiring the constraints 
to be restricted quantified, we do not have to consider all the domain elements. For example, consider 
the constraint 

C: 3X [P(X) 1\ ~(X)l, 

and a database D represented by 

D := {p(a),p(b),q(b),q(c),q(d),r(a),r(e)}. 

Here, P(X) limits the values which X can take from its domain elements. In this example, the only domain 
elements, which have to be considered are a and b, in order to validate the constraint. Further 'q(X) 
is fully instantiated before its validation. 
Now, consider a consistent database D with respect to the constraint C. 

14 
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Case I] An update U=p(a) does not have an influence upon C. because there was already a ground 
instance of p. say p(b). in the database D by which C was satisfied. So. the update does not 
change the ground instance of C. p(b) /\ -.q(b). because p is positive in C. 

Case 2] An update U=q(a) may have an influence upon C. It is thinkable that "a" was the only constant 
satisfying the constraint C in D. So. pea) /\ -.q(a) is satisfied in D. Now. by inserting q(a) 
as a fact the only satisfying instance of C is lost in U(D). 

Case 3] A deletion U=~p(a) may also have influence upon C. Suppose we have a database before the 
deletion where "a" was the only constant satisfying C. After the deletion C is violated. because 
the only satisfying instance of C is now lost in U(D). 

Case 4] A deletion U=-.q(a) does not have an influence upon C. because q is negative in C. For. there 
was already a ground instance of p in the database D by which C was satisfied. Suppose this 
instance is X=b. We can distinguish two cases. 
Case one in which a;tb. Nothing happens to pCb) /\ ~q(b) by the transaction and so Cremains 
satisfied. 
Case two in which a=b. Apparently pea) /\ -.q(a) was satisfied before the transaction. The deletion 
U does not change that. 

In orderto determine whether an updated database is.consistent all integrity constraints could be checked. 
But this is in most cases an endless task. It turns out that we can restrict ourselves to simplified instances 
of only those constraints that are relevant to an update (see Proposition I). So. the amount of constraints 
to be checked can often be reduced considerably. 

DEFINITION 4: 
Let C=C(L,.L, ..... L,,) be an integrity constraint relevant to update U. where L,.L, ..... Ln are all 
the literals (positive or negative) occurring in C. So. there is a literal Lj which is unifiable with 
the complement of U. Let (J be a most general unifier of Lj and ~U. To obtain a simplified instance 
Ct of C we partially instantiate C by a restriction t of (J to only those universally quantified variables 
which are not governed by an existentially quantified variable in C. We simplify Ct by removing 
all complements ofU occurring in Ct and the (universal) quantifiers grounded by t. The remaining 
formula. Ct. is called the simplified instance of C with respect to U and Lj . t is called the defining 
substitution of the simplified instance. 

Take the employee example in the previous subsection to illustrate Definition 4. The integrity constraint 
can be described as follows: 

-an employee X. who may work at several departments. can temporarily be replaced by another 
person Y only if there is a manager Z of X and of Y. who did not mark Y as busy. 

and in a more formal format: 

C: VXVY [~rpl(X.Y) v 3Z [mngr(X.Z) /\ mngr(Y.Z) /\ ~st(Y.Z.busy)]] 

Note that C is restricted quantified. A more readible and equivalent form of C is 

C· : VXVY [rpl(X.Y) -7 3Z [mngr(X.Z) /\ mngr(Y.Z) /\ ~st(Y.Z.busy)]]. 
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Suppose we have the update: 

U : -.mngr(john,george). 

C is relevant to U. A simplified instance of C with respect to U is obtained as follows: 
First note that U is unifiable with the negation of two literals of C, Lt: mngr(X,Z) and 1-,: mngr(Y,Z). 
This implies that there are two simplified instances of the same constraint with respect to the one update 
U. Take the first one, Lt. The most general unifier ohU and Lt is cr={ X/john,Z/george }. The universally 
quantified variables in C that are not govemed by an existentially quantified variable are X and Y. Let 
t be the restriction of cr to {X,Y}; so, t={X/john}. Then the first simplified instance of C associated 
with the update U is Ct: 

Ct: "IY ['rpIUohn,Y) v 3Z [mngrUohn,Z) /\ mngr(Y,Z) /\ ,st(Y,Z,busy)}]. 

Intuitively, for the constraint C the update 'mngrUohn,george) means that now it has to be checked 
that for every person Y who replaces john there must be another manager than george who did not 
mark Y busy. 

The other simplified instance Cz, when taking mngr(Y,Z) as the unifiable literal, is: 

Cz: "IX ['rpl(Xjohn) v 3Z [mngr(X,Z) A mngrUohn,Z) /\ ,stUohn,Z,busy)}]. 

