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Iterative Solution Methods of the Maxwell Equations Using
Staggered Grid Spatial Discretization

Robert Horvath* Istvan Faragot

Abstract

W.H.A. Schilders+

In this paper we solve the Maxwell equations with finite difference methods. We employ
the staggered spatial discretization in order to obtain a system of first order linear ordinary
differential equations with a sparse coefficient matrix. This system is solved by different
iterative methods. Namely, we apply the explicit Euler method, the implicit Euler method
combining with the gradient iteration, the Namiki-Zheng-Chen-Zhang (NZCZ) alternating
direction implicit method, the Kole-Figge-de Raedt method and a Krylov-space method. The
considered methods are compared with the classical Yee-method from the point of view of
computational speed, stability and accuracy. Our result is that the NZCZ and the Krylov
space methods can be more efficient than the Yee-method.

Keywords. FDTD, Maxwell-equations, Krylov-space methods, Arnoldi orthogonaliza
tion

AMS subject classifications. 35L05, 65M06, 65M12, 78M20

1 Introduction

The 3D Maxwell equations, which describe the behavior of time-dependent electromagnetic fields,
in the absence of free charges and currents, can be written in the form

- \7 x H + cOtE = 0, (1)
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Figure 1: Standard Yee cell.

v x E + /-LatH = 0,

V(EE) = 0,

v (/-LH) = 0,

where
E = (Ex(t, x, y, z), Ey(t, x, y, z), Ez(t, x, y, z))

is the electric field strength,

H = (Hx(t, x, y, z), Hy(t, x, y, z), Hz(t, x, y, z))

(2)

(3)

(4)

(5)

(6)

is the magnetic field strength, E is the electric permittivity and /-L is the magnetic permeability (see
[9] and [13] for more details). The two material parameters can depend on the spatial coordinates.
It is well-known that the divergence equations (3) and (4) follow from the curl equations (1) and
(2) if we suppose that the fields in question were divergence-free at the initial point of time. This
means that we must solve only the curl equations applying divergence-free initial conditions for
E and H.

A lot of numerical Maxwell solution methods are known. Some of them are the finite differ
ence method, the variational method, the method of moments, the finite element method, the
transmission line matrix method, the Monte Carlo method and the method of lines ([9, 11, 13]).
In this paper we investigate those finite difference methods that employ the staggered spatial
discretization in definition of a system of linear first order ordinary differential equations.

In order to obtain the above mentioned semi-discretized system we define a rectangular mesh
with the step-sizes !:lx,!:ly and !:lz for the electric field and another staggered (by !:lx/2, !:ly/2
and !:lz/2) grid for the magnetic field in the computational domain. The building blocks of
these meshes are the so-called Vee-cells (see Figure 1). The staggered grid structure was firstly
successfully applied by Vee ([16]) in 1966.
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Let us consider the
1 (J!]H)

Oth/EE) = .fi\l x J!] , (7)

Ot(v1ill) = __1 \l x (.fiE), (8)
J!] .fi

rearranged form of the curl equations. Discretizing these equations at the points shown in Figure
1, we arrive at the system of ordinary differential equations

d~~t) = AW(t), t > 0, W(O) is given (9)

csee [1] for details). w(t) E lR6N , N is the number of the Vee-cells in the computational domain,
gives the approximations of the components .fiEx , ... , J!]Hz at the discretization points at the
time instant t. Every row of A E lR6Nx6N consists at most four nonzero elements in the forms
±l/(Jc.,.,.J-l.,.,.!:1.), that is A is a sparse matrix. Moreover, A is a skew-symmetric matrix (AT =
-A). Because of the skew-symmetry of A the eigenvalues can be written in the form ±iAk, where
k = 1, ... , 3N, Ak > 0 and i =.;=T. Applying the Gerschgoren theorem we obtain the upper
bound IAkl :::; 4c/h (k = 1, ... , 3N), where h = min{!:1x, !:1y,!:1z} and c is the maximal speed of
light in the computational domain (c = max{l/#}).

We know from the theory of ordinary differential equations that the solution of (9) can be
written in the form

w(t) = exp(tA)W(O), (10)

where exp(tA) denotes the matrix exponential and it is well-defined with the Taylor-series of the
exponential function. This matrix exponential cannot be computed directly because A is, in real
life problems, a very large matrix. According to the form (10), the numerical methods for the
Maxwell equations are based on some approximation of the matrix exponential exp(tA). With
the choice of a time-step !:1t > 0

W(t + !:1t) = exp(!:1tA)w(t)

follows from (10). Using this equality the one-step iteration

Wn+1 = Un (!:1tA)W n
, WO is given

(11)

(12)

can be defined, where Un (!:1tA) is the approximation of the exponential exp(!:1tA) (this approxi
mation may depend on n) and wn is the approximation of the function W at the time-level n!:1t.

