

Integrity checking in deductive databases : an exposition

Citation for published version (APA):
Seljée, R. R. (1992). Integrity checking in deductive databases : an exposition. (Computing science notes; Vol.
9216). Technische Universiteit Eindhoven.

Document status and date:
Published: 01/01/1992

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 04. Oct. 2023

https://research.tue.nl/en/publications/2165b2d4-5e2c-4b0a-8fbc-df314a6647d6

/

Eindhoven University of Technology

Department of Mathematics and Computing Science

Integrity Checking in Deductive
Databases; An Exposition

by

R.R. Seljee

Computing Science Note 92/16
Eindhoven, July 1992

92/16

COMPUTING SCIENCE NOTES

This is a series of notes of the Computing
Science Section of the Department of
Mathematics and Computing Science
Eindhoven University of Technology.
Since many of these notes are preliminary
versions or may be published elsewhere, they
have a limited distribution only and are not
for review.
Copies of these notes are available from the
author.

Copies can be ordered from:
Mrs. F. van Neerven
Eindhoven University of Technology
Department of Mathematics and Computing Science
P.O. Box 513
5600 MB EINDHOVEN
The Netherlands
ISSN 0926-4515

All rights reserved
editors: prof.dr.M.Rem

prof.dr.K.M.van Hee.

INTEGRITY CHECKING
IN DEDUCTIVE DATABASES;

AN EXPOSITION.

R.R. Seljee

Co-operation Centre
Tilburg and Einhoven Universities

ABSTRACT.

Relational systems are extended in several ways. We consider extensions with rules and integrity
constraints to so-called deductive databases. There are several problems in handling these rules
and constraints. One problem is to check, in an efficient way, the integrity of a deductive database
when an insertion or deletion is made. There exist several integrity maintenance methods. All
these methods avoid a full check of the integrity constraints in order to keep them efficient.
Therefore, the database is supposed to be consistent before a transaction is made. We take
a look at one of the most efficient methods proposed by Bry, Decker and Manthey. They determine
from the updates, rules and constraints and without accessing the fact base the so called update
constraints which have to be checked in the updated database. These constraints are instantiations
of the constraints that are relevant to the update. Although this method is more efficient than
other ones, it is still susceptible of improvement. Our goal in this article was to show by some
well-chosen examples that in some regards the proposed method is still very inefficient. By these
examples it becomes clear where the inefficiencies come from; they were not mentioned in the
article of Bry, Manthey and Decker.

INTEGRITY CHECKING IN DEDUCTIVE DATABASES; AN EXPOSITION

§O INTRODUcnON:REIATIONAL DATAB~ RULES, IN1EGRITY CONSTRAINTS, DEDUCTIVE
DATABASES, INTEGRITY ENFORCEMENT

Most commercially available database systems are based on the relational database model. In this relational
model facts are stored in tables. Tables contain explicit data. A relational database management system
(RDBMS) takes care of fast retrieval of information from a database. Besides explicit information tables
also contain implicit information. In conventional relational systems the derivation of implicit from
explicit information is left to the user. There is a growing need to delegate such derivations to the system.
We can do this by extending a relational database with deductive rules. In that case, we speak of a deductive
database.
On the basis of the next example, consisting of a PARENT-table and a GRANDFATHER-table, we
shall illustrate the extensions mentioned above of a conventional RDBMS.l)

PARENT-table

I NAME II AGE II FATHER II MOTHER I
ALEX 15 CARL JANE

JANE ? PETER LUCY

JACOB 38 PETER LUCY

CARL 41 LEON ANNE

LEON ? JACK ?

GRANDFATHER-table

I NAME II GRANDFATHER I
ALEX LEON

ALEX PETER

LEON JACK

Besides storing facts, there is a great need to store general knowledge about the universe of discourse
in the database. Both rules and integrity constraints represent such knowledge.

RULES

Rules are added to make implicit knowledge explicit. As we see in the PARENT-table, JANE and JACOB
are siblings, because their FATHER and MOTHER are PETER and LUCY for both of them. By adding
a rule like "People who have the same parents are siblings", we represent the knowledge of the sibling

1) In this example the tables are not physically present in the database. Normally, for reasons of maintenance \.
of the database the date of birth of an individual is restored. In order to keep the problem clear we store
the age of all individuals in OUf tables. So, in fact our tables are views.

2

INTRODUCTION

relation. Now, a deductive database management system must take care of answering questions about
siblings using this rule and the PARENT-table.
Rules are also used to make explicit knowledge implicit. Sometimes this means a considerable saving
of space, as will be pointed out in the next example. Instead of one big GRANDFATHER-table in the
database, we could simply state one rule: "the FATHER of a MOTHER or FATHER of an individual,
is the GRANDFATHER of that individual". With this rule and the already existing PARENT-table we
could generate the GRANDFATHERs of individuals from the PARENT-table.

INTEGRITY CONSTRAINTS

Integrity constraints do not generate facts but check if the database is consistent. Under no circumstances
do we want the database to give erroneous or contradictory information. Database transactions may
affect the integrity of the database, as will be shown by the following example. In the PARENT-table
we see that JANE is the MOTHER of ALEX. The age of JANE is unknown. Suppose the age of JANE
is added to the database. If we want to insert "8 years" for her age, then the conventional systems would
allow that without objection. However, there is some inconsistency with respect to our knowledge of
the universe of discourse. JANE is mother and may never be 8 years old. So, the addition of a certain
age can lead for several reasons to a database which does not agree with our knowledge of the universe
of discourse. The next scheme will show several of these reasons.

I The inserted age of Jane: II Reason why we reject this age:

24 years The age difference between her
and her son is 9 years.

80 years Her son was born when she was
65 years old.

146 years Human beings will never be this
old.

Integrity constraints which prohibit undesirable situations like the ones above are:

"The age of a mother is at least 14 years",
"Women don't have babies after their 50th birthday",
"The difference between the age of a parent and his/her child is at least 14 years",
"The maximum age of a human being is 120 years".

DEDUCTIVE DATABASES

I

As we stated earlier, deductive databases are an extension of conventional databases, because besides
facts also rules are stored. Some problems have to be solved, because conventional RDBMSs have no
facilities to handle rules. However, the logic programming language PROLOG does have this capacity.
An interface between PROLOG and a database query language enables us to combine rules with a RDBMS.
Now one should search for efficient methods in order to be able to use these rules within RDBMSs.

3

INTEGRITY CHECKING IN DEDUCTIVE DATABASES; AN EXPOSITION

LOG I C

r-----------------------------,-----------------------------1
LOGIC : RELATIONAL i

PROGRAMMING: DATABASES I
I I
I I I

~
I .r THEORY I THEORY

LOGIC I
PROGRAMMING I DATABASES I

I I
I I

ImJ.l~m.nIIlIIOn
I

Imp I. m • J till t Ion
I I

I I I

~ ~t
I

,.~\/~ ...
I

I I I I .~/ I
I I

prolog/sql I
PROLOG RDBMS I

I interface I

D E Due T I v E--J-

I
I

DATABASES I

Our coupling will be achieved by choosing for the following strategy:
I) Instead of extending a logic programming system with database management facilities, we

want to extend an (existing) relational database management system with logic programming
facilities. A lot of time and money has already been invested in developing advanced, efficient
and safe relational database management systems. It is not feasible and above all not necessary
to do this work all over again.

2) We start from the most current implementations, which result from the theory oflogic programming
and the theory of databases when we are implementing new concepts. We choose PROLOG
to be our logic programming language and SQL to be our query language. SQL is the most
current query language used in relational systems.

To describe deductive databases the theory of logic programming is coupled to the database theory.
The scheme above shows that logic plays a dominant role in this. Logic is used not only as the basis
for the theory of logic programming, but also to describe databases formally. The coupling between
the theory oflogic programming and the database theory will be brought about through logic. Important
work in this area has been performed by Gallaire, Minker and Nicolas. ([GAL 78], [GAL84], [MIN88],
[MKR88]).
They conceive a database as a first order theory from which the answers to the queries and the integrity
constraints have to be deduced by means of an appropriate proof procedure. This theory consists of
a logical translation of facts and rules which are stored in the database.

4

INTRODUCTION

INTEGRITY ENFORCEMENT

With large database systems it is not feasible for the user of the system to check all their integrity constraints.
That is why we try to lay down this responsibility with the system.
To handle integrity constraints efficiently, we assume that the database obeys the integrity constraints
before a transaction is carried out. Notice that this is a simplification. After a transaction the database
will then be put to the test of the integrity constraints. If they are not fulfilled, then an analysis should
be given of which facts and/or rules from the database are responsible for violating them.
The "simplification theorems for checking the integrity" occurring in the literature take the line mentioned
above. These theorems give conditions by which we can conclude whether or not a database is consistent
with the integrity constraints after a transaction. Lloyd, Sonenberg and Topor ([LL087]), Lloyd and
Topor ([LL086], [LL085]) formulate and prove these theorems for deductive databases; they are a
generalization of comparable simplification theorems for relational databases which were proved by
Nicolas ([NIC82]).

There are serious problems of fioding efficient ways to check the integrity conditions in deductive databases.
Because rules generate facts, a transaction may cause a considerable change in the state of the database
and therefore may influence the integrity a great deal. It will be clear that one must search for efficient
methods to decide which actions have to be taken in order to maintain the integrity.
In this connection, useful articles are those of Decker ([DEC86J) and Sadri and Kowalski ([SAD88]),
who give sound and complete proof procedures to check the integrity of deductive databases. These
procedures are extensions of resolution, which is used by PROLOG, in order to be able to reason not
only about facts but also about rules.

Lloyd, Sonenberg, Topor, Nicolas, Decker, Sadri and Kowalski basically follow several principles. If
a transaction has caused a violation of the integrity conditions, then the system will look for a possibility
to cancel one or more deletions, changes and insertions. If this is not possible, the whole transaction
will be cancelled. Only new facts are to be blamed for violating the integrity constraints. This means
that in order to check the consistency of the database with respect to the integrity constraints we don't
have to consider the whole database and its integrity constraints, but only the facts occurring in the
transaction and the related integrity rules.