In this case john replaces someone. 
Note: Although transactions on a database are supposed to fail if they cause an inconsistent database, 
this is not always desirable. In some cases we may prefer to make the database consistent again. In 
our example it is a fact that george is no longer the manager of john. We may want to enforce the update 
when C is violated. We can restore the integrity by: 

searching for each person x, who has to replace john, another manager z of john who gives 
permission to x to replace john. This implicates an addition of one or more facts to the database, 
namely ,st(x,z,busy)-facts. 
deletion of all facts in which john is replaced by someone and george was the only manager 
who had the right and actually gave his permission to this replacement. So, john will not be 
replaced by these people. 
by even deleting the whole integrity constraint, if for some reason that rule in the company 
is canceled. 

Before getting to proposition 1 we give a LEMMA first, which can be found in [NIC79]. 

LEMMA: 
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Let F be a formula which satisfies the range restricted property. Given any interpretation I of 
F and any interpretation l' obtained from I only by adding a new element to its set of elements 
then: 

F is true in I iff F is true in ,'. 
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This lEMMA means that if we have, for instance, a database consisting of the facts (R( a),R(b )'p( a)'p(b )'p( c) } 
and one specified constraint C: \;tX[,R(X)vP(X»), an element like for instance d has no influence on 
the truth of C, because C is range resticted and d is no element of the extensions of relations R and 
P. Here, the set of elements in the interpretation corresponding to D is (a,b,c). 

PROPOSITION 1: 
Let D be a relational database. Let U be an update. 
Suppose all constraints are satisfied in D. 
Then they are satisfied in U(D) iff every simplified instance of a constraint relevant to U is satisfied 
in U(D). 

Before we prove this proposition, we illustrate it by some examples. 

EXAMPLE 
Let U:=p(b) be an update to a relational database D. 
Suppose we have one existentially quantified constraint 

C: 3X [~(X) /\ \;tZ[q(X,Z)]] 

which is satisfied in D. C is relevant to U. Because X is an existentially quantified variable in 
C the defming substitution of the simplified instance is t= ( ). So, the simplified instance of C 
is C itself. Generally, this is the case for all existentially quantified constraints. 

EXAMPLE 
Let U:=p(b) be an update to a relational database D. 
Suppose we have one constraint 

C: \;tX\;tY ['p(X) v ,r(Y) v 3Z3W [q(X,Z) /\ q(W,Y)ll 

which is satisfied in some database D. C is relevant to U. Because of the existence of just one 
negated literal with predicate symbol p of C, we get only one simplified instance, Cs, with respect 
to U: 

Cs: \;tY [,r(Y) v 3Z3W [q(b,Z) /\ q(W,Y)]l 

A] Let D consist of the following facts 

p(a) 
p(d) 
p(e) 

r(b) q(a,b) 
q(a,c) 

q(c,a) q(d,b) q(e,d) q(f,b) q(g,b) 

then constraint C is satisfied in D. The updated database U(D):=(p(b)} u D violates C and Cs 
respectively, because there is no fact q(b,J in the updated database. (_ stands for some element 
in the domain of the database). 

17 
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B I Let D consist of the following facts 

pea) 
p(d) 
pee) 

reb) q(a.b) 
q(a.c) 

q(b.a) q(c.a) 
q(b.c) 
q(b.d) 
q(b.f) 
q(b.g) 

q(d.b) q(e.d) q(f.b) q(g.b) 

then constraint C is satisfied. The updated datadase U(D):=(p(b)} u D satisfies C and Cs respectively. 
because now there are facts. q(b.J. in the database. l stands for some element of the database). 

We can say that the simplified instance Cs gives an indication of the kind of facts which are important 
for proving the constraint to be satisfied in U(D). 

Proof (proposition 1): 
In this proof we suppose that the update is an insertion. The case in which the update is a deletion is 
treated similarly. 
~: Suppose all constraints are satisfied in D and U(D). So. D and U(D) can be seen as interpretations 

in which the constraints are true. (Therefore. we speak: of constraints which are true in D and 
U(D) respectively). Now. let C be a constraint which is relevant to U. A simplified instance of 
C can be represented by Ct. where t is some substitution of variables wltich are universally quantified 
and not governed by any existentially quantified one. Since C is true in U(D). clearly Ct is true 
in U(D) too. Consequently. every simplified instance of a constraint relevant to U is satisfied 
in U(D). 