In this paper we investigate several time-integration schemes for (9). These methods will differ
only in the definition of the exponential approximation Un (!:1tA). At the end of this paper we
will compare the schemes from the point of view of computational speed, stability and accuracy.
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2 Time integration schemes for the semi-discretized Max
well equations

In this section we list some possible time-integration methods for (9). In order to compare the
methods, we calculate the number of operations per one iteration step, moreover, we discuss the
question of stability of the methods. We call the numerical solution method stable, when the
relation II \lin 112:S K· II \liD 112 is valid for some fixed constant K and for all natural number n. Let
us introduce the notation q = c!J.tjh.

2.1 Explicit Euler method

The most evident method, the explicit Euler method, is investigated first. The method approxi
mates the exponential exp(!J.tA) by the first two terms of the series of the exponential function.
That is, Un(!J.tA) = 1 + !J.tA. The matrix 1 denotes the identity matrix. This iteration method
is very fast (the number of operation per time-step is 36N), but the method is not stable, so it is
not usable in practice.

Theorem 2.1 The numerical solution of the Maxwell equations using staggered spatial discretiza
tion and explicit Euler time-integration is unstable.

Proof. It is sufficient to show that the modulus of the eigenvalues of A are greater than one.
We have

(13)

2.2 Implicit Euler method

The second solution method is the implicit Euler method, where we employ the approximation
Un(!J.tA) = (1 - !J.tA)-l.

Theorem 2.2 The numerical solution of the Maxwell equations using staggered spatial discretiza
tion and implicit Euler time-integration is unconditionally stable.

Proof. The unconditional stability can be shown with the inequality

/I \lin+! II~=II (I - !J.tA)-l\lln II~:SII (I - 6tA)-1 II~ . II \lin II~=

1 + 6t2 . mi~k=1,."'3N{An II \lin II~:SII \lin II~ .•

4
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Naturally, in practice, we do not compute the inverse of I - !1tA, but we solve a system of
linear algebraic equations in the form

(16)

in every time-step. Because the coefficient matrix of the system is a sparse one, we prefer the
iterative solution method. Let us choose the simple gradient iteration

(17)

where w is a suitably chosen positive constant. The method is convergent if and only if the spectral
radius of the iteration matrix is less than one. So, we obtain the necessary and sufficient condition
of the convergence

2
o< w < { 2}' (18)

1 + !1t2 maxk=1,...,3N Ak
The smaller the spectral radius of the iteration matrix, the faster the convergence. Analyzing the
second order (in w) form of the spectral radius we can find that to achieve the fastest convergence
the parameter w must be chosen according to the equality

1

Inserting this parameter into the expression of the spectral radius we have

(19)

(20)g([(1 - w)I + w!1tA]) = JW2(1 + !1t2)k=T5N{AU + 1 - 2w =

1 1
= 1 - < 1-. (21)

1 + !1t2 maxk=1, ... ,3N{ AU - 1 + 16q2

Although the implicit Euler method is unconditionally stable, which would make possible the
choice of arbitrarily large time-steps, increasing !1t the iteration method will be slower because of
the relatively large spectral radius. When we would like to solve the system of linear equations
decreasing the error of the initial approximation with a factor of 106

, then we have to perform
about 75 iterations (choosing q = 1/V3, which will be the maximal value for q in the Vee-method).
So we would have 75·7·6N = 3150N operations per time-step. This number of operations increases
dramatically increasing the time-step (for q = 2 we have 18816N operations per time-step).
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2.3 The Yee-method

Yee derived the first efficient finite difference solution method for the Maxwell equations in 1966
(see [16]). This method uses a so-called leap-frog time integration scheme, for which the electric
field at t = 0 and the magnetic field at t = I:::..t/2 must be given. Now we show that the Yee
method is also based on the matrix exponential approximation. Let us define two matrices,
A 1y and A 2y , as follows. The matrix A 1y is composed from the matrix A changing the rows
belonging to the electric field variables to zero rows. A 2y can be derived, in similar manner,
zeroing the rows belonging to the magnetic field variables. It can be easily shown that A1y

and A 2y do not commute and that the relations A = A1y + A 2y , exp(l:::..tA1y) = 1 + I:::..tA1y
and exp(~tA2Y) = 1 + I:::..tA2y are fulfilled. In the case of the Yee-method we can apply the
exponential approximation Un(l:::..tA) = (I + I:::..tA1y)(1 + I:::..tA2y ), which comes from the relations

exp(~tA) = exp(l:::..t(A1y + A 2y )) ~ exp(l:::..tA1y) exp (I:::..tA2y ) = (I + I:::..tA1y )(1 + I:::..tA2y ). (22)

It can be proven applying Von Neumann analysis, that the Yee-method can be kept to be stable
choosing the time-step sufficiently small.