Extensions of the considerations mentioned above are thinkable. For example

how can we allow rules in transactions; In their integrity proof Sadri and Kowalski ([SAD88])
also take rules into account. For instance, we may want to add the rule "when x is PARENT
of y and y is PARENT of z, then x is GRANDPARENT of z" to the PARENT-table.
how can we involve facts, which were present in the database before the transaction, in restoring
the integrity? It may be possible that these facts are not correct, and therefore they should
playa role in restoring the integrity. Notice that this doesn't mean that the database before
a transaction is inconsistent with its specified integrity constraints. For example, the previously
given PARENT-table is consistent with the specified integrity constraints, even if 15 wrongly
has been inserted as the age of ALEX. Suppose we would like to insert JANET with ALEX
as her FATHER. Then there will be an inconsistency with the integrity constraint which says
that a parent must be at least 16 years old. The cause of the inconsistency is not the new appearence
of JANET, but the already existing occurrence of the age of ALEX in the PARENT-table.

5

INTEGRITY CHECKING IN DEDUCTIVE DATABASES; AN EXPOSITION

what happens if we add new integrity constraints to a transaction? Until now we assumed
me database to satisfy integrity constraints which were previously specified. Integrity constraints
played a rather static role.

§1 INTEGRITY CONSTRAINTS

Integrity constraints ensure that the data in the database always make sense.
We distinguish several kinds of integrity constraints such as

Column and Domain constraints,
Entity and Referential integrity,
User-defined integrity constraints.

For a better comprehension of these different and sometimes interrelated conceptions we give a short
description of each sort of constraint. For more information about these and other relational concepts
we refer to [BR089j, [COD90j, [DAT90j, [MAI83j, [ULL88j.

1-1 COLUMN & DOMAIN CONSTRAINTS

A domain in relational terms is the set of all unique values permined to appear in one or more specified
columns.
To start with one can specify a simple property, common to all values of a certain basic data type. For
instance, the values of the column "Day_otweek" consist of at most eleven characters, and the values
of the column " Account_number" is an integer number from 10000 to 99999. This is what we call a
column constraint. Further limitation of these values is specified in the domain definition. We call this
limitation of values the domain constraint. Suppose in our "Day_oCweek" column only the following
values can occur:

Monday,
Tuesday,

Wednesday,
Thursday,

Friday,
Saturday,
Sunday.

We can give this list a name, say "Day_names". Then "Day_names" is the domain from which "Day
oC week" can pick the values.
The domain concept plays a significant role in the relational model for the following reasons.

6

A RDBMS contains an area in which all information about a column is stored. In such a column
declaration area several items occur. A domain specification is one of these items. Instead
of giving the whole domain specification in each column declaration area, a reference to this
specification, which is declared in another area of the management system, the domain declaration
area, is given. This means a reduction of redundancy, which exists if the same domain specification

INTEGRITY CONSTRAINTS

should be declared for several columns. For instance, instead of declaring a list of all days
of a week in the column declaration area every time a column contains values of this list,
we state in this area that a column contains values of type "Day_names". In the domain declaration
area we specify which values correspond with the type "Day-names".
For each operation (e.g. join) acting on two tables a check must be made to see if the operation
has any meaning. Consider, for instance, the join of two columns A and B of which the value
is an integer of eight digits, but A contains account numbers and B fiscal numbers. In this
case jOining these two columns should not be allowed. To solve this problem we can specify
two different domains, one of account numbers and one of fiscal numbers. Before applying
an operation it must be checked if the related columns contain the same type of information.
In other words, if they pick values of a common domain. This check can take place at compile
time.
As the example of account numbers and fiscal numbers shows, the domain concept plays a
major role in distinguishing the semantics of the facts stored in the database and therefore
allows all sorts of integrity maintenance.

A domain is used as a kind of derived data type. That is why it is also called an extended data type.
(See [COD90]).

1.2 ENTITY & REFERENTIAL INTEGRITY

Before explaining the concepts of entity and referential integrity it is necessary to define some other
concepts. We do this by the following example, illustrated by table I. Suppose, we have a table with
the results of exams of all students of a high school in all subjects they have selected at the beginning
of the school-year. If a student has not selected a certain subject, he will never do the corresponding
exam. So, in the table related columns may contain values marked as inapplicable ("_"). If the student
has not yet done an exam which he or she must do in the near future then the corresponding value is
applicable but marked as unknown ("7"). In all other cases the values are applicable and known.

I STUDENT_NAME I EN I FR I GR I MA I CH I PH I EC I HI I
Nick James 7 7 ? 5 ? 6

Jane Dickson 8 9 8 ? 6 8

Peter McMann 6 5 7 7 8 6 - -

Table I.

An inapplicable value in a column means that a regular value in this column can never occur. On the
other hand, applicable values could be unknown at a certain time but are supposed to have a value.

7

INTEGRITY CHECKING IN DEDUCTIVE DATABASES; AN EXPOSITION

The names of the columns of a table are called attributes. The values of a row in a table are often called
a tuple of the table. We represent tuples as follows. Let {A"A2, •.• ,AnJ be the collection of attributes
of a table. A tuple t with values t"t" ... ,t" for the attributes A"A" ... ,An, respectively is denoted as:

t = < A,;t, , A2;t, , ... , An;t" >

or, if it is clear from the context which attributes belong to which values:

t = < t"t, , ... , t" >.

Let t be a tuple and {B"B2, ••• ,Bm J >;; {A"A2, ••• ,A.J. By tl{B"B2, ••• ,Bm J we mean the restriction oft to
the attributes B"B2, ••• ,Bm:

or shorter, when the context makes it clear:

One or more attributes of a table can form a primary key or a foreign key. A ill is a collection of attributes
ofa table of which the values provide for a unique reference to the tuples of the table. So, {B"B2, ... ,Bm J
is a key of a table T, if for each pair of tuples s and t for which sl{B"B2, .•• ,Bm J = tl{B"B2, ... ,Bm J it
holds that s = t.
Note that trivially all attributes of a table form a key.

A primary key'l is a key, for which elimination of an attribute means that it is no longer a key. So,
the number of attributes of a primary key must be minimal. Consider, for instance, table II. The values
of the attributes STUDENT_NR and NAME provide for a unique identification of values in the row,
for if we know someone's name and student_nr we can say which tuple we deal with.
So, {STUDENT_NR,NAMEJ is a key for table II. However, {STUDENT_NR,NAMEJ is not a primary
key, because (STUDENT_NRJ is also a key, a primary key.

I STUDENT_NR I NAME I MENTOR I CLASS I
790123 Nick James Miss. F. White 6B

801234 Jane Dickson D. P. Allison 4C

781533 Nick James Miss. F. White 6B

781635 Peter McMann Miss. F. White 6B

Table II.

2) In the literature, the concepts "primary key" and "foreign key" do not have well-established definitions. (See discussions
in [COD90] en [DAT90]). We lOok !he definitions of Date ([DAT90]).

8

INTEGRITY CONSTRAINTS

Note that in cases of two objects, also called entities, with the same values, the primary key provides
for an unique identification of the objects. In our example, we have two different people with the same
name "Nick James" in class 6B. They are distinguished by the values of the primary key consisting
of the attribute "STUDENT_NR".

A foreign ket) is the collection of attributes of a primary key used in another table in order to provide
for a reference to entities identified by the primary key. A foreign key value provides for an unique
link to the values stored in the table of the related primary key by the corresponding primary key value.
So, for instance, the first column of table III is a foreign key for this table, connected to the primary
key of table II.

I STUDENT_NR I EN I FR I GR I MA I CH I PH I EC I HI I
790123 7 ? ? 5 ? 6 -
781344 8 9 8 ? 6 8 - -
781533 6 5 ? ? 8 6 - -

Table III.

Note that Table III without table II has no meaning. For, students, like Nick James of class 6B with
mentor Miss. F. White, are doing exams and not numbers, like 781533. So, foreign keys are used for
a link to entities to which the values in the rest of the table refer.

Now, the concepts of entity and referential integrity for a database can be explained. When no column
of a primary key contains a missing (i.e. inapplicable or unknown) value and no column of an foreign
key an inapplicable value, then the database is said to fulfill the entity integritl)
So, primary key values must always be known and foreign key values must be applicable but could
be unknown. Informally, entities must be distinguishable from each other by the primary key value,
and a foreign table (i.e. a table with a foreign key) must always contain references to entities, though
they can be unknown.

Interrelated with entity integrity is the concept of referential integrity. One speaks of referential integritl)
if for every known foreign key value there exists an identical primary key value from the same domain.
So, spoken informally a reference must be possible.

Tables IV & V illustrate the concepts of entity and referential integrity. The database consisting of these
two tables satisfies the entity integrity property, because every primary key value (i.e. value of student
nr) is known in table IV and all foreign key values in table V are applicable. However, both tables do
not satisfy the referential integrity property, because 781344 in table V refers to no primary key value
in table IV.

3) In the literature, the concepts "entity integrity" and "referential intcgrity" do not have well-established definitions. (See
discussions in [COD90] en [DAT90]). We took the definitions of these concepts of Date ([DAT90]).

9

INTEGRITY CHECKING IN DEDUCTIVE DATABASES; AN EXPOSITION

I STUDENT_NR I NAME I MENTOR I CLASS I
790123 Nick James Miss. F. White 6B

801234 Jane Dickson D. P. Allison 4C

781533 Nick James Miss. F. White 6B

781635 Peter McMann ? 5C

Table IV.

I STUDENT_NR I EN I FR I GR I MA I CH I PH I EC I HI I
790123 7 ? ? 5 ? 6 - -
781344 8 9 8 ? 6 8 -

? 6 5 ? ? 8 6 - -

Table V.

1.3 USER-DEFINED INTEGRITY CONSTRAINTS

This type of integrity constraint is a central issue in this paper. In this case, a user can specify constraints
on the data stored in the database. We have given some examples in section O. Although our main concern
in this paper is how the database management system has to preserve consistency with respect to these
constraints, the responsibilities of the system should go far beyond that. For instance, the user must
also have the possibility to specify the actions to be taken if some integrity constraint is violated. For
example, if a supply shrinks and a certain level has been reached, then an order must go out.