=: Suppose all constraints are satisfied in D and suppose every simplified instance Cs of a constraint 
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C relevant to U is satisfied in U(D). We consider two cases: 
Case 1: C is not relevant to u. 
Then the update does not influence C. So. C is satisfied in U(D). hecause U does not playa role 
in satisfying C and C is satisfied in D. 
Case 2: C is relevant to U. 
C is satisfied in D means that the facts of D imply an interpretation in which C is true. In case C=Cs 
for some simplified instance Cs• when the defining substitution is empty. there is nothing left to 
be proved. Note that this is the case if C is an existentially quantified constraint. i.e. a formula of 
type 2) in the formal definition of constraints. So. in the case of e~cs for all such Cs which we 
consider now. we can assume that C is universally quantified. In order to prove that U(D) is a "model" 
for C. it suffices now to prove that Ct is satisfied in U(D) for every substitution t of the universally 
quantified variables which are not governed by an existentially quantified one. 
Let 1;(D) (resp. 1;(U(D») the collection of elements of D (resp. U(D)). Let 1;(U) represent the set 
of all elements of U. 
So.let t=(X/t,.X,/r. •...• X./t"J, where t,.r. •...• t" E 1;(U(D» and where X,.X2 •...• Xn are all the universally 
quantified variables which are not governed by an existentially quantified one in C. There are two 
possibilities: 
The first one is that the update only contains elements already present in D. So.1;(U(D»=1;(D). The 
second one is that the update U introduces one ore more new elements to the database. So. 1;(U(D)~(D);t0. 
In the first situation we distinguish two cases: 
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Case A: 't corresponds to an instantiation of some Cs. 
Because Cs is satisfied in U(D). Ct is satisfied in U(D). 

Case B: 't does not correspond to an instantiation of some Cs. 
Because for each i=I.2 .... ,n, ~ E S(U(D)) and S(U(D)l=S(D). Ct is satisfied in U(D). For the satisfiability 
of C't only depends on facts other than the update. which were present in D and still are present 
in the updated database. 

In the second situation we distinguish three cases: 
Case A: 't corresponds to an instantiation of some Cs. 

Because Cs is satisfied in U(D). C't is satisfied in U(D). 
Case B: 't does not correspond to an instantiation of some Cs and t}ot, ..... t. E S(D). 

This case corresponds to case B in the first 
situation BemuS' of ore or more new elements 
in the database. imported by the update. we 
now need also the lemma to prove the 
satisfiability of C't in U (D). 

Case C: 't does not correspond to an instantiation 
of some Cs and tiE S(U(D ))-S(D) for some i. 

Let C: \iX, V)(, ... \iX.[ ,A,v,A,v ... ,A", vQ]. 
Now. there is a literal 'A;'t which contains UPDATE 
element ~ from the set S(U(D))-S(D). for 
some j E {l,2 •... .m} and which is not unifiable 
with the negation of U. For if it was unifiable. 
't would correspond to an instantiation of 
some Cs. Because Aj't is not unifiable with 
U and U(D) only consists of the facts in 
D and the update U. it can only be satisfied 
by facts in D. However. these facts do not 
contain the newly introduced element. So. 
Aj't is falsified in U(D). So. ,Aj't is satisfied 
in U(D) and therefore also C't is. BASE 

By this we proved that for every substitution of 
the universally quantified variables which are not 
governed by an existentially quantified one all 
constraints are satisfied in U(D). And so we have 
proved the proposition. 
The proposition above is illustrated by figure 2. 

WARNING: 

Figure 2: The relational case 

Bry, Decker and Manthey have written down proposition 1 in the following different form: 
All constraints are satisfied in U(D) iff they are satisfied in D and every simplified instance 
of a constraint relevant to U is satisfied in U(D). 

So, their proposition is not the same proposition as which has been proved by Nicolas [NIC79l. although 
they say it is. 
Their proposition even is not true. Suppose we have a database D with fact: 

19 



INTEGRITY CHECKING IN DEDUCTIVE DATABASES; AN EXPOSITION 

P(a"a3) 

and constraint: 

C: "IX [~P(a"X) v Q(<lz,X)] 

This database is not consistent, because constraint C is violated. 
Now by inserting Q(<lz,a3) we could create a new database which is consistent. So, all constraints are 
satisfied in U(D), but they are not in D. 

The approach in proposition I is extendible to deductive databases in two ways, a naive one and the 
better approach. First, we give a fonnal description of the naive approach. 

2.3 THE DEDUCTIVE CASE: A naive approach 

When we are dealing with rules, an update may induce several other implicit changes to the database. 
These induced updates must also satisfy the integrity constraints. The semantics of integrity constraints 
are defined according to a canonical interpretation, which consists of true atoms corresponding to the 
facts which are in the database or derivable from the database by its rules. A unique canonical interpretation 
can be detennined by resticting the rules to be stratified in the sense of [APT87]. 
Let us describe the concept of induced update more fonnally: 

DEFINITION 5: 
Let C ~ ¥A,I\".I\A" be a deductive rule R. Let U be an update and U(D) the updated database 
ofD. 
Let L be a positive (resp. ~L a negative) literal which is unifiable with Ai (resp. the complement 
of A,) in R, for some i. Let 't be the most general unifier of L and Ai' Let C'=(C't)O', where °' 
is a substitution by which 

(A ,1\ •• • I\Ai.,I\Ai+ ,1\ •• • 1\A,,)'t0' 
is true in U(D). C' evaluates to false in D (resp. ~C' evaluates to true in D). Because rules are 
range restricted and every variable of C therefore appears also in one or more A"A"".,A", C' 
is ground. C' (resp. ~C') is now called directly induced by Lover U(D). 
A literal is induced by Lover U(D) iff 
i) it is directly induced by Lover U(D), or 
ii) it is directly induced by a literal induced by Lover U(D). 
Now, every literal induced by update U over U(D) is called an update induced by U. 

