

SystemC^FL : a formalism for hardware/software co-design

Citation for published version (APA):
Man, K. L. (2005). SystemC^FL : a formalism for hardware/software co-design. In F. O'Regan, & C. Wegener
(Eds.), Proceedings of the 17th European Conference on Circuit Theory and Design (ECCTD'05, Cork, Ireland,
August 29-September 2, 2005) (Vol. 1, pp. 193-196). Institute of Electrical and Electronics Engineers.
https://doi.org/10.1109/ECCTD.2005.1522943

DOI:
10.1109/ECCTD.2005.1522943

Document status and date:
Published: 01/01/2005

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 04. Oct. 2023

https://doi.org/10.1109/ECCTD.2005.1522943
https://doi.org/10.1109/ECCTD.2005.1522943
https://research.tue.nl/en/publications/dbedf043-41c7-44ff-bb47-cff82ebdccb2

SystemCFL : A Formalism for Hardware/Software Co-design

K.L. Man∗

Abstract — SystemCFL is a formal language for hard-

ware/software co-design. Principally, SystemCFL is the formal-

ization of SystemC based on classical process algebra ACP. The

language is aimed to give formal specification of SystemC de-

signs and perform formal analysis of SystemC processes. This

paper, designed for the first-time user of SystemCFL , guides the

reader through modeling, analyzing and verifying designs using

SystemCFL . This paper illustrates the use of SystemCFL with

two case studies taken from literature.

1 Introduction

SystemC [1] is a modeling and simulation language

(without formal semantics defined) based on C++ for

hardware/software co-design. Recently, SystemC has

received an extreme increase in industrial acceptance

for system specification and simulation.

The goal of developing a formal semantics is to pro-

vide a complete and unambiguous specification of the

language. It also contributes significantly to the shar-

ing, portability and integration of various applications

in simulation, synthesis and formal verification.

SystemCFL [2] is a reasonable subset of SystemC

that has a rigid formal basis (i.e. formal semantics).

In principle, SystemCFL is the formalization of Sys-

temC based on classical process algebra (the Alge-

bra of Communicating Processes) ACP [7]. The in-

tended use of SystemCFL is for giving formal spec-

ification of SystemC designs and performing formal

analysis of SystemC processes. It was shown in [3]

that SystemCFL can be reasonably efficiently used to

model software, hardware and concurrency.

A key feature of SystemCFL is to have a single-

formalism that is used to describe the various aspects

of the system under consideration. Analysis/formal

verification takes place by extracting simpler designs

from SystemCFL designs that are tailored to some

specific properties of interest. More precisely, vari-

ous desired properties of systems/designs modeled in

SystemCFL can be verified with existing formal veri-

fication tools by translating them formally into differ-

ent formalisms that are the input languages of the exist-

ing formal verification tools. Hence, SystemCFL can

be purportedly used for formal verification. For in-

stance, safety properties of concurrent systems modeled

in SystemCFL can be verified by translating those sys-

tems to PROMELA [12] that is the input language of

∗Formal Methods Group, Department of Mathematics and

Computer Science, Eindhoven University of Technology,

P.O.Box 513, 5600 MB Eindhoven, The Netherlands, e-mail:

kman@win.tue.nl, tel.: +31 (0)40 2474139, fax: +31 (0)40

2475361.

the SPIN Model Checker [12]. Similarly, [5] reported

that some desired properties of finite state systems de-

scribed in SystemCFL can be fed into the SMV Model

Checker [14] to verify them.

Also, a formal translation was defined in [4] from

SystemCFL to a variant (with very general settings)

of timed automata. The practical benefit of the formal

translation from a SystemCFL design (describing real-

time systems) to a timed automaton is to enable veri-

fication of properties of the SystemCFL design using

existing verification tools for timed automata, such as

Uppaal [13].

1.1 Related Work

The simulation semantics (including watching state-

ment, signal assignment, and wait statement) of Sys-

temC in the form of distributed Abstract State Machine

(ASM) specifications and the Denotational Semantics

for a synchronous subset of SystemC were studied by

[10] and [11] respectively.

It is general believed that the structured operational

semantics (SOS) [8] is more intuitive [9], and the meth-

ods of ASM specifications and denotational semantics

appear to be difficult to apply to describe the dynamic

behavior of processes. Therefore, the language seman-

tics of SystemCFL was formally defined in a standard

SOS style.

1.2 Organization

The remainder of this paper is organized as fol-

lows. The next section introduces the formal language

SystemCFL . Section 3 and 4 present some practical

applications of SystemCFL for modeling and formal

verification. Section 5 contains our conclusions.