The intention is that the integrity maintenance mentioned above is the responsibility of the database
management system.

§2 AN INTEGRITY CHECKING METHOD FOR DATABASES

From a logical point of view, a relational or deductive database can be looked at in two different ways.
(See [GAL84]).
First we have the model theoretic view. Here, the facts of the relational database are regarded at as an
interpretation (or model) of the set of logical fonnulas corresponding to the integrity constraints.
The logical fonnulas are evaluated under the intended interpretation. If they are true, the database can
be seen as a model for the fonnulas (i.e. an interpretation in which all fonnulas are satisfied). A database
is called consistent with respect to its specified integrity constraints iff it fonns a model for the logical
fonnulas corresponding to the integrity constraints.

10

AN INTEGRITY CHECKING METHOD FOR DATABASES

Second we have the proof theoretic view in which the database is a fitst order theory from which integrity
constraints (and queries also) may be deducible. If this is the case we call the relational database consistent
with respect to the specified integrity constraints. Now. suppose a database transaction. which can be
any collection of updates. additions and/or deletions of facts. takes place. Then the consistent database
can change into an inconsistent one. Proof theoretically. the integrity of the database is preserved if
all the old integrity constraints are still deducible from the new database.

In this article. we describe the concepts from the model theoretic view. Then. the constraints are evaluated
under the intended interpretation. which follows from all the facts in the database. A naive evaluation
of the constraints will involve all these facts. Not only is this rather cumbetsome but also unnecessary
provided that we have a consistent database before the transaction. It is obvious that inserting a fact
only affects those integrity constraints that say something about this fact. When we insert a fact for
which no constraint is applicable the database will also be consistent after this transaction. because after
all the database was supposed to be consistent with its integrity constraints before the transaction. Evaluation
of only the relevant integrity constraints turns out to be sufficient.

Deductive databases contain rules. By the generating capabilities of rules an inserted fact can lead to
a great amount of induced updates. These induced updates can in their turn also affect the integrity
of the database. So. in deductive databases integrity maintenance is more complicated than in relational
databases.

2.1 AN INFORMAL INTRODUCTION

Integrity maintenance methods are intended to guarantee that all integrity constraints remain satisfied
after an update, provided they were satisfied before.
A method proposed by Bry, Decker and Manthey [BDM88] is described here. Their approach is different
from others, because they compute relevant constraint instances which must be checked in order to
prove the database to be consistent without accessing the fact base. This means that optimalization is
possible before evaluating these constraint instances.

As an introduction we will give an example for the relational case.
Consider a company with several departments. Every department has one manager, which gives lead
to one or more employees. Employees can be employed in several departments. We state the following
integrity constraint:

an employee who may work at several departments can temporarily be replaced by another
person only if there is a manager of both employees who did not mark this other person
as busy.

Suppose employee Patrick has to be replaced because he is ill. Suppose a database is given in which
we want to insert that Patrick will be replaced by John. It is not necessary to check again all integrity
constraints together with all facts in the database. But it is sufficient to restrict outselves to the constraints
that are relevant to this update. The following situations will be distinguished.

11

INTEGRITY CHECKING IN DEDUCTIVE DATABASES; AN EXPOSITION

Suppose it is already known that Patrick is replaced by John. lbis means that before the transaction
this fact was already present in the database. So, the database does not change and neither
does the integrity, because the database is supposed to be consistent before any transaction.
So, in this situation no integrity check has to be made. Even stronger, facts already known
to a database may not be inserted for a second time for they are no updates of the database.
With large databases one has no idea of what the stored facts are, so a check must be made
to skip "redundant" updates.
Suppose this fact happens to be unknown to the database before the transaction; this means
that it is not present in the database. Consequently, the fact is supposed to be false. (This assumption
is called the closed world assumption).
We can limit the amount of integrity checks in several ways.
In the first place, we limit the collection of constraints to only relevant constraints. The inserted
fact can influence the integrity by constraints in which something is said about replacing some
person X by some person Y. Notice that it does affect the integrity by the constraint mentioned
above.
In the second place, given a relevant constraint, we can limit the collection of people which
are represented in the database. It is not neccessary to check these constraints for all people.
For instance, with our constraint it is only necessary to look for managers of Patrick and John
who did not mark the substitute as busy, instead of checking this constraint for all people
who have a manager.
By these restrictions we derive a collection of so called simplified instances of the integrity
constraints which have to be checked in order to prove the consistency of the new database.

In the case of an update in a deductive database, rules can cause a considerable amount of induced
updates.
However, in this case one can construct certain compound constraints, to be called update constraints.
In order to prove that the new database is consistent with the specified integrity constraints, the only
thing to do is to prove that the update constraints are consistent with the fact base. In fact the deductive
case can be reduced to the relational case.

In the next section we formalize the concepts mentioned above.

2.2 FORMAL DESCRIPTION

In a deductive database we distinguish facts, rules and integrity constraints. These facts, rules and constraints
will now be expressed in a logical language, the first-order predicate language. The symbols used in
this language are (1) parentheses, (2) variables and constants, (3) predicate symbolS, (4) logical connectives
like· (not), /\ (and), v (or), ~ (implication), and (5) quantifiers 'if (for all) and 3 (there exists). Throughout
the paper we use uppercase letters to represent variables and lowercase letters or words to represent
constants and predicate names. In our databases tef!I1s are supposed to be function-free, i.e. a term is
a constant or a variable. We call p(t"t" ... ,[,,) an atomic formula, or shortly an atom, if p is a predicate
symbol of arity n and t"t" ... ,[" are terms. An atomic'formula or its negation is called a literal. We also
call atoms and negated atoms positive and negative literals respectively. The expressions allowed in
this language, the well-formed formulas (wffs), are defined recursively as follows.

i) Any literal is a wff.

12

AN INTEGRITY CHECKING METHOD FOR DATABASES

If w, and W2 are wffs, then
ii) (~w,), (w, v w,), (w, 1\ w2) and (w, ~ Vi) are wffs, and

iii) V'X[w,(X)] and 3X[w,(X)] are wffs if X is free in w, and W2 respectively.

(In V'X[w,(X)] (resp. 3X[w,(X)]) we call w,(X) (resp. w2(X)) the scope of V'X (resp. 3X).
A variable X is bound by V'X (resp. 3X) if it occurs in the scope of V'X (resp. 3X). A variable
X in an expression is caIled bound if it is bound by V'X (resp. 3X) or its occurrence is in

V'X (resp. 3X). A variable is caIled m if it is not bound.)
iv) The only wffs are those given by i), ii) and iii).

A fonnula is called closed, if it contains no free variables. Otherwise, it is called open. A fonnula in
which no variables occur is caIled a ground fonnula. Facts, rules and constraints are defined as follows.

facts:

rules:

Constraints:

For instance,

are ground atoms.

are clausal fonn expressions B ~ ..y.A21\ ... I\An' where B is a positive literal and
A"A2 , ••• ,An are literals, positive or negative.
B and A,I\A,I\ ... I\An are called the head and the l2!21:i., respectively, of the rule
B ~ ..y.A21\ ••• I\An.
Moreover, a variable which occurs in B or in a negative literal of the body of the
rule must also occur in a positive literal of the body of the rule. In other words, the
rules are range-restricted. Suppose a variable in a negative literal A' of a rule R does
not occur in a positive literal of the body of R. The instances of the head of the rule
will depend of the database domain as a whole. Application of such rules would require
a complete domain search, which is in most cases extremely inefficient.

are closed first -order fonnulas which are also function-free.
Moreover, we consider only a subclass of these fonnulas, namely the restricted quantified
fonnulas. These fonnulas have one of the following fonns:

I) true or false,
2) 3X, ... 3Xn [A,I\ ... I\AmI\Q],
3) V'X, ... V'Xn [(~A,)v ... v(~Am)vQ]

or, equivalently, V'X, ... V'Xn [A,I\ ... I\Am~Ql,
where m,~O, each Ai is an atom, i=I,2, ... ,m, each variable Xi occurs
in one or more Aj ,j=I,2, ... ,m, and Q is an expression of the fonn descibed
in 1),2) or 3) in which variables X" ... ,Xn are free.

3X3Y3Z [p(X) 1\ r(X,Z) 1\ r(Y,X) 1\ (V'V'tW [~(V)v""XJ(V, W)]) 1
is a constraint and

V'XV'Y [~p(X,X)v""XJ(Y,Y,X)v (3 Z [~r(Z)])l
is not.
Constraints are supposed to be restricted quantified. Restricted quantified fonnulas are domain iodependent,
i.e. the truth value of such a fonnula does not depend on any domain element other than those occurring
in the relations A,I\ ... I\A,. that are explicitly mentioned in the fonnula.

13

INTEGRITY CHECKING IN DEDUCTIVE DATABASES; AN EXPOSITION

Throughout this paper we assume that updates are represented by literals. By U we represent an update
to a database D. U is called an insertion (resp. deletion) if it is a positive (resp. negative) literal. Let
U(D) denote the updated database.

DEFINITION 1:
An atom A is explicit in a database D if A appears in the fact base of the database. An atom
A is implicit in D if it is not explicit but it is derivable from the rules and the facts of D.

If U is an atom explicit in D, then the updated database U(D) is identical with D.
If U is an atom not explicit in D, then U(D) is D augmented with U to the fact base.

If U is a negative literal ~A and A is explicit in D, then the updated database U(D) is D without A
in the fact base.
If U is a negative literal ,A and A is not explicit in D, then U(D) is identical with D.

DEFINITION 2:
An update U to a consistent database D is permitted if U(D) is also consistent.

DEFINITION 3:
A constraint C is relevant to an update U iff the complement of U is unifiable with a literal in
C. (Resolution is the supposed inference mechanism).