Let us give an example, which is based on CASE 2 of EXAMPLE A. 

EXAMPLE C 
Suppose we have a deductive database D consisting of the facts in EXAMPLE B and with one (range 
restricted) rule 

R: q(Y,X) ~ q(X,Y) 1\ p(X) 1\ ~p(Y) 
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Note that all the facts which can be derived from R and the facts appear in the fact base of D. So, the 
fact base of D can be seen as an interpretation. 
Let V:=p(b) be an update. This update is unifiable with the literal p(X) ofR. Now 't={XIb} is the most 
general unifier of V and p(X). We instantiate the body of the rule by applying 't, which becomes: 

q(b,Y) A p(b) A 'p(Y) (*) 

We are searching for a substitution for which this is true in the updated database. Because the update 
is ground and the rule is range restricted we always find the instantiated unifiable literal (in this case 
p(b» to be equal to the update and therefore true in V(D). So, instead of (*) we can search for a substitution 
for which 

q(b,Y) A 'p(Y) 

evaluates to true in V(D). 
For instance, o=(Y/c} is such a substitution. In this case, we find q(b,c) and 'p(c) to be true in the 
interpretation corresponding to the updated database. The head of the rule q(Y,X) is instantiated by 
't and 0. The resulting fact, i.e. q(c,b), is called an (directly) induced update by p(b) only if such a fact 
was not already present in D which is obviously true. Note that 0, = (Y If) and O2= (Y /g) and respectively 
are substitutions for which the formula is true in V(D), but the resulting facts q(f,b) and q(g,b) respectively 
are no induced updates, because they were already present in D. 
Note that ~(b,a), and ~(b,d) are also directly induced updates, for the complement of p(b) is also 
unifiable with ~(Y) in Rand q(X,b) A p(X) is true in U(D) for 0= {Xla} and o'=(Xld} respectively 
and q(a,b), p(a) and q(d,b), p(d) respectively are present in V(D). 
So, the collection of directly induced updates is 

Vi = (q(c,b),'q(b,a),~(b,d)}. 

Note that this is also the collection of induced updates by V, because from Vi' the fact base and (p(b)} 
and rule R there are no other facts derivable. 

As another more practical example, suppose we have a database containing the deductive rule R: 

R: mngr(Y,Z) f- mngr(X,Z) A coll(X,Y), 

and the facts 

"mngr(john,carl)", "coll(john,george)" and "coll(john,frank)", 

which states that "a collegue Y of a pelSO!l X with manager Z has the same manager Z'. Let V = -mngr(john,carl) 
be an update. The update is unifiable with the complement of "mngr(X,Z)" in R. (Remember that with 
this update carl is not a manager of john anymore and so with rule R in the updated database V(D) 
all collegues of john no longer have carl as their manager also). Now, the most general unifier 't of 
these two literals is 't=(Xljohn,Z/carl}. The body of the rule without the unifiable literal is partially 
instantiated by 't to 

B: coll(john, V). 
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The corresponding instantiation of the head of R by 1: is 

H: mngr(Y,carl). 

For every substitution 0 for which B is true in the updated database we consider the corresponding 
instantiation of H. Then ol={Y/george} and 02={Y/frank} are two substitutions which make B true. 
The negation of the corresponding substitutions of H, ,H01 and ,H02 must evaluate to true in U(D). 
(or, intuitively, george and frank, collegues of john, do not have carl as their manager anymore). Now, 
these ground literals ", mngr(george,carl)" and ", mngr(frank,carl)" respectively, are called updates 
directly induced by U. 
Note that we only need to compute those induced updates to which some constraint is relevant. The 
other ones do not influence the integrity of the database U(D) when D is consistent. 

In deductive databases all instances of constraints relevant to an update induced by a given update must 
be checked in order to prove the consistency of the database: 

PROPOSITION 2: 
Suppose all constraints are satisfied in D. 
Then they are satisfied in U(D) iff 
every simplified instance of a constraint 

• relevant to U, or 
. relevant to an update induced by U 

is satisfied in U(D). 