Theorem 2.3 (e.g. !13j) The numerical solution of the Maxwell equations using staggered spatial
discretization and leap-frog time integration is stable if and only if the condition

is fulfilled.

1
~t < ----,==========

cJ(1/l:::..x)2 + (1/l:::..y)2 + (1/l:::..z)2
(23)

From the theorem we obtain the upper bound q < 1/y'3. The number of operations is 36N in
one time-step, that is the same like in the explicit Euler method. Thus this method is very fast,
but because of the strict stability condition it proceeds relatively slowly.

2.4 The Namiki-Zheng-Chen-Zhang method

A lot of effort has been invested during the last decade to bridge the stability problem of the Yee
method. The main goal was to construct methods, where I:::..t can be chosen based on accuracy
considerations instead of stability reason ([3, 4]). The first papers that described unconditionally
stable methods were written by Namiki and by the triple Zheng, Chen and Zhang ([8, 15]).

The Namiki-Zhang-Chen-Zhang (NZCZ) method is based on the explicit and implicit Euler
method. Let us define the matrices A 1N and A 2N such a way that A 1N comes from the discretiza
tion of the first items in the curl operator, and A 2N comes from the second ones. Then we can

6



define the iteration process

Wn+1/ 2 _ 'lin

!1t/2
Wn+1 _ Wn+1/2

!1t/2

which gives the exponential approximation

(24)

(25)

Un(t~tA) = (I - (!1t/2)A2N)-1 . (I + (!1t/2)A 1N ) • (I - (!1t/2)A lN )-1 . (I + (!1t/2)A2N ). (26)

The unconditional stability of the method was previously demonstrated on test problems or its
proof was given that used computer algebraic tools. Applying the fact A 1N + A 2N = A and the
skew-symmetry of the matrices A 1N and A 2N , a pure mathematical proof of the stability was
given in [5].

Theorem 2.4 (see [S}) Let h = min{!1x, !1y,!1z} and let q = c!1t/h be an arbitrary fixed number.
The numerical solution of the Maxwell equations is unconditionally stable using staggered spatial
discretization and using the Namiki-Zheng-Chen-Zhang time integration method.

Let us notice that the constant q must be chosen according to the inequality q < 1/V3 (here
h = !1x = !1y = !1z) in 3D problems in the case of the classical Vee-method to guarantee the
stability of the method. According to the previous theorem in the NZCZ-method the parameter
q can be set arbitrarily, which shows the unconditional stability of the method.

In every time-step we have to apply the explicit and implicit Euler method twice. The implicit
method is used with a symmetric tridiagonal matrix, so the solution can be obtained by the so
called Thomas algorithm. The number of operation is 144N in one time-step. The NZCZ-method
is four times slower than the Vee-method for a fixed time-step !1t. Because the NZCZ-method is
unconditionally stable, we can choose time-steps beyond the stability bound of the Vee-method.
Thus in the long run the NZCZ-method can be faster than the Vee-method.

2.5 The Kole-Figge-de Raedt method

Kole, Figge and de Raedt noticed (see [6]) that it is possible to split the matrix A into the sum
of skew-symmetric matrices, for which the matrix exponential can be computed exactly (KFR
method). When we have such splitting in the form A = Al + ... + A p (p E IN), then we have
Un(!1tA) as a product of exactly computed exponentials exp(~il!1tAi), where ~il is some suitable
constant (i E {I, ... ,p}). The computation of the matrix exponentials is based on the equality

( [
0 a] ) [cos a

exp -a 0 = -sina

7

sina ]
cosa '
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where a is an arbitrary constant. Since the matrices AI, ... ,Ap are skew-symmetrical and only
the products of the exponents of these matrices are used in the approximation, the iteration
matrix will be orthogonal. That is its 2-norm is exactly one. Thus the KFR-method is also
unconditionally stable.

Theorem 2.5 (see [6j) The numerical solution of the Maxwell equations using staggered spa
tial discretization and using products of exactly calculated matrix exponentials of skew-symmetric
matrices in the time integration is unconditionally stable.