To keep integrity constraint checking methods efficient, we want the constraints to be domain independent,
in order to avoid validation of formulas for which the whole database domain is needed. A formula
like for example 3X ,books(X,dahl), which represents a query such as "Give all books Dahl did not
write", would require consideration of all domain elements in the database. So, by requiring the constraints
to be restricted quantified, we do not have to consider all the domain elements. For example, consider
the constraint

C: 3X [P(X) 1\ ~(X)l,

and a database D represented by

D := {p(a),p(b),q(b),q(c),q(d),r(a),r(e)}.

Here, P(X) limits the values which X can take from its domain elements. In this example, the only domain
elements, which have to be considered are a and b, in order to validate the constraint. Further 'q(X)
is fully instantiated before its validation.
Now, consider a consistent database D with respect to the constraint C.

14

AN INTEGRITY CHECKING METHOD FOR DATABASES

Case I] An update U=p(a) does not have an influence upon C. because there was already a ground
instance of p. say p(b). in the database D by which C was satisfied. So. the update does not
change the ground instance of C. p(b) /\ -.q(b). because p is positive in C.

Case 2] An update U=q(a) may have an influence upon C. It is thinkable that "a" was the only constant
satisfying the constraint C in D. So. pea) /\ -.q(a) is satisfied in D. Now. by inserting q(a)
as a fact the only satisfying instance of C is lost in U(D).

Case 3] A deletion U=~p(a) may also have influence upon C. Suppose we have a database before the
deletion where "a" was the only constant satisfying C. After the deletion C is violated. because
the only satisfying instance of C is now lost in U(D).

Case 4] A deletion U=-.q(a) does not have an influence upon C. because q is negative in C. For. there
was already a ground instance of p in the database D by which C was satisfied. Suppose this
instance is X=b. We can distinguish two cases.
Case one in which a;tb. Nothing happens to pCb) /\ ~q(b) by the transaction and so Cremains
satisfied.
Case two in which a=b. Apparently pea) /\ -.q(a) was satisfied before the transaction. The deletion
U does not change that.

In orderto determine whether an updated database is.consistent all integrity constraints could be checked.
But this is in most cases an endless task. It turns out that we can restrict ourselves to simplified instances
of only those constraints that are relevant to an update (see Proposition I). So. the amount of constraints
to be checked can often be reduced considerably.

DEFINITION 4:
Let C=C(L,.L, L,,) be an integrity constraint relevant to update U. where L,.L, Ln are all
the literals (positive or negative) occurring in C. So. there is a literal Lj which is unifiable with
the complement of U. Let (J be a most general unifier of Lj and ~U. To obtain a simplified instance
Ct of C we partially instantiate C by a restriction t of (J to only those universally quantified variables
which are not governed by an existentially quantified variable in C. We simplify Ct by removing
all complements ofU occurring in Ct and the (universal) quantifiers grounded by t. The remaining
formula. Ct. is called the simplified instance of C with respect to U and Lj . t is called the defining
substitution of the simplified instance.

Take the employee example in the previous subsection to illustrate Definition 4. The integrity constraint
can be described as follows:

-an employee X. who may work at several departments. can temporarily be replaced by another
person Y only if there is a manager Z of X and of Y. who did not mark Y as busy.

and in a more formal format:

C: VXVY [~rpl(X.Y) v 3Z [mngr(X.Z) /\ mngr(Y.Z) /\ ~st(Y.Z.busy)]]

Note that C is restricted quantified. A more readible and equivalent form of C is

C· : VXVY [rpl(X.Y) -7 3Z [mngr(X.Z) /\ mngr(Y.Z) /\ ~st(Y.Z.busy)]].

15

INTEGRITY CHECKING IN DEDUCTIVE DATABASES; AN EXPOSITION

Suppose we have the update:

U : -.mngr(john,george).

C is relevant to U. A simplified instance of C with respect to U is obtained as follows:
First note that U is unifiable with the negation of two literals of C, Lt: mngr(X,Z) and 1-,: mngr(Y,Z).
This implies that there are two simplified instances of the same constraint with respect to the one update
U. Take the first one, Lt. The most general unifier ohU and Lt is cr={ X/john,Z/george }. The universally
quantified variables in C that are not govemed by an existentially quantified variable are X and Y. Let
t be the restriction of cr to {X,Y}; so, t={X/john}. Then the first simplified instance of C associated
with the update U is Ct:

Ct: "IY ['rpIUohn,Y) v 3Z [mngrUohn,Z) /\ mngr(Y,Z) /\ ,st(Y,Z,busy)}].

Intuitively, for the constraint C the update 'mngrUohn,george) means that now it has to be checked
that for every person Y who replaces john there must be another manager than george who did not
mark Y busy.

The other simplified instance Cz, when taking mngr(Y,Z) as the unifiable literal, is:

Cz: "IX ['rpl(Xjohn) v 3Z [mngr(X,Z) A mngrUohn,Z) /\ ,stUohn,Z,busy)}].

In this case john replaces someone.
Note: Although transactions on a database are supposed to fail if they cause an inconsistent database,
this is not always desirable. In some cases we may prefer to make the database consistent again. In
our example it is a fact that george is no longer the manager of john. We may want to enforce the update
when C is violated. We can restore the integrity by:

searching for each person x, who has to replace john, another manager z of john who gives
permission to x to replace john. This implicates an addition of one or more facts to the database,
namely ,st(x,z,busy)-facts.
deletion of all facts in which john is replaced by someone and george was the only manager
who had the right and actually gave his permission to this replacement. So, john will not be
replaced by these people.
by even deleting the whole integrity constraint, if for some reason that rule in the company
is canceled.

Before getting to proposition 1 we give a LEMMA first, which can be found in [NIC79].

LEMMA:

16

Let F be a formula which satisfies the range restricted property. Given any interpretation I of
F and any interpretation l' obtained from I only by adding a new element to its set of elements
then:

F is true in I iff F is true in ,'.

AN INTEGRITY CHECKING METHOD FOR DATABASES

This lEMMA means that if we have, for instance, a database consisting of the facts (R(a),R(b)'p(a)'p(b)'p(c) }
and one specified constraint C: \;tX[,R(X)vP(X»), an element like for instance d has no influence on
the truth of C, because C is range resticted and d is no element of the extensions of relations R and
P. Here, the set of elements in the interpretation corresponding to D is (a,b,c).

PROPOSITION 1:
Let D be a relational database. Let U be an update.
Suppose all constraints are satisfied in D.
Then they are satisfied in U(D) iff every simplified instance of a constraint relevant to U is satisfied
in U(D).

Before we prove this proposition, we illustrate it by some examples.

EXAMPLE
Let U:=p(b) be an update to a relational database D.
Suppose we have one existentially quantified constraint

C: 3X [~(X) /\ \;tZ[q(X,Z)]]

which is satisfied in D. C is relevant to U. Because X is an existentially quantified variable in
C the defming substitution of the simplified instance is t= (). So, the simplified instance of C
is C itself. Generally, this is the case for all existentially quantified constraints.

EXAMPLE
Let U:=p(b) be an update to a relational database D.
Suppose we have one constraint

C: \;tX\;tY ['p(X) v ,r(Y) v 3Z3W [q(X,Z) /\ q(W,Y)ll

which is satisfied in some database D. C is relevant to U. Because of the existence of just one
negated literal with predicate symbol p of C, we get only one simplified instance, Cs, with respect
to U:

Cs: \;tY [,r(Y) v 3Z3W [q(b,Z) /\ q(W,Y)]l

A] Let D consist of the following facts

p(a)
p(d)
p(e)

r(b) q(a,b)
q(a,c)

q(c,a) q(d,b) q(e,d) q(f,b) q(g,b)

then constraint C is satisfied in D. The updated database U(D):=(p(b)} u D violates C and Cs
respectively, because there is no fact q(b,J in the updated database. (_ stands for some element
in the domain of the database).

17

INTEGRITY CHECKING IN DEDUCTIVE DATABASES; AN EXPOSITION

B I Let D consist of the following facts

pea)
p(d)
pee)

reb) q(a.b)
q(a.c)

q(b.a) q(c.a)
q(b.c)
q(b.d)
q(b.f)
q(b.g)

q(d.b) q(e.d) q(f.b) q(g.b)

then constraint C is satisfied. The updated datadase U(D):=(p(b)} u D satisfies C and Cs respectively.
because now there are facts. q(b.J. in the database. l stands for some element of the database).

We can say that the simplified instance Cs gives an indication of the kind of facts which are important
for proving the constraint to be satisfied in U(D).

Proof (proposition 1):
In this proof we suppose that the update is an insertion. The case in which the update is a deletion is
treated similarly.
~: Suppose all constraints are satisfied in D and U(D). So. D and U(D) can be seen as interpretations

in which the constraints are true. (Therefore. we speak: of constraints which are true in D and
U(D) respectively). Now. let C be a constraint which is relevant to U. A simplified instance of
C can be represented by Ct. where t is some substitution of variables wltich are universally quantified
and not governed by any existentially quantified one. Since C is true in U(D). clearly Ct is true
in U(D) too. Consequently. every simplified instance of a constraint relevant to U is satisfied
in U(D).

=: Suppose all constraints are satisfied in D and suppose every simplified instance Cs of a constraint

18

C relevant to U is satisfied in U(D). We consider two cases:
Case 1: C is not relevant to u.
Then the update does not influence C. So. C is satisfied in U(D). hecause U does not playa role
in satisfying C and C is satisfied in D.
Case 2: C is relevant to U.
C is satisfied in D means that the facts of D imply an interpretation in which C is true. In case C=Cs
for some simplified instance Cs• when the defining substitution is empty. there is nothing left to
be proved. Note that this is the case if C is an existentially quantified constraint. i.e. a formula of
type 2) in the formal definition of constraints. So. in the case of e~cs for all such Cs which we
consider now. we can assume that C is universally quantified. In order to prove that U(D) is a "model"
for C. it suffices now to prove that Ct is satisfied in U(D) for every substitution t of the universally
quantified variables which are not governed by an existentially quantified one.
Let 1;(D) (resp. 1;(U(D») the collection of elements of D (resp. U(D)). Let 1;(U) represent the set
of all elements of U.
So.let t=(X/t,.X,/r. •...• X./t"J, where t,.r. •...• t" E 1;(U(D» and where X,.X2 •...• Xn are all the universally
quantified variables which are not governed by an existentially quantified one in C. There are two
possibilities:
The first one is that the update only contains elements already present in D. So.1;(U(D»=1;(D). The
second one is that the update U introduces one ore more new elements to the database. So. 1;(U(D)~(D);t0.
In the first situation we distinguish two cases:

AN INTEGRITY CHECKING METHOD FOR DATABASES

Case A: 't corresponds to an instantiation of some Cs.
Because Cs is satisfied in U(D). Ct is satisfied in U(D).