Proof: The property follows from proposition I by reduction to the relational case. Consider the canonical 
interpretation of D as a relational database. A canonical interpretation consists of true atoms 
corresponding to the facts which are in the database or derivable from the database by its rules. 
A unique canonical interpretation can be detennined by resticting the rules to be stratified 
in the sense of [APT87]. Treat the induced updates as explicit updates to this database. 

To illustrate this proposition, consider the following example: 

EXAMPLE D 
Let U:=p(b) be an update to the deductive database D of EXAMPLE C. 
Let there be one specified constraint 

C: V'XV'Y ['p(X) v 'r(Y) v 3Z3W [q(X,Z) " q(W,Y)]) 

which is satisfied in D. C is relevant to U. (See EXAMPLE B). 
Induced updates are of the fonn ql,b) (resp. ~(b,J), which are derived from q(Y,b) (resp. ~(b,X» 
by a substitution ofY (resp. X) for which q(b,Y)" 'p(Y) (resp. q(X,b)" P(X» is true in the interpretation 
of U(D). According to EXAMPLE C, the collection of induced updates is 

Ui = {q(c,b),~(b,a),~(b,d)}. 
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Now, we must select all the induced updates from Ui which are relevant for C. From the update itself 
and the induced updates for which this is the case, -xj(b,a) and -q(b,d), five simplified instances are 
derived: 

Cs : ';fY [ ,r(Y) v 3Z3W [q(b,Z) /\ q(W,Y)lJ, 

CSt: ';fY [ ,r(Y) v 3Z3W [q(b,Z) /\ q(W,Y)lJ, 

CS2: 'IX [ 'p(X) v ,r(a) v 3Z3W [q(X,Z) /\ q(W,a)ll, 

. C S3: ';fY [ ,r(Y) v 3Z3W [q(b,Z) /\ q(W,Y)ll and 

CS4: 'IX [ ~(X) v ,r(d) v 3Z3W [q(X,Z) /\ q(W,d))). 

C s is derived from the update U, CSt and C S2 are derived from the induced update -q(b,a) and C S3 together 
with C S4 are derived from the induced update -q(b,d). (Note that CSt and C S3 are identical. The method 
following from proposition 3 in the next section protect us from such redundancies.) 
These simplified instances must be satisfied in U(D) in order to prove that C is satisfied in U(D). We 
can see that C S' CSl' C S2' C S3 and C S4 are all satisfied in U(D). 

Figure 3 visualizes proposition 2. The first step represented by the dotted arrows reproduces the determination 
of the induced updates by applying the update to the rules with the aid of the fact base. The second 
step represented by the continuous arrows reproduces: 

the determination of the simplified instances of the constraints relevant to at least one induced 
update, and 
the checking of the simplified instances 
of the constraints with the aid of the fact 
base. 

Following proposition 2 has certain disadvantages: 
all induced updates are computed even those for 
which no constraint is relevant. For example, in 
case of a rule R: 

R: coll(X,Y) ~ mngr(X,Z) /\ mngr(Y,Z), 

a constraint C: 

C: ';fX';fY [,st(X,Y,free) v 3Z [coll(X,Z)/\ 

state(Z,Y,busy)ll, 

(intuitively, if a person X is marked as free by 
manager Y, then there must be a collegue of X 
who is busy. So, not all employees of a manager 
are free. A department must be manned) 

INDUCED 
UPDATES ( UPDATE J! ! 
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Figure 3: the naive deductive approach 
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and a lot of mngr(.,george) facts in the database, this could lead to an enonnous overhead when a fact 
mngr(harold,george) is ioserted. Suppose that harold does not have any collegues according to the database. 
Then, for every mngr(,george)-fact there are two induced updates of this rule, because of the symmetry 
in the body of the rule. These induced updates do have one of the following fonns: 

- coll(harold,J, or 
- collCharold). 

However, C is not relevant to all these induced updates, because these induced updates are not unifiable 
with the negation of any literal in C. 

As one already saw in EXAMPLE D, generating all simplified instances before independently validating 
them could lead to redundancy. For the example above, the deletion of mngr(john,george) could lead 
because of rule R to several induced collUohn,)-deletions and therefore lead to the generation of several 
identical simplified instances of a constraint. To illustate this, suppose database D contains rule R and 
the following facts: 

collUohn,a) 
collUohn,b) 
collUohn,c) 
collUohn,d) 

mngr(a,george) 
mngr(b,george) 
mngr(c,george) 

mngrUohn,george ), 

in which a,b,c and d are names of certain people. By deleting the fact mngrUohn,george) the induced 
updates with respect to R are -.collUohn,a), ,collU0hn,b) and -.collU0hn,c). (The rule states that two 
people are collegues when they have a same manager. So, if john no longer has george as a manager, 
then the rule implies that people who still have george as a manager can no longer be collegues of john). 