With the splitting A = Al + ... + A p we can define, for instance, the approximation

(28)

which is called KFRI-method, because this method has order one. A second order approximation
can be achieved with

(29)

(KFR2-method), while we get a fourth order method with

() = 1/(4 - {/4) (KFR4-method). For more details regarding the splitting methods consult [7] and
[14].

The number of operations per time-step is 108N for the KFR1-, 216N for the KFR2-, and
1080N for the KFR4-method.

2.6 The Krylov-space method

In the previous methods we approximated the matrix exponential exp(.6.tA) and used this ap
proximation to generate a matrix iteration. Changing the philosophy of the matrix exponential
approximation we can proceed as follows. We do not approximate the matrix exponential itself
but the product of the matrix exponential and the previous state vector ([1, 2, 10, 12]).

Let us suppose that an initial vector \lIo and a fixed natural number m are given. We are
interested in finding the best approximation to exp(.6.tA)\lIo from the Krylov-space

(31)
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(spann denotes the set of all possible linear combinations of the vectors). Because A is skew
symmetric, it is possible to find an orthonormal matrix V m and a skew-symmetric tridiagonal
matrix T m such that the relation

V~AVm = T m (32)

is satisfied. The matrices V m and T m can be calculated applying the modified Arnoldi-method.
With the help of these matrices the best approximation for exp(D.tA)WO can be written in the
form

WI = f3Vmexp(D.tTm)el' (33)

where f3 =11 WO 112 and el is the first unit vector. This method is also unconditionally stable.

Theorem 2.6 ([S}) The numerical solution of the Maxwell equations using staggered spatial dis
cretization and using the Krylov-method with a modified Arnoldi orthogonalization in the time
integration is unconditionally stable.

The main advantage of the method is that choosing m relatively small (m « 6N) we need to
compute the matrix exponential only for the small matrix D.tTm and we get the next approxima
tion as a linear combination of the m columns of V m' The number of operations per time-steps
is 72mN (if we neglect the number of operations in the computation of exp(D.tTm)).

Remark 2.7 Let us suppose thatdim(K:(D.tA, wO,m)) = mo < m. Then in the above relations we
must use mo instead ofm. Moreover, in this case AmowO E span{WO, D.tAWo, ... , (D.tA)mo-IWO}
and WI gives the exact value of exp (D.tA)'lJ° , which means that exp(D.tA)WO can be computed
exactly for arbitrary time-steps. This shows that the Krylov-method in special cases (mo « 6N)
can be a very efficient one.

Remark 2.8 Considering Theorem 4 in [2} we can give an estimation for the error of this method
in the form

2 (2eq)mII exp(D.tA)wo - f3Vmexp(D.tTm)el 112::; 12e-(2q) 1m m ,m 2: 4q (q = cD.tlh). (34)

With this relation we are able to choose m or D.t to guarantee a certain accuracy level of the
computations.

3 Comparison of the methods

In this section we compare the previously listed numerical schemes for the Maxwell equations. We
are not going to present numerical tests here. Instead of this we summarize our experience in the
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Euler explicit 100% unstable
Euler implicit min. 8750% stable
YEE 100% stable iff q < 1/-/3
NZCZ 400% stable
KFR1 300% stable
KFR2 600% stable
KFR4 3000% stable
Krylov 200m% stable

Table 1: Number of computations and stability.

use of the methods (see papers [1, 5, 6, 8, 10, 13]). We consider the Yee-method as a standard
solution method, so we compare the methods with the Yee-method. Table 1 shows the number of
operations per one time-step (100% = Yee-method) and indicates the stability properties for the
methods.

The explicit Euler method is unstable so it cannot be used in practice. The implicit Euler
method is also unpractical because of the expenses of the computations.

The NZCZ-method is stable, so the time-step can be chosen arbitrarily. Of course, the in
creasing time-step decreases the accuracy of the method. We have to find the appropriate balance
between the accuracy and the computational speed. We have found that with acceptable accuracy
the NZCZ-method can be faster with a factor 10 than the Yee-method.

The KFR-method seems to be a very efficient one, because, like in the Yee-method, it computes
the matrix exponentials exactly. Instead if this, the method appears to be very inaccurate. In
order to lift the accuracy of the method we have to apply the fourth order version of it, which
makes it slower than the Yee-method in the long run. However, because the 2-norm of the iteration
matrix is exactly one, the method behaves nicely in spectrum computations.

The number of operations of the Krylov-method is about 2m times greater than in the Yee
method (the number of the iterations m can be estimated from Remark 2.8). As we noticed in
Remark 2.7 if mo is sufficiently small, then we can obtain the exact solution of the semi-discrtetized
system for all t::..t step-sizes with an acceptable computational time.
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