Case B: 't does not correspond to an instantiation of some Cs.
Because for each i=I.2 ,n, ~ E S(U(D)) and S(U(D)l=S(D). Ct is satisfied in U(D). For the satisfiability
of C't only depends on facts other than the update. which were present in D and still are present
in the updated database.

In the second situation we distinguish three cases:
Case A: 't corresponds to an instantiation of some Cs.

Because Cs is satisfied in U(D). C't is satisfied in U(D).
Case B: 't does not correspond to an instantiation of some Cs and t}ot, t. E S(D).

This case corresponds to case B in the first
situation BemuS' of ore or more new elements
in the database. imported by the update. we
now need also the lemma to prove the
satisfiability of C't in U (D).

Case C: 't does not correspond to an instantiation
of some Cs and tiE S(U(D))-S(D) for some i.

Let C: \iX, V)(, ... \iX.[,A,v,A,v ... ,A", vQ].
Now. there is a literal 'A;'t which contains UPDATE
element ~ from the set S(U(D))-S(D). for
some j E {l,2 •... .m} and which is not unifiable
with the negation of U. For if it was unifiable.
't would correspond to an instantiation of
some Cs. Because Aj't is not unifiable with
U and U(D) only consists of the facts in
D and the update U. it can only be satisfied
by facts in D. However. these facts do not
contain the newly introduced element. So.
Aj't is falsified in U(D). So. ,Aj't is satisfied
in U(D) and therefore also C't is. BASE

By this we proved that for every substitution of
the universally quantified variables which are not
governed by an existentially quantified one all
constraints are satisfied in U(D). And so we have
proved the proposition.
The proposition above is illustrated by figure 2.

WARNING:

Figure 2: The relational case

Bry, Decker and Manthey have written down proposition 1 in the following different form:
All constraints are satisfied in U(D) iff they are satisfied in D and every simplified instance
of a constraint relevant to U is satisfied in U(D).

So, their proposition is not the same proposition as which has been proved by Nicolas [NIC79l. although
they say it is.
Their proposition even is not true. Suppose we have a database D with fact:

19

INTEGRITY CHECKING IN DEDUCTIVE DATABASES; AN EXPOSITION

P(a"a3)

and constraint:

C: "IX [~P(a"X) v Q(<lz,X)]

This database is not consistent, because constraint C is violated.
Now by inserting Q(<lz,a3) we could create a new database which is consistent. So, all constraints are
satisfied in U(D), but they are not in D.

The approach in proposition I is extendible to deductive databases in two ways, a naive one and the
better approach. First, we give a fonnal description of the naive approach.

2.3 THE DEDUCTIVE CASE: A naive approach

When we are dealing with rules, an update may induce several other implicit changes to the database.
These induced updates must also satisfy the integrity constraints. The semantics of integrity constraints
are defined according to a canonical interpretation, which consists of true atoms corresponding to the
facts which are in the database or derivable from the database by its rules. A unique canonical interpretation
can be detennined by resticting the rules to be stratified in the sense of [APT87].
Let us describe the concept of induced update more fonnally:

DEFINITION 5:
Let C ~ ¥A,I\".I\A" be a deductive rule R. Let U be an update and U(D) the updated database
ofD.
Let L be a positive (resp. ~L a negative) literal which is unifiable with Ai (resp. the complement
of A,) in R, for some i. Let 't be the most general unifier of L and Ai' Let C'=(C't)O', where °'
is a substitution by which

(A ,1\ •• • I\Ai.,I\Ai+ ,1\ •• • 1\A,,)'t0'
is true in U(D). C' evaluates to false in D (resp. ~C' evaluates to true in D). Because rules are
range restricted and every variable of C therefore appears also in one or more A"A"".,A", C'
is ground. C' (resp. ~C') is now called directly induced by Lover U(D).
A literal is induced by Lover U(D) iff
i) it is directly induced by Lover U(D), or
ii) it is directly induced by a literal induced by Lover U(D).
Now, every literal induced by update U over U(D) is called an update induced by U.

Let us give an example, which is based on CASE 2 of EXAMPLE A.

EXAMPLE C
Suppose we have a deductive database D consisting of the facts in EXAMPLE B and with one (range
restricted) rule

R: q(Y,X) ~ q(X,Y) 1\ p(X) 1\ ~p(Y)

20

AN INTEGRITY CHECKING METHOD FOR DATABASES

Note that all the facts which can be derived from R and the facts appear in the fact base of D. So, the
fact base of D can be seen as an interpretation.
Let V:=p(b) be an update. This update is unifiable with the literal p(X) ofR. Now 't={XIb} is the most
general unifier of V and p(X). We instantiate the body of the rule by applying 't, which becomes:

q(b,Y) A p(b) A 'p(Y) (*)

We are searching for a substitution for which this is true in the updated database. Because the update
is ground and the rule is range restricted we always find the instantiated unifiable literal (in this case
p(b» to be equal to the update and therefore true in V(D). So, instead of (*) we can search for a substitution
for which

q(b,Y) A 'p(Y)

evaluates to true in V(D).
For instance, o=(Y/c} is such a substitution. In this case, we find q(b,c) and 'p(c) to be true in the
interpretation corresponding to the updated database. The head of the rule q(Y,X) is instantiated by
't and 0. The resulting fact, i.e. q(c,b), is called an (directly) induced update by p(b) only if such a fact
was not already present in D which is obviously true. Note that 0, = (Y If) and O2= (Y /g) and respectively
are substitutions for which the formula is true in V(D), but the resulting facts q(f,b) and q(g,b) respectively
are no induced updates, because they were already present in D.
Note that ~(b,a), and ~(b,d) are also directly induced updates, for the complement of p(b) is also
unifiable with ~(Y) in Rand q(X,b) A p(X) is true in U(D) for 0= {Xla} and o'=(Xld} respectively
and q(a,b), p(a) and q(d,b), p(d) respectively are present in V(D).
So, the collection of directly induced updates is

Vi = (q(c,b),'q(b,a),~(b,d)}.

Note that this is also the collection of induced updates by V, because from Vi' the fact base and (p(b)}
and rule R there are no other facts derivable.

As another more practical example, suppose we have a database containing the deductive rule R:

R: mngr(Y,Z) f- mngr(X,Z) A coll(X,Y),

and the facts

"mngr(john,carl)", "coll(john,george)" and "coll(john,frank)",

which states that "a collegue Y of a pelSO!l X with manager Z has the same manager Z'. Let V = -mngr(john,carl)
be an update. The update is unifiable with the complement of "mngr(X,Z)" in R. (Remember that with
this update carl is not a manager of john anymore and so with rule R in the updated database V(D)
all collegues of john no longer have carl as their manager also). Now, the most general unifier 't of
these two literals is 't=(Xljohn,Z/carl}. The body of the rule without the unifiable literal is partially
instantiated by 't to

B: coll(john, V).

21

INTEGRITY CHECKING IN DEDUCTIVE DATABASES; AN EXPOSITION

The corresponding instantiation of the head of R by 1: is

H: mngr(Y,carl).

For every substitution 0 for which B is true in the updated database we consider the corresponding
instantiation of H. Then ol={Y/george} and 02={Y/frank} are two substitutions which make B true.
The negation of the corresponding substitutions of H, ,H01 and ,H02 must evaluate to true in U(D).
(or, intuitively, george and frank, collegues of john, do not have carl as their manager anymore). Now,
these ground literals ", mngr(george,carl)" and ", mngr(frank,carl)" respectively, are called updates
directly induced by U.
Note that we only need to compute those induced updates to which some constraint is relevant. The
other ones do not influence the integrity of the database U(D) when D is consistent.

In deductive databases all instances of constraints relevant to an update induced by a given update must
be checked in order to prove the consistency of the database:

PROPOSITION 2:
Suppose all constraints are satisfied in D.
Then they are satisfied in U(D) iff
every simplified instance of a constraint

• relevant to U, or
. relevant to an update induced by U

is satisfied in U(D).

Proof: The property follows from proposition I by reduction to the relational case. Consider the canonical
interpretation of D as a relational database. A canonical interpretation consists of true atoms
corresponding to the facts which are in the database or derivable from the database by its rules.
A unique canonical interpretation can be detennined by resticting the rules to be stratified
in the sense of [APT87]. Treat the induced updates as explicit updates to this database.

To illustrate this proposition, consider the following example:

EXAMPLE D
Let U:=p(b) be an update to the deductive database D of EXAMPLE C.
Let there be one specified constraint

C: V'XV'Y ['p(X) v 'r(Y) v 3Z3W [q(X,Z) " q(W,Y)])

which is satisfied in D. C is relevant to U. (See EXAMPLE B).
Induced updates are of the fonn ql,b) (resp. ~(b,J), which are derived from q(Y,b) (resp. ~(b,X»
by a substitution ofY (resp. X) for which q(b,Y)" 'p(Y) (resp. q(X,b)" P(X» is true in the interpretation
of U(D). According to EXAMPLE C, the collection of induced updates is

Ui = {q(c,b),~(b,a),~(b,d)}.

22

AN INTEGRITY CHECKING METHOD FOR DATABASES

Now, we must select all the induced updates from Ui which are relevant for C. From the update itself
and the induced updates for which this is the case, -xj(b,a) and -q(b,d), five simplified instances are
derived:

Cs : ';fY [,r(Y) v 3Z3W [q(b,Z) /\ q(W,Y)lJ,

CSt: ';fY [,r(Y) v 3Z3W [q(b,Z) /\ q(W,Y)lJ,

CS2: 'IX ['p(X) v ,r(a) v 3Z3W [q(X,Z) /\ q(W,a)ll,

. C S3: ';fY [,r(Y) v 3Z3W [q(b,Z) /\ q(W,Y)ll and

CS4: 'IX [~(X) v ,r(d) v 3Z3W [q(X,Z) /\ q(W,d))).