Then, for all induced updates -.collUohn,a), ,collUohn,b) and -.collUohn,c), which are all relevant with 
respect to C, there is generated one simplified 
instance: 

C': "IY [,stUohn,Y,free) v 3Z [collUohn,Z)/\ 

st(Z, Y ,busy)]] 

So, integrity maintenance in deductive databases 
according to proposition 2 has a number of 
drawbacks. For this reason Bry, Decker and 
Manthey propose another approach, which is 
based on generating (not necessarily ground) 
potential updates from the rules and the update 
without using the fact base. This approach does 
not have the drawbacks mentioned earlier. 

In the next section this approach will be explained 
and fonnalized. Figure 4 is an illustration of 
this method. 
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2.4 THE DEDUCTIVE CASE: The proposed method 

Compared with the naive deductive approach the only step to be cancelled is the last evaluation phase 
from which the induced updates are detennined. By cancelling this phase we get potential updates. In 
other words, without applying the 0 in DEFINITION 5. The definition of potential updates is therefore 
a slight refonnulation of definition 5: 

DEFINITION 6: 
Let B ~ Iy-.A2/\ ... /\An be a deductive rule R. Suppose L is a positive (resp. ,L a negative) literal 
which is unifiable with A; (resp. the complement of AJ in R, for some i. Let 1: be the most general 
unifier of L and A;. Let B '=(B1:). B' (resp. ,B ') directly depends on L. 
A literal depends on L iff 
i) it directly depends on L, or 
ii) it directly depends on a literal depending on L. 

DEFINITION 7: 
Let D be a deductive database and U an update. 
Each literal which depends on update U with respect to some rule of D is called a potential update 
induced by U. 

Potential updates which are not necessarily ground represent all the related updates in the previous approach. 
For instance, in our earlier mentioned example, the insertion of the mngr(harold,george)-fact causes 
two potential updates with respect to rule R: 

coll(X,Y) ~ mngr(X,Z) /\ mngr(Y,Z), 

namely coll(X,harold) and coll(harold, V). All induced updates are instances of these potential updates. 

Now, a more abstract example to illustrate the concept of potential updates is given. 

EXAMPLE E 
Let us return to our deductive database in example C. 
Let U:=pCb) be the update. This update is unifiable with the literal p(X) of R. Now 1:= { X/b} is the most 
general unifier of U and p(X). Now, instead of instantiating the body of the rule by applying 1: and 
then deriving the induced updates by finding the substitutions which make the remaining fonnule true 
in U(D) like in the previous chapter, we partially instantiate the head of R by 1:. In this example, the 
instantiated head is q(Y,b). 
Now, we say that q(Y,b) directly depends on pCb), and so q(Y,b) is a potential update induced by pCb). 
Note that the other potential update, which directly depends on pCb), is ~(b,X). It is derived by the 
subsitution 1:'={Y/b}. 
So, the collection of potential updates which directly depend on update U is 

Up := (q(Y,b),'q(b,X)}. 
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To detetmine the collection of potential updates induced by U, we must also find the collection of the 
literals which depend on the literals of Up with respect to rule R. Note that this collection is Uo' := 
[q(b,Y),-q(X,b)}. From this collection no new literals are derived. So, the collection of all potential 
updates induced by U with respect to R is 

[q(Y ,b), -q(b,X),q(b, V), -q(X,b)}. 

Potential updates express the intuitive idea mentioned in the previous section that the induced updates 
look, for instance, like ql.b). Now, we do not use the fact base to derive these induced updates, but 
postpone the call to this base by first constructing an update constraint with the help of potential updates. 
The update constraints must be satisfied in U(D) in order to prove the updated database consistent again. 
(See proposition 3) 

Definitions 3 and 4 are now stated for potential updates instead of (ground) updates: 

DEFINITION 8: 
A constraint C is relevant to a potential update PU iff the complement of PU is unifiable with 
a literal in C. 

DEFINITION 9: 
Let C=C(L"L" ... ,L,,) be an integrity constraint relevant to potential update PU, where L"L" ... ,Ln 

are all the literals (positive or negative) in C. So, there is a literal Lj which is unifiable with the 
complement ofPU. Let a be the most general unifier of Lj and PU. To obtain a simplified instance 
ofC we partially instantiate C by a restriction of a. Let t be this restriction to only those universally 
quantified variables which are not governed by an existentially quantified variable in C. When 
PU is ground, we simplify Ct by removing all complements ofPU occurring in Ct. The (universal) 
quantifiers grounded by t are also removed. Now, the remaining fotmula, is called the simplified 
instance of C with respect to PU and Lj" t is called the defining substitution of the simplified 
instance. 

For every simplified instance of a constraint with respect to an update U (resp. a potential update PU) 
with defining substitution tu (resp. t pu) an update constraint Cu (resp. Cpu) is defined which has to be 
consistent with the updated database. 