2 SystemCFL Language

In this section, we introduce the formal language

SystemCFL . For the syntax and the formal semantics

of SystemCFL , we also refer to [2] and [6].

2.1 SystemCFL Data Types

In order to define the semantics of

SystemCFL processes, we need to make some

assumptions about the data types. Let Var denote the

set of all variables (x0, . . . , xn), and Value denote the

set all possible values (v0, . . . , vm) that contains at

least B (booleans) and R (reals). A valuation is a partial

function from variables to values (e.g. x0 7→ v0). The

set of all valuations is denoted by Σ. The set Ch of

all channels and the set S of all sensitivity lists with

clocks may be used in SystemCFL processes that are

assumed. Notice that the above proposed data types are

the fundamental ones. Several extensions of data types

(e.g., “sc bit” and “sc logic”) were already introduced

in [3].

2.2 Syntax of the SystemCFL Language

A process term P in SystemCFL is built from atomic

process terms AP . SystemCFL consists of various op-

erators that operate on process terms, and it is defined

according to the following grammar:

AP ::= δ | skip | x := e | ∆en | ≫

P ::= AP | P J b I P | b ª P | P • P | PΘP

P 4d P | P¨dP | ∗P | P || P | P ||
`
P

P ∼ P | ∂H(P) | τI(P) | π(P) | a(P)

The operators are listed in descending order of their

binding strength as follows : {ª,•,4,¨,∗},{JI,Θ, ||
, ||

`
, ∼}, {∂, τ, π, a}. The operators inside the braces

have equal binding strength. In addition, operators of

equal binding strength associate to the left, and paren-

theses may be used to group expressions.

Below is a brief introduction of the formal language

SystemCFL . The formal semantics of SystemCFL is

given in subsection 2.3. Due to limitation of

pages, deduction rules1 for operational semantics of

SystemCFL are not given in this paper. For those in-

terested in more details, please read [2] and [6].

A constant called deadlock δ is introduced, which

represents no behavior. The skip process term performs

the internal action τ which is not externally visible. The

assignment process term x := e, which assigns the value

of expression e to x (modeling a SystemC “assignment”

statement). The delay process term ∆en is able to delay

the value of numerical expression en. The unbounded

delay process term ≫ (modeling a SystemC “wait”

statement) may delay for a long time that is unbounded

or perform the internal action τ .

The conditional composition p J b I q operates as

a SystemC “then if else” statement, where b denotes a

boolean expression and p, q ∈ P . The watching process

term b ª p is used to model a SystemC “watching”

statement. The sequential composition p • q models the

process term that behaves as p, and upon termination

of p, continues to behave as process term q. The al-

ternative composition pΘq models a non-deterministic

choice between process terms p and q. The timeout

process term p 4d q (modeling a SystemC “time out”

construct) behaves as p if p performs a time transition

1These rules (of the form
premises

conclusions
) have two parts: on the top

of the bar we put premises of the rule, and below it the conclusions.

before a time d ∈ R>0; otherwise, it behaves as q. The

watchdog process term p¨dq behaves as p during a pe-

riod of time less than d, at time d, q takes over the exe-

cution from p in p¨dq; if p performs an internal cancel

χ action, then the delay is canceled, and the subsequent

behavior is that of p after χ is executed. The repetition

process term ∗p (modeling a SystemC “loop” construct)

executes p zero or more times.

The parallel composition p || q, the left-parallel com-

position p ||
`

q and the communication composition

p ∼ q are used to express parallelism (actions are ex-

ecuted in an interleaving manner, with the possibility of

communication of actions). The encapsulation of ac-

tions is allowed using ∂H(p), where H represents the

set of all actions to be blocked in p. The abstraction

τI(p) behaves as the process term p, except that all ac-

tions names in I are renamed to the internal action τ .

The maximal progress π(p) assigns action transitions

a higher priority over time transitions. This operator

is needed to establish a desired communication behav-

ior. That is, both the sender and the receiver must be

able to perform time transitions, but if two of these can

communicate (i.e. performing action transitions), they

should not perform time transitions. The grouping of

actions and executing them in one step can be done by

using a(p).
Informal semantics of SystemC states that SystemC

incorporates both point-to-point communication and

multi-party communication mechanisms for the inter-

action amongst processes. However, there are no (im-

plicit) statements in SystemC for modeling these com-

munication mechanisms. In order to capture these facts

in SystemCFL , operators ||, ||
`
,∼, ∂H , τI , and π are in-

troduced to give formal specification for point-to-point

communication and multi-party communication mech-

anisms.