C s is derived from the update U, CSt and C S2 are derived from the induced update -q(b,a) and C S3 together
with C S4 are derived from the induced update -q(b,d). (Note that CSt and C S3 are identical. The method
following from proposition 3 in the next section protect us from such redundancies.)
These simplified instances must be satisfied in U(D) in order to prove that C is satisfied in U(D). We
can see that C S' CSl' C S2' C S3 and C S4 are all satisfied in U(D).

Figure 3 visualizes proposition 2. The first step represented by the dotted arrows reproduces the determination
of the induced updates by applying the update to the rules with the aid of the fact base. The second
step represented by the continuous arrows reproduces:

the determination of the simplified instances of the constraints relevant to at least one induced
update, and
the checking of the simplified instances
of the constraints with the aid of the fact
base.

Following proposition 2 has certain disadvantages:
all induced updates are computed even those for
which no constraint is relevant. For example, in
case of a rule R:

R: coll(X,Y) ~ mngr(X,Z) /\ mngr(Y,Z),

a constraint C:

C: ';fX';fY [,st(X,Y,free) v 3Z [coll(X,Z)/\

state(Z,Y,busy)ll,

(intuitively, if a person X is marked as free by
manager Y, then there must be a collegue of X
who is busy. So, not all employees of a manager
are free. A department must be manned)

INDUCED
UPDATES (UPDATE J! !

.-"'7-:\\ L----"---'
;,,' ~, .

CONSTRAI~T --------l:::-\: RULES

" ,...'",

'---'''T-=-- :,,;
.(

-~----- ,/: , ,

Figure 3: the naive deductive approach
23

INTEGRITY CHECKING IN DEDUCTIVE DATABASES; AN EXPOSITION

and a lot of mngr(.,george) facts in the database, this could lead to an enonnous overhead when a fact
mngr(harold,george) is ioserted. Suppose that harold does not have any collegues according to the database.
Then, for every mngr(,george)-fact there are two induced updates of this rule, because of the symmetry
in the body of the rule. These induced updates do have one of the following fonns:

- coll(harold,J, or
- collCharold).

However, C is not relevant to all these induced updates, because these induced updates are not unifiable
with the negation of any literal in C.

As one already saw in EXAMPLE D, generating all simplified instances before independently validating
them could lead to redundancy. For the example above, the deletion of mngr(john,george) could lead
because of rule R to several induced collUohn,)-deletions and therefore lead to the generation of several
identical simplified instances of a constraint. To illustate this, suppose database D contains rule R and
the following facts:

collUohn,a)
collUohn,b)
collUohn,c)
collUohn,d)

mngr(a,george)
mngr(b,george)
mngr(c,george)

mngrUohn,george),

in which a,b,c and d are names of certain people. By deleting the fact mngrUohn,george) the induced
updates with respect to R are -.collUohn,a), ,collU0hn,b) and -.collU0hn,c). (The rule states that two
people are collegues when they have a same manager. So, if john no longer has george as a manager,
then the rule implies that people who still have george as a manager can no longer be collegues of john).

Then, for all induced updates -.collUohn,a), ,collUohn,b) and -.collUohn,c), which are all relevant with
respect to C, there is generated one simplified
instance:

C': "IY [,stUohn,Y,free) v 3Z [collUohn,Z)/\

st(Z, Y ,busy)]]

So, integrity maintenance in deductive databases
according to proposition 2 has a number of
drawbacks. For this reason Bry, Decker and
Manthey propose another approach, which is
based on generating (not necessarily ground)
potential updates from the rules and the update
without using the fact base. This approach does
not have the drawbacks mentioned earlier.

In the next section this approach will be explained
and fonnalized. Figure 4 is an illustration of
this method.

24

UPDATE

BASE

Figure 4: The proposed method

AN INTEGRITY CHECKING METHOD FOR DATABASES

2.4 THE DEDUCTIVE CASE: The proposed method

Compared with the naive deductive approach the only step to be cancelled is the last evaluation phase
from which the induced updates are detennined. By cancelling this phase we get potential updates. In
other words, without applying the 0 in DEFINITION 5. The definition of potential updates is therefore
a slight refonnulation of definition 5:

DEFINITION 6:
Let B ~ Iy-.A2/\ ... /\An be a deductive rule R. Suppose L is a positive (resp. ,L a negative) literal
which is unifiable with A; (resp. the complement of AJ in R, for some i. Let 1: be the most general
unifier of L and A;. Let B '=(B1:). B' (resp. ,B ') directly depends on L.
A literal depends on L iff
i) it directly depends on L, or
ii) it directly depends on a literal depending on L.

DEFINITION 7:
Let D be a deductive database and U an update.
Each literal which depends on update U with respect to some rule of D is called a potential update
induced by U.

Potential updates which are not necessarily ground represent all the related updates in the previous approach.
For instance, in our earlier mentioned example, the insertion of the mngr(harold,george)-fact causes
two potential updates with respect to rule R:

coll(X,Y) ~ mngr(X,Z) /\ mngr(Y,Z),

namely coll(X,harold) and coll(harold, V). All induced updates are instances of these potential updates.

Now, a more abstract example to illustrate the concept of potential updates is given.

EXAMPLE E
Let us return to our deductive database in example C.
Let U:=pCb) be the update. This update is unifiable with the literal p(X) of R. Now 1:= { X/b} is the most
general unifier of U and p(X). Now, instead of instantiating the body of the rule by applying 1: and
then deriving the induced updates by finding the substitutions which make the remaining fonnule true
in U(D) like in the previous chapter, we partially instantiate the head of R by 1:. In this example, the
instantiated head is q(Y,b).
Now, we say that q(Y,b) directly depends on pCb), and so q(Y,b) is a potential update induced by pCb).
Note that the other potential update, which directly depends on pCb), is ~(b,X). It is derived by the
subsitution 1:'={Y/b}.
So, the collection of potential updates which directly depend on update U is

Up := (q(Y,b),'q(b,X)}.

25

INTEGRITY CHECKING IN DEDUCTIVE DATABASES; AN EXPOSITION

To detetmine the collection of potential updates induced by U, we must also find the collection of the
literals which depend on the literals of Up with respect to rule R. Note that this collection is Uo' :=
[q(b,Y),-q(X,b)}. From this collection no new literals are derived. So, the collection of all potential
updates induced by U with respect to R is

[q(Y ,b), -q(b,X),q(b, V), -q(X,b)}.

Potential updates express the intuitive idea mentioned in the previous section that the induced updates
look, for instance, like ql.b). Now, we do not use the fact base to derive these induced updates, but
postpone the call to this base by first constructing an update constraint with the help of potential updates.
The update constraints must be satisfied in U(D) in order to prove the updated database consistent again.
(See proposition 3)

Definitions 3 and 4 are now stated for potential updates instead of (ground) updates:

DEFINITION 8:
A constraint C is relevant to a potential update PU iff the complement of PU is unifiable with
a literal in C.

DEFINITION 9:
Let C=C(L"L" ... ,L,,) be an integrity constraint relevant to potential update PU, where L"L" ... ,Ln

are all the literals (positive or negative) in C. So, there is a literal Lj which is unifiable with the
complement ofPU. Let a be the most general unifier of Lj and PU. To obtain a simplified instance
ofC we partially instantiate C by a restriction of a. Let t be this restriction to only those universally
quantified variables which are not governed by an existentially quantified variable in C. When
PU is ground, we simplify Ct by removing all complements ofPU occurring in Ct. The (universal)
quantifiers grounded by t are also removed. Now, the remaining fotmula, is called the simplified
instance of C with respect to PU and Lj" t is called the defining substitution of the simplified
instance.

For every simplified instance of a constraint with respect to an update U (resp. a potential update PU)
with defining substitution tu (resp. t pu) an update constraint Cu (resp. Cpu) is defined which has to be
consistent with the updated database.

DEFINITION 10:
Let D be a deductive database, U an update and U(D) the updated database.
Let L be a literal which represents an update or a potential update. For every constraint C, an
update constraint for L with respect to t is defined as the universal closure in UCD) of the simplified
instance of C relevant to L with defining substitution t, i.e. Ct.

In [BDM88] two meta-predicates, delta and new, are used in order to define update constraints. Instead
of the universal closure of Ct, this definition states that the update constraint is defined as the universal
closure of-xlelta(U,Lt) v new(U,Ct) (orequivalcntly, delta(U,Lt) -> new(U,Ct)), where the metapredicate

26

AN INTEGRITY CHECKING METHOD FOR DATABASES

deJta(U,L'c) holds ifL'c is satisfied in U(D), but not in D and new(U,Cc) holds if Cc is satisfied in U(D).
This import of meta-predicates in the object language leads to a mixture of two different concepts which
is not supported by the theory. So, we take our own definition of update constraints to continue our
exposition.

Note that only the update constraints imply a call to the database query-evaluator. Till then all the work
can be done by PROLOG. (See Figure 5).

With definition 10 the analogue of proposition 2 is:

PROPOSITION 3:
Suppose that all constraints are satisfied
in D.
Then they are satisfied in U(D)
iff every update constraint

for U, or
- for a potential update induced by

U
is satisfied in U(D).

Let us illustrate proposition 3 with an example.

EXAMPLEF
Let U:=p(b) be an update to the deductive database
D of EXAMPLE C with one specified constraint

C: 'tX'tY ['p(X) v ,r(Y) v

3Z3W [q(X,Z) 1\ q(W,Y)]]

PROLOG ,-----------------------:
UPDATE

\i(. .. ----""" r
. \:::

POTENTIAL "\
UPDATES \

M

i
!

which is satisfied in D. C is relevant to U.
According to EXAMPLE E, the potential updates
are q(Y',b), ~(b,X'), q(b,Y") and ~(X",b).
Note that ~(b,X') and ~(X",b) are the only
potential updates to which C is relevant.