DEFINITION 10: 
Let D be a deductive database, U an update and U(D) the updated database. 
Let L be a literal which represents an update or a potential update. For every constraint C, an 
update constraint for L with respect to t is defined as the universal closure in UCD) of the simplified 
instance of C relevant to L with defining substitution t, i.e. Ct. 

In [BDM88] two meta-predicates, delta and new, are used in order to define update constraints. Instead 
of the universal closure of Ct, this definition states that the update constraint is defined as the universal 
closure of-xlelta(U,Lt) v new(U,Ct) (orequivalcntly, delta(U,Lt) -> new(U,Ct)), where the metapredicate 
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deJta(U,L'c) holds ifL'c is satisfied in U(D), but not in D and new(U,Cc) holds if Cc is satisfied in U(D). 
This import of meta-predicates in the object language leads to a mixture of two different concepts which 
is not supported by the theory. So, we take our own definition of update constraints to continue our 
exposition. 

Note that only the update constraints imply a call to the database query-evaluator. Till then all the work 
can be done by PROLOG. (See Figure 5). 

With definition 10 the analogue of proposition 2 is: 

PROPOSITION 3: 
Suppose that all constraints are satisfied 
in D. 
Then they are satisfied in U(D) 
iff every update constraint 

for U, or 
- for a potential update induced by 

U 
is satisfied in U(D). 

Let us illustrate proposition 3 with an example. 

EXAMPLEF 
Let U:=p(b) be an update to the deductive database 
D of EXAMPLE C with one specified constraint 

C: 'tX'tY ['p(X) v ,r(Y) v 

3Z3W [q(X,Z) 1\ q(W,Y)]] 

PROLOG ,-----------------------: 
UPDATE 

\i(. .. ----""" ..... . r ..... 
. \::: 

POTENTIAL "\ 
UPDATES \ 

M 

i 
! 

which is satisfied in D. C is relevant to U. 
According to EXAMPLE E, the potential updates 
are q(Y',b), ~(b,X'), q(b,Y") and ~(X",b). 
Note that ~(b,X') and ~(X",b) are the only 
potential updates to which C is relevant. 

Figure 5: Coupling PROLOG to a DBMS 

Because ~(b,X') can be unified to the complement of q(X,Z) and q(W,Y) respectively in C, we derive 
from this potential update two simplified instances of C: 

C,: 'tV [ 'r(Y) v 3Z3W [q(b,Z) 1\ q(W,Y)]], 

with defining substitution 't,={X/b} and 

c,: 'tX [~(X) v 'r(X') v 3Z3W [q(X,Z) 1\ q(W,X')]], 
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with defining substitution 'tz={Y/X'}. 
Analogously, we derive from -.q(X",b) two simplified instances of C: 

C,: '<IY [~p(X") v ~r(Y) v 3Z3W [q(X",Z) /\ q(W,Y)}], 

with defining substitution 't,={X/X"j and 

c.: '<IX [~(X) v ~r(b) v 3Z3W [q(X,Z) /\ q(W,b)}], 

with defining substitution 't.={Ylbj. 
Besides these four instances, we have a simplified instance derived from U: 

Cu: '<IY [ ~r(Y) v 3Z3W [q(b,Z) /\ q(W,Y)}], 

with defining substitution 'tu= {X/b j. 
So, the update constraints for U with respect to 'tu, for ~q(b,X') and ~q(X" ,b) with respect to 't" 'tz 
and 't" 't. respectively are: 

Cu : '<IY [ ~r(Y) v 3Z3W [q(b,Z) /\ q(W,Y)]], 

CUI: '<IY [ ~r(Y) v 3Z3W [q(b,Z) /\ q(W,Y)}], 

CU2: '<IX''<IX [ ~p(X) v ~r(X') v 3Z3W [q(X,Z) /\ q(W,x')}], 

CU3 : '<IX"'<IY [ ~(X") v ~r(Y) v 3Z3W [q(X",Z) /\ q(W,Y)}] and 

Cu.: '<IX [ ~p(X) v ~r(b) v 3Z3W [q(X,Z) /\ q(W,b)}]. 

Note that the induced updates which are relevant to C in EXAMPLE D, ~q(b,a) and ~q(b,d), are instances 
of the potential update -.q(b,X'). Further, CSI and Cs, (CS2 and Cs., respectively) are implied by CUI 
(CU2 respectively). (The simplified instance of the constraint, Cs, derived from update U in EXAMPLE 
D and the update constraint for U, i.e. Cu, in this example are the same). Note that Cu and CUI are the 
same. So, we have to check just one of these constraints. This argument is also applicable to CU2 and 
CU3 • Note also that Cu. does not have any instance which corresponds to a simplified instance of C 
with respect to an induced update. In other words, the generation of the potential update -.q(X" ,b) and 
the related update constraint, Cu., was redundant. 
The most negative point is that CU2 and CU3 are equal to the original constraint C, so we have nothing 
gained here, because we want to get an instantiation of C which constrains the search space in the database. 