2.3 Semantics of the SystemCFL Language

Definition 1 A SystemCFL process is a quintuple

〈P, Σ, Σ, S,Ch〉. We use the convention 〈p, σ′, σ, s, m〉
to write a SystemCFL process, where p is a process

term; σ, σ′ are valuations; s is a sensitivity list with

clocks; and m is a channel.

Definition 2 The set of actions Aτ contains at least

aa(x, v), χ and τ , where aa(x, v) is the assignment ac-

tion (i.e. the value of v is assigned to x), χ is the internal

cancel action and τ is the internal action. The set Aτ is

considered as a parameter of SystemCFL and can be

freely instantiated.

Definition 3 A formal semantics for

SystemCFL processes is given in terms of a La-

belled Transition System (LTS). We define the following

transition relations on SystemCFL processes:

• an action transition 〈p, σ′, σ, s, m〉
a
→

〈p′, σ, σ′′, s, m〉 is that the process 〈p, σ′, σ, s, m〉
executes the action a ∈ Aτ starting with the cur-

rent valuation σ (at the moment of the transition

taking place) and by this execution p evolves into

p′, where σ′ represents the previous accompanying

valuation of the process, and σ′′ represents the

accompanying valuation of the process after the

action a is executed,

• a termination transition 〈p, σ′, σ, s, m〉
a
→

〈X, σ,σ′′, s,m〉 is that the process executes the ac-

tion a followed by termination, where X is used to

indicate a successful termination, and X is not a

process term,

• a time transition (so-called delay)

〈p, σ′, σ, s, m〉
d
Ã 〈p′, σ, σ′′, s, m〉 is that the

process 〈p, σ′, σ, s, m〉 may idle for a duration of

time d and then behaves like 〈p′, σ, σ′′, s,m〉.

Two valuations (e.g., previous accompanying valuation

and current valuation) are defined (as arguments) in the

quintuple, so that the change of valuation of variables

in the sensitivity list of the quintuple can be observed.

This is needed for defining the deduction rules of some

SystemCFL operators (e.g. the watching ª).

3 Modeling with SystemCFL

In this section, we apply SystemCFL to give the formal

specification of a case study taken from literature.

3.1 Synchronous D Flip Flop

D flip flops are one of the most basic building blocks of

RTL designs. Below is a SystemC implementation that

implements a synchronous D flip flop.

// dff.h

include ’’systemc.h’’

SC_MODULE(dff) {

sc_in<int> din;

sc_in<bool> clock;

sc_out<int> dout;

void doit() {

dout = din

};

SC_CTOR(dff) {

SC_METHOD(doit);

sensitive_pos << clock;

}

};

A formal SystemCFL specification of the above syn-

chronous D flip flop is given as follows:

〈Condclock (σ′, σ, s) ª (dout := din), σ′, σ, s, m〉, for

some σ′, σ, s, m.

Condclock is a function that returns true if a pos-

itive edge occurs on port clock. The formal

SystemCFL specification of the above synchronous D

flip flop has a clock input (clock), a data input (din),

and a data output (dout). When a positive edge occurs

on the clock input (which means the function Condclock

returns true), the input port data (din) is assigned to

the output port (dout). Notice that clock , din , dout ∈
dom(σ′),dom(σ); and only clock ∈ s.

4 Purportedly Used for Formal Verification

In the section, we present the application of SPIN to ver-

ify the mutual exclusion algorithm of Dekker modeled

in SystemCFL , by translating theSystemCFL design

to PROMELA.

4.1 Dekker’s Mutual Exclusion

The mutual exclusion algorithm of Dekker is used by

two processes (A and B) which communicate through

shared variables. It is intended to prevent the processes

being simultaneously entered in their critical section.

Since Dekker’s Mutual Exclusion is a well-known case

study of the concurrency theory, we do not further give

the description and explanation of this algorithm. We

only give the formal specification of it in SystemCFL .

In order to increase the readability, we introduce syn-

tactic sugars for various process terms. The syntactic

sugars for the process terms A and B of the mutual ex-

clusion algorithm of Dekker are as follows:

A ≡ (x := 1 • t = Bt) • (mu := mu + 1 • mu :=
mu − 1 • x := 0) J (y = 0) ∧ (tu = At) I δ

B ≡ (y := 1 • t = At) • (mu := mu + 1 • mu :=
mu − 1 • y := 0) J (y = 0) ∧ (tu = Bt) I δ

Since the process terms A and B execute concurrently,

the parallel composition is used to model the complete

system. The complete system with initial value for vari-

ables is modeled as follows:

〈A || B , σ′, σ, ∅, ∅〉 for some σ′, where

σ = {x 7→⊥, y 7→⊥, t 7→⊥, At 7→ 0, Bt 7→ 1}, ∅ and

⊥ denote empty element and the undefinedness

respectively.