Figure 5: Coupling PROLOG to a DBMS

Because ~(b,X') can be unified to the complement of q(X,Z) and q(W,Y) respectively in C, we derive
from this potential update two simplified instances of C:

C,: 'tV ['r(Y) v 3Z3W [q(b,Z) 1\ q(W,Y)]],

with defining substitution 't,={X/b} and

c,: 'tX [~(X) v 'r(X') v 3Z3W [q(X,Z) 1\ q(W,X')]],

27

INTEGRITY CHECKING IN DEDUCTIVE DATABASES; AN EXPOSITION

with defining substitution 'tz={Y/X'}.
Analogously, we derive from -.q(X",b) two simplified instances of C:

C,: '<IY [~p(X") v ~r(Y) v 3Z3W [q(X",Z) /\ q(W,Y)}],

with defining substitution 't,={X/X"j and

c.: '<IX [~(X) v ~r(b) v 3Z3W [q(X,Z) /\ q(W,b)}],

with defining substitution 't.={Ylbj.
Besides these four instances, we have a simplified instance derived from U:

Cu: '<IY [~r(Y) v 3Z3W [q(b,Z) /\ q(W,Y)}],

with defining substitution 'tu= {X/b j.
So, the update constraints for U with respect to 'tu, for ~q(b,X') and ~q(X" ,b) with respect to 't" 'tz
and 't" 't. respectively are:

Cu : '<IY [~r(Y) v 3Z3W [q(b,Z) /\ q(W,Y)]],

CUI: '<IY [~r(Y) v 3Z3W [q(b,Z) /\ q(W,Y)}],

CU2: '<IX''<IX [~p(X) v ~r(X') v 3Z3W [q(X,Z) /\ q(W,x')}],

CU3 : '<IX"'<IY [~(X") v ~r(Y) v 3Z3W [q(X",Z) /\ q(W,Y)}] and

Cu.: '<IX [~p(X) v ~r(b) v 3Z3W [q(X,Z) /\ q(W,b)}].

Note that the induced updates which are relevant to C in EXAMPLE D, ~q(b,a) and ~q(b,d), are instances
of the potential update -.q(b,X'). Further, CSI and Cs, (CS2 and Cs., respectively) are implied by CUI
(CU2 respectively). (The simplified instance of the constraint, Cs, derived from update U in EXAMPLE
D and the update constraint for U, i.e. Cu, in this example are the same). Note that Cu and CUI are the
same. So, we have to check just one of these constraints. This argument is also applicable to CU2 and
CU3 • Note also that Cu. does not have any instance which corresponds to a simplified instance of C
with respect to an induced update. In other words, the generation of the potential update -.q(X" ,b) and
the related update constraint, Cu., was redundant.
The most negative point is that CU2 and CU3 are equal to the original constraint C, so we have nothing
gained here, because we want to get an instantiation of C which constrains the search space in the database.

In order to explain for what purpose Bry, Decker and Manthey introduce their meta-predicate "delta",
let us consider a potential update. For this update we constructed some simplified constraints which
have to be satisfied in the updated database. In fact we only have to check those instances of these
simplified constraints which correspond to instances of the potential update corresponding to induced
updates. So, with predicate "new" they express the simplified instance of potential updates which have
to be evaluated in the updated database. And with meta-predicate "delta" they express that we only

28

AN INTEGRITY CHECKING METHOD FOR DATABASES

want to evaluate the new-predicate (read simplified constraint) if we deal with an induced update related
to the potential update, i.e. an instance of the potential update which are satisfied in the updated database
but not in the database before the update.

For instance, suppose we have a constraint C: VXVY [.w(X,Y) v s(X,Y)], a potential update w(b,Y)
and two induced updates corresponding to this potential update, w(b,a) and w(b,c), and let w(b,b) and
w(b,d) all other w(b,J-facts in the database, which are not affected by the update. Suppose further that
sCJ-facts are not affected by the update. The simplified update C' with respect to the potential update
is C': VY ['w(b,Y) v s(b,Y)]. Now C' has to be evaluated in the updated database.
But there exists some redundancy in such an evaluation, because C' must be instantiated by all unaffected
w(b,J-facts in the database. These instantiations correspond to instantiations of constraints which were
already satisfied in the old database state. Because this part of the database has not changed the instantiations
of the constraints will still be satisfied. So, to prevend sllch evaluations Bry, Decker and Manthey introduced
the delta-predicate to check if we deal with an induced update related to the potential update before
evaluating the simplified constraint. If we deal with an induced update the simplified constraint can
further be instantiated by this induced update before evaluating it.
So, in our example delta(U,w(b,Y)) checks for which instantiation of Y we have an induced update.
If t is such an evaluation then C't will be evaluated in the updated database. So eventually, in this
example [.w(b,a) v s(b,a)] and [.w(b,c) v s(b,c)] are evaluated.

Now, the main difference of the naive integrity checking approach and the proposed approach is that
in the first case all possible induced updates are generated, even those which are not relevant to a constraint.
In the latter case, the delta handIes only induced updates which are instances of potential updates relevant
to some constraint. So, here all generated induced updates are relevant to some constraint.

However, as we will now see the evaluation of the predicate delta is sometimes unnecessary.
In our example, we derived CUI: VY [.r(Y) v 3Z3W [q(b,Z)" q(W,Y»)] from potential update oq(b,X').
As noted, we have two induced updates ·q(b,a) and oq(b,d) which are instances of the potential update
oq(b,X'). Here, the simplified instances of C which correspond to the induced updates relevant to C
with respect to the first occurrence of the predicate q are equal to CUI' This is caused by the existential
quantified variable Z. So, in this case a meta-predicate delta to check first if we deal with an induced
update before checking the simplified constraint is not necessary, because it causes no instantiation
of the simplified constraint.

2.5 EXTENSIONS OF THE PROPOSED METHOD

Besides fact updates, rule updates or even integrity constraint updates are also possible.
New rules will generate new facts. We can consider these as induced facts. At this point we
can go further with these facts as if these facts were a set of updates. To this set we can apply
some integrity maintenance method. If some constraint is violated then the rule must be withdrawn.
New constraints must be consistent with the other constraints. If that is the case, the constraint
is accepted. However, the database can violate this constraint. No other constraint is violated
by the facts and rules, because the database was supposed to be consistent before the transaction.

29

INTEGRITY CHECKING IN DEDUCTIVE DATABASES; AN EXPOSITION

The only task to be done is to search for relevant facts which could violate the new constraint.
When there are facts which violate this constraint, a choice must be made to decide which
facts must be deleted to restore the integrity of the database.

§3 CONCLUSIONS

The proposed method for integrity maintenance is suitable in order to optimize the constraint check
before actually consulting the fact base by the query-evaluator. It also seems possible to build a deductive
database management system with PROLOG linked to a relational database management system which
has an acceptable degree of efficiency as is shown empirically by Das and Williams [DA W89]. Further,
it seems (see section 2.5) that this method can be easily extended to rule updates and constraint updates.
But the proposed method has also some drawbacks. For instance, it may happen that some potential
updates and their related update constraints are redundant. In a next article some possible solutions to
the redundancies mentioned above will be proposed.

[APT87]

[ASI85]

[BDM88]

[BR089]

[COD90]

30

REFERENCES

Apt, K.R., Blair, H. and Walker, A.
"Towards a theory of declarative knowledge",
In Minker, J., Proc. Workshop on Deductive Databases and Logic Programming, Aug.,
1987.

Asirelli, Patricia, Michele de Santis and Maurizio Martelli
"Integrity Constraints in Logic Databases",
J. Logic programming (3), pp. 221-232,
1985.

Bry, Fran~ois, Hendrik Decker and Rainer Manthey,
"A Unifonn Approach to Constraint Satisfaction and Constraint Satisfiability in Deductive
Databases" ,
Proceedings of the Conference Extending Data Base Technology,
14-18 March 1988, Venice, LCNS Springer Verlag.
also: ECRC Technical Report KB-16,
7 Nov. 1987.

Brock, E.O. de
"De Grondslagen van Semantische Databases",
Academic Press,
1989.

Codd, T
"The Relational Model for Database Management",
version 2,
Addison-Wesley,
1990.

[DAT90]

[DAW89]

[DEC86]

[GAL78]

[GAL84]

[LL085]

[LL086]

[LL087]

[MAI83]

Date, C.J.
"Relational Database, writings 1985-1989",
Addison-Wesley,
1990.

Das, S.K. and M.H. Williams
"Integrity Checking Methods in Deductive Databases: A Comparative Evaluation",
In: M.H. Williams (ED.), Proceedings of the Seventh British National Conference on
Databases,
Cambridge University Press,
1989.

Decker. H.
"Integrity Enforcement on Deductive Databases",
Proceedings Expert Database Systems, pp. 271-285,
Charleston, Sc.,
1986.

Gallaire, H. and J. Minker
"Logic and Databases",
Plenum Press,
New York 1978.

Gallaire, H., J. Minker and J.-M. Nicolas
"Logic and Databases, a deductive approach",
Computing Surveys 16:1, pp. 154-185,
1984.

Lloyd, l.W. and R.W. Topor
"A Basis for Deductive Database Systems",
J. Logic Programming 2, pp. 93-109.
1985.

Lloyd, r.w. and R.W. Topor
"A Basis for Deductive Database Systems II",
r. Logic Programming 3 (1), pp. 55-67.
1986.

Lloyd, r.w., E.A. Sonenberg and R.W. Topor
"Integrity Constraint Checking in Stratified Databases",
J. Logic Programming 4, pp. 331-343,
1987.

Maier, D.
"The Theory of Relational Databases",
Computer Science Press,
Rockville, Md.,
1983.

31

[MIN88]

[MKR88]

[NIC79]

[NIC82]

[NIY78]

[SAD88]

[SCI86]

[SOP86]

[ULL88]

32

Minker. J.
"Foundations of Deductive Databases and Logic Programming".
Morgan Kaufmann.
Los Altos.
1988.