In order to explain for what purpose Bry, Decker and Manthey introduce their meta-predicate "delta", 
let us consider a potential update. For this update we constructed some simplified constraints which 
have to be satisfied in the updated database. In fact we only have to check those instances of these 
simplified constraints which correspond to instances of the potential update corresponding to induced 
updates. So, with predicate "new" they express the simplified instance of potential updates which have 
to be evaluated in the updated database. And with meta-predicate "delta" they express that we only 
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want to evaluate the new-predicate (read simplified constraint) if we deal with an induced update related 
to the potential update, i.e. an instance of the potential update which are satisfied in the updated database 
but not in the database before the update. 

For instance, suppose we have a constraint C: VXVY [.w(X,Y) v s(X,Y)], a potential update w(b,Y) 
and two induced updates corresponding to this potential update, w(b,a) and w(b,c), and let w(b,b) and 
w(b,d) all other w(b,J-facts in the database, which are not affected by the update. Suppose further that 
sCJ-facts are not affected by the update. The simplified update C' with respect to the potential update 
is C': VY ['w(b,Y) v s(b,Y)]. Now C' has to be evaluated in the updated database. 
But there exists some redundancy in such an evaluation, because C' must be instantiated by all unaffected 
w(b,J-facts in the database. These instantiations correspond to instantiations of constraints which were 
already satisfied in the old database state. Because this part of the database has not changed the instantiations 
of the constraints will still be satisfied. So, to prevend sllch evaluations Bry, Decker and Manthey introduced 
the delta-predicate to check if we deal with an induced update related to the potential update before 
evaluating the simplified constraint. If we deal with an induced update the simplified constraint can 
further be instantiated by this induced update before evaluating it. 
So, in our example delta(U,w(b,Y)) checks for which instantiation of Y we have an induced update. 
If t is such an evaluation then C't will be evaluated in the updated database. So eventually, in this 
example [.w(b,a) v s(b,a)] and [.w(b,c) v s(b,c)] are evaluated. 

Now, the main difference of the naive integrity checking approach and the proposed approach is that 
in the first case all possible induced updates are generated, even those which are not relevant to a constraint. 
In the latter case, the delta handIes only induced updates which are instances of potential updates relevant 
to some constraint. So, here all generated induced updates are relevant to some constraint. 

However, as we will now see the evaluation of the predicate delta is sometimes unnecessary. 
In our example, we derived CUI: VY [.r(Y) v 3Z3W [q(b,Z)" q(W,Y»)] from potential update oq(b,X'). 
As noted, we have two induced updates ·q(b,a) and oq(b,d) which are instances of the potential update 
oq(b,X'). Here, the simplified instances of C which correspond to the induced updates relevant to C 
with respect to the first occurrence of the predicate q are equal to CUI' This is caused by the existential 
quantified variable Z. So, in this case a meta-predicate delta to check first if we deal with an induced 
update before checking the simplified constraint is not necessary, because it causes no instantiation 
of the simplified constraint. 

2.5 EXTENSIONS OF THE PROPOSED METHOD 

Besides fact updates, rule updates or even integrity constraint updates are also possible. 
New rules will generate new facts. We can consider these as induced facts. At this point we 
can go further with these facts as if these facts were a set of updates. To this set we can apply 
some integrity maintenance method. If some constraint is violated then the rule must be withdrawn. 
New constraints must be consistent with the other constraints. If that is the case, the constraint 
is accepted. However, the database can violate this constraint. No other constraint is violated 
by the facts and rules, because the database was supposed to be consistent before the transaction. 

29 



INTEGRITY CHECKING IN DEDUCTIVE DATABASES; AN EXPOSITION 

The only task to be done is to search for relevant facts which could violate the new constraint. 
When there are facts which violate this constraint, a choice must be made to decide which 
facts must be deleted to restore the integrity of the database. 

§3 CONCLUSIONS 

The proposed method for integrity maintenance is suitable in order to optimize the constraint check 
before actually consulting the fact base by the query-evaluator. It also seems possible to build a deductive 
database management system with PROLOG linked to a relational database management system which 
has an acceptable degree of efficiency as is shown empirically by Das and Williams [DA W89]. Further, 
it seems (see section 2.5) that this method can be easily extended to rule updates and constraint updates. 
But the proposed method has also some drawbacks. For instance, it may happen that some potential 
updates and their related update constraints are redundant. In a next article some possible solutions to 
the redundancies mentioned above will be proposed. 
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