Note that the variable mu is introduced as a flag. In

this case study, if mu = 2, which indicates that process

terms A and B enter simultaneously in their critical sec-

tion.

Presenting the formal translation scheme from

SystemCFL to PROMELA, and the syntax and seman-

tics of PROMELA are far beyond the scope of this

paper, therefore we do not show them. Neverthe-

less, the translation of the above-given formal speci-

fication of Dekker’s Mutual Exclusion algorithm from

SystemCFL to PROMELA model is straightforward

and it is shown as follows:

/*declaration*/

bit x, y;

byte t, mu;

proctype A() {

x = 1;

t = Bt;

((y == 0)||(t == At))->

/* critical section */

mu ++;

mu --;

x = 0;

}

proctype B() {

y = 1

t = At;

((x == 0)||(t == Bt))->

/* critical section */

mu ++;

mu --;

y = 0;

}

proctype monitor() {

assert (mu ! = 2);

}

init {

run A(); run B(); run monitor()

}

Notice that the process monitor is introduced and

needed in the PROMELA model to check whether mu-

tual exclusion is valid. If the condition of the assert

statement (i.e., mu! = 2) does not hold, SPIN will pro-

duce an error report. The process init is used to start

processes.

5 Conclusions

In this paper, the main aspects of the current status of

the formal language SystemCFL are presented. Then,

the use of the SystemCFL through some case studies

taken from literature is illustrated. Also, some practi-

cal applications of SystemCFL are shown that can be

purportedly used for formal verification.

References

[1] “SystemC User’s Guide and SystemC Language

Reference Manual (version 2.0) ”.

[2] K.L. Man, “SystemCFL : Formalization of

SystemC,” in IEEE Proceedings of the 12th

Mediterranean Electrotechnical Conference -

IEEE/MELECON 2004, Dubrovnik, Croatia, Vol.

1, pp. 201-204, May, 2004.

[3] K.L. Man, “Modeling with the Formal Language

of SystemC : Case Studies,” in Proceedings of the

11th International Conference Mixed Design of

Integrated Circuits and Systems - IEEE/MIXDES

2004, Szczecin, Poland, pp. 407-411, June, 2004.

[4] K.L. Man, “Analyzing SystemCFL Designs Us-

ing Timed Automata,” in INSPEC IEE Proceed-

ings of the 9th Baltic Electronics Conference -

IEEE/BEC 2004, Tallinn, Estonia, pp. 155-158,

October, 2004.

[5] K.L. Man, “ Verifying SystemCFL Designs Us-

ing the SMV Model Checker,” in Proceedings

of the 8th IEEE Workshop on Design and Di-

agnostics of Electronic Circuits and Systems -

IEEE/DDECS 2005, Sopron, Hungary, pp. 244-

247, April, 2005.

[6] K.L. Man, “Formal Communication Semantics of

SystemCFL ,” to appear in IEEE Proceedings of

the 8th Euromicro Conference on Digital System

Design - IEEE/DSD 2005, Porto, Portugal, Sep-

tember, 2005.

[7] J.C.M. Baeten, W.P. Weijland, “Process Algebra”.

Number 18 in Cambridge Tracts in Theoretical

Computer Science. Cambridge University Press,

1990.

[8] Gordon D. Plotkin, “A Structural Approach to

Operational Semantics”. Report DAIMI FN-19,

Computer Science Department, Aarhus Univer-

sity, 1981.

[9] Luca Aceto, Wan Fokkink, Chris Verhoef, “Struc-

tural Operational Semantics,” in Bergstra et al.

BPS01, pp. 197-292, 1999.

[10] W. Mueller, J. Ruf, D. Hofmann, J. Gerlach, T.

Kropf, W.Rosenstiehl, “The Simulation Semantics

of SystemC,” in Proceedings of DATE, 2001.

[11] Ashraf Salem, “Formal Semantics of Synchronous

SystemC,” in Proceedings of DATE, 2003.

[12] G. J. Holzmann, “The Model Checker SPIN,” in

IEEE Transactions on Software Engineering, Vol.

23, no. 5, pp. 279-295, May, 1987.

[13] Kim G. Larsen, Paul Pettersson, Wang Yi, “UP-

PAAL in a Nutshell, ” in Journal of Software Tools

for Technology Transfer (STTT). Vol 1, No. 1-2,

pp. 134-152, 1997.

[14] The SMV model checker is available at

http://www-2.cs.cmu.edu/ modelcheck/.