Minker. J.
"Perspectives in Deductive Databases".
J. Logic Programming 5. pp. 33-60.
1988.

Nicolas. J.M.
"A property oflogical formulas corresponding to integrity constraints on data base relations.
Preprints of tbe Workshop on "Formal bases for data bases".
Toulouse. 1979.

Nicolas. I.M.
"Logic for Improving Integrity Checking in Relational Databases".
Acta Informatica 18 (3). pp. 227-253.
1982.

Nicolas. J .M. and K. Yazdani an
"Integrity Checking in Deductive Data Bases".
in "Logic and Databases" .[GAL 78]. pp. 325-346.
1978.

Sadri. Fariba. and Robert Kowalski
"A Theorem-Proving Approach to Database Integrity".
in "Foundations of Deductive Databases and Logic Programming". J. Minker [MIN88].
Chapter 9.

Sciore. Edward and David S. Warren
"Towards an Integrated Database-PROLOG System".
pp. 293-306 uit "Expert Database Systems" van L. Kerschberg.
1986.

Soper. P.J.R.
"Integrity Checking in Deductive Databases".
Matb. Sc. Thesis.
Department of Computing. Imperial College.
University of London. 1986.

Ullman Jeffrey D.
"Principles of Database and Knowledge Base Systems"
Volume 1.
Computer Science Press.
Stanford University. 1988.

In this series appeared:

90/1 W.P.de Roever-
H.Baoinger-
C.Courcoubetis-D.Gabbay
R.Gerth-B.Jonsson-A.Pnueli
M.Reed-J.Sifakis-J.Vytopil
P.Wolper

90/2 K.M. van Hee
P.M.P. Rambags

90/3 R. Gerth

90/4 A. Peeters

90/5 I.A. Brzozowski
J.e. Ebergen

90/6 A.J.JM. Marcelis

90n A.J.J.M. Marcelis

90/8 M.B. Josephs

90/9 A.T.M. Aerts
P.M.E. De Bra
K.M. van Hee

90/10 M.J. van Diepen
K.M. van Hee

90/11 P. America
F.S. de Boer

90/12 P.America
F.s. de Boer

90/13 K.R. Apt
F.S. de Boer
E.R. Olderog

90/14 F.S. de Boer

90/15 F.S. de Boer

90/16 F.S. de Boer
C. Palamidessi

90/17 F.S. de Boer
e. Palamidessi

Fonnal methods and tools for the development of
distributed and real time systems, p. 17.

Dynamic process creation in high-level Petri nets,
pp. 19.

Foundations of Compositional Program Refinement
- safety properties - , p. 38.

Decomposition of delay-insensitive circuits, p. 25.

On the delay-sensitivity of gate networks, p. 23.

Typed inference systems : a reference document, p. 17.

A logic for one-pass, one-attributed grammars, p. 14.

Receptive Process Theory, p. 16.

Combining the functional and the relational model,
p. 15.

A fonnal semantics for Z and the link between Z and the
relational algebra, p. 30. (Revised version of CSNotes
89/17).

A proof system for process creation, p. 84.

A proof theory for a sequential version of POOL, p. 11 O.

Proving tennination of Parallel Programs, p. 7.

A proof system for the language POOL, p. 70.

Compositionality in the temporal logic of concurrent
systems, p. 17.

A fully abstract model for concurrent logic languages, p.
p.23.

On the asynchronous nature of communication in logic
languages: a fully abstract model based on sequences, p.
29.

90/1S J.Coenen
E.v.d.S1uis
E.v.d.Velden

90/19 M.M. de Brouwer
P.A.C. Verkoulen

90/20 M.Rem

90/21 K.M. van Hee
P.A.C. Verkoulen

91/01 D. Alstein

91/02 R.P. NederpeJt
H.C.M. de Swart

91/03 J.P. Katoen
L.A.M. Schoenmakers

91/04 E. v.d. Sluis
A.F. v.d. Stappen

91/05 D. de Reus

91/06 K.M. van Hee

91/07 E.Poll

91/08 H. Schepers

91/09 W.M.P.v.d.Aalst

91/10 R.C.Backhouse
PJ. de Bruin
P. Hoogendijk
G. Malcolm
E. Voennans
J. v.d. Woude

91/11 R.C. Backhouse
PJ. de Bruin
G.Malcolm
E.Voennans
J. van der Woude

91/12 E. van der Sluis

91/13 F. Rietman

91/14 P. Lemmens

Design and implementation aspects of remote procedure
calls. p. 15.

Two Case Studies in ExSpect. p. 24.

The Nature of Delay-Insensitive Computing. p.lS.

Data. Process and Behaviour Modelling in an integrated
specification framework. p. 37.

Dynamic Reconfiguration in Distributed Hard Real-Time
Systems. p. 14.

Implication. A survey of the different logical analyses
.. if ...• then p. 26.

Parallel Programs for the Recognition of P-invariant
Segments. p. 16.

Perfonnance Analysis of VLSI Programs. p. 31.

An Implementation Model for GOOD. p. IS.

SPECIFICATIEMETHODEN. een overzicht. p. 20.

CPO-models for second order lambda calculus with
recursive types and subtyping. p. 49.

Tenninology and Paradigms for Fault Tolerance. p. 25.

Interval Timed Petri Nets and their analysis. p.53.

POLYNOMIAL RELATORS. p. 52.

Relational Catamorphism. p. 31.

A parallel local search algorithm for the travelling
salesman problem. p. 12.

A note on Extensionality. p. 21.

The PDB Hypennedia Package. Why and how it was
built. p. 63.

91/15 A.T.M. Aerts
K.M. van Hee

91/16 A.J.J.M. Marcelis

91/17 A.T.M. Aerts
P.M.E. de Bra
K.M. van Hee

91/18 Rik van Geldrop

91/19 Erik Poll

91/20 A.E. Eiben
R.Y. Schuwer

91/21 J. Coenen
W.-P. de Roever
J.Zwiers

91/22 G. Wolf

91/23 K.M. van Hee
L.J. Somers
M. Yoorhoeve

91/24 A.T.M. Aerts
D. de Reus

91/25 P. Zhou
J. Hooman
R. Kuiper

91/26 P. de Bra
G.J. Houben
J. Paredaens

91/27 F. de Boer
C. Palamidessi

91/28 F. de Boer

91/29 H. Ten Eikelder
R. van Geldrop

91/30 J.c.M. Baeten
F.W. Yaandrager

91/31 H. ten Eikelder

Eldorado: Architecture of a Functional Database
Management System, p. 19.

An example of proving attribute grammars correct:
the representation of arithmetical expressions by DAGs,
p. 25.

Transfonning Functional Database Schemes to Relational
Representations, p. 21.

Transfonnational Query Solving, p. 35.

Some categorical properties for a model for second order
lambda calculus with subtyping, p. 21.

Knowledge Base Systems, a Fonnal Model, p. 21.

Assertional Data Reification Proofs: Survey and
Perspective, p. 18.

Schedule Management: an Object Oriented Approach, p.
26.

Z and high level Petri nets, p. 16.

Fonnal semantics for BRM with examples, p. 25.

A compositional proof system for real-time systems based
on explicit clock temporal logic: soundness and complete
ness, p. 52.

The GOOD based hypertext reference model, p. 12.

Embedding as a tool for language comparison: On the
CSP hierarchy, p. 17.

A compositional proof system for dynamic proces
creation, p. 24.

Correctness of Acceptor Schemes for Regular Languages,
p. 31.

An Algebra for Process Creation, p. 29.

Some algorithms to decide the equivalence of recursive
types, p. 26.

91/32 P. Stroik

91/33 W. v.d. Aalst

91/34 J. Coenen

91/35 F.S. de Boer
J.W. Klop
C. Palamidessi

92/01 J. Coenen
J. Zwiers
W.-P. de Roever

92/02 J. Coenen
J. Hooman

92/03 J.C.M. Baeten
J.A. Bergstra

92/04 J.P.H.W.v.d.Eijnde

92/05 J .P.H.W.v .d.Eijnde

92/06 J.C.M. Baeten
J.A. Bergstra

92/07 RP. N ederpelt

92{08 RP. Nederpelt
F. Kamareddine

92{09 R C. B ackhouse

92/10 P.M.P. Rambags

92/11 R.C. Backhouse
J .S.C.P.v .d.Woude

92/12 F. Kamareddine

92/13 F. Kamareddine

92/14 J.C.M. Baeten

92{15 F. Kamareddine

92{16 RR Seljee

Techniques for designing efficient parallel programs, p.
14.

The modelling and analysis of queueing systems with
QNM-ExSpect, p. 23.

Specifying fault tolerant programs in deontic logic,
p. 15.

Asynchronous communication in process algebra, p. 20.

A note on compositional refmement, p. 27.

A compositional semantics for fault tolerant real-time
systems, p. 18.

Real space process algebra, p. 42.

Program derivation in acyclic graphs and related
problems, p. 90.

Conservative fixpoint functions on a graph, p. 25.

Discrete time process algebra, p.45.

The fine-structure of lambda calculus, p. 110.

On stepwise explicit substitution, p. 30.

Calculating the Warshall/Floyd path algorithm, p. 14.

Composition and decomposition in a CPN model, p. 55.

Demonic operators and monotype factors, p. 29.

Set theory and nominalisation, Part I, p.26.

Set theory and nominalisation, Part II, p.22.

The total order assumption, p. 10.

A system at the cross-roads of functional and logic
programming, p.36.

Integrity checking in deductive databases; an exposition,
p.32.

:i' , ;Q

	Abstract
	0. Introduction: relational databases, rules, integrity constraints, deductive databases, integrity enforcement
	1. Integrity constraints
	1.1 Column & domain constraints
	1.2 Entity and referential integrity
	1.3 User-defined integrity constraints
	2. An integrity checking method for databases
	2.1 An informal introduction
	2.2 Formal description
	2.3 The deductive case: a naive approach
	2.4 The deductive case: The proposed method
	2.5 Extensions of the proposed method
	3. Conclusions
	References

